1 #include <linux/mm.h> 2 #include <linux/vmacache.h> 3 #include <linux/hugetlb.h> 4 #include <linux/huge_mm.h> 5 #include <linux/mount.h> 6 #include <linux/seq_file.h> 7 #include <linux/highmem.h> 8 #include <linux/ptrace.h> 9 #include <linux/slab.h> 10 #include <linux/pagemap.h> 11 #include <linux/mempolicy.h> 12 #include <linux/rmap.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/page_idle.h> 17 #include <linux/shmem_fs.h> 18 19 #include <asm/elf.h> 20 #include <asm/uaccess.h> 21 #include <asm/tlbflush.h> 22 #include "internal.h" 23 24 void task_mem(struct seq_file *m, struct mm_struct *mm) 25 { 26 unsigned long text, lib, swap, ptes, pmds, anon, file, shmem; 27 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; 28 29 anon = get_mm_counter(mm, MM_ANONPAGES); 30 file = get_mm_counter(mm, MM_FILEPAGES); 31 shmem = get_mm_counter(mm, MM_SHMEMPAGES); 32 33 /* 34 * Note: to minimize their overhead, mm maintains hiwater_vm and 35 * hiwater_rss only when about to *lower* total_vm or rss. Any 36 * collector of these hiwater stats must therefore get total_vm 37 * and rss too, which will usually be the higher. Barriers? not 38 * worth the effort, such snapshots can always be inconsistent. 39 */ 40 hiwater_vm = total_vm = mm->total_vm; 41 if (hiwater_vm < mm->hiwater_vm) 42 hiwater_vm = mm->hiwater_vm; 43 hiwater_rss = total_rss = anon + file + shmem; 44 if (hiwater_rss < mm->hiwater_rss) 45 hiwater_rss = mm->hiwater_rss; 46 47 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10; 48 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text; 49 swap = get_mm_counter(mm, MM_SWAPENTS); 50 ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes); 51 pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm); 52 seq_printf(m, 53 "VmPeak:\t%8lu kB\n" 54 "VmSize:\t%8lu kB\n" 55 "VmLck:\t%8lu kB\n" 56 "VmPin:\t%8lu kB\n" 57 "VmHWM:\t%8lu kB\n" 58 "VmRSS:\t%8lu kB\n" 59 "RssAnon:\t%8lu kB\n" 60 "RssFile:\t%8lu kB\n" 61 "RssShmem:\t%8lu kB\n" 62 "VmData:\t%8lu kB\n" 63 "VmStk:\t%8lu kB\n" 64 "VmExe:\t%8lu kB\n" 65 "VmLib:\t%8lu kB\n" 66 "VmPTE:\t%8lu kB\n" 67 "VmPMD:\t%8lu kB\n" 68 "VmSwap:\t%8lu kB\n", 69 hiwater_vm << (PAGE_SHIFT-10), 70 total_vm << (PAGE_SHIFT-10), 71 mm->locked_vm << (PAGE_SHIFT-10), 72 mm->pinned_vm << (PAGE_SHIFT-10), 73 hiwater_rss << (PAGE_SHIFT-10), 74 total_rss << (PAGE_SHIFT-10), 75 anon << (PAGE_SHIFT-10), 76 file << (PAGE_SHIFT-10), 77 shmem << (PAGE_SHIFT-10), 78 mm->data_vm << (PAGE_SHIFT-10), 79 mm->stack_vm << (PAGE_SHIFT-10), text, lib, 80 ptes >> 10, 81 pmds >> 10, 82 swap << (PAGE_SHIFT-10)); 83 hugetlb_report_usage(m, mm); 84 } 85 86 unsigned long task_vsize(struct mm_struct *mm) 87 { 88 return PAGE_SIZE * mm->total_vm; 89 } 90 91 unsigned long task_statm(struct mm_struct *mm, 92 unsigned long *shared, unsigned long *text, 93 unsigned long *data, unsigned long *resident) 94 { 95 *shared = get_mm_counter(mm, MM_FILEPAGES) + 96 get_mm_counter(mm, MM_SHMEMPAGES); 97 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) 98 >> PAGE_SHIFT; 99 *data = mm->data_vm + mm->stack_vm; 100 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES); 101 return mm->total_vm; 102 } 103 104 #ifdef CONFIG_NUMA 105 /* 106 * Save get_task_policy() for show_numa_map(). 107 */ 108 static void hold_task_mempolicy(struct proc_maps_private *priv) 109 { 110 struct task_struct *task = priv->task; 111 112 task_lock(task); 113 priv->task_mempolicy = get_task_policy(task); 114 mpol_get(priv->task_mempolicy); 115 task_unlock(task); 116 } 117 static void release_task_mempolicy(struct proc_maps_private *priv) 118 { 119 mpol_put(priv->task_mempolicy); 120 } 121 #else 122 static void hold_task_mempolicy(struct proc_maps_private *priv) 123 { 124 } 125 static void release_task_mempolicy(struct proc_maps_private *priv) 126 { 127 } 128 #endif 129 130 static void vma_stop(struct proc_maps_private *priv) 131 { 132 struct mm_struct *mm = priv->mm; 133 134 release_task_mempolicy(priv); 135 up_read(&mm->mmap_sem); 136 mmput(mm); 137 } 138 139 static struct vm_area_struct * 140 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma) 141 { 142 if (vma == priv->tail_vma) 143 return NULL; 144 return vma->vm_next ?: priv->tail_vma; 145 } 146 147 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma) 148 { 149 if (m->count < m->size) /* vma is copied successfully */ 150 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL; 151 } 152 153 static void *m_start(struct seq_file *m, loff_t *ppos) 154 { 155 struct proc_maps_private *priv = m->private; 156 unsigned long last_addr = m->version; 157 struct mm_struct *mm; 158 struct vm_area_struct *vma; 159 unsigned int pos = *ppos; 160 161 /* See m_cache_vma(). Zero at the start or after lseek. */ 162 if (last_addr == -1UL) 163 return NULL; 164 165 priv->task = get_proc_task(priv->inode); 166 if (!priv->task) 167 return ERR_PTR(-ESRCH); 168 169 mm = priv->mm; 170 if (!mm || !atomic_inc_not_zero(&mm->mm_users)) 171 return NULL; 172 173 down_read(&mm->mmap_sem); 174 hold_task_mempolicy(priv); 175 priv->tail_vma = get_gate_vma(mm); 176 177 if (last_addr) { 178 vma = find_vma(mm, last_addr - 1); 179 if (vma && vma->vm_start <= last_addr) 180 vma = m_next_vma(priv, vma); 181 if (vma) 182 return vma; 183 } 184 185 m->version = 0; 186 if (pos < mm->map_count) { 187 for (vma = mm->mmap; pos; pos--) { 188 m->version = vma->vm_start; 189 vma = vma->vm_next; 190 } 191 return vma; 192 } 193 194 /* we do not bother to update m->version in this case */ 195 if (pos == mm->map_count && priv->tail_vma) 196 return priv->tail_vma; 197 198 vma_stop(priv); 199 return NULL; 200 } 201 202 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 203 { 204 struct proc_maps_private *priv = m->private; 205 struct vm_area_struct *next; 206 207 (*pos)++; 208 next = m_next_vma(priv, v); 209 if (!next) 210 vma_stop(priv); 211 return next; 212 } 213 214 static void m_stop(struct seq_file *m, void *v) 215 { 216 struct proc_maps_private *priv = m->private; 217 218 if (!IS_ERR_OR_NULL(v)) 219 vma_stop(priv); 220 if (priv->task) { 221 put_task_struct(priv->task); 222 priv->task = NULL; 223 } 224 } 225 226 static int proc_maps_open(struct inode *inode, struct file *file, 227 const struct seq_operations *ops, int psize) 228 { 229 struct proc_maps_private *priv = __seq_open_private(file, ops, psize); 230 231 if (!priv) 232 return -ENOMEM; 233 234 priv->inode = inode; 235 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); 236 if (IS_ERR(priv->mm)) { 237 int err = PTR_ERR(priv->mm); 238 239 seq_release_private(inode, file); 240 return err; 241 } 242 243 return 0; 244 } 245 246 static int proc_map_release(struct inode *inode, struct file *file) 247 { 248 struct seq_file *seq = file->private_data; 249 struct proc_maps_private *priv = seq->private; 250 251 if (priv->mm) 252 mmdrop(priv->mm); 253 254 return seq_release_private(inode, file); 255 } 256 257 static int do_maps_open(struct inode *inode, struct file *file, 258 const struct seq_operations *ops) 259 { 260 return proc_maps_open(inode, file, ops, 261 sizeof(struct proc_maps_private)); 262 } 263 264 /* 265 * Indicate if the VMA is a stack for the given task; for 266 * /proc/PID/maps that is the stack of the main task. 267 */ 268 static int is_stack(struct proc_maps_private *priv, 269 struct vm_area_struct *vma, int is_pid) 270 { 271 int stack = 0; 272 273 if (is_pid) { 274 stack = vma->vm_start <= vma->vm_mm->start_stack && 275 vma->vm_end >= vma->vm_mm->start_stack; 276 } else { 277 struct inode *inode = priv->inode; 278 struct task_struct *task; 279 280 rcu_read_lock(); 281 task = pid_task(proc_pid(inode), PIDTYPE_PID); 282 if (task) 283 stack = vma_is_stack_for_task(vma, task); 284 rcu_read_unlock(); 285 } 286 return stack; 287 } 288 289 static void 290 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid) 291 { 292 struct mm_struct *mm = vma->vm_mm; 293 struct file *file = vma->vm_file; 294 struct proc_maps_private *priv = m->private; 295 vm_flags_t flags = vma->vm_flags; 296 unsigned long ino = 0; 297 unsigned long long pgoff = 0; 298 unsigned long start, end; 299 dev_t dev = 0; 300 const char *name = NULL; 301 302 if (file) { 303 struct inode *inode = file_inode(vma->vm_file); 304 dev = inode->i_sb->s_dev; 305 ino = inode->i_ino; 306 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT; 307 } 308 309 /* We don't show the stack guard page in /proc/maps */ 310 start = vma->vm_start; 311 if (stack_guard_page_start(vma, start)) 312 start += PAGE_SIZE; 313 end = vma->vm_end; 314 if (stack_guard_page_end(vma, end)) 315 end -= PAGE_SIZE; 316 317 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1); 318 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ", 319 start, 320 end, 321 flags & VM_READ ? 'r' : '-', 322 flags & VM_WRITE ? 'w' : '-', 323 flags & VM_EXEC ? 'x' : '-', 324 flags & VM_MAYSHARE ? 's' : 'p', 325 pgoff, 326 MAJOR(dev), MINOR(dev), ino); 327 328 /* 329 * Print the dentry name for named mappings, and a 330 * special [heap] marker for the heap: 331 */ 332 if (file) { 333 seq_pad(m, ' '); 334 seq_file_path(m, file, "\n"); 335 goto done; 336 } 337 338 if (vma->vm_ops && vma->vm_ops->name) { 339 name = vma->vm_ops->name(vma); 340 if (name) 341 goto done; 342 } 343 344 name = arch_vma_name(vma); 345 if (!name) { 346 if (!mm) { 347 name = "[vdso]"; 348 goto done; 349 } 350 351 if (vma->vm_start <= mm->brk && 352 vma->vm_end >= mm->start_brk) { 353 name = "[heap]"; 354 goto done; 355 } 356 357 if (is_stack(priv, vma, is_pid)) 358 name = "[stack]"; 359 } 360 361 done: 362 if (name) { 363 seq_pad(m, ' '); 364 seq_puts(m, name); 365 } 366 seq_putc(m, '\n'); 367 } 368 369 static int show_map(struct seq_file *m, void *v, int is_pid) 370 { 371 show_map_vma(m, v, is_pid); 372 m_cache_vma(m, v); 373 return 0; 374 } 375 376 static int show_pid_map(struct seq_file *m, void *v) 377 { 378 return show_map(m, v, 1); 379 } 380 381 static int show_tid_map(struct seq_file *m, void *v) 382 { 383 return show_map(m, v, 0); 384 } 385 386 static const struct seq_operations proc_pid_maps_op = { 387 .start = m_start, 388 .next = m_next, 389 .stop = m_stop, 390 .show = show_pid_map 391 }; 392 393 static const struct seq_operations proc_tid_maps_op = { 394 .start = m_start, 395 .next = m_next, 396 .stop = m_stop, 397 .show = show_tid_map 398 }; 399 400 static int pid_maps_open(struct inode *inode, struct file *file) 401 { 402 return do_maps_open(inode, file, &proc_pid_maps_op); 403 } 404 405 static int tid_maps_open(struct inode *inode, struct file *file) 406 { 407 return do_maps_open(inode, file, &proc_tid_maps_op); 408 } 409 410 const struct file_operations proc_pid_maps_operations = { 411 .open = pid_maps_open, 412 .read = seq_read, 413 .llseek = seq_lseek, 414 .release = proc_map_release, 415 }; 416 417 const struct file_operations proc_tid_maps_operations = { 418 .open = tid_maps_open, 419 .read = seq_read, 420 .llseek = seq_lseek, 421 .release = proc_map_release, 422 }; 423 424 /* 425 * Proportional Set Size(PSS): my share of RSS. 426 * 427 * PSS of a process is the count of pages it has in memory, where each 428 * page is divided by the number of processes sharing it. So if a 429 * process has 1000 pages all to itself, and 1000 shared with one other 430 * process, its PSS will be 1500. 431 * 432 * To keep (accumulated) division errors low, we adopt a 64bit 433 * fixed-point pss counter to minimize division errors. So (pss >> 434 * PSS_SHIFT) would be the real byte count. 435 * 436 * A shift of 12 before division means (assuming 4K page size): 437 * - 1M 3-user-pages add up to 8KB errors; 438 * - supports mapcount up to 2^24, or 16M; 439 * - supports PSS up to 2^52 bytes, or 4PB. 440 */ 441 #define PSS_SHIFT 12 442 443 #ifdef CONFIG_PROC_PAGE_MONITOR 444 struct mem_size_stats { 445 unsigned long resident; 446 unsigned long shared_clean; 447 unsigned long shared_dirty; 448 unsigned long private_clean; 449 unsigned long private_dirty; 450 unsigned long referenced; 451 unsigned long anonymous; 452 unsigned long anonymous_thp; 453 unsigned long shmem_thp; 454 unsigned long swap; 455 unsigned long shared_hugetlb; 456 unsigned long private_hugetlb; 457 u64 pss; 458 u64 swap_pss; 459 bool check_shmem_swap; 460 }; 461 462 static void smaps_account(struct mem_size_stats *mss, struct page *page, 463 bool compound, bool young, bool dirty) 464 { 465 int i, nr = compound ? 1 << compound_order(page) : 1; 466 unsigned long size = nr * PAGE_SIZE; 467 468 if (PageAnon(page)) 469 mss->anonymous += size; 470 471 mss->resident += size; 472 /* Accumulate the size in pages that have been accessed. */ 473 if (young || page_is_young(page) || PageReferenced(page)) 474 mss->referenced += size; 475 476 /* 477 * page_count(page) == 1 guarantees the page is mapped exactly once. 478 * If any subpage of the compound page mapped with PTE it would elevate 479 * page_count(). 480 */ 481 if (page_count(page) == 1) { 482 if (dirty || PageDirty(page)) 483 mss->private_dirty += size; 484 else 485 mss->private_clean += size; 486 mss->pss += (u64)size << PSS_SHIFT; 487 return; 488 } 489 490 for (i = 0; i < nr; i++, page++) { 491 int mapcount = page_mapcount(page); 492 493 if (mapcount >= 2) { 494 if (dirty || PageDirty(page)) 495 mss->shared_dirty += PAGE_SIZE; 496 else 497 mss->shared_clean += PAGE_SIZE; 498 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount; 499 } else { 500 if (dirty || PageDirty(page)) 501 mss->private_dirty += PAGE_SIZE; 502 else 503 mss->private_clean += PAGE_SIZE; 504 mss->pss += PAGE_SIZE << PSS_SHIFT; 505 } 506 } 507 } 508 509 #ifdef CONFIG_SHMEM 510 static int smaps_pte_hole(unsigned long addr, unsigned long end, 511 struct mm_walk *walk) 512 { 513 struct mem_size_stats *mss = walk->private; 514 515 mss->swap += shmem_partial_swap_usage( 516 walk->vma->vm_file->f_mapping, addr, end); 517 518 return 0; 519 } 520 #endif 521 522 static void smaps_pte_entry(pte_t *pte, unsigned long addr, 523 struct mm_walk *walk) 524 { 525 struct mem_size_stats *mss = walk->private; 526 struct vm_area_struct *vma = walk->vma; 527 struct page *page = NULL; 528 529 if (pte_present(*pte)) { 530 page = vm_normal_page(vma, addr, *pte); 531 } else if (is_swap_pte(*pte)) { 532 swp_entry_t swpent = pte_to_swp_entry(*pte); 533 534 if (!non_swap_entry(swpent)) { 535 int mapcount; 536 537 mss->swap += PAGE_SIZE; 538 mapcount = swp_swapcount(swpent); 539 if (mapcount >= 2) { 540 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT; 541 542 do_div(pss_delta, mapcount); 543 mss->swap_pss += pss_delta; 544 } else { 545 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT; 546 } 547 } else if (is_migration_entry(swpent)) 548 page = migration_entry_to_page(swpent); 549 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap 550 && pte_none(*pte))) { 551 page = find_get_entry(vma->vm_file->f_mapping, 552 linear_page_index(vma, addr)); 553 if (!page) 554 return; 555 556 if (radix_tree_exceptional_entry(page)) 557 mss->swap += PAGE_SIZE; 558 else 559 put_page(page); 560 561 return; 562 } 563 564 if (!page) 565 return; 566 567 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte)); 568 } 569 570 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 571 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 572 struct mm_walk *walk) 573 { 574 struct mem_size_stats *mss = walk->private; 575 struct vm_area_struct *vma = walk->vma; 576 struct page *page; 577 578 /* FOLL_DUMP will return -EFAULT on huge zero page */ 579 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP); 580 if (IS_ERR_OR_NULL(page)) 581 return; 582 if (PageAnon(page)) 583 mss->anonymous_thp += HPAGE_PMD_SIZE; 584 else if (PageSwapBacked(page)) 585 mss->shmem_thp += HPAGE_PMD_SIZE; 586 else if (is_zone_device_page(page)) 587 /* pass */; 588 else 589 VM_BUG_ON_PAGE(1, page); 590 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd)); 591 } 592 #else 593 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 594 struct mm_walk *walk) 595 { 596 } 597 #endif 598 599 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 600 struct mm_walk *walk) 601 { 602 struct vm_area_struct *vma = walk->vma; 603 pte_t *pte; 604 spinlock_t *ptl; 605 606 ptl = pmd_trans_huge_lock(pmd, vma); 607 if (ptl) { 608 smaps_pmd_entry(pmd, addr, walk); 609 spin_unlock(ptl); 610 return 0; 611 } 612 613 if (pmd_trans_unstable(pmd)) 614 return 0; 615 /* 616 * The mmap_sem held all the way back in m_start() is what 617 * keeps khugepaged out of here and from collapsing things 618 * in here. 619 */ 620 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 621 for (; addr != end; pte++, addr += PAGE_SIZE) 622 smaps_pte_entry(pte, addr, walk); 623 pte_unmap_unlock(pte - 1, ptl); 624 cond_resched(); 625 return 0; 626 } 627 628 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma) 629 { 630 /* 631 * Don't forget to update Documentation/ on changes. 632 */ 633 static const char mnemonics[BITS_PER_LONG][2] = { 634 /* 635 * In case if we meet a flag we don't know about. 636 */ 637 [0 ... (BITS_PER_LONG-1)] = "??", 638 639 [ilog2(VM_READ)] = "rd", 640 [ilog2(VM_WRITE)] = "wr", 641 [ilog2(VM_EXEC)] = "ex", 642 [ilog2(VM_SHARED)] = "sh", 643 [ilog2(VM_MAYREAD)] = "mr", 644 [ilog2(VM_MAYWRITE)] = "mw", 645 [ilog2(VM_MAYEXEC)] = "me", 646 [ilog2(VM_MAYSHARE)] = "ms", 647 [ilog2(VM_GROWSDOWN)] = "gd", 648 [ilog2(VM_PFNMAP)] = "pf", 649 [ilog2(VM_DENYWRITE)] = "dw", 650 #ifdef CONFIG_X86_INTEL_MPX 651 [ilog2(VM_MPX)] = "mp", 652 #endif 653 [ilog2(VM_LOCKED)] = "lo", 654 [ilog2(VM_IO)] = "io", 655 [ilog2(VM_SEQ_READ)] = "sr", 656 [ilog2(VM_RAND_READ)] = "rr", 657 [ilog2(VM_DONTCOPY)] = "dc", 658 [ilog2(VM_DONTEXPAND)] = "de", 659 [ilog2(VM_ACCOUNT)] = "ac", 660 [ilog2(VM_NORESERVE)] = "nr", 661 [ilog2(VM_HUGETLB)] = "ht", 662 [ilog2(VM_ARCH_1)] = "ar", 663 [ilog2(VM_DONTDUMP)] = "dd", 664 #ifdef CONFIG_MEM_SOFT_DIRTY 665 [ilog2(VM_SOFTDIRTY)] = "sd", 666 #endif 667 [ilog2(VM_MIXEDMAP)] = "mm", 668 [ilog2(VM_HUGEPAGE)] = "hg", 669 [ilog2(VM_NOHUGEPAGE)] = "nh", 670 [ilog2(VM_MERGEABLE)] = "mg", 671 [ilog2(VM_UFFD_MISSING)]= "um", 672 [ilog2(VM_UFFD_WP)] = "uw", 673 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 674 /* These come out via ProtectionKey: */ 675 [ilog2(VM_PKEY_BIT0)] = "", 676 [ilog2(VM_PKEY_BIT1)] = "", 677 [ilog2(VM_PKEY_BIT2)] = "", 678 [ilog2(VM_PKEY_BIT3)] = "", 679 #endif 680 }; 681 size_t i; 682 683 seq_puts(m, "VmFlags: "); 684 for (i = 0; i < BITS_PER_LONG; i++) { 685 if (!mnemonics[i][0]) 686 continue; 687 if (vma->vm_flags & (1UL << i)) { 688 seq_printf(m, "%c%c ", 689 mnemonics[i][0], mnemonics[i][1]); 690 } 691 } 692 seq_putc(m, '\n'); 693 } 694 695 #ifdef CONFIG_HUGETLB_PAGE 696 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask, 697 unsigned long addr, unsigned long end, 698 struct mm_walk *walk) 699 { 700 struct mem_size_stats *mss = walk->private; 701 struct vm_area_struct *vma = walk->vma; 702 struct page *page = NULL; 703 704 if (pte_present(*pte)) { 705 page = vm_normal_page(vma, addr, *pte); 706 } else if (is_swap_pte(*pte)) { 707 swp_entry_t swpent = pte_to_swp_entry(*pte); 708 709 if (is_migration_entry(swpent)) 710 page = migration_entry_to_page(swpent); 711 } 712 if (page) { 713 int mapcount = page_mapcount(page); 714 715 if (mapcount >= 2) 716 mss->shared_hugetlb += huge_page_size(hstate_vma(vma)); 717 else 718 mss->private_hugetlb += huge_page_size(hstate_vma(vma)); 719 } 720 return 0; 721 } 722 #endif /* HUGETLB_PAGE */ 723 724 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma) 725 { 726 } 727 728 static int show_smap(struct seq_file *m, void *v, int is_pid) 729 { 730 struct vm_area_struct *vma = v; 731 struct mem_size_stats mss; 732 struct mm_walk smaps_walk = { 733 .pmd_entry = smaps_pte_range, 734 #ifdef CONFIG_HUGETLB_PAGE 735 .hugetlb_entry = smaps_hugetlb_range, 736 #endif 737 .mm = vma->vm_mm, 738 .private = &mss, 739 }; 740 741 memset(&mss, 0, sizeof mss); 742 743 #ifdef CONFIG_SHMEM 744 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) { 745 /* 746 * For shared or readonly shmem mappings we know that all 747 * swapped out pages belong to the shmem object, and we can 748 * obtain the swap value much more efficiently. For private 749 * writable mappings, we might have COW pages that are 750 * not affected by the parent swapped out pages of the shmem 751 * object, so we have to distinguish them during the page walk. 752 * Unless we know that the shmem object (or the part mapped by 753 * our VMA) has no swapped out pages at all. 754 */ 755 unsigned long shmem_swapped = shmem_swap_usage(vma); 756 757 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) || 758 !(vma->vm_flags & VM_WRITE)) { 759 mss.swap = shmem_swapped; 760 } else { 761 mss.check_shmem_swap = true; 762 smaps_walk.pte_hole = smaps_pte_hole; 763 } 764 } 765 #endif 766 767 /* mmap_sem is held in m_start */ 768 walk_page_vma(vma, &smaps_walk); 769 770 show_map_vma(m, vma, is_pid); 771 772 seq_printf(m, 773 "Size: %8lu kB\n" 774 "Rss: %8lu kB\n" 775 "Pss: %8lu kB\n" 776 "Shared_Clean: %8lu kB\n" 777 "Shared_Dirty: %8lu kB\n" 778 "Private_Clean: %8lu kB\n" 779 "Private_Dirty: %8lu kB\n" 780 "Referenced: %8lu kB\n" 781 "Anonymous: %8lu kB\n" 782 "AnonHugePages: %8lu kB\n" 783 "ShmemPmdMapped: %8lu kB\n" 784 "Shared_Hugetlb: %8lu kB\n" 785 "Private_Hugetlb: %7lu kB\n" 786 "Swap: %8lu kB\n" 787 "SwapPss: %8lu kB\n" 788 "KernelPageSize: %8lu kB\n" 789 "MMUPageSize: %8lu kB\n" 790 "Locked: %8lu kB\n", 791 (vma->vm_end - vma->vm_start) >> 10, 792 mss.resident >> 10, 793 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)), 794 mss.shared_clean >> 10, 795 mss.shared_dirty >> 10, 796 mss.private_clean >> 10, 797 mss.private_dirty >> 10, 798 mss.referenced >> 10, 799 mss.anonymous >> 10, 800 mss.anonymous_thp >> 10, 801 mss.shmem_thp >> 10, 802 mss.shared_hugetlb >> 10, 803 mss.private_hugetlb >> 10, 804 mss.swap >> 10, 805 (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)), 806 vma_kernel_pagesize(vma) >> 10, 807 vma_mmu_pagesize(vma) >> 10, 808 (vma->vm_flags & VM_LOCKED) ? 809 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0); 810 811 arch_show_smap(m, vma); 812 show_smap_vma_flags(m, vma); 813 m_cache_vma(m, vma); 814 return 0; 815 } 816 817 static int show_pid_smap(struct seq_file *m, void *v) 818 { 819 return show_smap(m, v, 1); 820 } 821 822 static int show_tid_smap(struct seq_file *m, void *v) 823 { 824 return show_smap(m, v, 0); 825 } 826 827 static const struct seq_operations proc_pid_smaps_op = { 828 .start = m_start, 829 .next = m_next, 830 .stop = m_stop, 831 .show = show_pid_smap 832 }; 833 834 static const struct seq_operations proc_tid_smaps_op = { 835 .start = m_start, 836 .next = m_next, 837 .stop = m_stop, 838 .show = show_tid_smap 839 }; 840 841 static int pid_smaps_open(struct inode *inode, struct file *file) 842 { 843 return do_maps_open(inode, file, &proc_pid_smaps_op); 844 } 845 846 static int tid_smaps_open(struct inode *inode, struct file *file) 847 { 848 return do_maps_open(inode, file, &proc_tid_smaps_op); 849 } 850 851 const struct file_operations proc_pid_smaps_operations = { 852 .open = pid_smaps_open, 853 .read = seq_read, 854 .llseek = seq_lseek, 855 .release = proc_map_release, 856 }; 857 858 const struct file_operations proc_tid_smaps_operations = { 859 .open = tid_smaps_open, 860 .read = seq_read, 861 .llseek = seq_lseek, 862 .release = proc_map_release, 863 }; 864 865 enum clear_refs_types { 866 CLEAR_REFS_ALL = 1, 867 CLEAR_REFS_ANON, 868 CLEAR_REFS_MAPPED, 869 CLEAR_REFS_SOFT_DIRTY, 870 CLEAR_REFS_MM_HIWATER_RSS, 871 CLEAR_REFS_LAST, 872 }; 873 874 struct clear_refs_private { 875 enum clear_refs_types type; 876 }; 877 878 #ifdef CONFIG_MEM_SOFT_DIRTY 879 static inline void clear_soft_dirty(struct vm_area_struct *vma, 880 unsigned long addr, pte_t *pte) 881 { 882 /* 883 * The soft-dirty tracker uses #PF-s to catch writes 884 * to pages, so write-protect the pte as well. See the 885 * Documentation/vm/soft-dirty.txt for full description 886 * of how soft-dirty works. 887 */ 888 pte_t ptent = *pte; 889 890 if (pte_present(ptent)) { 891 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte); 892 ptent = pte_wrprotect(ptent); 893 ptent = pte_clear_soft_dirty(ptent); 894 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent); 895 } else if (is_swap_pte(ptent)) { 896 ptent = pte_swp_clear_soft_dirty(ptent); 897 set_pte_at(vma->vm_mm, addr, pte, ptent); 898 } 899 } 900 #else 901 static inline void clear_soft_dirty(struct vm_area_struct *vma, 902 unsigned long addr, pte_t *pte) 903 { 904 } 905 #endif 906 907 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 908 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 909 unsigned long addr, pmd_t *pmdp) 910 { 911 pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 912 913 pmd = pmd_wrprotect(pmd); 914 pmd = pmd_clear_soft_dirty(pmd); 915 916 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 917 } 918 #else 919 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 920 unsigned long addr, pmd_t *pmdp) 921 { 922 } 923 #endif 924 925 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, 926 unsigned long end, struct mm_walk *walk) 927 { 928 struct clear_refs_private *cp = walk->private; 929 struct vm_area_struct *vma = walk->vma; 930 pte_t *pte, ptent; 931 spinlock_t *ptl; 932 struct page *page; 933 934 ptl = pmd_trans_huge_lock(pmd, vma); 935 if (ptl) { 936 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 937 clear_soft_dirty_pmd(vma, addr, pmd); 938 goto out; 939 } 940 941 page = pmd_page(*pmd); 942 943 /* Clear accessed and referenced bits. */ 944 pmdp_test_and_clear_young(vma, addr, pmd); 945 test_and_clear_page_young(page); 946 ClearPageReferenced(page); 947 out: 948 spin_unlock(ptl); 949 return 0; 950 } 951 952 if (pmd_trans_unstable(pmd)) 953 return 0; 954 955 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 956 for (; addr != end; pte++, addr += PAGE_SIZE) { 957 ptent = *pte; 958 959 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 960 clear_soft_dirty(vma, addr, pte); 961 continue; 962 } 963 964 if (!pte_present(ptent)) 965 continue; 966 967 page = vm_normal_page(vma, addr, ptent); 968 if (!page) 969 continue; 970 971 /* Clear accessed and referenced bits. */ 972 ptep_test_and_clear_young(vma, addr, pte); 973 test_and_clear_page_young(page); 974 ClearPageReferenced(page); 975 } 976 pte_unmap_unlock(pte - 1, ptl); 977 cond_resched(); 978 return 0; 979 } 980 981 static int clear_refs_test_walk(unsigned long start, unsigned long end, 982 struct mm_walk *walk) 983 { 984 struct clear_refs_private *cp = walk->private; 985 struct vm_area_struct *vma = walk->vma; 986 987 if (vma->vm_flags & VM_PFNMAP) 988 return 1; 989 990 /* 991 * Writing 1 to /proc/pid/clear_refs affects all pages. 992 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages. 993 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages. 994 * Writing 4 to /proc/pid/clear_refs affects all pages. 995 */ 996 if (cp->type == CLEAR_REFS_ANON && vma->vm_file) 997 return 1; 998 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file) 999 return 1; 1000 return 0; 1001 } 1002 1003 static ssize_t clear_refs_write(struct file *file, const char __user *buf, 1004 size_t count, loff_t *ppos) 1005 { 1006 struct task_struct *task; 1007 char buffer[PROC_NUMBUF]; 1008 struct mm_struct *mm; 1009 struct vm_area_struct *vma; 1010 enum clear_refs_types type; 1011 int itype; 1012 int rv; 1013 1014 memset(buffer, 0, sizeof(buffer)); 1015 if (count > sizeof(buffer) - 1) 1016 count = sizeof(buffer) - 1; 1017 if (copy_from_user(buffer, buf, count)) 1018 return -EFAULT; 1019 rv = kstrtoint(strstrip(buffer), 10, &itype); 1020 if (rv < 0) 1021 return rv; 1022 type = (enum clear_refs_types)itype; 1023 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST) 1024 return -EINVAL; 1025 1026 task = get_proc_task(file_inode(file)); 1027 if (!task) 1028 return -ESRCH; 1029 mm = get_task_mm(task); 1030 if (mm) { 1031 struct clear_refs_private cp = { 1032 .type = type, 1033 }; 1034 struct mm_walk clear_refs_walk = { 1035 .pmd_entry = clear_refs_pte_range, 1036 .test_walk = clear_refs_test_walk, 1037 .mm = mm, 1038 .private = &cp, 1039 }; 1040 1041 if (type == CLEAR_REFS_MM_HIWATER_RSS) { 1042 if (down_write_killable(&mm->mmap_sem)) { 1043 count = -EINTR; 1044 goto out_mm; 1045 } 1046 1047 /* 1048 * Writing 5 to /proc/pid/clear_refs resets the peak 1049 * resident set size to this mm's current rss value. 1050 */ 1051 reset_mm_hiwater_rss(mm); 1052 up_write(&mm->mmap_sem); 1053 goto out_mm; 1054 } 1055 1056 down_read(&mm->mmap_sem); 1057 if (type == CLEAR_REFS_SOFT_DIRTY) { 1058 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1059 if (!(vma->vm_flags & VM_SOFTDIRTY)) 1060 continue; 1061 up_read(&mm->mmap_sem); 1062 if (down_write_killable(&mm->mmap_sem)) { 1063 count = -EINTR; 1064 goto out_mm; 1065 } 1066 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1067 vma->vm_flags &= ~VM_SOFTDIRTY; 1068 vma_set_page_prot(vma); 1069 } 1070 downgrade_write(&mm->mmap_sem); 1071 break; 1072 } 1073 mmu_notifier_invalidate_range_start(mm, 0, -1); 1074 } 1075 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk); 1076 if (type == CLEAR_REFS_SOFT_DIRTY) 1077 mmu_notifier_invalidate_range_end(mm, 0, -1); 1078 flush_tlb_mm(mm); 1079 up_read(&mm->mmap_sem); 1080 out_mm: 1081 mmput(mm); 1082 } 1083 put_task_struct(task); 1084 1085 return count; 1086 } 1087 1088 const struct file_operations proc_clear_refs_operations = { 1089 .write = clear_refs_write, 1090 .llseek = noop_llseek, 1091 }; 1092 1093 typedef struct { 1094 u64 pme; 1095 } pagemap_entry_t; 1096 1097 struct pagemapread { 1098 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */ 1099 pagemap_entry_t *buffer; 1100 bool show_pfn; 1101 }; 1102 1103 #define PAGEMAP_WALK_SIZE (PMD_SIZE) 1104 #define PAGEMAP_WALK_MASK (PMD_MASK) 1105 1106 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t) 1107 #define PM_PFRAME_BITS 55 1108 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0) 1109 #define PM_SOFT_DIRTY BIT_ULL(55) 1110 #define PM_MMAP_EXCLUSIVE BIT_ULL(56) 1111 #define PM_FILE BIT_ULL(61) 1112 #define PM_SWAP BIT_ULL(62) 1113 #define PM_PRESENT BIT_ULL(63) 1114 1115 #define PM_END_OF_BUFFER 1 1116 1117 static inline pagemap_entry_t make_pme(u64 frame, u64 flags) 1118 { 1119 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags }; 1120 } 1121 1122 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme, 1123 struct pagemapread *pm) 1124 { 1125 pm->buffer[pm->pos++] = *pme; 1126 if (pm->pos >= pm->len) 1127 return PM_END_OF_BUFFER; 1128 return 0; 1129 } 1130 1131 static int pagemap_pte_hole(unsigned long start, unsigned long end, 1132 struct mm_walk *walk) 1133 { 1134 struct pagemapread *pm = walk->private; 1135 unsigned long addr = start; 1136 int err = 0; 1137 1138 while (addr < end) { 1139 struct vm_area_struct *vma = find_vma(walk->mm, addr); 1140 pagemap_entry_t pme = make_pme(0, 0); 1141 /* End of address space hole, which we mark as non-present. */ 1142 unsigned long hole_end; 1143 1144 if (vma) 1145 hole_end = min(end, vma->vm_start); 1146 else 1147 hole_end = end; 1148 1149 for (; addr < hole_end; addr += PAGE_SIZE) { 1150 err = add_to_pagemap(addr, &pme, pm); 1151 if (err) 1152 goto out; 1153 } 1154 1155 if (!vma) 1156 break; 1157 1158 /* Addresses in the VMA. */ 1159 if (vma->vm_flags & VM_SOFTDIRTY) 1160 pme = make_pme(0, PM_SOFT_DIRTY); 1161 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) { 1162 err = add_to_pagemap(addr, &pme, pm); 1163 if (err) 1164 goto out; 1165 } 1166 } 1167 out: 1168 return err; 1169 } 1170 1171 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm, 1172 struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1173 { 1174 u64 frame = 0, flags = 0; 1175 struct page *page = NULL; 1176 1177 if (pte_present(pte)) { 1178 if (pm->show_pfn) 1179 frame = pte_pfn(pte); 1180 flags |= PM_PRESENT; 1181 page = vm_normal_page(vma, addr, pte); 1182 if (pte_soft_dirty(pte)) 1183 flags |= PM_SOFT_DIRTY; 1184 } else if (is_swap_pte(pte)) { 1185 swp_entry_t entry; 1186 if (pte_swp_soft_dirty(pte)) 1187 flags |= PM_SOFT_DIRTY; 1188 entry = pte_to_swp_entry(pte); 1189 frame = swp_type(entry) | 1190 (swp_offset(entry) << MAX_SWAPFILES_SHIFT); 1191 flags |= PM_SWAP; 1192 if (is_migration_entry(entry)) 1193 page = migration_entry_to_page(entry); 1194 } 1195 1196 if (page && !PageAnon(page)) 1197 flags |= PM_FILE; 1198 if (page && page_mapcount(page) == 1) 1199 flags |= PM_MMAP_EXCLUSIVE; 1200 if (vma->vm_flags & VM_SOFTDIRTY) 1201 flags |= PM_SOFT_DIRTY; 1202 1203 return make_pme(frame, flags); 1204 } 1205 1206 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end, 1207 struct mm_walk *walk) 1208 { 1209 struct vm_area_struct *vma = walk->vma; 1210 struct pagemapread *pm = walk->private; 1211 spinlock_t *ptl; 1212 pte_t *pte, *orig_pte; 1213 int err = 0; 1214 1215 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1216 ptl = pmd_trans_huge_lock(pmdp, vma); 1217 if (ptl) { 1218 u64 flags = 0, frame = 0; 1219 pmd_t pmd = *pmdp; 1220 1221 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd)) 1222 flags |= PM_SOFT_DIRTY; 1223 1224 /* 1225 * Currently pmd for thp is always present because thp 1226 * can not be swapped-out, migrated, or HWPOISONed 1227 * (split in such cases instead.) 1228 * This if-check is just to prepare for future implementation. 1229 */ 1230 if (pmd_present(pmd)) { 1231 struct page *page = pmd_page(pmd); 1232 1233 if (page_mapcount(page) == 1) 1234 flags |= PM_MMAP_EXCLUSIVE; 1235 1236 flags |= PM_PRESENT; 1237 if (pm->show_pfn) 1238 frame = pmd_pfn(pmd) + 1239 ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1240 } 1241 1242 for (; addr != end; addr += PAGE_SIZE) { 1243 pagemap_entry_t pme = make_pme(frame, flags); 1244 1245 err = add_to_pagemap(addr, &pme, pm); 1246 if (err) 1247 break; 1248 if (pm->show_pfn && (flags & PM_PRESENT)) 1249 frame++; 1250 } 1251 spin_unlock(ptl); 1252 return err; 1253 } 1254 1255 if (pmd_trans_unstable(pmdp)) 1256 return 0; 1257 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1258 1259 /* 1260 * We can assume that @vma always points to a valid one and @end never 1261 * goes beyond vma->vm_end. 1262 */ 1263 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl); 1264 for (; addr < end; pte++, addr += PAGE_SIZE) { 1265 pagemap_entry_t pme; 1266 1267 pme = pte_to_pagemap_entry(pm, vma, addr, *pte); 1268 err = add_to_pagemap(addr, &pme, pm); 1269 if (err) 1270 break; 1271 } 1272 pte_unmap_unlock(orig_pte, ptl); 1273 1274 cond_resched(); 1275 1276 return err; 1277 } 1278 1279 #ifdef CONFIG_HUGETLB_PAGE 1280 /* This function walks within one hugetlb entry in the single call */ 1281 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask, 1282 unsigned long addr, unsigned long end, 1283 struct mm_walk *walk) 1284 { 1285 struct pagemapread *pm = walk->private; 1286 struct vm_area_struct *vma = walk->vma; 1287 u64 flags = 0, frame = 0; 1288 int err = 0; 1289 pte_t pte; 1290 1291 if (vma->vm_flags & VM_SOFTDIRTY) 1292 flags |= PM_SOFT_DIRTY; 1293 1294 pte = huge_ptep_get(ptep); 1295 if (pte_present(pte)) { 1296 struct page *page = pte_page(pte); 1297 1298 if (!PageAnon(page)) 1299 flags |= PM_FILE; 1300 1301 if (page_mapcount(page) == 1) 1302 flags |= PM_MMAP_EXCLUSIVE; 1303 1304 flags |= PM_PRESENT; 1305 if (pm->show_pfn) 1306 frame = pte_pfn(pte) + 1307 ((addr & ~hmask) >> PAGE_SHIFT); 1308 } 1309 1310 for (; addr != end; addr += PAGE_SIZE) { 1311 pagemap_entry_t pme = make_pme(frame, flags); 1312 1313 err = add_to_pagemap(addr, &pme, pm); 1314 if (err) 1315 return err; 1316 if (pm->show_pfn && (flags & PM_PRESENT)) 1317 frame++; 1318 } 1319 1320 cond_resched(); 1321 1322 return err; 1323 } 1324 #endif /* HUGETLB_PAGE */ 1325 1326 /* 1327 * /proc/pid/pagemap - an array mapping virtual pages to pfns 1328 * 1329 * For each page in the address space, this file contains one 64-bit entry 1330 * consisting of the following: 1331 * 1332 * Bits 0-54 page frame number (PFN) if present 1333 * Bits 0-4 swap type if swapped 1334 * Bits 5-54 swap offset if swapped 1335 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt) 1336 * Bit 56 page exclusively mapped 1337 * Bits 57-60 zero 1338 * Bit 61 page is file-page or shared-anon 1339 * Bit 62 page swapped 1340 * Bit 63 page present 1341 * 1342 * If the page is not present but in swap, then the PFN contains an 1343 * encoding of the swap file number and the page's offset into the 1344 * swap. Unmapped pages return a null PFN. This allows determining 1345 * precisely which pages are mapped (or in swap) and comparing mapped 1346 * pages between processes. 1347 * 1348 * Efficient users of this interface will use /proc/pid/maps to 1349 * determine which areas of memory are actually mapped and llseek to 1350 * skip over unmapped regions. 1351 */ 1352 static ssize_t pagemap_read(struct file *file, char __user *buf, 1353 size_t count, loff_t *ppos) 1354 { 1355 struct mm_struct *mm = file->private_data; 1356 struct pagemapread pm; 1357 struct mm_walk pagemap_walk = {}; 1358 unsigned long src; 1359 unsigned long svpfn; 1360 unsigned long start_vaddr; 1361 unsigned long end_vaddr; 1362 int ret = 0, copied = 0; 1363 1364 if (!mm || !atomic_inc_not_zero(&mm->mm_users)) 1365 goto out; 1366 1367 ret = -EINVAL; 1368 /* file position must be aligned */ 1369 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) 1370 goto out_mm; 1371 1372 ret = 0; 1373 if (!count) 1374 goto out_mm; 1375 1376 /* do not disclose physical addresses: attack vector */ 1377 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN); 1378 1379 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT); 1380 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY); 1381 ret = -ENOMEM; 1382 if (!pm.buffer) 1383 goto out_mm; 1384 1385 pagemap_walk.pmd_entry = pagemap_pmd_range; 1386 pagemap_walk.pte_hole = pagemap_pte_hole; 1387 #ifdef CONFIG_HUGETLB_PAGE 1388 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range; 1389 #endif 1390 pagemap_walk.mm = mm; 1391 pagemap_walk.private = ± 1392 1393 src = *ppos; 1394 svpfn = src / PM_ENTRY_BYTES; 1395 start_vaddr = svpfn << PAGE_SHIFT; 1396 end_vaddr = mm->task_size; 1397 1398 /* watch out for wraparound */ 1399 if (svpfn > mm->task_size >> PAGE_SHIFT) 1400 start_vaddr = end_vaddr; 1401 1402 /* 1403 * The odds are that this will stop walking way 1404 * before end_vaddr, because the length of the 1405 * user buffer is tracked in "pm", and the walk 1406 * will stop when we hit the end of the buffer. 1407 */ 1408 ret = 0; 1409 while (count && (start_vaddr < end_vaddr)) { 1410 int len; 1411 unsigned long end; 1412 1413 pm.pos = 0; 1414 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK; 1415 /* overflow ? */ 1416 if (end < start_vaddr || end > end_vaddr) 1417 end = end_vaddr; 1418 down_read(&mm->mmap_sem); 1419 ret = walk_page_range(start_vaddr, end, &pagemap_walk); 1420 up_read(&mm->mmap_sem); 1421 start_vaddr = end; 1422 1423 len = min(count, PM_ENTRY_BYTES * pm.pos); 1424 if (copy_to_user(buf, pm.buffer, len)) { 1425 ret = -EFAULT; 1426 goto out_free; 1427 } 1428 copied += len; 1429 buf += len; 1430 count -= len; 1431 } 1432 *ppos += copied; 1433 if (!ret || ret == PM_END_OF_BUFFER) 1434 ret = copied; 1435 1436 out_free: 1437 kfree(pm.buffer); 1438 out_mm: 1439 mmput(mm); 1440 out: 1441 return ret; 1442 } 1443 1444 static int pagemap_open(struct inode *inode, struct file *file) 1445 { 1446 struct mm_struct *mm; 1447 1448 mm = proc_mem_open(inode, PTRACE_MODE_READ); 1449 if (IS_ERR(mm)) 1450 return PTR_ERR(mm); 1451 file->private_data = mm; 1452 return 0; 1453 } 1454 1455 static int pagemap_release(struct inode *inode, struct file *file) 1456 { 1457 struct mm_struct *mm = file->private_data; 1458 1459 if (mm) 1460 mmdrop(mm); 1461 return 0; 1462 } 1463 1464 const struct file_operations proc_pagemap_operations = { 1465 .llseek = mem_lseek, /* borrow this */ 1466 .read = pagemap_read, 1467 .open = pagemap_open, 1468 .release = pagemap_release, 1469 }; 1470 #endif /* CONFIG_PROC_PAGE_MONITOR */ 1471 1472 #ifdef CONFIG_NUMA 1473 1474 struct numa_maps { 1475 unsigned long pages; 1476 unsigned long anon; 1477 unsigned long active; 1478 unsigned long writeback; 1479 unsigned long mapcount_max; 1480 unsigned long dirty; 1481 unsigned long swapcache; 1482 unsigned long node[MAX_NUMNODES]; 1483 }; 1484 1485 struct numa_maps_private { 1486 struct proc_maps_private proc_maps; 1487 struct numa_maps md; 1488 }; 1489 1490 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty, 1491 unsigned long nr_pages) 1492 { 1493 int count = page_mapcount(page); 1494 1495 md->pages += nr_pages; 1496 if (pte_dirty || PageDirty(page)) 1497 md->dirty += nr_pages; 1498 1499 if (PageSwapCache(page)) 1500 md->swapcache += nr_pages; 1501 1502 if (PageActive(page) || PageUnevictable(page)) 1503 md->active += nr_pages; 1504 1505 if (PageWriteback(page)) 1506 md->writeback += nr_pages; 1507 1508 if (PageAnon(page)) 1509 md->anon += nr_pages; 1510 1511 if (count > md->mapcount_max) 1512 md->mapcount_max = count; 1513 1514 md->node[page_to_nid(page)] += nr_pages; 1515 } 1516 1517 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma, 1518 unsigned long addr) 1519 { 1520 struct page *page; 1521 int nid; 1522 1523 if (!pte_present(pte)) 1524 return NULL; 1525 1526 page = vm_normal_page(vma, addr, pte); 1527 if (!page) 1528 return NULL; 1529 1530 if (PageReserved(page)) 1531 return NULL; 1532 1533 nid = page_to_nid(page); 1534 if (!node_isset(nid, node_states[N_MEMORY])) 1535 return NULL; 1536 1537 return page; 1538 } 1539 1540 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1541 static struct page *can_gather_numa_stats_pmd(pmd_t pmd, 1542 struct vm_area_struct *vma, 1543 unsigned long addr) 1544 { 1545 struct page *page; 1546 int nid; 1547 1548 if (!pmd_present(pmd)) 1549 return NULL; 1550 1551 page = vm_normal_page_pmd(vma, addr, pmd); 1552 if (!page) 1553 return NULL; 1554 1555 if (PageReserved(page)) 1556 return NULL; 1557 1558 nid = page_to_nid(page); 1559 if (!node_isset(nid, node_states[N_MEMORY])) 1560 return NULL; 1561 1562 return page; 1563 } 1564 #endif 1565 1566 static int gather_pte_stats(pmd_t *pmd, unsigned long addr, 1567 unsigned long end, struct mm_walk *walk) 1568 { 1569 struct numa_maps *md = walk->private; 1570 struct vm_area_struct *vma = walk->vma; 1571 spinlock_t *ptl; 1572 pte_t *orig_pte; 1573 pte_t *pte; 1574 1575 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1576 ptl = pmd_trans_huge_lock(pmd, vma); 1577 if (ptl) { 1578 struct page *page; 1579 1580 page = can_gather_numa_stats_pmd(*pmd, vma, addr); 1581 if (page) 1582 gather_stats(page, md, pmd_dirty(*pmd), 1583 HPAGE_PMD_SIZE/PAGE_SIZE); 1584 spin_unlock(ptl); 1585 return 0; 1586 } 1587 1588 if (pmd_trans_unstable(pmd)) 1589 return 0; 1590 #endif 1591 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 1592 do { 1593 struct page *page = can_gather_numa_stats(*pte, vma, addr); 1594 if (!page) 1595 continue; 1596 gather_stats(page, md, pte_dirty(*pte), 1); 1597 1598 } while (pte++, addr += PAGE_SIZE, addr != end); 1599 pte_unmap_unlock(orig_pte, ptl); 1600 return 0; 1601 } 1602 #ifdef CONFIG_HUGETLB_PAGE 1603 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1604 unsigned long addr, unsigned long end, struct mm_walk *walk) 1605 { 1606 pte_t huge_pte = huge_ptep_get(pte); 1607 struct numa_maps *md; 1608 struct page *page; 1609 1610 if (!pte_present(huge_pte)) 1611 return 0; 1612 1613 page = pte_page(huge_pte); 1614 if (!page) 1615 return 0; 1616 1617 md = walk->private; 1618 gather_stats(page, md, pte_dirty(huge_pte), 1); 1619 return 0; 1620 } 1621 1622 #else 1623 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1624 unsigned long addr, unsigned long end, struct mm_walk *walk) 1625 { 1626 return 0; 1627 } 1628 #endif 1629 1630 /* 1631 * Display pages allocated per node and memory policy via /proc. 1632 */ 1633 static int show_numa_map(struct seq_file *m, void *v, int is_pid) 1634 { 1635 struct numa_maps_private *numa_priv = m->private; 1636 struct proc_maps_private *proc_priv = &numa_priv->proc_maps; 1637 struct vm_area_struct *vma = v; 1638 struct numa_maps *md = &numa_priv->md; 1639 struct file *file = vma->vm_file; 1640 struct mm_struct *mm = vma->vm_mm; 1641 struct mm_walk walk = { 1642 .hugetlb_entry = gather_hugetlb_stats, 1643 .pmd_entry = gather_pte_stats, 1644 .private = md, 1645 .mm = mm, 1646 }; 1647 struct mempolicy *pol; 1648 char buffer[64]; 1649 int nid; 1650 1651 if (!mm) 1652 return 0; 1653 1654 /* Ensure we start with an empty set of numa_maps statistics. */ 1655 memset(md, 0, sizeof(*md)); 1656 1657 pol = __get_vma_policy(vma, vma->vm_start); 1658 if (pol) { 1659 mpol_to_str(buffer, sizeof(buffer), pol); 1660 mpol_cond_put(pol); 1661 } else { 1662 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy); 1663 } 1664 1665 seq_printf(m, "%08lx %s", vma->vm_start, buffer); 1666 1667 if (file) { 1668 seq_puts(m, " file="); 1669 seq_file_path(m, file, "\n\t= "); 1670 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) { 1671 seq_puts(m, " heap"); 1672 } else if (is_stack(proc_priv, vma, is_pid)) { 1673 seq_puts(m, " stack"); 1674 } 1675 1676 if (is_vm_hugetlb_page(vma)) 1677 seq_puts(m, " huge"); 1678 1679 /* mmap_sem is held by m_start */ 1680 walk_page_vma(vma, &walk); 1681 1682 if (!md->pages) 1683 goto out; 1684 1685 if (md->anon) 1686 seq_printf(m, " anon=%lu", md->anon); 1687 1688 if (md->dirty) 1689 seq_printf(m, " dirty=%lu", md->dirty); 1690 1691 if (md->pages != md->anon && md->pages != md->dirty) 1692 seq_printf(m, " mapped=%lu", md->pages); 1693 1694 if (md->mapcount_max > 1) 1695 seq_printf(m, " mapmax=%lu", md->mapcount_max); 1696 1697 if (md->swapcache) 1698 seq_printf(m, " swapcache=%lu", md->swapcache); 1699 1700 if (md->active < md->pages && !is_vm_hugetlb_page(vma)) 1701 seq_printf(m, " active=%lu", md->active); 1702 1703 if (md->writeback) 1704 seq_printf(m, " writeback=%lu", md->writeback); 1705 1706 for_each_node_state(nid, N_MEMORY) 1707 if (md->node[nid]) 1708 seq_printf(m, " N%d=%lu", nid, md->node[nid]); 1709 1710 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10); 1711 out: 1712 seq_putc(m, '\n'); 1713 m_cache_vma(m, vma); 1714 return 0; 1715 } 1716 1717 static int show_pid_numa_map(struct seq_file *m, void *v) 1718 { 1719 return show_numa_map(m, v, 1); 1720 } 1721 1722 static int show_tid_numa_map(struct seq_file *m, void *v) 1723 { 1724 return show_numa_map(m, v, 0); 1725 } 1726 1727 static const struct seq_operations proc_pid_numa_maps_op = { 1728 .start = m_start, 1729 .next = m_next, 1730 .stop = m_stop, 1731 .show = show_pid_numa_map, 1732 }; 1733 1734 static const struct seq_operations proc_tid_numa_maps_op = { 1735 .start = m_start, 1736 .next = m_next, 1737 .stop = m_stop, 1738 .show = show_tid_numa_map, 1739 }; 1740 1741 static int numa_maps_open(struct inode *inode, struct file *file, 1742 const struct seq_operations *ops) 1743 { 1744 return proc_maps_open(inode, file, ops, 1745 sizeof(struct numa_maps_private)); 1746 } 1747 1748 static int pid_numa_maps_open(struct inode *inode, struct file *file) 1749 { 1750 return numa_maps_open(inode, file, &proc_pid_numa_maps_op); 1751 } 1752 1753 static int tid_numa_maps_open(struct inode *inode, struct file *file) 1754 { 1755 return numa_maps_open(inode, file, &proc_tid_numa_maps_op); 1756 } 1757 1758 const struct file_operations proc_pid_numa_maps_operations = { 1759 .open = pid_numa_maps_open, 1760 .read = seq_read, 1761 .llseek = seq_lseek, 1762 .release = proc_map_release, 1763 }; 1764 1765 const struct file_operations proc_tid_numa_maps_operations = { 1766 .open = tid_numa_maps_open, 1767 .read = seq_read, 1768 .llseek = seq_lseek, 1769 .release = proc_map_release, 1770 }; 1771 #endif /* CONFIG_NUMA */ 1772