1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/pagewalk.h> 3 #include <linux/mm_inline.h> 4 #include <linux/hugetlb.h> 5 #include <linux/huge_mm.h> 6 #include <linux/mount.h> 7 #include <linux/seq_file.h> 8 #include <linux/highmem.h> 9 #include <linux/ptrace.h> 10 #include <linux/slab.h> 11 #include <linux/pagemap.h> 12 #include <linux/mempolicy.h> 13 #include <linux/rmap.h> 14 #include <linux/swap.h> 15 #include <linux/sched/mm.h> 16 #include <linux/swapops.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/page_idle.h> 19 #include <linux/shmem_fs.h> 20 #include <linux/uaccess.h> 21 #include <linux/pkeys.h> 22 23 #include <asm/elf.h> 24 #include <asm/tlb.h> 25 #include <asm/tlbflush.h> 26 #include "internal.h" 27 28 #define SEQ_PUT_DEC(str, val) \ 29 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8) 30 void task_mem(struct seq_file *m, struct mm_struct *mm) 31 { 32 unsigned long text, lib, swap, anon, file, shmem; 33 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; 34 35 anon = get_mm_counter(mm, MM_ANONPAGES); 36 file = get_mm_counter(mm, MM_FILEPAGES); 37 shmem = get_mm_counter(mm, MM_SHMEMPAGES); 38 39 /* 40 * Note: to minimize their overhead, mm maintains hiwater_vm and 41 * hiwater_rss only when about to *lower* total_vm or rss. Any 42 * collector of these hiwater stats must therefore get total_vm 43 * and rss too, which will usually be the higher. Barriers? not 44 * worth the effort, such snapshots can always be inconsistent. 45 */ 46 hiwater_vm = total_vm = mm->total_vm; 47 if (hiwater_vm < mm->hiwater_vm) 48 hiwater_vm = mm->hiwater_vm; 49 hiwater_rss = total_rss = anon + file + shmem; 50 if (hiwater_rss < mm->hiwater_rss) 51 hiwater_rss = mm->hiwater_rss; 52 53 /* split executable areas between text and lib */ 54 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK); 55 text = min(text, mm->exec_vm << PAGE_SHIFT); 56 lib = (mm->exec_vm << PAGE_SHIFT) - text; 57 58 swap = get_mm_counter(mm, MM_SWAPENTS); 59 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm); 60 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm); 61 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm); 62 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm)); 63 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss); 64 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss); 65 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon); 66 SEQ_PUT_DEC(" kB\nRssFile:\t", file); 67 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem); 68 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm); 69 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm); 70 seq_put_decimal_ull_width(m, 71 " kB\nVmExe:\t", text >> 10, 8); 72 seq_put_decimal_ull_width(m, 73 " kB\nVmLib:\t", lib >> 10, 8); 74 seq_put_decimal_ull_width(m, 75 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8); 76 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap); 77 seq_puts(m, " kB\n"); 78 hugetlb_report_usage(m, mm); 79 } 80 #undef SEQ_PUT_DEC 81 82 unsigned long task_vsize(struct mm_struct *mm) 83 { 84 return PAGE_SIZE * mm->total_vm; 85 } 86 87 unsigned long task_statm(struct mm_struct *mm, 88 unsigned long *shared, unsigned long *text, 89 unsigned long *data, unsigned long *resident) 90 { 91 *shared = get_mm_counter(mm, MM_FILEPAGES) + 92 get_mm_counter(mm, MM_SHMEMPAGES); 93 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) 94 >> PAGE_SHIFT; 95 *data = mm->data_vm + mm->stack_vm; 96 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES); 97 return mm->total_vm; 98 } 99 100 #ifdef CONFIG_NUMA 101 /* 102 * Save get_task_policy() for show_numa_map(). 103 */ 104 static void hold_task_mempolicy(struct proc_maps_private *priv) 105 { 106 struct task_struct *task = priv->task; 107 108 task_lock(task); 109 priv->task_mempolicy = get_task_policy(task); 110 mpol_get(priv->task_mempolicy); 111 task_unlock(task); 112 } 113 static void release_task_mempolicy(struct proc_maps_private *priv) 114 { 115 mpol_put(priv->task_mempolicy); 116 } 117 #else 118 static void hold_task_mempolicy(struct proc_maps_private *priv) 119 { 120 } 121 static void release_task_mempolicy(struct proc_maps_private *priv) 122 { 123 } 124 #endif 125 126 static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv, 127 loff_t *ppos) 128 { 129 struct vm_area_struct *vma = vma_next(&priv->iter); 130 131 if (vma) { 132 *ppos = vma->vm_start; 133 } else { 134 *ppos = -2UL; 135 vma = get_gate_vma(priv->mm); 136 } 137 138 return vma; 139 } 140 141 static void *m_start(struct seq_file *m, loff_t *ppos) 142 { 143 struct proc_maps_private *priv = m->private; 144 unsigned long last_addr = *ppos; 145 struct mm_struct *mm; 146 147 /* See m_next(). Zero at the start or after lseek. */ 148 if (last_addr == -1UL) 149 return NULL; 150 151 priv->task = get_proc_task(priv->inode); 152 if (!priv->task) 153 return ERR_PTR(-ESRCH); 154 155 mm = priv->mm; 156 if (!mm || !mmget_not_zero(mm)) { 157 put_task_struct(priv->task); 158 priv->task = NULL; 159 return NULL; 160 } 161 162 if (mmap_read_lock_killable(mm)) { 163 mmput(mm); 164 put_task_struct(priv->task); 165 priv->task = NULL; 166 return ERR_PTR(-EINTR); 167 } 168 169 vma_iter_init(&priv->iter, mm, last_addr); 170 hold_task_mempolicy(priv); 171 if (last_addr == -2UL) 172 return get_gate_vma(mm); 173 174 return proc_get_vma(priv, ppos); 175 } 176 177 static void *m_next(struct seq_file *m, void *v, loff_t *ppos) 178 { 179 if (*ppos == -2UL) { 180 *ppos = -1UL; 181 return NULL; 182 } 183 return proc_get_vma(m->private, ppos); 184 } 185 186 static void m_stop(struct seq_file *m, void *v) 187 { 188 struct proc_maps_private *priv = m->private; 189 struct mm_struct *mm = priv->mm; 190 191 if (!priv->task) 192 return; 193 194 release_task_mempolicy(priv); 195 mmap_read_unlock(mm); 196 mmput(mm); 197 put_task_struct(priv->task); 198 priv->task = NULL; 199 } 200 201 static int proc_maps_open(struct inode *inode, struct file *file, 202 const struct seq_operations *ops, int psize) 203 { 204 struct proc_maps_private *priv = __seq_open_private(file, ops, psize); 205 206 if (!priv) 207 return -ENOMEM; 208 209 priv->inode = inode; 210 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); 211 if (IS_ERR(priv->mm)) { 212 int err = PTR_ERR(priv->mm); 213 214 seq_release_private(inode, file); 215 return err; 216 } 217 218 return 0; 219 } 220 221 static int proc_map_release(struct inode *inode, struct file *file) 222 { 223 struct seq_file *seq = file->private_data; 224 struct proc_maps_private *priv = seq->private; 225 226 if (priv->mm) 227 mmdrop(priv->mm); 228 229 return seq_release_private(inode, file); 230 } 231 232 static int do_maps_open(struct inode *inode, struct file *file, 233 const struct seq_operations *ops) 234 { 235 return proc_maps_open(inode, file, ops, 236 sizeof(struct proc_maps_private)); 237 } 238 239 /* 240 * Indicate if the VMA is a stack for the given task; for 241 * /proc/PID/maps that is the stack of the main task. 242 */ 243 static int is_stack(struct vm_area_struct *vma) 244 { 245 /* 246 * We make no effort to guess what a given thread considers to be 247 * its "stack". It's not even well-defined for programs written 248 * languages like Go. 249 */ 250 return vma->vm_start <= vma->vm_mm->start_stack && 251 vma->vm_end >= vma->vm_mm->start_stack; 252 } 253 254 static void show_vma_header_prefix(struct seq_file *m, 255 unsigned long start, unsigned long end, 256 vm_flags_t flags, unsigned long long pgoff, 257 dev_t dev, unsigned long ino) 258 { 259 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1); 260 seq_put_hex_ll(m, NULL, start, 8); 261 seq_put_hex_ll(m, "-", end, 8); 262 seq_putc(m, ' '); 263 seq_putc(m, flags & VM_READ ? 'r' : '-'); 264 seq_putc(m, flags & VM_WRITE ? 'w' : '-'); 265 seq_putc(m, flags & VM_EXEC ? 'x' : '-'); 266 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p'); 267 seq_put_hex_ll(m, " ", pgoff, 8); 268 seq_put_hex_ll(m, " ", MAJOR(dev), 2); 269 seq_put_hex_ll(m, ":", MINOR(dev), 2); 270 seq_put_decimal_ull(m, " ", ino); 271 seq_putc(m, ' '); 272 } 273 274 static void 275 show_map_vma(struct seq_file *m, struct vm_area_struct *vma) 276 { 277 struct anon_vma_name *anon_name = NULL; 278 struct mm_struct *mm = vma->vm_mm; 279 struct file *file = vma->vm_file; 280 vm_flags_t flags = vma->vm_flags; 281 unsigned long ino = 0; 282 unsigned long long pgoff = 0; 283 unsigned long start, end; 284 dev_t dev = 0; 285 const char *name = NULL; 286 287 if (file) { 288 struct inode *inode = file_inode(vma->vm_file); 289 dev = inode->i_sb->s_dev; 290 ino = inode->i_ino; 291 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT; 292 } 293 294 start = vma->vm_start; 295 end = vma->vm_end; 296 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino); 297 if (mm) 298 anon_name = anon_vma_name(vma); 299 300 /* 301 * Print the dentry name for named mappings, and a 302 * special [heap] marker for the heap: 303 */ 304 if (file) { 305 seq_pad(m, ' '); 306 /* 307 * If user named this anon shared memory via 308 * prctl(PR_SET_VMA ..., use the provided name. 309 */ 310 if (anon_name) 311 seq_printf(m, "[anon_shmem:%s]", anon_name->name); 312 else 313 seq_file_path(m, file, "\n"); 314 goto done; 315 } 316 317 if (vma->vm_ops && vma->vm_ops->name) { 318 name = vma->vm_ops->name(vma); 319 if (name) 320 goto done; 321 } 322 323 name = arch_vma_name(vma); 324 if (!name) { 325 if (!mm) { 326 name = "[vdso]"; 327 goto done; 328 } 329 330 if (vma->vm_start <= mm->brk && 331 vma->vm_end >= mm->start_brk) { 332 name = "[heap]"; 333 goto done; 334 } 335 336 if (is_stack(vma)) { 337 name = "[stack]"; 338 goto done; 339 } 340 341 if (anon_name) { 342 seq_pad(m, ' '); 343 seq_printf(m, "[anon:%s]", anon_name->name); 344 } 345 } 346 347 done: 348 if (name) { 349 seq_pad(m, ' '); 350 seq_puts(m, name); 351 } 352 seq_putc(m, '\n'); 353 } 354 355 static int show_map(struct seq_file *m, void *v) 356 { 357 show_map_vma(m, v); 358 return 0; 359 } 360 361 static const struct seq_operations proc_pid_maps_op = { 362 .start = m_start, 363 .next = m_next, 364 .stop = m_stop, 365 .show = show_map 366 }; 367 368 static int pid_maps_open(struct inode *inode, struct file *file) 369 { 370 return do_maps_open(inode, file, &proc_pid_maps_op); 371 } 372 373 const struct file_operations proc_pid_maps_operations = { 374 .open = pid_maps_open, 375 .read = seq_read, 376 .llseek = seq_lseek, 377 .release = proc_map_release, 378 }; 379 380 /* 381 * Proportional Set Size(PSS): my share of RSS. 382 * 383 * PSS of a process is the count of pages it has in memory, where each 384 * page is divided by the number of processes sharing it. So if a 385 * process has 1000 pages all to itself, and 1000 shared with one other 386 * process, its PSS will be 1500. 387 * 388 * To keep (accumulated) division errors low, we adopt a 64bit 389 * fixed-point pss counter to minimize division errors. So (pss >> 390 * PSS_SHIFT) would be the real byte count. 391 * 392 * A shift of 12 before division means (assuming 4K page size): 393 * - 1M 3-user-pages add up to 8KB errors; 394 * - supports mapcount up to 2^24, or 16M; 395 * - supports PSS up to 2^52 bytes, or 4PB. 396 */ 397 #define PSS_SHIFT 12 398 399 #ifdef CONFIG_PROC_PAGE_MONITOR 400 struct mem_size_stats { 401 unsigned long resident; 402 unsigned long shared_clean; 403 unsigned long shared_dirty; 404 unsigned long private_clean; 405 unsigned long private_dirty; 406 unsigned long referenced; 407 unsigned long anonymous; 408 unsigned long lazyfree; 409 unsigned long anonymous_thp; 410 unsigned long shmem_thp; 411 unsigned long file_thp; 412 unsigned long swap; 413 unsigned long shared_hugetlb; 414 unsigned long private_hugetlb; 415 u64 pss; 416 u64 pss_anon; 417 u64 pss_file; 418 u64 pss_shmem; 419 u64 pss_dirty; 420 u64 pss_locked; 421 u64 swap_pss; 422 }; 423 424 static void smaps_page_accumulate(struct mem_size_stats *mss, 425 struct page *page, unsigned long size, unsigned long pss, 426 bool dirty, bool locked, bool private) 427 { 428 mss->pss += pss; 429 430 if (PageAnon(page)) 431 mss->pss_anon += pss; 432 else if (PageSwapBacked(page)) 433 mss->pss_shmem += pss; 434 else 435 mss->pss_file += pss; 436 437 if (locked) 438 mss->pss_locked += pss; 439 440 if (dirty || PageDirty(page)) { 441 mss->pss_dirty += pss; 442 if (private) 443 mss->private_dirty += size; 444 else 445 mss->shared_dirty += size; 446 } else { 447 if (private) 448 mss->private_clean += size; 449 else 450 mss->shared_clean += size; 451 } 452 } 453 454 static void smaps_account(struct mem_size_stats *mss, struct page *page, 455 bool compound, bool young, bool dirty, bool locked, 456 bool migration) 457 { 458 int i, nr = compound ? compound_nr(page) : 1; 459 unsigned long size = nr * PAGE_SIZE; 460 461 /* 462 * First accumulate quantities that depend only on |size| and the type 463 * of the compound page. 464 */ 465 if (PageAnon(page)) { 466 mss->anonymous += size; 467 if (!PageSwapBacked(page) && !dirty && !PageDirty(page)) 468 mss->lazyfree += size; 469 } 470 471 mss->resident += size; 472 /* Accumulate the size in pages that have been accessed. */ 473 if (young || page_is_young(page) || PageReferenced(page)) 474 mss->referenced += size; 475 476 /* 477 * Then accumulate quantities that may depend on sharing, or that may 478 * differ page-by-page. 479 * 480 * page_count(page) == 1 guarantees the page is mapped exactly once. 481 * If any subpage of the compound page mapped with PTE it would elevate 482 * page_count(). 483 * 484 * The page_mapcount() is called to get a snapshot of the mapcount. 485 * Without holding the page lock this snapshot can be slightly wrong as 486 * we cannot always read the mapcount atomically. It is not safe to 487 * call page_mapcount() even with PTL held if the page is not mapped, 488 * especially for migration entries. Treat regular migration entries 489 * as mapcount == 1. 490 */ 491 if ((page_count(page) == 1) || migration) { 492 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty, 493 locked, true); 494 return; 495 } 496 for (i = 0; i < nr; i++, page++) { 497 int mapcount = page_mapcount(page); 498 unsigned long pss = PAGE_SIZE << PSS_SHIFT; 499 if (mapcount >= 2) 500 pss /= mapcount; 501 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked, 502 mapcount < 2); 503 } 504 } 505 506 #ifdef CONFIG_SHMEM 507 static int smaps_pte_hole(unsigned long addr, unsigned long end, 508 __always_unused int depth, struct mm_walk *walk) 509 { 510 struct mem_size_stats *mss = walk->private; 511 struct vm_area_struct *vma = walk->vma; 512 513 mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping, 514 linear_page_index(vma, addr), 515 linear_page_index(vma, end)); 516 517 return 0; 518 } 519 #else 520 #define smaps_pte_hole NULL 521 #endif /* CONFIG_SHMEM */ 522 523 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk) 524 { 525 #ifdef CONFIG_SHMEM 526 if (walk->ops->pte_hole) { 527 /* depth is not used */ 528 smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk); 529 } 530 #endif 531 } 532 533 static void smaps_pte_entry(pte_t *pte, unsigned long addr, 534 struct mm_walk *walk) 535 { 536 struct mem_size_stats *mss = walk->private; 537 struct vm_area_struct *vma = walk->vma; 538 bool locked = !!(vma->vm_flags & VM_LOCKED); 539 struct page *page = NULL; 540 bool migration = false, young = false, dirty = false; 541 pte_t ptent = ptep_get(pte); 542 543 if (pte_present(ptent)) { 544 page = vm_normal_page(vma, addr, ptent); 545 young = pte_young(ptent); 546 dirty = pte_dirty(ptent); 547 } else if (is_swap_pte(ptent)) { 548 swp_entry_t swpent = pte_to_swp_entry(ptent); 549 550 if (!non_swap_entry(swpent)) { 551 int mapcount; 552 553 mss->swap += PAGE_SIZE; 554 mapcount = swp_swapcount(swpent); 555 if (mapcount >= 2) { 556 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT; 557 558 do_div(pss_delta, mapcount); 559 mss->swap_pss += pss_delta; 560 } else { 561 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT; 562 } 563 } else if (is_pfn_swap_entry(swpent)) { 564 if (is_migration_entry(swpent)) 565 migration = true; 566 page = pfn_swap_entry_to_page(swpent); 567 } 568 } else { 569 smaps_pte_hole_lookup(addr, walk); 570 return; 571 } 572 573 if (!page) 574 return; 575 576 smaps_account(mss, page, false, young, dirty, locked, migration); 577 } 578 579 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 580 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 581 struct mm_walk *walk) 582 { 583 struct mem_size_stats *mss = walk->private; 584 struct vm_area_struct *vma = walk->vma; 585 bool locked = !!(vma->vm_flags & VM_LOCKED); 586 struct page *page = NULL; 587 bool migration = false; 588 589 if (pmd_present(*pmd)) { 590 /* FOLL_DUMP will return -EFAULT on huge zero page */ 591 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP); 592 } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) { 593 swp_entry_t entry = pmd_to_swp_entry(*pmd); 594 595 if (is_migration_entry(entry)) { 596 migration = true; 597 page = pfn_swap_entry_to_page(entry); 598 } 599 } 600 if (IS_ERR_OR_NULL(page)) 601 return; 602 if (PageAnon(page)) 603 mss->anonymous_thp += HPAGE_PMD_SIZE; 604 else if (PageSwapBacked(page)) 605 mss->shmem_thp += HPAGE_PMD_SIZE; 606 else if (is_zone_device_page(page)) 607 /* pass */; 608 else 609 mss->file_thp += HPAGE_PMD_SIZE; 610 611 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), 612 locked, migration); 613 } 614 #else 615 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 616 struct mm_walk *walk) 617 { 618 } 619 #endif 620 621 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 622 struct mm_walk *walk) 623 { 624 struct vm_area_struct *vma = walk->vma; 625 pte_t *pte; 626 spinlock_t *ptl; 627 628 ptl = pmd_trans_huge_lock(pmd, vma); 629 if (ptl) { 630 smaps_pmd_entry(pmd, addr, walk); 631 spin_unlock(ptl); 632 goto out; 633 } 634 635 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 636 if (!pte) { 637 walk->action = ACTION_AGAIN; 638 return 0; 639 } 640 for (; addr != end; pte++, addr += PAGE_SIZE) 641 smaps_pte_entry(pte, addr, walk); 642 pte_unmap_unlock(pte - 1, ptl); 643 out: 644 cond_resched(); 645 return 0; 646 } 647 648 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma) 649 { 650 /* 651 * Don't forget to update Documentation/ on changes. 652 */ 653 static const char mnemonics[BITS_PER_LONG][2] = { 654 /* 655 * In case if we meet a flag we don't know about. 656 */ 657 [0 ... (BITS_PER_LONG-1)] = "??", 658 659 [ilog2(VM_READ)] = "rd", 660 [ilog2(VM_WRITE)] = "wr", 661 [ilog2(VM_EXEC)] = "ex", 662 [ilog2(VM_SHARED)] = "sh", 663 [ilog2(VM_MAYREAD)] = "mr", 664 [ilog2(VM_MAYWRITE)] = "mw", 665 [ilog2(VM_MAYEXEC)] = "me", 666 [ilog2(VM_MAYSHARE)] = "ms", 667 [ilog2(VM_GROWSDOWN)] = "gd", 668 [ilog2(VM_PFNMAP)] = "pf", 669 [ilog2(VM_LOCKED)] = "lo", 670 [ilog2(VM_IO)] = "io", 671 [ilog2(VM_SEQ_READ)] = "sr", 672 [ilog2(VM_RAND_READ)] = "rr", 673 [ilog2(VM_DONTCOPY)] = "dc", 674 [ilog2(VM_DONTEXPAND)] = "de", 675 [ilog2(VM_LOCKONFAULT)] = "lf", 676 [ilog2(VM_ACCOUNT)] = "ac", 677 [ilog2(VM_NORESERVE)] = "nr", 678 [ilog2(VM_HUGETLB)] = "ht", 679 [ilog2(VM_SYNC)] = "sf", 680 [ilog2(VM_ARCH_1)] = "ar", 681 [ilog2(VM_WIPEONFORK)] = "wf", 682 [ilog2(VM_DONTDUMP)] = "dd", 683 #ifdef CONFIG_ARM64_BTI 684 [ilog2(VM_ARM64_BTI)] = "bt", 685 #endif 686 #ifdef CONFIG_MEM_SOFT_DIRTY 687 [ilog2(VM_SOFTDIRTY)] = "sd", 688 #endif 689 [ilog2(VM_MIXEDMAP)] = "mm", 690 [ilog2(VM_HUGEPAGE)] = "hg", 691 [ilog2(VM_NOHUGEPAGE)] = "nh", 692 [ilog2(VM_MERGEABLE)] = "mg", 693 [ilog2(VM_UFFD_MISSING)]= "um", 694 [ilog2(VM_UFFD_WP)] = "uw", 695 #ifdef CONFIG_ARM64_MTE 696 [ilog2(VM_MTE)] = "mt", 697 [ilog2(VM_MTE_ALLOWED)] = "", 698 #endif 699 #ifdef CONFIG_ARCH_HAS_PKEYS 700 /* These come out via ProtectionKey: */ 701 [ilog2(VM_PKEY_BIT0)] = "", 702 [ilog2(VM_PKEY_BIT1)] = "", 703 [ilog2(VM_PKEY_BIT2)] = "", 704 [ilog2(VM_PKEY_BIT3)] = "", 705 #if VM_PKEY_BIT4 706 [ilog2(VM_PKEY_BIT4)] = "", 707 #endif 708 #endif /* CONFIG_ARCH_HAS_PKEYS */ 709 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 710 [ilog2(VM_UFFD_MINOR)] = "ui", 711 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 712 }; 713 size_t i; 714 715 seq_puts(m, "VmFlags: "); 716 for (i = 0; i < BITS_PER_LONG; i++) { 717 if (!mnemonics[i][0]) 718 continue; 719 if (vma->vm_flags & (1UL << i)) { 720 seq_putc(m, mnemonics[i][0]); 721 seq_putc(m, mnemonics[i][1]); 722 seq_putc(m, ' '); 723 } 724 } 725 seq_putc(m, '\n'); 726 } 727 728 #ifdef CONFIG_HUGETLB_PAGE 729 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask, 730 unsigned long addr, unsigned long end, 731 struct mm_walk *walk) 732 { 733 struct mem_size_stats *mss = walk->private; 734 struct vm_area_struct *vma = walk->vma; 735 struct page *page = NULL; 736 pte_t ptent = ptep_get(pte); 737 738 if (pte_present(ptent)) { 739 page = vm_normal_page(vma, addr, ptent); 740 } else if (is_swap_pte(ptent)) { 741 swp_entry_t swpent = pte_to_swp_entry(ptent); 742 743 if (is_pfn_swap_entry(swpent)) 744 page = pfn_swap_entry_to_page(swpent); 745 } 746 if (page) { 747 if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte)) 748 mss->shared_hugetlb += huge_page_size(hstate_vma(vma)); 749 else 750 mss->private_hugetlb += huge_page_size(hstate_vma(vma)); 751 } 752 return 0; 753 } 754 #else 755 #define smaps_hugetlb_range NULL 756 #endif /* HUGETLB_PAGE */ 757 758 static const struct mm_walk_ops smaps_walk_ops = { 759 .pmd_entry = smaps_pte_range, 760 .hugetlb_entry = smaps_hugetlb_range, 761 }; 762 763 static const struct mm_walk_ops smaps_shmem_walk_ops = { 764 .pmd_entry = smaps_pte_range, 765 .hugetlb_entry = smaps_hugetlb_range, 766 .pte_hole = smaps_pte_hole, 767 }; 768 769 /* 770 * Gather mem stats from @vma with the indicated beginning 771 * address @start, and keep them in @mss. 772 * 773 * Use vm_start of @vma as the beginning address if @start is 0. 774 */ 775 static void smap_gather_stats(struct vm_area_struct *vma, 776 struct mem_size_stats *mss, unsigned long start) 777 { 778 const struct mm_walk_ops *ops = &smaps_walk_ops; 779 780 /* Invalid start */ 781 if (start >= vma->vm_end) 782 return; 783 784 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) { 785 /* 786 * For shared or readonly shmem mappings we know that all 787 * swapped out pages belong to the shmem object, and we can 788 * obtain the swap value much more efficiently. For private 789 * writable mappings, we might have COW pages that are 790 * not affected by the parent swapped out pages of the shmem 791 * object, so we have to distinguish them during the page walk. 792 * Unless we know that the shmem object (or the part mapped by 793 * our VMA) has no swapped out pages at all. 794 */ 795 unsigned long shmem_swapped = shmem_swap_usage(vma); 796 797 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) || 798 !(vma->vm_flags & VM_WRITE))) { 799 mss->swap += shmem_swapped; 800 } else { 801 ops = &smaps_shmem_walk_ops; 802 } 803 } 804 805 /* mmap_lock is held in m_start */ 806 if (!start) 807 walk_page_vma(vma, ops, mss); 808 else 809 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss); 810 } 811 812 #define SEQ_PUT_DEC(str, val) \ 813 seq_put_decimal_ull_width(m, str, (val) >> 10, 8) 814 815 /* Show the contents common for smaps and smaps_rollup */ 816 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss, 817 bool rollup_mode) 818 { 819 SEQ_PUT_DEC("Rss: ", mss->resident); 820 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT); 821 SEQ_PUT_DEC(" kB\nPss_Dirty: ", mss->pss_dirty >> PSS_SHIFT); 822 if (rollup_mode) { 823 /* 824 * These are meaningful only for smaps_rollup, otherwise two of 825 * them are zero, and the other one is the same as Pss. 826 */ 827 SEQ_PUT_DEC(" kB\nPss_Anon: ", 828 mss->pss_anon >> PSS_SHIFT); 829 SEQ_PUT_DEC(" kB\nPss_File: ", 830 mss->pss_file >> PSS_SHIFT); 831 SEQ_PUT_DEC(" kB\nPss_Shmem: ", 832 mss->pss_shmem >> PSS_SHIFT); 833 } 834 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean); 835 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty); 836 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean); 837 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty); 838 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced); 839 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous); 840 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree); 841 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp); 842 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp); 843 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp); 844 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb); 845 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ", 846 mss->private_hugetlb >> 10, 7); 847 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap); 848 SEQ_PUT_DEC(" kB\nSwapPss: ", 849 mss->swap_pss >> PSS_SHIFT); 850 SEQ_PUT_DEC(" kB\nLocked: ", 851 mss->pss_locked >> PSS_SHIFT); 852 seq_puts(m, " kB\n"); 853 } 854 855 static int show_smap(struct seq_file *m, void *v) 856 { 857 struct vm_area_struct *vma = v; 858 struct mem_size_stats mss; 859 860 memset(&mss, 0, sizeof(mss)); 861 862 smap_gather_stats(vma, &mss, 0); 863 864 show_map_vma(m, vma); 865 866 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start); 867 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma)); 868 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma)); 869 seq_puts(m, " kB\n"); 870 871 __show_smap(m, &mss, false); 872 873 seq_printf(m, "THPeligible: %d\n", 874 hugepage_vma_check(vma, vma->vm_flags, true, false, true)); 875 876 if (arch_pkeys_enabled()) 877 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma)); 878 show_smap_vma_flags(m, vma); 879 880 return 0; 881 } 882 883 static int show_smaps_rollup(struct seq_file *m, void *v) 884 { 885 struct proc_maps_private *priv = m->private; 886 struct mem_size_stats mss; 887 struct mm_struct *mm = priv->mm; 888 struct vm_area_struct *vma; 889 unsigned long vma_start = 0, last_vma_end = 0; 890 int ret = 0; 891 VMA_ITERATOR(vmi, mm, 0); 892 893 priv->task = get_proc_task(priv->inode); 894 if (!priv->task) 895 return -ESRCH; 896 897 if (!mm || !mmget_not_zero(mm)) { 898 ret = -ESRCH; 899 goto out_put_task; 900 } 901 902 memset(&mss, 0, sizeof(mss)); 903 904 ret = mmap_read_lock_killable(mm); 905 if (ret) 906 goto out_put_mm; 907 908 hold_task_mempolicy(priv); 909 vma = vma_next(&vmi); 910 911 if (unlikely(!vma)) 912 goto empty_set; 913 914 vma_start = vma->vm_start; 915 do { 916 smap_gather_stats(vma, &mss, 0); 917 last_vma_end = vma->vm_end; 918 919 /* 920 * Release mmap_lock temporarily if someone wants to 921 * access it for write request. 922 */ 923 if (mmap_lock_is_contended(mm)) { 924 vma_iter_invalidate(&vmi); 925 mmap_read_unlock(mm); 926 ret = mmap_read_lock_killable(mm); 927 if (ret) { 928 release_task_mempolicy(priv); 929 goto out_put_mm; 930 } 931 932 /* 933 * After dropping the lock, there are four cases to 934 * consider. See the following example for explanation. 935 * 936 * +------+------+-----------+ 937 * | VMA1 | VMA2 | VMA3 | 938 * +------+------+-----------+ 939 * | | | | 940 * 4k 8k 16k 400k 941 * 942 * Suppose we drop the lock after reading VMA2 due to 943 * contention, then we get: 944 * 945 * last_vma_end = 16k 946 * 947 * 1) VMA2 is freed, but VMA3 exists: 948 * 949 * vma_next(vmi) will return VMA3. 950 * In this case, just continue from VMA3. 951 * 952 * 2) VMA2 still exists: 953 * 954 * vma_next(vmi) will return VMA3. 955 * In this case, just continue from VMA3. 956 * 957 * 3) No more VMAs can be found: 958 * 959 * vma_next(vmi) will return NULL. 960 * No more things to do, just break. 961 * 962 * 4) (last_vma_end - 1) is the middle of a vma (VMA'): 963 * 964 * vma_next(vmi) will return VMA' whose range 965 * contains last_vma_end. 966 * Iterate VMA' from last_vma_end. 967 */ 968 vma = vma_next(&vmi); 969 /* Case 3 above */ 970 if (!vma) 971 break; 972 973 /* Case 1 and 2 above */ 974 if (vma->vm_start >= last_vma_end) 975 continue; 976 977 /* Case 4 above */ 978 if (vma->vm_end > last_vma_end) 979 smap_gather_stats(vma, &mss, last_vma_end); 980 } 981 } for_each_vma(vmi, vma); 982 983 empty_set: 984 show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0); 985 seq_pad(m, ' '); 986 seq_puts(m, "[rollup]\n"); 987 988 __show_smap(m, &mss, true); 989 990 release_task_mempolicy(priv); 991 mmap_read_unlock(mm); 992 993 out_put_mm: 994 mmput(mm); 995 out_put_task: 996 put_task_struct(priv->task); 997 priv->task = NULL; 998 999 return ret; 1000 } 1001 #undef SEQ_PUT_DEC 1002 1003 static const struct seq_operations proc_pid_smaps_op = { 1004 .start = m_start, 1005 .next = m_next, 1006 .stop = m_stop, 1007 .show = show_smap 1008 }; 1009 1010 static int pid_smaps_open(struct inode *inode, struct file *file) 1011 { 1012 return do_maps_open(inode, file, &proc_pid_smaps_op); 1013 } 1014 1015 static int smaps_rollup_open(struct inode *inode, struct file *file) 1016 { 1017 int ret; 1018 struct proc_maps_private *priv; 1019 1020 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT); 1021 if (!priv) 1022 return -ENOMEM; 1023 1024 ret = single_open(file, show_smaps_rollup, priv); 1025 if (ret) 1026 goto out_free; 1027 1028 priv->inode = inode; 1029 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); 1030 if (IS_ERR(priv->mm)) { 1031 ret = PTR_ERR(priv->mm); 1032 1033 single_release(inode, file); 1034 goto out_free; 1035 } 1036 1037 return 0; 1038 1039 out_free: 1040 kfree(priv); 1041 return ret; 1042 } 1043 1044 static int smaps_rollup_release(struct inode *inode, struct file *file) 1045 { 1046 struct seq_file *seq = file->private_data; 1047 struct proc_maps_private *priv = seq->private; 1048 1049 if (priv->mm) 1050 mmdrop(priv->mm); 1051 1052 kfree(priv); 1053 return single_release(inode, file); 1054 } 1055 1056 const struct file_operations proc_pid_smaps_operations = { 1057 .open = pid_smaps_open, 1058 .read = seq_read, 1059 .llseek = seq_lseek, 1060 .release = proc_map_release, 1061 }; 1062 1063 const struct file_operations proc_pid_smaps_rollup_operations = { 1064 .open = smaps_rollup_open, 1065 .read = seq_read, 1066 .llseek = seq_lseek, 1067 .release = smaps_rollup_release, 1068 }; 1069 1070 enum clear_refs_types { 1071 CLEAR_REFS_ALL = 1, 1072 CLEAR_REFS_ANON, 1073 CLEAR_REFS_MAPPED, 1074 CLEAR_REFS_SOFT_DIRTY, 1075 CLEAR_REFS_MM_HIWATER_RSS, 1076 CLEAR_REFS_LAST, 1077 }; 1078 1079 struct clear_refs_private { 1080 enum clear_refs_types type; 1081 }; 1082 1083 #ifdef CONFIG_MEM_SOFT_DIRTY 1084 1085 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1086 { 1087 struct page *page; 1088 1089 if (!pte_write(pte)) 1090 return false; 1091 if (!is_cow_mapping(vma->vm_flags)) 1092 return false; 1093 if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))) 1094 return false; 1095 page = vm_normal_page(vma, addr, pte); 1096 if (!page) 1097 return false; 1098 return page_maybe_dma_pinned(page); 1099 } 1100 1101 static inline void clear_soft_dirty(struct vm_area_struct *vma, 1102 unsigned long addr, pte_t *pte) 1103 { 1104 /* 1105 * The soft-dirty tracker uses #PF-s to catch writes 1106 * to pages, so write-protect the pte as well. See the 1107 * Documentation/admin-guide/mm/soft-dirty.rst for full description 1108 * of how soft-dirty works. 1109 */ 1110 pte_t ptent = ptep_get(pte); 1111 1112 if (pte_present(ptent)) { 1113 pte_t old_pte; 1114 1115 if (pte_is_pinned(vma, addr, ptent)) 1116 return; 1117 old_pte = ptep_modify_prot_start(vma, addr, pte); 1118 ptent = pte_wrprotect(old_pte); 1119 ptent = pte_clear_soft_dirty(ptent); 1120 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent); 1121 } else if (is_swap_pte(ptent)) { 1122 ptent = pte_swp_clear_soft_dirty(ptent); 1123 set_pte_at(vma->vm_mm, addr, pte, ptent); 1124 } 1125 } 1126 #else 1127 static inline void clear_soft_dirty(struct vm_area_struct *vma, 1128 unsigned long addr, pte_t *pte) 1129 { 1130 } 1131 #endif 1132 1133 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1134 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 1135 unsigned long addr, pmd_t *pmdp) 1136 { 1137 pmd_t old, pmd = *pmdp; 1138 1139 if (pmd_present(pmd)) { 1140 /* See comment in change_huge_pmd() */ 1141 old = pmdp_invalidate(vma, addr, pmdp); 1142 if (pmd_dirty(old)) 1143 pmd = pmd_mkdirty(pmd); 1144 if (pmd_young(old)) 1145 pmd = pmd_mkyoung(pmd); 1146 1147 pmd = pmd_wrprotect(pmd); 1148 pmd = pmd_clear_soft_dirty(pmd); 1149 1150 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 1151 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) { 1152 pmd = pmd_swp_clear_soft_dirty(pmd); 1153 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 1154 } 1155 } 1156 #else 1157 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 1158 unsigned long addr, pmd_t *pmdp) 1159 { 1160 } 1161 #endif 1162 1163 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, 1164 unsigned long end, struct mm_walk *walk) 1165 { 1166 struct clear_refs_private *cp = walk->private; 1167 struct vm_area_struct *vma = walk->vma; 1168 pte_t *pte, ptent; 1169 spinlock_t *ptl; 1170 struct page *page; 1171 1172 ptl = pmd_trans_huge_lock(pmd, vma); 1173 if (ptl) { 1174 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 1175 clear_soft_dirty_pmd(vma, addr, pmd); 1176 goto out; 1177 } 1178 1179 if (!pmd_present(*pmd)) 1180 goto out; 1181 1182 page = pmd_page(*pmd); 1183 1184 /* Clear accessed and referenced bits. */ 1185 pmdp_test_and_clear_young(vma, addr, pmd); 1186 test_and_clear_page_young(page); 1187 ClearPageReferenced(page); 1188 out: 1189 spin_unlock(ptl); 1190 return 0; 1191 } 1192 1193 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1194 if (!pte) { 1195 walk->action = ACTION_AGAIN; 1196 return 0; 1197 } 1198 for (; addr != end; pte++, addr += PAGE_SIZE) { 1199 ptent = ptep_get(pte); 1200 1201 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 1202 clear_soft_dirty(vma, addr, pte); 1203 continue; 1204 } 1205 1206 if (!pte_present(ptent)) 1207 continue; 1208 1209 page = vm_normal_page(vma, addr, ptent); 1210 if (!page) 1211 continue; 1212 1213 /* Clear accessed and referenced bits. */ 1214 ptep_test_and_clear_young(vma, addr, pte); 1215 test_and_clear_page_young(page); 1216 ClearPageReferenced(page); 1217 } 1218 pte_unmap_unlock(pte - 1, ptl); 1219 cond_resched(); 1220 return 0; 1221 } 1222 1223 static int clear_refs_test_walk(unsigned long start, unsigned long end, 1224 struct mm_walk *walk) 1225 { 1226 struct clear_refs_private *cp = walk->private; 1227 struct vm_area_struct *vma = walk->vma; 1228 1229 if (vma->vm_flags & VM_PFNMAP) 1230 return 1; 1231 1232 /* 1233 * Writing 1 to /proc/pid/clear_refs affects all pages. 1234 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages. 1235 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages. 1236 * Writing 4 to /proc/pid/clear_refs affects all pages. 1237 */ 1238 if (cp->type == CLEAR_REFS_ANON && vma->vm_file) 1239 return 1; 1240 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file) 1241 return 1; 1242 return 0; 1243 } 1244 1245 static const struct mm_walk_ops clear_refs_walk_ops = { 1246 .pmd_entry = clear_refs_pte_range, 1247 .test_walk = clear_refs_test_walk, 1248 }; 1249 1250 static ssize_t clear_refs_write(struct file *file, const char __user *buf, 1251 size_t count, loff_t *ppos) 1252 { 1253 struct task_struct *task; 1254 char buffer[PROC_NUMBUF]; 1255 struct mm_struct *mm; 1256 struct vm_area_struct *vma; 1257 enum clear_refs_types type; 1258 int itype; 1259 int rv; 1260 1261 memset(buffer, 0, sizeof(buffer)); 1262 if (count > sizeof(buffer) - 1) 1263 count = sizeof(buffer) - 1; 1264 if (copy_from_user(buffer, buf, count)) 1265 return -EFAULT; 1266 rv = kstrtoint(strstrip(buffer), 10, &itype); 1267 if (rv < 0) 1268 return rv; 1269 type = (enum clear_refs_types)itype; 1270 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST) 1271 return -EINVAL; 1272 1273 task = get_proc_task(file_inode(file)); 1274 if (!task) 1275 return -ESRCH; 1276 mm = get_task_mm(task); 1277 if (mm) { 1278 VMA_ITERATOR(vmi, mm, 0); 1279 struct mmu_notifier_range range; 1280 struct clear_refs_private cp = { 1281 .type = type, 1282 }; 1283 1284 if (mmap_write_lock_killable(mm)) { 1285 count = -EINTR; 1286 goto out_mm; 1287 } 1288 if (type == CLEAR_REFS_MM_HIWATER_RSS) { 1289 /* 1290 * Writing 5 to /proc/pid/clear_refs resets the peak 1291 * resident set size to this mm's current rss value. 1292 */ 1293 reset_mm_hiwater_rss(mm); 1294 goto out_unlock; 1295 } 1296 1297 if (type == CLEAR_REFS_SOFT_DIRTY) { 1298 for_each_vma(vmi, vma) { 1299 if (!(vma->vm_flags & VM_SOFTDIRTY)) 1300 continue; 1301 vm_flags_clear(vma, VM_SOFTDIRTY); 1302 vma_set_page_prot(vma); 1303 } 1304 1305 inc_tlb_flush_pending(mm); 1306 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY, 1307 0, mm, 0, -1UL); 1308 mmu_notifier_invalidate_range_start(&range); 1309 } 1310 walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp); 1311 if (type == CLEAR_REFS_SOFT_DIRTY) { 1312 mmu_notifier_invalidate_range_end(&range); 1313 flush_tlb_mm(mm); 1314 dec_tlb_flush_pending(mm); 1315 } 1316 out_unlock: 1317 mmap_write_unlock(mm); 1318 out_mm: 1319 mmput(mm); 1320 } 1321 put_task_struct(task); 1322 1323 return count; 1324 } 1325 1326 const struct file_operations proc_clear_refs_operations = { 1327 .write = clear_refs_write, 1328 .llseek = noop_llseek, 1329 }; 1330 1331 typedef struct { 1332 u64 pme; 1333 } pagemap_entry_t; 1334 1335 struct pagemapread { 1336 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */ 1337 pagemap_entry_t *buffer; 1338 bool show_pfn; 1339 }; 1340 1341 #define PAGEMAP_WALK_SIZE (PMD_SIZE) 1342 #define PAGEMAP_WALK_MASK (PMD_MASK) 1343 1344 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t) 1345 #define PM_PFRAME_BITS 55 1346 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0) 1347 #define PM_SOFT_DIRTY BIT_ULL(55) 1348 #define PM_MMAP_EXCLUSIVE BIT_ULL(56) 1349 #define PM_UFFD_WP BIT_ULL(57) 1350 #define PM_FILE BIT_ULL(61) 1351 #define PM_SWAP BIT_ULL(62) 1352 #define PM_PRESENT BIT_ULL(63) 1353 1354 #define PM_END_OF_BUFFER 1 1355 1356 static inline pagemap_entry_t make_pme(u64 frame, u64 flags) 1357 { 1358 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags }; 1359 } 1360 1361 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme, 1362 struct pagemapread *pm) 1363 { 1364 pm->buffer[pm->pos++] = *pme; 1365 if (pm->pos >= pm->len) 1366 return PM_END_OF_BUFFER; 1367 return 0; 1368 } 1369 1370 static int pagemap_pte_hole(unsigned long start, unsigned long end, 1371 __always_unused int depth, struct mm_walk *walk) 1372 { 1373 struct pagemapread *pm = walk->private; 1374 unsigned long addr = start; 1375 int err = 0; 1376 1377 while (addr < end) { 1378 struct vm_area_struct *vma = find_vma(walk->mm, addr); 1379 pagemap_entry_t pme = make_pme(0, 0); 1380 /* End of address space hole, which we mark as non-present. */ 1381 unsigned long hole_end; 1382 1383 if (vma) 1384 hole_end = min(end, vma->vm_start); 1385 else 1386 hole_end = end; 1387 1388 for (; addr < hole_end; addr += PAGE_SIZE) { 1389 err = add_to_pagemap(addr, &pme, pm); 1390 if (err) 1391 goto out; 1392 } 1393 1394 if (!vma) 1395 break; 1396 1397 /* Addresses in the VMA. */ 1398 if (vma->vm_flags & VM_SOFTDIRTY) 1399 pme = make_pme(0, PM_SOFT_DIRTY); 1400 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) { 1401 err = add_to_pagemap(addr, &pme, pm); 1402 if (err) 1403 goto out; 1404 } 1405 } 1406 out: 1407 return err; 1408 } 1409 1410 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm, 1411 struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1412 { 1413 u64 frame = 0, flags = 0; 1414 struct page *page = NULL; 1415 bool migration = false; 1416 1417 if (pte_present(pte)) { 1418 if (pm->show_pfn) 1419 frame = pte_pfn(pte); 1420 flags |= PM_PRESENT; 1421 page = vm_normal_page(vma, addr, pte); 1422 if (pte_soft_dirty(pte)) 1423 flags |= PM_SOFT_DIRTY; 1424 if (pte_uffd_wp(pte)) 1425 flags |= PM_UFFD_WP; 1426 } else if (is_swap_pte(pte)) { 1427 swp_entry_t entry; 1428 if (pte_swp_soft_dirty(pte)) 1429 flags |= PM_SOFT_DIRTY; 1430 if (pte_swp_uffd_wp(pte)) 1431 flags |= PM_UFFD_WP; 1432 entry = pte_to_swp_entry(pte); 1433 if (pm->show_pfn) { 1434 pgoff_t offset; 1435 /* 1436 * For PFN swap offsets, keeping the offset field 1437 * to be PFN only to be compatible with old smaps. 1438 */ 1439 if (is_pfn_swap_entry(entry)) 1440 offset = swp_offset_pfn(entry); 1441 else 1442 offset = swp_offset(entry); 1443 frame = swp_type(entry) | 1444 (offset << MAX_SWAPFILES_SHIFT); 1445 } 1446 flags |= PM_SWAP; 1447 migration = is_migration_entry(entry); 1448 if (is_pfn_swap_entry(entry)) 1449 page = pfn_swap_entry_to_page(entry); 1450 if (pte_marker_entry_uffd_wp(entry)) 1451 flags |= PM_UFFD_WP; 1452 } 1453 1454 if (page && !PageAnon(page)) 1455 flags |= PM_FILE; 1456 if (page && !migration && page_mapcount(page) == 1) 1457 flags |= PM_MMAP_EXCLUSIVE; 1458 if (vma->vm_flags & VM_SOFTDIRTY) 1459 flags |= PM_SOFT_DIRTY; 1460 1461 return make_pme(frame, flags); 1462 } 1463 1464 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end, 1465 struct mm_walk *walk) 1466 { 1467 struct vm_area_struct *vma = walk->vma; 1468 struct pagemapread *pm = walk->private; 1469 spinlock_t *ptl; 1470 pte_t *pte, *orig_pte; 1471 int err = 0; 1472 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1473 bool migration = false; 1474 1475 ptl = pmd_trans_huge_lock(pmdp, vma); 1476 if (ptl) { 1477 u64 flags = 0, frame = 0; 1478 pmd_t pmd = *pmdp; 1479 struct page *page = NULL; 1480 1481 if (vma->vm_flags & VM_SOFTDIRTY) 1482 flags |= PM_SOFT_DIRTY; 1483 1484 if (pmd_present(pmd)) { 1485 page = pmd_page(pmd); 1486 1487 flags |= PM_PRESENT; 1488 if (pmd_soft_dirty(pmd)) 1489 flags |= PM_SOFT_DIRTY; 1490 if (pmd_uffd_wp(pmd)) 1491 flags |= PM_UFFD_WP; 1492 if (pm->show_pfn) 1493 frame = pmd_pfn(pmd) + 1494 ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1495 } 1496 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1497 else if (is_swap_pmd(pmd)) { 1498 swp_entry_t entry = pmd_to_swp_entry(pmd); 1499 unsigned long offset; 1500 1501 if (pm->show_pfn) { 1502 if (is_pfn_swap_entry(entry)) 1503 offset = swp_offset_pfn(entry); 1504 else 1505 offset = swp_offset(entry); 1506 offset = offset + 1507 ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1508 frame = swp_type(entry) | 1509 (offset << MAX_SWAPFILES_SHIFT); 1510 } 1511 flags |= PM_SWAP; 1512 if (pmd_swp_soft_dirty(pmd)) 1513 flags |= PM_SOFT_DIRTY; 1514 if (pmd_swp_uffd_wp(pmd)) 1515 flags |= PM_UFFD_WP; 1516 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1517 migration = is_migration_entry(entry); 1518 page = pfn_swap_entry_to_page(entry); 1519 } 1520 #endif 1521 1522 if (page && !migration && page_mapcount(page) == 1) 1523 flags |= PM_MMAP_EXCLUSIVE; 1524 1525 for (; addr != end; addr += PAGE_SIZE) { 1526 pagemap_entry_t pme = make_pme(frame, flags); 1527 1528 err = add_to_pagemap(addr, &pme, pm); 1529 if (err) 1530 break; 1531 if (pm->show_pfn) { 1532 if (flags & PM_PRESENT) 1533 frame++; 1534 else if (flags & PM_SWAP) 1535 frame += (1 << MAX_SWAPFILES_SHIFT); 1536 } 1537 } 1538 spin_unlock(ptl); 1539 return err; 1540 } 1541 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1542 1543 /* 1544 * We can assume that @vma always points to a valid one and @end never 1545 * goes beyond vma->vm_end. 1546 */ 1547 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl); 1548 if (!pte) { 1549 walk->action = ACTION_AGAIN; 1550 return err; 1551 } 1552 for (; addr < end; pte++, addr += PAGE_SIZE) { 1553 pagemap_entry_t pme; 1554 1555 pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte)); 1556 err = add_to_pagemap(addr, &pme, pm); 1557 if (err) 1558 break; 1559 } 1560 pte_unmap_unlock(orig_pte, ptl); 1561 1562 cond_resched(); 1563 1564 return err; 1565 } 1566 1567 #ifdef CONFIG_HUGETLB_PAGE 1568 /* This function walks within one hugetlb entry in the single call */ 1569 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask, 1570 unsigned long addr, unsigned long end, 1571 struct mm_walk *walk) 1572 { 1573 struct pagemapread *pm = walk->private; 1574 struct vm_area_struct *vma = walk->vma; 1575 u64 flags = 0, frame = 0; 1576 int err = 0; 1577 pte_t pte; 1578 1579 if (vma->vm_flags & VM_SOFTDIRTY) 1580 flags |= PM_SOFT_DIRTY; 1581 1582 pte = huge_ptep_get(ptep); 1583 if (pte_present(pte)) { 1584 struct page *page = pte_page(pte); 1585 1586 if (!PageAnon(page)) 1587 flags |= PM_FILE; 1588 1589 if (page_mapcount(page) == 1) 1590 flags |= PM_MMAP_EXCLUSIVE; 1591 1592 if (huge_pte_uffd_wp(pte)) 1593 flags |= PM_UFFD_WP; 1594 1595 flags |= PM_PRESENT; 1596 if (pm->show_pfn) 1597 frame = pte_pfn(pte) + 1598 ((addr & ~hmask) >> PAGE_SHIFT); 1599 } else if (pte_swp_uffd_wp_any(pte)) { 1600 flags |= PM_UFFD_WP; 1601 } 1602 1603 for (; addr != end; addr += PAGE_SIZE) { 1604 pagemap_entry_t pme = make_pme(frame, flags); 1605 1606 err = add_to_pagemap(addr, &pme, pm); 1607 if (err) 1608 return err; 1609 if (pm->show_pfn && (flags & PM_PRESENT)) 1610 frame++; 1611 } 1612 1613 cond_resched(); 1614 1615 return err; 1616 } 1617 #else 1618 #define pagemap_hugetlb_range NULL 1619 #endif /* HUGETLB_PAGE */ 1620 1621 static const struct mm_walk_ops pagemap_ops = { 1622 .pmd_entry = pagemap_pmd_range, 1623 .pte_hole = pagemap_pte_hole, 1624 .hugetlb_entry = pagemap_hugetlb_range, 1625 }; 1626 1627 /* 1628 * /proc/pid/pagemap - an array mapping virtual pages to pfns 1629 * 1630 * For each page in the address space, this file contains one 64-bit entry 1631 * consisting of the following: 1632 * 1633 * Bits 0-54 page frame number (PFN) if present 1634 * Bits 0-4 swap type if swapped 1635 * Bits 5-54 swap offset if swapped 1636 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst) 1637 * Bit 56 page exclusively mapped 1638 * Bit 57 pte is uffd-wp write-protected 1639 * Bits 58-60 zero 1640 * Bit 61 page is file-page or shared-anon 1641 * Bit 62 page swapped 1642 * Bit 63 page present 1643 * 1644 * If the page is not present but in swap, then the PFN contains an 1645 * encoding of the swap file number and the page's offset into the 1646 * swap. Unmapped pages return a null PFN. This allows determining 1647 * precisely which pages are mapped (or in swap) and comparing mapped 1648 * pages between processes. 1649 * 1650 * Efficient users of this interface will use /proc/pid/maps to 1651 * determine which areas of memory are actually mapped and llseek to 1652 * skip over unmapped regions. 1653 */ 1654 static ssize_t pagemap_read(struct file *file, char __user *buf, 1655 size_t count, loff_t *ppos) 1656 { 1657 struct mm_struct *mm = file->private_data; 1658 struct pagemapread pm; 1659 unsigned long src; 1660 unsigned long svpfn; 1661 unsigned long start_vaddr; 1662 unsigned long end_vaddr; 1663 int ret = 0, copied = 0; 1664 1665 if (!mm || !mmget_not_zero(mm)) 1666 goto out; 1667 1668 ret = -EINVAL; 1669 /* file position must be aligned */ 1670 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) 1671 goto out_mm; 1672 1673 ret = 0; 1674 if (!count) 1675 goto out_mm; 1676 1677 /* do not disclose physical addresses: attack vector */ 1678 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN); 1679 1680 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT); 1681 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL); 1682 ret = -ENOMEM; 1683 if (!pm.buffer) 1684 goto out_mm; 1685 1686 src = *ppos; 1687 svpfn = src / PM_ENTRY_BYTES; 1688 end_vaddr = mm->task_size; 1689 1690 /* watch out for wraparound */ 1691 start_vaddr = end_vaddr; 1692 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) { 1693 unsigned long end; 1694 1695 ret = mmap_read_lock_killable(mm); 1696 if (ret) 1697 goto out_free; 1698 start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT); 1699 mmap_read_unlock(mm); 1700 1701 end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT); 1702 if (end >= start_vaddr && end < mm->task_size) 1703 end_vaddr = end; 1704 } 1705 1706 /* Ensure the address is inside the task */ 1707 if (start_vaddr > mm->task_size) 1708 start_vaddr = end_vaddr; 1709 1710 ret = 0; 1711 while (count && (start_vaddr < end_vaddr)) { 1712 int len; 1713 unsigned long end; 1714 1715 pm.pos = 0; 1716 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK; 1717 /* overflow ? */ 1718 if (end < start_vaddr || end > end_vaddr) 1719 end = end_vaddr; 1720 ret = mmap_read_lock_killable(mm); 1721 if (ret) 1722 goto out_free; 1723 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm); 1724 mmap_read_unlock(mm); 1725 start_vaddr = end; 1726 1727 len = min(count, PM_ENTRY_BYTES * pm.pos); 1728 if (copy_to_user(buf, pm.buffer, len)) { 1729 ret = -EFAULT; 1730 goto out_free; 1731 } 1732 copied += len; 1733 buf += len; 1734 count -= len; 1735 } 1736 *ppos += copied; 1737 if (!ret || ret == PM_END_OF_BUFFER) 1738 ret = copied; 1739 1740 out_free: 1741 kfree(pm.buffer); 1742 out_mm: 1743 mmput(mm); 1744 out: 1745 return ret; 1746 } 1747 1748 static int pagemap_open(struct inode *inode, struct file *file) 1749 { 1750 struct mm_struct *mm; 1751 1752 mm = proc_mem_open(inode, PTRACE_MODE_READ); 1753 if (IS_ERR(mm)) 1754 return PTR_ERR(mm); 1755 file->private_data = mm; 1756 return 0; 1757 } 1758 1759 static int pagemap_release(struct inode *inode, struct file *file) 1760 { 1761 struct mm_struct *mm = file->private_data; 1762 1763 if (mm) 1764 mmdrop(mm); 1765 return 0; 1766 } 1767 1768 const struct file_operations proc_pagemap_operations = { 1769 .llseek = mem_lseek, /* borrow this */ 1770 .read = pagemap_read, 1771 .open = pagemap_open, 1772 .release = pagemap_release, 1773 }; 1774 #endif /* CONFIG_PROC_PAGE_MONITOR */ 1775 1776 #ifdef CONFIG_NUMA 1777 1778 struct numa_maps { 1779 unsigned long pages; 1780 unsigned long anon; 1781 unsigned long active; 1782 unsigned long writeback; 1783 unsigned long mapcount_max; 1784 unsigned long dirty; 1785 unsigned long swapcache; 1786 unsigned long node[MAX_NUMNODES]; 1787 }; 1788 1789 struct numa_maps_private { 1790 struct proc_maps_private proc_maps; 1791 struct numa_maps md; 1792 }; 1793 1794 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty, 1795 unsigned long nr_pages) 1796 { 1797 int count = page_mapcount(page); 1798 1799 md->pages += nr_pages; 1800 if (pte_dirty || PageDirty(page)) 1801 md->dirty += nr_pages; 1802 1803 if (PageSwapCache(page)) 1804 md->swapcache += nr_pages; 1805 1806 if (PageActive(page) || PageUnevictable(page)) 1807 md->active += nr_pages; 1808 1809 if (PageWriteback(page)) 1810 md->writeback += nr_pages; 1811 1812 if (PageAnon(page)) 1813 md->anon += nr_pages; 1814 1815 if (count > md->mapcount_max) 1816 md->mapcount_max = count; 1817 1818 md->node[page_to_nid(page)] += nr_pages; 1819 } 1820 1821 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma, 1822 unsigned long addr) 1823 { 1824 struct page *page; 1825 int nid; 1826 1827 if (!pte_present(pte)) 1828 return NULL; 1829 1830 page = vm_normal_page(vma, addr, pte); 1831 if (!page || is_zone_device_page(page)) 1832 return NULL; 1833 1834 if (PageReserved(page)) 1835 return NULL; 1836 1837 nid = page_to_nid(page); 1838 if (!node_isset(nid, node_states[N_MEMORY])) 1839 return NULL; 1840 1841 return page; 1842 } 1843 1844 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1845 static struct page *can_gather_numa_stats_pmd(pmd_t pmd, 1846 struct vm_area_struct *vma, 1847 unsigned long addr) 1848 { 1849 struct page *page; 1850 int nid; 1851 1852 if (!pmd_present(pmd)) 1853 return NULL; 1854 1855 page = vm_normal_page_pmd(vma, addr, pmd); 1856 if (!page) 1857 return NULL; 1858 1859 if (PageReserved(page)) 1860 return NULL; 1861 1862 nid = page_to_nid(page); 1863 if (!node_isset(nid, node_states[N_MEMORY])) 1864 return NULL; 1865 1866 return page; 1867 } 1868 #endif 1869 1870 static int gather_pte_stats(pmd_t *pmd, unsigned long addr, 1871 unsigned long end, struct mm_walk *walk) 1872 { 1873 struct numa_maps *md = walk->private; 1874 struct vm_area_struct *vma = walk->vma; 1875 spinlock_t *ptl; 1876 pte_t *orig_pte; 1877 pte_t *pte; 1878 1879 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1880 ptl = pmd_trans_huge_lock(pmd, vma); 1881 if (ptl) { 1882 struct page *page; 1883 1884 page = can_gather_numa_stats_pmd(*pmd, vma, addr); 1885 if (page) 1886 gather_stats(page, md, pmd_dirty(*pmd), 1887 HPAGE_PMD_SIZE/PAGE_SIZE); 1888 spin_unlock(ptl); 1889 return 0; 1890 } 1891 #endif 1892 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 1893 if (!pte) { 1894 walk->action = ACTION_AGAIN; 1895 return 0; 1896 } 1897 do { 1898 pte_t ptent = ptep_get(pte); 1899 struct page *page = can_gather_numa_stats(ptent, vma, addr); 1900 if (!page) 1901 continue; 1902 gather_stats(page, md, pte_dirty(ptent), 1); 1903 1904 } while (pte++, addr += PAGE_SIZE, addr != end); 1905 pte_unmap_unlock(orig_pte, ptl); 1906 cond_resched(); 1907 return 0; 1908 } 1909 #ifdef CONFIG_HUGETLB_PAGE 1910 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1911 unsigned long addr, unsigned long end, struct mm_walk *walk) 1912 { 1913 pte_t huge_pte = huge_ptep_get(pte); 1914 struct numa_maps *md; 1915 struct page *page; 1916 1917 if (!pte_present(huge_pte)) 1918 return 0; 1919 1920 page = pte_page(huge_pte); 1921 1922 md = walk->private; 1923 gather_stats(page, md, pte_dirty(huge_pte), 1); 1924 return 0; 1925 } 1926 1927 #else 1928 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1929 unsigned long addr, unsigned long end, struct mm_walk *walk) 1930 { 1931 return 0; 1932 } 1933 #endif 1934 1935 static const struct mm_walk_ops show_numa_ops = { 1936 .hugetlb_entry = gather_hugetlb_stats, 1937 .pmd_entry = gather_pte_stats, 1938 }; 1939 1940 /* 1941 * Display pages allocated per node and memory policy via /proc. 1942 */ 1943 static int show_numa_map(struct seq_file *m, void *v) 1944 { 1945 struct numa_maps_private *numa_priv = m->private; 1946 struct proc_maps_private *proc_priv = &numa_priv->proc_maps; 1947 struct vm_area_struct *vma = v; 1948 struct numa_maps *md = &numa_priv->md; 1949 struct file *file = vma->vm_file; 1950 struct mm_struct *mm = vma->vm_mm; 1951 struct mempolicy *pol; 1952 char buffer[64]; 1953 int nid; 1954 1955 if (!mm) 1956 return 0; 1957 1958 /* Ensure we start with an empty set of numa_maps statistics. */ 1959 memset(md, 0, sizeof(*md)); 1960 1961 pol = __get_vma_policy(vma, vma->vm_start); 1962 if (pol) { 1963 mpol_to_str(buffer, sizeof(buffer), pol); 1964 mpol_cond_put(pol); 1965 } else { 1966 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy); 1967 } 1968 1969 seq_printf(m, "%08lx %s", vma->vm_start, buffer); 1970 1971 if (file) { 1972 seq_puts(m, " file="); 1973 seq_file_path(m, file, "\n\t= "); 1974 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) { 1975 seq_puts(m, " heap"); 1976 } else if (is_stack(vma)) { 1977 seq_puts(m, " stack"); 1978 } 1979 1980 if (is_vm_hugetlb_page(vma)) 1981 seq_puts(m, " huge"); 1982 1983 /* mmap_lock is held by m_start */ 1984 walk_page_vma(vma, &show_numa_ops, md); 1985 1986 if (!md->pages) 1987 goto out; 1988 1989 if (md->anon) 1990 seq_printf(m, " anon=%lu", md->anon); 1991 1992 if (md->dirty) 1993 seq_printf(m, " dirty=%lu", md->dirty); 1994 1995 if (md->pages != md->anon && md->pages != md->dirty) 1996 seq_printf(m, " mapped=%lu", md->pages); 1997 1998 if (md->mapcount_max > 1) 1999 seq_printf(m, " mapmax=%lu", md->mapcount_max); 2000 2001 if (md->swapcache) 2002 seq_printf(m, " swapcache=%lu", md->swapcache); 2003 2004 if (md->active < md->pages && !is_vm_hugetlb_page(vma)) 2005 seq_printf(m, " active=%lu", md->active); 2006 2007 if (md->writeback) 2008 seq_printf(m, " writeback=%lu", md->writeback); 2009 2010 for_each_node_state(nid, N_MEMORY) 2011 if (md->node[nid]) 2012 seq_printf(m, " N%d=%lu", nid, md->node[nid]); 2013 2014 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10); 2015 out: 2016 seq_putc(m, '\n'); 2017 return 0; 2018 } 2019 2020 static const struct seq_operations proc_pid_numa_maps_op = { 2021 .start = m_start, 2022 .next = m_next, 2023 .stop = m_stop, 2024 .show = show_numa_map, 2025 }; 2026 2027 static int pid_numa_maps_open(struct inode *inode, struct file *file) 2028 { 2029 return proc_maps_open(inode, file, &proc_pid_numa_maps_op, 2030 sizeof(struct numa_maps_private)); 2031 } 2032 2033 const struct file_operations proc_pid_numa_maps_operations = { 2034 .open = pid_numa_maps_open, 2035 .read = seq_read, 2036 .llseek = seq_lseek, 2037 .release = proc_map_release, 2038 }; 2039 2040 #endif /* CONFIG_NUMA */ 2041