1 #include <linux/mm.h> 2 #include <linux/vmacache.h> 3 #include <linux/hugetlb.h> 4 #include <linux/huge_mm.h> 5 #include <linux/mount.h> 6 #include <linux/seq_file.h> 7 #include <linux/highmem.h> 8 #include <linux/ptrace.h> 9 #include <linux/slab.h> 10 #include <linux/pagemap.h> 11 #include <linux/mempolicy.h> 12 #include <linux/rmap.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/page_idle.h> 17 #include <linux/shmem_fs.h> 18 19 #include <asm/elf.h> 20 #include <asm/uaccess.h> 21 #include <asm/tlbflush.h> 22 #include "internal.h" 23 24 void task_mem(struct seq_file *m, struct mm_struct *mm) 25 { 26 unsigned long text, lib, swap, ptes, pmds, anon, file, shmem; 27 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; 28 29 anon = get_mm_counter(mm, MM_ANONPAGES); 30 file = get_mm_counter(mm, MM_FILEPAGES); 31 shmem = get_mm_counter(mm, MM_SHMEMPAGES); 32 33 /* 34 * Note: to minimize their overhead, mm maintains hiwater_vm and 35 * hiwater_rss only when about to *lower* total_vm or rss. Any 36 * collector of these hiwater stats must therefore get total_vm 37 * and rss too, which will usually be the higher. Barriers? not 38 * worth the effort, such snapshots can always be inconsistent. 39 */ 40 hiwater_vm = total_vm = mm->total_vm; 41 if (hiwater_vm < mm->hiwater_vm) 42 hiwater_vm = mm->hiwater_vm; 43 hiwater_rss = total_rss = anon + file + shmem; 44 if (hiwater_rss < mm->hiwater_rss) 45 hiwater_rss = mm->hiwater_rss; 46 47 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10; 48 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text; 49 swap = get_mm_counter(mm, MM_SWAPENTS); 50 ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes); 51 pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm); 52 seq_printf(m, 53 "VmPeak:\t%8lu kB\n" 54 "VmSize:\t%8lu kB\n" 55 "VmLck:\t%8lu kB\n" 56 "VmPin:\t%8lu kB\n" 57 "VmHWM:\t%8lu kB\n" 58 "VmRSS:\t%8lu kB\n" 59 "RssAnon:\t%8lu kB\n" 60 "RssFile:\t%8lu kB\n" 61 "RssShmem:\t%8lu kB\n" 62 "VmData:\t%8lu kB\n" 63 "VmStk:\t%8lu kB\n" 64 "VmExe:\t%8lu kB\n" 65 "VmLib:\t%8lu kB\n" 66 "VmPTE:\t%8lu kB\n" 67 "VmPMD:\t%8lu kB\n" 68 "VmSwap:\t%8lu kB\n", 69 hiwater_vm << (PAGE_SHIFT-10), 70 total_vm << (PAGE_SHIFT-10), 71 mm->locked_vm << (PAGE_SHIFT-10), 72 mm->pinned_vm << (PAGE_SHIFT-10), 73 hiwater_rss << (PAGE_SHIFT-10), 74 total_rss << (PAGE_SHIFT-10), 75 anon << (PAGE_SHIFT-10), 76 file << (PAGE_SHIFT-10), 77 shmem << (PAGE_SHIFT-10), 78 mm->data_vm << (PAGE_SHIFT-10), 79 mm->stack_vm << (PAGE_SHIFT-10), text, lib, 80 ptes >> 10, 81 pmds >> 10, 82 swap << (PAGE_SHIFT-10)); 83 hugetlb_report_usage(m, mm); 84 } 85 86 unsigned long task_vsize(struct mm_struct *mm) 87 { 88 return PAGE_SIZE * mm->total_vm; 89 } 90 91 unsigned long task_statm(struct mm_struct *mm, 92 unsigned long *shared, unsigned long *text, 93 unsigned long *data, unsigned long *resident) 94 { 95 *shared = get_mm_counter(mm, MM_FILEPAGES) + 96 get_mm_counter(mm, MM_SHMEMPAGES); 97 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) 98 >> PAGE_SHIFT; 99 *data = mm->data_vm + mm->stack_vm; 100 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES); 101 return mm->total_vm; 102 } 103 104 #ifdef CONFIG_NUMA 105 /* 106 * Save get_task_policy() for show_numa_map(). 107 */ 108 static void hold_task_mempolicy(struct proc_maps_private *priv) 109 { 110 struct task_struct *task = priv->task; 111 112 task_lock(task); 113 priv->task_mempolicy = get_task_policy(task); 114 mpol_get(priv->task_mempolicy); 115 task_unlock(task); 116 } 117 static void release_task_mempolicy(struct proc_maps_private *priv) 118 { 119 mpol_put(priv->task_mempolicy); 120 } 121 #else 122 static void hold_task_mempolicy(struct proc_maps_private *priv) 123 { 124 } 125 static void release_task_mempolicy(struct proc_maps_private *priv) 126 { 127 } 128 #endif 129 130 static void vma_stop(struct proc_maps_private *priv) 131 { 132 struct mm_struct *mm = priv->mm; 133 134 release_task_mempolicy(priv); 135 up_read(&mm->mmap_sem); 136 mmput(mm); 137 } 138 139 static struct vm_area_struct * 140 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma) 141 { 142 if (vma == priv->tail_vma) 143 return NULL; 144 return vma->vm_next ?: priv->tail_vma; 145 } 146 147 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma) 148 { 149 if (m->count < m->size) /* vma is copied successfully */ 150 m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL; 151 } 152 153 static void *m_start(struct seq_file *m, loff_t *ppos) 154 { 155 struct proc_maps_private *priv = m->private; 156 unsigned long last_addr = m->version; 157 struct mm_struct *mm; 158 struct vm_area_struct *vma; 159 unsigned int pos = *ppos; 160 161 /* See m_cache_vma(). Zero at the start or after lseek. */ 162 if (last_addr == -1UL) 163 return NULL; 164 165 priv->task = get_proc_task(priv->inode); 166 if (!priv->task) 167 return ERR_PTR(-ESRCH); 168 169 mm = priv->mm; 170 if (!mm || !atomic_inc_not_zero(&mm->mm_users)) 171 return NULL; 172 173 down_read(&mm->mmap_sem); 174 hold_task_mempolicy(priv); 175 priv->tail_vma = get_gate_vma(mm); 176 177 if (last_addr) { 178 vma = find_vma(mm, last_addr); 179 if (vma && (vma = m_next_vma(priv, vma))) 180 return vma; 181 } 182 183 m->version = 0; 184 if (pos < mm->map_count) { 185 for (vma = mm->mmap; pos; pos--) { 186 m->version = vma->vm_start; 187 vma = vma->vm_next; 188 } 189 return vma; 190 } 191 192 /* we do not bother to update m->version in this case */ 193 if (pos == mm->map_count && priv->tail_vma) 194 return priv->tail_vma; 195 196 vma_stop(priv); 197 return NULL; 198 } 199 200 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 201 { 202 struct proc_maps_private *priv = m->private; 203 struct vm_area_struct *next; 204 205 (*pos)++; 206 next = m_next_vma(priv, v); 207 if (!next) 208 vma_stop(priv); 209 return next; 210 } 211 212 static void m_stop(struct seq_file *m, void *v) 213 { 214 struct proc_maps_private *priv = m->private; 215 216 if (!IS_ERR_OR_NULL(v)) 217 vma_stop(priv); 218 if (priv->task) { 219 put_task_struct(priv->task); 220 priv->task = NULL; 221 } 222 } 223 224 static int proc_maps_open(struct inode *inode, struct file *file, 225 const struct seq_operations *ops, int psize) 226 { 227 struct proc_maps_private *priv = __seq_open_private(file, ops, psize); 228 229 if (!priv) 230 return -ENOMEM; 231 232 priv->inode = inode; 233 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); 234 if (IS_ERR(priv->mm)) { 235 int err = PTR_ERR(priv->mm); 236 237 seq_release_private(inode, file); 238 return err; 239 } 240 241 return 0; 242 } 243 244 static int proc_map_release(struct inode *inode, struct file *file) 245 { 246 struct seq_file *seq = file->private_data; 247 struct proc_maps_private *priv = seq->private; 248 249 if (priv->mm) 250 mmdrop(priv->mm); 251 252 return seq_release_private(inode, file); 253 } 254 255 static int do_maps_open(struct inode *inode, struct file *file, 256 const struct seq_operations *ops) 257 { 258 return proc_maps_open(inode, file, ops, 259 sizeof(struct proc_maps_private)); 260 } 261 262 /* 263 * Indicate if the VMA is a stack for the given task; for 264 * /proc/PID/maps that is the stack of the main task. 265 */ 266 static int is_stack(struct proc_maps_private *priv, 267 struct vm_area_struct *vma, int is_pid) 268 { 269 int stack = 0; 270 271 if (is_pid) { 272 stack = vma->vm_start <= vma->vm_mm->start_stack && 273 vma->vm_end >= vma->vm_mm->start_stack; 274 } else { 275 struct inode *inode = priv->inode; 276 struct task_struct *task; 277 278 rcu_read_lock(); 279 task = pid_task(proc_pid(inode), PIDTYPE_PID); 280 if (task) 281 stack = vma_is_stack_for_task(vma, task); 282 rcu_read_unlock(); 283 } 284 return stack; 285 } 286 287 static void 288 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid) 289 { 290 struct mm_struct *mm = vma->vm_mm; 291 struct file *file = vma->vm_file; 292 struct proc_maps_private *priv = m->private; 293 vm_flags_t flags = vma->vm_flags; 294 unsigned long ino = 0; 295 unsigned long long pgoff = 0; 296 unsigned long start, end; 297 dev_t dev = 0; 298 const char *name = NULL; 299 300 if (file) { 301 struct inode *inode = file_inode(vma->vm_file); 302 dev = inode->i_sb->s_dev; 303 ino = inode->i_ino; 304 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT; 305 } 306 307 /* We don't show the stack guard page in /proc/maps */ 308 start = vma->vm_start; 309 if (stack_guard_page_start(vma, start)) 310 start += PAGE_SIZE; 311 end = vma->vm_end; 312 if (stack_guard_page_end(vma, end)) 313 end -= PAGE_SIZE; 314 315 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1); 316 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ", 317 start, 318 end, 319 flags & VM_READ ? 'r' : '-', 320 flags & VM_WRITE ? 'w' : '-', 321 flags & VM_EXEC ? 'x' : '-', 322 flags & VM_MAYSHARE ? 's' : 'p', 323 pgoff, 324 MAJOR(dev), MINOR(dev), ino); 325 326 /* 327 * Print the dentry name for named mappings, and a 328 * special [heap] marker for the heap: 329 */ 330 if (file) { 331 seq_pad(m, ' '); 332 seq_file_path(m, file, "\n"); 333 goto done; 334 } 335 336 if (vma->vm_ops && vma->vm_ops->name) { 337 name = vma->vm_ops->name(vma); 338 if (name) 339 goto done; 340 } 341 342 name = arch_vma_name(vma); 343 if (!name) { 344 if (!mm) { 345 name = "[vdso]"; 346 goto done; 347 } 348 349 if (vma->vm_start <= mm->brk && 350 vma->vm_end >= mm->start_brk) { 351 name = "[heap]"; 352 goto done; 353 } 354 355 if (is_stack(priv, vma, is_pid)) 356 name = "[stack]"; 357 } 358 359 done: 360 if (name) { 361 seq_pad(m, ' '); 362 seq_puts(m, name); 363 } 364 seq_putc(m, '\n'); 365 } 366 367 static int show_map(struct seq_file *m, void *v, int is_pid) 368 { 369 show_map_vma(m, v, is_pid); 370 m_cache_vma(m, v); 371 return 0; 372 } 373 374 static int show_pid_map(struct seq_file *m, void *v) 375 { 376 return show_map(m, v, 1); 377 } 378 379 static int show_tid_map(struct seq_file *m, void *v) 380 { 381 return show_map(m, v, 0); 382 } 383 384 static const struct seq_operations proc_pid_maps_op = { 385 .start = m_start, 386 .next = m_next, 387 .stop = m_stop, 388 .show = show_pid_map 389 }; 390 391 static const struct seq_operations proc_tid_maps_op = { 392 .start = m_start, 393 .next = m_next, 394 .stop = m_stop, 395 .show = show_tid_map 396 }; 397 398 static int pid_maps_open(struct inode *inode, struct file *file) 399 { 400 return do_maps_open(inode, file, &proc_pid_maps_op); 401 } 402 403 static int tid_maps_open(struct inode *inode, struct file *file) 404 { 405 return do_maps_open(inode, file, &proc_tid_maps_op); 406 } 407 408 const struct file_operations proc_pid_maps_operations = { 409 .open = pid_maps_open, 410 .read = seq_read, 411 .llseek = seq_lseek, 412 .release = proc_map_release, 413 }; 414 415 const struct file_operations proc_tid_maps_operations = { 416 .open = tid_maps_open, 417 .read = seq_read, 418 .llseek = seq_lseek, 419 .release = proc_map_release, 420 }; 421 422 /* 423 * Proportional Set Size(PSS): my share of RSS. 424 * 425 * PSS of a process is the count of pages it has in memory, where each 426 * page is divided by the number of processes sharing it. So if a 427 * process has 1000 pages all to itself, and 1000 shared with one other 428 * process, its PSS will be 1500. 429 * 430 * To keep (accumulated) division errors low, we adopt a 64bit 431 * fixed-point pss counter to minimize division errors. So (pss >> 432 * PSS_SHIFT) would be the real byte count. 433 * 434 * A shift of 12 before division means (assuming 4K page size): 435 * - 1M 3-user-pages add up to 8KB errors; 436 * - supports mapcount up to 2^24, or 16M; 437 * - supports PSS up to 2^52 bytes, or 4PB. 438 */ 439 #define PSS_SHIFT 12 440 441 #ifdef CONFIG_PROC_PAGE_MONITOR 442 struct mem_size_stats { 443 unsigned long resident; 444 unsigned long shared_clean; 445 unsigned long shared_dirty; 446 unsigned long private_clean; 447 unsigned long private_dirty; 448 unsigned long referenced; 449 unsigned long anonymous; 450 unsigned long anonymous_thp; 451 unsigned long swap; 452 unsigned long shared_hugetlb; 453 unsigned long private_hugetlb; 454 u64 pss; 455 u64 swap_pss; 456 bool check_shmem_swap; 457 }; 458 459 static void smaps_account(struct mem_size_stats *mss, struct page *page, 460 bool compound, bool young, bool dirty) 461 { 462 int i, nr = compound ? 1 << compound_order(page) : 1; 463 unsigned long size = nr * PAGE_SIZE; 464 465 if (PageAnon(page)) 466 mss->anonymous += size; 467 468 mss->resident += size; 469 /* Accumulate the size in pages that have been accessed. */ 470 if (young || page_is_young(page) || PageReferenced(page)) 471 mss->referenced += size; 472 473 /* 474 * page_count(page) == 1 guarantees the page is mapped exactly once. 475 * If any subpage of the compound page mapped with PTE it would elevate 476 * page_count(). 477 */ 478 if (page_count(page) == 1) { 479 if (dirty || PageDirty(page)) 480 mss->private_dirty += size; 481 else 482 mss->private_clean += size; 483 mss->pss += (u64)size << PSS_SHIFT; 484 return; 485 } 486 487 for (i = 0; i < nr; i++, page++) { 488 int mapcount = page_mapcount(page); 489 490 if (mapcount >= 2) { 491 if (dirty || PageDirty(page)) 492 mss->shared_dirty += PAGE_SIZE; 493 else 494 mss->shared_clean += PAGE_SIZE; 495 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount; 496 } else { 497 if (dirty || PageDirty(page)) 498 mss->private_dirty += PAGE_SIZE; 499 else 500 mss->private_clean += PAGE_SIZE; 501 mss->pss += PAGE_SIZE << PSS_SHIFT; 502 } 503 } 504 } 505 506 #ifdef CONFIG_SHMEM 507 static int smaps_pte_hole(unsigned long addr, unsigned long end, 508 struct mm_walk *walk) 509 { 510 struct mem_size_stats *mss = walk->private; 511 512 mss->swap += shmem_partial_swap_usage( 513 walk->vma->vm_file->f_mapping, addr, end); 514 515 return 0; 516 } 517 #endif 518 519 static void smaps_pte_entry(pte_t *pte, unsigned long addr, 520 struct mm_walk *walk) 521 { 522 struct mem_size_stats *mss = walk->private; 523 struct vm_area_struct *vma = walk->vma; 524 struct page *page = NULL; 525 526 if (pte_present(*pte)) { 527 page = vm_normal_page(vma, addr, *pte); 528 } else if (is_swap_pte(*pte)) { 529 swp_entry_t swpent = pte_to_swp_entry(*pte); 530 531 if (!non_swap_entry(swpent)) { 532 int mapcount; 533 534 mss->swap += PAGE_SIZE; 535 mapcount = swp_swapcount(swpent); 536 if (mapcount >= 2) { 537 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT; 538 539 do_div(pss_delta, mapcount); 540 mss->swap_pss += pss_delta; 541 } else { 542 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT; 543 } 544 } else if (is_migration_entry(swpent)) 545 page = migration_entry_to_page(swpent); 546 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap 547 && pte_none(*pte))) { 548 page = find_get_entry(vma->vm_file->f_mapping, 549 linear_page_index(vma, addr)); 550 if (!page) 551 return; 552 553 if (radix_tree_exceptional_entry(page)) 554 mss->swap += PAGE_SIZE; 555 else 556 put_page(page); 557 558 return; 559 } 560 561 if (!page) 562 return; 563 564 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte)); 565 } 566 567 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 568 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 569 struct mm_walk *walk) 570 { 571 struct mem_size_stats *mss = walk->private; 572 struct vm_area_struct *vma = walk->vma; 573 struct page *page; 574 575 /* FOLL_DUMP will return -EFAULT on huge zero page */ 576 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP); 577 if (IS_ERR_OR_NULL(page)) 578 return; 579 mss->anonymous_thp += HPAGE_PMD_SIZE; 580 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd)); 581 } 582 #else 583 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 584 struct mm_walk *walk) 585 { 586 } 587 #endif 588 589 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 590 struct mm_walk *walk) 591 { 592 struct vm_area_struct *vma = walk->vma; 593 pte_t *pte; 594 spinlock_t *ptl; 595 596 ptl = pmd_trans_huge_lock(pmd, vma); 597 if (ptl) { 598 smaps_pmd_entry(pmd, addr, walk); 599 spin_unlock(ptl); 600 return 0; 601 } 602 603 if (pmd_trans_unstable(pmd)) 604 return 0; 605 /* 606 * The mmap_sem held all the way back in m_start() is what 607 * keeps khugepaged out of here and from collapsing things 608 * in here. 609 */ 610 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 611 for (; addr != end; pte++, addr += PAGE_SIZE) 612 smaps_pte_entry(pte, addr, walk); 613 pte_unmap_unlock(pte - 1, ptl); 614 cond_resched(); 615 return 0; 616 } 617 618 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma) 619 { 620 /* 621 * Don't forget to update Documentation/ on changes. 622 */ 623 static const char mnemonics[BITS_PER_LONG][2] = { 624 /* 625 * In case if we meet a flag we don't know about. 626 */ 627 [0 ... (BITS_PER_LONG-1)] = "??", 628 629 [ilog2(VM_READ)] = "rd", 630 [ilog2(VM_WRITE)] = "wr", 631 [ilog2(VM_EXEC)] = "ex", 632 [ilog2(VM_SHARED)] = "sh", 633 [ilog2(VM_MAYREAD)] = "mr", 634 [ilog2(VM_MAYWRITE)] = "mw", 635 [ilog2(VM_MAYEXEC)] = "me", 636 [ilog2(VM_MAYSHARE)] = "ms", 637 [ilog2(VM_GROWSDOWN)] = "gd", 638 [ilog2(VM_PFNMAP)] = "pf", 639 [ilog2(VM_DENYWRITE)] = "dw", 640 #ifdef CONFIG_X86_INTEL_MPX 641 [ilog2(VM_MPX)] = "mp", 642 #endif 643 [ilog2(VM_LOCKED)] = "lo", 644 [ilog2(VM_IO)] = "io", 645 [ilog2(VM_SEQ_READ)] = "sr", 646 [ilog2(VM_RAND_READ)] = "rr", 647 [ilog2(VM_DONTCOPY)] = "dc", 648 [ilog2(VM_DONTEXPAND)] = "de", 649 [ilog2(VM_ACCOUNT)] = "ac", 650 [ilog2(VM_NORESERVE)] = "nr", 651 [ilog2(VM_HUGETLB)] = "ht", 652 [ilog2(VM_ARCH_1)] = "ar", 653 [ilog2(VM_DONTDUMP)] = "dd", 654 #ifdef CONFIG_MEM_SOFT_DIRTY 655 [ilog2(VM_SOFTDIRTY)] = "sd", 656 #endif 657 [ilog2(VM_MIXEDMAP)] = "mm", 658 [ilog2(VM_HUGEPAGE)] = "hg", 659 [ilog2(VM_NOHUGEPAGE)] = "nh", 660 [ilog2(VM_MERGEABLE)] = "mg", 661 [ilog2(VM_UFFD_MISSING)]= "um", 662 [ilog2(VM_UFFD_WP)] = "uw", 663 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 664 /* These come out via ProtectionKey: */ 665 [ilog2(VM_PKEY_BIT0)] = "", 666 [ilog2(VM_PKEY_BIT1)] = "", 667 [ilog2(VM_PKEY_BIT2)] = "", 668 [ilog2(VM_PKEY_BIT3)] = "", 669 #endif 670 }; 671 size_t i; 672 673 seq_puts(m, "VmFlags: "); 674 for (i = 0; i < BITS_PER_LONG; i++) { 675 if (!mnemonics[i][0]) 676 continue; 677 if (vma->vm_flags & (1UL << i)) { 678 seq_printf(m, "%c%c ", 679 mnemonics[i][0], mnemonics[i][1]); 680 } 681 } 682 seq_putc(m, '\n'); 683 } 684 685 #ifdef CONFIG_HUGETLB_PAGE 686 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask, 687 unsigned long addr, unsigned long end, 688 struct mm_walk *walk) 689 { 690 struct mem_size_stats *mss = walk->private; 691 struct vm_area_struct *vma = walk->vma; 692 struct page *page = NULL; 693 694 if (pte_present(*pte)) { 695 page = vm_normal_page(vma, addr, *pte); 696 } else if (is_swap_pte(*pte)) { 697 swp_entry_t swpent = pte_to_swp_entry(*pte); 698 699 if (is_migration_entry(swpent)) 700 page = migration_entry_to_page(swpent); 701 } 702 if (page) { 703 int mapcount = page_mapcount(page); 704 705 if (mapcount >= 2) 706 mss->shared_hugetlb += huge_page_size(hstate_vma(vma)); 707 else 708 mss->private_hugetlb += huge_page_size(hstate_vma(vma)); 709 } 710 return 0; 711 } 712 #endif /* HUGETLB_PAGE */ 713 714 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma) 715 { 716 } 717 718 static int show_smap(struct seq_file *m, void *v, int is_pid) 719 { 720 struct vm_area_struct *vma = v; 721 struct mem_size_stats mss; 722 struct mm_walk smaps_walk = { 723 .pmd_entry = smaps_pte_range, 724 #ifdef CONFIG_HUGETLB_PAGE 725 .hugetlb_entry = smaps_hugetlb_range, 726 #endif 727 .mm = vma->vm_mm, 728 .private = &mss, 729 }; 730 731 memset(&mss, 0, sizeof mss); 732 733 #ifdef CONFIG_SHMEM 734 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) { 735 /* 736 * For shared or readonly shmem mappings we know that all 737 * swapped out pages belong to the shmem object, and we can 738 * obtain the swap value much more efficiently. For private 739 * writable mappings, we might have COW pages that are 740 * not affected by the parent swapped out pages of the shmem 741 * object, so we have to distinguish them during the page walk. 742 * Unless we know that the shmem object (or the part mapped by 743 * our VMA) has no swapped out pages at all. 744 */ 745 unsigned long shmem_swapped = shmem_swap_usage(vma); 746 747 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) || 748 !(vma->vm_flags & VM_WRITE)) { 749 mss.swap = shmem_swapped; 750 } else { 751 mss.check_shmem_swap = true; 752 smaps_walk.pte_hole = smaps_pte_hole; 753 } 754 } 755 #endif 756 757 /* mmap_sem is held in m_start */ 758 walk_page_vma(vma, &smaps_walk); 759 760 show_map_vma(m, vma, is_pid); 761 762 seq_printf(m, 763 "Size: %8lu kB\n" 764 "Rss: %8lu kB\n" 765 "Pss: %8lu kB\n" 766 "Shared_Clean: %8lu kB\n" 767 "Shared_Dirty: %8lu kB\n" 768 "Private_Clean: %8lu kB\n" 769 "Private_Dirty: %8lu kB\n" 770 "Referenced: %8lu kB\n" 771 "Anonymous: %8lu kB\n" 772 "AnonHugePages: %8lu kB\n" 773 "Shared_Hugetlb: %8lu kB\n" 774 "Private_Hugetlb: %7lu kB\n" 775 "Swap: %8lu kB\n" 776 "SwapPss: %8lu kB\n" 777 "KernelPageSize: %8lu kB\n" 778 "MMUPageSize: %8lu kB\n" 779 "Locked: %8lu kB\n", 780 (vma->vm_end - vma->vm_start) >> 10, 781 mss.resident >> 10, 782 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)), 783 mss.shared_clean >> 10, 784 mss.shared_dirty >> 10, 785 mss.private_clean >> 10, 786 mss.private_dirty >> 10, 787 mss.referenced >> 10, 788 mss.anonymous >> 10, 789 mss.anonymous_thp >> 10, 790 mss.shared_hugetlb >> 10, 791 mss.private_hugetlb >> 10, 792 mss.swap >> 10, 793 (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)), 794 vma_kernel_pagesize(vma) >> 10, 795 vma_mmu_pagesize(vma) >> 10, 796 (vma->vm_flags & VM_LOCKED) ? 797 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0); 798 799 arch_show_smap(m, vma); 800 show_smap_vma_flags(m, vma); 801 m_cache_vma(m, vma); 802 return 0; 803 } 804 805 static int show_pid_smap(struct seq_file *m, void *v) 806 { 807 return show_smap(m, v, 1); 808 } 809 810 static int show_tid_smap(struct seq_file *m, void *v) 811 { 812 return show_smap(m, v, 0); 813 } 814 815 static const struct seq_operations proc_pid_smaps_op = { 816 .start = m_start, 817 .next = m_next, 818 .stop = m_stop, 819 .show = show_pid_smap 820 }; 821 822 static const struct seq_operations proc_tid_smaps_op = { 823 .start = m_start, 824 .next = m_next, 825 .stop = m_stop, 826 .show = show_tid_smap 827 }; 828 829 static int pid_smaps_open(struct inode *inode, struct file *file) 830 { 831 return do_maps_open(inode, file, &proc_pid_smaps_op); 832 } 833 834 static int tid_smaps_open(struct inode *inode, struct file *file) 835 { 836 return do_maps_open(inode, file, &proc_tid_smaps_op); 837 } 838 839 const struct file_operations proc_pid_smaps_operations = { 840 .open = pid_smaps_open, 841 .read = seq_read, 842 .llseek = seq_lseek, 843 .release = proc_map_release, 844 }; 845 846 const struct file_operations proc_tid_smaps_operations = { 847 .open = tid_smaps_open, 848 .read = seq_read, 849 .llseek = seq_lseek, 850 .release = proc_map_release, 851 }; 852 853 enum clear_refs_types { 854 CLEAR_REFS_ALL = 1, 855 CLEAR_REFS_ANON, 856 CLEAR_REFS_MAPPED, 857 CLEAR_REFS_SOFT_DIRTY, 858 CLEAR_REFS_MM_HIWATER_RSS, 859 CLEAR_REFS_LAST, 860 }; 861 862 struct clear_refs_private { 863 enum clear_refs_types type; 864 }; 865 866 #ifdef CONFIG_MEM_SOFT_DIRTY 867 static inline void clear_soft_dirty(struct vm_area_struct *vma, 868 unsigned long addr, pte_t *pte) 869 { 870 /* 871 * The soft-dirty tracker uses #PF-s to catch writes 872 * to pages, so write-protect the pte as well. See the 873 * Documentation/vm/soft-dirty.txt for full description 874 * of how soft-dirty works. 875 */ 876 pte_t ptent = *pte; 877 878 if (pte_present(ptent)) { 879 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte); 880 ptent = pte_wrprotect(ptent); 881 ptent = pte_clear_soft_dirty(ptent); 882 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent); 883 } else if (is_swap_pte(ptent)) { 884 ptent = pte_swp_clear_soft_dirty(ptent); 885 set_pte_at(vma->vm_mm, addr, pte, ptent); 886 } 887 } 888 #else 889 static inline void clear_soft_dirty(struct vm_area_struct *vma, 890 unsigned long addr, pte_t *pte) 891 { 892 } 893 #endif 894 895 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 896 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 897 unsigned long addr, pmd_t *pmdp) 898 { 899 pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 900 901 pmd = pmd_wrprotect(pmd); 902 pmd = pmd_clear_soft_dirty(pmd); 903 904 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 905 } 906 #else 907 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 908 unsigned long addr, pmd_t *pmdp) 909 { 910 } 911 #endif 912 913 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, 914 unsigned long end, struct mm_walk *walk) 915 { 916 struct clear_refs_private *cp = walk->private; 917 struct vm_area_struct *vma = walk->vma; 918 pte_t *pte, ptent; 919 spinlock_t *ptl; 920 struct page *page; 921 922 ptl = pmd_trans_huge_lock(pmd, vma); 923 if (ptl) { 924 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 925 clear_soft_dirty_pmd(vma, addr, pmd); 926 goto out; 927 } 928 929 page = pmd_page(*pmd); 930 931 /* Clear accessed and referenced bits. */ 932 pmdp_test_and_clear_young(vma, addr, pmd); 933 test_and_clear_page_young(page); 934 ClearPageReferenced(page); 935 out: 936 spin_unlock(ptl); 937 return 0; 938 } 939 940 if (pmd_trans_unstable(pmd)) 941 return 0; 942 943 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 944 for (; addr != end; pte++, addr += PAGE_SIZE) { 945 ptent = *pte; 946 947 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 948 clear_soft_dirty(vma, addr, pte); 949 continue; 950 } 951 952 if (!pte_present(ptent)) 953 continue; 954 955 page = vm_normal_page(vma, addr, ptent); 956 if (!page) 957 continue; 958 959 /* Clear accessed and referenced bits. */ 960 ptep_test_and_clear_young(vma, addr, pte); 961 test_and_clear_page_young(page); 962 ClearPageReferenced(page); 963 } 964 pte_unmap_unlock(pte - 1, ptl); 965 cond_resched(); 966 return 0; 967 } 968 969 static int clear_refs_test_walk(unsigned long start, unsigned long end, 970 struct mm_walk *walk) 971 { 972 struct clear_refs_private *cp = walk->private; 973 struct vm_area_struct *vma = walk->vma; 974 975 if (vma->vm_flags & VM_PFNMAP) 976 return 1; 977 978 /* 979 * Writing 1 to /proc/pid/clear_refs affects all pages. 980 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages. 981 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages. 982 * Writing 4 to /proc/pid/clear_refs affects all pages. 983 */ 984 if (cp->type == CLEAR_REFS_ANON && vma->vm_file) 985 return 1; 986 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file) 987 return 1; 988 return 0; 989 } 990 991 static ssize_t clear_refs_write(struct file *file, const char __user *buf, 992 size_t count, loff_t *ppos) 993 { 994 struct task_struct *task; 995 char buffer[PROC_NUMBUF]; 996 struct mm_struct *mm; 997 struct vm_area_struct *vma; 998 enum clear_refs_types type; 999 int itype; 1000 int rv; 1001 1002 memset(buffer, 0, sizeof(buffer)); 1003 if (count > sizeof(buffer) - 1) 1004 count = sizeof(buffer) - 1; 1005 if (copy_from_user(buffer, buf, count)) 1006 return -EFAULT; 1007 rv = kstrtoint(strstrip(buffer), 10, &itype); 1008 if (rv < 0) 1009 return rv; 1010 type = (enum clear_refs_types)itype; 1011 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST) 1012 return -EINVAL; 1013 1014 task = get_proc_task(file_inode(file)); 1015 if (!task) 1016 return -ESRCH; 1017 mm = get_task_mm(task); 1018 if (mm) { 1019 struct clear_refs_private cp = { 1020 .type = type, 1021 }; 1022 struct mm_walk clear_refs_walk = { 1023 .pmd_entry = clear_refs_pte_range, 1024 .test_walk = clear_refs_test_walk, 1025 .mm = mm, 1026 .private = &cp, 1027 }; 1028 1029 if (type == CLEAR_REFS_MM_HIWATER_RSS) { 1030 if (down_write_killable(&mm->mmap_sem)) { 1031 count = -EINTR; 1032 goto out_mm; 1033 } 1034 1035 /* 1036 * Writing 5 to /proc/pid/clear_refs resets the peak 1037 * resident set size to this mm's current rss value. 1038 */ 1039 reset_mm_hiwater_rss(mm); 1040 up_write(&mm->mmap_sem); 1041 goto out_mm; 1042 } 1043 1044 down_read(&mm->mmap_sem); 1045 if (type == CLEAR_REFS_SOFT_DIRTY) { 1046 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1047 if (!(vma->vm_flags & VM_SOFTDIRTY)) 1048 continue; 1049 up_read(&mm->mmap_sem); 1050 if (down_write_killable(&mm->mmap_sem)) { 1051 count = -EINTR; 1052 goto out_mm; 1053 } 1054 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1055 vma->vm_flags &= ~VM_SOFTDIRTY; 1056 vma_set_page_prot(vma); 1057 } 1058 downgrade_write(&mm->mmap_sem); 1059 break; 1060 } 1061 mmu_notifier_invalidate_range_start(mm, 0, -1); 1062 } 1063 walk_page_range(0, ~0UL, &clear_refs_walk); 1064 if (type == CLEAR_REFS_SOFT_DIRTY) 1065 mmu_notifier_invalidate_range_end(mm, 0, -1); 1066 flush_tlb_mm(mm); 1067 up_read(&mm->mmap_sem); 1068 out_mm: 1069 mmput(mm); 1070 } 1071 put_task_struct(task); 1072 1073 return count; 1074 } 1075 1076 const struct file_operations proc_clear_refs_operations = { 1077 .write = clear_refs_write, 1078 .llseek = noop_llseek, 1079 }; 1080 1081 typedef struct { 1082 u64 pme; 1083 } pagemap_entry_t; 1084 1085 struct pagemapread { 1086 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */ 1087 pagemap_entry_t *buffer; 1088 bool show_pfn; 1089 }; 1090 1091 #define PAGEMAP_WALK_SIZE (PMD_SIZE) 1092 #define PAGEMAP_WALK_MASK (PMD_MASK) 1093 1094 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t) 1095 #define PM_PFRAME_BITS 55 1096 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0) 1097 #define PM_SOFT_DIRTY BIT_ULL(55) 1098 #define PM_MMAP_EXCLUSIVE BIT_ULL(56) 1099 #define PM_FILE BIT_ULL(61) 1100 #define PM_SWAP BIT_ULL(62) 1101 #define PM_PRESENT BIT_ULL(63) 1102 1103 #define PM_END_OF_BUFFER 1 1104 1105 static inline pagemap_entry_t make_pme(u64 frame, u64 flags) 1106 { 1107 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags }; 1108 } 1109 1110 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme, 1111 struct pagemapread *pm) 1112 { 1113 pm->buffer[pm->pos++] = *pme; 1114 if (pm->pos >= pm->len) 1115 return PM_END_OF_BUFFER; 1116 return 0; 1117 } 1118 1119 static int pagemap_pte_hole(unsigned long start, unsigned long end, 1120 struct mm_walk *walk) 1121 { 1122 struct pagemapread *pm = walk->private; 1123 unsigned long addr = start; 1124 int err = 0; 1125 1126 while (addr < end) { 1127 struct vm_area_struct *vma = find_vma(walk->mm, addr); 1128 pagemap_entry_t pme = make_pme(0, 0); 1129 /* End of address space hole, which we mark as non-present. */ 1130 unsigned long hole_end; 1131 1132 if (vma) 1133 hole_end = min(end, vma->vm_start); 1134 else 1135 hole_end = end; 1136 1137 for (; addr < hole_end; addr += PAGE_SIZE) { 1138 err = add_to_pagemap(addr, &pme, pm); 1139 if (err) 1140 goto out; 1141 } 1142 1143 if (!vma) 1144 break; 1145 1146 /* Addresses in the VMA. */ 1147 if (vma->vm_flags & VM_SOFTDIRTY) 1148 pme = make_pme(0, PM_SOFT_DIRTY); 1149 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) { 1150 err = add_to_pagemap(addr, &pme, pm); 1151 if (err) 1152 goto out; 1153 } 1154 } 1155 out: 1156 return err; 1157 } 1158 1159 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm, 1160 struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1161 { 1162 u64 frame = 0, flags = 0; 1163 struct page *page = NULL; 1164 1165 if (pte_present(pte)) { 1166 if (pm->show_pfn) 1167 frame = pte_pfn(pte); 1168 flags |= PM_PRESENT; 1169 page = vm_normal_page(vma, addr, pte); 1170 if (pte_soft_dirty(pte)) 1171 flags |= PM_SOFT_DIRTY; 1172 } else if (is_swap_pte(pte)) { 1173 swp_entry_t entry; 1174 if (pte_swp_soft_dirty(pte)) 1175 flags |= PM_SOFT_DIRTY; 1176 entry = pte_to_swp_entry(pte); 1177 frame = swp_type(entry) | 1178 (swp_offset(entry) << MAX_SWAPFILES_SHIFT); 1179 flags |= PM_SWAP; 1180 if (is_migration_entry(entry)) 1181 page = migration_entry_to_page(entry); 1182 } 1183 1184 if (page && !PageAnon(page)) 1185 flags |= PM_FILE; 1186 if (page && page_mapcount(page) == 1) 1187 flags |= PM_MMAP_EXCLUSIVE; 1188 if (vma->vm_flags & VM_SOFTDIRTY) 1189 flags |= PM_SOFT_DIRTY; 1190 1191 return make_pme(frame, flags); 1192 } 1193 1194 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end, 1195 struct mm_walk *walk) 1196 { 1197 struct vm_area_struct *vma = walk->vma; 1198 struct pagemapread *pm = walk->private; 1199 spinlock_t *ptl; 1200 pte_t *pte, *orig_pte; 1201 int err = 0; 1202 1203 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1204 ptl = pmd_trans_huge_lock(pmdp, vma); 1205 if (ptl) { 1206 u64 flags = 0, frame = 0; 1207 pmd_t pmd = *pmdp; 1208 1209 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd)) 1210 flags |= PM_SOFT_DIRTY; 1211 1212 /* 1213 * Currently pmd for thp is always present because thp 1214 * can not be swapped-out, migrated, or HWPOISONed 1215 * (split in such cases instead.) 1216 * This if-check is just to prepare for future implementation. 1217 */ 1218 if (pmd_present(pmd)) { 1219 struct page *page = pmd_page(pmd); 1220 1221 if (page_mapcount(page) == 1) 1222 flags |= PM_MMAP_EXCLUSIVE; 1223 1224 flags |= PM_PRESENT; 1225 if (pm->show_pfn) 1226 frame = pmd_pfn(pmd) + 1227 ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1228 } 1229 1230 for (; addr != end; addr += PAGE_SIZE) { 1231 pagemap_entry_t pme = make_pme(frame, flags); 1232 1233 err = add_to_pagemap(addr, &pme, pm); 1234 if (err) 1235 break; 1236 if (pm->show_pfn && (flags & PM_PRESENT)) 1237 frame++; 1238 } 1239 spin_unlock(ptl); 1240 return err; 1241 } 1242 1243 if (pmd_trans_unstable(pmdp)) 1244 return 0; 1245 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1246 1247 /* 1248 * We can assume that @vma always points to a valid one and @end never 1249 * goes beyond vma->vm_end. 1250 */ 1251 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl); 1252 for (; addr < end; pte++, addr += PAGE_SIZE) { 1253 pagemap_entry_t pme; 1254 1255 pme = pte_to_pagemap_entry(pm, vma, addr, *pte); 1256 err = add_to_pagemap(addr, &pme, pm); 1257 if (err) 1258 break; 1259 } 1260 pte_unmap_unlock(orig_pte, ptl); 1261 1262 cond_resched(); 1263 1264 return err; 1265 } 1266 1267 #ifdef CONFIG_HUGETLB_PAGE 1268 /* This function walks within one hugetlb entry in the single call */ 1269 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask, 1270 unsigned long addr, unsigned long end, 1271 struct mm_walk *walk) 1272 { 1273 struct pagemapread *pm = walk->private; 1274 struct vm_area_struct *vma = walk->vma; 1275 u64 flags = 0, frame = 0; 1276 int err = 0; 1277 pte_t pte; 1278 1279 if (vma->vm_flags & VM_SOFTDIRTY) 1280 flags |= PM_SOFT_DIRTY; 1281 1282 pte = huge_ptep_get(ptep); 1283 if (pte_present(pte)) { 1284 struct page *page = pte_page(pte); 1285 1286 if (!PageAnon(page)) 1287 flags |= PM_FILE; 1288 1289 if (page_mapcount(page) == 1) 1290 flags |= PM_MMAP_EXCLUSIVE; 1291 1292 flags |= PM_PRESENT; 1293 if (pm->show_pfn) 1294 frame = pte_pfn(pte) + 1295 ((addr & ~hmask) >> PAGE_SHIFT); 1296 } 1297 1298 for (; addr != end; addr += PAGE_SIZE) { 1299 pagemap_entry_t pme = make_pme(frame, flags); 1300 1301 err = add_to_pagemap(addr, &pme, pm); 1302 if (err) 1303 return err; 1304 if (pm->show_pfn && (flags & PM_PRESENT)) 1305 frame++; 1306 } 1307 1308 cond_resched(); 1309 1310 return err; 1311 } 1312 #endif /* HUGETLB_PAGE */ 1313 1314 /* 1315 * /proc/pid/pagemap - an array mapping virtual pages to pfns 1316 * 1317 * For each page in the address space, this file contains one 64-bit entry 1318 * consisting of the following: 1319 * 1320 * Bits 0-54 page frame number (PFN) if present 1321 * Bits 0-4 swap type if swapped 1322 * Bits 5-54 swap offset if swapped 1323 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt) 1324 * Bit 56 page exclusively mapped 1325 * Bits 57-60 zero 1326 * Bit 61 page is file-page or shared-anon 1327 * Bit 62 page swapped 1328 * Bit 63 page present 1329 * 1330 * If the page is not present but in swap, then the PFN contains an 1331 * encoding of the swap file number and the page's offset into the 1332 * swap. Unmapped pages return a null PFN. This allows determining 1333 * precisely which pages are mapped (or in swap) and comparing mapped 1334 * pages between processes. 1335 * 1336 * Efficient users of this interface will use /proc/pid/maps to 1337 * determine which areas of memory are actually mapped and llseek to 1338 * skip over unmapped regions. 1339 */ 1340 static ssize_t pagemap_read(struct file *file, char __user *buf, 1341 size_t count, loff_t *ppos) 1342 { 1343 struct mm_struct *mm = file->private_data; 1344 struct pagemapread pm; 1345 struct mm_walk pagemap_walk = {}; 1346 unsigned long src; 1347 unsigned long svpfn; 1348 unsigned long start_vaddr; 1349 unsigned long end_vaddr; 1350 int ret = 0, copied = 0; 1351 1352 if (!mm || !atomic_inc_not_zero(&mm->mm_users)) 1353 goto out; 1354 1355 ret = -EINVAL; 1356 /* file position must be aligned */ 1357 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) 1358 goto out_mm; 1359 1360 ret = 0; 1361 if (!count) 1362 goto out_mm; 1363 1364 /* do not disclose physical addresses: attack vector */ 1365 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN); 1366 1367 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT); 1368 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY); 1369 ret = -ENOMEM; 1370 if (!pm.buffer) 1371 goto out_mm; 1372 1373 pagemap_walk.pmd_entry = pagemap_pmd_range; 1374 pagemap_walk.pte_hole = pagemap_pte_hole; 1375 #ifdef CONFIG_HUGETLB_PAGE 1376 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range; 1377 #endif 1378 pagemap_walk.mm = mm; 1379 pagemap_walk.private = ± 1380 1381 src = *ppos; 1382 svpfn = src / PM_ENTRY_BYTES; 1383 start_vaddr = svpfn << PAGE_SHIFT; 1384 end_vaddr = mm->task_size; 1385 1386 /* watch out for wraparound */ 1387 if (svpfn > mm->task_size >> PAGE_SHIFT) 1388 start_vaddr = end_vaddr; 1389 1390 /* 1391 * The odds are that this will stop walking way 1392 * before end_vaddr, because the length of the 1393 * user buffer is tracked in "pm", and the walk 1394 * will stop when we hit the end of the buffer. 1395 */ 1396 ret = 0; 1397 while (count && (start_vaddr < end_vaddr)) { 1398 int len; 1399 unsigned long end; 1400 1401 pm.pos = 0; 1402 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK; 1403 /* overflow ? */ 1404 if (end < start_vaddr || end > end_vaddr) 1405 end = end_vaddr; 1406 down_read(&mm->mmap_sem); 1407 ret = walk_page_range(start_vaddr, end, &pagemap_walk); 1408 up_read(&mm->mmap_sem); 1409 start_vaddr = end; 1410 1411 len = min(count, PM_ENTRY_BYTES * pm.pos); 1412 if (copy_to_user(buf, pm.buffer, len)) { 1413 ret = -EFAULT; 1414 goto out_free; 1415 } 1416 copied += len; 1417 buf += len; 1418 count -= len; 1419 } 1420 *ppos += copied; 1421 if (!ret || ret == PM_END_OF_BUFFER) 1422 ret = copied; 1423 1424 out_free: 1425 kfree(pm.buffer); 1426 out_mm: 1427 mmput(mm); 1428 out: 1429 return ret; 1430 } 1431 1432 static int pagemap_open(struct inode *inode, struct file *file) 1433 { 1434 struct mm_struct *mm; 1435 1436 mm = proc_mem_open(inode, PTRACE_MODE_READ); 1437 if (IS_ERR(mm)) 1438 return PTR_ERR(mm); 1439 file->private_data = mm; 1440 return 0; 1441 } 1442 1443 static int pagemap_release(struct inode *inode, struct file *file) 1444 { 1445 struct mm_struct *mm = file->private_data; 1446 1447 if (mm) 1448 mmdrop(mm); 1449 return 0; 1450 } 1451 1452 const struct file_operations proc_pagemap_operations = { 1453 .llseek = mem_lseek, /* borrow this */ 1454 .read = pagemap_read, 1455 .open = pagemap_open, 1456 .release = pagemap_release, 1457 }; 1458 #endif /* CONFIG_PROC_PAGE_MONITOR */ 1459 1460 #ifdef CONFIG_NUMA 1461 1462 struct numa_maps { 1463 unsigned long pages; 1464 unsigned long anon; 1465 unsigned long active; 1466 unsigned long writeback; 1467 unsigned long mapcount_max; 1468 unsigned long dirty; 1469 unsigned long swapcache; 1470 unsigned long node[MAX_NUMNODES]; 1471 }; 1472 1473 struct numa_maps_private { 1474 struct proc_maps_private proc_maps; 1475 struct numa_maps md; 1476 }; 1477 1478 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty, 1479 unsigned long nr_pages) 1480 { 1481 int count = page_mapcount(page); 1482 1483 md->pages += nr_pages; 1484 if (pte_dirty || PageDirty(page)) 1485 md->dirty += nr_pages; 1486 1487 if (PageSwapCache(page)) 1488 md->swapcache += nr_pages; 1489 1490 if (PageActive(page) || PageUnevictable(page)) 1491 md->active += nr_pages; 1492 1493 if (PageWriteback(page)) 1494 md->writeback += nr_pages; 1495 1496 if (PageAnon(page)) 1497 md->anon += nr_pages; 1498 1499 if (count > md->mapcount_max) 1500 md->mapcount_max = count; 1501 1502 md->node[page_to_nid(page)] += nr_pages; 1503 } 1504 1505 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma, 1506 unsigned long addr) 1507 { 1508 struct page *page; 1509 int nid; 1510 1511 if (!pte_present(pte)) 1512 return NULL; 1513 1514 page = vm_normal_page(vma, addr, pte); 1515 if (!page) 1516 return NULL; 1517 1518 if (PageReserved(page)) 1519 return NULL; 1520 1521 nid = page_to_nid(page); 1522 if (!node_isset(nid, node_states[N_MEMORY])) 1523 return NULL; 1524 1525 return page; 1526 } 1527 1528 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1529 static struct page *can_gather_numa_stats_pmd(pmd_t pmd, 1530 struct vm_area_struct *vma, 1531 unsigned long addr) 1532 { 1533 struct page *page; 1534 int nid; 1535 1536 if (!pmd_present(pmd)) 1537 return NULL; 1538 1539 page = vm_normal_page_pmd(vma, addr, pmd); 1540 if (!page) 1541 return NULL; 1542 1543 if (PageReserved(page)) 1544 return NULL; 1545 1546 nid = page_to_nid(page); 1547 if (!node_isset(nid, node_states[N_MEMORY])) 1548 return NULL; 1549 1550 return page; 1551 } 1552 #endif 1553 1554 static int gather_pte_stats(pmd_t *pmd, unsigned long addr, 1555 unsigned long end, struct mm_walk *walk) 1556 { 1557 struct numa_maps *md = walk->private; 1558 struct vm_area_struct *vma = walk->vma; 1559 spinlock_t *ptl; 1560 pte_t *orig_pte; 1561 pte_t *pte; 1562 1563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1564 ptl = pmd_trans_huge_lock(pmd, vma); 1565 if (ptl) { 1566 struct page *page; 1567 1568 page = can_gather_numa_stats_pmd(*pmd, vma, addr); 1569 if (page) 1570 gather_stats(page, md, pmd_dirty(*pmd), 1571 HPAGE_PMD_SIZE/PAGE_SIZE); 1572 spin_unlock(ptl); 1573 return 0; 1574 } 1575 1576 if (pmd_trans_unstable(pmd)) 1577 return 0; 1578 #endif 1579 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 1580 do { 1581 struct page *page = can_gather_numa_stats(*pte, vma, addr); 1582 if (!page) 1583 continue; 1584 gather_stats(page, md, pte_dirty(*pte), 1); 1585 1586 } while (pte++, addr += PAGE_SIZE, addr != end); 1587 pte_unmap_unlock(orig_pte, ptl); 1588 return 0; 1589 } 1590 #ifdef CONFIG_HUGETLB_PAGE 1591 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1592 unsigned long addr, unsigned long end, struct mm_walk *walk) 1593 { 1594 pte_t huge_pte = huge_ptep_get(pte); 1595 struct numa_maps *md; 1596 struct page *page; 1597 1598 if (!pte_present(huge_pte)) 1599 return 0; 1600 1601 page = pte_page(huge_pte); 1602 if (!page) 1603 return 0; 1604 1605 md = walk->private; 1606 gather_stats(page, md, pte_dirty(huge_pte), 1); 1607 return 0; 1608 } 1609 1610 #else 1611 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1612 unsigned long addr, unsigned long end, struct mm_walk *walk) 1613 { 1614 return 0; 1615 } 1616 #endif 1617 1618 /* 1619 * Display pages allocated per node and memory policy via /proc. 1620 */ 1621 static int show_numa_map(struct seq_file *m, void *v, int is_pid) 1622 { 1623 struct numa_maps_private *numa_priv = m->private; 1624 struct proc_maps_private *proc_priv = &numa_priv->proc_maps; 1625 struct vm_area_struct *vma = v; 1626 struct numa_maps *md = &numa_priv->md; 1627 struct file *file = vma->vm_file; 1628 struct mm_struct *mm = vma->vm_mm; 1629 struct mm_walk walk = { 1630 .hugetlb_entry = gather_hugetlb_stats, 1631 .pmd_entry = gather_pte_stats, 1632 .private = md, 1633 .mm = mm, 1634 }; 1635 struct mempolicy *pol; 1636 char buffer[64]; 1637 int nid; 1638 1639 if (!mm) 1640 return 0; 1641 1642 /* Ensure we start with an empty set of numa_maps statistics. */ 1643 memset(md, 0, sizeof(*md)); 1644 1645 pol = __get_vma_policy(vma, vma->vm_start); 1646 if (pol) { 1647 mpol_to_str(buffer, sizeof(buffer), pol); 1648 mpol_cond_put(pol); 1649 } else { 1650 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy); 1651 } 1652 1653 seq_printf(m, "%08lx %s", vma->vm_start, buffer); 1654 1655 if (file) { 1656 seq_puts(m, " file="); 1657 seq_file_path(m, file, "\n\t= "); 1658 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) { 1659 seq_puts(m, " heap"); 1660 } else if (is_stack(proc_priv, vma, is_pid)) { 1661 seq_puts(m, " stack"); 1662 } 1663 1664 if (is_vm_hugetlb_page(vma)) 1665 seq_puts(m, " huge"); 1666 1667 /* mmap_sem is held by m_start */ 1668 walk_page_vma(vma, &walk); 1669 1670 if (!md->pages) 1671 goto out; 1672 1673 if (md->anon) 1674 seq_printf(m, " anon=%lu", md->anon); 1675 1676 if (md->dirty) 1677 seq_printf(m, " dirty=%lu", md->dirty); 1678 1679 if (md->pages != md->anon && md->pages != md->dirty) 1680 seq_printf(m, " mapped=%lu", md->pages); 1681 1682 if (md->mapcount_max > 1) 1683 seq_printf(m, " mapmax=%lu", md->mapcount_max); 1684 1685 if (md->swapcache) 1686 seq_printf(m, " swapcache=%lu", md->swapcache); 1687 1688 if (md->active < md->pages && !is_vm_hugetlb_page(vma)) 1689 seq_printf(m, " active=%lu", md->active); 1690 1691 if (md->writeback) 1692 seq_printf(m, " writeback=%lu", md->writeback); 1693 1694 for_each_node_state(nid, N_MEMORY) 1695 if (md->node[nid]) 1696 seq_printf(m, " N%d=%lu", nid, md->node[nid]); 1697 1698 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10); 1699 out: 1700 seq_putc(m, '\n'); 1701 m_cache_vma(m, vma); 1702 return 0; 1703 } 1704 1705 static int show_pid_numa_map(struct seq_file *m, void *v) 1706 { 1707 return show_numa_map(m, v, 1); 1708 } 1709 1710 static int show_tid_numa_map(struct seq_file *m, void *v) 1711 { 1712 return show_numa_map(m, v, 0); 1713 } 1714 1715 static const struct seq_operations proc_pid_numa_maps_op = { 1716 .start = m_start, 1717 .next = m_next, 1718 .stop = m_stop, 1719 .show = show_pid_numa_map, 1720 }; 1721 1722 static const struct seq_operations proc_tid_numa_maps_op = { 1723 .start = m_start, 1724 .next = m_next, 1725 .stop = m_stop, 1726 .show = show_tid_numa_map, 1727 }; 1728 1729 static int numa_maps_open(struct inode *inode, struct file *file, 1730 const struct seq_operations *ops) 1731 { 1732 return proc_maps_open(inode, file, ops, 1733 sizeof(struct numa_maps_private)); 1734 } 1735 1736 static int pid_numa_maps_open(struct inode *inode, struct file *file) 1737 { 1738 return numa_maps_open(inode, file, &proc_pid_numa_maps_op); 1739 } 1740 1741 static int tid_numa_maps_open(struct inode *inode, struct file *file) 1742 { 1743 return numa_maps_open(inode, file, &proc_tid_numa_maps_op); 1744 } 1745 1746 const struct file_operations proc_pid_numa_maps_operations = { 1747 .open = pid_numa_maps_open, 1748 .read = seq_read, 1749 .llseek = seq_lseek, 1750 .release = proc_map_release, 1751 }; 1752 1753 const struct file_operations proc_tid_numa_maps_operations = { 1754 .open = tid_numa_maps_open, 1755 .read = seq_read, 1756 .llseek = seq_lseek, 1757 .release = proc_map_release, 1758 }; 1759 #endif /* CONFIG_NUMA */ 1760