xref: /openbmc/linux/fs/proc/task_mmu.c (revision 3cb70413)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/mm_inline.h>
5 #include <linux/hugetlb.h>
6 #include <linux/huge_mm.h>
7 #include <linux/mount.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/swapops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
23 
24 #include <asm/elf.h>
25 #include <asm/tlb.h>
26 #include <asm/tlbflush.h>
27 #include "internal.h"
28 
29 #define SEQ_PUT_DEC(str, val) \
30 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
31 void task_mem(struct seq_file *m, struct mm_struct *mm)
32 {
33 	unsigned long text, lib, swap, anon, file, shmem;
34 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
35 
36 	anon = get_mm_counter(mm, MM_ANONPAGES);
37 	file = get_mm_counter(mm, MM_FILEPAGES);
38 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
39 
40 	/*
41 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
42 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
43 	 * collector of these hiwater stats must therefore get total_vm
44 	 * and rss too, which will usually be the higher.  Barriers? not
45 	 * worth the effort, such snapshots can always be inconsistent.
46 	 */
47 	hiwater_vm = total_vm = mm->total_vm;
48 	if (hiwater_vm < mm->hiwater_vm)
49 		hiwater_vm = mm->hiwater_vm;
50 	hiwater_rss = total_rss = anon + file + shmem;
51 	if (hiwater_rss < mm->hiwater_rss)
52 		hiwater_rss = mm->hiwater_rss;
53 
54 	/* split executable areas between text and lib */
55 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
56 	text = min(text, mm->exec_vm << PAGE_SHIFT);
57 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
58 
59 	swap = get_mm_counter(mm, MM_SWAPENTS);
60 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
61 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
62 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
63 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
64 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
65 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
66 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
67 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
68 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
69 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
70 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
71 	seq_put_decimal_ull_width(m,
72 		    " kB\nVmExe:\t", text >> 10, 8);
73 	seq_put_decimal_ull_width(m,
74 		    " kB\nVmLib:\t", lib >> 10, 8);
75 	seq_put_decimal_ull_width(m,
76 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
77 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
78 	seq_puts(m, " kB\n");
79 	hugetlb_report_usage(m, mm);
80 }
81 #undef SEQ_PUT_DEC
82 
83 unsigned long task_vsize(struct mm_struct *mm)
84 {
85 	return PAGE_SIZE * mm->total_vm;
86 }
87 
88 unsigned long task_statm(struct mm_struct *mm,
89 			 unsigned long *shared, unsigned long *text,
90 			 unsigned long *data, unsigned long *resident)
91 {
92 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
93 			get_mm_counter(mm, MM_SHMEMPAGES);
94 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
95 								>> PAGE_SHIFT;
96 	*data = mm->data_vm + mm->stack_vm;
97 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
98 	return mm->total_vm;
99 }
100 
101 #ifdef CONFIG_NUMA
102 /*
103  * Save get_task_policy() for show_numa_map().
104  */
105 static void hold_task_mempolicy(struct proc_maps_private *priv)
106 {
107 	struct task_struct *task = priv->task;
108 
109 	task_lock(task);
110 	priv->task_mempolicy = get_task_policy(task);
111 	mpol_get(priv->task_mempolicy);
112 	task_unlock(task);
113 }
114 static void release_task_mempolicy(struct proc_maps_private *priv)
115 {
116 	mpol_put(priv->task_mempolicy);
117 }
118 #else
119 static void hold_task_mempolicy(struct proc_maps_private *priv)
120 {
121 }
122 static void release_task_mempolicy(struct proc_maps_private *priv)
123 {
124 }
125 #endif
126 
127 static void *m_start(struct seq_file *m, loff_t *ppos)
128 {
129 	struct proc_maps_private *priv = m->private;
130 	unsigned long last_addr = *ppos;
131 	struct mm_struct *mm;
132 	struct vm_area_struct *vma;
133 
134 	/* See m_next(). Zero at the start or after lseek. */
135 	if (last_addr == -1UL)
136 		return NULL;
137 
138 	priv->task = get_proc_task(priv->inode);
139 	if (!priv->task)
140 		return ERR_PTR(-ESRCH);
141 
142 	mm = priv->mm;
143 	if (!mm || !mmget_not_zero(mm)) {
144 		put_task_struct(priv->task);
145 		priv->task = NULL;
146 		return NULL;
147 	}
148 
149 	if (mmap_read_lock_killable(mm)) {
150 		mmput(mm);
151 		put_task_struct(priv->task);
152 		priv->task = NULL;
153 		return ERR_PTR(-EINTR);
154 	}
155 
156 	hold_task_mempolicy(priv);
157 	priv->tail_vma = get_gate_vma(mm);
158 
159 	vma = find_vma(mm, last_addr);
160 	if (vma)
161 		return vma;
162 
163 	return priv->tail_vma;
164 }
165 
166 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
167 {
168 	struct proc_maps_private *priv = m->private;
169 	struct vm_area_struct *next, *vma = v;
170 
171 	if (vma == priv->tail_vma)
172 		next = NULL;
173 	else if (vma->vm_next)
174 		next = vma->vm_next;
175 	else
176 		next = priv->tail_vma;
177 
178 	*ppos = next ? next->vm_start : -1UL;
179 
180 	return next;
181 }
182 
183 static void m_stop(struct seq_file *m, void *v)
184 {
185 	struct proc_maps_private *priv = m->private;
186 	struct mm_struct *mm = priv->mm;
187 
188 	if (!priv->task)
189 		return;
190 
191 	release_task_mempolicy(priv);
192 	mmap_read_unlock(mm);
193 	mmput(mm);
194 	put_task_struct(priv->task);
195 	priv->task = NULL;
196 }
197 
198 static int proc_maps_open(struct inode *inode, struct file *file,
199 			const struct seq_operations *ops, int psize)
200 {
201 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
202 
203 	if (!priv)
204 		return -ENOMEM;
205 
206 	priv->inode = inode;
207 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
208 	if (IS_ERR(priv->mm)) {
209 		int err = PTR_ERR(priv->mm);
210 
211 		seq_release_private(inode, file);
212 		return err;
213 	}
214 
215 	return 0;
216 }
217 
218 static int proc_map_release(struct inode *inode, struct file *file)
219 {
220 	struct seq_file *seq = file->private_data;
221 	struct proc_maps_private *priv = seq->private;
222 
223 	if (priv->mm)
224 		mmdrop(priv->mm);
225 
226 	return seq_release_private(inode, file);
227 }
228 
229 static int do_maps_open(struct inode *inode, struct file *file,
230 			const struct seq_operations *ops)
231 {
232 	return proc_maps_open(inode, file, ops,
233 				sizeof(struct proc_maps_private));
234 }
235 
236 /*
237  * Indicate if the VMA is a stack for the given task; for
238  * /proc/PID/maps that is the stack of the main task.
239  */
240 static int is_stack(struct vm_area_struct *vma)
241 {
242 	/*
243 	 * We make no effort to guess what a given thread considers to be
244 	 * its "stack".  It's not even well-defined for programs written
245 	 * languages like Go.
246 	 */
247 	return vma->vm_start <= vma->vm_mm->start_stack &&
248 		vma->vm_end >= vma->vm_mm->start_stack;
249 }
250 
251 static void show_vma_header_prefix(struct seq_file *m,
252 				   unsigned long start, unsigned long end,
253 				   vm_flags_t flags, unsigned long long pgoff,
254 				   dev_t dev, unsigned long ino)
255 {
256 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
257 	seq_put_hex_ll(m, NULL, start, 8);
258 	seq_put_hex_ll(m, "-", end, 8);
259 	seq_putc(m, ' ');
260 	seq_putc(m, flags & VM_READ ? 'r' : '-');
261 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
262 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
263 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
264 	seq_put_hex_ll(m, " ", pgoff, 8);
265 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
266 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
267 	seq_put_decimal_ull(m, " ", ino);
268 	seq_putc(m, ' ');
269 }
270 
271 static void
272 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
273 {
274 	struct mm_struct *mm = vma->vm_mm;
275 	struct file *file = vma->vm_file;
276 	vm_flags_t flags = vma->vm_flags;
277 	unsigned long ino = 0;
278 	unsigned long long pgoff = 0;
279 	unsigned long start, end;
280 	dev_t dev = 0;
281 	const char *name = NULL;
282 
283 	if (file) {
284 		struct inode *inode = file_inode(vma->vm_file);
285 		dev = inode->i_sb->s_dev;
286 		ino = inode->i_ino;
287 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
288 	}
289 
290 	start = vma->vm_start;
291 	end = vma->vm_end;
292 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
293 
294 	/*
295 	 * Print the dentry name for named mappings, and a
296 	 * special [heap] marker for the heap:
297 	 */
298 	if (file) {
299 		seq_pad(m, ' ');
300 		seq_file_path(m, file, "\n");
301 		goto done;
302 	}
303 
304 	if (vma->vm_ops && vma->vm_ops->name) {
305 		name = vma->vm_ops->name(vma);
306 		if (name)
307 			goto done;
308 	}
309 
310 	name = arch_vma_name(vma);
311 	if (!name) {
312 		struct anon_vma_name *anon_name;
313 
314 		if (!mm) {
315 			name = "[vdso]";
316 			goto done;
317 		}
318 
319 		if (vma->vm_start <= mm->brk &&
320 		    vma->vm_end >= mm->start_brk) {
321 			name = "[heap]";
322 			goto done;
323 		}
324 
325 		if (is_stack(vma)) {
326 			name = "[stack]";
327 			goto done;
328 		}
329 
330 		anon_name = anon_vma_name(vma);
331 		if (anon_name) {
332 			seq_pad(m, ' ');
333 			seq_printf(m, "[anon:%s]", anon_name->name);
334 		}
335 	}
336 
337 done:
338 	if (name) {
339 		seq_pad(m, ' ');
340 		seq_puts(m, name);
341 	}
342 	seq_putc(m, '\n');
343 }
344 
345 static int show_map(struct seq_file *m, void *v)
346 {
347 	show_map_vma(m, v);
348 	return 0;
349 }
350 
351 static const struct seq_operations proc_pid_maps_op = {
352 	.start	= m_start,
353 	.next	= m_next,
354 	.stop	= m_stop,
355 	.show	= show_map
356 };
357 
358 static int pid_maps_open(struct inode *inode, struct file *file)
359 {
360 	return do_maps_open(inode, file, &proc_pid_maps_op);
361 }
362 
363 const struct file_operations proc_pid_maps_operations = {
364 	.open		= pid_maps_open,
365 	.read		= seq_read,
366 	.llseek		= seq_lseek,
367 	.release	= proc_map_release,
368 };
369 
370 /*
371  * Proportional Set Size(PSS): my share of RSS.
372  *
373  * PSS of a process is the count of pages it has in memory, where each
374  * page is divided by the number of processes sharing it.  So if a
375  * process has 1000 pages all to itself, and 1000 shared with one other
376  * process, its PSS will be 1500.
377  *
378  * To keep (accumulated) division errors low, we adopt a 64bit
379  * fixed-point pss counter to minimize division errors. So (pss >>
380  * PSS_SHIFT) would be the real byte count.
381  *
382  * A shift of 12 before division means (assuming 4K page size):
383  * 	- 1M 3-user-pages add up to 8KB errors;
384  * 	- supports mapcount up to 2^24, or 16M;
385  * 	- supports PSS up to 2^52 bytes, or 4PB.
386  */
387 #define PSS_SHIFT 12
388 
389 #ifdef CONFIG_PROC_PAGE_MONITOR
390 struct mem_size_stats {
391 	unsigned long resident;
392 	unsigned long shared_clean;
393 	unsigned long shared_dirty;
394 	unsigned long private_clean;
395 	unsigned long private_dirty;
396 	unsigned long referenced;
397 	unsigned long anonymous;
398 	unsigned long lazyfree;
399 	unsigned long anonymous_thp;
400 	unsigned long shmem_thp;
401 	unsigned long file_thp;
402 	unsigned long swap;
403 	unsigned long shared_hugetlb;
404 	unsigned long private_hugetlb;
405 	u64 pss;
406 	u64 pss_anon;
407 	u64 pss_file;
408 	u64 pss_shmem;
409 	u64 pss_locked;
410 	u64 swap_pss;
411 };
412 
413 static void smaps_page_accumulate(struct mem_size_stats *mss,
414 		struct page *page, unsigned long size, unsigned long pss,
415 		bool dirty, bool locked, bool private)
416 {
417 	mss->pss += pss;
418 
419 	if (PageAnon(page))
420 		mss->pss_anon += pss;
421 	else if (PageSwapBacked(page))
422 		mss->pss_shmem += pss;
423 	else
424 		mss->pss_file += pss;
425 
426 	if (locked)
427 		mss->pss_locked += pss;
428 
429 	if (dirty || PageDirty(page)) {
430 		if (private)
431 			mss->private_dirty += size;
432 		else
433 			mss->shared_dirty += size;
434 	} else {
435 		if (private)
436 			mss->private_clean += size;
437 		else
438 			mss->shared_clean += size;
439 	}
440 }
441 
442 static void smaps_account(struct mem_size_stats *mss, struct page *page,
443 		bool compound, bool young, bool dirty, bool locked,
444 		bool migration)
445 {
446 	int i, nr = compound ? compound_nr(page) : 1;
447 	unsigned long size = nr * PAGE_SIZE;
448 
449 	/*
450 	 * First accumulate quantities that depend only on |size| and the type
451 	 * of the compound page.
452 	 */
453 	if (PageAnon(page)) {
454 		mss->anonymous += size;
455 		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
456 			mss->lazyfree += size;
457 	}
458 
459 	mss->resident += size;
460 	/* Accumulate the size in pages that have been accessed. */
461 	if (young || page_is_young(page) || PageReferenced(page))
462 		mss->referenced += size;
463 
464 	/*
465 	 * Then accumulate quantities that may depend on sharing, or that may
466 	 * differ page-by-page.
467 	 *
468 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
469 	 * If any subpage of the compound page mapped with PTE it would elevate
470 	 * page_count().
471 	 *
472 	 * The page_mapcount() is called to get a snapshot of the mapcount.
473 	 * Without holding the page lock this snapshot can be slightly wrong as
474 	 * we cannot always read the mapcount atomically.  It is not safe to
475 	 * call page_mapcount() even with PTL held if the page is not mapped,
476 	 * especially for migration entries.  Treat regular migration entries
477 	 * as mapcount == 1.
478 	 */
479 	if ((page_count(page) == 1) || migration) {
480 		smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
481 			locked, true);
482 		return;
483 	}
484 	for (i = 0; i < nr; i++, page++) {
485 		int mapcount = page_mapcount(page);
486 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
487 		if (mapcount >= 2)
488 			pss /= mapcount;
489 		smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
490 				      mapcount < 2);
491 	}
492 }
493 
494 #ifdef CONFIG_SHMEM
495 static int smaps_pte_hole(unsigned long addr, unsigned long end,
496 			  __always_unused int depth, struct mm_walk *walk)
497 {
498 	struct mem_size_stats *mss = walk->private;
499 	struct vm_area_struct *vma = walk->vma;
500 
501 	mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
502 					      linear_page_index(vma, addr),
503 					      linear_page_index(vma, end));
504 
505 	return 0;
506 }
507 #else
508 #define smaps_pte_hole		NULL
509 #endif /* CONFIG_SHMEM */
510 
511 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
512 {
513 #ifdef CONFIG_SHMEM
514 	if (walk->ops->pte_hole) {
515 		/* depth is not used */
516 		smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
517 	}
518 #endif
519 }
520 
521 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
522 		struct mm_walk *walk)
523 {
524 	struct mem_size_stats *mss = walk->private;
525 	struct vm_area_struct *vma = walk->vma;
526 	bool locked = !!(vma->vm_flags & VM_LOCKED);
527 	struct page *page = NULL;
528 	bool migration = false;
529 
530 	if (pte_present(*pte)) {
531 		page = vm_normal_page(vma, addr, *pte);
532 	} else if (is_swap_pte(*pte)) {
533 		swp_entry_t swpent = pte_to_swp_entry(*pte);
534 
535 		if (!non_swap_entry(swpent)) {
536 			int mapcount;
537 
538 			mss->swap += PAGE_SIZE;
539 			mapcount = swp_swapcount(swpent);
540 			if (mapcount >= 2) {
541 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
542 
543 				do_div(pss_delta, mapcount);
544 				mss->swap_pss += pss_delta;
545 			} else {
546 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
547 			}
548 		} else if (is_pfn_swap_entry(swpent)) {
549 			if (is_migration_entry(swpent))
550 				migration = true;
551 			page = pfn_swap_entry_to_page(swpent);
552 		}
553 	} else {
554 		smaps_pte_hole_lookup(addr, walk);
555 		return;
556 	}
557 
558 	if (!page)
559 		return;
560 
561 	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte),
562 		      locked, migration);
563 }
564 
565 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
566 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
567 		struct mm_walk *walk)
568 {
569 	struct mem_size_stats *mss = walk->private;
570 	struct vm_area_struct *vma = walk->vma;
571 	bool locked = !!(vma->vm_flags & VM_LOCKED);
572 	struct page *page = NULL;
573 	bool migration = false;
574 
575 	if (pmd_present(*pmd)) {
576 		/* FOLL_DUMP will return -EFAULT on huge zero page */
577 		page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
578 	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
579 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
580 
581 		if (is_migration_entry(entry)) {
582 			migration = true;
583 			page = pfn_swap_entry_to_page(entry);
584 		}
585 	}
586 	if (IS_ERR_OR_NULL(page))
587 		return;
588 	if (PageAnon(page))
589 		mss->anonymous_thp += HPAGE_PMD_SIZE;
590 	else if (PageSwapBacked(page))
591 		mss->shmem_thp += HPAGE_PMD_SIZE;
592 	else if (is_zone_device_page(page))
593 		/* pass */;
594 	else
595 		mss->file_thp += HPAGE_PMD_SIZE;
596 
597 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
598 		      locked, migration);
599 }
600 #else
601 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
602 		struct mm_walk *walk)
603 {
604 }
605 #endif
606 
607 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
608 			   struct mm_walk *walk)
609 {
610 	struct vm_area_struct *vma = walk->vma;
611 	pte_t *pte;
612 	spinlock_t *ptl;
613 
614 	ptl = pmd_trans_huge_lock(pmd, vma);
615 	if (ptl) {
616 		smaps_pmd_entry(pmd, addr, walk);
617 		spin_unlock(ptl);
618 		goto out;
619 	}
620 
621 	if (pmd_trans_unstable(pmd))
622 		goto out;
623 	/*
624 	 * The mmap_lock held all the way back in m_start() is what
625 	 * keeps khugepaged out of here and from collapsing things
626 	 * in here.
627 	 */
628 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
629 	for (; addr != end; pte++, addr += PAGE_SIZE)
630 		smaps_pte_entry(pte, addr, walk);
631 	pte_unmap_unlock(pte - 1, ptl);
632 out:
633 	cond_resched();
634 	return 0;
635 }
636 
637 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
638 {
639 	/*
640 	 * Don't forget to update Documentation/ on changes.
641 	 */
642 	static const char mnemonics[BITS_PER_LONG][2] = {
643 		/*
644 		 * In case if we meet a flag we don't know about.
645 		 */
646 		[0 ... (BITS_PER_LONG-1)] = "??",
647 
648 		[ilog2(VM_READ)]	= "rd",
649 		[ilog2(VM_WRITE)]	= "wr",
650 		[ilog2(VM_EXEC)]	= "ex",
651 		[ilog2(VM_SHARED)]	= "sh",
652 		[ilog2(VM_MAYREAD)]	= "mr",
653 		[ilog2(VM_MAYWRITE)]	= "mw",
654 		[ilog2(VM_MAYEXEC)]	= "me",
655 		[ilog2(VM_MAYSHARE)]	= "ms",
656 		[ilog2(VM_GROWSDOWN)]	= "gd",
657 		[ilog2(VM_PFNMAP)]	= "pf",
658 		[ilog2(VM_LOCKED)]	= "lo",
659 		[ilog2(VM_IO)]		= "io",
660 		[ilog2(VM_SEQ_READ)]	= "sr",
661 		[ilog2(VM_RAND_READ)]	= "rr",
662 		[ilog2(VM_DONTCOPY)]	= "dc",
663 		[ilog2(VM_DONTEXPAND)]	= "de",
664 		[ilog2(VM_ACCOUNT)]	= "ac",
665 		[ilog2(VM_NORESERVE)]	= "nr",
666 		[ilog2(VM_HUGETLB)]	= "ht",
667 		[ilog2(VM_SYNC)]	= "sf",
668 		[ilog2(VM_ARCH_1)]	= "ar",
669 		[ilog2(VM_WIPEONFORK)]	= "wf",
670 		[ilog2(VM_DONTDUMP)]	= "dd",
671 #ifdef CONFIG_ARM64_BTI
672 		[ilog2(VM_ARM64_BTI)]	= "bt",
673 #endif
674 #ifdef CONFIG_MEM_SOFT_DIRTY
675 		[ilog2(VM_SOFTDIRTY)]	= "sd",
676 #endif
677 		[ilog2(VM_MIXEDMAP)]	= "mm",
678 		[ilog2(VM_HUGEPAGE)]	= "hg",
679 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
680 		[ilog2(VM_MERGEABLE)]	= "mg",
681 		[ilog2(VM_UFFD_MISSING)]= "um",
682 		[ilog2(VM_UFFD_WP)]	= "uw",
683 #ifdef CONFIG_ARM64_MTE
684 		[ilog2(VM_MTE)]		= "mt",
685 		[ilog2(VM_MTE_ALLOWED)]	= "",
686 #endif
687 #ifdef CONFIG_ARCH_HAS_PKEYS
688 		/* These come out via ProtectionKey: */
689 		[ilog2(VM_PKEY_BIT0)]	= "",
690 		[ilog2(VM_PKEY_BIT1)]	= "",
691 		[ilog2(VM_PKEY_BIT2)]	= "",
692 		[ilog2(VM_PKEY_BIT3)]	= "",
693 #if VM_PKEY_BIT4
694 		[ilog2(VM_PKEY_BIT4)]	= "",
695 #endif
696 #endif /* CONFIG_ARCH_HAS_PKEYS */
697 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
698 		[ilog2(VM_UFFD_MINOR)]	= "ui",
699 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
700 	};
701 	size_t i;
702 
703 	seq_puts(m, "VmFlags: ");
704 	for (i = 0; i < BITS_PER_LONG; i++) {
705 		if (!mnemonics[i][0])
706 			continue;
707 		if (vma->vm_flags & (1UL << i)) {
708 			seq_putc(m, mnemonics[i][0]);
709 			seq_putc(m, mnemonics[i][1]);
710 			seq_putc(m, ' ');
711 		}
712 	}
713 	seq_putc(m, '\n');
714 }
715 
716 #ifdef CONFIG_HUGETLB_PAGE
717 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
718 				 unsigned long addr, unsigned long end,
719 				 struct mm_walk *walk)
720 {
721 	struct mem_size_stats *mss = walk->private;
722 	struct vm_area_struct *vma = walk->vma;
723 	struct page *page = NULL;
724 
725 	if (pte_present(*pte)) {
726 		page = vm_normal_page(vma, addr, *pte);
727 	} else if (is_swap_pte(*pte)) {
728 		swp_entry_t swpent = pte_to_swp_entry(*pte);
729 
730 		if (is_pfn_swap_entry(swpent))
731 			page = pfn_swap_entry_to_page(swpent);
732 	}
733 	if (page) {
734 		int mapcount = page_mapcount(page);
735 
736 		if (mapcount >= 2)
737 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
738 		else
739 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
740 	}
741 	return 0;
742 }
743 #else
744 #define smaps_hugetlb_range	NULL
745 #endif /* HUGETLB_PAGE */
746 
747 static const struct mm_walk_ops smaps_walk_ops = {
748 	.pmd_entry		= smaps_pte_range,
749 	.hugetlb_entry		= smaps_hugetlb_range,
750 };
751 
752 static const struct mm_walk_ops smaps_shmem_walk_ops = {
753 	.pmd_entry		= smaps_pte_range,
754 	.hugetlb_entry		= smaps_hugetlb_range,
755 	.pte_hole		= smaps_pte_hole,
756 };
757 
758 /*
759  * Gather mem stats from @vma with the indicated beginning
760  * address @start, and keep them in @mss.
761  *
762  * Use vm_start of @vma as the beginning address if @start is 0.
763  */
764 static void smap_gather_stats(struct vm_area_struct *vma,
765 		struct mem_size_stats *mss, unsigned long start)
766 {
767 	const struct mm_walk_ops *ops = &smaps_walk_ops;
768 
769 	/* Invalid start */
770 	if (start >= vma->vm_end)
771 		return;
772 
773 #ifdef CONFIG_SHMEM
774 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
775 		/*
776 		 * For shared or readonly shmem mappings we know that all
777 		 * swapped out pages belong to the shmem object, and we can
778 		 * obtain the swap value much more efficiently. For private
779 		 * writable mappings, we might have COW pages that are
780 		 * not affected by the parent swapped out pages of the shmem
781 		 * object, so we have to distinguish them during the page walk.
782 		 * Unless we know that the shmem object (or the part mapped by
783 		 * our VMA) has no swapped out pages at all.
784 		 */
785 		unsigned long shmem_swapped = shmem_swap_usage(vma);
786 
787 		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
788 					!(vma->vm_flags & VM_WRITE))) {
789 			mss->swap += shmem_swapped;
790 		} else {
791 			ops = &smaps_shmem_walk_ops;
792 		}
793 	}
794 #endif
795 	/* mmap_lock is held in m_start */
796 	if (!start)
797 		walk_page_vma(vma, ops, mss);
798 	else
799 		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
800 }
801 
802 #define SEQ_PUT_DEC(str, val) \
803 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
804 
805 /* Show the contents common for smaps and smaps_rollup */
806 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
807 	bool rollup_mode)
808 {
809 	SEQ_PUT_DEC("Rss:            ", mss->resident);
810 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
811 	if (rollup_mode) {
812 		/*
813 		 * These are meaningful only for smaps_rollup, otherwise two of
814 		 * them are zero, and the other one is the same as Pss.
815 		 */
816 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
817 			mss->pss_anon >> PSS_SHIFT);
818 		SEQ_PUT_DEC(" kB\nPss_File:       ",
819 			mss->pss_file >> PSS_SHIFT);
820 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
821 			mss->pss_shmem >> PSS_SHIFT);
822 	}
823 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
824 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
825 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
826 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
827 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
828 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
829 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
830 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
831 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
832 	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
833 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
834 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
835 				  mss->private_hugetlb >> 10, 7);
836 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
837 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
838 					mss->swap_pss >> PSS_SHIFT);
839 	SEQ_PUT_DEC(" kB\nLocked:         ",
840 					mss->pss_locked >> PSS_SHIFT);
841 	seq_puts(m, " kB\n");
842 }
843 
844 static int show_smap(struct seq_file *m, void *v)
845 {
846 	struct vm_area_struct *vma = v;
847 	struct mem_size_stats mss;
848 
849 	memset(&mss, 0, sizeof(mss));
850 
851 	smap_gather_stats(vma, &mss, 0);
852 
853 	show_map_vma(m, vma);
854 
855 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
856 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
857 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
858 	seq_puts(m, " kB\n");
859 
860 	__show_smap(m, &mss, false);
861 
862 	seq_printf(m, "THPeligible:    %d\n",
863 		   transparent_hugepage_active(vma));
864 
865 	if (arch_pkeys_enabled())
866 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
867 	show_smap_vma_flags(m, vma);
868 
869 	return 0;
870 }
871 
872 static int show_smaps_rollup(struct seq_file *m, void *v)
873 {
874 	struct proc_maps_private *priv = m->private;
875 	struct mem_size_stats mss;
876 	struct mm_struct *mm;
877 	struct vm_area_struct *vma;
878 	unsigned long last_vma_end = 0;
879 	int ret = 0;
880 
881 	priv->task = get_proc_task(priv->inode);
882 	if (!priv->task)
883 		return -ESRCH;
884 
885 	mm = priv->mm;
886 	if (!mm || !mmget_not_zero(mm)) {
887 		ret = -ESRCH;
888 		goto out_put_task;
889 	}
890 
891 	memset(&mss, 0, sizeof(mss));
892 
893 	ret = mmap_read_lock_killable(mm);
894 	if (ret)
895 		goto out_put_mm;
896 
897 	hold_task_mempolicy(priv);
898 
899 	for (vma = priv->mm->mmap; vma;) {
900 		smap_gather_stats(vma, &mss, 0);
901 		last_vma_end = vma->vm_end;
902 
903 		/*
904 		 * Release mmap_lock temporarily if someone wants to
905 		 * access it for write request.
906 		 */
907 		if (mmap_lock_is_contended(mm)) {
908 			mmap_read_unlock(mm);
909 			ret = mmap_read_lock_killable(mm);
910 			if (ret) {
911 				release_task_mempolicy(priv);
912 				goto out_put_mm;
913 			}
914 
915 			/*
916 			 * After dropping the lock, there are four cases to
917 			 * consider. See the following example for explanation.
918 			 *
919 			 *   +------+------+-----------+
920 			 *   | VMA1 | VMA2 | VMA3      |
921 			 *   +------+------+-----------+
922 			 *   |      |      |           |
923 			 *  4k     8k     16k         400k
924 			 *
925 			 * Suppose we drop the lock after reading VMA2 due to
926 			 * contention, then we get:
927 			 *
928 			 *	last_vma_end = 16k
929 			 *
930 			 * 1) VMA2 is freed, but VMA3 exists:
931 			 *
932 			 *    find_vma(mm, 16k - 1) will return VMA3.
933 			 *    In this case, just continue from VMA3.
934 			 *
935 			 * 2) VMA2 still exists:
936 			 *
937 			 *    find_vma(mm, 16k - 1) will return VMA2.
938 			 *    Iterate the loop like the original one.
939 			 *
940 			 * 3) No more VMAs can be found:
941 			 *
942 			 *    find_vma(mm, 16k - 1) will return NULL.
943 			 *    No more things to do, just break.
944 			 *
945 			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
946 			 *
947 			 *    find_vma(mm, 16k - 1) will return VMA' whose range
948 			 *    contains last_vma_end.
949 			 *    Iterate VMA' from last_vma_end.
950 			 */
951 			vma = find_vma(mm, last_vma_end - 1);
952 			/* Case 3 above */
953 			if (!vma)
954 				break;
955 
956 			/* Case 1 above */
957 			if (vma->vm_start >= last_vma_end)
958 				continue;
959 
960 			/* Case 4 above */
961 			if (vma->vm_end > last_vma_end)
962 				smap_gather_stats(vma, &mss, last_vma_end);
963 		}
964 		/* Case 2 above */
965 		vma = vma->vm_next;
966 	}
967 
968 	show_vma_header_prefix(m, priv->mm->mmap->vm_start,
969 			       last_vma_end, 0, 0, 0, 0);
970 	seq_pad(m, ' ');
971 	seq_puts(m, "[rollup]\n");
972 
973 	__show_smap(m, &mss, true);
974 
975 	release_task_mempolicy(priv);
976 	mmap_read_unlock(mm);
977 
978 out_put_mm:
979 	mmput(mm);
980 out_put_task:
981 	put_task_struct(priv->task);
982 	priv->task = NULL;
983 
984 	return ret;
985 }
986 #undef SEQ_PUT_DEC
987 
988 static const struct seq_operations proc_pid_smaps_op = {
989 	.start	= m_start,
990 	.next	= m_next,
991 	.stop	= m_stop,
992 	.show	= show_smap
993 };
994 
995 static int pid_smaps_open(struct inode *inode, struct file *file)
996 {
997 	return do_maps_open(inode, file, &proc_pid_smaps_op);
998 }
999 
1000 static int smaps_rollup_open(struct inode *inode, struct file *file)
1001 {
1002 	int ret;
1003 	struct proc_maps_private *priv;
1004 
1005 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1006 	if (!priv)
1007 		return -ENOMEM;
1008 
1009 	ret = single_open(file, show_smaps_rollup, priv);
1010 	if (ret)
1011 		goto out_free;
1012 
1013 	priv->inode = inode;
1014 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1015 	if (IS_ERR(priv->mm)) {
1016 		ret = PTR_ERR(priv->mm);
1017 
1018 		single_release(inode, file);
1019 		goto out_free;
1020 	}
1021 
1022 	return 0;
1023 
1024 out_free:
1025 	kfree(priv);
1026 	return ret;
1027 }
1028 
1029 static int smaps_rollup_release(struct inode *inode, struct file *file)
1030 {
1031 	struct seq_file *seq = file->private_data;
1032 	struct proc_maps_private *priv = seq->private;
1033 
1034 	if (priv->mm)
1035 		mmdrop(priv->mm);
1036 
1037 	kfree(priv);
1038 	return single_release(inode, file);
1039 }
1040 
1041 const struct file_operations proc_pid_smaps_operations = {
1042 	.open		= pid_smaps_open,
1043 	.read		= seq_read,
1044 	.llseek		= seq_lseek,
1045 	.release	= proc_map_release,
1046 };
1047 
1048 const struct file_operations proc_pid_smaps_rollup_operations = {
1049 	.open		= smaps_rollup_open,
1050 	.read		= seq_read,
1051 	.llseek		= seq_lseek,
1052 	.release	= smaps_rollup_release,
1053 };
1054 
1055 enum clear_refs_types {
1056 	CLEAR_REFS_ALL = 1,
1057 	CLEAR_REFS_ANON,
1058 	CLEAR_REFS_MAPPED,
1059 	CLEAR_REFS_SOFT_DIRTY,
1060 	CLEAR_REFS_MM_HIWATER_RSS,
1061 	CLEAR_REFS_LAST,
1062 };
1063 
1064 struct clear_refs_private {
1065 	enum clear_refs_types type;
1066 };
1067 
1068 #ifdef CONFIG_MEM_SOFT_DIRTY
1069 
1070 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1071 {
1072 	struct page *page;
1073 
1074 	if (!pte_write(pte))
1075 		return false;
1076 	if (!is_cow_mapping(vma->vm_flags))
1077 		return false;
1078 	if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1079 		return false;
1080 	page = vm_normal_page(vma, addr, pte);
1081 	if (!page)
1082 		return false;
1083 	return page_maybe_dma_pinned(page);
1084 }
1085 
1086 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1087 		unsigned long addr, pte_t *pte)
1088 {
1089 	/*
1090 	 * The soft-dirty tracker uses #PF-s to catch writes
1091 	 * to pages, so write-protect the pte as well. See the
1092 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1093 	 * of how soft-dirty works.
1094 	 */
1095 	pte_t ptent = *pte;
1096 
1097 	if (pte_present(ptent)) {
1098 		pte_t old_pte;
1099 
1100 		if (pte_is_pinned(vma, addr, ptent))
1101 			return;
1102 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1103 		ptent = pte_wrprotect(old_pte);
1104 		ptent = pte_clear_soft_dirty(ptent);
1105 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1106 	} else if (is_swap_pte(ptent)) {
1107 		ptent = pte_swp_clear_soft_dirty(ptent);
1108 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1109 	}
1110 }
1111 #else
1112 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1113 		unsigned long addr, pte_t *pte)
1114 {
1115 }
1116 #endif
1117 
1118 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1119 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1120 		unsigned long addr, pmd_t *pmdp)
1121 {
1122 	pmd_t old, pmd = *pmdp;
1123 
1124 	if (pmd_present(pmd)) {
1125 		/* See comment in change_huge_pmd() */
1126 		old = pmdp_invalidate(vma, addr, pmdp);
1127 		if (pmd_dirty(old))
1128 			pmd = pmd_mkdirty(pmd);
1129 		if (pmd_young(old))
1130 			pmd = pmd_mkyoung(pmd);
1131 
1132 		pmd = pmd_wrprotect(pmd);
1133 		pmd = pmd_clear_soft_dirty(pmd);
1134 
1135 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1136 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1137 		pmd = pmd_swp_clear_soft_dirty(pmd);
1138 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1139 	}
1140 }
1141 #else
1142 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1143 		unsigned long addr, pmd_t *pmdp)
1144 {
1145 }
1146 #endif
1147 
1148 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1149 				unsigned long end, struct mm_walk *walk)
1150 {
1151 	struct clear_refs_private *cp = walk->private;
1152 	struct vm_area_struct *vma = walk->vma;
1153 	pte_t *pte, ptent;
1154 	spinlock_t *ptl;
1155 	struct page *page;
1156 
1157 	ptl = pmd_trans_huge_lock(pmd, vma);
1158 	if (ptl) {
1159 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1160 			clear_soft_dirty_pmd(vma, addr, pmd);
1161 			goto out;
1162 		}
1163 
1164 		if (!pmd_present(*pmd))
1165 			goto out;
1166 
1167 		page = pmd_page(*pmd);
1168 
1169 		/* Clear accessed and referenced bits. */
1170 		pmdp_test_and_clear_young(vma, addr, pmd);
1171 		test_and_clear_page_young(page);
1172 		ClearPageReferenced(page);
1173 out:
1174 		spin_unlock(ptl);
1175 		return 0;
1176 	}
1177 
1178 	if (pmd_trans_unstable(pmd))
1179 		return 0;
1180 
1181 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1182 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1183 		ptent = *pte;
1184 
1185 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1186 			clear_soft_dirty(vma, addr, pte);
1187 			continue;
1188 		}
1189 
1190 		if (!pte_present(ptent))
1191 			continue;
1192 
1193 		page = vm_normal_page(vma, addr, ptent);
1194 		if (!page)
1195 			continue;
1196 
1197 		/* Clear accessed and referenced bits. */
1198 		ptep_test_and_clear_young(vma, addr, pte);
1199 		test_and_clear_page_young(page);
1200 		ClearPageReferenced(page);
1201 	}
1202 	pte_unmap_unlock(pte - 1, ptl);
1203 	cond_resched();
1204 	return 0;
1205 }
1206 
1207 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1208 				struct mm_walk *walk)
1209 {
1210 	struct clear_refs_private *cp = walk->private;
1211 	struct vm_area_struct *vma = walk->vma;
1212 
1213 	if (vma->vm_flags & VM_PFNMAP)
1214 		return 1;
1215 
1216 	/*
1217 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1218 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1219 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1220 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1221 	 */
1222 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1223 		return 1;
1224 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1225 		return 1;
1226 	return 0;
1227 }
1228 
1229 static const struct mm_walk_ops clear_refs_walk_ops = {
1230 	.pmd_entry		= clear_refs_pte_range,
1231 	.test_walk		= clear_refs_test_walk,
1232 };
1233 
1234 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1235 				size_t count, loff_t *ppos)
1236 {
1237 	struct task_struct *task;
1238 	char buffer[PROC_NUMBUF];
1239 	struct mm_struct *mm;
1240 	struct vm_area_struct *vma;
1241 	enum clear_refs_types type;
1242 	int itype;
1243 	int rv;
1244 
1245 	memset(buffer, 0, sizeof(buffer));
1246 	if (count > sizeof(buffer) - 1)
1247 		count = sizeof(buffer) - 1;
1248 	if (copy_from_user(buffer, buf, count))
1249 		return -EFAULT;
1250 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1251 	if (rv < 0)
1252 		return rv;
1253 	type = (enum clear_refs_types)itype;
1254 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1255 		return -EINVAL;
1256 
1257 	task = get_proc_task(file_inode(file));
1258 	if (!task)
1259 		return -ESRCH;
1260 	mm = get_task_mm(task);
1261 	if (mm) {
1262 		struct mmu_notifier_range range;
1263 		struct clear_refs_private cp = {
1264 			.type = type,
1265 		};
1266 
1267 		if (mmap_write_lock_killable(mm)) {
1268 			count = -EINTR;
1269 			goto out_mm;
1270 		}
1271 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1272 			/*
1273 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1274 			 * resident set size to this mm's current rss value.
1275 			 */
1276 			reset_mm_hiwater_rss(mm);
1277 			goto out_unlock;
1278 		}
1279 
1280 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1281 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1282 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1283 					continue;
1284 				vma->vm_flags &= ~VM_SOFTDIRTY;
1285 				vma_set_page_prot(vma);
1286 			}
1287 
1288 			inc_tlb_flush_pending(mm);
1289 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1290 						0, NULL, mm, 0, -1UL);
1291 			mmu_notifier_invalidate_range_start(&range);
1292 		}
1293 		walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1294 				&cp);
1295 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1296 			mmu_notifier_invalidate_range_end(&range);
1297 			flush_tlb_mm(mm);
1298 			dec_tlb_flush_pending(mm);
1299 		}
1300 out_unlock:
1301 		mmap_write_unlock(mm);
1302 out_mm:
1303 		mmput(mm);
1304 	}
1305 	put_task_struct(task);
1306 
1307 	return count;
1308 }
1309 
1310 const struct file_operations proc_clear_refs_operations = {
1311 	.write		= clear_refs_write,
1312 	.llseek		= noop_llseek,
1313 };
1314 
1315 typedef struct {
1316 	u64 pme;
1317 } pagemap_entry_t;
1318 
1319 struct pagemapread {
1320 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1321 	pagemap_entry_t *buffer;
1322 	bool show_pfn;
1323 };
1324 
1325 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1326 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1327 
1328 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1329 #define PM_PFRAME_BITS		55
1330 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1331 #define PM_SOFT_DIRTY		BIT_ULL(55)
1332 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1333 #define PM_UFFD_WP		BIT_ULL(57)
1334 #define PM_FILE			BIT_ULL(61)
1335 #define PM_SWAP			BIT_ULL(62)
1336 #define PM_PRESENT		BIT_ULL(63)
1337 
1338 #define PM_END_OF_BUFFER    1
1339 
1340 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1341 {
1342 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1343 }
1344 
1345 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1346 			  struct pagemapread *pm)
1347 {
1348 	pm->buffer[pm->pos++] = *pme;
1349 	if (pm->pos >= pm->len)
1350 		return PM_END_OF_BUFFER;
1351 	return 0;
1352 }
1353 
1354 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1355 			    __always_unused int depth, struct mm_walk *walk)
1356 {
1357 	struct pagemapread *pm = walk->private;
1358 	unsigned long addr = start;
1359 	int err = 0;
1360 
1361 	while (addr < end) {
1362 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1363 		pagemap_entry_t pme = make_pme(0, 0);
1364 		/* End of address space hole, which we mark as non-present. */
1365 		unsigned long hole_end;
1366 
1367 		if (vma)
1368 			hole_end = min(end, vma->vm_start);
1369 		else
1370 			hole_end = end;
1371 
1372 		for (; addr < hole_end; addr += PAGE_SIZE) {
1373 			err = add_to_pagemap(addr, &pme, pm);
1374 			if (err)
1375 				goto out;
1376 		}
1377 
1378 		if (!vma)
1379 			break;
1380 
1381 		/* Addresses in the VMA. */
1382 		if (vma->vm_flags & VM_SOFTDIRTY)
1383 			pme = make_pme(0, PM_SOFT_DIRTY);
1384 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1385 			err = add_to_pagemap(addr, &pme, pm);
1386 			if (err)
1387 				goto out;
1388 		}
1389 	}
1390 out:
1391 	return err;
1392 }
1393 
1394 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1395 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1396 {
1397 	u64 frame = 0, flags = 0;
1398 	struct page *page = NULL;
1399 	bool migration = false;
1400 
1401 	if (pte_present(pte)) {
1402 		if (pm->show_pfn)
1403 			frame = pte_pfn(pte);
1404 		flags |= PM_PRESENT;
1405 		page = vm_normal_page(vma, addr, pte);
1406 		if (pte_soft_dirty(pte))
1407 			flags |= PM_SOFT_DIRTY;
1408 		if (pte_uffd_wp(pte))
1409 			flags |= PM_UFFD_WP;
1410 	} else if (is_swap_pte(pte)) {
1411 		swp_entry_t entry;
1412 		if (pte_swp_soft_dirty(pte))
1413 			flags |= PM_SOFT_DIRTY;
1414 		if (pte_swp_uffd_wp(pte))
1415 			flags |= PM_UFFD_WP;
1416 		entry = pte_to_swp_entry(pte);
1417 		if (pm->show_pfn)
1418 			frame = swp_type(entry) |
1419 				(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1420 		flags |= PM_SWAP;
1421 		migration = is_migration_entry(entry);
1422 		if (is_pfn_swap_entry(entry))
1423 			page = pfn_swap_entry_to_page(entry);
1424 		if (pte_marker_entry_uffd_wp(entry))
1425 			flags |= PM_UFFD_WP;
1426 	}
1427 
1428 	if (page && !PageAnon(page))
1429 		flags |= PM_FILE;
1430 	if (page && !migration && page_mapcount(page) == 1)
1431 		flags |= PM_MMAP_EXCLUSIVE;
1432 	if (vma->vm_flags & VM_SOFTDIRTY)
1433 		flags |= PM_SOFT_DIRTY;
1434 
1435 	return make_pme(frame, flags);
1436 }
1437 
1438 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1439 			     struct mm_walk *walk)
1440 {
1441 	struct vm_area_struct *vma = walk->vma;
1442 	struct pagemapread *pm = walk->private;
1443 	spinlock_t *ptl;
1444 	pte_t *pte, *orig_pte;
1445 	int err = 0;
1446 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1447 	bool migration = false;
1448 
1449 	ptl = pmd_trans_huge_lock(pmdp, vma);
1450 	if (ptl) {
1451 		u64 flags = 0, frame = 0;
1452 		pmd_t pmd = *pmdp;
1453 		struct page *page = NULL;
1454 
1455 		if (vma->vm_flags & VM_SOFTDIRTY)
1456 			flags |= PM_SOFT_DIRTY;
1457 
1458 		if (pmd_present(pmd)) {
1459 			page = pmd_page(pmd);
1460 
1461 			flags |= PM_PRESENT;
1462 			if (pmd_soft_dirty(pmd))
1463 				flags |= PM_SOFT_DIRTY;
1464 			if (pmd_uffd_wp(pmd))
1465 				flags |= PM_UFFD_WP;
1466 			if (pm->show_pfn)
1467 				frame = pmd_pfn(pmd) +
1468 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1469 		}
1470 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1471 		else if (is_swap_pmd(pmd)) {
1472 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1473 			unsigned long offset;
1474 
1475 			if (pm->show_pfn) {
1476 				offset = swp_offset(entry) +
1477 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1478 				frame = swp_type(entry) |
1479 					(offset << MAX_SWAPFILES_SHIFT);
1480 			}
1481 			flags |= PM_SWAP;
1482 			if (pmd_swp_soft_dirty(pmd))
1483 				flags |= PM_SOFT_DIRTY;
1484 			if (pmd_swp_uffd_wp(pmd))
1485 				flags |= PM_UFFD_WP;
1486 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1487 			migration = is_migration_entry(entry);
1488 			page = pfn_swap_entry_to_page(entry);
1489 		}
1490 #endif
1491 
1492 		if (page && !migration && page_mapcount(page) == 1)
1493 			flags |= PM_MMAP_EXCLUSIVE;
1494 
1495 		for (; addr != end; addr += PAGE_SIZE) {
1496 			pagemap_entry_t pme = make_pme(frame, flags);
1497 
1498 			err = add_to_pagemap(addr, &pme, pm);
1499 			if (err)
1500 				break;
1501 			if (pm->show_pfn) {
1502 				if (flags & PM_PRESENT)
1503 					frame++;
1504 				else if (flags & PM_SWAP)
1505 					frame += (1 << MAX_SWAPFILES_SHIFT);
1506 			}
1507 		}
1508 		spin_unlock(ptl);
1509 		return err;
1510 	}
1511 
1512 	if (pmd_trans_unstable(pmdp))
1513 		return 0;
1514 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1515 
1516 	/*
1517 	 * We can assume that @vma always points to a valid one and @end never
1518 	 * goes beyond vma->vm_end.
1519 	 */
1520 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1521 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1522 		pagemap_entry_t pme;
1523 
1524 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1525 		err = add_to_pagemap(addr, &pme, pm);
1526 		if (err)
1527 			break;
1528 	}
1529 	pte_unmap_unlock(orig_pte, ptl);
1530 
1531 	cond_resched();
1532 
1533 	return err;
1534 }
1535 
1536 #ifdef CONFIG_HUGETLB_PAGE
1537 /* This function walks within one hugetlb entry in the single call */
1538 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1539 				 unsigned long addr, unsigned long end,
1540 				 struct mm_walk *walk)
1541 {
1542 	struct pagemapread *pm = walk->private;
1543 	struct vm_area_struct *vma = walk->vma;
1544 	u64 flags = 0, frame = 0;
1545 	int err = 0;
1546 	pte_t pte;
1547 
1548 	if (vma->vm_flags & VM_SOFTDIRTY)
1549 		flags |= PM_SOFT_DIRTY;
1550 
1551 	pte = huge_ptep_get(ptep);
1552 	if (pte_present(pte)) {
1553 		struct page *page = pte_page(pte);
1554 
1555 		if (!PageAnon(page))
1556 			flags |= PM_FILE;
1557 
1558 		if (page_mapcount(page) == 1)
1559 			flags |= PM_MMAP_EXCLUSIVE;
1560 
1561 		if (huge_pte_uffd_wp(pte))
1562 			flags |= PM_UFFD_WP;
1563 
1564 		flags |= PM_PRESENT;
1565 		if (pm->show_pfn)
1566 			frame = pte_pfn(pte) +
1567 				((addr & ~hmask) >> PAGE_SHIFT);
1568 	} else if (pte_swp_uffd_wp_any(pte)) {
1569 		flags |= PM_UFFD_WP;
1570 	}
1571 
1572 	for (; addr != end; addr += PAGE_SIZE) {
1573 		pagemap_entry_t pme = make_pme(frame, flags);
1574 
1575 		err = add_to_pagemap(addr, &pme, pm);
1576 		if (err)
1577 			return err;
1578 		if (pm->show_pfn && (flags & PM_PRESENT))
1579 			frame++;
1580 	}
1581 
1582 	cond_resched();
1583 
1584 	return err;
1585 }
1586 #else
1587 #define pagemap_hugetlb_range	NULL
1588 #endif /* HUGETLB_PAGE */
1589 
1590 static const struct mm_walk_ops pagemap_ops = {
1591 	.pmd_entry	= pagemap_pmd_range,
1592 	.pte_hole	= pagemap_pte_hole,
1593 	.hugetlb_entry	= pagemap_hugetlb_range,
1594 };
1595 
1596 /*
1597  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1598  *
1599  * For each page in the address space, this file contains one 64-bit entry
1600  * consisting of the following:
1601  *
1602  * Bits 0-54  page frame number (PFN) if present
1603  * Bits 0-4   swap type if swapped
1604  * Bits 5-54  swap offset if swapped
1605  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1606  * Bit  56    page exclusively mapped
1607  * Bit  57    pte is uffd-wp write-protected
1608  * Bits 58-60 zero
1609  * Bit  61    page is file-page or shared-anon
1610  * Bit  62    page swapped
1611  * Bit  63    page present
1612  *
1613  * If the page is not present but in swap, then the PFN contains an
1614  * encoding of the swap file number and the page's offset into the
1615  * swap. Unmapped pages return a null PFN. This allows determining
1616  * precisely which pages are mapped (or in swap) and comparing mapped
1617  * pages between processes.
1618  *
1619  * Efficient users of this interface will use /proc/pid/maps to
1620  * determine which areas of memory are actually mapped and llseek to
1621  * skip over unmapped regions.
1622  */
1623 static ssize_t pagemap_read(struct file *file, char __user *buf,
1624 			    size_t count, loff_t *ppos)
1625 {
1626 	struct mm_struct *mm = file->private_data;
1627 	struct pagemapread pm;
1628 	unsigned long src;
1629 	unsigned long svpfn;
1630 	unsigned long start_vaddr;
1631 	unsigned long end_vaddr;
1632 	int ret = 0, copied = 0;
1633 
1634 	if (!mm || !mmget_not_zero(mm))
1635 		goto out;
1636 
1637 	ret = -EINVAL;
1638 	/* file position must be aligned */
1639 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1640 		goto out_mm;
1641 
1642 	ret = 0;
1643 	if (!count)
1644 		goto out_mm;
1645 
1646 	/* do not disclose physical addresses: attack vector */
1647 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1648 
1649 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1650 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1651 	ret = -ENOMEM;
1652 	if (!pm.buffer)
1653 		goto out_mm;
1654 
1655 	src = *ppos;
1656 	svpfn = src / PM_ENTRY_BYTES;
1657 	end_vaddr = mm->task_size;
1658 
1659 	/* watch out for wraparound */
1660 	start_vaddr = end_vaddr;
1661 	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1662 		start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1663 
1664 	/* Ensure the address is inside the task */
1665 	if (start_vaddr > mm->task_size)
1666 		start_vaddr = end_vaddr;
1667 
1668 	/*
1669 	 * The odds are that this will stop walking way
1670 	 * before end_vaddr, because the length of the
1671 	 * user buffer is tracked in "pm", and the walk
1672 	 * will stop when we hit the end of the buffer.
1673 	 */
1674 	ret = 0;
1675 	while (count && (start_vaddr < end_vaddr)) {
1676 		int len;
1677 		unsigned long end;
1678 
1679 		pm.pos = 0;
1680 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1681 		/* overflow ? */
1682 		if (end < start_vaddr || end > end_vaddr)
1683 			end = end_vaddr;
1684 		ret = mmap_read_lock_killable(mm);
1685 		if (ret)
1686 			goto out_free;
1687 		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1688 		mmap_read_unlock(mm);
1689 		start_vaddr = end;
1690 
1691 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1692 		if (copy_to_user(buf, pm.buffer, len)) {
1693 			ret = -EFAULT;
1694 			goto out_free;
1695 		}
1696 		copied += len;
1697 		buf += len;
1698 		count -= len;
1699 	}
1700 	*ppos += copied;
1701 	if (!ret || ret == PM_END_OF_BUFFER)
1702 		ret = copied;
1703 
1704 out_free:
1705 	kfree(pm.buffer);
1706 out_mm:
1707 	mmput(mm);
1708 out:
1709 	return ret;
1710 }
1711 
1712 static int pagemap_open(struct inode *inode, struct file *file)
1713 {
1714 	struct mm_struct *mm;
1715 
1716 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1717 	if (IS_ERR(mm))
1718 		return PTR_ERR(mm);
1719 	file->private_data = mm;
1720 	return 0;
1721 }
1722 
1723 static int pagemap_release(struct inode *inode, struct file *file)
1724 {
1725 	struct mm_struct *mm = file->private_data;
1726 
1727 	if (mm)
1728 		mmdrop(mm);
1729 	return 0;
1730 }
1731 
1732 const struct file_operations proc_pagemap_operations = {
1733 	.llseek		= mem_lseek, /* borrow this */
1734 	.read		= pagemap_read,
1735 	.open		= pagemap_open,
1736 	.release	= pagemap_release,
1737 };
1738 #endif /* CONFIG_PROC_PAGE_MONITOR */
1739 
1740 #ifdef CONFIG_NUMA
1741 
1742 struct numa_maps {
1743 	unsigned long pages;
1744 	unsigned long anon;
1745 	unsigned long active;
1746 	unsigned long writeback;
1747 	unsigned long mapcount_max;
1748 	unsigned long dirty;
1749 	unsigned long swapcache;
1750 	unsigned long node[MAX_NUMNODES];
1751 };
1752 
1753 struct numa_maps_private {
1754 	struct proc_maps_private proc_maps;
1755 	struct numa_maps md;
1756 };
1757 
1758 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1759 			unsigned long nr_pages)
1760 {
1761 	int count = page_mapcount(page);
1762 
1763 	md->pages += nr_pages;
1764 	if (pte_dirty || PageDirty(page))
1765 		md->dirty += nr_pages;
1766 
1767 	if (PageSwapCache(page))
1768 		md->swapcache += nr_pages;
1769 
1770 	if (PageActive(page) || PageUnevictable(page))
1771 		md->active += nr_pages;
1772 
1773 	if (PageWriteback(page))
1774 		md->writeback += nr_pages;
1775 
1776 	if (PageAnon(page))
1777 		md->anon += nr_pages;
1778 
1779 	if (count > md->mapcount_max)
1780 		md->mapcount_max = count;
1781 
1782 	md->node[page_to_nid(page)] += nr_pages;
1783 }
1784 
1785 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1786 		unsigned long addr)
1787 {
1788 	struct page *page;
1789 	int nid;
1790 
1791 	if (!pte_present(pte))
1792 		return NULL;
1793 
1794 	page = vm_normal_page(vma, addr, pte);
1795 	if (!page)
1796 		return NULL;
1797 
1798 	if (PageReserved(page))
1799 		return NULL;
1800 
1801 	nid = page_to_nid(page);
1802 	if (!node_isset(nid, node_states[N_MEMORY]))
1803 		return NULL;
1804 
1805 	return page;
1806 }
1807 
1808 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1809 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1810 					      struct vm_area_struct *vma,
1811 					      unsigned long addr)
1812 {
1813 	struct page *page;
1814 	int nid;
1815 
1816 	if (!pmd_present(pmd))
1817 		return NULL;
1818 
1819 	page = vm_normal_page_pmd(vma, addr, pmd);
1820 	if (!page)
1821 		return NULL;
1822 
1823 	if (PageReserved(page))
1824 		return NULL;
1825 
1826 	nid = page_to_nid(page);
1827 	if (!node_isset(nid, node_states[N_MEMORY]))
1828 		return NULL;
1829 
1830 	return page;
1831 }
1832 #endif
1833 
1834 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1835 		unsigned long end, struct mm_walk *walk)
1836 {
1837 	struct numa_maps *md = walk->private;
1838 	struct vm_area_struct *vma = walk->vma;
1839 	spinlock_t *ptl;
1840 	pte_t *orig_pte;
1841 	pte_t *pte;
1842 
1843 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1844 	ptl = pmd_trans_huge_lock(pmd, vma);
1845 	if (ptl) {
1846 		struct page *page;
1847 
1848 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1849 		if (page)
1850 			gather_stats(page, md, pmd_dirty(*pmd),
1851 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1852 		spin_unlock(ptl);
1853 		return 0;
1854 	}
1855 
1856 	if (pmd_trans_unstable(pmd))
1857 		return 0;
1858 #endif
1859 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1860 	do {
1861 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1862 		if (!page)
1863 			continue;
1864 		gather_stats(page, md, pte_dirty(*pte), 1);
1865 
1866 	} while (pte++, addr += PAGE_SIZE, addr != end);
1867 	pte_unmap_unlock(orig_pte, ptl);
1868 	cond_resched();
1869 	return 0;
1870 }
1871 #ifdef CONFIG_HUGETLB_PAGE
1872 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1873 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1874 {
1875 	pte_t huge_pte = huge_ptep_get(pte);
1876 	struct numa_maps *md;
1877 	struct page *page;
1878 
1879 	if (!pte_present(huge_pte))
1880 		return 0;
1881 
1882 	page = pte_page(huge_pte);
1883 
1884 	md = walk->private;
1885 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1886 	return 0;
1887 }
1888 
1889 #else
1890 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1891 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1892 {
1893 	return 0;
1894 }
1895 #endif
1896 
1897 static const struct mm_walk_ops show_numa_ops = {
1898 	.hugetlb_entry = gather_hugetlb_stats,
1899 	.pmd_entry = gather_pte_stats,
1900 };
1901 
1902 /*
1903  * Display pages allocated per node and memory policy via /proc.
1904  */
1905 static int show_numa_map(struct seq_file *m, void *v)
1906 {
1907 	struct numa_maps_private *numa_priv = m->private;
1908 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1909 	struct vm_area_struct *vma = v;
1910 	struct numa_maps *md = &numa_priv->md;
1911 	struct file *file = vma->vm_file;
1912 	struct mm_struct *mm = vma->vm_mm;
1913 	struct mempolicy *pol;
1914 	char buffer[64];
1915 	int nid;
1916 
1917 	if (!mm)
1918 		return 0;
1919 
1920 	/* Ensure we start with an empty set of numa_maps statistics. */
1921 	memset(md, 0, sizeof(*md));
1922 
1923 	pol = __get_vma_policy(vma, vma->vm_start);
1924 	if (pol) {
1925 		mpol_to_str(buffer, sizeof(buffer), pol);
1926 		mpol_cond_put(pol);
1927 	} else {
1928 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1929 	}
1930 
1931 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1932 
1933 	if (file) {
1934 		seq_puts(m, " file=");
1935 		seq_file_path(m, file, "\n\t= ");
1936 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1937 		seq_puts(m, " heap");
1938 	} else if (is_stack(vma)) {
1939 		seq_puts(m, " stack");
1940 	}
1941 
1942 	if (is_vm_hugetlb_page(vma))
1943 		seq_puts(m, " huge");
1944 
1945 	/* mmap_lock is held by m_start */
1946 	walk_page_vma(vma, &show_numa_ops, md);
1947 
1948 	if (!md->pages)
1949 		goto out;
1950 
1951 	if (md->anon)
1952 		seq_printf(m, " anon=%lu", md->anon);
1953 
1954 	if (md->dirty)
1955 		seq_printf(m, " dirty=%lu", md->dirty);
1956 
1957 	if (md->pages != md->anon && md->pages != md->dirty)
1958 		seq_printf(m, " mapped=%lu", md->pages);
1959 
1960 	if (md->mapcount_max > 1)
1961 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1962 
1963 	if (md->swapcache)
1964 		seq_printf(m, " swapcache=%lu", md->swapcache);
1965 
1966 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1967 		seq_printf(m, " active=%lu", md->active);
1968 
1969 	if (md->writeback)
1970 		seq_printf(m, " writeback=%lu", md->writeback);
1971 
1972 	for_each_node_state(nid, N_MEMORY)
1973 		if (md->node[nid])
1974 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1975 
1976 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1977 out:
1978 	seq_putc(m, '\n');
1979 	return 0;
1980 }
1981 
1982 static const struct seq_operations proc_pid_numa_maps_op = {
1983 	.start  = m_start,
1984 	.next   = m_next,
1985 	.stop   = m_stop,
1986 	.show   = show_numa_map,
1987 };
1988 
1989 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1990 {
1991 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1992 				sizeof(struct numa_maps_private));
1993 }
1994 
1995 const struct file_operations proc_pid_numa_maps_operations = {
1996 	.open		= pid_numa_maps_open,
1997 	.read		= seq_read,
1998 	.llseek		= seq_lseek,
1999 	.release	= proc_map_release,
2000 };
2001 
2002 #endif /* CONFIG_NUMA */
2003