xref: /openbmc/linux/fs/proc/task_mmu.c (revision 356515e7)
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 
17 #include <asm/elf.h>
18 #include <asm/uaccess.h>
19 #include <asm/tlbflush.h>
20 #include "internal.h"
21 
22 void task_mem(struct seq_file *m, struct mm_struct *mm)
23 {
24 	unsigned long data, text, lib, swap, ptes, pmds;
25 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
26 
27 	/*
28 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
29 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
30 	 * collector of these hiwater stats must therefore get total_vm
31 	 * and rss too, which will usually be the higher.  Barriers? not
32 	 * worth the effort, such snapshots can always be inconsistent.
33 	 */
34 	hiwater_vm = total_vm = mm->total_vm;
35 	if (hiwater_vm < mm->hiwater_vm)
36 		hiwater_vm = mm->hiwater_vm;
37 	hiwater_rss = total_rss = get_mm_rss(mm);
38 	if (hiwater_rss < mm->hiwater_rss)
39 		hiwater_rss = mm->hiwater_rss;
40 
41 	data = mm->total_vm - mm->shared_vm - mm->stack_vm;
42 	text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
43 	lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
44 	swap = get_mm_counter(mm, MM_SWAPENTS);
45 	ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
46 	pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
47 	seq_printf(m,
48 		"VmPeak:\t%8lu kB\n"
49 		"VmSize:\t%8lu kB\n"
50 		"VmLck:\t%8lu kB\n"
51 		"VmPin:\t%8lu kB\n"
52 		"VmHWM:\t%8lu kB\n"
53 		"VmRSS:\t%8lu kB\n"
54 		"VmData:\t%8lu kB\n"
55 		"VmStk:\t%8lu kB\n"
56 		"VmExe:\t%8lu kB\n"
57 		"VmLib:\t%8lu kB\n"
58 		"VmPTE:\t%8lu kB\n"
59 		"VmPMD:\t%8lu kB\n"
60 		"VmSwap:\t%8lu kB\n",
61 		hiwater_vm << (PAGE_SHIFT-10),
62 		total_vm << (PAGE_SHIFT-10),
63 		mm->locked_vm << (PAGE_SHIFT-10),
64 		mm->pinned_vm << (PAGE_SHIFT-10),
65 		hiwater_rss << (PAGE_SHIFT-10),
66 		total_rss << (PAGE_SHIFT-10),
67 		data << (PAGE_SHIFT-10),
68 		mm->stack_vm << (PAGE_SHIFT-10), text, lib,
69 		ptes >> 10,
70 		pmds >> 10,
71 		swap << (PAGE_SHIFT-10));
72 }
73 
74 unsigned long task_vsize(struct mm_struct *mm)
75 {
76 	return PAGE_SIZE * mm->total_vm;
77 }
78 
79 unsigned long task_statm(struct mm_struct *mm,
80 			 unsigned long *shared, unsigned long *text,
81 			 unsigned long *data, unsigned long *resident)
82 {
83 	*shared = get_mm_counter(mm, MM_FILEPAGES);
84 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
85 								>> PAGE_SHIFT;
86 	*data = mm->total_vm - mm->shared_vm;
87 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
88 	return mm->total_vm;
89 }
90 
91 #ifdef CONFIG_NUMA
92 /*
93  * Save get_task_policy() for show_numa_map().
94  */
95 static void hold_task_mempolicy(struct proc_maps_private *priv)
96 {
97 	struct task_struct *task = priv->task;
98 
99 	task_lock(task);
100 	priv->task_mempolicy = get_task_policy(task);
101 	mpol_get(priv->task_mempolicy);
102 	task_unlock(task);
103 }
104 static void release_task_mempolicy(struct proc_maps_private *priv)
105 {
106 	mpol_put(priv->task_mempolicy);
107 }
108 #else
109 static void hold_task_mempolicy(struct proc_maps_private *priv)
110 {
111 }
112 static void release_task_mempolicy(struct proc_maps_private *priv)
113 {
114 }
115 #endif
116 
117 static void vma_stop(struct proc_maps_private *priv)
118 {
119 	struct mm_struct *mm = priv->mm;
120 
121 	release_task_mempolicy(priv);
122 	up_read(&mm->mmap_sem);
123 	mmput(mm);
124 }
125 
126 static struct vm_area_struct *
127 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
128 {
129 	if (vma == priv->tail_vma)
130 		return NULL;
131 	return vma->vm_next ?: priv->tail_vma;
132 }
133 
134 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
135 {
136 	if (m->count < m->size)	/* vma is copied successfully */
137 		m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
138 }
139 
140 static void *m_start(struct seq_file *m, loff_t *ppos)
141 {
142 	struct proc_maps_private *priv = m->private;
143 	unsigned long last_addr = m->version;
144 	struct mm_struct *mm;
145 	struct vm_area_struct *vma;
146 	unsigned int pos = *ppos;
147 
148 	/* See m_cache_vma(). Zero at the start or after lseek. */
149 	if (last_addr == -1UL)
150 		return NULL;
151 
152 	priv->task = get_proc_task(priv->inode);
153 	if (!priv->task)
154 		return ERR_PTR(-ESRCH);
155 
156 	mm = priv->mm;
157 	if (!mm || !atomic_inc_not_zero(&mm->mm_users))
158 		return NULL;
159 
160 	down_read(&mm->mmap_sem);
161 	hold_task_mempolicy(priv);
162 	priv->tail_vma = get_gate_vma(mm);
163 
164 	if (last_addr) {
165 		vma = find_vma(mm, last_addr);
166 		if (vma && (vma = m_next_vma(priv, vma)))
167 			return vma;
168 	}
169 
170 	m->version = 0;
171 	if (pos < mm->map_count) {
172 		for (vma = mm->mmap; pos; pos--) {
173 			m->version = vma->vm_start;
174 			vma = vma->vm_next;
175 		}
176 		return vma;
177 	}
178 
179 	/* we do not bother to update m->version in this case */
180 	if (pos == mm->map_count && priv->tail_vma)
181 		return priv->tail_vma;
182 
183 	vma_stop(priv);
184 	return NULL;
185 }
186 
187 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
188 {
189 	struct proc_maps_private *priv = m->private;
190 	struct vm_area_struct *next;
191 
192 	(*pos)++;
193 	next = m_next_vma(priv, v);
194 	if (!next)
195 		vma_stop(priv);
196 	return next;
197 }
198 
199 static void m_stop(struct seq_file *m, void *v)
200 {
201 	struct proc_maps_private *priv = m->private;
202 
203 	if (!IS_ERR_OR_NULL(v))
204 		vma_stop(priv);
205 	if (priv->task) {
206 		put_task_struct(priv->task);
207 		priv->task = NULL;
208 	}
209 }
210 
211 static int proc_maps_open(struct inode *inode, struct file *file,
212 			const struct seq_operations *ops, int psize)
213 {
214 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
215 
216 	if (!priv)
217 		return -ENOMEM;
218 
219 	priv->inode = inode;
220 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
221 	if (IS_ERR(priv->mm)) {
222 		int err = PTR_ERR(priv->mm);
223 
224 		seq_release_private(inode, file);
225 		return err;
226 	}
227 
228 	return 0;
229 }
230 
231 static int proc_map_release(struct inode *inode, struct file *file)
232 {
233 	struct seq_file *seq = file->private_data;
234 	struct proc_maps_private *priv = seq->private;
235 
236 	if (priv->mm)
237 		mmdrop(priv->mm);
238 
239 	return seq_release_private(inode, file);
240 }
241 
242 static int do_maps_open(struct inode *inode, struct file *file,
243 			const struct seq_operations *ops)
244 {
245 	return proc_maps_open(inode, file, ops,
246 				sizeof(struct proc_maps_private));
247 }
248 
249 static pid_t pid_of_stack(struct proc_maps_private *priv,
250 				struct vm_area_struct *vma, bool is_pid)
251 {
252 	struct inode *inode = priv->inode;
253 	struct task_struct *task;
254 	pid_t ret = 0;
255 
256 	rcu_read_lock();
257 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
258 	if (task) {
259 		task = task_of_stack(task, vma, is_pid);
260 		if (task)
261 			ret = task_pid_nr_ns(task, inode->i_sb->s_fs_info);
262 	}
263 	rcu_read_unlock();
264 
265 	return ret;
266 }
267 
268 static void
269 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
270 {
271 	struct mm_struct *mm = vma->vm_mm;
272 	struct file *file = vma->vm_file;
273 	struct proc_maps_private *priv = m->private;
274 	vm_flags_t flags = vma->vm_flags;
275 	unsigned long ino = 0;
276 	unsigned long long pgoff = 0;
277 	unsigned long start, end;
278 	dev_t dev = 0;
279 	const char *name = NULL;
280 
281 	if (file) {
282 		struct inode *inode = file_inode(vma->vm_file);
283 		dev = inode->i_sb->s_dev;
284 		ino = inode->i_ino;
285 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
286 	}
287 
288 	/* We don't show the stack guard page in /proc/maps */
289 	start = vma->vm_start;
290 	if (stack_guard_page_start(vma, start))
291 		start += PAGE_SIZE;
292 	end = vma->vm_end;
293 	if (stack_guard_page_end(vma, end))
294 		end -= PAGE_SIZE;
295 
296 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
297 	seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
298 			start,
299 			end,
300 			flags & VM_READ ? 'r' : '-',
301 			flags & VM_WRITE ? 'w' : '-',
302 			flags & VM_EXEC ? 'x' : '-',
303 			flags & VM_MAYSHARE ? 's' : 'p',
304 			pgoff,
305 			MAJOR(dev), MINOR(dev), ino);
306 
307 	/*
308 	 * Print the dentry name for named mappings, and a
309 	 * special [heap] marker for the heap:
310 	 */
311 	if (file) {
312 		seq_pad(m, ' ');
313 		seq_file_path(m, file, "\n");
314 		goto done;
315 	}
316 
317 	if (vma->vm_ops && vma->vm_ops->name) {
318 		name = vma->vm_ops->name(vma);
319 		if (name)
320 			goto done;
321 	}
322 
323 	name = arch_vma_name(vma);
324 	if (!name) {
325 		pid_t tid;
326 
327 		if (!mm) {
328 			name = "[vdso]";
329 			goto done;
330 		}
331 
332 		if (vma->vm_start <= mm->brk &&
333 		    vma->vm_end >= mm->start_brk) {
334 			name = "[heap]";
335 			goto done;
336 		}
337 
338 		tid = pid_of_stack(priv, vma, is_pid);
339 		if (tid != 0) {
340 			/*
341 			 * Thread stack in /proc/PID/task/TID/maps or
342 			 * the main process stack.
343 			 */
344 			if (!is_pid || (vma->vm_start <= mm->start_stack &&
345 			    vma->vm_end >= mm->start_stack)) {
346 				name = "[stack]";
347 			} else {
348 				/* Thread stack in /proc/PID/maps */
349 				seq_pad(m, ' ');
350 				seq_printf(m, "[stack:%d]", tid);
351 			}
352 		}
353 	}
354 
355 done:
356 	if (name) {
357 		seq_pad(m, ' ');
358 		seq_puts(m, name);
359 	}
360 	seq_putc(m, '\n');
361 }
362 
363 static int show_map(struct seq_file *m, void *v, int is_pid)
364 {
365 	show_map_vma(m, v, is_pid);
366 	m_cache_vma(m, v);
367 	return 0;
368 }
369 
370 static int show_pid_map(struct seq_file *m, void *v)
371 {
372 	return show_map(m, v, 1);
373 }
374 
375 static int show_tid_map(struct seq_file *m, void *v)
376 {
377 	return show_map(m, v, 0);
378 }
379 
380 static const struct seq_operations proc_pid_maps_op = {
381 	.start	= m_start,
382 	.next	= m_next,
383 	.stop	= m_stop,
384 	.show	= show_pid_map
385 };
386 
387 static const struct seq_operations proc_tid_maps_op = {
388 	.start	= m_start,
389 	.next	= m_next,
390 	.stop	= m_stop,
391 	.show	= show_tid_map
392 };
393 
394 static int pid_maps_open(struct inode *inode, struct file *file)
395 {
396 	return do_maps_open(inode, file, &proc_pid_maps_op);
397 }
398 
399 static int tid_maps_open(struct inode *inode, struct file *file)
400 {
401 	return do_maps_open(inode, file, &proc_tid_maps_op);
402 }
403 
404 const struct file_operations proc_pid_maps_operations = {
405 	.open		= pid_maps_open,
406 	.read		= seq_read,
407 	.llseek		= seq_lseek,
408 	.release	= proc_map_release,
409 };
410 
411 const struct file_operations proc_tid_maps_operations = {
412 	.open		= tid_maps_open,
413 	.read		= seq_read,
414 	.llseek		= seq_lseek,
415 	.release	= proc_map_release,
416 };
417 
418 /*
419  * Proportional Set Size(PSS): my share of RSS.
420  *
421  * PSS of a process is the count of pages it has in memory, where each
422  * page is divided by the number of processes sharing it.  So if a
423  * process has 1000 pages all to itself, and 1000 shared with one other
424  * process, its PSS will be 1500.
425  *
426  * To keep (accumulated) division errors low, we adopt a 64bit
427  * fixed-point pss counter to minimize division errors. So (pss >>
428  * PSS_SHIFT) would be the real byte count.
429  *
430  * A shift of 12 before division means (assuming 4K page size):
431  * 	- 1M 3-user-pages add up to 8KB errors;
432  * 	- supports mapcount up to 2^24, or 16M;
433  * 	- supports PSS up to 2^52 bytes, or 4PB.
434  */
435 #define PSS_SHIFT 12
436 
437 #ifdef CONFIG_PROC_PAGE_MONITOR
438 struct mem_size_stats {
439 	unsigned long resident;
440 	unsigned long shared_clean;
441 	unsigned long shared_dirty;
442 	unsigned long private_clean;
443 	unsigned long private_dirty;
444 	unsigned long referenced;
445 	unsigned long anonymous;
446 	unsigned long anonymous_thp;
447 	unsigned long swap;
448 	u64 pss;
449 };
450 
451 static void smaps_account(struct mem_size_stats *mss, struct page *page,
452 		unsigned long size, bool young, bool dirty)
453 {
454 	int mapcount;
455 
456 	if (PageAnon(page))
457 		mss->anonymous += size;
458 
459 	mss->resident += size;
460 	/* Accumulate the size in pages that have been accessed. */
461 	if (young || PageReferenced(page))
462 		mss->referenced += size;
463 	mapcount = page_mapcount(page);
464 	if (mapcount >= 2) {
465 		u64 pss_delta;
466 
467 		if (dirty || PageDirty(page))
468 			mss->shared_dirty += size;
469 		else
470 			mss->shared_clean += size;
471 		pss_delta = (u64)size << PSS_SHIFT;
472 		do_div(pss_delta, mapcount);
473 		mss->pss += pss_delta;
474 	} else {
475 		if (dirty || PageDirty(page))
476 			mss->private_dirty += size;
477 		else
478 			mss->private_clean += size;
479 		mss->pss += (u64)size << PSS_SHIFT;
480 	}
481 }
482 
483 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
484 		struct mm_walk *walk)
485 {
486 	struct mem_size_stats *mss = walk->private;
487 	struct vm_area_struct *vma = walk->vma;
488 	struct page *page = NULL;
489 
490 	if (pte_present(*pte)) {
491 		page = vm_normal_page(vma, addr, *pte);
492 	} else if (is_swap_pte(*pte)) {
493 		swp_entry_t swpent = pte_to_swp_entry(*pte);
494 
495 		if (!non_swap_entry(swpent))
496 			mss->swap += PAGE_SIZE;
497 		else if (is_migration_entry(swpent))
498 			page = migration_entry_to_page(swpent);
499 	}
500 
501 	if (!page)
502 		return;
503 	smaps_account(mss, page, PAGE_SIZE, pte_young(*pte), pte_dirty(*pte));
504 }
505 
506 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
507 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
508 		struct mm_walk *walk)
509 {
510 	struct mem_size_stats *mss = walk->private;
511 	struct vm_area_struct *vma = walk->vma;
512 	struct page *page;
513 
514 	/* FOLL_DUMP will return -EFAULT on huge zero page */
515 	page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
516 	if (IS_ERR_OR_NULL(page))
517 		return;
518 	mss->anonymous_thp += HPAGE_PMD_SIZE;
519 	smaps_account(mss, page, HPAGE_PMD_SIZE,
520 			pmd_young(*pmd), pmd_dirty(*pmd));
521 }
522 #else
523 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
524 		struct mm_walk *walk)
525 {
526 }
527 #endif
528 
529 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
530 			   struct mm_walk *walk)
531 {
532 	struct vm_area_struct *vma = walk->vma;
533 	pte_t *pte;
534 	spinlock_t *ptl;
535 
536 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
537 		smaps_pmd_entry(pmd, addr, walk);
538 		spin_unlock(ptl);
539 		return 0;
540 	}
541 
542 	if (pmd_trans_unstable(pmd))
543 		return 0;
544 	/*
545 	 * The mmap_sem held all the way back in m_start() is what
546 	 * keeps khugepaged out of here and from collapsing things
547 	 * in here.
548 	 */
549 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
550 	for (; addr != end; pte++, addr += PAGE_SIZE)
551 		smaps_pte_entry(pte, addr, walk);
552 	pte_unmap_unlock(pte - 1, ptl);
553 	cond_resched();
554 	return 0;
555 }
556 
557 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
558 {
559 	/*
560 	 * Don't forget to update Documentation/ on changes.
561 	 */
562 	static const char mnemonics[BITS_PER_LONG][2] = {
563 		/*
564 		 * In case if we meet a flag we don't know about.
565 		 */
566 		[0 ... (BITS_PER_LONG-1)] = "??",
567 
568 		[ilog2(VM_READ)]	= "rd",
569 		[ilog2(VM_WRITE)]	= "wr",
570 		[ilog2(VM_EXEC)]	= "ex",
571 		[ilog2(VM_SHARED)]	= "sh",
572 		[ilog2(VM_MAYREAD)]	= "mr",
573 		[ilog2(VM_MAYWRITE)]	= "mw",
574 		[ilog2(VM_MAYEXEC)]	= "me",
575 		[ilog2(VM_MAYSHARE)]	= "ms",
576 		[ilog2(VM_GROWSDOWN)]	= "gd",
577 		[ilog2(VM_PFNMAP)]	= "pf",
578 		[ilog2(VM_DENYWRITE)]	= "dw",
579 #ifdef CONFIG_X86_INTEL_MPX
580 		[ilog2(VM_MPX)]		= "mp",
581 #endif
582 		[ilog2(VM_LOCKED)]	= "lo",
583 		[ilog2(VM_IO)]		= "io",
584 		[ilog2(VM_SEQ_READ)]	= "sr",
585 		[ilog2(VM_RAND_READ)]	= "rr",
586 		[ilog2(VM_DONTCOPY)]	= "dc",
587 		[ilog2(VM_DONTEXPAND)]	= "de",
588 		[ilog2(VM_ACCOUNT)]	= "ac",
589 		[ilog2(VM_NORESERVE)]	= "nr",
590 		[ilog2(VM_HUGETLB)]	= "ht",
591 		[ilog2(VM_ARCH_1)]	= "ar",
592 		[ilog2(VM_DONTDUMP)]	= "dd",
593 #ifdef CONFIG_MEM_SOFT_DIRTY
594 		[ilog2(VM_SOFTDIRTY)]	= "sd",
595 #endif
596 		[ilog2(VM_MIXEDMAP)]	= "mm",
597 		[ilog2(VM_HUGEPAGE)]	= "hg",
598 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
599 		[ilog2(VM_MERGEABLE)]	= "mg",
600 		[ilog2(VM_UFFD_MISSING)]= "um",
601 		[ilog2(VM_UFFD_WP)]	= "uw",
602 	};
603 	size_t i;
604 
605 	seq_puts(m, "VmFlags: ");
606 	for (i = 0; i < BITS_PER_LONG; i++) {
607 		if (vma->vm_flags & (1UL << i)) {
608 			seq_printf(m, "%c%c ",
609 				   mnemonics[i][0], mnemonics[i][1]);
610 		}
611 	}
612 	seq_putc(m, '\n');
613 }
614 
615 static int show_smap(struct seq_file *m, void *v, int is_pid)
616 {
617 	struct vm_area_struct *vma = v;
618 	struct mem_size_stats mss;
619 	struct mm_walk smaps_walk = {
620 		.pmd_entry = smaps_pte_range,
621 		.mm = vma->vm_mm,
622 		.private = &mss,
623 	};
624 
625 	memset(&mss, 0, sizeof mss);
626 	/* mmap_sem is held in m_start */
627 	walk_page_vma(vma, &smaps_walk);
628 
629 	show_map_vma(m, vma, is_pid);
630 
631 	seq_printf(m,
632 		   "Size:           %8lu kB\n"
633 		   "Rss:            %8lu kB\n"
634 		   "Pss:            %8lu kB\n"
635 		   "Shared_Clean:   %8lu kB\n"
636 		   "Shared_Dirty:   %8lu kB\n"
637 		   "Private_Clean:  %8lu kB\n"
638 		   "Private_Dirty:  %8lu kB\n"
639 		   "Referenced:     %8lu kB\n"
640 		   "Anonymous:      %8lu kB\n"
641 		   "AnonHugePages:  %8lu kB\n"
642 		   "Swap:           %8lu kB\n"
643 		   "KernelPageSize: %8lu kB\n"
644 		   "MMUPageSize:    %8lu kB\n"
645 		   "Locked:         %8lu kB\n",
646 		   (vma->vm_end - vma->vm_start) >> 10,
647 		   mss.resident >> 10,
648 		   (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
649 		   mss.shared_clean  >> 10,
650 		   mss.shared_dirty  >> 10,
651 		   mss.private_clean >> 10,
652 		   mss.private_dirty >> 10,
653 		   mss.referenced >> 10,
654 		   mss.anonymous >> 10,
655 		   mss.anonymous_thp >> 10,
656 		   mss.swap >> 10,
657 		   vma_kernel_pagesize(vma) >> 10,
658 		   vma_mmu_pagesize(vma) >> 10,
659 		   (vma->vm_flags & VM_LOCKED) ?
660 			(unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
661 
662 	show_smap_vma_flags(m, vma);
663 	m_cache_vma(m, vma);
664 	return 0;
665 }
666 
667 static int show_pid_smap(struct seq_file *m, void *v)
668 {
669 	return show_smap(m, v, 1);
670 }
671 
672 static int show_tid_smap(struct seq_file *m, void *v)
673 {
674 	return show_smap(m, v, 0);
675 }
676 
677 static const struct seq_operations proc_pid_smaps_op = {
678 	.start	= m_start,
679 	.next	= m_next,
680 	.stop	= m_stop,
681 	.show	= show_pid_smap
682 };
683 
684 static const struct seq_operations proc_tid_smaps_op = {
685 	.start	= m_start,
686 	.next	= m_next,
687 	.stop	= m_stop,
688 	.show	= show_tid_smap
689 };
690 
691 static int pid_smaps_open(struct inode *inode, struct file *file)
692 {
693 	return do_maps_open(inode, file, &proc_pid_smaps_op);
694 }
695 
696 static int tid_smaps_open(struct inode *inode, struct file *file)
697 {
698 	return do_maps_open(inode, file, &proc_tid_smaps_op);
699 }
700 
701 const struct file_operations proc_pid_smaps_operations = {
702 	.open		= pid_smaps_open,
703 	.read		= seq_read,
704 	.llseek		= seq_lseek,
705 	.release	= proc_map_release,
706 };
707 
708 const struct file_operations proc_tid_smaps_operations = {
709 	.open		= tid_smaps_open,
710 	.read		= seq_read,
711 	.llseek		= seq_lseek,
712 	.release	= proc_map_release,
713 };
714 
715 enum clear_refs_types {
716 	CLEAR_REFS_ALL = 1,
717 	CLEAR_REFS_ANON,
718 	CLEAR_REFS_MAPPED,
719 	CLEAR_REFS_SOFT_DIRTY,
720 	CLEAR_REFS_MM_HIWATER_RSS,
721 	CLEAR_REFS_LAST,
722 };
723 
724 struct clear_refs_private {
725 	enum clear_refs_types type;
726 };
727 
728 #ifdef CONFIG_MEM_SOFT_DIRTY
729 static inline void clear_soft_dirty(struct vm_area_struct *vma,
730 		unsigned long addr, pte_t *pte)
731 {
732 	/*
733 	 * The soft-dirty tracker uses #PF-s to catch writes
734 	 * to pages, so write-protect the pte as well. See the
735 	 * Documentation/vm/soft-dirty.txt for full description
736 	 * of how soft-dirty works.
737 	 */
738 	pte_t ptent = *pte;
739 
740 	if (pte_present(ptent)) {
741 		ptent = pte_wrprotect(ptent);
742 		ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
743 	} else if (is_swap_pte(ptent)) {
744 		ptent = pte_swp_clear_soft_dirty(ptent);
745 	}
746 
747 	set_pte_at(vma->vm_mm, addr, pte, ptent);
748 }
749 
750 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
751 		unsigned long addr, pmd_t *pmdp)
752 {
753 	pmd_t pmd = *pmdp;
754 
755 	pmd = pmd_wrprotect(pmd);
756 	pmd = pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
757 
758 	if (vma->vm_flags & VM_SOFTDIRTY)
759 		vma->vm_flags &= ~VM_SOFTDIRTY;
760 
761 	set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
762 }
763 
764 #else
765 
766 static inline void clear_soft_dirty(struct vm_area_struct *vma,
767 		unsigned long addr, pte_t *pte)
768 {
769 }
770 
771 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
772 		unsigned long addr, pmd_t *pmdp)
773 {
774 }
775 #endif
776 
777 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
778 				unsigned long end, struct mm_walk *walk)
779 {
780 	struct clear_refs_private *cp = walk->private;
781 	struct vm_area_struct *vma = walk->vma;
782 	pte_t *pte, ptent;
783 	spinlock_t *ptl;
784 	struct page *page;
785 
786 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
787 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
788 			clear_soft_dirty_pmd(vma, addr, pmd);
789 			goto out;
790 		}
791 
792 		page = pmd_page(*pmd);
793 
794 		/* Clear accessed and referenced bits. */
795 		pmdp_test_and_clear_young(vma, addr, pmd);
796 		ClearPageReferenced(page);
797 out:
798 		spin_unlock(ptl);
799 		return 0;
800 	}
801 
802 	if (pmd_trans_unstable(pmd))
803 		return 0;
804 
805 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
806 	for (; addr != end; pte++, addr += PAGE_SIZE) {
807 		ptent = *pte;
808 
809 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
810 			clear_soft_dirty(vma, addr, pte);
811 			continue;
812 		}
813 
814 		if (!pte_present(ptent))
815 			continue;
816 
817 		page = vm_normal_page(vma, addr, ptent);
818 		if (!page)
819 			continue;
820 
821 		/* Clear accessed and referenced bits. */
822 		ptep_test_and_clear_young(vma, addr, pte);
823 		ClearPageReferenced(page);
824 	}
825 	pte_unmap_unlock(pte - 1, ptl);
826 	cond_resched();
827 	return 0;
828 }
829 
830 static int clear_refs_test_walk(unsigned long start, unsigned long end,
831 				struct mm_walk *walk)
832 {
833 	struct clear_refs_private *cp = walk->private;
834 	struct vm_area_struct *vma = walk->vma;
835 
836 	if (vma->vm_flags & VM_PFNMAP)
837 		return 1;
838 
839 	/*
840 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
841 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
842 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
843 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
844 	 */
845 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
846 		return 1;
847 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
848 		return 1;
849 	return 0;
850 }
851 
852 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
853 				size_t count, loff_t *ppos)
854 {
855 	struct task_struct *task;
856 	char buffer[PROC_NUMBUF];
857 	struct mm_struct *mm;
858 	struct vm_area_struct *vma;
859 	enum clear_refs_types type;
860 	int itype;
861 	int rv;
862 
863 	memset(buffer, 0, sizeof(buffer));
864 	if (count > sizeof(buffer) - 1)
865 		count = sizeof(buffer) - 1;
866 	if (copy_from_user(buffer, buf, count))
867 		return -EFAULT;
868 	rv = kstrtoint(strstrip(buffer), 10, &itype);
869 	if (rv < 0)
870 		return rv;
871 	type = (enum clear_refs_types)itype;
872 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
873 		return -EINVAL;
874 
875 	task = get_proc_task(file_inode(file));
876 	if (!task)
877 		return -ESRCH;
878 	mm = get_task_mm(task);
879 	if (mm) {
880 		struct clear_refs_private cp = {
881 			.type = type,
882 		};
883 		struct mm_walk clear_refs_walk = {
884 			.pmd_entry = clear_refs_pte_range,
885 			.test_walk = clear_refs_test_walk,
886 			.mm = mm,
887 			.private = &cp,
888 		};
889 
890 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
891 			/*
892 			 * Writing 5 to /proc/pid/clear_refs resets the peak
893 			 * resident set size to this mm's current rss value.
894 			 */
895 			down_write(&mm->mmap_sem);
896 			reset_mm_hiwater_rss(mm);
897 			up_write(&mm->mmap_sem);
898 			goto out_mm;
899 		}
900 
901 		down_read(&mm->mmap_sem);
902 		if (type == CLEAR_REFS_SOFT_DIRTY) {
903 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
904 				if (!(vma->vm_flags & VM_SOFTDIRTY))
905 					continue;
906 				up_read(&mm->mmap_sem);
907 				down_write(&mm->mmap_sem);
908 				for (vma = mm->mmap; vma; vma = vma->vm_next) {
909 					vma->vm_flags &= ~VM_SOFTDIRTY;
910 					vma_set_page_prot(vma);
911 				}
912 				downgrade_write(&mm->mmap_sem);
913 				break;
914 			}
915 			mmu_notifier_invalidate_range_start(mm, 0, -1);
916 		}
917 		walk_page_range(0, ~0UL, &clear_refs_walk);
918 		if (type == CLEAR_REFS_SOFT_DIRTY)
919 			mmu_notifier_invalidate_range_end(mm, 0, -1);
920 		flush_tlb_mm(mm);
921 		up_read(&mm->mmap_sem);
922 out_mm:
923 		mmput(mm);
924 	}
925 	put_task_struct(task);
926 
927 	return count;
928 }
929 
930 const struct file_operations proc_clear_refs_operations = {
931 	.write		= clear_refs_write,
932 	.llseek		= noop_llseek,
933 };
934 
935 typedef struct {
936 	u64 pme;
937 } pagemap_entry_t;
938 
939 struct pagemapread {
940 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
941 	pagemap_entry_t *buffer;
942 };
943 
944 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
945 #define PAGEMAP_WALK_MASK	(PMD_MASK)
946 
947 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
948 #define PM_PFRAME_BITS		55
949 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
950 #define PM_SOFT_DIRTY		BIT_ULL(55)
951 #define PM_FILE			BIT_ULL(61)
952 #define PM_SWAP			BIT_ULL(62)
953 #define PM_PRESENT		BIT_ULL(63)
954 
955 #define PM_END_OF_BUFFER    1
956 
957 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
958 {
959 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
960 }
961 
962 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
963 			  struct pagemapread *pm)
964 {
965 	pm->buffer[pm->pos++] = *pme;
966 	if (pm->pos >= pm->len)
967 		return PM_END_OF_BUFFER;
968 	return 0;
969 }
970 
971 static int pagemap_pte_hole(unsigned long start, unsigned long end,
972 				struct mm_walk *walk)
973 {
974 	struct pagemapread *pm = walk->private;
975 	unsigned long addr = start;
976 	int err = 0;
977 
978 	while (addr < end) {
979 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
980 		pagemap_entry_t pme = make_pme(0, 0);
981 		/* End of address space hole, which we mark as non-present. */
982 		unsigned long hole_end;
983 
984 		if (vma)
985 			hole_end = min(end, vma->vm_start);
986 		else
987 			hole_end = end;
988 
989 		for (; addr < hole_end; addr += PAGE_SIZE) {
990 			err = add_to_pagemap(addr, &pme, pm);
991 			if (err)
992 				goto out;
993 		}
994 
995 		if (!vma)
996 			break;
997 
998 		/* Addresses in the VMA. */
999 		if (vma->vm_flags & VM_SOFTDIRTY)
1000 			pme = make_pme(0, PM_SOFT_DIRTY);
1001 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1002 			err = add_to_pagemap(addr, &pme, pm);
1003 			if (err)
1004 				goto out;
1005 		}
1006 	}
1007 out:
1008 	return err;
1009 }
1010 
1011 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1012 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1013 {
1014 	u64 frame = 0, flags = 0;
1015 	struct page *page = NULL;
1016 
1017 	if (pte_present(pte)) {
1018 		frame = pte_pfn(pte);
1019 		flags |= PM_PRESENT;
1020 		page = vm_normal_page(vma, addr, pte);
1021 		if (pte_soft_dirty(pte))
1022 			flags |= PM_SOFT_DIRTY;
1023 	} else if (is_swap_pte(pte)) {
1024 		swp_entry_t entry;
1025 		if (pte_swp_soft_dirty(pte))
1026 			flags |= PM_SOFT_DIRTY;
1027 		entry = pte_to_swp_entry(pte);
1028 		frame = swp_type(entry) |
1029 			(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1030 		flags |= PM_SWAP;
1031 		if (is_migration_entry(entry))
1032 			page = migration_entry_to_page(entry);
1033 	}
1034 
1035 	if (page && !PageAnon(page))
1036 		flags |= PM_FILE;
1037 	if (vma->vm_flags & VM_SOFTDIRTY)
1038 		flags |= PM_SOFT_DIRTY;
1039 
1040 	return make_pme(frame, flags);
1041 }
1042 
1043 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1044 			     struct mm_walk *walk)
1045 {
1046 	struct vm_area_struct *vma = walk->vma;
1047 	struct pagemapread *pm = walk->private;
1048 	spinlock_t *ptl;
1049 	pte_t *pte, *orig_pte;
1050 	int err = 0;
1051 
1052 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1053 	if (pmd_trans_huge_lock(pmdp, vma, &ptl) == 1) {
1054 		u64 flags = 0, frame = 0;
1055 		pmd_t pmd = *pmdp;
1056 
1057 		if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1058 			flags |= PM_SOFT_DIRTY;
1059 
1060 		/*
1061 		 * Currently pmd for thp is always present because thp
1062 		 * can not be swapped-out, migrated, or HWPOISONed
1063 		 * (split in such cases instead.)
1064 		 * This if-check is just to prepare for future implementation.
1065 		 */
1066 		if (pmd_present(pmd)) {
1067 			flags |= PM_PRESENT;
1068 			frame = pmd_pfn(pmd) +
1069 				((addr & ~PMD_MASK) >> PAGE_SHIFT);
1070 		}
1071 
1072 		for (; addr != end; addr += PAGE_SIZE) {
1073 			pagemap_entry_t pme = make_pme(frame, flags);
1074 
1075 			err = add_to_pagemap(addr, &pme, pm);
1076 			if (err)
1077 				break;
1078 			if (flags & PM_PRESENT)
1079 				frame++;
1080 		}
1081 		spin_unlock(ptl);
1082 		return err;
1083 	}
1084 
1085 	if (pmd_trans_unstable(pmdp))
1086 		return 0;
1087 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1088 
1089 	/*
1090 	 * We can assume that @vma always points to a valid one and @end never
1091 	 * goes beyond vma->vm_end.
1092 	 */
1093 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1094 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1095 		pagemap_entry_t pme;
1096 
1097 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1098 		err = add_to_pagemap(addr, &pme, pm);
1099 		if (err)
1100 			break;
1101 	}
1102 	pte_unmap_unlock(orig_pte, ptl);
1103 
1104 	cond_resched();
1105 
1106 	return err;
1107 }
1108 
1109 #ifdef CONFIG_HUGETLB_PAGE
1110 /* This function walks within one hugetlb entry in the single call */
1111 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1112 				 unsigned long addr, unsigned long end,
1113 				 struct mm_walk *walk)
1114 {
1115 	struct pagemapread *pm = walk->private;
1116 	struct vm_area_struct *vma = walk->vma;
1117 	u64 flags = 0, frame = 0;
1118 	int err = 0;
1119 	pte_t pte;
1120 
1121 	if (vma->vm_flags & VM_SOFTDIRTY)
1122 		flags |= PM_SOFT_DIRTY;
1123 
1124 	pte = huge_ptep_get(ptep);
1125 	if (pte_present(pte)) {
1126 		struct page *page = pte_page(pte);
1127 
1128 		if (!PageAnon(page))
1129 			flags |= PM_FILE;
1130 
1131 		flags |= PM_PRESENT;
1132 		frame = pte_pfn(pte) +
1133 			((addr & ~hmask) >> PAGE_SHIFT);
1134 	}
1135 
1136 	for (; addr != end; addr += PAGE_SIZE) {
1137 		pagemap_entry_t pme = make_pme(frame, flags);
1138 
1139 		err = add_to_pagemap(addr, &pme, pm);
1140 		if (err)
1141 			return err;
1142 		if (flags & PM_PRESENT)
1143 			frame++;
1144 	}
1145 
1146 	cond_resched();
1147 
1148 	return err;
1149 }
1150 #endif /* HUGETLB_PAGE */
1151 
1152 /*
1153  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1154  *
1155  * For each page in the address space, this file contains one 64-bit entry
1156  * consisting of the following:
1157  *
1158  * Bits 0-54  page frame number (PFN) if present
1159  * Bits 0-4   swap type if swapped
1160  * Bits 5-54  swap offset if swapped
1161  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1162  * Bits 56-60 zero
1163  * Bit  61    page is file-page or shared-anon
1164  * Bit  62    page swapped
1165  * Bit  63    page present
1166  *
1167  * If the page is not present but in swap, then the PFN contains an
1168  * encoding of the swap file number and the page's offset into the
1169  * swap. Unmapped pages return a null PFN. This allows determining
1170  * precisely which pages are mapped (or in swap) and comparing mapped
1171  * pages between processes.
1172  *
1173  * Efficient users of this interface will use /proc/pid/maps to
1174  * determine which areas of memory are actually mapped and llseek to
1175  * skip over unmapped regions.
1176  */
1177 static ssize_t pagemap_read(struct file *file, char __user *buf,
1178 			    size_t count, loff_t *ppos)
1179 {
1180 	struct mm_struct *mm = file->private_data;
1181 	struct pagemapread pm;
1182 	struct mm_walk pagemap_walk = {};
1183 	unsigned long src;
1184 	unsigned long svpfn;
1185 	unsigned long start_vaddr;
1186 	unsigned long end_vaddr;
1187 	int ret = 0, copied = 0;
1188 
1189 	if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1190 		goto out;
1191 
1192 	ret = -EINVAL;
1193 	/* file position must be aligned */
1194 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1195 		goto out_mm;
1196 
1197 	ret = 0;
1198 	if (!count)
1199 		goto out_mm;
1200 
1201 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1202 	pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1203 	ret = -ENOMEM;
1204 	if (!pm.buffer)
1205 		goto out_mm;
1206 
1207 	pagemap_walk.pmd_entry = pagemap_pmd_range;
1208 	pagemap_walk.pte_hole = pagemap_pte_hole;
1209 #ifdef CONFIG_HUGETLB_PAGE
1210 	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1211 #endif
1212 	pagemap_walk.mm = mm;
1213 	pagemap_walk.private = &pm;
1214 
1215 	src = *ppos;
1216 	svpfn = src / PM_ENTRY_BYTES;
1217 	start_vaddr = svpfn << PAGE_SHIFT;
1218 	end_vaddr = mm->task_size;
1219 
1220 	/* watch out for wraparound */
1221 	if (svpfn > mm->task_size >> PAGE_SHIFT)
1222 		start_vaddr = end_vaddr;
1223 
1224 	/*
1225 	 * The odds are that this will stop walking way
1226 	 * before end_vaddr, because the length of the
1227 	 * user buffer is tracked in "pm", and the walk
1228 	 * will stop when we hit the end of the buffer.
1229 	 */
1230 	ret = 0;
1231 	while (count && (start_vaddr < end_vaddr)) {
1232 		int len;
1233 		unsigned long end;
1234 
1235 		pm.pos = 0;
1236 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1237 		/* overflow ? */
1238 		if (end < start_vaddr || end > end_vaddr)
1239 			end = end_vaddr;
1240 		down_read(&mm->mmap_sem);
1241 		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1242 		up_read(&mm->mmap_sem);
1243 		start_vaddr = end;
1244 
1245 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1246 		if (copy_to_user(buf, pm.buffer, len)) {
1247 			ret = -EFAULT;
1248 			goto out_free;
1249 		}
1250 		copied += len;
1251 		buf += len;
1252 		count -= len;
1253 	}
1254 	*ppos += copied;
1255 	if (!ret || ret == PM_END_OF_BUFFER)
1256 		ret = copied;
1257 
1258 out_free:
1259 	kfree(pm.buffer);
1260 out_mm:
1261 	mmput(mm);
1262 out:
1263 	return ret;
1264 }
1265 
1266 static int pagemap_open(struct inode *inode, struct file *file)
1267 {
1268 	struct mm_struct *mm;
1269 
1270 	/* do not disclose physical addresses: attack vector */
1271 	if (!capable(CAP_SYS_ADMIN))
1272 		return -EPERM;
1273 
1274 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1275 	if (IS_ERR(mm))
1276 		return PTR_ERR(mm);
1277 	file->private_data = mm;
1278 	return 0;
1279 }
1280 
1281 static int pagemap_release(struct inode *inode, struct file *file)
1282 {
1283 	struct mm_struct *mm = file->private_data;
1284 
1285 	if (mm)
1286 		mmdrop(mm);
1287 	return 0;
1288 }
1289 
1290 const struct file_operations proc_pagemap_operations = {
1291 	.llseek		= mem_lseek, /* borrow this */
1292 	.read		= pagemap_read,
1293 	.open		= pagemap_open,
1294 	.release	= pagemap_release,
1295 };
1296 #endif /* CONFIG_PROC_PAGE_MONITOR */
1297 
1298 #ifdef CONFIG_NUMA
1299 
1300 struct numa_maps {
1301 	unsigned long pages;
1302 	unsigned long anon;
1303 	unsigned long active;
1304 	unsigned long writeback;
1305 	unsigned long mapcount_max;
1306 	unsigned long dirty;
1307 	unsigned long swapcache;
1308 	unsigned long node[MAX_NUMNODES];
1309 };
1310 
1311 struct numa_maps_private {
1312 	struct proc_maps_private proc_maps;
1313 	struct numa_maps md;
1314 };
1315 
1316 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1317 			unsigned long nr_pages)
1318 {
1319 	int count = page_mapcount(page);
1320 
1321 	md->pages += nr_pages;
1322 	if (pte_dirty || PageDirty(page))
1323 		md->dirty += nr_pages;
1324 
1325 	if (PageSwapCache(page))
1326 		md->swapcache += nr_pages;
1327 
1328 	if (PageActive(page) || PageUnevictable(page))
1329 		md->active += nr_pages;
1330 
1331 	if (PageWriteback(page))
1332 		md->writeback += nr_pages;
1333 
1334 	if (PageAnon(page))
1335 		md->anon += nr_pages;
1336 
1337 	if (count > md->mapcount_max)
1338 		md->mapcount_max = count;
1339 
1340 	md->node[page_to_nid(page)] += nr_pages;
1341 }
1342 
1343 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1344 		unsigned long addr)
1345 {
1346 	struct page *page;
1347 	int nid;
1348 
1349 	if (!pte_present(pte))
1350 		return NULL;
1351 
1352 	page = vm_normal_page(vma, addr, pte);
1353 	if (!page)
1354 		return NULL;
1355 
1356 	if (PageReserved(page))
1357 		return NULL;
1358 
1359 	nid = page_to_nid(page);
1360 	if (!node_isset(nid, node_states[N_MEMORY]))
1361 		return NULL;
1362 
1363 	return page;
1364 }
1365 
1366 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1367 		unsigned long end, struct mm_walk *walk)
1368 {
1369 	struct numa_maps *md = walk->private;
1370 	struct vm_area_struct *vma = walk->vma;
1371 	spinlock_t *ptl;
1372 	pte_t *orig_pte;
1373 	pte_t *pte;
1374 
1375 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1376 		pte_t huge_pte = *(pte_t *)pmd;
1377 		struct page *page;
1378 
1379 		page = can_gather_numa_stats(huge_pte, vma, addr);
1380 		if (page)
1381 			gather_stats(page, md, pte_dirty(huge_pte),
1382 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1383 		spin_unlock(ptl);
1384 		return 0;
1385 	}
1386 
1387 	if (pmd_trans_unstable(pmd))
1388 		return 0;
1389 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1390 	do {
1391 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1392 		if (!page)
1393 			continue;
1394 		gather_stats(page, md, pte_dirty(*pte), 1);
1395 
1396 	} while (pte++, addr += PAGE_SIZE, addr != end);
1397 	pte_unmap_unlock(orig_pte, ptl);
1398 	return 0;
1399 }
1400 #ifdef CONFIG_HUGETLB_PAGE
1401 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1402 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1403 {
1404 	struct numa_maps *md;
1405 	struct page *page;
1406 
1407 	if (!pte_present(*pte))
1408 		return 0;
1409 
1410 	page = pte_page(*pte);
1411 	if (!page)
1412 		return 0;
1413 
1414 	md = walk->private;
1415 	gather_stats(page, md, pte_dirty(*pte), 1);
1416 	return 0;
1417 }
1418 
1419 #else
1420 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1421 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1422 {
1423 	return 0;
1424 }
1425 #endif
1426 
1427 /*
1428  * Display pages allocated per node and memory policy via /proc.
1429  */
1430 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1431 {
1432 	struct numa_maps_private *numa_priv = m->private;
1433 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1434 	struct vm_area_struct *vma = v;
1435 	struct numa_maps *md = &numa_priv->md;
1436 	struct file *file = vma->vm_file;
1437 	struct mm_struct *mm = vma->vm_mm;
1438 	struct mm_walk walk = {
1439 		.hugetlb_entry = gather_hugetlb_stats,
1440 		.pmd_entry = gather_pte_stats,
1441 		.private = md,
1442 		.mm = mm,
1443 	};
1444 	struct mempolicy *pol;
1445 	char buffer[64];
1446 	int nid;
1447 
1448 	if (!mm)
1449 		return 0;
1450 
1451 	/* Ensure we start with an empty set of numa_maps statistics. */
1452 	memset(md, 0, sizeof(*md));
1453 
1454 	pol = __get_vma_policy(vma, vma->vm_start);
1455 	if (pol) {
1456 		mpol_to_str(buffer, sizeof(buffer), pol);
1457 		mpol_cond_put(pol);
1458 	} else {
1459 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1460 	}
1461 
1462 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1463 
1464 	if (file) {
1465 		seq_puts(m, " file=");
1466 		seq_file_path(m, file, "\n\t= ");
1467 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1468 		seq_puts(m, " heap");
1469 	} else {
1470 		pid_t tid = pid_of_stack(proc_priv, vma, is_pid);
1471 		if (tid != 0) {
1472 			/*
1473 			 * Thread stack in /proc/PID/task/TID/maps or
1474 			 * the main process stack.
1475 			 */
1476 			if (!is_pid || (vma->vm_start <= mm->start_stack &&
1477 			    vma->vm_end >= mm->start_stack))
1478 				seq_puts(m, " stack");
1479 			else
1480 				seq_printf(m, " stack:%d", tid);
1481 		}
1482 	}
1483 
1484 	if (is_vm_hugetlb_page(vma))
1485 		seq_puts(m, " huge");
1486 
1487 	/* mmap_sem is held by m_start */
1488 	walk_page_vma(vma, &walk);
1489 
1490 	if (!md->pages)
1491 		goto out;
1492 
1493 	if (md->anon)
1494 		seq_printf(m, " anon=%lu", md->anon);
1495 
1496 	if (md->dirty)
1497 		seq_printf(m, " dirty=%lu", md->dirty);
1498 
1499 	if (md->pages != md->anon && md->pages != md->dirty)
1500 		seq_printf(m, " mapped=%lu", md->pages);
1501 
1502 	if (md->mapcount_max > 1)
1503 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1504 
1505 	if (md->swapcache)
1506 		seq_printf(m, " swapcache=%lu", md->swapcache);
1507 
1508 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1509 		seq_printf(m, " active=%lu", md->active);
1510 
1511 	if (md->writeback)
1512 		seq_printf(m, " writeback=%lu", md->writeback);
1513 
1514 	for_each_node_state(nid, N_MEMORY)
1515 		if (md->node[nid])
1516 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1517 
1518 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1519 out:
1520 	seq_putc(m, '\n');
1521 	m_cache_vma(m, vma);
1522 	return 0;
1523 }
1524 
1525 static int show_pid_numa_map(struct seq_file *m, void *v)
1526 {
1527 	return show_numa_map(m, v, 1);
1528 }
1529 
1530 static int show_tid_numa_map(struct seq_file *m, void *v)
1531 {
1532 	return show_numa_map(m, v, 0);
1533 }
1534 
1535 static const struct seq_operations proc_pid_numa_maps_op = {
1536 	.start  = m_start,
1537 	.next   = m_next,
1538 	.stop   = m_stop,
1539 	.show   = show_pid_numa_map,
1540 };
1541 
1542 static const struct seq_operations proc_tid_numa_maps_op = {
1543 	.start  = m_start,
1544 	.next   = m_next,
1545 	.stop   = m_stop,
1546 	.show   = show_tid_numa_map,
1547 };
1548 
1549 static int numa_maps_open(struct inode *inode, struct file *file,
1550 			  const struct seq_operations *ops)
1551 {
1552 	return proc_maps_open(inode, file, ops,
1553 				sizeof(struct numa_maps_private));
1554 }
1555 
1556 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1557 {
1558 	return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1559 }
1560 
1561 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1562 {
1563 	return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1564 }
1565 
1566 const struct file_operations proc_pid_numa_maps_operations = {
1567 	.open		= pid_numa_maps_open,
1568 	.read		= seq_read,
1569 	.llseek		= seq_lseek,
1570 	.release	= proc_map_release,
1571 };
1572 
1573 const struct file_operations proc_tid_numa_maps_operations = {
1574 	.open		= tid_numa_maps_open,
1575 	.read		= seq_read,
1576 	.llseek		= seq_lseek,
1577 	.release	= proc_map_release,
1578 };
1579 #endif /* CONFIG_NUMA */
1580