xref: /openbmc/linux/fs/proc/task_mmu.c (revision 4c9ca2fd)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22 
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27 
28 #define SEQ_PUT_DEC(str, val) \
29 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32 	unsigned long text, lib, swap, anon, file, shmem;
33 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34 
35 	anon = get_mm_counter(mm, MM_ANONPAGES);
36 	file = get_mm_counter(mm, MM_FILEPAGES);
37 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38 
39 	/*
40 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
42 	 * collector of these hiwater stats must therefore get total_vm
43 	 * and rss too, which will usually be the higher.  Barriers? not
44 	 * worth the effort, such snapshots can always be inconsistent.
45 	 */
46 	hiwater_vm = total_vm = mm->total_vm;
47 	if (hiwater_vm < mm->hiwater_vm)
48 		hiwater_vm = mm->hiwater_vm;
49 	hiwater_rss = total_rss = anon + file + shmem;
50 	if (hiwater_rss < mm->hiwater_rss)
51 		hiwater_rss = mm->hiwater_rss;
52 
53 	/* split executable areas between text and lib */
54 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 	text = min(text, mm->exec_vm << PAGE_SHIFT);
56 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
57 
58 	swap = get_mm_counter(mm, MM_SWAPENTS);
59 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 	SEQ_PUT_DEC(" kB\nVmPin:\t", mm->pinned_vm);
63 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 	seq_put_decimal_ull_width(m,
71 		    " kB\nVmExe:\t", text >> 10, 8);
72 	seq_put_decimal_ull_width(m,
73 		    " kB\nVmLib:\t", lib >> 10, 8);
74 	seq_put_decimal_ull_width(m,
75 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 	seq_puts(m, " kB\n");
78 	hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81 
82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84 	return PAGE_SIZE * mm->total_vm;
85 }
86 
87 unsigned long task_statm(struct mm_struct *mm,
88 			 unsigned long *shared, unsigned long *text,
89 			 unsigned long *data, unsigned long *resident)
90 {
91 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
92 			get_mm_counter(mm, MM_SHMEMPAGES);
93 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 								>> PAGE_SHIFT;
95 	*data = mm->data_vm + mm->stack_vm;
96 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 	return mm->total_vm;
98 }
99 
100 #ifdef CONFIG_NUMA
101 /*
102  * Save get_task_policy() for show_numa_map().
103  */
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106 	struct task_struct *task = priv->task;
107 
108 	task_lock(task);
109 	priv->task_mempolicy = get_task_policy(task);
110 	mpol_get(priv->task_mempolicy);
111 	task_unlock(task);
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115 	mpol_put(priv->task_mempolicy);
116 }
117 #else
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125 
126 static void vma_stop(struct proc_maps_private *priv)
127 {
128 	struct mm_struct *mm = priv->mm;
129 
130 	release_task_mempolicy(priv);
131 	up_read(&mm->mmap_sem);
132 	mmput(mm);
133 }
134 
135 static struct vm_area_struct *
136 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
137 {
138 	if (vma == priv->tail_vma)
139 		return NULL;
140 	return vma->vm_next ?: priv->tail_vma;
141 }
142 
143 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
144 {
145 	if (m->count < m->size)	/* vma is copied successfully */
146 		m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
147 }
148 
149 static void *m_start(struct seq_file *m, loff_t *ppos)
150 {
151 	struct proc_maps_private *priv = m->private;
152 	unsigned long last_addr = m->version;
153 	struct mm_struct *mm;
154 	struct vm_area_struct *vma;
155 	unsigned int pos = *ppos;
156 
157 	/* See m_cache_vma(). Zero at the start or after lseek. */
158 	if (last_addr == -1UL)
159 		return NULL;
160 
161 	priv->task = get_proc_task(priv->inode);
162 	if (!priv->task)
163 		return ERR_PTR(-ESRCH);
164 
165 	mm = priv->mm;
166 	if (!mm || !mmget_not_zero(mm))
167 		return NULL;
168 
169 	down_read(&mm->mmap_sem);
170 	hold_task_mempolicy(priv);
171 	priv->tail_vma = get_gate_vma(mm);
172 
173 	if (last_addr) {
174 		vma = find_vma(mm, last_addr - 1);
175 		if (vma && vma->vm_start <= last_addr)
176 			vma = m_next_vma(priv, vma);
177 		if (vma)
178 			return vma;
179 	}
180 
181 	m->version = 0;
182 	if (pos < mm->map_count) {
183 		for (vma = mm->mmap; pos; pos--) {
184 			m->version = vma->vm_start;
185 			vma = vma->vm_next;
186 		}
187 		return vma;
188 	}
189 
190 	/* we do not bother to update m->version in this case */
191 	if (pos == mm->map_count && priv->tail_vma)
192 		return priv->tail_vma;
193 
194 	vma_stop(priv);
195 	return NULL;
196 }
197 
198 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
199 {
200 	struct proc_maps_private *priv = m->private;
201 	struct vm_area_struct *next;
202 
203 	(*pos)++;
204 	next = m_next_vma(priv, v);
205 	if (!next)
206 		vma_stop(priv);
207 	return next;
208 }
209 
210 static void m_stop(struct seq_file *m, void *v)
211 {
212 	struct proc_maps_private *priv = m->private;
213 
214 	if (!IS_ERR_OR_NULL(v))
215 		vma_stop(priv);
216 	if (priv->task) {
217 		put_task_struct(priv->task);
218 		priv->task = NULL;
219 	}
220 }
221 
222 static int proc_maps_open(struct inode *inode, struct file *file,
223 			const struct seq_operations *ops, int psize)
224 {
225 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
226 
227 	if (!priv)
228 		return -ENOMEM;
229 
230 	priv->inode = inode;
231 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
232 	if (IS_ERR(priv->mm)) {
233 		int err = PTR_ERR(priv->mm);
234 
235 		seq_release_private(inode, file);
236 		return err;
237 	}
238 
239 	return 0;
240 }
241 
242 static int proc_map_release(struct inode *inode, struct file *file)
243 {
244 	struct seq_file *seq = file->private_data;
245 	struct proc_maps_private *priv = seq->private;
246 
247 	if (priv->mm)
248 		mmdrop(priv->mm);
249 
250 	kfree(priv->rollup);
251 	return seq_release_private(inode, file);
252 }
253 
254 static int do_maps_open(struct inode *inode, struct file *file,
255 			const struct seq_operations *ops)
256 {
257 	return proc_maps_open(inode, file, ops,
258 				sizeof(struct proc_maps_private));
259 }
260 
261 /*
262  * Indicate if the VMA is a stack for the given task; for
263  * /proc/PID/maps that is the stack of the main task.
264  */
265 static int is_stack(struct vm_area_struct *vma)
266 {
267 	/*
268 	 * We make no effort to guess what a given thread considers to be
269 	 * its "stack".  It's not even well-defined for programs written
270 	 * languages like Go.
271 	 */
272 	return vma->vm_start <= vma->vm_mm->start_stack &&
273 		vma->vm_end >= vma->vm_mm->start_stack;
274 }
275 
276 static void show_vma_header_prefix(struct seq_file *m,
277 				   unsigned long start, unsigned long end,
278 				   vm_flags_t flags, unsigned long long pgoff,
279 				   dev_t dev, unsigned long ino)
280 {
281 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
282 	seq_put_hex_ll(m, NULL, start, 8);
283 	seq_put_hex_ll(m, "-", end, 8);
284 	seq_putc(m, ' ');
285 	seq_putc(m, flags & VM_READ ? 'r' : '-');
286 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
287 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
288 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
289 	seq_put_hex_ll(m, " ", pgoff, 8);
290 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
291 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
292 	seq_put_decimal_ull(m, " ", ino);
293 	seq_putc(m, ' ');
294 }
295 
296 static void
297 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
298 {
299 	struct mm_struct *mm = vma->vm_mm;
300 	struct file *file = vma->vm_file;
301 	vm_flags_t flags = vma->vm_flags;
302 	unsigned long ino = 0;
303 	unsigned long long pgoff = 0;
304 	unsigned long start, end;
305 	dev_t dev = 0;
306 	const char *name = NULL;
307 
308 	if (file) {
309 		struct inode *inode = file_inode(vma->vm_file);
310 		dev = inode->i_sb->s_dev;
311 		ino = inode->i_ino;
312 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
313 	}
314 
315 	start = vma->vm_start;
316 	end = vma->vm_end;
317 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
318 
319 	/*
320 	 * Print the dentry name for named mappings, and a
321 	 * special [heap] marker for the heap:
322 	 */
323 	if (file) {
324 		seq_pad(m, ' ');
325 		seq_file_path(m, file, "\n");
326 		goto done;
327 	}
328 
329 	if (vma->vm_ops && vma->vm_ops->name) {
330 		name = vma->vm_ops->name(vma);
331 		if (name)
332 			goto done;
333 	}
334 
335 	name = arch_vma_name(vma);
336 	if (!name) {
337 		if (!mm) {
338 			name = "[vdso]";
339 			goto done;
340 		}
341 
342 		if (vma->vm_start <= mm->brk &&
343 		    vma->vm_end >= mm->start_brk) {
344 			name = "[heap]";
345 			goto done;
346 		}
347 
348 		if (is_stack(vma))
349 			name = "[stack]";
350 	}
351 
352 done:
353 	if (name) {
354 		seq_pad(m, ' ');
355 		seq_puts(m, name);
356 	}
357 	seq_putc(m, '\n');
358 }
359 
360 static int show_map(struct seq_file *m, void *v, int is_pid)
361 {
362 	show_map_vma(m, v, is_pid);
363 	m_cache_vma(m, v);
364 	return 0;
365 }
366 
367 static int show_pid_map(struct seq_file *m, void *v)
368 {
369 	return show_map(m, v, 1);
370 }
371 
372 static int show_tid_map(struct seq_file *m, void *v)
373 {
374 	return show_map(m, v, 0);
375 }
376 
377 static const struct seq_operations proc_pid_maps_op = {
378 	.start	= m_start,
379 	.next	= m_next,
380 	.stop	= m_stop,
381 	.show	= show_pid_map
382 };
383 
384 static const struct seq_operations proc_tid_maps_op = {
385 	.start	= m_start,
386 	.next	= m_next,
387 	.stop	= m_stop,
388 	.show	= show_tid_map
389 };
390 
391 static int pid_maps_open(struct inode *inode, struct file *file)
392 {
393 	return do_maps_open(inode, file, &proc_pid_maps_op);
394 }
395 
396 static int tid_maps_open(struct inode *inode, struct file *file)
397 {
398 	return do_maps_open(inode, file, &proc_tid_maps_op);
399 }
400 
401 const struct file_operations proc_pid_maps_operations = {
402 	.open		= pid_maps_open,
403 	.read		= seq_read,
404 	.llseek		= seq_lseek,
405 	.release	= proc_map_release,
406 };
407 
408 const struct file_operations proc_tid_maps_operations = {
409 	.open		= tid_maps_open,
410 	.read		= seq_read,
411 	.llseek		= seq_lseek,
412 	.release	= proc_map_release,
413 };
414 
415 /*
416  * Proportional Set Size(PSS): my share of RSS.
417  *
418  * PSS of a process is the count of pages it has in memory, where each
419  * page is divided by the number of processes sharing it.  So if a
420  * process has 1000 pages all to itself, and 1000 shared with one other
421  * process, its PSS will be 1500.
422  *
423  * To keep (accumulated) division errors low, we adopt a 64bit
424  * fixed-point pss counter to minimize division errors. So (pss >>
425  * PSS_SHIFT) would be the real byte count.
426  *
427  * A shift of 12 before division means (assuming 4K page size):
428  * 	- 1M 3-user-pages add up to 8KB errors;
429  * 	- supports mapcount up to 2^24, or 16M;
430  * 	- supports PSS up to 2^52 bytes, or 4PB.
431  */
432 #define PSS_SHIFT 12
433 
434 #ifdef CONFIG_PROC_PAGE_MONITOR
435 struct mem_size_stats {
436 	bool first;
437 	unsigned long resident;
438 	unsigned long shared_clean;
439 	unsigned long shared_dirty;
440 	unsigned long private_clean;
441 	unsigned long private_dirty;
442 	unsigned long referenced;
443 	unsigned long anonymous;
444 	unsigned long lazyfree;
445 	unsigned long anonymous_thp;
446 	unsigned long shmem_thp;
447 	unsigned long swap;
448 	unsigned long shared_hugetlb;
449 	unsigned long private_hugetlb;
450 	unsigned long first_vma_start;
451 	u64 pss;
452 	u64 pss_locked;
453 	u64 swap_pss;
454 	bool check_shmem_swap;
455 };
456 
457 static void smaps_account(struct mem_size_stats *mss, struct page *page,
458 		bool compound, bool young, bool dirty)
459 {
460 	int i, nr = compound ? 1 << compound_order(page) : 1;
461 	unsigned long size = nr * PAGE_SIZE;
462 
463 	if (PageAnon(page)) {
464 		mss->anonymous += size;
465 		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
466 			mss->lazyfree += size;
467 	}
468 
469 	mss->resident += size;
470 	/* Accumulate the size in pages that have been accessed. */
471 	if (young || page_is_young(page) || PageReferenced(page))
472 		mss->referenced += size;
473 
474 	/*
475 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
476 	 * If any subpage of the compound page mapped with PTE it would elevate
477 	 * page_count().
478 	 */
479 	if (page_count(page) == 1) {
480 		if (dirty || PageDirty(page))
481 			mss->private_dirty += size;
482 		else
483 			mss->private_clean += size;
484 		mss->pss += (u64)size << PSS_SHIFT;
485 		return;
486 	}
487 
488 	for (i = 0; i < nr; i++, page++) {
489 		int mapcount = page_mapcount(page);
490 
491 		if (mapcount >= 2) {
492 			if (dirty || PageDirty(page))
493 				mss->shared_dirty += PAGE_SIZE;
494 			else
495 				mss->shared_clean += PAGE_SIZE;
496 			mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
497 		} else {
498 			if (dirty || PageDirty(page))
499 				mss->private_dirty += PAGE_SIZE;
500 			else
501 				mss->private_clean += PAGE_SIZE;
502 			mss->pss += PAGE_SIZE << PSS_SHIFT;
503 		}
504 	}
505 }
506 
507 #ifdef CONFIG_SHMEM
508 static int smaps_pte_hole(unsigned long addr, unsigned long end,
509 		struct mm_walk *walk)
510 {
511 	struct mem_size_stats *mss = walk->private;
512 
513 	mss->swap += shmem_partial_swap_usage(
514 			walk->vma->vm_file->f_mapping, addr, end);
515 
516 	return 0;
517 }
518 #endif
519 
520 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
521 		struct mm_walk *walk)
522 {
523 	struct mem_size_stats *mss = walk->private;
524 	struct vm_area_struct *vma = walk->vma;
525 	struct page *page = NULL;
526 
527 	if (pte_present(*pte)) {
528 		page = vm_normal_page(vma, addr, *pte);
529 	} else if (is_swap_pte(*pte)) {
530 		swp_entry_t swpent = pte_to_swp_entry(*pte);
531 
532 		if (!non_swap_entry(swpent)) {
533 			int mapcount;
534 
535 			mss->swap += PAGE_SIZE;
536 			mapcount = swp_swapcount(swpent);
537 			if (mapcount >= 2) {
538 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
539 
540 				do_div(pss_delta, mapcount);
541 				mss->swap_pss += pss_delta;
542 			} else {
543 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
544 			}
545 		} else if (is_migration_entry(swpent))
546 			page = migration_entry_to_page(swpent);
547 		else if (is_device_private_entry(swpent))
548 			page = device_private_entry_to_page(swpent);
549 	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
550 							&& pte_none(*pte))) {
551 		page = find_get_entry(vma->vm_file->f_mapping,
552 						linear_page_index(vma, addr));
553 		if (!page)
554 			return;
555 
556 		if (radix_tree_exceptional_entry(page))
557 			mss->swap += PAGE_SIZE;
558 		else
559 			put_page(page);
560 
561 		return;
562 	}
563 
564 	if (!page)
565 		return;
566 
567 	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
568 }
569 
570 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
571 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
572 		struct mm_walk *walk)
573 {
574 	struct mem_size_stats *mss = walk->private;
575 	struct vm_area_struct *vma = walk->vma;
576 	struct page *page;
577 
578 	/* FOLL_DUMP will return -EFAULT on huge zero page */
579 	page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
580 	if (IS_ERR_OR_NULL(page))
581 		return;
582 	if (PageAnon(page))
583 		mss->anonymous_thp += HPAGE_PMD_SIZE;
584 	else if (PageSwapBacked(page))
585 		mss->shmem_thp += HPAGE_PMD_SIZE;
586 	else if (is_zone_device_page(page))
587 		/* pass */;
588 	else
589 		VM_BUG_ON_PAGE(1, page);
590 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
591 }
592 #else
593 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
594 		struct mm_walk *walk)
595 {
596 }
597 #endif
598 
599 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
600 			   struct mm_walk *walk)
601 {
602 	struct vm_area_struct *vma = walk->vma;
603 	pte_t *pte;
604 	spinlock_t *ptl;
605 
606 	ptl = pmd_trans_huge_lock(pmd, vma);
607 	if (ptl) {
608 		if (pmd_present(*pmd))
609 			smaps_pmd_entry(pmd, addr, walk);
610 		spin_unlock(ptl);
611 		goto out;
612 	}
613 
614 	if (pmd_trans_unstable(pmd))
615 		goto out;
616 	/*
617 	 * The mmap_sem held all the way back in m_start() is what
618 	 * keeps khugepaged out of here and from collapsing things
619 	 * in here.
620 	 */
621 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
622 	for (; addr != end; pte++, addr += PAGE_SIZE)
623 		smaps_pte_entry(pte, addr, walk);
624 	pte_unmap_unlock(pte - 1, ptl);
625 out:
626 	cond_resched();
627 	return 0;
628 }
629 
630 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
631 {
632 	/*
633 	 * Don't forget to update Documentation/ on changes.
634 	 */
635 	static const char mnemonics[BITS_PER_LONG][2] = {
636 		/*
637 		 * In case if we meet a flag we don't know about.
638 		 */
639 		[0 ... (BITS_PER_LONG-1)] = "??",
640 
641 		[ilog2(VM_READ)]	= "rd",
642 		[ilog2(VM_WRITE)]	= "wr",
643 		[ilog2(VM_EXEC)]	= "ex",
644 		[ilog2(VM_SHARED)]	= "sh",
645 		[ilog2(VM_MAYREAD)]	= "mr",
646 		[ilog2(VM_MAYWRITE)]	= "mw",
647 		[ilog2(VM_MAYEXEC)]	= "me",
648 		[ilog2(VM_MAYSHARE)]	= "ms",
649 		[ilog2(VM_GROWSDOWN)]	= "gd",
650 		[ilog2(VM_PFNMAP)]	= "pf",
651 		[ilog2(VM_DENYWRITE)]	= "dw",
652 #ifdef CONFIG_X86_INTEL_MPX
653 		[ilog2(VM_MPX)]		= "mp",
654 #endif
655 		[ilog2(VM_LOCKED)]	= "lo",
656 		[ilog2(VM_IO)]		= "io",
657 		[ilog2(VM_SEQ_READ)]	= "sr",
658 		[ilog2(VM_RAND_READ)]	= "rr",
659 		[ilog2(VM_DONTCOPY)]	= "dc",
660 		[ilog2(VM_DONTEXPAND)]	= "de",
661 		[ilog2(VM_ACCOUNT)]	= "ac",
662 		[ilog2(VM_NORESERVE)]	= "nr",
663 		[ilog2(VM_HUGETLB)]	= "ht",
664 		[ilog2(VM_SYNC)]	= "sf",
665 		[ilog2(VM_ARCH_1)]	= "ar",
666 		[ilog2(VM_WIPEONFORK)]	= "wf",
667 		[ilog2(VM_DONTDUMP)]	= "dd",
668 #ifdef CONFIG_MEM_SOFT_DIRTY
669 		[ilog2(VM_SOFTDIRTY)]	= "sd",
670 #endif
671 		[ilog2(VM_MIXEDMAP)]	= "mm",
672 		[ilog2(VM_HUGEPAGE)]	= "hg",
673 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
674 		[ilog2(VM_MERGEABLE)]	= "mg",
675 		[ilog2(VM_UFFD_MISSING)]= "um",
676 		[ilog2(VM_UFFD_WP)]	= "uw",
677 #ifdef CONFIG_ARCH_HAS_PKEYS
678 		/* These come out via ProtectionKey: */
679 		[ilog2(VM_PKEY_BIT0)]	= "",
680 		[ilog2(VM_PKEY_BIT1)]	= "",
681 		[ilog2(VM_PKEY_BIT2)]	= "",
682 		[ilog2(VM_PKEY_BIT3)]	= "",
683 #if VM_PKEY_BIT4
684 		[ilog2(VM_PKEY_BIT4)]	= "",
685 #endif
686 #endif /* CONFIG_ARCH_HAS_PKEYS */
687 	};
688 	size_t i;
689 
690 	seq_puts(m, "VmFlags: ");
691 	for (i = 0; i < BITS_PER_LONG; i++) {
692 		if (!mnemonics[i][0])
693 			continue;
694 		if (vma->vm_flags & (1UL << i)) {
695 			seq_putc(m, mnemonics[i][0]);
696 			seq_putc(m, mnemonics[i][1]);
697 			seq_putc(m, ' ');
698 		}
699 	}
700 	seq_putc(m, '\n');
701 }
702 
703 #ifdef CONFIG_HUGETLB_PAGE
704 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
705 				 unsigned long addr, unsigned long end,
706 				 struct mm_walk *walk)
707 {
708 	struct mem_size_stats *mss = walk->private;
709 	struct vm_area_struct *vma = walk->vma;
710 	struct page *page = NULL;
711 
712 	if (pte_present(*pte)) {
713 		page = vm_normal_page(vma, addr, *pte);
714 	} else if (is_swap_pte(*pte)) {
715 		swp_entry_t swpent = pte_to_swp_entry(*pte);
716 
717 		if (is_migration_entry(swpent))
718 			page = migration_entry_to_page(swpent);
719 		else if (is_device_private_entry(swpent))
720 			page = device_private_entry_to_page(swpent);
721 	}
722 	if (page) {
723 		int mapcount = page_mapcount(page);
724 
725 		if (mapcount >= 2)
726 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
727 		else
728 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
729 	}
730 	return 0;
731 }
732 #endif /* HUGETLB_PAGE */
733 
734 #define SEQ_PUT_DEC(str, val) \
735 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
736 static int show_smap(struct seq_file *m, void *v, int is_pid)
737 {
738 	struct proc_maps_private *priv = m->private;
739 	struct vm_area_struct *vma = v;
740 	struct mem_size_stats mss_stack;
741 	struct mem_size_stats *mss;
742 	struct mm_walk smaps_walk = {
743 		.pmd_entry = smaps_pte_range,
744 #ifdef CONFIG_HUGETLB_PAGE
745 		.hugetlb_entry = smaps_hugetlb_range,
746 #endif
747 		.mm = vma->vm_mm,
748 	};
749 	int ret = 0;
750 	bool rollup_mode;
751 	bool last_vma;
752 
753 	if (priv->rollup) {
754 		rollup_mode = true;
755 		mss = priv->rollup;
756 		if (mss->first) {
757 			mss->first_vma_start = vma->vm_start;
758 			mss->first = false;
759 		}
760 		last_vma = !m_next_vma(priv, vma);
761 	} else {
762 		rollup_mode = false;
763 		memset(&mss_stack, 0, sizeof(mss_stack));
764 		mss = &mss_stack;
765 	}
766 
767 	smaps_walk.private = mss;
768 
769 #ifdef CONFIG_SHMEM
770 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
771 		/*
772 		 * For shared or readonly shmem mappings we know that all
773 		 * swapped out pages belong to the shmem object, and we can
774 		 * obtain the swap value much more efficiently. For private
775 		 * writable mappings, we might have COW pages that are
776 		 * not affected by the parent swapped out pages of the shmem
777 		 * object, so we have to distinguish them during the page walk.
778 		 * Unless we know that the shmem object (or the part mapped by
779 		 * our VMA) has no swapped out pages at all.
780 		 */
781 		unsigned long shmem_swapped = shmem_swap_usage(vma);
782 
783 		if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
784 					!(vma->vm_flags & VM_WRITE)) {
785 			mss->swap = shmem_swapped;
786 		} else {
787 			mss->check_shmem_swap = true;
788 			smaps_walk.pte_hole = smaps_pte_hole;
789 		}
790 	}
791 #endif
792 
793 	/* mmap_sem is held in m_start */
794 	walk_page_vma(vma, &smaps_walk);
795 	if (vma->vm_flags & VM_LOCKED)
796 		mss->pss_locked += mss->pss;
797 
798 	if (!rollup_mode) {
799 		show_map_vma(m, vma, is_pid);
800 	} else if (last_vma) {
801 		show_vma_header_prefix(
802 			m, mss->first_vma_start, vma->vm_end, 0, 0, 0, 0);
803 		seq_pad(m, ' ');
804 		seq_puts(m, "[rollup]\n");
805 	} else {
806 		ret = SEQ_SKIP;
807 	}
808 
809 	if (!rollup_mode) {
810 		SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
811 		SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
812 		SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
813 		seq_puts(m, " kB\n");
814 	}
815 
816 	if (!rollup_mode || last_vma) {
817 		SEQ_PUT_DEC("Rss:            ", mss->resident);
818 		SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
819 		SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
820 		SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
821 		SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
822 		SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
823 		SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
824 		SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
825 		SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
826 		SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
827 		SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
828 		SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
829 		seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
830 					  mss->private_hugetlb >> 10, 7);
831 		SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
832 		SEQ_PUT_DEC(" kB\nSwapPss:        ",
833 						mss->swap_pss >> PSS_SHIFT);
834 		SEQ_PUT_DEC(" kB\nLocked:         ",
835 						mss->pss_locked >> PSS_SHIFT);
836 		seq_puts(m, " kB\n");
837 	}
838 	if (!rollup_mode) {
839 		if (arch_pkeys_enabled())
840 			seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
841 		show_smap_vma_flags(m, vma);
842 	}
843 	m_cache_vma(m, vma);
844 	return ret;
845 }
846 #undef SEQ_PUT_DEC
847 
848 static int show_pid_smap(struct seq_file *m, void *v)
849 {
850 	return show_smap(m, v, 1);
851 }
852 
853 static int show_tid_smap(struct seq_file *m, void *v)
854 {
855 	return show_smap(m, v, 0);
856 }
857 
858 static const struct seq_operations proc_pid_smaps_op = {
859 	.start	= m_start,
860 	.next	= m_next,
861 	.stop	= m_stop,
862 	.show	= show_pid_smap
863 };
864 
865 static const struct seq_operations proc_tid_smaps_op = {
866 	.start	= m_start,
867 	.next	= m_next,
868 	.stop	= m_stop,
869 	.show	= show_tid_smap
870 };
871 
872 static int pid_smaps_open(struct inode *inode, struct file *file)
873 {
874 	return do_maps_open(inode, file, &proc_pid_smaps_op);
875 }
876 
877 static int pid_smaps_rollup_open(struct inode *inode, struct file *file)
878 {
879 	struct seq_file *seq;
880 	struct proc_maps_private *priv;
881 	int ret = do_maps_open(inode, file, &proc_pid_smaps_op);
882 
883 	if (ret < 0)
884 		return ret;
885 	seq = file->private_data;
886 	priv = seq->private;
887 	priv->rollup = kzalloc(sizeof(*priv->rollup), GFP_KERNEL);
888 	if (!priv->rollup) {
889 		proc_map_release(inode, file);
890 		return -ENOMEM;
891 	}
892 	priv->rollup->first = true;
893 	return 0;
894 }
895 
896 static int tid_smaps_open(struct inode *inode, struct file *file)
897 {
898 	return do_maps_open(inode, file, &proc_tid_smaps_op);
899 }
900 
901 const struct file_operations proc_pid_smaps_operations = {
902 	.open		= pid_smaps_open,
903 	.read		= seq_read,
904 	.llseek		= seq_lseek,
905 	.release	= proc_map_release,
906 };
907 
908 const struct file_operations proc_pid_smaps_rollup_operations = {
909 	.open		= pid_smaps_rollup_open,
910 	.read		= seq_read,
911 	.llseek		= seq_lseek,
912 	.release	= proc_map_release,
913 };
914 
915 const struct file_operations proc_tid_smaps_operations = {
916 	.open		= tid_smaps_open,
917 	.read		= seq_read,
918 	.llseek		= seq_lseek,
919 	.release	= proc_map_release,
920 };
921 
922 enum clear_refs_types {
923 	CLEAR_REFS_ALL = 1,
924 	CLEAR_REFS_ANON,
925 	CLEAR_REFS_MAPPED,
926 	CLEAR_REFS_SOFT_DIRTY,
927 	CLEAR_REFS_MM_HIWATER_RSS,
928 	CLEAR_REFS_LAST,
929 };
930 
931 struct clear_refs_private {
932 	enum clear_refs_types type;
933 };
934 
935 #ifdef CONFIG_MEM_SOFT_DIRTY
936 static inline void clear_soft_dirty(struct vm_area_struct *vma,
937 		unsigned long addr, pte_t *pte)
938 {
939 	/*
940 	 * The soft-dirty tracker uses #PF-s to catch writes
941 	 * to pages, so write-protect the pte as well. See the
942 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
943 	 * of how soft-dirty works.
944 	 */
945 	pte_t ptent = *pte;
946 
947 	if (pte_present(ptent)) {
948 		ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
949 		ptent = pte_wrprotect(ptent);
950 		ptent = pte_clear_soft_dirty(ptent);
951 		ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
952 	} else if (is_swap_pte(ptent)) {
953 		ptent = pte_swp_clear_soft_dirty(ptent);
954 		set_pte_at(vma->vm_mm, addr, pte, ptent);
955 	}
956 }
957 #else
958 static inline void clear_soft_dirty(struct vm_area_struct *vma,
959 		unsigned long addr, pte_t *pte)
960 {
961 }
962 #endif
963 
964 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
965 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
966 		unsigned long addr, pmd_t *pmdp)
967 {
968 	pmd_t old, pmd = *pmdp;
969 
970 	if (pmd_present(pmd)) {
971 		/* See comment in change_huge_pmd() */
972 		old = pmdp_invalidate(vma, addr, pmdp);
973 		if (pmd_dirty(old))
974 			pmd = pmd_mkdirty(pmd);
975 		if (pmd_young(old))
976 			pmd = pmd_mkyoung(pmd);
977 
978 		pmd = pmd_wrprotect(pmd);
979 		pmd = pmd_clear_soft_dirty(pmd);
980 
981 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
982 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
983 		pmd = pmd_swp_clear_soft_dirty(pmd);
984 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
985 	}
986 }
987 #else
988 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
989 		unsigned long addr, pmd_t *pmdp)
990 {
991 }
992 #endif
993 
994 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
995 				unsigned long end, struct mm_walk *walk)
996 {
997 	struct clear_refs_private *cp = walk->private;
998 	struct vm_area_struct *vma = walk->vma;
999 	pte_t *pte, ptent;
1000 	spinlock_t *ptl;
1001 	struct page *page;
1002 
1003 	ptl = pmd_trans_huge_lock(pmd, vma);
1004 	if (ptl) {
1005 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1006 			clear_soft_dirty_pmd(vma, addr, pmd);
1007 			goto out;
1008 		}
1009 
1010 		if (!pmd_present(*pmd))
1011 			goto out;
1012 
1013 		page = pmd_page(*pmd);
1014 
1015 		/* Clear accessed and referenced bits. */
1016 		pmdp_test_and_clear_young(vma, addr, pmd);
1017 		test_and_clear_page_young(page);
1018 		ClearPageReferenced(page);
1019 out:
1020 		spin_unlock(ptl);
1021 		return 0;
1022 	}
1023 
1024 	if (pmd_trans_unstable(pmd))
1025 		return 0;
1026 
1027 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1028 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1029 		ptent = *pte;
1030 
1031 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1032 			clear_soft_dirty(vma, addr, pte);
1033 			continue;
1034 		}
1035 
1036 		if (!pte_present(ptent))
1037 			continue;
1038 
1039 		page = vm_normal_page(vma, addr, ptent);
1040 		if (!page)
1041 			continue;
1042 
1043 		/* Clear accessed and referenced bits. */
1044 		ptep_test_and_clear_young(vma, addr, pte);
1045 		test_and_clear_page_young(page);
1046 		ClearPageReferenced(page);
1047 	}
1048 	pte_unmap_unlock(pte - 1, ptl);
1049 	cond_resched();
1050 	return 0;
1051 }
1052 
1053 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1054 				struct mm_walk *walk)
1055 {
1056 	struct clear_refs_private *cp = walk->private;
1057 	struct vm_area_struct *vma = walk->vma;
1058 
1059 	if (vma->vm_flags & VM_PFNMAP)
1060 		return 1;
1061 
1062 	/*
1063 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1064 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1065 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1066 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1067 	 */
1068 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1069 		return 1;
1070 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1071 		return 1;
1072 	return 0;
1073 }
1074 
1075 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1076 				size_t count, loff_t *ppos)
1077 {
1078 	struct task_struct *task;
1079 	char buffer[PROC_NUMBUF];
1080 	struct mm_struct *mm;
1081 	struct vm_area_struct *vma;
1082 	enum clear_refs_types type;
1083 	struct mmu_gather tlb;
1084 	int itype;
1085 	int rv;
1086 
1087 	memset(buffer, 0, sizeof(buffer));
1088 	if (count > sizeof(buffer) - 1)
1089 		count = sizeof(buffer) - 1;
1090 	if (copy_from_user(buffer, buf, count))
1091 		return -EFAULT;
1092 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1093 	if (rv < 0)
1094 		return rv;
1095 	type = (enum clear_refs_types)itype;
1096 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1097 		return -EINVAL;
1098 
1099 	task = get_proc_task(file_inode(file));
1100 	if (!task)
1101 		return -ESRCH;
1102 	mm = get_task_mm(task);
1103 	if (mm) {
1104 		struct clear_refs_private cp = {
1105 			.type = type,
1106 		};
1107 		struct mm_walk clear_refs_walk = {
1108 			.pmd_entry = clear_refs_pte_range,
1109 			.test_walk = clear_refs_test_walk,
1110 			.mm = mm,
1111 			.private = &cp,
1112 		};
1113 
1114 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1115 			if (down_write_killable(&mm->mmap_sem)) {
1116 				count = -EINTR;
1117 				goto out_mm;
1118 			}
1119 
1120 			/*
1121 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1122 			 * resident set size to this mm's current rss value.
1123 			 */
1124 			reset_mm_hiwater_rss(mm);
1125 			up_write(&mm->mmap_sem);
1126 			goto out_mm;
1127 		}
1128 
1129 		down_read(&mm->mmap_sem);
1130 		tlb_gather_mmu(&tlb, mm, 0, -1);
1131 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1132 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1133 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1134 					continue;
1135 				up_read(&mm->mmap_sem);
1136 				if (down_write_killable(&mm->mmap_sem)) {
1137 					count = -EINTR;
1138 					goto out_mm;
1139 				}
1140 				for (vma = mm->mmap; vma; vma = vma->vm_next) {
1141 					vma->vm_flags &= ~VM_SOFTDIRTY;
1142 					vma_set_page_prot(vma);
1143 				}
1144 				downgrade_write(&mm->mmap_sem);
1145 				break;
1146 			}
1147 			mmu_notifier_invalidate_range_start(mm, 0, -1);
1148 		}
1149 		walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1150 		if (type == CLEAR_REFS_SOFT_DIRTY)
1151 			mmu_notifier_invalidate_range_end(mm, 0, -1);
1152 		tlb_finish_mmu(&tlb, 0, -1);
1153 		up_read(&mm->mmap_sem);
1154 out_mm:
1155 		mmput(mm);
1156 	}
1157 	put_task_struct(task);
1158 
1159 	return count;
1160 }
1161 
1162 const struct file_operations proc_clear_refs_operations = {
1163 	.write		= clear_refs_write,
1164 	.llseek		= noop_llseek,
1165 };
1166 
1167 typedef struct {
1168 	u64 pme;
1169 } pagemap_entry_t;
1170 
1171 struct pagemapread {
1172 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1173 	pagemap_entry_t *buffer;
1174 	bool show_pfn;
1175 };
1176 
1177 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1178 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1179 
1180 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1181 #define PM_PFRAME_BITS		55
1182 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1183 #define PM_SOFT_DIRTY		BIT_ULL(55)
1184 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1185 #define PM_FILE			BIT_ULL(61)
1186 #define PM_SWAP			BIT_ULL(62)
1187 #define PM_PRESENT		BIT_ULL(63)
1188 
1189 #define PM_END_OF_BUFFER    1
1190 
1191 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1192 {
1193 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1194 }
1195 
1196 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1197 			  struct pagemapread *pm)
1198 {
1199 	pm->buffer[pm->pos++] = *pme;
1200 	if (pm->pos >= pm->len)
1201 		return PM_END_OF_BUFFER;
1202 	return 0;
1203 }
1204 
1205 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1206 				struct mm_walk *walk)
1207 {
1208 	struct pagemapread *pm = walk->private;
1209 	unsigned long addr = start;
1210 	int err = 0;
1211 
1212 	while (addr < end) {
1213 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1214 		pagemap_entry_t pme = make_pme(0, 0);
1215 		/* End of address space hole, which we mark as non-present. */
1216 		unsigned long hole_end;
1217 
1218 		if (vma)
1219 			hole_end = min(end, vma->vm_start);
1220 		else
1221 			hole_end = end;
1222 
1223 		for (; addr < hole_end; addr += PAGE_SIZE) {
1224 			err = add_to_pagemap(addr, &pme, pm);
1225 			if (err)
1226 				goto out;
1227 		}
1228 
1229 		if (!vma)
1230 			break;
1231 
1232 		/* Addresses in the VMA. */
1233 		if (vma->vm_flags & VM_SOFTDIRTY)
1234 			pme = make_pme(0, PM_SOFT_DIRTY);
1235 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1236 			err = add_to_pagemap(addr, &pme, pm);
1237 			if (err)
1238 				goto out;
1239 		}
1240 	}
1241 out:
1242 	return err;
1243 }
1244 
1245 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1246 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1247 {
1248 	u64 frame = 0, flags = 0;
1249 	struct page *page = NULL;
1250 
1251 	if (pte_present(pte)) {
1252 		if (pm->show_pfn)
1253 			frame = pte_pfn(pte);
1254 		flags |= PM_PRESENT;
1255 		page = _vm_normal_page(vma, addr, pte, true);
1256 		if (pte_soft_dirty(pte))
1257 			flags |= PM_SOFT_DIRTY;
1258 	} else if (is_swap_pte(pte)) {
1259 		swp_entry_t entry;
1260 		if (pte_swp_soft_dirty(pte))
1261 			flags |= PM_SOFT_DIRTY;
1262 		entry = pte_to_swp_entry(pte);
1263 		if (pm->show_pfn)
1264 			frame = swp_type(entry) |
1265 				(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1266 		flags |= PM_SWAP;
1267 		if (is_migration_entry(entry))
1268 			page = migration_entry_to_page(entry);
1269 
1270 		if (is_device_private_entry(entry))
1271 			page = device_private_entry_to_page(entry);
1272 	}
1273 
1274 	if (page && !PageAnon(page))
1275 		flags |= PM_FILE;
1276 	if (page && page_mapcount(page) == 1)
1277 		flags |= PM_MMAP_EXCLUSIVE;
1278 	if (vma->vm_flags & VM_SOFTDIRTY)
1279 		flags |= PM_SOFT_DIRTY;
1280 
1281 	return make_pme(frame, flags);
1282 }
1283 
1284 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1285 			     struct mm_walk *walk)
1286 {
1287 	struct vm_area_struct *vma = walk->vma;
1288 	struct pagemapread *pm = walk->private;
1289 	spinlock_t *ptl;
1290 	pte_t *pte, *orig_pte;
1291 	int err = 0;
1292 
1293 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1294 	ptl = pmd_trans_huge_lock(pmdp, vma);
1295 	if (ptl) {
1296 		u64 flags = 0, frame = 0;
1297 		pmd_t pmd = *pmdp;
1298 		struct page *page = NULL;
1299 
1300 		if (vma->vm_flags & VM_SOFTDIRTY)
1301 			flags |= PM_SOFT_DIRTY;
1302 
1303 		if (pmd_present(pmd)) {
1304 			page = pmd_page(pmd);
1305 
1306 			flags |= PM_PRESENT;
1307 			if (pmd_soft_dirty(pmd))
1308 				flags |= PM_SOFT_DIRTY;
1309 			if (pm->show_pfn)
1310 				frame = pmd_pfn(pmd) +
1311 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1312 		}
1313 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1314 		else if (is_swap_pmd(pmd)) {
1315 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1316 			unsigned long offset;
1317 
1318 			if (pm->show_pfn) {
1319 				offset = swp_offset(entry) +
1320 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1321 				frame = swp_type(entry) |
1322 					(offset << MAX_SWAPFILES_SHIFT);
1323 			}
1324 			flags |= PM_SWAP;
1325 			if (pmd_swp_soft_dirty(pmd))
1326 				flags |= PM_SOFT_DIRTY;
1327 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1328 			page = migration_entry_to_page(entry);
1329 		}
1330 #endif
1331 
1332 		if (page && page_mapcount(page) == 1)
1333 			flags |= PM_MMAP_EXCLUSIVE;
1334 
1335 		for (; addr != end; addr += PAGE_SIZE) {
1336 			pagemap_entry_t pme = make_pme(frame, flags);
1337 
1338 			err = add_to_pagemap(addr, &pme, pm);
1339 			if (err)
1340 				break;
1341 			if (pm->show_pfn) {
1342 				if (flags & PM_PRESENT)
1343 					frame++;
1344 				else if (flags & PM_SWAP)
1345 					frame += (1 << MAX_SWAPFILES_SHIFT);
1346 			}
1347 		}
1348 		spin_unlock(ptl);
1349 		return err;
1350 	}
1351 
1352 	if (pmd_trans_unstable(pmdp))
1353 		return 0;
1354 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1355 
1356 	/*
1357 	 * We can assume that @vma always points to a valid one and @end never
1358 	 * goes beyond vma->vm_end.
1359 	 */
1360 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1361 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1362 		pagemap_entry_t pme;
1363 
1364 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1365 		err = add_to_pagemap(addr, &pme, pm);
1366 		if (err)
1367 			break;
1368 	}
1369 	pte_unmap_unlock(orig_pte, ptl);
1370 
1371 	cond_resched();
1372 
1373 	return err;
1374 }
1375 
1376 #ifdef CONFIG_HUGETLB_PAGE
1377 /* This function walks within one hugetlb entry in the single call */
1378 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1379 				 unsigned long addr, unsigned long end,
1380 				 struct mm_walk *walk)
1381 {
1382 	struct pagemapread *pm = walk->private;
1383 	struct vm_area_struct *vma = walk->vma;
1384 	u64 flags = 0, frame = 0;
1385 	int err = 0;
1386 	pte_t pte;
1387 
1388 	if (vma->vm_flags & VM_SOFTDIRTY)
1389 		flags |= PM_SOFT_DIRTY;
1390 
1391 	pte = huge_ptep_get(ptep);
1392 	if (pte_present(pte)) {
1393 		struct page *page = pte_page(pte);
1394 
1395 		if (!PageAnon(page))
1396 			flags |= PM_FILE;
1397 
1398 		if (page_mapcount(page) == 1)
1399 			flags |= PM_MMAP_EXCLUSIVE;
1400 
1401 		flags |= PM_PRESENT;
1402 		if (pm->show_pfn)
1403 			frame = pte_pfn(pte) +
1404 				((addr & ~hmask) >> PAGE_SHIFT);
1405 	}
1406 
1407 	for (; addr != end; addr += PAGE_SIZE) {
1408 		pagemap_entry_t pme = make_pme(frame, flags);
1409 
1410 		err = add_to_pagemap(addr, &pme, pm);
1411 		if (err)
1412 			return err;
1413 		if (pm->show_pfn && (flags & PM_PRESENT))
1414 			frame++;
1415 	}
1416 
1417 	cond_resched();
1418 
1419 	return err;
1420 }
1421 #endif /* HUGETLB_PAGE */
1422 
1423 /*
1424  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1425  *
1426  * For each page in the address space, this file contains one 64-bit entry
1427  * consisting of the following:
1428  *
1429  * Bits 0-54  page frame number (PFN) if present
1430  * Bits 0-4   swap type if swapped
1431  * Bits 5-54  swap offset if swapped
1432  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1433  * Bit  56    page exclusively mapped
1434  * Bits 57-60 zero
1435  * Bit  61    page is file-page or shared-anon
1436  * Bit  62    page swapped
1437  * Bit  63    page present
1438  *
1439  * If the page is not present but in swap, then the PFN contains an
1440  * encoding of the swap file number and the page's offset into the
1441  * swap. Unmapped pages return a null PFN. This allows determining
1442  * precisely which pages are mapped (or in swap) and comparing mapped
1443  * pages between processes.
1444  *
1445  * Efficient users of this interface will use /proc/pid/maps to
1446  * determine which areas of memory are actually mapped and llseek to
1447  * skip over unmapped regions.
1448  */
1449 static ssize_t pagemap_read(struct file *file, char __user *buf,
1450 			    size_t count, loff_t *ppos)
1451 {
1452 	struct mm_struct *mm = file->private_data;
1453 	struct pagemapread pm;
1454 	struct mm_walk pagemap_walk = {};
1455 	unsigned long src;
1456 	unsigned long svpfn;
1457 	unsigned long start_vaddr;
1458 	unsigned long end_vaddr;
1459 	int ret = 0, copied = 0;
1460 
1461 	if (!mm || !mmget_not_zero(mm))
1462 		goto out;
1463 
1464 	ret = -EINVAL;
1465 	/* file position must be aligned */
1466 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1467 		goto out_mm;
1468 
1469 	ret = 0;
1470 	if (!count)
1471 		goto out_mm;
1472 
1473 	/* do not disclose physical addresses: attack vector */
1474 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1475 
1476 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1477 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1478 	ret = -ENOMEM;
1479 	if (!pm.buffer)
1480 		goto out_mm;
1481 
1482 	pagemap_walk.pmd_entry = pagemap_pmd_range;
1483 	pagemap_walk.pte_hole = pagemap_pte_hole;
1484 #ifdef CONFIG_HUGETLB_PAGE
1485 	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1486 #endif
1487 	pagemap_walk.mm = mm;
1488 	pagemap_walk.private = &pm;
1489 
1490 	src = *ppos;
1491 	svpfn = src / PM_ENTRY_BYTES;
1492 	start_vaddr = svpfn << PAGE_SHIFT;
1493 	end_vaddr = mm->task_size;
1494 
1495 	/* watch out for wraparound */
1496 	if (svpfn > mm->task_size >> PAGE_SHIFT)
1497 		start_vaddr = end_vaddr;
1498 
1499 	/*
1500 	 * The odds are that this will stop walking way
1501 	 * before end_vaddr, because the length of the
1502 	 * user buffer is tracked in "pm", and the walk
1503 	 * will stop when we hit the end of the buffer.
1504 	 */
1505 	ret = 0;
1506 	while (count && (start_vaddr < end_vaddr)) {
1507 		int len;
1508 		unsigned long end;
1509 
1510 		pm.pos = 0;
1511 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1512 		/* overflow ? */
1513 		if (end < start_vaddr || end > end_vaddr)
1514 			end = end_vaddr;
1515 		down_read(&mm->mmap_sem);
1516 		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1517 		up_read(&mm->mmap_sem);
1518 		start_vaddr = end;
1519 
1520 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1521 		if (copy_to_user(buf, pm.buffer, len)) {
1522 			ret = -EFAULT;
1523 			goto out_free;
1524 		}
1525 		copied += len;
1526 		buf += len;
1527 		count -= len;
1528 	}
1529 	*ppos += copied;
1530 	if (!ret || ret == PM_END_OF_BUFFER)
1531 		ret = copied;
1532 
1533 out_free:
1534 	kfree(pm.buffer);
1535 out_mm:
1536 	mmput(mm);
1537 out:
1538 	return ret;
1539 }
1540 
1541 static int pagemap_open(struct inode *inode, struct file *file)
1542 {
1543 	struct mm_struct *mm;
1544 
1545 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1546 	if (IS_ERR(mm))
1547 		return PTR_ERR(mm);
1548 	file->private_data = mm;
1549 	return 0;
1550 }
1551 
1552 static int pagemap_release(struct inode *inode, struct file *file)
1553 {
1554 	struct mm_struct *mm = file->private_data;
1555 
1556 	if (mm)
1557 		mmdrop(mm);
1558 	return 0;
1559 }
1560 
1561 const struct file_operations proc_pagemap_operations = {
1562 	.llseek		= mem_lseek, /* borrow this */
1563 	.read		= pagemap_read,
1564 	.open		= pagemap_open,
1565 	.release	= pagemap_release,
1566 };
1567 #endif /* CONFIG_PROC_PAGE_MONITOR */
1568 
1569 #ifdef CONFIG_NUMA
1570 
1571 struct numa_maps {
1572 	unsigned long pages;
1573 	unsigned long anon;
1574 	unsigned long active;
1575 	unsigned long writeback;
1576 	unsigned long mapcount_max;
1577 	unsigned long dirty;
1578 	unsigned long swapcache;
1579 	unsigned long node[MAX_NUMNODES];
1580 };
1581 
1582 struct numa_maps_private {
1583 	struct proc_maps_private proc_maps;
1584 	struct numa_maps md;
1585 };
1586 
1587 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1588 			unsigned long nr_pages)
1589 {
1590 	int count = page_mapcount(page);
1591 
1592 	md->pages += nr_pages;
1593 	if (pte_dirty || PageDirty(page))
1594 		md->dirty += nr_pages;
1595 
1596 	if (PageSwapCache(page))
1597 		md->swapcache += nr_pages;
1598 
1599 	if (PageActive(page) || PageUnevictable(page))
1600 		md->active += nr_pages;
1601 
1602 	if (PageWriteback(page))
1603 		md->writeback += nr_pages;
1604 
1605 	if (PageAnon(page))
1606 		md->anon += nr_pages;
1607 
1608 	if (count > md->mapcount_max)
1609 		md->mapcount_max = count;
1610 
1611 	md->node[page_to_nid(page)] += nr_pages;
1612 }
1613 
1614 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1615 		unsigned long addr)
1616 {
1617 	struct page *page;
1618 	int nid;
1619 
1620 	if (!pte_present(pte))
1621 		return NULL;
1622 
1623 	page = vm_normal_page(vma, addr, pte);
1624 	if (!page)
1625 		return NULL;
1626 
1627 	if (PageReserved(page))
1628 		return NULL;
1629 
1630 	nid = page_to_nid(page);
1631 	if (!node_isset(nid, node_states[N_MEMORY]))
1632 		return NULL;
1633 
1634 	return page;
1635 }
1636 
1637 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1638 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1639 					      struct vm_area_struct *vma,
1640 					      unsigned long addr)
1641 {
1642 	struct page *page;
1643 	int nid;
1644 
1645 	if (!pmd_present(pmd))
1646 		return NULL;
1647 
1648 	page = vm_normal_page_pmd(vma, addr, pmd);
1649 	if (!page)
1650 		return NULL;
1651 
1652 	if (PageReserved(page))
1653 		return NULL;
1654 
1655 	nid = page_to_nid(page);
1656 	if (!node_isset(nid, node_states[N_MEMORY]))
1657 		return NULL;
1658 
1659 	return page;
1660 }
1661 #endif
1662 
1663 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1664 		unsigned long end, struct mm_walk *walk)
1665 {
1666 	struct numa_maps *md = walk->private;
1667 	struct vm_area_struct *vma = walk->vma;
1668 	spinlock_t *ptl;
1669 	pte_t *orig_pte;
1670 	pte_t *pte;
1671 
1672 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1673 	ptl = pmd_trans_huge_lock(pmd, vma);
1674 	if (ptl) {
1675 		struct page *page;
1676 
1677 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1678 		if (page)
1679 			gather_stats(page, md, pmd_dirty(*pmd),
1680 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1681 		spin_unlock(ptl);
1682 		return 0;
1683 	}
1684 
1685 	if (pmd_trans_unstable(pmd))
1686 		return 0;
1687 #endif
1688 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1689 	do {
1690 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1691 		if (!page)
1692 			continue;
1693 		gather_stats(page, md, pte_dirty(*pte), 1);
1694 
1695 	} while (pte++, addr += PAGE_SIZE, addr != end);
1696 	pte_unmap_unlock(orig_pte, ptl);
1697 	cond_resched();
1698 	return 0;
1699 }
1700 #ifdef CONFIG_HUGETLB_PAGE
1701 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1702 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1703 {
1704 	pte_t huge_pte = huge_ptep_get(pte);
1705 	struct numa_maps *md;
1706 	struct page *page;
1707 
1708 	if (!pte_present(huge_pte))
1709 		return 0;
1710 
1711 	page = pte_page(huge_pte);
1712 	if (!page)
1713 		return 0;
1714 
1715 	md = walk->private;
1716 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1717 	return 0;
1718 }
1719 
1720 #else
1721 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1722 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1723 {
1724 	return 0;
1725 }
1726 #endif
1727 
1728 /*
1729  * Display pages allocated per node and memory policy via /proc.
1730  */
1731 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1732 {
1733 	struct numa_maps_private *numa_priv = m->private;
1734 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1735 	struct vm_area_struct *vma = v;
1736 	struct numa_maps *md = &numa_priv->md;
1737 	struct file *file = vma->vm_file;
1738 	struct mm_struct *mm = vma->vm_mm;
1739 	struct mm_walk walk = {
1740 		.hugetlb_entry = gather_hugetlb_stats,
1741 		.pmd_entry = gather_pte_stats,
1742 		.private = md,
1743 		.mm = mm,
1744 	};
1745 	struct mempolicy *pol;
1746 	char buffer[64];
1747 	int nid;
1748 
1749 	if (!mm)
1750 		return 0;
1751 
1752 	/* Ensure we start with an empty set of numa_maps statistics. */
1753 	memset(md, 0, sizeof(*md));
1754 
1755 	pol = __get_vma_policy(vma, vma->vm_start);
1756 	if (pol) {
1757 		mpol_to_str(buffer, sizeof(buffer), pol);
1758 		mpol_cond_put(pol);
1759 	} else {
1760 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1761 	}
1762 
1763 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1764 
1765 	if (file) {
1766 		seq_puts(m, " file=");
1767 		seq_file_path(m, file, "\n\t= ");
1768 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1769 		seq_puts(m, " heap");
1770 	} else if (is_stack(vma)) {
1771 		seq_puts(m, " stack");
1772 	}
1773 
1774 	if (is_vm_hugetlb_page(vma))
1775 		seq_puts(m, " huge");
1776 
1777 	/* mmap_sem is held by m_start */
1778 	walk_page_vma(vma, &walk);
1779 
1780 	if (!md->pages)
1781 		goto out;
1782 
1783 	if (md->anon)
1784 		seq_printf(m, " anon=%lu", md->anon);
1785 
1786 	if (md->dirty)
1787 		seq_printf(m, " dirty=%lu", md->dirty);
1788 
1789 	if (md->pages != md->anon && md->pages != md->dirty)
1790 		seq_printf(m, " mapped=%lu", md->pages);
1791 
1792 	if (md->mapcount_max > 1)
1793 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1794 
1795 	if (md->swapcache)
1796 		seq_printf(m, " swapcache=%lu", md->swapcache);
1797 
1798 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1799 		seq_printf(m, " active=%lu", md->active);
1800 
1801 	if (md->writeback)
1802 		seq_printf(m, " writeback=%lu", md->writeback);
1803 
1804 	for_each_node_state(nid, N_MEMORY)
1805 		if (md->node[nid])
1806 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1807 
1808 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1809 out:
1810 	seq_putc(m, '\n');
1811 	m_cache_vma(m, vma);
1812 	return 0;
1813 }
1814 
1815 static int show_pid_numa_map(struct seq_file *m, void *v)
1816 {
1817 	return show_numa_map(m, v, 1);
1818 }
1819 
1820 static int show_tid_numa_map(struct seq_file *m, void *v)
1821 {
1822 	return show_numa_map(m, v, 0);
1823 }
1824 
1825 static const struct seq_operations proc_pid_numa_maps_op = {
1826 	.start  = m_start,
1827 	.next   = m_next,
1828 	.stop   = m_stop,
1829 	.show   = show_pid_numa_map,
1830 };
1831 
1832 static const struct seq_operations proc_tid_numa_maps_op = {
1833 	.start  = m_start,
1834 	.next   = m_next,
1835 	.stop   = m_stop,
1836 	.show   = show_tid_numa_map,
1837 };
1838 
1839 static int numa_maps_open(struct inode *inode, struct file *file,
1840 			  const struct seq_operations *ops)
1841 {
1842 	return proc_maps_open(inode, file, ops,
1843 				sizeof(struct numa_maps_private));
1844 }
1845 
1846 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1847 {
1848 	return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1849 }
1850 
1851 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1852 {
1853 	return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1854 }
1855 
1856 const struct file_operations proc_pid_numa_maps_operations = {
1857 	.open		= pid_numa_maps_open,
1858 	.read		= seq_read,
1859 	.llseek		= seq_lseek,
1860 	.release	= proc_map_release,
1861 };
1862 
1863 const struct file_operations proc_tid_numa_maps_operations = {
1864 	.open		= tid_numa_maps_open,
1865 	.read		= seq_read,
1866 	.llseek		= seq_lseek,
1867 	.release	= proc_map_release,
1868 };
1869 #endif /* CONFIG_NUMA */
1870