xref: /openbmc/linux/fs/proc/task_mmu.c (revision 4aae7e43)
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 
17 #include <asm/elf.h>
18 #include <asm/uaccess.h>
19 #include <asm/tlbflush.h>
20 #include "internal.h"
21 
22 void task_mem(struct seq_file *m, struct mm_struct *mm)
23 {
24 	unsigned long data, text, lib, swap;
25 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
26 
27 	/*
28 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
29 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
30 	 * collector of these hiwater stats must therefore get total_vm
31 	 * and rss too, which will usually be the higher.  Barriers? not
32 	 * worth the effort, such snapshots can always be inconsistent.
33 	 */
34 	hiwater_vm = total_vm = mm->total_vm;
35 	if (hiwater_vm < mm->hiwater_vm)
36 		hiwater_vm = mm->hiwater_vm;
37 	hiwater_rss = total_rss = get_mm_rss(mm);
38 	if (hiwater_rss < mm->hiwater_rss)
39 		hiwater_rss = mm->hiwater_rss;
40 
41 	data = mm->total_vm - mm->shared_vm - mm->stack_vm;
42 	text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
43 	lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
44 	swap = get_mm_counter(mm, MM_SWAPENTS);
45 	seq_printf(m,
46 		"VmPeak:\t%8lu kB\n"
47 		"VmSize:\t%8lu kB\n"
48 		"VmLck:\t%8lu kB\n"
49 		"VmPin:\t%8lu kB\n"
50 		"VmHWM:\t%8lu kB\n"
51 		"VmRSS:\t%8lu kB\n"
52 		"VmData:\t%8lu kB\n"
53 		"VmStk:\t%8lu kB\n"
54 		"VmExe:\t%8lu kB\n"
55 		"VmLib:\t%8lu kB\n"
56 		"VmPTE:\t%8lu kB\n"
57 		"VmSwap:\t%8lu kB\n",
58 		hiwater_vm << (PAGE_SHIFT-10),
59 		total_vm << (PAGE_SHIFT-10),
60 		mm->locked_vm << (PAGE_SHIFT-10),
61 		mm->pinned_vm << (PAGE_SHIFT-10),
62 		hiwater_rss << (PAGE_SHIFT-10),
63 		total_rss << (PAGE_SHIFT-10),
64 		data << (PAGE_SHIFT-10),
65 		mm->stack_vm << (PAGE_SHIFT-10), text, lib,
66 		(PTRS_PER_PTE * sizeof(pte_t) *
67 		 atomic_long_read(&mm->nr_ptes)) >> 10,
68 		swap << (PAGE_SHIFT-10));
69 }
70 
71 unsigned long task_vsize(struct mm_struct *mm)
72 {
73 	return PAGE_SIZE * mm->total_vm;
74 }
75 
76 unsigned long task_statm(struct mm_struct *mm,
77 			 unsigned long *shared, unsigned long *text,
78 			 unsigned long *data, unsigned long *resident)
79 {
80 	*shared = get_mm_counter(mm, MM_FILEPAGES);
81 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
82 								>> PAGE_SHIFT;
83 	*data = mm->total_vm - mm->shared_vm;
84 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
85 	return mm->total_vm;
86 }
87 
88 #ifdef CONFIG_NUMA
89 /*
90  * Save get_task_policy() for show_numa_map().
91  */
92 static void hold_task_mempolicy(struct proc_maps_private *priv)
93 {
94 	struct task_struct *task = priv->task;
95 
96 	task_lock(task);
97 	priv->task_mempolicy = get_task_policy(task);
98 	mpol_get(priv->task_mempolicy);
99 	task_unlock(task);
100 }
101 static void release_task_mempolicy(struct proc_maps_private *priv)
102 {
103 	mpol_put(priv->task_mempolicy);
104 }
105 #else
106 static void hold_task_mempolicy(struct proc_maps_private *priv)
107 {
108 }
109 static void release_task_mempolicy(struct proc_maps_private *priv)
110 {
111 }
112 #endif
113 
114 static void vma_stop(struct proc_maps_private *priv)
115 {
116 	struct mm_struct *mm = priv->mm;
117 
118 	release_task_mempolicy(priv);
119 	up_read(&mm->mmap_sem);
120 	mmput(mm);
121 }
122 
123 static struct vm_area_struct *
124 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
125 {
126 	if (vma == priv->tail_vma)
127 		return NULL;
128 	return vma->vm_next ?: priv->tail_vma;
129 }
130 
131 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
132 {
133 	if (m->count < m->size)	/* vma is copied successfully */
134 		m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
135 }
136 
137 static void *m_start(struct seq_file *m, loff_t *ppos)
138 {
139 	struct proc_maps_private *priv = m->private;
140 	unsigned long last_addr = m->version;
141 	struct mm_struct *mm;
142 	struct vm_area_struct *vma;
143 	unsigned int pos = *ppos;
144 
145 	/* See m_cache_vma(). Zero at the start or after lseek. */
146 	if (last_addr == -1UL)
147 		return NULL;
148 
149 	priv->task = get_proc_task(priv->inode);
150 	if (!priv->task)
151 		return ERR_PTR(-ESRCH);
152 
153 	mm = priv->mm;
154 	if (!mm || !atomic_inc_not_zero(&mm->mm_users))
155 		return NULL;
156 
157 	down_read(&mm->mmap_sem);
158 	hold_task_mempolicy(priv);
159 	priv->tail_vma = get_gate_vma(mm);
160 
161 	if (last_addr) {
162 		vma = find_vma(mm, last_addr);
163 		if (vma && (vma = m_next_vma(priv, vma)))
164 			return vma;
165 	}
166 
167 	m->version = 0;
168 	if (pos < mm->map_count) {
169 		for (vma = mm->mmap; pos; pos--) {
170 			m->version = vma->vm_start;
171 			vma = vma->vm_next;
172 		}
173 		return vma;
174 	}
175 
176 	/* we do not bother to update m->version in this case */
177 	if (pos == mm->map_count && priv->tail_vma)
178 		return priv->tail_vma;
179 
180 	vma_stop(priv);
181 	return NULL;
182 }
183 
184 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
185 {
186 	struct proc_maps_private *priv = m->private;
187 	struct vm_area_struct *next;
188 
189 	(*pos)++;
190 	next = m_next_vma(priv, v);
191 	if (!next)
192 		vma_stop(priv);
193 	return next;
194 }
195 
196 static void m_stop(struct seq_file *m, void *v)
197 {
198 	struct proc_maps_private *priv = m->private;
199 
200 	if (!IS_ERR_OR_NULL(v))
201 		vma_stop(priv);
202 	if (priv->task) {
203 		put_task_struct(priv->task);
204 		priv->task = NULL;
205 	}
206 }
207 
208 static int proc_maps_open(struct inode *inode, struct file *file,
209 			const struct seq_operations *ops, int psize)
210 {
211 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
212 
213 	if (!priv)
214 		return -ENOMEM;
215 
216 	priv->inode = inode;
217 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
218 	if (IS_ERR(priv->mm)) {
219 		int err = PTR_ERR(priv->mm);
220 
221 		seq_release_private(inode, file);
222 		return err;
223 	}
224 
225 	return 0;
226 }
227 
228 static int proc_map_release(struct inode *inode, struct file *file)
229 {
230 	struct seq_file *seq = file->private_data;
231 	struct proc_maps_private *priv = seq->private;
232 
233 	if (priv->mm)
234 		mmdrop(priv->mm);
235 
236 	return seq_release_private(inode, file);
237 }
238 
239 static int do_maps_open(struct inode *inode, struct file *file,
240 			const struct seq_operations *ops)
241 {
242 	return proc_maps_open(inode, file, ops,
243 				sizeof(struct proc_maps_private));
244 }
245 
246 static pid_t pid_of_stack(struct proc_maps_private *priv,
247 				struct vm_area_struct *vma, bool is_pid)
248 {
249 	struct inode *inode = priv->inode;
250 	struct task_struct *task;
251 	pid_t ret = 0;
252 
253 	rcu_read_lock();
254 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
255 	if (task) {
256 		task = task_of_stack(task, vma, is_pid);
257 		if (task)
258 			ret = task_pid_nr_ns(task, inode->i_sb->s_fs_info);
259 	}
260 	rcu_read_unlock();
261 
262 	return ret;
263 }
264 
265 static void
266 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
267 {
268 	struct mm_struct *mm = vma->vm_mm;
269 	struct file *file = vma->vm_file;
270 	struct proc_maps_private *priv = m->private;
271 	vm_flags_t flags = vma->vm_flags;
272 	unsigned long ino = 0;
273 	unsigned long long pgoff = 0;
274 	unsigned long start, end;
275 	dev_t dev = 0;
276 	const char *name = NULL;
277 
278 	if (file) {
279 		struct inode *inode = file_inode(vma->vm_file);
280 		dev = inode->i_sb->s_dev;
281 		ino = inode->i_ino;
282 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
283 	}
284 
285 	/* We don't show the stack guard page in /proc/maps */
286 	start = vma->vm_start;
287 	if (stack_guard_page_start(vma, start))
288 		start += PAGE_SIZE;
289 	end = vma->vm_end;
290 	if (stack_guard_page_end(vma, end))
291 		end -= PAGE_SIZE;
292 
293 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
294 	seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
295 			start,
296 			end,
297 			flags & VM_READ ? 'r' : '-',
298 			flags & VM_WRITE ? 'w' : '-',
299 			flags & VM_EXEC ? 'x' : '-',
300 			flags & VM_MAYSHARE ? 's' : 'p',
301 			pgoff,
302 			MAJOR(dev), MINOR(dev), ino);
303 
304 	/*
305 	 * Print the dentry name for named mappings, and a
306 	 * special [heap] marker for the heap:
307 	 */
308 	if (file) {
309 		seq_pad(m, ' ');
310 		seq_path(m, &file->f_path, "\n");
311 		goto done;
312 	}
313 
314 	if (vma->vm_ops && vma->vm_ops->name) {
315 		name = vma->vm_ops->name(vma);
316 		if (name)
317 			goto done;
318 	}
319 
320 	name = arch_vma_name(vma);
321 	if (!name) {
322 		pid_t tid;
323 
324 		if (!mm) {
325 			name = "[vdso]";
326 			goto done;
327 		}
328 
329 		if (vma->vm_start <= mm->brk &&
330 		    vma->vm_end >= mm->start_brk) {
331 			name = "[heap]";
332 			goto done;
333 		}
334 
335 		tid = pid_of_stack(priv, vma, is_pid);
336 		if (tid != 0) {
337 			/*
338 			 * Thread stack in /proc/PID/task/TID/maps or
339 			 * the main process stack.
340 			 */
341 			if (!is_pid || (vma->vm_start <= mm->start_stack &&
342 			    vma->vm_end >= mm->start_stack)) {
343 				name = "[stack]";
344 			} else {
345 				/* Thread stack in /proc/PID/maps */
346 				seq_pad(m, ' ');
347 				seq_printf(m, "[stack:%d]", tid);
348 			}
349 		}
350 	}
351 
352 done:
353 	if (name) {
354 		seq_pad(m, ' ');
355 		seq_puts(m, name);
356 	}
357 	seq_putc(m, '\n');
358 }
359 
360 static int show_map(struct seq_file *m, void *v, int is_pid)
361 {
362 	show_map_vma(m, v, is_pid);
363 	m_cache_vma(m, v);
364 	return 0;
365 }
366 
367 static int show_pid_map(struct seq_file *m, void *v)
368 {
369 	return show_map(m, v, 1);
370 }
371 
372 static int show_tid_map(struct seq_file *m, void *v)
373 {
374 	return show_map(m, v, 0);
375 }
376 
377 static const struct seq_operations proc_pid_maps_op = {
378 	.start	= m_start,
379 	.next	= m_next,
380 	.stop	= m_stop,
381 	.show	= show_pid_map
382 };
383 
384 static const struct seq_operations proc_tid_maps_op = {
385 	.start	= m_start,
386 	.next	= m_next,
387 	.stop	= m_stop,
388 	.show	= show_tid_map
389 };
390 
391 static int pid_maps_open(struct inode *inode, struct file *file)
392 {
393 	return do_maps_open(inode, file, &proc_pid_maps_op);
394 }
395 
396 static int tid_maps_open(struct inode *inode, struct file *file)
397 {
398 	return do_maps_open(inode, file, &proc_tid_maps_op);
399 }
400 
401 const struct file_operations proc_pid_maps_operations = {
402 	.open		= pid_maps_open,
403 	.read		= seq_read,
404 	.llseek		= seq_lseek,
405 	.release	= proc_map_release,
406 };
407 
408 const struct file_operations proc_tid_maps_operations = {
409 	.open		= tid_maps_open,
410 	.read		= seq_read,
411 	.llseek		= seq_lseek,
412 	.release	= proc_map_release,
413 };
414 
415 /*
416  * Proportional Set Size(PSS): my share of RSS.
417  *
418  * PSS of a process is the count of pages it has in memory, where each
419  * page is divided by the number of processes sharing it.  So if a
420  * process has 1000 pages all to itself, and 1000 shared with one other
421  * process, its PSS will be 1500.
422  *
423  * To keep (accumulated) division errors low, we adopt a 64bit
424  * fixed-point pss counter to minimize division errors. So (pss >>
425  * PSS_SHIFT) would be the real byte count.
426  *
427  * A shift of 12 before division means (assuming 4K page size):
428  * 	- 1M 3-user-pages add up to 8KB errors;
429  * 	- supports mapcount up to 2^24, or 16M;
430  * 	- supports PSS up to 2^52 bytes, or 4PB.
431  */
432 #define PSS_SHIFT 12
433 
434 #ifdef CONFIG_PROC_PAGE_MONITOR
435 struct mem_size_stats {
436 	struct vm_area_struct *vma;
437 	unsigned long resident;
438 	unsigned long shared_clean;
439 	unsigned long shared_dirty;
440 	unsigned long private_clean;
441 	unsigned long private_dirty;
442 	unsigned long referenced;
443 	unsigned long anonymous;
444 	unsigned long anonymous_thp;
445 	unsigned long swap;
446 	unsigned long nonlinear;
447 	u64 pss;
448 };
449 
450 
451 static void smaps_pte_entry(pte_t ptent, unsigned long addr,
452 		unsigned long ptent_size, struct mm_walk *walk)
453 {
454 	struct mem_size_stats *mss = walk->private;
455 	struct vm_area_struct *vma = mss->vma;
456 	pgoff_t pgoff = linear_page_index(vma, addr);
457 	struct page *page = NULL;
458 	int mapcount;
459 
460 	if (pte_present(ptent)) {
461 		page = vm_normal_page(vma, addr, ptent);
462 	} else if (is_swap_pte(ptent)) {
463 		swp_entry_t swpent = pte_to_swp_entry(ptent);
464 
465 		if (!non_swap_entry(swpent))
466 			mss->swap += ptent_size;
467 		else if (is_migration_entry(swpent))
468 			page = migration_entry_to_page(swpent);
469 	} else if (pte_file(ptent)) {
470 		if (pte_to_pgoff(ptent) != pgoff)
471 			mss->nonlinear += ptent_size;
472 	}
473 
474 	if (!page)
475 		return;
476 
477 	if (PageAnon(page))
478 		mss->anonymous += ptent_size;
479 
480 	if (page->index != pgoff)
481 		mss->nonlinear += ptent_size;
482 
483 	mss->resident += ptent_size;
484 	/* Accumulate the size in pages that have been accessed. */
485 	if (pte_young(ptent) || PageReferenced(page))
486 		mss->referenced += ptent_size;
487 	mapcount = page_mapcount(page);
488 	if (mapcount >= 2) {
489 		if (pte_dirty(ptent) || PageDirty(page))
490 			mss->shared_dirty += ptent_size;
491 		else
492 			mss->shared_clean += ptent_size;
493 		mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
494 	} else {
495 		if (pte_dirty(ptent) || PageDirty(page))
496 			mss->private_dirty += ptent_size;
497 		else
498 			mss->private_clean += ptent_size;
499 		mss->pss += (ptent_size << PSS_SHIFT);
500 	}
501 }
502 
503 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
504 			   struct mm_walk *walk)
505 {
506 	struct mem_size_stats *mss = walk->private;
507 	struct vm_area_struct *vma = mss->vma;
508 	pte_t *pte;
509 	spinlock_t *ptl;
510 
511 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
512 		smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
513 		spin_unlock(ptl);
514 		mss->anonymous_thp += HPAGE_PMD_SIZE;
515 		return 0;
516 	}
517 
518 	if (pmd_trans_unstable(pmd))
519 		return 0;
520 	/*
521 	 * The mmap_sem held all the way back in m_start() is what
522 	 * keeps khugepaged out of here and from collapsing things
523 	 * in here.
524 	 */
525 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
526 	for (; addr != end; pte++, addr += PAGE_SIZE)
527 		smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
528 	pte_unmap_unlock(pte - 1, ptl);
529 	cond_resched();
530 	return 0;
531 }
532 
533 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
534 {
535 	/*
536 	 * Don't forget to update Documentation/ on changes.
537 	 */
538 	static const char mnemonics[BITS_PER_LONG][2] = {
539 		/*
540 		 * In case if we meet a flag we don't know about.
541 		 */
542 		[0 ... (BITS_PER_LONG-1)] = "??",
543 
544 		[ilog2(VM_READ)]	= "rd",
545 		[ilog2(VM_WRITE)]	= "wr",
546 		[ilog2(VM_EXEC)]	= "ex",
547 		[ilog2(VM_SHARED)]	= "sh",
548 		[ilog2(VM_MAYREAD)]	= "mr",
549 		[ilog2(VM_MAYWRITE)]	= "mw",
550 		[ilog2(VM_MAYEXEC)]	= "me",
551 		[ilog2(VM_MAYSHARE)]	= "ms",
552 		[ilog2(VM_GROWSDOWN)]	= "gd",
553 		[ilog2(VM_PFNMAP)]	= "pf",
554 		[ilog2(VM_DENYWRITE)]	= "dw",
555 #ifdef CONFIG_X86_INTEL_MPX
556 		[ilog2(VM_MPX)]		= "mp",
557 #endif
558 		[ilog2(VM_LOCKED)]	= "lo",
559 		[ilog2(VM_IO)]		= "io",
560 		[ilog2(VM_SEQ_READ)]	= "sr",
561 		[ilog2(VM_RAND_READ)]	= "rr",
562 		[ilog2(VM_DONTCOPY)]	= "dc",
563 		[ilog2(VM_DONTEXPAND)]	= "de",
564 		[ilog2(VM_ACCOUNT)]	= "ac",
565 		[ilog2(VM_NORESERVE)]	= "nr",
566 		[ilog2(VM_HUGETLB)]	= "ht",
567 		[ilog2(VM_NONLINEAR)]	= "nl",
568 		[ilog2(VM_ARCH_1)]	= "ar",
569 		[ilog2(VM_DONTDUMP)]	= "dd",
570 #ifdef CONFIG_MEM_SOFT_DIRTY
571 		[ilog2(VM_SOFTDIRTY)]	= "sd",
572 #endif
573 		[ilog2(VM_MIXEDMAP)]	= "mm",
574 		[ilog2(VM_HUGEPAGE)]	= "hg",
575 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
576 		[ilog2(VM_MERGEABLE)]	= "mg",
577 	};
578 	size_t i;
579 
580 	seq_puts(m, "VmFlags: ");
581 	for (i = 0; i < BITS_PER_LONG; i++) {
582 		if (vma->vm_flags & (1UL << i)) {
583 			seq_printf(m, "%c%c ",
584 				   mnemonics[i][0], mnemonics[i][1]);
585 		}
586 	}
587 	seq_putc(m, '\n');
588 }
589 
590 static int show_smap(struct seq_file *m, void *v, int is_pid)
591 {
592 	struct vm_area_struct *vma = v;
593 	struct mem_size_stats mss;
594 	struct mm_walk smaps_walk = {
595 		.pmd_entry = smaps_pte_range,
596 		.mm = vma->vm_mm,
597 		.private = &mss,
598 	};
599 
600 	memset(&mss, 0, sizeof mss);
601 	mss.vma = vma;
602 	/* mmap_sem is held in m_start */
603 	if (vma->vm_mm && !is_vm_hugetlb_page(vma))
604 		walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
605 
606 	show_map_vma(m, vma, is_pid);
607 
608 	seq_printf(m,
609 		   "Size:           %8lu kB\n"
610 		   "Rss:            %8lu kB\n"
611 		   "Pss:            %8lu kB\n"
612 		   "Shared_Clean:   %8lu kB\n"
613 		   "Shared_Dirty:   %8lu kB\n"
614 		   "Private_Clean:  %8lu kB\n"
615 		   "Private_Dirty:  %8lu kB\n"
616 		   "Referenced:     %8lu kB\n"
617 		   "Anonymous:      %8lu kB\n"
618 		   "AnonHugePages:  %8lu kB\n"
619 		   "Swap:           %8lu kB\n"
620 		   "KernelPageSize: %8lu kB\n"
621 		   "MMUPageSize:    %8lu kB\n"
622 		   "Locked:         %8lu kB\n",
623 		   (vma->vm_end - vma->vm_start) >> 10,
624 		   mss.resident >> 10,
625 		   (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
626 		   mss.shared_clean  >> 10,
627 		   mss.shared_dirty  >> 10,
628 		   mss.private_clean >> 10,
629 		   mss.private_dirty >> 10,
630 		   mss.referenced >> 10,
631 		   mss.anonymous >> 10,
632 		   mss.anonymous_thp >> 10,
633 		   mss.swap >> 10,
634 		   vma_kernel_pagesize(vma) >> 10,
635 		   vma_mmu_pagesize(vma) >> 10,
636 		   (vma->vm_flags & VM_LOCKED) ?
637 			(unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
638 
639 	if (vma->vm_flags & VM_NONLINEAR)
640 		seq_printf(m, "Nonlinear:      %8lu kB\n",
641 				mss.nonlinear >> 10);
642 
643 	show_smap_vma_flags(m, vma);
644 	m_cache_vma(m, vma);
645 	return 0;
646 }
647 
648 static int show_pid_smap(struct seq_file *m, void *v)
649 {
650 	return show_smap(m, v, 1);
651 }
652 
653 static int show_tid_smap(struct seq_file *m, void *v)
654 {
655 	return show_smap(m, v, 0);
656 }
657 
658 static const struct seq_operations proc_pid_smaps_op = {
659 	.start	= m_start,
660 	.next	= m_next,
661 	.stop	= m_stop,
662 	.show	= show_pid_smap
663 };
664 
665 static const struct seq_operations proc_tid_smaps_op = {
666 	.start	= m_start,
667 	.next	= m_next,
668 	.stop	= m_stop,
669 	.show	= show_tid_smap
670 };
671 
672 static int pid_smaps_open(struct inode *inode, struct file *file)
673 {
674 	return do_maps_open(inode, file, &proc_pid_smaps_op);
675 }
676 
677 static int tid_smaps_open(struct inode *inode, struct file *file)
678 {
679 	return do_maps_open(inode, file, &proc_tid_smaps_op);
680 }
681 
682 const struct file_operations proc_pid_smaps_operations = {
683 	.open		= pid_smaps_open,
684 	.read		= seq_read,
685 	.llseek		= seq_lseek,
686 	.release	= proc_map_release,
687 };
688 
689 const struct file_operations proc_tid_smaps_operations = {
690 	.open		= tid_smaps_open,
691 	.read		= seq_read,
692 	.llseek		= seq_lseek,
693 	.release	= proc_map_release,
694 };
695 
696 /*
697  * We do not want to have constant page-shift bits sitting in
698  * pagemap entries and are about to reuse them some time soon.
699  *
700  * Here's the "migration strategy":
701  * 1. when the system boots these bits remain what they are,
702  *    but a warning about future change is printed in log;
703  * 2. once anyone clears soft-dirty bits via clear_refs file,
704  *    these flag is set to denote, that user is aware of the
705  *    new API and those page-shift bits change their meaning.
706  *    The respective warning is printed in dmesg;
707  * 3. In a couple of releases we will remove all the mentions
708  *    of page-shift in pagemap entries.
709  */
710 
711 static bool soft_dirty_cleared __read_mostly;
712 
713 enum clear_refs_types {
714 	CLEAR_REFS_ALL = 1,
715 	CLEAR_REFS_ANON,
716 	CLEAR_REFS_MAPPED,
717 	CLEAR_REFS_SOFT_DIRTY,
718 	CLEAR_REFS_LAST,
719 };
720 
721 struct clear_refs_private {
722 	struct vm_area_struct *vma;
723 	enum clear_refs_types type;
724 };
725 
726 static inline void clear_soft_dirty(struct vm_area_struct *vma,
727 		unsigned long addr, pte_t *pte)
728 {
729 #ifdef CONFIG_MEM_SOFT_DIRTY
730 	/*
731 	 * The soft-dirty tracker uses #PF-s to catch writes
732 	 * to pages, so write-protect the pte as well. See the
733 	 * Documentation/vm/soft-dirty.txt for full description
734 	 * of how soft-dirty works.
735 	 */
736 	pte_t ptent = *pte;
737 
738 	if (pte_present(ptent)) {
739 		ptent = pte_wrprotect(ptent);
740 		ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
741 	} else if (is_swap_pte(ptent)) {
742 		ptent = pte_swp_clear_soft_dirty(ptent);
743 	} else if (pte_file(ptent)) {
744 		ptent = pte_file_clear_soft_dirty(ptent);
745 	}
746 
747 	set_pte_at(vma->vm_mm, addr, pte, ptent);
748 #endif
749 }
750 
751 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
752 				unsigned long end, struct mm_walk *walk)
753 {
754 	struct clear_refs_private *cp = walk->private;
755 	struct vm_area_struct *vma = cp->vma;
756 	pte_t *pte, ptent;
757 	spinlock_t *ptl;
758 	struct page *page;
759 
760 	split_huge_page_pmd(vma, addr, pmd);
761 	if (pmd_trans_unstable(pmd))
762 		return 0;
763 
764 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
765 	for (; addr != end; pte++, addr += PAGE_SIZE) {
766 		ptent = *pte;
767 
768 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
769 			clear_soft_dirty(vma, addr, pte);
770 			continue;
771 		}
772 
773 		if (!pte_present(ptent))
774 			continue;
775 
776 		page = vm_normal_page(vma, addr, ptent);
777 		if (!page)
778 			continue;
779 
780 		/* Clear accessed and referenced bits. */
781 		ptep_test_and_clear_young(vma, addr, pte);
782 		ClearPageReferenced(page);
783 	}
784 	pte_unmap_unlock(pte - 1, ptl);
785 	cond_resched();
786 	return 0;
787 }
788 
789 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
790 				size_t count, loff_t *ppos)
791 {
792 	struct task_struct *task;
793 	char buffer[PROC_NUMBUF];
794 	struct mm_struct *mm;
795 	struct vm_area_struct *vma;
796 	enum clear_refs_types type;
797 	int itype;
798 	int rv;
799 
800 	memset(buffer, 0, sizeof(buffer));
801 	if (count > sizeof(buffer) - 1)
802 		count = sizeof(buffer) - 1;
803 	if (copy_from_user(buffer, buf, count))
804 		return -EFAULT;
805 	rv = kstrtoint(strstrip(buffer), 10, &itype);
806 	if (rv < 0)
807 		return rv;
808 	type = (enum clear_refs_types)itype;
809 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
810 		return -EINVAL;
811 
812 	if (type == CLEAR_REFS_SOFT_DIRTY) {
813 		soft_dirty_cleared = true;
814 		pr_warn_once("The pagemap bits 55-60 has changed their meaning!"
815 			     " See the linux/Documentation/vm/pagemap.txt for "
816 			     "details.\n");
817 	}
818 
819 	task = get_proc_task(file_inode(file));
820 	if (!task)
821 		return -ESRCH;
822 	mm = get_task_mm(task);
823 	if (mm) {
824 		struct clear_refs_private cp = {
825 			.type = type,
826 		};
827 		struct mm_walk clear_refs_walk = {
828 			.pmd_entry = clear_refs_pte_range,
829 			.mm = mm,
830 			.private = &cp,
831 		};
832 		down_read(&mm->mmap_sem);
833 		if (type == CLEAR_REFS_SOFT_DIRTY) {
834 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
835 				if (!(vma->vm_flags & VM_SOFTDIRTY))
836 					continue;
837 				up_read(&mm->mmap_sem);
838 				down_write(&mm->mmap_sem);
839 				for (vma = mm->mmap; vma; vma = vma->vm_next) {
840 					vma->vm_flags &= ~VM_SOFTDIRTY;
841 					vma_set_page_prot(vma);
842 				}
843 				downgrade_write(&mm->mmap_sem);
844 				break;
845 			}
846 			mmu_notifier_invalidate_range_start(mm, 0, -1);
847 		}
848 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
849 			cp.vma = vma;
850 			if (is_vm_hugetlb_page(vma))
851 				continue;
852 			/*
853 			 * Writing 1 to /proc/pid/clear_refs affects all pages.
854 			 *
855 			 * Writing 2 to /proc/pid/clear_refs only affects
856 			 * Anonymous pages.
857 			 *
858 			 * Writing 3 to /proc/pid/clear_refs only affects file
859 			 * mapped pages.
860 			 *
861 			 * Writing 4 to /proc/pid/clear_refs affects all pages.
862 			 */
863 			if (type == CLEAR_REFS_ANON && vma->vm_file)
864 				continue;
865 			if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
866 				continue;
867 			walk_page_range(vma->vm_start, vma->vm_end,
868 					&clear_refs_walk);
869 		}
870 		if (type == CLEAR_REFS_SOFT_DIRTY)
871 			mmu_notifier_invalidate_range_end(mm, 0, -1);
872 		flush_tlb_mm(mm);
873 		up_read(&mm->mmap_sem);
874 		mmput(mm);
875 	}
876 	put_task_struct(task);
877 
878 	return count;
879 }
880 
881 const struct file_operations proc_clear_refs_operations = {
882 	.write		= clear_refs_write,
883 	.llseek		= noop_llseek,
884 };
885 
886 typedef struct {
887 	u64 pme;
888 } pagemap_entry_t;
889 
890 struct pagemapread {
891 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
892 	pagemap_entry_t *buffer;
893 	bool v2;
894 };
895 
896 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
897 #define PAGEMAP_WALK_MASK	(PMD_MASK)
898 
899 #define PM_ENTRY_BYTES      sizeof(pagemap_entry_t)
900 #define PM_STATUS_BITS      3
901 #define PM_STATUS_OFFSET    (64 - PM_STATUS_BITS)
902 #define PM_STATUS_MASK      (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
903 #define PM_STATUS(nr)       (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
904 #define PM_PSHIFT_BITS      6
905 #define PM_PSHIFT_OFFSET    (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
906 #define PM_PSHIFT_MASK      (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
907 #define __PM_PSHIFT(x)      (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
908 #define PM_PFRAME_MASK      ((1LL << PM_PSHIFT_OFFSET) - 1)
909 #define PM_PFRAME(x)        ((x) & PM_PFRAME_MASK)
910 /* in "new" pagemap pshift bits are occupied with more status bits */
911 #define PM_STATUS2(v2, x)   (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
912 
913 #define __PM_SOFT_DIRTY      (1LL)
914 #define PM_PRESENT          PM_STATUS(4LL)
915 #define PM_SWAP             PM_STATUS(2LL)
916 #define PM_FILE             PM_STATUS(1LL)
917 #define PM_NOT_PRESENT(v2)  PM_STATUS2(v2, 0)
918 #define PM_END_OF_BUFFER    1
919 
920 static inline pagemap_entry_t make_pme(u64 val)
921 {
922 	return (pagemap_entry_t) { .pme = val };
923 }
924 
925 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
926 			  struct pagemapread *pm)
927 {
928 	pm->buffer[pm->pos++] = *pme;
929 	if (pm->pos >= pm->len)
930 		return PM_END_OF_BUFFER;
931 	return 0;
932 }
933 
934 static int pagemap_pte_hole(unsigned long start, unsigned long end,
935 				struct mm_walk *walk)
936 {
937 	struct pagemapread *pm = walk->private;
938 	unsigned long addr = start;
939 	int err = 0;
940 
941 	while (addr < end) {
942 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
943 		pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
944 		/* End of address space hole, which we mark as non-present. */
945 		unsigned long hole_end;
946 
947 		if (vma)
948 			hole_end = min(end, vma->vm_start);
949 		else
950 			hole_end = end;
951 
952 		for (; addr < hole_end; addr += PAGE_SIZE) {
953 			err = add_to_pagemap(addr, &pme, pm);
954 			if (err)
955 				goto out;
956 		}
957 
958 		if (!vma)
959 			break;
960 
961 		/* Addresses in the VMA. */
962 		if (vma->vm_flags & VM_SOFTDIRTY)
963 			pme.pme |= PM_STATUS2(pm->v2, __PM_SOFT_DIRTY);
964 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
965 			err = add_to_pagemap(addr, &pme, pm);
966 			if (err)
967 				goto out;
968 		}
969 	}
970 out:
971 	return err;
972 }
973 
974 static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
975 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
976 {
977 	u64 frame, flags;
978 	struct page *page = NULL;
979 	int flags2 = 0;
980 
981 	if (pte_present(pte)) {
982 		frame = pte_pfn(pte);
983 		flags = PM_PRESENT;
984 		page = vm_normal_page(vma, addr, pte);
985 		if (pte_soft_dirty(pte))
986 			flags2 |= __PM_SOFT_DIRTY;
987 	} else if (is_swap_pte(pte)) {
988 		swp_entry_t entry;
989 		if (pte_swp_soft_dirty(pte))
990 			flags2 |= __PM_SOFT_DIRTY;
991 		entry = pte_to_swp_entry(pte);
992 		frame = swp_type(entry) |
993 			(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
994 		flags = PM_SWAP;
995 		if (is_migration_entry(entry))
996 			page = migration_entry_to_page(entry);
997 	} else {
998 		if (vma->vm_flags & VM_SOFTDIRTY)
999 			flags2 |= __PM_SOFT_DIRTY;
1000 		*pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
1001 		return;
1002 	}
1003 
1004 	if (page && !PageAnon(page))
1005 		flags |= PM_FILE;
1006 	if ((vma->vm_flags & VM_SOFTDIRTY))
1007 		flags2 |= __PM_SOFT_DIRTY;
1008 
1009 	*pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
1010 }
1011 
1012 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1013 static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1014 		pmd_t pmd, int offset, int pmd_flags2)
1015 {
1016 	/*
1017 	 * Currently pmd for thp is always present because thp can not be
1018 	 * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
1019 	 * This if-check is just to prepare for future implementation.
1020 	 */
1021 	if (pmd_present(pmd))
1022 		*pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
1023 				| PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT);
1024 	else
1025 		*pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, pmd_flags2));
1026 }
1027 #else
1028 static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1029 		pmd_t pmd, int offset, int pmd_flags2)
1030 {
1031 }
1032 #endif
1033 
1034 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
1035 			     struct mm_walk *walk)
1036 {
1037 	struct vm_area_struct *vma;
1038 	struct pagemapread *pm = walk->private;
1039 	spinlock_t *ptl;
1040 	pte_t *pte;
1041 	int err = 0;
1042 
1043 	/* find the first VMA at or above 'addr' */
1044 	vma = find_vma(walk->mm, addr);
1045 	if (vma && pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1046 		int pmd_flags2;
1047 
1048 		if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(*pmd))
1049 			pmd_flags2 = __PM_SOFT_DIRTY;
1050 		else
1051 			pmd_flags2 = 0;
1052 
1053 		for (; addr != end; addr += PAGE_SIZE) {
1054 			unsigned long offset;
1055 			pagemap_entry_t pme;
1056 
1057 			offset = (addr & ~PAGEMAP_WALK_MASK) >>
1058 					PAGE_SHIFT;
1059 			thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2);
1060 			err = add_to_pagemap(addr, &pme, pm);
1061 			if (err)
1062 				break;
1063 		}
1064 		spin_unlock(ptl);
1065 		return err;
1066 	}
1067 
1068 	if (pmd_trans_unstable(pmd))
1069 		return 0;
1070 
1071 	while (1) {
1072 		/* End of address space hole, which we mark as non-present. */
1073 		unsigned long hole_end;
1074 
1075 		if (vma)
1076 			hole_end = min(end, vma->vm_start);
1077 		else
1078 			hole_end = end;
1079 
1080 		for (; addr < hole_end; addr += PAGE_SIZE) {
1081 			pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
1082 
1083 			err = add_to_pagemap(addr, &pme, pm);
1084 			if (err)
1085 				return err;
1086 		}
1087 
1088 		if (!vma || vma->vm_start >= end)
1089 			break;
1090 		/*
1091 		 * We can't possibly be in a hugetlb VMA. In general,
1092 		 * for a mm_walk with a pmd_entry and a hugetlb_entry,
1093 		 * the pmd_entry can only be called on addresses in a
1094 		 * hugetlb if the walk starts in a non-hugetlb VMA and
1095 		 * spans a hugepage VMA. Since pagemap_read walks are
1096 		 * PMD-sized and PMD-aligned, this will never be true.
1097 		 */
1098 		BUG_ON(is_vm_hugetlb_page(vma));
1099 
1100 		/* Addresses in the VMA. */
1101 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1102 			pagemap_entry_t pme;
1103 			pte = pte_offset_map(pmd, addr);
1104 			pte_to_pagemap_entry(&pme, pm, vma, addr, *pte);
1105 			pte_unmap(pte);
1106 			err = add_to_pagemap(addr, &pme, pm);
1107 			if (err)
1108 				return err;
1109 		}
1110 
1111 		if (addr == end)
1112 			break;
1113 
1114 		vma = find_vma(walk->mm, addr);
1115 	}
1116 
1117 	cond_resched();
1118 
1119 	return err;
1120 }
1121 
1122 #ifdef CONFIG_HUGETLB_PAGE
1123 static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1124 					pte_t pte, int offset, int flags2)
1125 {
1126 	if (pte_present(pte))
1127 		*pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset)	|
1128 				PM_STATUS2(pm->v2, flags2)		|
1129 				PM_PRESENT);
1130 	else
1131 		*pme = make_pme(PM_NOT_PRESENT(pm->v2)			|
1132 				PM_STATUS2(pm->v2, flags2));
1133 }
1134 
1135 /* This function walks within one hugetlb entry in the single call */
1136 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
1137 				 unsigned long addr, unsigned long end,
1138 				 struct mm_walk *walk)
1139 {
1140 	struct pagemapread *pm = walk->private;
1141 	struct vm_area_struct *vma;
1142 	int err = 0;
1143 	int flags2;
1144 	pagemap_entry_t pme;
1145 
1146 	vma = find_vma(walk->mm, addr);
1147 	WARN_ON_ONCE(!vma);
1148 
1149 	if (vma && (vma->vm_flags & VM_SOFTDIRTY))
1150 		flags2 = __PM_SOFT_DIRTY;
1151 	else
1152 		flags2 = 0;
1153 
1154 	for (; addr != end; addr += PAGE_SIZE) {
1155 		int offset = (addr & ~hmask) >> PAGE_SHIFT;
1156 		huge_pte_to_pagemap_entry(&pme, pm, *pte, offset, flags2);
1157 		err = add_to_pagemap(addr, &pme, pm);
1158 		if (err)
1159 			return err;
1160 	}
1161 
1162 	cond_resched();
1163 
1164 	return err;
1165 }
1166 #endif /* HUGETLB_PAGE */
1167 
1168 /*
1169  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1170  *
1171  * For each page in the address space, this file contains one 64-bit entry
1172  * consisting of the following:
1173  *
1174  * Bits 0-54  page frame number (PFN) if present
1175  * Bits 0-4   swap type if swapped
1176  * Bits 5-54  swap offset if swapped
1177  * Bits 55-60 page shift (page size = 1<<page shift)
1178  * Bit  61    page is file-page or shared-anon
1179  * Bit  62    page swapped
1180  * Bit  63    page present
1181  *
1182  * If the page is not present but in swap, then the PFN contains an
1183  * encoding of the swap file number and the page's offset into the
1184  * swap. Unmapped pages return a null PFN. This allows determining
1185  * precisely which pages are mapped (or in swap) and comparing mapped
1186  * pages between processes.
1187  *
1188  * Efficient users of this interface will use /proc/pid/maps to
1189  * determine which areas of memory are actually mapped and llseek to
1190  * skip over unmapped regions.
1191  */
1192 static ssize_t pagemap_read(struct file *file, char __user *buf,
1193 			    size_t count, loff_t *ppos)
1194 {
1195 	struct task_struct *task = get_proc_task(file_inode(file));
1196 	struct mm_struct *mm;
1197 	struct pagemapread pm;
1198 	int ret = -ESRCH;
1199 	struct mm_walk pagemap_walk = {};
1200 	unsigned long src;
1201 	unsigned long svpfn;
1202 	unsigned long start_vaddr;
1203 	unsigned long end_vaddr;
1204 	int copied = 0;
1205 
1206 	if (!task)
1207 		goto out;
1208 
1209 	ret = -EINVAL;
1210 	/* file position must be aligned */
1211 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1212 		goto out_task;
1213 
1214 	ret = 0;
1215 	if (!count)
1216 		goto out_task;
1217 
1218 	pm.v2 = soft_dirty_cleared;
1219 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1220 	pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1221 	ret = -ENOMEM;
1222 	if (!pm.buffer)
1223 		goto out_task;
1224 
1225 	mm = mm_access(task, PTRACE_MODE_READ);
1226 	ret = PTR_ERR(mm);
1227 	if (!mm || IS_ERR(mm))
1228 		goto out_free;
1229 
1230 	pagemap_walk.pmd_entry = pagemap_pte_range;
1231 	pagemap_walk.pte_hole = pagemap_pte_hole;
1232 #ifdef CONFIG_HUGETLB_PAGE
1233 	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1234 #endif
1235 	pagemap_walk.mm = mm;
1236 	pagemap_walk.private = &pm;
1237 
1238 	src = *ppos;
1239 	svpfn = src / PM_ENTRY_BYTES;
1240 	start_vaddr = svpfn << PAGE_SHIFT;
1241 	end_vaddr = TASK_SIZE_OF(task);
1242 
1243 	/* watch out for wraparound */
1244 	if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
1245 		start_vaddr = end_vaddr;
1246 
1247 	/*
1248 	 * The odds are that this will stop walking way
1249 	 * before end_vaddr, because the length of the
1250 	 * user buffer is tracked in "pm", and the walk
1251 	 * will stop when we hit the end of the buffer.
1252 	 */
1253 	ret = 0;
1254 	while (count && (start_vaddr < end_vaddr)) {
1255 		int len;
1256 		unsigned long end;
1257 
1258 		pm.pos = 0;
1259 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1260 		/* overflow ? */
1261 		if (end < start_vaddr || end > end_vaddr)
1262 			end = end_vaddr;
1263 		down_read(&mm->mmap_sem);
1264 		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1265 		up_read(&mm->mmap_sem);
1266 		start_vaddr = end;
1267 
1268 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1269 		if (copy_to_user(buf, pm.buffer, len)) {
1270 			ret = -EFAULT;
1271 			goto out_mm;
1272 		}
1273 		copied += len;
1274 		buf += len;
1275 		count -= len;
1276 	}
1277 	*ppos += copied;
1278 	if (!ret || ret == PM_END_OF_BUFFER)
1279 		ret = copied;
1280 
1281 out_mm:
1282 	mmput(mm);
1283 out_free:
1284 	kfree(pm.buffer);
1285 out_task:
1286 	put_task_struct(task);
1287 out:
1288 	return ret;
1289 }
1290 
1291 static int pagemap_open(struct inode *inode, struct file *file)
1292 {
1293 	pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
1294 			"to stop being page-shift some time soon. See the "
1295 			"linux/Documentation/vm/pagemap.txt for details.\n");
1296 	return 0;
1297 }
1298 
1299 const struct file_operations proc_pagemap_operations = {
1300 	.llseek		= mem_lseek, /* borrow this */
1301 	.read		= pagemap_read,
1302 	.open		= pagemap_open,
1303 };
1304 #endif /* CONFIG_PROC_PAGE_MONITOR */
1305 
1306 #ifdef CONFIG_NUMA
1307 
1308 struct numa_maps {
1309 	struct vm_area_struct *vma;
1310 	unsigned long pages;
1311 	unsigned long anon;
1312 	unsigned long active;
1313 	unsigned long writeback;
1314 	unsigned long mapcount_max;
1315 	unsigned long dirty;
1316 	unsigned long swapcache;
1317 	unsigned long node[MAX_NUMNODES];
1318 };
1319 
1320 struct numa_maps_private {
1321 	struct proc_maps_private proc_maps;
1322 	struct numa_maps md;
1323 };
1324 
1325 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1326 			unsigned long nr_pages)
1327 {
1328 	int count = page_mapcount(page);
1329 
1330 	md->pages += nr_pages;
1331 	if (pte_dirty || PageDirty(page))
1332 		md->dirty += nr_pages;
1333 
1334 	if (PageSwapCache(page))
1335 		md->swapcache += nr_pages;
1336 
1337 	if (PageActive(page) || PageUnevictable(page))
1338 		md->active += nr_pages;
1339 
1340 	if (PageWriteback(page))
1341 		md->writeback += nr_pages;
1342 
1343 	if (PageAnon(page))
1344 		md->anon += nr_pages;
1345 
1346 	if (count > md->mapcount_max)
1347 		md->mapcount_max = count;
1348 
1349 	md->node[page_to_nid(page)] += nr_pages;
1350 }
1351 
1352 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1353 		unsigned long addr)
1354 {
1355 	struct page *page;
1356 	int nid;
1357 
1358 	if (!pte_present(pte))
1359 		return NULL;
1360 
1361 	page = vm_normal_page(vma, addr, pte);
1362 	if (!page)
1363 		return NULL;
1364 
1365 	if (PageReserved(page))
1366 		return NULL;
1367 
1368 	nid = page_to_nid(page);
1369 	if (!node_isset(nid, node_states[N_MEMORY]))
1370 		return NULL;
1371 
1372 	return page;
1373 }
1374 
1375 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1376 		unsigned long end, struct mm_walk *walk)
1377 {
1378 	struct numa_maps *md;
1379 	spinlock_t *ptl;
1380 	pte_t *orig_pte;
1381 	pte_t *pte;
1382 
1383 	md = walk->private;
1384 
1385 	if (pmd_trans_huge_lock(pmd, md->vma, &ptl) == 1) {
1386 		pte_t huge_pte = *(pte_t *)pmd;
1387 		struct page *page;
1388 
1389 		page = can_gather_numa_stats(huge_pte, md->vma, addr);
1390 		if (page)
1391 			gather_stats(page, md, pte_dirty(huge_pte),
1392 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1393 		spin_unlock(ptl);
1394 		return 0;
1395 	}
1396 
1397 	if (pmd_trans_unstable(pmd))
1398 		return 0;
1399 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1400 	do {
1401 		struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
1402 		if (!page)
1403 			continue;
1404 		gather_stats(page, md, pte_dirty(*pte), 1);
1405 
1406 	} while (pte++, addr += PAGE_SIZE, addr != end);
1407 	pte_unmap_unlock(orig_pte, ptl);
1408 	return 0;
1409 }
1410 #ifdef CONFIG_HUGETLB_PAGE
1411 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1412 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1413 {
1414 	struct numa_maps *md;
1415 	struct page *page;
1416 
1417 	if (!pte_present(*pte))
1418 		return 0;
1419 
1420 	page = pte_page(*pte);
1421 	if (!page)
1422 		return 0;
1423 
1424 	md = walk->private;
1425 	gather_stats(page, md, pte_dirty(*pte), 1);
1426 	return 0;
1427 }
1428 
1429 #else
1430 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1431 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1432 {
1433 	return 0;
1434 }
1435 #endif
1436 
1437 /*
1438  * Display pages allocated per node and memory policy via /proc.
1439  */
1440 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1441 {
1442 	struct numa_maps_private *numa_priv = m->private;
1443 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1444 	struct vm_area_struct *vma = v;
1445 	struct numa_maps *md = &numa_priv->md;
1446 	struct file *file = vma->vm_file;
1447 	struct mm_struct *mm = vma->vm_mm;
1448 	struct mm_walk walk = {};
1449 	struct mempolicy *pol;
1450 	char buffer[64];
1451 	int nid;
1452 
1453 	if (!mm)
1454 		return 0;
1455 
1456 	/* Ensure we start with an empty set of numa_maps statistics. */
1457 	memset(md, 0, sizeof(*md));
1458 
1459 	md->vma = vma;
1460 
1461 	walk.hugetlb_entry = gather_hugetbl_stats;
1462 	walk.pmd_entry = gather_pte_stats;
1463 	walk.private = md;
1464 	walk.mm = mm;
1465 
1466 	pol = __get_vma_policy(vma, vma->vm_start);
1467 	if (pol) {
1468 		mpol_to_str(buffer, sizeof(buffer), pol);
1469 		mpol_cond_put(pol);
1470 	} else {
1471 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1472 	}
1473 
1474 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1475 
1476 	if (file) {
1477 		seq_puts(m, " file=");
1478 		seq_path(m, &file->f_path, "\n\t= ");
1479 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1480 		seq_puts(m, " heap");
1481 	} else {
1482 		pid_t tid = pid_of_stack(proc_priv, vma, is_pid);
1483 		if (tid != 0) {
1484 			/*
1485 			 * Thread stack in /proc/PID/task/TID/maps or
1486 			 * the main process stack.
1487 			 */
1488 			if (!is_pid || (vma->vm_start <= mm->start_stack &&
1489 			    vma->vm_end >= mm->start_stack))
1490 				seq_puts(m, " stack");
1491 			else
1492 				seq_printf(m, " stack:%d", tid);
1493 		}
1494 	}
1495 
1496 	if (is_vm_hugetlb_page(vma))
1497 		seq_puts(m, " huge");
1498 
1499 	walk_page_range(vma->vm_start, vma->vm_end, &walk);
1500 
1501 	if (!md->pages)
1502 		goto out;
1503 
1504 	if (md->anon)
1505 		seq_printf(m, " anon=%lu", md->anon);
1506 
1507 	if (md->dirty)
1508 		seq_printf(m, " dirty=%lu", md->dirty);
1509 
1510 	if (md->pages != md->anon && md->pages != md->dirty)
1511 		seq_printf(m, " mapped=%lu", md->pages);
1512 
1513 	if (md->mapcount_max > 1)
1514 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1515 
1516 	if (md->swapcache)
1517 		seq_printf(m, " swapcache=%lu", md->swapcache);
1518 
1519 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1520 		seq_printf(m, " active=%lu", md->active);
1521 
1522 	if (md->writeback)
1523 		seq_printf(m, " writeback=%lu", md->writeback);
1524 
1525 	for_each_node_state(nid, N_MEMORY)
1526 		if (md->node[nid])
1527 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1528 out:
1529 	seq_putc(m, '\n');
1530 	m_cache_vma(m, vma);
1531 	return 0;
1532 }
1533 
1534 static int show_pid_numa_map(struct seq_file *m, void *v)
1535 {
1536 	return show_numa_map(m, v, 1);
1537 }
1538 
1539 static int show_tid_numa_map(struct seq_file *m, void *v)
1540 {
1541 	return show_numa_map(m, v, 0);
1542 }
1543 
1544 static const struct seq_operations proc_pid_numa_maps_op = {
1545 	.start  = m_start,
1546 	.next   = m_next,
1547 	.stop   = m_stop,
1548 	.show   = show_pid_numa_map,
1549 };
1550 
1551 static const struct seq_operations proc_tid_numa_maps_op = {
1552 	.start  = m_start,
1553 	.next   = m_next,
1554 	.stop   = m_stop,
1555 	.show   = show_tid_numa_map,
1556 };
1557 
1558 static int numa_maps_open(struct inode *inode, struct file *file,
1559 			  const struct seq_operations *ops)
1560 {
1561 	return proc_maps_open(inode, file, ops,
1562 				sizeof(struct numa_maps_private));
1563 }
1564 
1565 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1566 {
1567 	return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1568 }
1569 
1570 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1571 {
1572 	return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1573 }
1574 
1575 const struct file_operations proc_pid_numa_maps_operations = {
1576 	.open		= pid_numa_maps_open,
1577 	.read		= seq_read,
1578 	.llseek		= seq_lseek,
1579 	.release	= proc_map_release,
1580 };
1581 
1582 const struct file_operations proc_tid_numa_maps_operations = {
1583 	.open		= tid_numa_maps_open,
1584 	.read		= seq_read,
1585 	.llseek		= seq_lseek,
1586 	.release	= proc_map_release,
1587 };
1588 #endif /* CONFIG_NUMA */
1589