xref: /openbmc/linux/fs/proc/task_mmu.c (revision 711aab1d)
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/sched/mm.h>
15 #include <linux/swapops.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/page_idle.h>
18 #include <linux/shmem_fs.h>
19 #include <linux/uaccess.h>
20 
21 #include <asm/elf.h>
22 #include <asm/tlb.h>
23 #include <asm/tlbflush.h>
24 #include "internal.h"
25 
26 void task_mem(struct seq_file *m, struct mm_struct *mm)
27 {
28 	unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
29 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
30 
31 	anon = get_mm_counter(mm, MM_ANONPAGES);
32 	file = get_mm_counter(mm, MM_FILEPAGES);
33 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
34 
35 	/*
36 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
37 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
38 	 * collector of these hiwater stats must therefore get total_vm
39 	 * and rss too, which will usually be the higher.  Barriers? not
40 	 * worth the effort, such snapshots can always be inconsistent.
41 	 */
42 	hiwater_vm = total_vm = mm->total_vm;
43 	if (hiwater_vm < mm->hiwater_vm)
44 		hiwater_vm = mm->hiwater_vm;
45 	hiwater_rss = total_rss = anon + file + shmem;
46 	if (hiwater_rss < mm->hiwater_rss)
47 		hiwater_rss = mm->hiwater_rss;
48 
49 	text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
50 	lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
51 	swap = get_mm_counter(mm, MM_SWAPENTS);
52 	ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
53 	pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
54 	seq_printf(m,
55 		"VmPeak:\t%8lu kB\n"
56 		"VmSize:\t%8lu kB\n"
57 		"VmLck:\t%8lu kB\n"
58 		"VmPin:\t%8lu kB\n"
59 		"VmHWM:\t%8lu kB\n"
60 		"VmRSS:\t%8lu kB\n"
61 		"RssAnon:\t%8lu kB\n"
62 		"RssFile:\t%8lu kB\n"
63 		"RssShmem:\t%8lu kB\n"
64 		"VmData:\t%8lu kB\n"
65 		"VmStk:\t%8lu kB\n"
66 		"VmExe:\t%8lu kB\n"
67 		"VmLib:\t%8lu kB\n"
68 		"VmPTE:\t%8lu kB\n"
69 		"VmPMD:\t%8lu kB\n"
70 		"VmSwap:\t%8lu kB\n",
71 		hiwater_vm << (PAGE_SHIFT-10),
72 		total_vm << (PAGE_SHIFT-10),
73 		mm->locked_vm << (PAGE_SHIFT-10),
74 		mm->pinned_vm << (PAGE_SHIFT-10),
75 		hiwater_rss << (PAGE_SHIFT-10),
76 		total_rss << (PAGE_SHIFT-10),
77 		anon << (PAGE_SHIFT-10),
78 		file << (PAGE_SHIFT-10),
79 		shmem << (PAGE_SHIFT-10),
80 		mm->data_vm << (PAGE_SHIFT-10),
81 		mm->stack_vm << (PAGE_SHIFT-10), text, lib,
82 		ptes >> 10,
83 		pmds >> 10,
84 		swap << (PAGE_SHIFT-10));
85 	hugetlb_report_usage(m, mm);
86 }
87 
88 unsigned long task_vsize(struct mm_struct *mm)
89 {
90 	return PAGE_SIZE * mm->total_vm;
91 }
92 
93 unsigned long task_statm(struct mm_struct *mm,
94 			 unsigned long *shared, unsigned long *text,
95 			 unsigned long *data, unsigned long *resident)
96 {
97 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
98 			get_mm_counter(mm, MM_SHMEMPAGES);
99 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
100 								>> PAGE_SHIFT;
101 	*data = mm->data_vm + mm->stack_vm;
102 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
103 	return mm->total_vm;
104 }
105 
106 #ifdef CONFIG_NUMA
107 /*
108  * Save get_task_policy() for show_numa_map().
109  */
110 static void hold_task_mempolicy(struct proc_maps_private *priv)
111 {
112 	struct task_struct *task = priv->task;
113 
114 	task_lock(task);
115 	priv->task_mempolicy = get_task_policy(task);
116 	mpol_get(priv->task_mempolicy);
117 	task_unlock(task);
118 }
119 static void release_task_mempolicy(struct proc_maps_private *priv)
120 {
121 	mpol_put(priv->task_mempolicy);
122 }
123 #else
124 static void hold_task_mempolicy(struct proc_maps_private *priv)
125 {
126 }
127 static void release_task_mempolicy(struct proc_maps_private *priv)
128 {
129 }
130 #endif
131 
132 static void vma_stop(struct proc_maps_private *priv)
133 {
134 	struct mm_struct *mm = priv->mm;
135 
136 	release_task_mempolicy(priv);
137 	up_read(&mm->mmap_sem);
138 	mmput(mm);
139 }
140 
141 static struct vm_area_struct *
142 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
143 {
144 	if (vma == priv->tail_vma)
145 		return NULL;
146 	return vma->vm_next ?: priv->tail_vma;
147 }
148 
149 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
150 {
151 	if (m->count < m->size)	/* vma is copied successfully */
152 		m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
153 }
154 
155 static void *m_start(struct seq_file *m, loff_t *ppos)
156 {
157 	struct proc_maps_private *priv = m->private;
158 	unsigned long last_addr = m->version;
159 	struct mm_struct *mm;
160 	struct vm_area_struct *vma;
161 	unsigned int pos = *ppos;
162 
163 	/* See m_cache_vma(). Zero at the start or after lseek. */
164 	if (last_addr == -1UL)
165 		return NULL;
166 
167 	priv->task = get_proc_task(priv->inode);
168 	if (!priv->task)
169 		return ERR_PTR(-ESRCH);
170 
171 	mm = priv->mm;
172 	if (!mm || !mmget_not_zero(mm))
173 		return NULL;
174 
175 	down_read(&mm->mmap_sem);
176 	hold_task_mempolicy(priv);
177 	priv->tail_vma = get_gate_vma(mm);
178 
179 	if (last_addr) {
180 		vma = find_vma(mm, last_addr - 1);
181 		if (vma && vma->vm_start <= last_addr)
182 			vma = m_next_vma(priv, vma);
183 		if (vma)
184 			return vma;
185 	}
186 
187 	m->version = 0;
188 	if (pos < mm->map_count) {
189 		for (vma = mm->mmap; pos; pos--) {
190 			m->version = vma->vm_start;
191 			vma = vma->vm_next;
192 		}
193 		return vma;
194 	}
195 
196 	/* we do not bother to update m->version in this case */
197 	if (pos == mm->map_count && priv->tail_vma)
198 		return priv->tail_vma;
199 
200 	vma_stop(priv);
201 	return NULL;
202 }
203 
204 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
205 {
206 	struct proc_maps_private *priv = m->private;
207 	struct vm_area_struct *next;
208 
209 	(*pos)++;
210 	next = m_next_vma(priv, v);
211 	if (!next)
212 		vma_stop(priv);
213 	return next;
214 }
215 
216 static void m_stop(struct seq_file *m, void *v)
217 {
218 	struct proc_maps_private *priv = m->private;
219 
220 	if (!IS_ERR_OR_NULL(v))
221 		vma_stop(priv);
222 	if (priv->task) {
223 		put_task_struct(priv->task);
224 		priv->task = NULL;
225 	}
226 }
227 
228 static int proc_maps_open(struct inode *inode, struct file *file,
229 			const struct seq_operations *ops, int psize)
230 {
231 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
232 
233 	if (!priv)
234 		return -ENOMEM;
235 
236 	priv->inode = inode;
237 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
238 	if (IS_ERR(priv->mm)) {
239 		int err = PTR_ERR(priv->mm);
240 
241 		seq_release_private(inode, file);
242 		return err;
243 	}
244 
245 	return 0;
246 }
247 
248 static int proc_map_release(struct inode *inode, struct file *file)
249 {
250 	struct seq_file *seq = file->private_data;
251 	struct proc_maps_private *priv = seq->private;
252 
253 	if (priv->mm)
254 		mmdrop(priv->mm);
255 
256 	kfree(priv->rollup);
257 	return seq_release_private(inode, file);
258 }
259 
260 static int do_maps_open(struct inode *inode, struct file *file,
261 			const struct seq_operations *ops)
262 {
263 	return proc_maps_open(inode, file, ops,
264 				sizeof(struct proc_maps_private));
265 }
266 
267 /*
268  * Indicate if the VMA is a stack for the given task; for
269  * /proc/PID/maps that is the stack of the main task.
270  */
271 static int is_stack(struct vm_area_struct *vma)
272 {
273 	/*
274 	 * We make no effort to guess what a given thread considers to be
275 	 * its "stack".  It's not even well-defined for programs written
276 	 * languages like Go.
277 	 */
278 	return vma->vm_start <= vma->vm_mm->start_stack &&
279 		vma->vm_end >= vma->vm_mm->start_stack;
280 }
281 
282 static void show_vma_header_prefix(struct seq_file *m,
283 				   unsigned long start, unsigned long end,
284 				   vm_flags_t flags, unsigned long long pgoff,
285 				   dev_t dev, unsigned long ino)
286 {
287 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
288 	seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
289 		   start,
290 		   end,
291 		   flags & VM_READ ? 'r' : '-',
292 		   flags & VM_WRITE ? 'w' : '-',
293 		   flags & VM_EXEC ? 'x' : '-',
294 		   flags & VM_MAYSHARE ? 's' : 'p',
295 		   pgoff,
296 		   MAJOR(dev), MINOR(dev), ino);
297 }
298 
299 static void
300 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
301 {
302 	struct mm_struct *mm = vma->vm_mm;
303 	struct file *file = vma->vm_file;
304 	vm_flags_t flags = vma->vm_flags;
305 	unsigned long ino = 0;
306 	unsigned long long pgoff = 0;
307 	unsigned long start, end;
308 	dev_t dev = 0;
309 	const char *name = NULL;
310 
311 	if (file) {
312 		struct inode *inode = file_inode(vma->vm_file);
313 		dev = inode->i_sb->s_dev;
314 		ino = inode->i_ino;
315 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
316 	}
317 
318 	start = vma->vm_start;
319 	end = vma->vm_end;
320 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
321 
322 	/*
323 	 * Print the dentry name for named mappings, and a
324 	 * special [heap] marker for the heap:
325 	 */
326 	if (file) {
327 		seq_pad(m, ' ');
328 		seq_file_path(m, file, "\n");
329 		goto done;
330 	}
331 
332 	if (vma->vm_ops && vma->vm_ops->name) {
333 		name = vma->vm_ops->name(vma);
334 		if (name)
335 			goto done;
336 	}
337 
338 	name = arch_vma_name(vma);
339 	if (!name) {
340 		if (!mm) {
341 			name = "[vdso]";
342 			goto done;
343 		}
344 
345 		if (vma->vm_start <= mm->brk &&
346 		    vma->vm_end >= mm->start_brk) {
347 			name = "[heap]";
348 			goto done;
349 		}
350 
351 		if (is_stack(vma))
352 			name = "[stack]";
353 	}
354 
355 done:
356 	if (name) {
357 		seq_pad(m, ' ');
358 		seq_puts(m, name);
359 	}
360 	seq_putc(m, '\n');
361 }
362 
363 static int show_map(struct seq_file *m, void *v, int is_pid)
364 {
365 	show_map_vma(m, v, is_pid);
366 	m_cache_vma(m, v);
367 	return 0;
368 }
369 
370 static int show_pid_map(struct seq_file *m, void *v)
371 {
372 	return show_map(m, v, 1);
373 }
374 
375 static int show_tid_map(struct seq_file *m, void *v)
376 {
377 	return show_map(m, v, 0);
378 }
379 
380 static const struct seq_operations proc_pid_maps_op = {
381 	.start	= m_start,
382 	.next	= m_next,
383 	.stop	= m_stop,
384 	.show	= show_pid_map
385 };
386 
387 static const struct seq_operations proc_tid_maps_op = {
388 	.start	= m_start,
389 	.next	= m_next,
390 	.stop	= m_stop,
391 	.show	= show_tid_map
392 };
393 
394 static int pid_maps_open(struct inode *inode, struct file *file)
395 {
396 	return do_maps_open(inode, file, &proc_pid_maps_op);
397 }
398 
399 static int tid_maps_open(struct inode *inode, struct file *file)
400 {
401 	return do_maps_open(inode, file, &proc_tid_maps_op);
402 }
403 
404 const struct file_operations proc_pid_maps_operations = {
405 	.open		= pid_maps_open,
406 	.read		= seq_read,
407 	.llseek		= seq_lseek,
408 	.release	= proc_map_release,
409 };
410 
411 const struct file_operations proc_tid_maps_operations = {
412 	.open		= tid_maps_open,
413 	.read		= seq_read,
414 	.llseek		= seq_lseek,
415 	.release	= proc_map_release,
416 };
417 
418 /*
419  * Proportional Set Size(PSS): my share of RSS.
420  *
421  * PSS of a process is the count of pages it has in memory, where each
422  * page is divided by the number of processes sharing it.  So if a
423  * process has 1000 pages all to itself, and 1000 shared with one other
424  * process, its PSS will be 1500.
425  *
426  * To keep (accumulated) division errors low, we adopt a 64bit
427  * fixed-point pss counter to minimize division errors. So (pss >>
428  * PSS_SHIFT) would be the real byte count.
429  *
430  * A shift of 12 before division means (assuming 4K page size):
431  * 	- 1M 3-user-pages add up to 8KB errors;
432  * 	- supports mapcount up to 2^24, or 16M;
433  * 	- supports PSS up to 2^52 bytes, or 4PB.
434  */
435 #define PSS_SHIFT 12
436 
437 #ifdef CONFIG_PROC_PAGE_MONITOR
438 struct mem_size_stats {
439 	bool first;
440 	unsigned long resident;
441 	unsigned long shared_clean;
442 	unsigned long shared_dirty;
443 	unsigned long private_clean;
444 	unsigned long private_dirty;
445 	unsigned long referenced;
446 	unsigned long anonymous;
447 	unsigned long lazyfree;
448 	unsigned long anonymous_thp;
449 	unsigned long shmem_thp;
450 	unsigned long swap;
451 	unsigned long shared_hugetlb;
452 	unsigned long private_hugetlb;
453 	unsigned long first_vma_start;
454 	u64 pss;
455 	u64 pss_locked;
456 	u64 swap_pss;
457 	bool check_shmem_swap;
458 };
459 
460 static void smaps_account(struct mem_size_stats *mss, struct page *page,
461 		bool compound, bool young, bool dirty)
462 {
463 	int i, nr = compound ? 1 << compound_order(page) : 1;
464 	unsigned long size = nr * PAGE_SIZE;
465 
466 	if (PageAnon(page)) {
467 		mss->anonymous += size;
468 		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
469 			mss->lazyfree += size;
470 	}
471 
472 	mss->resident += size;
473 	/* Accumulate the size in pages that have been accessed. */
474 	if (young || page_is_young(page) || PageReferenced(page))
475 		mss->referenced += size;
476 
477 	/*
478 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
479 	 * If any subpage of the compound page mapped with PTE it would elevate
480 	 * page_count().
481 	 */
482 	if (page_count(page) == 1) {
483 		if (dirty || PageDirty(page))
484 			mss->private_dirty += size;
485 		else
486 			mss->private_clean += size;
487 		mss->pss += (u64)size << PSS_SHIFT;
488 		return;
489 	}
490 
491 	for (i = 0; i < nr; i++, page++) {
492 		int mapcount = page_mapcount(page);
493 
494 		if (mapcount >= 2) {
495 			if (dirty || PageDirty(page))
496 				mss->shared_dirty += PAGE_SIZE;
497 			else
498 				mss->shared_clean += PAGE_SIZE;
499 			mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
500 		} else {
501 			if (dirty || PageDirty(page))
502 				mss->private_dirty += PAGE_SIZE;
503 			else
504 				mss->private_clean += PAGE_SIZE;
505 			mss->pss += PAGE_SIZE << PSS_SHIFT;
506 		}
507 	}
508 }
509 
510 #ifdef CONFIG_SHMEM
511 static int smaps_pte_hole(unsigned long addr, unsigned long end,
512 		struct mm_walk *walk)
513 {
514 	struct mem_size_stats *mss = walk->private;
515 
516 	mss->swap += shmem_partial_swap_usage(
517 			walk->vma->vm_file->f_mapping, addr, end);
518 
519 	return 0;
520 }
521 #endif
522 
523 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
524 		struct mm_walk *walk)
525 {
526 	struct mem_size_stats *mss = walk->private;
527 	struct vm_area_struct *vma = walk->vma;
528 	struct page *page = NULL;
529 
530 	if (pte_present(*pte)) {
531 		page = vm_normal_page(vma, addr, *pte);
532 	} else if (is_swap_pte(*pte)) {
533 		swp_entry_t swpent = pte_to_swp_entry(*pte);
534 
535 		if (!non_swap_entry(swpent)) {
536 			int mapcount;
537 
538 			mss->swap += PAGE_SIZE;
539 			mapcount = swp_swapcount(swpent);
540 			if (mapcount >= 2) {
541 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
542 
543 				do_div(pss_delta, mapcount);
544 				mss->swap_pss += pss_delta;
545 			} else {
546 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
547 			}
548 		} else if (is_migration_entry(swpent))
549 			page = migration_entry_to_page(swpent);
550 		else if (is_device_private_entry(swpent))
551 			page = device_private_entry_to_page(swpent);
552 	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
553 							&& pte_none(*pte))) {
554 		page = find_get_entry(vma->vm_file->f_mapping,
555 						linear_page_index(vma, addr));
556 		if (!page)
557 			return;
558 
559 		if (radix_tree_exceptional_entry(page))
560 			mss->swap += PAGE_SIZE;
561 		else
562 			put_page(page);
563 
564 		return;
565 	}
566 
567 	if (!page)
568 		return;
569 
570 	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
571 }
572 
573 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
574 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
575 		struct mm_walk *walk)
576 {
577 	struct mem_size_stats *mss = walk->private;
578 	struct vm_area_struct *vma = walk->vma;
579 	struct page *page;
580 
581 	/* FOLL_DUMP will return -EFAULT on huge zero page */
582 	page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
583 	if (IS_ERR_OR_NULL(page))
584 		return;
585 	if (PageAnon(page))
586 		mss->anonymous_thp += HPAGE_PMD_SIZE;
587 	else if (PageSwapBacked(page))
588 		mss->shmem_thp += HPAGE_PMD_SIZE;
589 	else if (is_zone_device_page(page))
590 		/* pass */;
591 	else
592 		VM_BUG_ON_PAGE(1, page);
593 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
594 }
595 #else
596 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
597 		struct mm_walk *walk)
598 {
599 }
600 #endif
601 
602 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
603 			   struct mm_walk *walk)
604 {
605 	struct vm_area_struct *vma = walk->vma;
606 	pte_t *pte;
607 	spinlock_t *ptl;
608 
609 	ptl = pmd_trans_huge_lock(pmd, vma);
610 	if (ptl) {
611 		if (pmd_present(*pmd))
612 			smaps_pmd_entry(pmd, addr, walk);
613 		spin_unlock(ptl);
614 		goto out;
615 	}
616 
617 	if (pmd_trans_unstable(pmd))
618 		goto out;
619 	/*
620 	 * The mmap_sem held all the way back in m_start() is what
621 	 * keeps khugepaged out of here and from collapsing things
622 	 * in here.
623 	 */
624 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
625 	for (; addr != end; pte++, addr += PAGE_SIZE)
626 		smaps_pte_entry(pte, addr, walk);
627 	pte_unmap_unlock(pte - 1, ptl);
628 out:
629 	cond_resched();
630 	return 0;
631 }
632 
633 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
634 {
635 	/*
636 	 * Don't forget to update Documentation/ on changes.
637 	 */
638 	static const char mnemonics[BITS_PER_LONG][2] = {
639 		/*
640 		 * In case if we meet a flag we don't know about.
641 		 */
642 		[0 ... (BITS_PER_LONG-1)] = "??",
643 
644 		[ilog2(VM_READ)]	= "rd",
645 		[ilog2(VM_WRITE)]	= "wr",
646 		[ilog2(VM_EXEC)]	= "ex",
647 		[ilog2(VM_SHARED)]	= "sh",
648 		[ilog2(VM_MAYREAD)]	= "mr",
649 		[ilog2(VM_MAYWRITE)]	= "mw",
650 		[ilog2(VM_MAYEXEC)]	= "me",
651 		[ilog2(VM_MAYSHARE)]	= "ms",
652 		[ilog2(VM_GROWSDOWN)]	= "gd",
653 		[ilog2(VM_PFNMAP)]	= "pf",
654 		[ilog2(VM_DENYWRITE)]	= "dw",
655 #ifdef CONFIG_X86_INTEL_MPX
656 		[ilog2(VM_MPX)]		= "mp",
657 #endif
658 		[ilog2(VM_LOCKED)]	= "lo",
659 		[ilog2(VM_IO)]		= "io",
660 		[ilog2(VM_SEQ_READ)]	= "sr",
661 		[ilog2(VM_RAND_READ)]	= "rr",
662 		[ilog2(VM_DONTCOPY)]	= "dc",
663 		[ilog2(VM_DONTEXPAND)]	= "de",
664 		[ilog2(VM_ACCOUNT)]	= "ac",
665 		[ilog2(VM_NORESERVE)]	= "nr",
666 		[ilog2(VM_HUGETLB)]	= "ht",
667 		[ilog2(VM_ARCH_1)]	= "ar",
668 		[ilog2(VM_WIPEONFORK)]	= "wf",
669 		[ilog2(VM_DONTDUMP)]	= "dd",
670 #ifdef CONFIG_MEM_SOFT_DIRTY
671 		[ilog2(VM_SOFTDIRTY)]	= "sd",
672 #endif
673 		[ilog2(VM_MIXEDMAP)]	= "mm",
674 		[ilog2(VM_HUGEPAGE)]	= "hg",
675 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
676 		[ilog2(VM_MERGEABLE)]	= "mg",
677 		[ilog2(VM_UFFD_MISSING)]= "um",
678 		[ilog2(VM_UFFD_WP)]	= "uw",
679 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
680 		/* These come out via ProtectionKey: */
681 		[ilog2(VM_PKEY_BIT0)]	= "",
682 		[ilog2(VM_PKEY_BIT1)]	= "",
683 		[ilog2(VM_PKEY_BIT2)]	= "",
684 		[ilog2(VM_PKEY_BIT3)]	= "",
685 #endif
686 	};
687 	size_t i;
688 
689 	seq_puts(m, "VmFlags: ");
690 	for (i = 0; i < BITS_PER_LONG; i++) {
691 		if (!mnemonics[i][0])
692 			continue;
693 		if (vma->vm_flags & (1UL << i)) {
694 			seq_printf(m, "%c%c ",
695 				   mnemonics[i][0], mnemonics[i][1]);
696 		}
697 	}
698 	seq_putc(m, '\n');
699 }
700 
701 #ifdef CONFIG_HUGETLB_PAGE
702 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
703 				 unsigned long addr, unsigned long end,
704 				 struct mm_walk *walk)
705 {
706 	struct mem_size_stats *mss = walk->private;
707 	struct vm_area_struct *vma = walk->vma;
708 	struct page *page = NULL;
709 
710 	if (pte_present(*pte)) {
711 		page = vm_normal_page(vma, addr, *pte);
712 	} else if (is_swap_pte(*pte)) {
713 		swp_entry_t swpent = pte_to_swp_entry(*pte);
714 
715 		if (is_migration_entry(swpent))
716 			page = migration_entry_to_page(swpent);
717 		else if (is_device_private_entry(swpent))
718 			page = device_private_entry_to_page(swpent);
719 	}
720 	if (page) {
721 		int mapcount = page_mapcount(page);
722 
723 		if (mapcount >= 2)
724 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
725 		else
726 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
727 	}
728 	return 0;
729 }
730 #endif /* HUGETLB_PAGE */
731 
732 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
733 {
734 }
735 
736 static int show_smap(struct seq_file *m, void *v, int is_pid)
737 {
738 	struct proc_maps_private *priv = m->private;
739 	struct vm_area_struct *vma = v;
740 	struct mem_size_stats mss_stack;
741 	struct mem_size_stats *mss;
742 	struct mm_walk smaps_walk = {
743 		.pmd_entry = smaps_pte_range,
744 #ifdef CONFIG_HUGETLB_PAGE
745 		.hugetlb_entry = smaps_hugetlb_range,
746 #endif
747 		.mm = vma->vm_mm,
748 	};
749 	int ret = 0;
750 	bool rollup_mode;
751 	bool last_vma;
752 
753 	if (priv->rollup) {
754 		rollup_mode = true;
755 		mss = priv->rollup;
756 		if (mss->first) {
757 			mss->first_vma_start = vma->vm_start;
758 			mss->first = false;
759 		}
760 		last_vma = !m_next_vma(priv, vma);
761 	} else {
762 		rollup_mode = false;
763 		memset(&mss_stack, 0, sizeof(mss_stack));
764 		mss = &mss_stack;
765 	}
766 
767 	smaps_walk.private = mss;
768 
769 #ifdef CONFIG_SHMEM
770 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
771 		/*
772 		 * For shared or readonly shmem mappings we know that all
773 		 * swapped out pages belong to the shmem object, and we can
774 		 * obtain the swap value much more efficiently. For private
775 		 * writable mappings, we might have COW pages that are
776 		 * not affected by the parent swapped out pages of the shmem
777 		 * object, so we have to distinguish them during the page walk.
778 		 * Unless we know that the shmem object (or the part mapped by
779 		 * our VMA) has no swapped out pages at all.
780 		 */
781 		unsigned long shmem_swapped = shmem_swap_usage(vma);
782 
783 		if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
784 					!(vma->vm_flags & VM_WRITE)) {
785 			mss->swap = shmem_swapped;
786 		} else {
787 			mss->check_shmem_swap = true;
788 			smaps_walk.pte_hole = smaps_pte_hole;
789 		}
790 	}
791 #endif
792 
793 	/* mmap_sem is held in m_start */
794 	walk_page_vma(vma, &smaps_walk);
795 	if (vma->vm_flags & VM_LOCKED)
796 		mss->pss_locked += mss->pss;
797 
798 	if (!rollup_mode) {
799 		show_map_vma(m, vma, is_pid);
800 	} else if (last_vma) {
801 		show_vma_header_prefix(
802 			m, mss->first_vma_start, vma->vm_end, 0, 0, 0, 0);
803 		seq_pad(m, ' ');
804 		seq_puts(m, "[rollup]\n");
805 	} else {
806 		ret = SEQ_SKIP;
807 	}
808 
809 	if (!rollup_mode)
810 		seq_printf(m,
811 			   "Size:           %8lu kB\n"
812 			   "KernelPageSize: %8lu kB\n"
813 			   "MMUPageSize:    %8lu kB\n",
814 			   (vma->vm_end - vma->vm_start) >> 10,
815 			   vma_kernel_pagesize(vma) >> 10,
816 			   vma_mmu_pagesize(vma) >> 10);
817 
818 
819 	if (!rollup_mode || last_vma)
820 		seq_printf(m,
821 			   "Rss:            %8lu kB\n"
822 			   "Pss:            %8lu kB\n"
823 			   "Shared_Clean:   %8lu kB\n"
824 			   "Shared_Dirty:   %8lu kB\n"
825 			   "Private_Clean:  %8lu kB\n"
826 			   "Private_Dirty:  %8lu kB\n"
827 			   "Referenced:     %8lu kB\n"
828 			   "Anonymous:      %8lu kB\n"
829 			   "LazyFree:       %8lu kB\n"
830 			   "AnonHugePages:  %8lu kB\n"
831 			   "ShmemPmdMapped: %8lu kB\n"
832 			   "Shared_Hugetlb: %8lu kB\n"
833 			   "Private_Hugetlb: %7lu kB\n"
834 			   "Swap:           %8lu kB\n"
835 			   "SwapPss:        %8lu kB\n"
836 			   "Locked:         %8lu kB\n",
837 			   mss->resident >> 10,
838 			   (unsigned long)(mss->pss >> (10 + PSS_SHIFT)),
839 			   mss->shared_clean  >> 10,
840 			   mss->shared_dirty  >> 10,
841 			   mss->private_clean >> 10,
842 			   mss->private_dirty >> 10,
843 			   mss->referenced >> 10,
844 			   mss->anonymous >> 10,
845 			   mss->lazyfree >> 10,
846 			   mss->anonymous_thp >> 10,
847 			   mss->shmem_thp >> 10,
848 			   mss->shared_hugetlb >> 10,
849 			   mss->private_hugetlb >> 10,
850 			   mss->swap >> 10,
851 			   (unsigned long)(mss->swap_pss >> (10 + PSS_SHIFT)),
852 			   (unsigned long)(mss->pss >> (10 + PSS_SHIFT)));
853 
854 	if (!rollup_mode) {
855 		arch_show_smap(m, vma);
856 		show_smap_vma_flags(m, vma);
857 	}
858 	m_cache_vma(m, vma);
859 	return ret;
860 }
861 
862 static int show_pid_smap(struct seq_file *m, void *v)
863 {
864 	return show_smap(m, v, 1);
865 }
866 
867 static int show_tid_smap(struct seq_file *m, void *v)
868 {
869 	return show_smap(m, v, 0);
870 }
871 
872 static const struct seq_operations proc_pid_smaps_op = {
873 	.start	= m_start,
874 	.next	= m_next,
875 	.stop	= m_stop,
876 	.show	= show_pid_smap
877 };
878 
879 static const struct seq_operations proc_tid_smaps_op = {
880 	.start	= m_start,
881 	.next	= m_next,
882 	.stop	= m_stop,
883 	.show	= show_tid_smap
884 };
885 
886 static int pid_smaps_open(struct inode *inode, struct file *file)
887 {
888 	return do_maps_open(inode, file, &proc_pid_smaps_op);
889 }
890 
891 static int pid_smaps_rollup_open(struct inode *inode, struct file *file)
892 {
893 	struct seq_file *seq;
894 	struct proc_maps_private *priv;
895 	int ret = do_maps_open(inode, file, &proc_pid_smaps_op);
896 
897 	if (ret < 0)
898 		return ret;
899 	seq = file->private_data;
900 	priv = seq->private;
901 	priv->rollup = kzalloc(sizeof(*priv->rollup), GFP_KERNEL);
902 	if (!priv->rollup) {
903 		proc_map_release(inode, file);
904 		return -ENOMEM;
905 	}
906 	priv->rollup->first = true;
907 	return 0;
908 }
909 
910 static int tid_smaps_open(struct inode *inode, struct file *file)
911 {
912 	return do_maps_open(inode, file, &proc_tid_smaps_op);
913 }
914 
915 const struct file_operations proc_pid_smaps_operations = {
916 	.open		= pid_smaps_open,
917 	.read		= seq_read,
918 	.llseek		= seq_lseek,
919 	.release	= proc_map_release,
920 };
921 
922 const struct file_operations proc_pid_smaps_rollup_operations = {
923 	.open		= pid_smaps_rollup_open,
924 	.read		= seq_read,
925 	.llseek		= seq_lseek,
926 	.release	= proc_map_release,
927 };
928 
929 const struct file_operations proc_tid_smaps_operations = {
930 	.open		= tid_smaps_open,
931 	.read		= seq_read,
932 	.llseek		= seq_lseek,
933 	.release	= proc_map_release,
934 };
935 
936 enum clear_refs_types {
937 	CLEAR_REFS_ALL = 1,
938 	CLEAR_REFS_ANON,
939 	CLEAR_REFS_MAPPED,
940 	CLEAR_REFS_SOFT_DIRTY,
941 	CLEAR_REFS_MM_HIWATER_RSS,
942 	CLEAR_REFS_LAST,
943 };
944 
945 struct clear_refs_private {
946 	enum clear_refs_types type;
947 };
948 
949 #ifdef CONFIG_MEM_SOFT_DIRTY
950 static inline void clear_soft_dirty(struct vm_area_struct *vma,
951 		unsigned long addr, pte_t *pte)
952 {
953 	/*
954 	 * The soft-dirty tracker uses #PF-s to catch writes
955 	 * to pages, so write-protect the pte as well. See the
956 	 * Documentation/vm/soft-dirty.txt for full description
957 	 * of how soft-dirty works.
958 	 */
959 	pte_t ptent = *pte;
960 
961 	if (pte_present(ptent)) {
962 		ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
963 		ptent = pte_wrprotect(ptent);
964 		ptent = pte_clear_soft_dirty(ptent);
965 		ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
966 	} else if (is_swap_pte(ptent)) {
967 		ptent = pte_swp_clear_soft_dirty(ptent);
968 		set_pte_at(vma->vm_mm, addr, pte, ptent);
969 	}
970 }
971 #else
972 static inline void clear_soft_dirty(struct vm_area_struct *vma,
973 		unsigned long addr, pte_t *pte)
974 {
975 }
976 #endif
977 
978 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
979 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
980 		unsigned long addr, pmd_t *pmdp)
981 {
982 	pmd_t pmd = *pmdp;
983 
984 	if (pmd_present(pmd)) {
985 		/* See comment in change_huge_pmd() */
986 		pmdp_invalidate(vma, addr, pmdp);
987 		if (pmd_dirty(*pmdp))
988 			pmd = pmd_mkdirty(pmd);
989 		if (pmd_young(*pmdp))
990 			pmd = pmd_mkyoung(pmd);
991 
992 		pmd = pmd_wrprotect(pmd);
993 		pmd = pmd_clear_soft_dirty(pmd);
994 
995 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
996 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
997 		pmd = pmd_swp_clear_soft_dirty(pmd);
998 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
999 	}
1000 }
1001 #else
1002 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1003 		unsigned long addr, pmd_t *pmdp)
1004 {
1005 }
1006 #endif
1007 
1008 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1009 				unsigned long end, struct mm_walk *walk)
1010 {
1011 	struct clear_refs_private *cp = walk->private;
1012 	struct vm_area_struct *vma = walk->vma;
1013 	pte_t *pte, ptent;
1014 	spinlock_t *ptl;
1015 	struct page *page;
1016 
1017 	ptl = pmd_trans_huge_lock(pmd, vma);
1018 	if (ptl) {
1019 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1020 			clear_soft_dirty_pmd(vma, addr, pmd);
1021 			goto out;
1022 		}
1023 
1024 		if (!pmd_present(*pmd))
1025 			goto out;
1026 
1027 		page = pmd_page(*pmd);
1028 
1029 		/* Clear accessed and referenced bits. */
1030 		pmdp_test_and_clear_young(vma, addr, pmd);
1031 		test_and_clear_page_young(page);
1032 		ClearPageReferenced(page);
1033 out:
1034 		spin_unlock(ptl);
1035 		return 0;
1036 	}
1037 
1038 	if (pmd_trans_unstable(pmd))
1039 		return 0;
1040 
1041 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1042 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1043 		ptent = *pte;
1044 
1045 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1046 			clear_soft_dirty(vma, addr, pte);
1047 			continue;
1048 		}
1049 
1050 		if (!pte_present(ptent))
1051 			continue;
1052 
1053 		page = vm_normal_page(vma, addr, ptent);
1054 		if (!page)
1055 			continue;
1056 
1057 		/* Clear accessed and referenced bits. */
1058 		ptep_test_and_clear_young(vma, addr, pte);
1059 		test_and_clear_page_young(page);
1060 		ClearPageReferenced(page);
1061 	}
1062 	pte_unmap_unlock(pte - 1, ptl);
1063 	cond_resched();
1064 	return 0;
1065 }
1066 
1067 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1068 				struct mm_walk *walk)
1069 {
1070 	struct clear_refs_private *cp = walk->private;
1071 	struct vm_area_struct *vma = walk->vma;
1072 
1073 	if (vma->vm_flags & VM_PFNMAP)
1074 		return 1;
1075 
1076 	/*
1077 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1078 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1079 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1080 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1081 	 */
1082 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1083 		return 1;
1084 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1085 		return 1;
1086 	return 0;
1087 }
1088 
1089 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1090 				size_t count, loff_t *ppos)
1091 {
1092 	struct task_struct *task;
1093 	char buffer[PROC_NUMBUF];
1094 	struct mm_struct *mm;
1095 	struct vm_area_struct *vma;
1096 	enum clear_refs_types type;
1097 	struct mmu_gather tlb;
1098 	int itype;
1099 	int rv;
1100 
1101 	memset(buffer, 0, sizeof(buffer));
1102 	if (count > sizeof(buffer) - 1)
1103 		count = sizeof(buffer) - 1;
1104 	if (copy_from_user(buffer, buf, count))
1105 		return -EFAULT;
1106 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1107 	if (rv < 0)
1108 		return rv;
1109 	type = (enum clear_refs_types)itype;
1110 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1111 		return -EINVAL;
1112 
1113 	task = get_proc_task(file_inode(file));
1114 	if (!task)
1115 		return -ESRCH;
1116 	mm = get_task_mm(task);
1117 	if (mm) {
1118 		struct clear_refs_private cp = {
1119 			.type = type,
1120 		};
1121 		struct mm_walk clear_refs_walk = {
1122 			.pmd_entry = clear_refs_pte_range,
1123 			.test_walk = clear_refs_test_walk,
1124 			.mm = mm,
1125 			.private = &cp,
1126 		};
1127 
1128 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1129 			if (down_write_killable(&mm->mmap_sem)) {
1130 				count = -EINTR;
1131 				goto out_mm;
1132 			}
1133 
1134 			/*
1135 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1136 			 * resident set size to this mm's current rss value.
1137 			 */
1138 			reset_mm_hiwater_rss(mm);
1139 			up_write(&mm->mmap_sem);
1140 			goto out_mm;
1141 		}
1142 
1143 		down_read(&mm->mmap_sem);
1144 		tlb_gather_mmu(&tlb, mm, 0, -1);
1145 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1146 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1147 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1148 					continue;
1149 				up_read(&mm->mmap_sem);
1150 				if (down_write_killable(&mm->mmap_sem)) {
1151 					count = -EINTR;
1152 					goto out_mm;
1153 				}
1154 				for (vma = mm->mmap; vma; vma = vma->vm_next) {
1155 					vma->vm_flags &= ~VM_SOFTDIRTY;
1156 					vma_set_page_prot(vma);
1157 				}
1158 				downgrade_write(&mm->mmap_sem);
1159 				break;
1160 			}
1161 			mmu_notifier_invalidate_range_start(mm, 0, -1);
1162 		}
1163 		walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1164 		if (type == CLEAR_REFS_SOFT_DIRTY)
1165 			mmu_notifier_invalidate_range_end(mm, 0, -1);
1166 		tlb_finish_mmu(&tlb, 0, -1);
1167 		up_read(&mm->mmap_sem);
1168 out_mm:
1169 		mmput(mm);
1170 	}
1171 	put_task_struct(task);
1172 
1173 	return count;
1174 }
1175 
1176 const struct file_operations proc_clear_refs_operations = {
1177 	.write		= clear_refs_write,
1178 	.llseek		= noop_llseek,
1179 };
1180 
1181 typedef struct {
1182 	u64 pme;
1183 } pagemap_entry_t;
1184 
1185 struct pagemapread {
1186 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1187 	pagemap_entry_t *buffer;
1188 	bool show_pfn;
1189 };
1190 
1191 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1192 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1193 
1194 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1195 #define PM_PFRAME_BITS		55
1196 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1197 #define PM_SOFT_DIRTY		BIT_ULL(55)
1198 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1199 #define PM_FILE			BIT_ULL(61)
1200 #define PM_SWAP			BIT_ULL(62)
1201 #define PM_PRESENT		BIT_ULL(63)
1202 
1203 #define PM_END_OF_BUFFER    1
1204 
1205 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1206 {
1207 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1208 }
1209 
1210 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1211 			  struct pagemapread *pm)
1212 {
1213 	pm->buffer[pm->pos++] = *pme;
1214 	if (pm->pos >= pm->len)
1215 		return PM_END_OF_BUFFER;
1216 	return 0;
1217 }
1218 
1219 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1220 				struct mm_walk *walk)
1221 {
1222 	struct pagemapread *pm = walk->private;
1223 	unsigned long addr = start;
1224 	int err = 0;
1225 
1226 	while (addr < end) {
1227 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1228 		pagemap_entry_t pme = make_pme(0, 0);
1229 		/* End of address space hole, which we mark as non-present. */
1230 		unsigned long hole_end;
1231 
1232 		if (vma)
1233 			hole_end = min(end, vma->vm_start);
1234 		else
1235 			hole_end = end;
1236 
1237 		for (; addr < hole_end; addr += PAGE_SIZE) {
1238 			err = add_to_pagemap(addr, &pme, pm);
1239 			if (err)
1240 				goto out;
1241 		}
1242 
1243 		if (!vma)
1244 			break;
1245 
1246 		/* Addresses in the VMA. */
1247 		if (vma->vm_flags & VM_SOFTDIRTY)
1248 			pme = make_pme(0, PM_SOFT_DIRTY);
1249 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1250 			err = add_to_pagemap(addr, &pme, pm);
1251 			if (err)
1252 				goto out;
1253 		}
1254 	}
1255 out:
1256 	return err;
1257 }
1258 
1259 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1260 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1261 {
1262 	u64 frame = 0, flags = 0;
1263 	struct page *page = NULL;
1264 
1265 	if (pte_present(pte)) {
1266 		if (pm->show_pfn)
1267 			frame = pte_pfn(pte);
1268 		flags |= PM_PRESENT;
1269 		page = _vm_normal_page(vma, addr, pte, true);
1270 		if (pte_soft_dirty(pte))
1271 			flags |= PM_SOFT_DIRTY;
1272 	} else if (is_swap_pte(pte)) {
1273 		swp_entry_t entry;
1274 		if (pte_swp_soft_dirty(pte))
1275 			flags |= PM_SOFT_DIRTY;
1276 		entry = pte_to_swp_entry(pte);
1277 		frame = swp_type(entry) |
1278 			(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1279 		flags |= PM_SWAP;
1280 		if (is_migration_entry(entry))
1281 			page = migration_entry_to_page(entry);
1282 
1283 		if (is_device_private_entry(entry))
1284 			page = device_private_entry_to_page(entry);
1285 	}
1286 
1287 	if (page && !PageAnon(page))
1288 		flags |= PM_FILE;
1289 	if (page && page_mapcount(page) == 1)
1290 		flags |= PM_MMAP_EXCLUSIVE;
1291 	if (vma->vm_flags & VM_SOFTDIRTY)
1292 		flags |= PM_SOFT_DIRTY;
1293 
1294 	return make_pme(frame, flags);
1295 }
1296 
1297 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1298 			     struct mm_walk *walk)
1299 {
1300 	struct vm_area_struct *vma = walk->vma;
1301 	struct pagemapread *pm = walk->private;
1302 	spinlock_t *ptl;
1303 	pte_t *pte, *orig_pte;
1304 	int err = 0;
1305 
1306 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1307 	ptl = pmd_trans_huge_lock(pmdp, vma);
1308 	if (ptl) {
1309 		u64 flags = 0, frame = 0;
1310 		pmd_t pmd = *pmdp;
1311 		struct page *page = NULL;
1312 
1313 		if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1314 			flags |= PM_SOFT_DIRTY;
1315 
1316 		if (pmd_present(pmd)) {
1317 			page = pmd_page(pmd);
1318 
1319 			flags |= PM_PRESENT;
1320 			if (pm->show_pfn)
1321 				frame = pmd_pfn(pmd) +
1322 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1323 		}
1324 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1325 		else if (is_swap_pmd(pmd)) {
1326 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1327 
1328 			frame = swp_type(entry) |
1329 				(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1330 			flags |= PM_SWAP;
1331 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1332 			page = migration_entry_to_page(entry);
1333 		}
1334 #endif
1335 
1336 		if (page && page_mapcount(page) == 1)
1337 			flags |= PM_MMAP_EXCLUSIVE;
1338 
1339 		for (; addr != end; addr += PAGE_SIZE) {
1340 			pagemap_entry_t pme = make_pme(frame, flags);
1341 
1342 			err = add_to_pagemap(addr, &pme, pm);
1343 			if (err)
1344 				break;
1345 			if (pm->show_pfn && (flags & PM_PRESENT))
1346 				frame++;
1347 		}
1348 		spin_unlock(ptl);
1349 		return err;
1350 	}
1351 
1352 	if (pmd_trans_unstable(pmdp))
1353 		return 0;
1354 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1355 
1356 	/*
1357 	 * We can assume that @vma always points to a valid one and @end never
1358 	 * goes beyond vma->vm_end.
1359 	 */
1360 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1361 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1362 		pagemap_entry_t pme;
1363 
1364 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1365 		err = add_to_pagemap(addr, &pme, pm);
1366 		if (err)
1367 			break;
1368 	}
1369 	pte_unmap_unlock(orig_pte, ptl);
1370 
1371 	cond_resched();
1372 
1373 	return err;
1374 }
1375 
1376 #ifdef CONFIG_HUGETLB_PAGE
1377 /* This function walks within one hugetlb entry in the single call */
1378 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1379 				 unsigned long addr, unsigned long end,
1380 				 struct mm_walk *walk)
1381 {
1382 	struct pagemapread *pm = walk->private;
1383 	struct vm_area_struct *vma = walk->vma;
1384 	u64 flags = 0, frame = 0;
1385 	int err = 0;
1386 	pte_t pte;
1387 
1388 	if (vma->vm_flags & VM_SOFTDIRTY)
1389 		flags |= PM_SOFT_DIRTY;
1390 
1391 	pte = huge_ptep_get(ptep);
1392 	if (pte_present(pte)) {
1393 		struct page *page = pte_page(pte);
1394 
1395 		if (!PageAnon(page))
1396 			flags |= PM_FILE;
1397 
1398 		if (page_mapcount(page) == 1)
1399 			flags |= PM_MMAP_EXCLUSIVE;
1400 
1401 		flags |= PM_PRESENT;
1402 		if (pm->show_pfn)
1403 			frame = pte_pfn(pte) +
1404 				((addr & ~hmask) >> PAGE_SHIFT);
1405 	}
1406 
1407 	for (; addr != end; addr += PAGE_SIZE) {
1408 		pagemap_entry_t pme = make_pme(frame, flags);
1409 
1410 		err = add_to_pagemap(addr, &pme, pm);
1411 		if (err)
1412 			return err;
1413 		if (pm->show_pfn && (flags & PM_PRESENT))
1414 			frame++;
1415 	}
1416 
1417 	cond_resched();
1418 
1419 	return err;
1420 }
1421 #endif /* HUGETLB_PAGE */
1422 
1423 /*
1424  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1425  *
1426  * For each page in the address space, this file contains one 64-bit entry
1427  * consisting of the following:
1428  *
1429  * Bits 0-54  page frame number (PFN) if present
1430  * Bits 0-4   swap type if swapped
1431  * Bits 5-54  swap offset if swapped
1432  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1433  * Bit  56    page exclusively mapped
1434  * Bits 57-60 zero
1435  * Bit  61    page is file-page or shared-anon
1436  * Bit  62    page swapped
1437  * Bit  63    page present
1438  *
1439  * If the page is not present but in swap, then the PFN contains an
1440  * encoding of the swap file number and the page's offset into the
1441  * swap. Unmapped pages return a null PFN. This allows determining
1442  * precisely which pages are mapped (or in swap) and comparing mapped
1443  * pages between processes.
1444  *
1445  * Efficient users of this interface will use /proc/pid/maps to
1446  * determine which areas of memory are actually mapped and llseek to
1447  * skip over unmapped regions.
1448  */
1449 static ssize_t pagemap_read(struct file *file, char __user *buf,
1450 			    size_t count, loff_t *ppos)
1451 {
1452 	struct mm_struct *mm = file->private_data;
1453 	struct pagemapread pm;
1454 	struct mm_walk pagemap_walk = {};
1455 	unsigned long src;
1456 	unsigned long svpfn;
1457 	unsigned long start_vaddr;
1458 	unsigned long end_vaddr;
1459 	int ret = 0, copied = 0;
1460 
1461 	if (!mm || !mmget_not_zero(mm))
1462 		goto out;
1463 
1464 	ret = -EINVAL;
1465 	/* file position must be aligned */
1466 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1467 		goto out_mm;
1468 
1469 	ret = 0;
1470 	if (!count)
1471 		goto out_mm;
1472 
1473 	/* do not disclose physical addresses: attack vector */
1474 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1475 
1476 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1477 	pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_KERNEL);
1478 	ret = -ENOMEM;
1479 	if (!pm.buffer)
1480 		goto out_mm;
1481 
1482 	pagemap_walk.pmd_entry = pagemap_pmd_range;
1483 	pagemap_walk.pte_hole = pagemap_pte_hole;
1484 #ifdef CONFIG_HUGETLB_PAGE
1485 	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1486 #endif
1487 	pagemap_walk.mm = mm;
1488 	pagemap_walk.private = &pm;
1489 
1490 	src = *ppos;
1491 	svpfn = src / PM_ENTRY_BYTES;
1492 	start_vaddr = svpfn << PAGE_SHIFT;
1493 	end_vaddr = mm->task_size;
1494 
1495 	/* watch out for wraparound */
1496 	if (svpfn > mm->task_size >> PAGE_SHIFT)
1497 		start_vaddr = end_vaddr;
1498 
1499 	/*
1500 	 * The odds are that this will stop walking way
1501 	 * before end_vaddr, because the length of the
1502 	 * user buffer is tracked in "pm", and the walk
1503 	 * will stop when we hit the end of the buffer.
1504 	 */
1505 	ret = 0;
1506 	while (count && (start_vaddr < end_vaddr)) {
1507 		int len;
1508 		unsigned long end;
1509 
1510 		pm.pos = 0;
1511 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1512 		/* overflow ? */
1513 		if (end < start_vaddr || end > end_vaddr)
1514 			end = end_vaddr;
1515 		down_read(&mm->mmap_sem);
1516 		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1517 		up_read(&mm->mmap_sem);
1518 		start_vaddr = end;
1519 
1520 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1521 		if (copy_to_user(buf, pm.buffer, len)) {
1522 			ret = -EFAULT;
1523 			goto out_free;
1524 		}
1525 		copied += len;
1526 		buf += len;
1527 		count -= len;
1528 	}
1529 	*ppos += copied;
1530 	if (!ret || ret == PM_END_OF_BUFFER)
1531 		ret = copied;
1532 
1533 out_free:
1534 	kfree(pm.buffer);
1535 out_mm:
1536 	mmput(mm);
1537 out:
1538 	return ret;
1539 }
1540 
1541 static int pagemap_open(struct inode *inode, struct file *file)
1542 {
1543 	struct mm_struct *mm;
1544 
1545 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1546 	if (IS_ERR(mm))
1547 		return PTR_ERR(mm);
1548 	file->private_data = mm;
1549 	return 0;
1550 }
1551 
1552 static int pagemap_release(struct inode *inode, struct file *file)
1553 {
1554 	struct mm_struct *mm = file->private_data;
1555 
1556 	if (mm)
1557 		mmdrop(mm);
1558 	return 0;
1559 }
1560 
1561 const struct file_operations proc_pagemap_operations = {
1562 	.llseek		= mem_lseek, /* borrow this */
1563 	.read		= pagemap_read,
1564 	.open		= pagemap_open,
1565 	.release	= pagemap_release,
1566 };
1567 #endif /* CONFIG_PROC_PAGE_MONITOR */
1568 
1569 #ifdef CONFIG_NUMA
1570 
1571 struct numa_maps {
1572 	unsigned long pages;
1573 	unsigned long anon;
1574 	unsigned long active;
1575 	unsigned long writeback;
1576 	unsigned long mapcount_max;
1577 	unsigned long dirty;
1578 	unsigned long swapcache;
1579 	unsigned long node[MAX_NUMNODES];
1580 };
1581 
1582 struct numa_maps_private {
1583 	struct proc_maps_private proc_maps;
1584 	struct numa_maps md;
1585 };
1586 
1587 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1588 			unsigned long nr_pages)
1589 {
1590 	int count = page_mapcount(page);
1591 
1592 	md->pages += nr_pages;
1593 	if (pte_dirty || PageDirty(page))
1594 		md->dirty += nr_pages;
1595 
1596 	if (PageSwapCache(page))
1597 		md->swapcache += nr_pages;
1598 
1599 	if (PageActive(page) || PageUnevictable(page))
1600 		md->active += nr_pages;
1601 
1602 	if (PageWriteback(page))
1603 		md->writeback += nr_pages;
1604 
1605 	if (PageAnon(page))
1606 		md->anon += nr_pages;
1607 
1608 	if (count > md->mapcount_max)
1609 		md->mapcount_max = count;
1610 
1611 	md->node[page_to_nid(page)] += nr_pages;
1612 }
1613 
1614 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1615 		unsigned long addr)
1616 {
1617 	struct page *page;
1618 	int nid;
1619 
1620 	if (!pte_present(pte))
1621 		return NULL;
1622 
1623 	page = vm_normal_page(vma, addr, pte);
1624 	if (!page)
1625 		return NULL;
1626 
1627 	if (PageReserved(page))
1628 		return NULL;
1629 
1630 	nid = page_to_nid(page);
1631 	if (!node_isset(nid, node_states[N_MEMORY]))
1632 		return NULL;
1633 
1634 	return page;
1635 }
1636 
1637 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1638 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1639 					      struct vm_area_struct *vma,
1640 					      unsigned long addr)
1641 {
1642 	struct page *page;
1643 	int nid;
1644 
1645 	if (!pmd_present(pmd))
1646 		return NULL;
1647 
1648 	page = vm_normal_page_pmd(vma, addr, pmd);
1649 	if (!page)
1650 		return NULL;
1651 
1652 	if (PageReserved(page))
1653 		return NULL;
1654 
1655 	nid = page_to_nid(page);
1656 	if (!node_isset(nid, node_states[N_MEMORY]))
1657 		return NULL;
1658 
1659 	return page;
1660 }
1661 #endif
1662 
1663 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1664 		unsigned long end, struct mm_walk *walk)
1665 {
1666 	struct numa_maps *md = walk->private;
1667 	struct vm_area_struct *vma = walk->vma;
1668 	spinlock_t *ptl;
1669 	pte_t *orig_pte;
1670 	pte_t *pte;
1671 
1672 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1673 	ptl = pmd_trans_huge_lock(pmd, vma);
1674 	if (ptl) {
1675 		struct page *page;
1676 
1677 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1678 		if (page)
1679 			gather_stats(page, md, pmd_dirty(*pmd),
1680 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1681 		spin_unlock(ptl);
1682 		return 0;
1683 	}
1684 
1685 	if (pmd_trans_unstable(pmd))
1686 		return 0;
1687 #endif
1688 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1689 	do {
1690 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1691 		if (!page)
1692 			continue;
1693 		gather_stats(page, md, pte_dirty(*pte), 1);
1694 
1695 	} while (pte++, addr += PAGE_SIZE, addr != end);
1696 	pte_unmap_unlock(orig_pte, ptl);
1697 	cond_resched();
1698 	return 0;
1699 }
1700 #ifdef CONFIG_HUGETLB_PAGE
1701 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1702 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1703 {
1704 	pte_t huge_pte = huge_ptep_get(pte);
1705 	struct numa_maps *md;
1706 	struct page *page;
1707 
1708 	if (!pte_present(huge_pte))
1709 		return 0;
1710 
1711 	page = pte_page(huge_pte);
1712 	if (!page)
1713 		return 0;
1714 
1715 	md = walk->private;
1716 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1717 	return 0;
1718 }
1719 
1720 #else
1721 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1722 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1723 {
1724 	return 0;
1725 }
1726 #endif
1727 
1728 /*
1729  * Display pages allocated per node and memory policy via /proc.
1730  */
1731 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1732 {
1733 	struct numa_maps_private *numa_priv = m->private;
1734 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1735 	struct vm_area_struct *vma = v;
1736 	struct numa_maps *md = &numa_priv->md;
1737 	struct file *file = vma->vm_file;
1738 	struct mm_struct *mm = vma->vm_mm;
1739 	struct mm_walk walk = {
1740 		.hugetlb_entry = gather_hugetlb_stats,
1741 		.pmd_entry = gather_pte_stats,
1742 		.private = md,
1743 		.mm = mm,
1744 	};
1745 	struct mempolicy *pol;
1746 	char buffer[64];
1747 	int nid;
1748 
1749 	if (!mm)
1750 		return 0;
1751 
1752 	/* Ensure we start with an empty set of numa_maps statistics. */
1753 	memset(md, 0, sizeof(*md));
1754 
1755 	pol = __get_vma_policy(vma, vma->vm_start);
1756 	if (pol) {
1757 		mpol_to_str(buffer, sizeof(buffer), pol);
1758 		mpol_cond_put(pol);
1759 	} else {
1760 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1761 	}
1762 
1763 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1764 
1765 	if (file) {
1766 		seq_puts(m, " file=");
1767 		seq_file_path(m, file, "\n\t= ");
1768 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1769 		seq_puts(m, " heap");
1770 	} else if (is_stack(vma)) {
1771 		seq_puts(m, " stack");
1772 	}
1773 
1774 	if (is_vm_hugetlb_page(vma))
1775 		seq_puts(m, " huge");
1776 
1777 	/* mmap_sem is held by m_start */
1778 	walk_page_vma(vma, &walk);
1779 
1780 	if (!md->pages)
1781 		goto out;
1782 
1783 	if (md->anon)
1784 		seq_printf(m, " anon=%lu", md->anon);
1785 
1786 	if (md->dirty)
1787 		seq_printf(m, " dirty=%lu", md->dirty);
1788 
1789 	if (md->pages != md->anon && md->pages != md->dirty)
1790 		seq_printf(m, " mapped=%lu", md->pages);
1791 
1792 	if (md->mapcount_max > 1)
1793 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1794 
1795 	if (md->swapcache)
1796 		seq_printf(m, " swapcache=%lu", md->swapcache);
1797 
1798 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1799 		seq_printf(m, " active=%lu", md->active);
1800 
1801 	if (md->writeback)
1802 		seq_printf(m, " writeback=%lu", md->writeback);
1803 
1804 	for_each_node_state(nid, N_MEMORY)
1805 		if (md->node[nid])
1806 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1807 
1808 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1809 out:
1810 	seq_putc(m, '\n');
1811 	m_cache_vma(m, vma);
1812 	return 0;
1813 }
1814 
1815 static int show_pid_numa_map(struct seq_file *m, void *v)
1816 {
1817 	return show_numa_map(m, v, 1);
1818 }
1819 
1820 static int show_tid_numa_map(struct seq_file *m, void *v)
1821 {
1822 	return show_numa_map(m, v, 0);
1823 }
1824 
1825 static const struct seq_operations proc_pid_numa_maps_op = {
1826 	.start  = m_start,
1827 	.next   = m_next,
1828 	.stop   = m_stop,
1829 	.show   = show_pid_numa_map,
1830 };
1831 
1832 static const struct seq_operations proc_tid_numa_maps_op = {
1833 	.start  = m_start,
1834 	.next   = m_next,
1835 	.stop   = m_stop,
1836 	.show   = show_tid_numa_map,
1837 };
1838 
1839 static int numa_maps_open(struct inode *inode, struct file *file,
1840 			  const struct seq_operations *ops)
1841 {
1842 	return proc_maps_open(inode, file, ops,
1843 				sizeof(struct numa_maps_private));
1844 }
1845 
1846 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1847 {
1848 	return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1849 }
1850 
1851 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1852 {
1853 	return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1854 }
1855 
1856 const struct file_operations proc_pid_numa_maps_operations = {
1857 	.open		= pid_numa_maps_open,
1858 	.read		= seq_read,
1859 	.llseek		= seq_lseek,
1860 	.release	= proc_map_release,
1861 };
1862 
1863 const struct file_operations proc_tid_numa_maps_operations = {
1864 	.open		= tid_numa_maps_open,
1865 	.read		= seq_read,
1866 	.llseek		= seq_lseek,
1867 	.release	= proc_map_release,
1868 };
1869 #endif /* CONFIG_NUMA */
1870