xref: /openbmc/linux/fs/proc/task_mmu.c (revision 6279eb3d)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22 
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27 
28 #define SEQ_PUT_DEC(str, val) \
29 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32 	unsigned long text, lib, swap, anon, file, shmem;
33 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34 
35 	anon = get_mm_counter(mm, MM_ANONPAGES);
36 	file = get_mm_counter(mm, MM_FILEPAGES);
37 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38 
39 	/*
40 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
42 	 * collector of these hiwater stats must therefore get total_vm
43 	 * and rss too, which will usually be the higher.  Barriers? not
44 	 * worth the effort, such snapshots can always be inconsistent.
45 	 */
46 	hiwater_vm = total_vm = mm->total_vm;
47 	if (hiwater_vm < mm->hiwater_vm)
48 		hiwater_vm = mm->hiwater_vm;
49 	hiwater_rss = total_rss = anon + file + shmem;
50 	if (hiwater_rss < mm->hiwater_rss)
51 		hiwater_rss = mm->hiwater_rss;
52 
53 	/* split executable areas between text and lib */
54 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 	text = min(text, mm->exec_vm << PAGE_SHIFT);
56 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
57 
58 	swap = get_mm_counter(mm, MM_SWAPENTS);
59 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 	seq_put_decimal_ull_width(m,
71 		    " kB\nVmExe:\t", text >> 10, 8);
72 	seq_put_decimal_ull_width(m,
73 		    " kB\nVmLib:\t", lib >> 10, 8);
74 	seq_put_decimal_ull_width(m,
75 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 	seq_puts(m, " kB\n");
78 	hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81 
82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84 	return PAGE_SIZE * mm->total_vm;
85 }
86 
87 unsigned long task_statm(struct mm_struct *mm,
88 			 unsigned long *shared, unsigned long *text,
89 			 unsigned long *data, unsigned long *resident)
90 {
91 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
92 			get_mm_counter(mm, MM_SHMEMPAGES);
93 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 								>> PAGE_SHIFT;
95 	*data = mm->data_vm + mm->stack_vm;
96 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 	return mm->total_vm;
98 }
99 
100 #ifdef CONFIG_NUMA
101 /*
102  * Save get_task_policy() for show_numa_map().
103  */
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106 	struct task_struct *task = priv->task;
107 
108 	task_lock(task);
109 	priv->task_mempolicy = get_task_policy(task);
110 	mpol_get(priv->task_mempolicy);
111 	task_unlock(task);
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115 	mpol_put(priv->task_mempolicy);
116 }
117 #else
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125 
126 static void vma_stop(struct proc_maps_private *priv)
127 {
128 	struct mm_struct *mm = priv->mm;
129 
130 	release_task_mempolicy(priv);
131 	up_read(&mm->mmap_sem);
132 	mmput(mm);
133 }
134 
135 static struct vm_area_struct *
136 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
137 {
138 	if (vma == priv->tail_vma)
139 		return NULL;
140 	return vma->vm_next ?: priv->tail_vma;
141 }
142 
143 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
144 {
145 	if (m->count < m->size)	/* vma is copied successfully */
146 		m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
147 }
148 
149 static void *m_start(struct seq_file *m, loff_t *ppos)
150 {
151 	struct proc_maps_private *priv = m->private;
152 	unsigned long last_addr = m->version;
153 	struct mm_struct *mm;
154 	struct vm_area_struct *vma;
155 	unsigned int pos = *ppos;
156 
157 	/* See m_cache_vma(). Zero at the start or after lseek. */
158 	if (last_addr == -1UL)
159 		return NULL;
160 
161 	priv->task = get_proc_task(priv->inode);
162 	if (!priv->task)
163 		return ERR_PTR(-ESRCH);
164 
165 	mm = priv->mm;
166 	if (!mm || !mmget_not_zero(mm))
167 		return NULL;
168 
169 	if (down_read_killable(&mm->mmap_sem)) {
170 		mmput(mm);
171 		return ERR_PTR(-EINTR);
172 	}
173 
174 	hold_task_mempolicy(priv);
175 	priv->tail_vma = get_gate_vma(mm);
176 
177 	if (last_addr) {
178 		vma = find_vma(mm, last_addr - 1);
179 		if (vma && vma->vm_start <= last_addr)
180 			vma = m_next_vma(priv, vma);
181 		if (vma)
182 			return vma;
183 	}
184 
185 	m->version = 0;
186 	if (pos < mm->map_count) {
187 		for (vma = mm->mmap; pos; pos--) {
188 			m->version = vma->vm_start;
189 			vma = vma->vm_next;
190 		}
191 		return vma;
192 	}
193 
194 	/* we do not bother to update m->version in this case */
195 	if (pos == mm->map_count && priv->tail_vma)
196 		return priv->tail_vma;
197 
198 	vma_stop(priv);
199 	return NULL;
200 }
201 
202 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
203 {
204 	struct proc_maps_private *priv = m->private;
205 	struct vm_area_struct *next;
206 
207 	(*pos)++;
208 	next = m_next_vma(priv, v);
209 	if (!next)
210 		vma_stop(priv);
211 	return next;
212 }
213 
214 static void m_stop(struct seq_file *m, void *v)
215 {
216 	struct proc_maps_private *priv = m->private;
217 
218 	if (!IS_ERR_OR_NULL(v))
219 		vma_stop(priv);
220 	if (priv->task) {
221 		put_task_struct(priv->task);
222 		priv->task = NULL;
223 	}
224 }
225 
226 static int proc_maps_open(struct inode *inode, struct file *file,
227 			const struct seq_operations *ops, int psize)
228 {
229 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
230 
231 	if (!priv)
232 		return -ENOMEM;
233 
234 	priv->inode = inode;
235 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
236 	if (IS_ERR(priv->mm)) {
237 		int err = PTR_ERR(priv->mm);
238 
239 		seq_release_private(inode, file);
240 		return err;
241 	}
242 
243 	return 0;
244 }
245 
246 static int proc_map_release(struct inode *inode, struct file *file)
247 {
248 	struct seq_file *seq = file->private_data;
249 	struct proc_maps_private *priv = seq->private;
250 
251 	if (priv->mm)
252 		mmdrop(priv->mm);
253 
254 	return seq_release_private(inode, file);
255 }
256 
257 static int do_maps_open(struct inode *inode, struct file *file,
258 			const struct seq_operations *ops)
259 {
260 	return proc_maps_open(inode, file, ops,
261 				sizeof(struct proc_maps_private));
262 }
263 
264 /*
265  * Indicate if the VMA is a stack for the given task; for
266  * /proc/PID/maps that is the stack of the main task.
267  */
268 static int is_stack(struct vm_area_struct *vma)
269 {
270 	/*
271 	 * We make no effort to guess what a given thread considers to be
272 	 * its "stack".  It's not even well-defined for programs written
273 	 * languages like Go.
274 	 */
275 	return vma->vm_start <= vma->vm_mm->start_stack &&
276 		vma->vm_end >= vma->vm_mm->start_stack;
277 }
278 
279 static void show_vma_header_prefix(struct seq_file *m,
280 				   unsigned long start, unsigned long end,
281 				   vm_flags_t flags, unsigned long long pgoff,
282 				   dev_t dev, unsigned long ino)
283 {
284 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
285 	seq_put_hex_ll(m, NULL, start, 8);
286 	seq_put_hex_ll(m, "-", end, 8);
287 	seq_putc(m, ' ');
288 	seq_putc(m, flags & VM_READ ? 'r' : '-');
289 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
290 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
291 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
292 	seq_put_hex_ll(m, " ", pgoff, 8);
293 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
294 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
295 	seq_put_decimal_ull(m, " ", ino);
296 	seq_putc(m, ' ');
297 }
298 
299 static void
300 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
301 {
302 	struct mm_struct *mm = vma->vm_mm;
303 	struct file *file = vma->vm_file;
304 	vm_flags_t flags = vma->vm_flags;
305 	unsigned long ino = 0;
306 	unsigned long long pgoff = 0;
307 	unsigned long start, end;
308 	dev_t dev = 0;
309 	const char *name = NULL;
310 
311 	if (file) {
312 		struct inode *inode = file_inode(vma->vm_file);
313 		dev = inode->i_sb->s_dev;
314 		ino = inode->i_ino;
315 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
316 	}
317 
318 	start = vma->vm_start;
319 	end = vma->vm_end;
320 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
321 
322 	/*
323 	 * Print the dentry name for named mappings, and a
324 	 * special [heap] marker for the heap:
325 	 */
326 	if (file) {
327 		seq_pad(m, ' ');
328 		seq_file_path(m, file, "\n");
329 		goto done;
330 	}
331 
332 	if (vma->vm_ops && vma->vm_ops->name) {
333 		name = vma->vm_ops->name(vma);
334 		if (name)
335 			goto done;
336 	}
337 
338 	name = arch_vma_name(vma);
339 	if (!name) {
340 		if (!mm) {
341 			name = "[vdso]";
342 			goto done;
343 		}
344 
345 		if (vma->vm_start <= mm->brk &&
346 		    vma->vm_end >= mm->start_brk) {
347 			name = "[heap]";
348 			goto done;
349 		}
350 
351 		if (is_stack(vma))
352 			name = "[stack]";
353 	}
354 
355 done:
356 	if (name) {
357 		seq_pad(m, ' ');
358 		seq_puts(m, name);
359 	}
360 	seq_putc(m, '\n');
361 }
362 
363 static int show_map(struct seq_file *m, void *v)
364 {
365 	show_map_vma(m, v);
366 	m_cache_vma(m, v);
367 	return 0;
368 }
369 
370 static const struct seq_operations proc_pid_maps_op = {
371 	.start	= m_start,
372 	.next	= m_next,
373 	.stop	= m_stop,
374 	.show	= show_map
375 };
376 
377 static int pid_maps_open(struct inode *inode, struct file *file)
378 {
379 	return do_maps_open(inode, file, &proc_pid_maps_op);
380 }
381 
382 const struct file_operations proc_pid_maps_operations = {
383 	.open		= pid_maps_open,
384 	.read		= seq_read,
385 	.llseek		= seq_lseek,
386 	.release	= proc_map_release,
387 };
388 
389 /*
390  * Proportional Set Size(PSS): my share of RSS.
391  *
392  * PSS of a process is the count of pages it has in memory, where each
393  * page is divided by the number of processes sharing it.  So if a
394  * process has 1000 pages all to itself, and 1000 shared with one other
395  * process, its PSS will be 1500.
396  *
397  * To keep (accumulated) division errors low, we adopt a 64bit
398  * fixed-point pss counter to minimize division errors. So (pss >>
399  * PSS_SHIFT) would be the real byte count.
400  *
401  * A shift of 12 before division means (assuming 4K page size):
402  * 	- 1M 3-user-pages add up to 8KB errors;
403  * 	- supports mapcount up to 2^24, or 16M;
404  * 	- supports PSS up to 2^52 bytes, or 4PB.
405  */
406 #define PSS_SHIFT 12
407 
408 #ifdef CONFIG_PROC_PAGE_MONITOR
409 struct mem_size_stats {
410 	unsigned long resident;
411 	unsigned long shared_clean;
412 	unsigned long shared_dirty;
413 	unsigned long private_clean;
414 	unsigned long private_dirty;
415 	unsigned long referenced;
416 	unsigned long anonymous;
417 	unsigned long lazyfree;
418 	unsigned long anonymous_thp;
419 	unsigned long shmem_thp;
420 	unsigned long swap;
421 	unsigned long shared_hugetlb;
422 	unsigned long private_hugetlb;
423 	u64 pss;
424 	u64 pss_anon;
425 	u64 pss_file;
426 	u64 pss_shmem;
427 	u64 pss_locked;
428 	u64 swap_pss;
429 	bool check_shmem_swap;
430 };
431 
432 static void smaps_page_accumulate(struct mem_size_stats *mss,
433 		struct page *page, unsigned long size, unsigned long pss,
434 		bool dirty, bool locked, bool private)
435 {
436 	mss->pss += pss;
437 
438 	if (PageAnon(page))
439 		mss->pss_anon += pss;
440 	else if (PageSwapBacked(page))
441 		mss->pss_shmem += pss;
442 	else
443 		mss->pss_file += pss;
444 
445 	if (locked)
446 		mss->pss_locked += pss;
447 
448 	if (dirty || PageDirty(page)) {
449 		if (private)
450 			mss->private_dirty += size;
451 		else
452 			mss->shared_dirty += size;
453 	} else {
454 		if (private)
455 			mss->private_clean += size;
456 		else
457 			mss->shared_clean += size;
458 	}
459 }
460 
461 static void smaps_account(struct mem_size_stats *mss, struct page *page,
462 		bool compound, bool young, bool dirty, bool locked)
463 {
464 	int i, nr = compound ? 1 << compound_order(page) : 1;
465 	unsigned long size = nr * PAGE_SIZE;
466 
467 	/*
468 	 * First accumulate quantities that depend only on |size| and the type
469 	 * of the compound page.
470 	 */
471 	if (PageAnon(page)) {
472 		mss->anonymous += size;
473 		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
474 			mss->lazyfree += size;
475 	}
476 
477 	mss->resident += size;
478 	/* Accumulate the size in pages that have been accessed. */
479 	if (young || page_is_young(page) || PageReferenced(page))
480 		mss->referenced += size;
481 
482 	/*
483 	 * Then accumulate quantities that may depend on sharing, or that may
484 	 * differ page-by-page.
485 	 *
486 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
487 	 * If any subpage of the compound page mapped with PTE it would elevate
488 	 * page_count().
489 	 */
490 	if (page_count(page) == 1) {
491 		smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
492 			locked, true);
493 		return;
494 	}
495 	for (i = 0; i < nr; i++, page++) {
496 		int mapcount = page_mapcount(page);
497 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
498 		if (mapcount >= 2)
499 			pss /= mapcount;
500 		smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
501 				      mapcount < 2);
502 	}
503 }
504 
505 #ifdef CONFIG_SHMEM
506 static int smaps_pte_hole(unsigned long addr, unsigned long end,
507 		struct mm_walk *walk)
508 {
509 	struct mem_size_stats *mss = walk->private;
510 
511 	mss->swap += shmem_partial_swap_usage(
512 			walk->vma->vm_file->f_mapping, addr, end);
513 
514 	return 0;
515 }
516 #else
517 #define smaps_pte_hole		NULL
518 #endif /* CONFIG_SHMEM */
519 
520 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
521 		struct mm_walk *walk)
522 {
523 	struct mem_size_stats *mss = walk->private;
524 	struct vm_area_struct *vma = walk->vma;
525 	bool locked = !!(vma->vm_flags & VM_LOCKED);
526 	struct page *page = NULL;
527 
528 	if (pte_present(*pte)) {
529 		page = vm_normal_page(vma, addr, *pte);
530 	} else if (is_swap_pte(*pte)) {
531 		swp_entry_t swpent = pte_to_swp_entry(*pte);
532 
533 		if (!non_swap_entry(swpent)) {
534 			int mapcount;
535 
536 			mss->swap += PAGE_SIZE;
537 			mapcount = swp_swapcount(swpent);
538 			if (mapcount >= 2) {
539 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
540 
541 				do_div(pss_delta, mapcount);
542 				mss->swap_pss += pss_delta;
543 			} else {
544 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
545 			}
546 		} else if (is_migration_entry(swpent))
547 			page = migration_entry_to_page(swpent);
548 		else if (is_device_private_entry(swpent))
549 			page = device_private_entry_to_page(swpent);
550 	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
551 							&& pte_none(*pte))) {
552 		page = find_get_entry(vma->vm_file->f_mapping,
553 						linear_page_index(vma, addr));
554 		if (!page)
555 			return;
556 
557 		if (xa_is_value(page))
558 			mss->swap += PAGE_SIZE;
559 		else
560 			put_page(page);
561 
562 		return;
563 	}
564 
565 	if (!page)
566 		return;
567 
568 	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
569 }
570 
571 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
572 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
573 		struct mm_walk *walk)
574 {
575 	struct mem_size_stats *mss = walk->private;
576 	struct vm_area_struct *vma = walk->vma;
577 	bool locked = !!(vma->vm_flags & VM_LOCKED);
578 	struct page *page;
579 
580 	/* FOLL_DUMP will return -EFAULT on huge zero page */
581 	page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
582 	if (IS_ERR_OR_NULL(page))
583 		return;
584 	if (PageAnon(page))
585 		mss->anonymous_thp += HPAGE_PMD_SIZE;
586 	else if (PageSwapBacked(page))
587 		mss->shmem_thp += HPAGE_PMD_SIZE;
588 	else if (is_zone_device_page(page))
589 		/* pass */;
590 	else
591 		VM_BUG_ON_PAGE(1, page);
592 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
593 }
594 #else
595 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
596 		struct mm_walk *walk)
597 {
598 }
599 #endif
600 
601 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
602 			   struct mm_walk *walk)
603 {
604 	struct vm_area_struct *vma = walk->vma;
605 	pte_t *pte;
606 	spinlock_t *ptl;
607 
608 	ptl = pmd_trans_huge_lock(pmd, vma);
609 	if (ptl) {
610 		if (pmd_present(*pmd))
611 			smaps_pmd_entry(pmd, addr, walk);
612 		spin_unlock(ptl);
613 		goto out;
614 	}
615 
616 	if (pmd_trans_unstable(pmd))
617 		goto out;
618 	/*
619 	 * The mmap_sem held all the way back in m_start() is what
620 	 * keeps khugepaged out of here and from collapsing things
621 	 * in here.
622 	 */
623 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
624 	for (; addr != end; pte++, addr += PAGE_SIZE)
625 		smaps_pte_entry(pte, addr, walk);
626 	pte_unmap_unlock(pte - 1, ptl);
627 out:
628 	cond_resched();
629 	return 0;
630 }
631 
632 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
633 {
634 	/*
635 	 * Don't forget to update Documentation/ on changes.
636 	 */
637 	static const char mnemonics[BITS_PER_LONG][2] = {
638 		/*
639 		 * In case if we meet a flag we don't know about.
640 		 */
641 		[0 ... (BITS_PER_LONG-1)] = "??",
642 
643 		[ilog2(VM_READ)]	= "rd",
644 		[ilog2(VM_WRITE)]	= "wr",
645 		[ilog2(VM_EXEC)]	= "ex",
646 		[ilog2(VM_SHARED)]	= "sh",
647 		[ilog2(VM_MAYREAD)]	= "mr",
648 		[ilog2(VM_MAYWRITE)]	= "mw",
649 		[ilog2(VM_MAYEXEC)]	= "me",
650 		[ilog2(VM_MAYSHARE)]	= "ms",
651 		[ilog2(VM_GROWSDOWN)]	= "gd",
652 		[ilog2(VM_PFNMAP)]	= "pf",
653 		[ilog2(VM_DENYWRITE)]	= "dw",
654 #ifdef CONFIG_X86_INTEL_MPX
655 		[ilog2(VM_MPX)]		= "mp",
656 #endif
657 		[ilog2(VM_LOCKED)]	= "lo",
658 		[ilog2(VM_IO)]		= "io",
659 		[ilog2(VM_SEQ_READ)]	= "sr",
660 		[ilog2(VM_RAND_READ)]	= "rr",
661 		[ilog2(VM_DONTCOPY)]	= "dc",
662 		[ilog2(VM_DONTEXPAND)]	= "de",
663 		[ilog2(VM_ACCOUNT)]	= "ac",
664 		[ilog2(VM_NORESERVE)]	= "nr",
665 		[ilog2(VM_HUGETLB)]	= "ht",
666 		[ilog2(VM_SYNC)]	= "sf",
667 		[ilog2(VM_ARCH_1)]	= "ar",
668 		[ilog2(VM_WIPEONFORK)]	= "wf",
669 		[ilog2(VM_DONTDUMP)]	= "dd",
670 #ifdef CONFIG_MEM_SOFT_DIRTY
671 		[ilog2(VM_SOFTDIRTY)]	= "sd",
672 #endif
673 		[ilog2(VM_MIXEDMAP)]	= "mm",
674 		[ilog2(VM_HUGEPAGE)]	= "hg",
675 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
676 		[ilog2(VM_MERGEABLE)]	= "mg",
677 		[ilog2(VM_UFFD_MISSING)]= "um",
678 		[ilog2(VM_UFFD_WP)]	= "uw",
679 #ifdef CONFIG_ARCH_HAS_PKEYS
680 		/* These come out via ProtectionKey: */
681 		[ilog2(VM_PKEY_BIT0)]	= "",
682 		[ilog2(VM_PKEY_BIT1)]	= "",
683 		[ilog2(VM_PKEY_BIT2)]	= "",
684 		[ilog2(VM_PKEY_BIT3)]	= "",
685 #if VM_PKEY_BIT4
686 		[ilog2(VM_PKEY_BIT4)]	= "",
687 #endif
688 #endif /* CONFIG_ARCH_HAS_PKEYS */
689 	};
690 	size_t i;
691 
692 	seq_puts(m, "VmFlags: ");
693 	for (i = 0; i < BITS_PER_LONG; i++) {
694 		if (!mnemonics[i][0])
695 			continue;
696 		if (vma->vm_flags & (1UL << i)) {
697 			seq_putc(m, mnemonics[i][0]);
698 			seq_putc(m, mnemonics[i][1]);
699 			seq_putc(m, ' ');
700 		}
701 	}
702 	seq_putc(m, '\n');
703 }
704 
705 #ifdef CONFIG_HUGETLB_PAGE
706 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
707 				 unsigned long addr, unsigned long end,
708 				 struct mm_walk *walk)
709 {
710 	struct mem_size_stats *mss = walk->private;
711 	struct vm_area_struct *vma = walk->vma;
712 	struct page *page = NULL;
713 
714 	if (pte_present(*pte)) {
715 		page = vm_normal_page(vma, addr, *pte);
716 	} else if (is_swap_pte(*pte)) {
717 		swp_entry_t swpent = pte_to_swp_entry(*pte);
718 
719 		if (is_migration_entry(swpent))
720 			page = migration_entry_to_page(swpent);
721 		else if (is_device_private_entry(swpent))
722 			page = device_private_entry_to_page(swpent);
723 	}
724 	if (page) {
725 		int mapcount = page_mapcount(page);
726 
727 		if (mapcount >= 2)
728 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
729 		else
730 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
731 	}
732 	return 0;
733 }
734 #else
735 #define smaps_hugetlb_range	NULL
736 #endif /* HUGETLB_PAGE */
737 
738 static const struct mm_walk_ops smaps_walk_ops = {
739 	.pmd_entry		= smaps_pte_range,
740 	.hugetlb_entry		= smaps_hugetlb_range,
741 };
742 
743 static const struct mm_walk_ops smaps_shmem_walk_ops = {
744 	.pmd_entry		= smaps_pte_range,
745 	.hugetlb_entry		= smaps_hugetlb_range,
746 	.pte_hole		= smaps_pte_hole,
747 };
748 
749 static void smap_gather_stats(struct vm_area_struct *vma,
750 			     struct mem_size_stats *mss)
751 {
752 #ifdef CONFIG_SHMEM
753 	/* In case of smaps_rollup, reset the value from previous vma */
754 	mss->check_shmem_swap = false;
755 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
756 		/*
757 		 * For shared or readonly shmem mappings we know that all
758 		 * swapped out pages belong to the shmem object, and we can
759 		 * obtain the swap value much more efficiently. For private
760 		 * writable mappings, we might have COW pages that are
761 		 * not affected by the parent swapped out pages of the shmem
762 		 * object, so we have to distinguish them during the page walk.
763 		 * Unless we know that the shmem object (or the part mapped by
764 		 * our VMA) has no swapped out pages at all.
765 		 */
766 		unsigned long shmem_swapped = shmem_swap_usage(vma);
767 
768 		if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
769 					!(vma->vm_flags & VM_WRITE)) {
770 			mss->swap += shmem_swapped;
771 		} else {
772 			mss->check_shmem_swap = true;
773 			walk_page_vma(vma, &smaps_shmem_walk_ops, mss);
774 			return;
775 		}
776 	}
777 #endif
778 	/* mmap_sem is held in m_start */
779 	walk_page_vma(vma, &smaps_walk_ops, mss);
780 }
781 
782 #define SEQ_PUT_DEC(str, val) \
783 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
784 
785 /* Show the contents common for smaps and smaps_rollup */
786 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
787 	bool rollup_mode)
788 {
789 	SEQ_PUT_DEC("Rss:            ", mss->resident);
790 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
791 	if (rollup_mode) {
792 		/*
793 		 * These are meaningful only for smaps_rollup, otherwise two of
794 		 * them are zero, and the other one is the same as Pss.
795 		 */
796 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
797 			mss->pss_anon >> PSS_SHIFT);
798 		SEQ_PUT_DEC(" kB\nPss_File:       ",
799 			mss->pss_file >> PSS_SHIFT);
800 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
801 			mss->pss_shmem >> PSS_SHIFT);
802 	}
803 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
804 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
805 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
806 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
807 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
808 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
809 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
810 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
811 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
812 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
813 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
814 				  mss->private_hugetlb >> 10, 7);
815 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
816 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
817 					mss->swap_pss >> PSS_SHIFT);
818 	SEQ_PUT_DEC(" kB\nLocked:         ",
819 					mss->pss_locked >> PSS_SHIFT);
820 	seq_puts(m, " kB\n");
821 }
822 
823 static int show_smap(struct seq_file *m, void *v)
824 {
825 	struct vm_area_struct *vma = v;
826 	struct mem_size_stats mss;
827 
828 	memset(&mss, 0, sizeof(mss));
829 
830 	smap_gather_stats(vma, &mss);
831 
832 	show_map_vma(m, vma);
833 
834 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
835 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
836 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
837 	seq_puts(m, " kB\n");
838 
839 	__show_smap(m, &mss, false);
840 
841 	seq_printf(m, "THPeligible:		%d\n",
842 		   transparent_hugepage_enabled(vma));
843 
844 	if (arch_pkeys_enabled())
845 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
846 	show_smap_vma_flags(m, vma);
847 
848 	m_cache_vma(m, vma);
849 
850 	return 0;
851 }
852 
853 static int show_smaps_rollup(struct seq_file *m, void *v)
854 {
855 	struct proc_maps_private *priv = m->private;
856 	struct mem_size_stats mss;
857 	struct mm_struct *mm;
858 	struct vm_area_struct *vma;
859 	unsigned long last_vma_end = 0;
860 	int ret = 0;
861 
862 	priv->task = get_proc_task(priv->inode);
863 	if (!priv->task)
864 		return -ESRCH;
865 
866 	mm = priv->mm;
867 	if (!mm || !mmget_not_zero(mm)) {
868 		ret = -ESRCH;
869 		goto out_put_task;
870 	}
871 
872 	memset(&mss, 0, sizeof(mss));
873 
874 	ret = down_read_killable(&mm->mmap_sem);
875 	if (ret)
876 		goto out_put_mm;
877 
878 	hold_task_mempolicy(priv);
879 
880 	for (vma = priv->mm->mmap; vma; vma = vma->vm_next) {
881 		smap_gather_stats(vma, &mss);
882 		last_vma_end = vma->vm_end;
883 	}
884 
885 	show_vma_header_prefix(m, priv->mm->mmap->vm_start,
886 			       last_vma_end, 0, 0, 0, 0);
887 	seq_pad(m, ' ');
888 	seq_puts(m, "[rollup]\n");
889 
890 	__show_smap(m, &mss, true);
891 
892 	release_task_mempolicy(priv);
893 	up_read(&mm->mmap_sem);
894 
895 out_put_mm:
896 	mmput(mm);
897 out_put_task:
898 	put_task_struct(priv->task);
899 	priv->task = NULL;
900 
901 	return ret;
902 }
903 #undef SEQ_PUT_DEC
904 
905 static const struct seq_operations proc_pid_smaps_op = {
906 	.start	= m_start,
907 	.next	= m_next,
908 	.stop	= m_stop,
909 	.show	= show_smap
910 };
911 
912 static int pid_smaps_open(struct inode *inode, struct file *file)
913 {
914 	return do_maps_open(inode, file, &proc_pid_smaps_op);
915 }
916 
917 static int smaps_rollup_open(struct inode *inode, struct file *file)
918 {
919 	int ret;
920 	struct proc_maps_private *priv;
921 
922 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
923 	if (!priv)
924 		return -ENOMEM;
925 
926 	ret = single_open(file, show_smaps_rollup, priv);
927 	if (ret)
928 		goto out_free;
929 
930 	priv->inode = inode;
931 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
932 	if (IS_ERR(priv->mm)) {
933 		ret = PTR_ERR(priv->mm);
934 
935 		single_release(inode, file);
936 		goto out_free;
937 	}
938 
939 	return 0;
940 
941 out_free:
942 	kfree(priv);
943 	return ret;
944 }
945 
946 static int smaps_rollup_release(struct inode *inode, struct file *file)
947 {
948 	struct seq_file *seq = file->private_data;
949 	struct proc_maps_private *priv = seq->private;
950 
951 	if (priv->mm)
952 		mmdrop(priv->mm);
953 
954 	kfree(priv);
955 	return single_release(inode, file);
956 }
957 
958 const struct file_operations proc_pid_smaps_operations = {
959 	.open		= pid_smaps_open,
960 	.read		= seq_read,
961 	.llseek		= seq_lseek,
962 	.release	= proc_map_release,
963 };
964 
965 const struct file_operations proc_pid_smaps_rollup_operations = {
966 	.open		= smaps_rollup_open,
967 	.read		= seq_read,
968 	.llseek		= seq_lseek,
969 	.release	= smaps_rollup_release,
970 };
971 
972 enum clear_refs_types {
973 	CLEAR_REFS_ALL = 1,
974 	CLEAR_REFS_ANON,
975 	CLEAR_REFS_MAPPED,
976 	CLEAR_REFS_SOFT_DIRTY,
977 	CLEAR_REFS_MM_HIWATER_RSS,
978 	CLEAR_REFS_LAST,
979 };
980 
981 struct clear_refs_private {
982 	enum clear_refs_types type;
983 };
984 
985 #ifdef CONFIG_MEM_SOFT_DIRTY
986 static inline void clear_soft_dirty(struct vm_area_struct *vma,
987 		unsigned long addr, pte_t *pte)
988 {
989 	/*
990 	 * The soft-dirty tracker uses #PF-s to catch writes
991 	 * to pages, so write-protect the pte as well. See the
992 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
993 	 * of how soft-dirty works.
994 	 */
995 	pte_t ptent = *pte;
996 
997 	if (pte_present(ptent)) {
998 		pte_t old_pte;
999 
1000 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1001 		ptent = pte_wrprotect(old_pte);
1002 		ptent = pte_clear_soft_dirty(ptent);
1003 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1004 	} else if (is_swap_pte(ptent)) {
1005 		ptent = pte_swp_clear_soft_dirty(ptent);
1006 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1007 	}
1008 }
1009 #else
1010 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1011 		unsigned long addr, pte_t *pte)
1012 {
1013 }
1014 #endif
1015 
1016 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1017 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1018 		unsigned long addr, pmd_t *pmdp)
1019 {
1020 	pmd_t old, pmd = *pmdp;
1021 
1022 	if (pmd_present(pmd)) {
1023 		/* See comment in change_huge_pmd() */
1024 		old = pmdp_invalidate(vma, addr, pmdp);
1025 		if (pmd_dirty(old))
1026 			pmd = pmd_mkdirty(pmd);
1027 		if (pmd_young(old))
1028 			pmd = pmd_mkyoung(pmd);
1029 
1030 		pmd = pmd_wrprotect(pmd);
1031 		pmd = pmd_clear_soft_dirty(pmd);
1032 
1033 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1034 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1035 		pmd = pmd_swp_clear_soft_dirty(pmd);
1036 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1037 	}
1038 }
1039 #else
1040 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1041 		unsigned long addr, pmd_t *pmdp)
1042 {
1043 }
1044 #endif
1045 
1046 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1047 				unsigned long end, struct mm_walk *walk)
1048 {
1049 	struct clear_refs_private *cp = walk->private;
1050 	struct vm_area_struct *vma = walk->vma;
1051 	pte_t *pte, ptent;
1052 	spinlock_t *ptl;
1053 	struct page *page;
1054 
1055 	ptl = pmd_trans_huge_lock(pmd, vma);
1056 	if (ptl) {
1057 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1058 			clear_soft_dirty_pmd(vma, addr, pmd);
1059 			goto out;
1060 		}
1061 
1062 		if (!pmd_present(*pmd))
1063 			goto out;
1064 
1065 		page = pmd_page(*pmd);
1066 
1067 		/* Clear accessed and referenced bits. */
1068 		pmdp_test_and_clear_young(vma, addr, pmd);
1069 		test_and_clear_page_young(page);
1070 		ClearPageReferenced(page);
1071 out:
1072 		spin_unlock(ptl);
1073 		return 0;
1074 	}
1075 
1076 	if (pmd_trans_unstable(pmd))
1077 		return 0;
1078 
1079 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1080 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1081 		ptent = *pte;
1082 
1083 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1084 			clear_soft_dirty(vma, addr, pte);
1085 			continue;
1086 		}
1087 
1088 		if (!pte_present(ptent))
1089 			continue;
1090 
1091 		page = vm_normal_page(vma, addr, ptent);
1092 		if (!page)
1093 			continue;
1094 
1095 		/* Clear accessed and referenced bits. */
1096 		ptep_test_and_clear_young(vma, addr, pte);
1097 		test_and_clear_page_young(page);
1098 		ClearPageReferenced(page);
1099 	}
1100 	pte_unmap_unlock(pte - 1, ptl);
1101 	cond_resched();
1102 	return 0;
1103 }
1104 
1105 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1106 				struct mm_walk *walk)
1107 {
1108 	struct clear_refs_private *cp = walk->private;
1109 	struct vm_area_struct *vma = walk->vma;
1110 
1111 	if (vma->vm_flags & VM_PFNMAP)
1112 		return 1;
1113 
1114 	/*
1115 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1116 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1117 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1118 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1119 	 */
1120 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1121 		return 1;
1122 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1123 		return 1;
1124 	return 0;
1125 }
1126 
1127 static const struct mm_walk_ops clear_refs_walk_ops = {
1128 	.pmd_entry		= clear_refs_pte_range,
1129 	.test_walk		= clear_refs_test_walk,
1130 };
1131 
1132 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1133 				size_t count, loff_t *ppos)
1134 {
1135 	struct task_struct *task;
1136 	char buffer[PROC_NUMBUF];
1137 	struct mm_struct *mm;
1138 	struct vm_area_struct *vma;
1139 	enum clear_refs_types type;
1140 	struct mmu_gather tlb;
1141 	int itype;
1142 	int rv;
1143 
1144 	memset(buffer, 0, sizeof(buffer));
1145 	if (count > sizeof(buffer) - 1)
1146 		count = sizeof(buffer) - 1;
1147 	if (copy_from_user(buffer, buf, count))
1148 		return -EFAULT;
1149 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1150 	if (rv < 0)
1151 		return rv;
1152 	type = (enum clear_refs_types)itype;
1153 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1154 		return -EINVAL;
1155 
1156 	task = get_proc_task(file_inode(file));
1157 	if (!task)
1158 		return -ESRCH;
1159 	mm = get_task_mm(task);
1160 	if (mm) {
1161 		struct mmu_notifier_range range;
1162 		struct clear_refs_private cp = {
1163 			.type = type,
1164 		};
1165 
1166 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1167 			if (down_write_killable(&mm->mmap_sem)) {
1168 				count = -EINTR;
1169 				goto out_mm;
1170 			}
1171 
1172 			/*
1173 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1174 			 * resident set size to this mm's current rss value.
1175 			 */
1176 			reset_mm_hiwater_rss(mm);
1177 			up_write(&mm->mmap_sem);
1178 			goto out_mm;
1179 		}
1180 
1181 		if (down_read_killable(&mm->mmap_sem)) {
1182 			count = -EINTR;
1183 			goto out_mm;
1184 		}
1185 		tlb_gather_mmu(&tlb, mm, 0, -1);
1186 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1187 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1188 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1189 					continue;
1190 				up_read(&mm->mmap_sem);
1191 				if (down_write_killable(&mm->mmap_sem)) {
1192 					count = -EINTR;
1193 					goto out_mm;
1194 				}
1195 				/*
1196 				 * Avoid to modify vma->vm_flags
1197 				 * without locked ops while the
1198 				 * coredump reads the vm_flags.
1199 				 */
1200 				if (!mmget_still_valid(mm)) {
1201 					/*
1202 					 * Silently return "count"
1203 					 * like if get_task_mm()
1204 					 * failed. FIXME: should this
1205 					 * function have returned
1206 					 * -ESRCH if get_task_mm()
1207 					 * failed like if
1208 					 * get_proc_task() fails?
1209 					 */
1210 					up_write(&mm->mmap_sem);
1211 					goto out_mm;
1212 				}
1213 				for (vma = mm->mmap; vma; vma = vma->vm_next) {
1214 					vma->vm_flags &= ~VM_SOFTDIRTY;
1215 					vma_set_page_prot(vma);
1216 				}
1217 				downgrade_write(&mm->mmap_sem);
1218 				break;
1219 			}
1220 
1221 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1222 						0, NULL, mm, 0, -1UL);
1223 			mmu_notifier_invalidate_range_start(&range);
1224 		}
1225 		walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1226 				&cp);
1227 		if (type == CLEAR_REFS_SOFT_DIRTY)
1228 			mmu_notifier_invalidate_range_end(&range);
1229 		tlb_finish_mmu(&tlb, 0, -1);
1230 		up_read(&mm->mmap_sem);
1231 out_mm:
1232 		mmput(mm);
1233 	}
1234 	put_task_struct(task);
1235 
1236 	return count;
1237 }
1238 
1239 const struct file_operations proc_clear_refs_operations = {
1240 	.write		= clear_refs_write,
1241 	.llseek		= noop_llseek,
1242 };
1243 
1244 typedef struct {
1245 	u64 pme;
1246 } pagemap_entry_t;
1247 
1248 struct pagemapread {
1249 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1250 	pagemap_entry_t *buffer;
1251 	bool show_pfn;
1252 };
1253 
1254 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1255 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1256 
1257 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1258 #define PM_PFRAME_BITS		55
1259 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1260 #define PM_SOFT_DIRTY		BIT_ULL(55)
1261 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1262 #define PM_FILE			BIT_ULL(61)
1263 #define PM_SWAP			BIT_ULL(62)
1264 #define PM_PRESENT		BIT_ULL(63)
1265 
1266 #define PM_END_OF_BUFFER    1
1267 
1268 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1269 {
1270 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1271 }
1272 
1273 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1274 			  struct pagemapread *pm)
1275 {
1276 	pm->buffer[pm->pos++] = *pme;
1277 	if (pm->pos >= pm->len)
1278 		return PM_END_OF_BUFFER;
1279 	return 0;
1280 }
1281 
1282 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1283 				struct mm_walk *walk)
1284 {
1285 	struct pagemapread *pm = walk->private;
1286 	unsigned long addr = start;
1287 	int err = 0;
1288 
1289 	while (addr < end) {
1290 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1291 		pagemap_entry_t pme = make_pme(0, 0);
1292 		/* End of address space hole, which we mark as non-present. */
1293 		unsigned long hole_end;
1294 
1295 		if (vma)
1296 			hole_end = min(end, vma->vm_start);
1297 		else
1298 			hole_end = end;
1299 
1300 		for (; addr < hole_end; addr += PAGE_SIZE) {
1301 			err = add_to_pagemap(addr, &pme, pm);
1302 			if (err)
1303 				goto out;
1304 		}
1305 
1306 		if (!vma)
1307 			break;
1308 
1309 		/* Addresses in the VMA. */
1310 		if (vma->vm_flags & VM_SOFTDIRTY)
1311 			pme = make_pme(0, PM_SOFT_DIRTY);
1312 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1313 			err = add_to_pagemap(addr, &pme, pm);
1314 			if (err)
1315 				goto out;
1316 		}
1317 	}
1318 out:
1319 	return err;
1320 }
1321 
1322 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1323 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1324 {
1325 	u64 frame = 0, flags = 0;
1326 	struct page *page = NULL;
1327 
1328 	if (pte_present(pte)) {
1329 		if (pm->show_pfn)
1330 			frame = pte_pfn(pte);
1331 		flags |= PM_PRESENT;
1332 		page = vm_normal_page(vma, addr, pte);
1333 		if (pte_soft_dirty(pte))
1334 			flags |= PM_SOFT_DIRTY;
1335 	} else if (is_swap_pte(pte)) {
1336 		swp_entry_t entry;
1337 		if (pte_swp_soft_dirty(pte))
1338 			flags |= PM_SOFT_DIRTY;
1339 		entry = pte_to_swp_entry(pte);
1340 		if (pm->show_pfn)
1341 			frame = swp_type(entry) |
1342 				(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1343 		flags |= PM_SWAP;
1344 		if (is_migration_entry(entry))
1345 			page = migration_entry_to_page(entry);
1346 
1347 		if (is_device_private_entry(entry))
1348 			page = device_private_entry_to_page(entry);
1349 	}
1350 
1351 	if (page && !PageAnon(page))
1352 		flags |= PM_FILE;
1353 	if (page && page_mapcount(page) == 1)
1354 		flags |= PM_MMAP_EXCLUSIVE;
1355 	if (vma->vm_flags & VM_SOFTDIRTY)
1356 		flags |= PM_SOFT_DIRTY;
1357 
1358 	return make_pme(frame, flags);
1359 }
1360 
1361 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1362 			     struct mm_walk *walk)
1363 {
1364 	struct vm_area_struct *vma = walk->vma;
1365 	struct pagemapread *pm = walk->private;
1366 	spinlock_t *ptl;
1367 	pte_t *pte, *orig_pte;
1368 	int err = 0;
1369 
1370 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1371 	ptl = pmd_trans_huge_lock(pmdp, vma);
1372 	if (ptl) {
1373 		u64 flags = 0, frame = 0;
1374 		pmd_t pmd = *pmdp;
1375 		struct page *page = NULL;
1376 
1377 		if (vma->vm_flags & VM_SOFTDIRTY)
1378 			flags |= PM_SOFT_DIRTY;
1379 
1380 		if (pmd_present(pmd)) {
1381 			page = pmd_page(pmd);
1382 
1383 			flags |= PM_PRESENT;
1384 			if (pmd_soft_dirty(pmd))
1385 				flags |= PM_SOFT_DIRTY;
1386 			if (pm->show_pfn)
1387 				frame = pmd_pfn(pmd) +
1388 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1389 		}
1390 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1391 		else if (is_swap_pmd(pmd)) {
1392 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1393 			unsigned long offset;
1394 
1395 			if (pm->show_pfn) {
1396 				offset = swp_offset(entry) +
1397 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1398 				frame = swp_type(entry) |
1399 					(offset << MAX_SWAPFILES_SHIFT);
1400 			}
1401 			flags |= PM_SWAP;
1402 			if (pmd_swp_soft_dirty(pmd))
1403 				flags |= PM_SOFT_DIRTY;
1404 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1405 			page = migration_entry_to_page(entry);
1406 		}
1407 #endif
1408 
1409 		if (page && page_mapcount(page) == 1)
1410 			flags |= PM_MMAP_EXCLUSIVE;
1411 
1412 		for (; addr != end; addr += PAGE_SIZE) {
1413 			pagemap_entry_t pme = make_pme(frame, flags);
1414 
1415 			err = add_to_pagemap(addr, &pme, pm);
1416 			if (err)
1417 				break;
1418 			if (pm->show_pfn) {
1419 				if (flags & PM_PRESENT)
1420 					frame++;
1421 				else if (flags & PM_SWAP)
1422 					frame += (1 << MAX_SWAPFILES_SHIFT);
1423 			}
1424 		}
1425 		spin_unlock(ptl);
1426 		return err;
1427 	}
1428 
1429 	if (pmd_trans_unstable(pmdp))
1430 		return 0;
1431 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1432 
1433 	/*
1434 	 * We can assume that @vma always points to a valid one and @end never
1435 	 * goes beyond vma->vm_end.
1436 	 */
1437 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1438 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1439 		pagemap_entry_t pme;
1440 
1441 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1442 		err = add_to_pagemap(addr, &pme, pm);
1443 		if (err)
1444 			break;
1445 	}
1446 	pte_unmap_unlock(orig_pte, ptl);
1447 
1448 	cond_resched();
1449 
1450 	return err;
1451 }
1452 
1453 #ifdef CONFIG_HUGETLB_PAGE
1454 /* This function walks within one hugetlb entry in the single call */
1455 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1456 				 unsigned long addr, unsigned long end,
1457 				 struct mm_walk *walk)
1458 {
1459 	struct pagemapread *pm = walk->private;
1460 	struct vm_area_struct *vma = walk->vma;
1461 	u64 flags = 0, frame = 0;
1462 	int err = 0;
1463 	pte_t pte;
1464 
1465 	if (vma->vm_flags & VM_SOFTDIRTY)
1466 		flags |= PM_SOFT_DIRTY;
1467 
1468 	pte = huge_ptep_get(ptep);
1469 	if (pte_present(pte)) {
1470 		struct page *page = pte_page(pte);
1471 
1472 		if (!PageAnon(page))
1473 			flags |= PM_FILE;
1474 
1475 		if (page_mapcount(page) == 1)
1476 			flags |= PM_MMAP_EXCLUSIVE;
1477 
1478 		flags |= PM_PRESENT;
1479 		if (pm->show_pfn)
1480 			frame = pte_pfn(pte) +
1481 				((addr & ~hmask) >> PAGE_SHIFT);
1482 	}
1483 
1484 	for (; addr != end; addr += PAGE_SIZE) {
1485 		pagemap_entry_t pme = make_pme(frame, flags);
1486 
1487 		err = add_to_pagemap(addr, &pme, pm);
1488 		if (err)
1489 			return err;
1490 		if (pm->show_pfn && (flags & PM_PRESENT))
1491 			frame++;
1492 	}
1493 
1494 	cond_resched();
1495 
1496 	return err;
1497 }
1498 #else
1499 #define pagemap_hugetlb_range	NULL
1500 #endif /* HUGETLB_PAGE */
1501 
1502 static const struct mm_walk_ops pagemap_ops = {
1503 	.pmd_entry	= pagemap_pmd_range,
1504 	.pte_hole	= pagemap_pte_hole,
1505 	.hugetlb_entry	= pagemap_hugetlb_range,
1506 };
1507 
1508 /*
1509  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1510  *
1511  * For each page in the address space, this file contains one 64-bit entry
1512  * consisting of the following:
1513  *
1514  * Bits 0-54  page frame number (PFN) if present
1515  * Bits 0-4   swap type if swapped
1516  * Bits 5-54  swap offset if swapped
1517  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1518  * Bit  56    page exclusively mapped
1519  * Bits 57-60 zero
1520  * Bit  61    page is file-page or shared-anon
1521  * Bit  62    page swapped
1522  * Bit  63    page present
1523  *
1524  * If the page is not present but in swap, then the PFN contains an
1525  * encoding of the swap file number and the page's offset into the
1526  * swap. Unmapped pages return a null PFN. This allows determining
1527  * precisely which pages are mapped (or in swap) and comparing mapped
1528  * pages between processes.
1529  *
1530  * Efficient users of this interface will use /proc/pid/maps to
1531  * determine which areas of memory are actually mapped and llseek to
1532  * skip over unmapped regions.
1533  */
1534 static ssize_t pagemap_read(struct file *file, char __user *buf,
1535 			    size_t count, loff_t *ppos)
1536 {
1537 	struct mm_struct *mm = file->private_data;
1538 	struct pagemapread pm;
1539 	unsigned long src;
1540 	unsigned long svpfn;
1541 	unsigned long start_vaddr;
1542 	unsigned long end_vaddr;
1543 	int ret = 0, copied = 0;
1544 
1545 	if (!mm || !mmget_not_zero(mm))
1546 		goto out;
1547 
1548 	ret = -EINVAL;
1549 	/* file position must be aligned */
1550 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1551 		goto out_mm;
1552 
1553 	ret = 0;
1554 	if (!count)
1555 		goto out_mm;
1556 
1557 	/* do not disclose physical addresses: attack vector */
1558 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1559 
1560 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1561 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1562 	ret = -ENOMEM;
1563 	if (!pm.buffer)
1564 		goto out_mm;
1565 
1566 	src = *ppos;
1567 	svpfn = src / PM_ENTRY_BYTES;
1568 	start_vaddr = svpfn << PAGE_SHIFT;
1569 	end_vaddr = mm->task_size;
1570 
1571 	/* watch out for wraparound */
1572 	if (svpfn > mm->task_size >> PAGE_SHIFT)
1573 		start_vaddr = end_vaddr;
1574 
1575 	/*
1576 	 * The odds are that this will stop walking way
1577 	 * before end_vaddr, because the length of the
1578 	 * user buffer is tracked in "pm", and the walk
1579 	 * will stop when we hit the end of the buffer.
1580 	 */
1581 	ret = 0;
1582 	while (count && (start_vaddr < end_vaddr)) {
1583 		int len;
1584 		unsigned long end;
1585 
1586 		pm.pos = 0;
1587 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1588 		/* overflow ? */
1589 		if (end < start_vaddr || end > end_vaddr)
1590 			end = end_vaddr;
1591 		ret = down_read_killable(&mm->mmap_sem);
1592 		if (ret)
1593 			goto out_free;
1594 		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1595 		up_read(&mm->mmap_sem);
1596 		start_vaddr = end;
1597 
1598 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1599 		if (copy_to_user(buf, pm.buffer, len)) {
1600 			ret = -EFAULT;
1601 			goto out_free;
1602 		}
1603 		copied += len;
1604 		buf += len;
1605 		count -= len;
1606 	}
1607 	*ppos += copied;
1608 	if (!ret || ret == PM_END_OF_BUFFER)
1609 		ret = copied;
1610 
1611 out_free:
1612 	kfree(pm.buffer);
1613 out_mm:
1614 	mmput(mm);
1615 out:
1616 	return ret;
1617 }
1618 
1619 static int pagemap_open(struct inode *inode, struct file *file)
1620 {
1621 	struct mm_struct *mm;
1622 
1623 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1624 	if (IS_ERR(mm))
1625 		return PTR_ERR(mm);
1626 	file->private_data = mm;
1627 	return 0;
1628 }
1629 
1630 static int pagemap_release(struct inode *inode, struct file *file)
1631 {
1632 	struct mm_struct *mm = file->private_data;
1633 
1634 	if (mm)
1635 		mmdrop(mm);
1636 	return 0;
1637 }
1638 
1639 const struct file_operations proc_pagemap_operations = {
1640 	.llseek		= mem_lseek, /* borrow this */
1641 	.read		= pagemap_read,
1642 	.open		= pagemap_open,
1643 	.release	= pagemap_release,
1644 };
1645 #endif /* CONFIG_PROC_PAGE_MONITOR */
1646 
1647 #ifdef CONFIG_NUMA
1648 
1649 struct numa_maps {
1650 	unsigned long pages;
1651 	unsigned long anon;
1652 	unsigned long active;
1653 	unsigned long writeback;
1654 	unsigned long mapcount_max;
1655 	unsigned long dirty;
1656 	unsigned long swapcache;
1657 	unsigned long node[MAX_NUMNODES];
1658 };
1659 
1660 struct numa_maps_private {
1661 	struct proc_maps_private proc_maps;
1662 	struct numa_maps md;
1663 };
1664 
1665 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1666 			unsigned long nr_pages)
1667 {
1668 	int count = page_mapcount(page);
1669 
1670 	md->pages += nr_pages;
1671 	if (pte_dirty || PageDirty(page))
1672 		md->dirty += nr_pages;
1673 
1674 	if (PageSwapCache(page))
1675 		md->swapcache += nr_pages;
1676 
1677 	if (PageActive(page) || PageUnevictable(page))
1678 		md->active += nr_pages;
1679 
1680 	if (PageWriteback(page))
1681 		md->writeback += nr_pages;
1682 
1683 	if (PageAnon(page))
1684 		md->anon += nr_pages;
1685 
1686 	if (count > md->mapcount_max)
1687 		md->mapcount_max = count;
1688 
1689 	md->node[page_to_nid(page)] += nr_pages;
1690 }
1691 
1692 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1693 		unsigned long addr)
1694 {
1695 	struct page *page;
1696 	int nid;
1697 
1698 	if (!pte_present(pte))
1699 		return NULL;
1700 
1701 	page = vm_normal_page(vma, addr, pte);
1702 	if (!page)
1703 		return NULL;
1704 
1705 	if (PageReserved(page))
1706 		return NULL;
1707 
1708 	nid = page_to_nid(page);
1709 	if (!node_isset(nid, node_states[N_MEMORY]))
1710 		return NULL;
1711 
1712 	return page;
1713 }
1714 
1715 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1716 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1717 					      struct vm_area_struct *vma,
1718 					      unsigned long addr)
1719 {
1720 	struct page *page;
1721 	int nid;
1722 
1723 	if (!pmd_present(pmd))
1724 		return NULL;
1725 
1726 	page = vm_normal_page_pmd(vma, addr, pmd);
1727 	if (!page)
1728 		return NULL;
1729 
1730 	if (PageReserved(page))
1731 		return NULL;
1732 
1733 	nid = page_to_nid(page);
1734 	if (!node_isset(nid, node_states[N_MEMORY]))
1735 		return NULL;
1736 
1737 	return page;
1738 }
1739 #endif
1740 
1741 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1742 		unsigned long end, struct mm_walk *walk)
1743 {
1744 	struct numa_maps *md = walk->private;
1745 	struct vm_area_struct *vma = walk->vma;
1746 	spinlock_t *ptl;
1747 	pte_t *orig_pte;
1748 	pte_t *pte;
1749 
1750 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1751 	ptl = pmd_trans_huge_lock(pmd, vma);
1752 	if (ptl) {
1753 		struct page *page;
1754 
1755 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1756 		if (page)
1757 			gather_stats(page, md, pmd_dirty(*pmd),
1758 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1759 		spin_unlock(ptl);
1760 		return 0;
1761 	}
1762 
1763 	if (pmd_trans_unstable(pmd))
1764 		return 0;
1765 #endif
1766 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1767 	do {
1768 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1769 		if (!page)
1770 			continue;
1771 		gather_stats(page, md, pte_dirty(*pte), 1);
1772 
1773 	} while (pte++, addr += PAGE_SIZE, addr != end);
1774 	pte_unmap_unlock(orig_pte, ptl);
1775 	cond_resched();
1776 	return 0;
1777 }
1778 #ifdef CONFIG_HUGETLB_PAGE
1779 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1780 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1781 {
1782 	pte_t huge_pte = huge_ptep_get(pte);
1783 	struct numa_maps *md;
1784 	struct page *page;
1785 
1786 	if (!pte_present(huge_pte))
1787 		return 0;
1788 
1789 	page = pte_page(huge_pte);
1790 	if (!page)
1791 		return 0;
1792 
1793 	md = walk->private;
1794 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1795 	return 0;
1796 }
1797 
1798 #else
1799 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1800 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1801 {
1802 	return 0;
1803 }
1804 #endif
1805 
1806 static const struct mm_walk_ops show_numa_ops = {
1807 	.hugetlb_entry = gather_hugetlb_stats,
1808 	.pmd_entry = gather_pte_stats,
1809 };
1810 
1811 /*
1812  * Display pages allocated per node and memory policy via /proc.
1813  */
1814 static int show_numa_map(struct seq_file *m, void *v)
1815 {
1816 	struct numa_maps_private *numa_priv = m->private;
1817 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1818 	struct vm_area_struct *vma = v;
1819 	struct numa_maps *md = &numa_priv->md;
1820 	struct file *file = vma->vm_file;
1821 	struct mm_struct *mm = vma->vm_mm;
1822 	struct mempolicy *pol;
1823 	char buffer[64];
1824 	int nid;
1825 
1826 	if (!mm)
1827 		return 0;
1828 
1829 	/* Ensure we start with an empty set of numa_maps statistics. */
1830 	memset(md, 0, sizeof(*md));
1831 
1832 	pol = __get_vma_policy(vma, vma->vm_start);
1833 	if (pol) {
1834 		mpol_to_str(buffer, sizeof(buffer), pol);
1835 		mpol_cond_put(pol);
1836 	} else {
1837 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1838 	}
1839 
1840 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1841 
1842 	if (file) {
1843 		seq_puts(m, " file=");
1844 		seq_file_path(m, file, "\n\t= ");
1845 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1846 		seq_puts(m, " heap");
1847 	} else if (is_stack(vma)) {
1848 		seq_puts(m, " stack");
1849 	}
1850 
1851 	if (is_vm_hugetlb_page(vma))
1852 		seq_puts(m, " huge");
1853 
1854 	/* mmap_sem is held by m_start */
1855 	walk_page_vma(vma, &show_numa_ops, md);
1856 
1857 	if (!md->pages)
1858 		goto out;
1859 
1860 	if (md->anon)
1861 		seq_printf(m, " anon=%lu", md->anon);
1862 
1863 	if (md->dirty)
1864 		seq_printf(m, " dirty=%lu", md->dirty);
1865 
1866 	if (md->pages != md->anon && md->pages != md->dirty)
1867 		seq_printf(m, " mapped=%lu", md->pages);
1868 
1869 	if (md->mapcount_max > 1)
1870 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1871 
1872 	if (md->swapcache)
1873 		seq_printf(m, " swapcache=%lu", md->swapcache);
1874 
1875 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1876 		seq_printf(m, " active=%lu", md->active);
1877 
1878 	if (md->writeback)
1879 		seq_printf(m, " writeback=%lu", md->writeback);
1880 
1881 	for_each_node_state(nid, N_MEMORY)
1882 		if (md->node[nid])
1883 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1884 
1885 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1886 out:
1887 	seq_putc(m, '\n');
1888 	m_cache_vma(m, vma);
1889 	return 0;
1890 }
1891 
1892 static const struct seq_operations proc_pid_numa_maps_op = {
1893 	.start  = m_start,
1894 	.next   = m_next,
1895 	.stop   = m_stop,
1896 	.show   = show_numa_map,
1897 };
1898 
1899 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1900 {
1901 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1902 				sizeof(struct numa_maps_private));
1903 }
1904 
1905 const struct file_operations proc_pid_numa_maps_operations = {
1906 	.open		= pid_numa_maps_open,
1907 	.read		= seq_read,
1908 	.llseek		= seq_lseek,
1909 	.release	= proc_map_release,
1910 };
1911 
1912 #endif /* CONFIG_NUMA */
1913