xref: /openbmc/linux/fs/proc/task_mmu.c (revision 3213486f)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22 
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27 
28 #define SEQ_PUT_DEC(str, val) \
29 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32 	unsigned long text, lib, swap, anon, file, shmem;
33 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34 
35 	anon = get_mm_counter(mm, MM_ANONPAGES);
36 	file = get_mm_counter(mm, MM_FILEPAGES);
37 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38 
39 	/*
40 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
42 	 * collector of these hiwater stats must therefore get total_vm
43 	 * and rss too, which will usually be the higher.  Barriers? not
44 	 * worth the effort, such snapshots can always be inconsistent.
45 	 */
46 	hiwater_vm = total_vm = mm->total_vm;
47 	if (hiwater_vm < mm->hiwater_vm)
48 		hiwater_vm = mm->hiwater_vm;
49 	hiwater_rss = total_rss = anon + file + shmem;
50 	if (hiwater_rss < mm->hiwater_rss)
51 		hiwater_rss = mm->hiwater_rss;
52 
53 	/* split executable areas between text and lib */
54 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 	text = min(text, mm->exec_vm << PAGE_SHIFT);
56 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
57 
58 	swap = get_mm_counter(mm, MM_SWAPENTS);
59 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 	seq_put_decimal_ull_width(m,
71 		    " kB\nVmExe:\t", text >> 10, 8);
72 	seq_put_decimal_ull_width(m,
73 		    " kB\nVmLib:\t", lib >> 10, 8);
74 	seq_put_decimal_ull_width(m,
75 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 	seq_puts(m, " kB\n");
78 	hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81 
82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84 	return PAGE_SIZE * mm->total_vm;
85 }
86 
87 unsigned long task_statm(struct mm_struct *mm,
88 			 unsigned long *shared, unsigned long *text,
89 			 unsigned long *data, unsigned long *resident)
90 {
91 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
92 			get_mm_counter(mm, MM_SHMEMPAGES);
93 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 								>> PAGE_SHIFT;
95 	*data = mm->data_vm + mm->stack_vm;
96 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 	return mm->total_vm;
98 }
99 
100 #ifdef CONFIG_NUMA
101 /*
102  * Save get_task_policy() for show_numa_map().
103  */
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106 	struct task_struct *task = priv->task;
107 
108 	task_lock(task);
109 	priv->task_mempolicy = get_task_policy(task);
110 	mpol_get(priv->task_mempolicy);
111 	task_unlock(task);
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115 	mpol_put(priv->task_mempolicy);
116 }
117 #else
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125 
126 static void vma_stop(struct proc_maps_private *priv)
127 {
128 	struct mm_struct *mm = priv->mm;
129 
130 	release_task_mempolicy(priv);
131 	up_read(&mm->mmap_sem);
132 	mmput(mm);
133 }
134 
135 static struct vm_area_struct *
136 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
137 {
138 	if (vma == priv->tail_vma)
139 		return NULL;
140 	return vma->vm_next ?: priv->tail_vma;
141 }
142 
143 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
144 {
145 	if (m->count < m->size)	/* vma is copied successfully */
146 		m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
147 }
148 
149 static void *m_start(struct seq_file *m, loff_t *ppos)
150 {
151 	struct proc_maps_private *priv = m->private;
152 	unsigned long last_addr = m->version;
153 	struct mm_struct *mm;
154 	struct vm_area_struct *vma;
155 	unsigned int pos = *ppos;
156 
157 	/* See m_cache_vma(). Zero at the start or after lseek. */
158 	if (last_addr == -1UL)
159 		return NULL;
160 
161 	priv->task = get_proc_task(priv->inode);
162 	if (!priv->task)
163 		return ERR_PTR(-ESRCH);
164 
165 	mm = priv->mm;
166 	if (!mm || !mmget_not_zero(mm))
167 		return NULL;
168 
169 	down_read(&mm->mmap_sem);
170 	hold_task_mempolicy(priv);
171 	priv->tail_vma = get_gate_vma(mm);
172 
173 	if (last_addr) {
174 		vma = find_vma(mm, last_addr - 1);
175 		if (vma && vma->vm_start <= last_addr)
176 			vma = m_next_vma(priv, vma);
177 		if (vma)
178 			return vma;
179 	}
180 
181 	m->version = 0;
182 	if (pos < mm->map_count) {
183 		for (vma = mm->mmap; pos; pos--) {
184 			m->version = vma->vm_start;
185 			vma = vma->vm_next;
186 		}
187 		return vma;
188 	}
189 
190 	/* we do not bother to update m->version in this case */
191 	if (pos == mm->map_count && priv->tail_vma)
192 		return priv->tail_vma;
193 
194 	vma_stop(priv);
195 	return NULL;
196 }
197 
198 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
199 {
200 	struct proc_maps_private *priv = m->private;
201 	struct vm_area_struct *next;
202 
203 	(*pos)++;
204 	next = m_next_vma(priv, v);
205 	if (!next)
206 		vma_stop(priv);
207 	return next;
208 }
209 
210 static void m_stop(struct seq_file *m, void *v)
211 {
212 	struct proc_maps_private *priv = m->private;
213 
214 	if (!IS_ERR_OR_NULL(v))
215 		vma_stop(priv);
216 	if (priv->task) {
217 		put_task_struct(priv->task);
218 		priv->task = NULL;
219 	}
220 }
221 
222 static int proc_maps_open(struct inode *inode, struct file *file,
223 			const struct seq_operations *ops, int psize)
224 {
225 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
226 
227 	if (!priv)
228 		return -ENOMEM;
229 
230 	priv->inode = inode;
231 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
232 	if (IS_ERR(priv->mm)) {
233 		int err = PTR_ERR(priv->mm);
234 
235 		seq_release_private(inode, file);
236 		return err;
237 	}
238 
239 	return 0;
240 }
241 
242 static int proc_map_release(struct inode *inode, struct file *file)
243 {
244 	struct seq_file *seq = file->private_data;
245 	struct proc_maps_private *priv = seq->private;
246 
247 	if (priv->mm)
248 		mmdrop(priv->mm);
249 
250 	return seq_release_private(inode, file);
251 }
252 
253 static int do_maps_open(struct inode *inode, struct file *file,
254 			const struct seq_operations *ops)
255 {
256 	return proc_maps_open(inode, file, ops,
257 				sizeof(struct proc_maps_private));
258 }
259 
260 /*
261  * Indicate if the VMA is a stack for the given task; for
262  * /proc/PID/maps that is the stack of the main task.
263  */
264 static int is_stack(struct vm_area_struct *vma)
265 {
266 	/*
267 	 * We make no effort to guess what a given thread considers to be
268 	 * its "stack".  It's not even well-defined for programs written
269 	 * languages like Go.
270 	 */
271 	return vma->vm_start <= vma->vm_mm->start_stack &&
272 		vma->vm_end >= vma->vm_mm->start_stack;
273 }
274 
275 static void show_vma_header_prefix(struct seq_file *m,
276 				   unsigned long start, unsigned long end,
277 				   vm_flags_t flags, unsigned long long pgoff,
278 				   dev_t dev, unsigned long ino)
279 {
280 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
281 	seq_put_hex_ll(m, NULL, start, 8);
282 	seq_put_hex_ll(m, "-", end, 8);
283 	seq_putc(m, ' ');
284 	seq_putc(m, flags & VM_READ ? 'r' : '-');
285 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
286 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
287 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
288 	seq_put_hex_ll(m, " ", pgoff, 8);
289 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
290 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
291 	seq_put_decimal_ull(m, " ", ino);
292 	seq_putc(m, ' ');
293 }
294 
295 static void
296 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
297 {
298 	struct mm_struct *mm = vma->vm_mm;
299 	struct file *file = vma->vm_file;
300 	vm_flags_t flags = vma->vm_flags;
301 	unsigned long ino = 0;
302 	unsigned long long pgoff = 0;
303 	unsigned long start, end;
304 	dev_t dev = 0;
305 	const char *name = NULL;
306 
307 	if (file) {
308 		struct inode *inode = file_inode(vma->vm_file);
309 		dev = inode->i_sb->s_dev;
310 		ino = inode->i_ino;
311 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
312 	}
313 
314 	start = vma->vm_start;
315 	end = vma->vm_end;
316 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
317 
318 	/*
319 	 * Print the dentry name for named mappings, and a
320 	 * special [heap] marker for the heap:
321 	 */
322 	if (file) {
323 		seq_pad(m, ' ');
324 		seq_file_path(m, file, "\n");
325 		goto done;
326 	}
327 
328 	if (vma->vm_ops && vma->vm_ops->name) {
329 		name = vma->vm_ops->name(vma);
330 		if (name)
331 			goto done;
332 	}
333 
334 	name = arch_vma_name(vma);
335 	if (!name) {
336 		if (!mm) {
337 			name = "[vdso]";
338 			goto done;
339 		}
340 
341 		if (vma->vm_start <= mm->brk &&
342 		    vma->vm_end >= mm->start_brk) {
343 			name = "[heap]";
344 			goto done;
345 		}
346 
347 		if (is_stack(vma))
348 			name = "[stack]";
349 	}
350 
351 done:
352 	if (name) {
353 		seq_pad(m, ' ');
354 		seq_puts(m, name);
355 	}
356 	seq_putc(m, '\n');
357 }
358 
359 static int show_map(struct seq_file *m, void *v)
360 {
361 	show_map_vma(m, v);
362 	m_cache_vma(m, v);
363 	return 0;
364 }
365 
366 static const struct seq_operations proc_pid_maps_op = {
367 	.start	= m_start,
368 	.next	= m_next,
369 	.stop	= m_stop,
370 	.show	= show_map
371 };
372 
373 static int pid_maps_open(struct inode *inode, struct file *file)
374 {
375 	return do_maps_open(inode, file, &proc_pid_maps_op);
376 }
377 
378 const struct file_operations proc_pid_maps_operations = {
379 	.open		= pid_maps_open,
380 	.read		= seq_read,
381 	.llseek		= seq_lseek,
382 	.release	= proc_map_release,
383 };
384 
385 /*
386  * Proportional Set Size(PSS): my share of RSS.
387  *
388  * PSS of a process is the count of pages it has in memory, where each
389  * page is divided by the number of processes sharing it.  So if a
390  * process has 1000 pages all to itself, and 1000 shared with one other
391  * process, its PSS will be 1500.
392  *
393  * To keep (accumulated) division errors low, we adopt a 64bit
394  * fixed-point pss counter to minimize division errors. So (pss >>
395  * PSS_SHIFT) would be the real byte count.
396  *
397  * A shift of 12 before division means (assuming 4K page size):
398  * 	- 1M 3-user-pages add up to 8KB errors;
399  * 	- supports mapcount up to 2^24, or 16M;
400  * 	- supports PSS up to 2^52 bytes, or 4PB.
401  */
402 #define PSS_SHIFT 12
403 
404 #ifdef CONFIG_PROC_PAGE_MONITOR
405 struct mem_size_stats {
406 	unsigned long resident;
407 	unsigned long shared_clean;
408 	unsigned long shared_dirty;
409 	unsigned long private_clean;
410 	unsigned long private_dirty;
411 	unsigned long referenced;
412 	unsigned long anonymous;
413 	unsigned long lazyfree;
414 	unsigned long anonymous_thp;
415 	unsigned long shmem_thp;
416 	unsigned long swap;
417 	unsigned long shared_hugetlb;
418 	unsigned long private_hugetlb;
419 	u64 pss;
420 	u64 pss_locked;
421 	u64 swap_pss;
422 	bool check_shmem_swap;
423 };
424 
425 static void smaps_account(struct mem_size_stats *mss, struct page *page,
426 		bool compound, bool young, bool dirty, bool locked)
427 {
428 	int i, nr = compound ? 1 << compound_order(page) : 1;
429 	unsigned long size = nr * PAGE_SIZE;
430 
431 	if (PageAnon(page)) {
432 		mss->anonymous += size;
433 		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
434 			mss->lazyfree += size;
435 	}
436 
437 	mss->resident += size;
438 	/* Accumulate the size in pages that have been accessed. */
439 	if (young || page_is_young(page) || PageReferenced(page))
440 		mss->referenced += size;
441 
442 	/*
443 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
444 	 * If any subpage of the compound page mapped with PTE it would elevate
445 	 * page_count().
446 	 */
447 	if (page_count(page) == 1) {
448 		if (dirty || PageDirty(page))
449 			mss->private_dirty += size;
450 		else
451 			mss->private_clean += size;
452 		mss->pss += (u64)size << PSS_SHIFT;
453 		if (locked)
454 			mss->pss_locked += (u64)size << PSS_SHIFT;
455 		return;
456 	}
457 
458 	for (i = 0; i < nr; i++, page++) {
459 		int mapcount = page_mapcount(page);
460 		unsigned long pss = (PAGE_SIZE << PSS_SHIFT);
461 
462 		if (mapcount >= 2) {
463 			if (dirty || PageDirty(page))
464 				mss->shared_dirty += PAGE_SIZE;
465 			else
466 				mss->shared_clean += PAGE_SIZE;
467 			mss->pss += pss / mapcount;
468 			if (locked)
469 				mss->pss_locked += pss / mapcount;
470 		} else {
471 			if (dirty || PageDirty(page))
472 				mss->private_dirty += PAGE_SIZE;
473 			else
474 				mss->private_clean += PAGE_SIZE;
475 			mss->pss += pss;
476 			if (locked)
477 				mss->pss_locked += pss;
478 		}
479 	}
480 }
481 
482 #ifdef CONFIG_SHMEM
483 static int smaps_pte_hole(unsigned long addr, unsigned long end,
484 		struct mm_walk *walk)
485 {
486 	struct mem_size_stats *mss = walk->private;
487 
488 	mss->swap += shmem_partial_swap_usage(
489 			walk->vma->vm_file->f_mapping, addr, end);
490 
491 	return 0;
492 }
493 #endif
494 
495 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
496 		struct mm_walk *walk)
497 {
498 	struct mem_size_stats *mss = walk->private;
499 	struct vm_area_struct *vma = walk->vma;
500 	bool locked = !!(vma->vm_flags & VM_LOCKED);
501 	struct page *page = NULL;
502 
503 	if (pte_present(*pte)) {
504 		page = vm_normal_page(vma, addr, *pte);
505 	} else if (is_swap_pte(*pte)) {
506 		swp_entry_t swpent = pte_to_swp_entry(*pte);
507 
508 		if (!non_swap_entry(swpent)) {
509 			int mapcount;
510 
511 			mss->swap += PAGE_SIZE;
512 			mapcount = swp_swapcount(swpent);
513 			if (mapcount >= 2) {
514 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
515 
516 				do_div(pss_delta, mapcount);
517 				mss->swap_pss += pss_delta;
518 			} else {
519 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
520 			}
521 		} else if (is_migration_entry(swpent))
522 			page = migration_entry_to_page(swpent);
523 		else if (is_device_private_entry(swpent))
524 			page = device_private_entry_to_page(swpent);
525 	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
526 							&& pte_none(*pte))) {
527 		page = find_get_entry(vma->vm_file->f_mapping,
528 						linear_page_index(vma, addr));
529 		if (!page)
530 			return;
531 
532 		if (xa_is_value(page))
533 			mss->swap += PAGE_SIZE;
534 		else
535 			put_page(page);
536 
537 		return;
538 	}
539 
540 	if (!page)
541 		return;
542 
543 	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
544 }
545 
546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
547 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
548 		struct mm_walk *walk)
549 {
550 	struct mem_size_stats *mss = walk->private;
551 	struct vm_area_struct *vma = walk->vma;
552 	bool locked = !!(vma->vm_flags & VM_LOCKED);
553 	struct page *page;
554 
555 	/* FOLL_DUMP will return -EFAULT on huge zero page */
556 	page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
557 	if (IS_ERR_OR_NULL(page))
558 		return;
559 	if (PageAnon(page))
560 		mss->anonymous_thp += HPAGE_PMD_SIZE;
561 	else if (PageSwapBacked(page))
562 		mss->shmem_thp += HPAGE_PMD_SIZE;
563 	else if (is_zone_device_page(page))
564 		/* pass */;
565 	else
566 		VM_BUG_ON_PAGE(1, page);
567 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
568 }
569 #else
570 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
571 		struct mm_walk *walk)
572 {
573 }
574 #endif
575 
576 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
577 			   struct mm_walk *walk)
578 {
579 	struct vm_area_struct *vma = walk->vma;
580 	pte_t *pte;
581 	spinlock_t *ptl;
582 
583 	ptl = pmd_trans_huge_lock(pmd, vma);
584 	if (ptl) {
585 		if (pmd_present(*pmd))
586 			smaps_pmd_entry(pmd, addr, walk);
587 		spin_unlock(ptl);
588 		goto out;
589 	}
590 
591 	if (pmd_trans_unstable(pmd))
592 		goto out;
593 	/*
594 	 * The mmap_sem held all the way back in m_start() is what
595 	 * keeps khugepaged out of here and from collapsing things
596 	 * in here.
597 	 */
598 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
599 	for (; addr != end; pte++, addr += PAGE_SIZE)
600 		smaps_pte_entry(pte, addr, walk);
601 	pte_unmap_unlock(pte - 1, ptl);
602 out:
603 	cond_resched();
604 	return 0;
605 }
606 
607 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
608 {
609 	/*
610 	 * Don't forget to update Documentation/ on changes.
611 	 */
612 	static const char mnemonics[BITS_PER_LONG][2] = {
613 		/*
614 		 * In case if we meet a flag we don't know about.
615 		 */
616 		[0 ... (BITS_PER_LONG-1)] = "??",
617 
618 		[ilog2(VM_READ)]	= "rd",
619 		[ilog2(VM_WRITE)]	= "wr",
620 		[ilog2(VM_EXEC)]	= "ex",
621 		[ilog2(VM_SHARED)]	= "sh",
622 		[ilog2(VM_MAYREAD)]	= "mr",
623 		[ilog2(VM_MAYWRITE)]	= "mw",
624 		[ilog2(VM_MAYEXEC)]	= "me",
625 		[ilog2(VM_MAYSHARE)]	= "ms",
626 		[ilog2(VM_GROWSDOWN)]	= "gd",
627 		[ilog2(VM_PFNMAP)]	= "pf",
628 		[ilog2(VM_DENYWRITE)]	= "dw",
629 #ifdef CONFIG_X86_INTEL_MPX
630 		[ilog2(VM_MPX)]		= "mp",
631 #endif
632 		[ilog2(VM_LOCKED)]	= "lo",
633 		[ilog2(VM_IO)]		= "io",
634 		[ilog2(VM_SEQ_READ)]	= "sr",
635 		[ilog2(VM_RAND_READ)]	= "rr",
636 		[ilog2(VM_DONTCOPY)]	= "dc",
637 		[ilog2(VM_DONTEXPAND)]	= "de",
638 		[ilog2(VM_ACCOUNT)]	= "ac",
639 		[ilog2(VM_NORESERVE)]	= "nr",
640 		[ilog2(VM_HUGETLB)]	= "ht",
641 		[ilog2(VM_SYNC)]	= "sf",
642 		[ilog2(VM_ARCH_1)]	= "ar",
643 		[ilog2(VM_WIPEONFORK)]	= "wf",
644 		[ilog2(VM_DONTDUMP)]	= "dd",
645 #ifdef CONFIG_MEM_SOFT_DIRTY
646 		[ilog2(VM_SOFTDIRTY)]	= "sd",
647 #endif
648 		[ilog2(VM_MIXEDMAP)]	= "mm",
649 		[ilog2(VM_HUGEPAGE)]	= "hg",
650 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
651 		[ilog2(VM_MERGEABLE)]	= "mg",
652 		[ilog2(VM_UFFD_MISSING)]= "um",
653 		[ilog2(VM_UFFD_WP)]	= "uw",
654 #ifdef CONFIG_ARCH_HAS_PKEYS
655 		/* These come out via ProtectionKey: */
656 		[ilog2(VM_PKEY_BIT0)]	= "",
657 		[ilog2(VM_PKEY_BIT1)]	= "",
658 		[ilog2(VM_PKEY_BIT2)]	= "",
659 		[ilog2(VM_PKEY_BIT3)]	= "",
660 #if VM_PKEY_BIT4
661 		[ilog2(VM_PKEY_BIT4)]	= "",
662 #endif
663 #endif /* CONFIG_ARCH_HAS_PKEYS */
664 	};
665 	size_t i;
666 
667 	seq_puts(m, "VmFlags: ");
668 	for (i = 0; i < BITS_PER_LONG; i++) {
669 		if (!mnemonics[i][0])
670 			continue;
671 		if (vma->vm_flags & (1UL << i)) {
672 			seq_putc(m, mnemonics[i][0]);
673 			seq_putc(m, mnemonics[i][1]);
674 			seq_putc(m, ' ');
675 		}
676 	}
677 	seq_putc(m, '\n');
678 }
679 
680 #ifdef CONFIG_HUGETLB_PAGE
681 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
682 				 unsigned long addr, unsigned long end,
683 				 struct mm_walk *walk)
684 {
685 	struct mem_size_stats *mss = walk->private;
686 	struct vm_area_struct *vma = walk->vma;
687 	struct page *page = NULL;
688 
689 	if (pte_present(*pte)) {
690 		page = vm_normal_page(vma, addr, *pte);
691 	} else if (is_swap_pte(*pte)) {
692 		swp_entry_t swpent = pte_to_swp_entry(*pte);
693 
694 		if (is_migration_entry(swpent))
695 			page = migration_entry_to_page(swpent);
696 		else if (is_device_private_entry(swpent))
697 			page = device_private_entry_to_page(swpent);
698 	}
699 	if (page) {
700 		int mapcount = page_mapcount(page);
701 
702 		if (mapcount >= 2)
703 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
704 		else
705 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
706 	}
707 	return 0;
708 }
709 #endif /* HUGETLB_PAGE */
710 
711 static void smap_gather_stats(struct vm_area_struct *vma,
712 			     struct mem_size_stats *mss)
713 {
714 	struct mm_walk smaps_walk = {
715 		.pmd_entry = smaps_pte_range,
716 #ifdef CONFIG_HUGETLB_PAGE
717 		.hugetlb_entry = smaps_hugetlb_range,
718 #endif
719 		.mm = vma->vm_mm,
720 	};
721 
722 	smaps_walk.private = mss;
723 
724 #ifdef CONFIG_SHMEM
725 	/* In case of smaps_rollup, reset the value from previous vma */
726 	mss->check_shmem_swap = false;
727 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
728 		/*
729 		 * For shared or readonly shmem mappings we know that all
730 		 * swapped out pages belong to the shmem object, and we can
731 		 * obtain the swap value much more efficiently. For private
732 		 * writable mappings, we might have COW pages that are
733 		 * not affected by the parent swapped out pages of the shmem
734 		 * object, so we have to distinguish them during the page walk.
735 		 * Unless we know that the shmem object (or the part mapped by
736 		 * our VMA) has no swapped out pages at all.
737 		 */
738 		unsigned long shmem_swapped = shmem_swap_usage(vma);
739 
740 		if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
741 					!(vma->vm_flags & VM_WRITE)) {
742 			mss->swap += shmem_swapped;
743 		} else {
744 			mss->check_shmem_swap = true;
745 			smaps_walk.pte_hole = smaps_pte_hole;
746 		}
747 	}
748 #endif
749 	/* mmap_sem is held in m_start */
750 	walk_page_vma(vma, &smaps_walk);
751 }
752 
753 #define SEQ_PUT_DEC(str, val) \
754 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
755 
756 /* Show the contents common for smaps and smaps_rollup */
757 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss)
758 {
759 	SEQ_PUT_DEC("Rss:            ", mss->resident);
760 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
761 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
762 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
763 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
764 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
765 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
766 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
767 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
768 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
769 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
770 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
771 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
772 				  mss->private_hugetlb >> 10, 7);
773 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
774 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
775 					mss->swap_pss >> PSS_SHIFT);
776 	SEQ_PUT_DEC(" kB\nLocked:         ",
777 					mss->pss_locked >> PSS_SHIFT);
778 	seq_puts(m, " kB\n");
779 }
780 
781 static int show_smap(struct seq_file *m, void *v)
782 {
783 	struct vm_area_struct *vma = v;
784 	struct mem_size_stats mss;
785 
786 	memset(&mss, 0, sizeof(mss));
787 
788 	smap_gather_stats(vma, &mss);
789 
790 	show_map_vma(m, vma);
791 
792 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
793 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
794 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
795 	seq_puts(m, " kB\n");
796 
797 	__show_smap(m, &mss);
798 
799 	seq_printf(m, "THPeligible:    %d\n", transparent_hugepage_enabled(vma));
800 
801 	if (arch_pkeys_enabled())
802 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
803 	show_smap_vma_flags(m, vma);
804 
805 	m_cache_vma(m, vma);
806 
807 	return 0;
808 }
809 
810 static int show_smaps_rollup(struct seq_file *m, void *v)
811 {
812 	struct proc_maps_private *priv = m->private;
813 	struct mem_size_stats mss;
814 	struct mm_struct *mm;
815 	struct vm_area_struct *vma;
816 	unsigned long last_vma_end = 0;
817 	int ret = 0;
818 
819 	priv->task = get_proc_task(priv->inode);
820 	if (!priv->task)
821 		return -ESRCH;
822 
823 	mm = priv->mm;
824 	if (!mm || !mmget_not_zero(mm)) {
825 		ret = -ESRCH;
826 		goto out_put_task;
827 	}
828 
829 	memset(&mss, 0, sizeof(mss));
830 
831 	down_read(&mm->mmap_sem);
832 	hold_task_mempolicy(priv);
833 
834 	for (vma = priv->mm->mmap; vma; vma = vma->vm_next) {
835 		smap_gather_stats(vma, &mss);
836 		last_vma_end = vma->vm_end;
837 	}
838 
839 	show_vma_header_prefix(m, priv->mm->mmap->vm_start,
840 			       last_vma_end, 0, 0, 0, 0);
841 	seq_pad(m, ' ');
842 	seq_puts(m, "[rollup]\n");
843 
844 	__show_smap(m, &mss);
845 
846 	release_task_mempolicy(priv);
847 	up_read(&mm->mmap_sem);
848 	mmput(mm);
849 
850 out_put_task:
851 	put_task_struct(priv->task);
852 	priv->task = NULL;
853 
854 	return ret;
855 }
856 #undef SEQ_PUT_DEC
857 
858 static const struct seq_operations proc_pid_smaps_op = {
859 	.start	= m_start,
860 	.next	= m_next,
861 	.stop	= m_stop,
862 	.show	= show_smap
863 };
864 
865 static int pid_smaps_open(struct inode *inode, struct file *file)
866 {
867 	return do_maps_open(inode, file, &proc_pid_smaps_op);
868 }
869 
870 static int smaps_rollup_open(struct inode *inode, struct file *file)
871 {
872 	int ret;
873 	struct proc_maps_private *priv;
874 
875 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
876 	if (!priv)
877 		return -ENOMEM;
878 
879 	ret = single_open(file, show_smaps_rollup, priv);
880 	if (ret)
881 		goto out_free;
882 
883 	priv->inode = inode;
884 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
885 	if (IS_ERR(priv->mm)) {
886 		ret = PTR_ERR(priv->mm);
887 
888 		single_release(inode, file);
889 		goto out_free;
890 	}
891 
892 	return 0;
893 
894 out_free:
895 	kfree(priv);
896 	return ret;
897 }
898 
899 static int smaps_rollup_release(struct inode *inode, struct file *file)
900 {
901 	struct seq_file *seq = file->private_data;
902 	struct proc_maps_private *priv = seq->private;
903 
904 	if (priv->mm)
905 		mmdrop(priv->mm);
906 
907 	kfree(priv);
908 	return single_release(inode, file);
909 }
910 
911 const struct file_operations proc_pid_smaps_operations = {
912 	.open		= pid_smaps_open,
913 	.read		= seq_read,
914 	.llseek		= seq_lseek,
915 	.release	= proc_map_release,
916 };
917 
918 const struct file_operations proc_pid_smaps_rollup_operations = {
919 	.open		= smaps_rollup_open,
920 	.read		= seq_read,
921 	.llseek		= seq_lseek,
922 	.release	= smaps_rollup_release,
923 };
924 
925 enum clear_refs_types {
926 	CLEAR_REFS_ALL = 1,
927 	CLEAR_REFS_ANON,
928 	CLEAR_REFS_MAPPED,
929 	CLEAR_REFS_SOFT_DIRTY,
930 	CLEAR_REFS_MM_HIWATER_RSS,
931 	CLEAR_REFS_LAST,
932 };
933 
934 struct clear_refs_private {
935 	enum clear_refs_types type;
936 };
937 
938 #ifdef CONFIG_MEM_SOFT_DIRTY
939 static inline void clear_soft_dirty(struct vm_area_struct *vma,
940 		unsigned long addr, pte_t *pte)
941 {
942 	/*
943 	 * The soft-dirty tracker uses #PF-s to catch writes
944 	 * to pages, so write-protect the pte as well. See the
945 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
946 	 * of how soft-dirty works.
947 	 */
948 	pte_t ptent = *pte;
949 
950 	if (pte_present(ptent)) {
951 		pte_t old_pte;
952 
953 		old_pte = ptep_modify_prot_start(vma, addr, pte);
954 		ptent = pte_wrprotect(old_pte);
955 		ptent = pte_clear_soft_dirty(ptent);
956 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
957 	} else if (is_swap_pte(ptent)) {
958 		ptent = pte_swp_clear_soft_dirty(ptent);
959 		set_pte_at(vma->vm_mm, addr, pte, ptent);
960 	}
961 }
962 #else
963 static inline void clear_soft_dirty(struct vm_area_struct *vma,
964 		unsigned long addr, pte_t *pte)
965 {
966 }
967 #endif
968 
969 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
970 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
971 		unsigned long addr, pmd_t *pmdp)
972 {
973 	pmd_t old, pmd = *pmdp;
974 
975 	if (pmd_present(pmd)) {
976 		/* See comment in change_huge_pmd() */
977 		old = pmdp_invalidate(vma, addr, pmdp);
978 		if (pmd_dirty(old))
979 			pmd = pmd_mkdirty(pmd);
980 		if (pmd_young(old))
981 			pmd = pmd_mkyoung(pmd);
982 
983 		pmd = pmd_wrprotect(pmd);
984 		pmd = pmd_clear_soft_dirty(pmd);
985 
986 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
987 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
988 		pmd = pmd_swp_clear_soft_dirty(pmd);
989 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
990 	}
991 }
992 #else
993 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
994 		unsigned long addr, pmd_t *pmdp)
995 {
996 }
997 #endif
998 
999 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1000 				unsigned long end, struct mm_walk *walk)
1001 {
1002 	struct clear_refs_private *cp = walk->private;
1003 	struct vm_area_struct *vma = walk->vma;
1004 	pte_t *pte, ptent;
1005 	spinlock_t *ptl;
1006 	struct page *page;
1007 
1008 	ptl = pmd_trans_huge_lock(pmd, vma);
1009 	if (ptl) {
1010 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1011 			clear_soft_dirty_pmd(vma, addr, pmd);
1012 			goto out;
1013 		}
1014 
1015 		if (!pmd_present(*pmd))
1016 			goto out;
1017 
1018 		page = pmd_page(*pmd);
1019 
1020 		/* Clear accessed and referenced bits. */
1021 		pmdp_test_and_clear_young(vma, addr, pmd);
1022 		test_and_clear_page_young(page);
1023 		ClearPageReferenced(page);
1024 out:
1025 		spin_unlock(ptl);
1026 		return 0;
1027 	}
1028 
1029 	if (pmd_trans_unstable(pmd))
1030 		return 0;
1031 
1032 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1033 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1034 		ptent = *pte;
1035 
1036 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1037 			clear_soft_dirty(vma, addr, pte);
1038 			continue;
1039 		}
1040 
1041 		if (!pte_present(ptent))
1042 			continue;
1043 
1044 		page = vm_normal_page(vma, addr, ptent);
1045 		if (!page)
1046 			continue;
1047 
1048 		/* Clear accessed and referenced bits. */
1049 		ptep_test_and_clear_young(vma, addr, pte);
1050 		test_and_clear_page_young(page);
1051 		ClearPageReferenced(page);
1052 	}
1053 	pte_unmap_unlock(pte - 1, ptl);
1054 	cond_resched();
1055 	return 0;
1056 }
1057 
1058 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1059 				struct mm_walk *walk)
1060 {
1061 	struct clear_refs_private *cp = walk->private;
1062 	struct vm_area_struct *vma = walk->vma;
1063 
1064 	if (vma->vm_flags & VM_PFNMAP)
1065 		return 1;
1066 
1067 	/*
1068 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1069 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1070 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1071 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1072 	 */
1073 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1074 		return 1;
1075 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1076 		return 1;
1077 	return 0;
1078 }
1079 
1080 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1081 				size_t count, loff_t *ppos)
1082 {
1083 	struct task_struct *task;
1084 	char buffer[PROC_NUMBUF];
1085 	struct mm_struct *mm;
1086 	struct vm_area_struct *vma;
1087 	enum clear_refs_types type;
1088 	struct mmu_gather tlb;
1089 	int itype;
1090 	int rv;
1091 
1092 	memset(buffer, 0, sizeof(buffer));
1093 	if (count > sizeof(buffer) - 1)
1094 		count = sizeof(buffer) - 1;
1095 	if (copy_from_user(buffer, buf, count))
1096 		return -EFAULT;
1097 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1098 	if (rv < 0)
1099 		return rv;
1100 	type = (enum clear_refs_types)itype;
1101 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1102 		return -EINVAL;
1103 
1104 	task = get_proc_task(file_inode(file));
1105 	if (!task)
1106 		return -ESRCH;
1107 	mm = get_task_mm(task);
1108 	if (mm) {
1109 		struct mmu_notifier_range range;
1110 		struct clear_refs_private cp = {
1111 			.type = type,
1112 		};
1113 		struct mm_walk clear_refs_walk = {
1114 			.pmd_entry = clear_refs_pte_range,
1115 			.test_walk = clear_refs_test_walk,
1116 			.mm = mm,
1117 			.private = &cp,
1118 		};
1119 
1120 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1121 			if (down_write_killable(&mm->mmap_sem)) {
1122 				count = -EINTR;
1123 				goto out_mm;
1124 			}
1125 
1126 			/*
1127 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1128 			 * resident set size to this mm's current rss value.
1129 			 */
1130 			reset_mm_hiwater_rss(mm);
1131 			up_write(&mm->mmap_sem);
1132 			goto out_mm;
1133 		}
1134 
1135 		down_read(&mm->mmap_sem);
1136 		tlb_gather_mmu(&tlb, mm, 0, -1);
1137 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1138 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1139 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1140 					continue;
1141 				up_read(&mm->mmap_sem);
1142 				if (down_write_killable(&mm->mmap_sem)) {
1143 					count = -EINTR;
1144 					goto out_mm;
1145 				}
1146 				/*
1147 				 * Avoid to modify vma->vm_flags
1148 				 * without locked ops while the
1149 				 * coredump reads the vm_flags.
1150 				 */
1151 				if (!mmget_still_valid(mm)) {
1152 					/*
1153 					 * Silently return "count"
1154 					 * like if get_task_mm()
1155 					 * failed. FIXME: should this
1156 					 * function have returned
1157 					 * -ESRCH if get_task_mm()
1158 					 * failed like if
1159 					 * get_proc_task() fails?
1160 					 */
1161 					up_write(&mm->mmap_sem);
1162 					goto out_mm;
1163 				}
1164 				for (vma = mm->mmap; vma; vma = vma->vm_next) {
1165 					vma->vm_flags &= ~VM_SOFTDIRTY;
1166 					vma_set_page_prot(vma);
1167 				}
1168 				downgrade_write(&mm->mmap_sem);
1169 				break;
1170 			}
1171 
1172 			mmu_notifier_range_init(&range, mm, 0, -1UL);
1173 			mmu_notifier_invalidate_range_start(&range);
1174 		}
1175 		walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1176 		if (type == CLEAR_REFS_SOFT_DIRTY)
1177 			mmu_notifier_invalidate_range_end(&range);
1178 		tlb_finish_mmu(&tlb, 0, -1);
1179 		up_read(&mm->mmap_sem);
1180 out_mm:
1181 		mmput(mm);
1182 	}
1183 	put_task_struct(task);
1184 
1185 	return count;
1186 }
1187 
1188 const struct file_operations proc_clear_refs_operations = {
1189 	.write		= clear_refs_write,
1190 	.llseek		= noop_llseek,
1191 };
1192 
1193 typedef struct {
1194 	u64 pme;
1195 } pagemap_entry_t;
1196 
1197 struct pagemapread {
1198 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1199 	pagemap_entry_t *buffer;
1200 	bool show_pfn;
1201 };
1202 
1203 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1204 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1205 
1206 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1207 #define PM_PFRAME_BITS		55
1208 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1209 #define PM_SOFT_DIRTY		BIT_ULL(55)
1210 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1211 #define PM_FILE			BIT_ULL(61)
1212 #define PM_SWAP			BIT_ULL(62)
1213 #define PM_PRESENT		BIT_ULL(63)
1214 
1215 #define PM_END_OF_BUFFER    1
1216 
1217 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1218 {
1219 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1220 }
1221 
1222 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1223 			  struct pagemapread *pm)
1224 {
1225 	pm->buffer[pm->pos++] = *pme;
1226 	if (pm->pos >= pm->len)
1227 		return PM_END_OF_BUFFER;
1228 	return 0;
1229 }
1230 
1231 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1232 				struct mm_walk *walk)
1233 {
1234 	struct pagemapread *pm = walk->private;
1235 	unsigned long addr = start;
1236 	int err = 0;
1237 
1238 	while (addr < end) {
1239 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1240 		pagemap_entry_t pme = make_pme(0, 0);
1241 		/* End of address space hole, which we mark as non-present. */
1242 		unsigned long hole_end;
1243 
1244 		if (vma)
1245 			hole_end = min(end, vma->vm_start);
1246 		else
1247 			hole_end = end;
1248 
1249 		for (; addr < hole_end; addr += PAGE_SIZE) {
1250 			err = add_to_pagemap(addr, &pme, pm);
1251 			if (err)
1252 				goto out;
1253 		}
1254 
1255 		if (!vma)
1256 			break;
1257 
1258 		/* Addresses in the VMA. */
1259 		if (vma->vm_flags & VM_SOFTDIRTY)
1260 			pme = make_pme(0, PM_SOFT_DIRTY);
1261 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1262 			err = add_to_pagemap(addr, &pme, pm);
1263 			if (err)
1264 				goto out;
1265 		}
1266 	}
1267 out:
1268 	return err;
1269 }
1270 
1271 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1272 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1273 {
1274 	u64 frame = 0, flags = 0;
1275 	struct page *page = NULL;
1276 
1277 	if (pte_present(pte)) {
1278 		if (pm->show_pfn)
1279 			frame = pte_pfn(pte);
1280 		flags |= PM_PRESENT;
1281 		page = _vm_normal_page(vma, addr, pte, true);
1282 		if (pte_soft_dirty(pte))
1283 			flags |= PM_SOFT_DIRTY;
1284 	} else if (is_swap_pte(pte)) {
1285 		swp_entry_t entry;
1286 		if (pte_swp_soft_dirty(pte))
1287 			flags |= PM_SOFT_DIRTY;
1288 		entry = pte_to_swp_entry(pte);
1289 		if (pm->show_pfn)
1290 			frame = swp_type(entry) |
1291 				(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1292 		flags |= PM_SWAP;
1293 		if (is_migration_entry(entry))
1294 			page = migration_entry_to_page(entry);
1295 
1296 		if (is_device_private_entry(entry))
1297 			page = device_private_entry_to_page(entry);
1298 	}
1299 
1300 	if (page && !PageAnon(page))
1301 		flags |= PM_FILE;
1302 	if (page && page_mapcount(page) == 1)
1303 		flags |= PM_MMAP_EXCLUSIVE;
1304 	if (vma->vm_flags & VM_SOFTDIRTY)
1305 		flags |= PM_SOFT_DIRTY;
1306 
1307 	return make_pme(frame, flags);
1308 }
1309 
1310 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1311 			     struct mm_walk *walk)
1312 {
1313 	struct vm_area_struct *vma = walk->vma;
1314 	struct pagemapread *pm = walk->private;
1315 	spinlock_t *ptl;
1316 	pte_t *pte, *orig_pte;
1317 	int err = 0;
1318 
1319 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1320 	ptl = pmd_trans_huge_lock(pmdp, vma);
1321 	if (ptl) {
1322 		u64 flags = 0, frame = 0;
1323 		pmd_t pmd = *pmdp;
1324 		struct page *page = NULL;
1325 
1326 		if (vma->vm_flags & VM_SOFTDIRTY)
1327 			flags |= PM_SOFT_DIRTY;
1328 
1329 		if (pmd_present(pmd)) {
1330 			page = pmd_page(pmd);
1331 
1332 			flags |= PM_PRESENT;
1333 			if (pmd_soft_dirty(pmd))
1334 				flags |= PM_SOFT_DIRTY;
1335 			if (pm->show_pfn)
1336 				frame = pmd_pfn(pmd) +
1337 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1338 		}
1339 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1340 		else if (is_swap_pmd(pmd)) {
1341 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1342 			unsigned long offset;
1343 
1344 			if (pm->show_pfn) {
1345 				offset = swp_offset(entry) +
1346 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1347 				frame = swp_type(entry) |
1348 					(offset << MAX_SWAPFILES_SHIFT);
1349 			}
1350 			flags |= PM_SWAP;
1351 			if (pmd_swp_soft_dirty(pmd))
1352 				flags |= PM_SOFT_DIRTY;
1353 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1354 			page = migration_entry_to_page(entry);
1355 		}
1356 #endif
1357 
1358 		if (page && page_mapcount(page) == 1)
1359 			flags |= PM_MMAP_EXCLUSIVE;
1360 
1361 		for (; addr != end; addr += PAGE_SIZE) {
1362 			pagemap_entry_t pme = make_pme(frame, flags);
1363 
1364 			err = add_to_pagemap(addr, &pme, pm);
1365 			if (err)
1366 				break;
1367 			if (pm->show_pfn) {
1368 				if (flags & PM_PRESENT)
1369 					frame++;
1370 				else if (flags & PM_SWAP)
1371 					frame += (1 << MAX_SWAPFILES_SHIFT);
1372 			}
1373 		}
1374 		spin_unlock(ptl);
1375 		return err;
1376 	}
1377 
1378 	if (pmd_trans_unstable(pmdp))
1379 		return 0;
1380 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1381 
1382 	/*
1383 	 * We can assume that @vma always points to a valid one and @end never
1384 	 * goes beyond vma->vm_end.
1385 	 */
1386 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1387 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1388 		pagemap_entry_t pme;
1389 
1390 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1391 		err = add_to_pagemap(addr, &pme, pm);
1392 		if (err)
1393 			break;
1394 	}
1395 	pte_unmap_unlock(orig_pte, ptl);
1396 
1397 	cond_resched();
1398 
1399 	return err;
1400 }
1401 
1402 #ifdef CONFIG_HUGETLB_PAGE
1403 /* This function walks within one hugetlb entry in the single call */
1404 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1405 				 unsigned long addr, unsigned long end,
1406 				 struct mm_walk *walk)
1407 {
1408 	struct pagemapread *pm = walk->private;
1409 	struct vm_area_struct *vma = walk->vma;
1410 	u64 flags = 0, frame = 0;
1411 	int err = 0;
1412 	pte_t pte;
1413 
1414 	if (vma->vm_flags & VM_SOFTDIRTY)
1415 		flags |= PM_SOFT_DIRTY;
1416 
1417 	pte = huge_ptep_get(ptep);
1418 	if (pte_present(pte)) {
1419 		struct page *page = pte_page(pte);
1420 
1421 		if (!PageAnon(page))
1422 			flags |= PM_FILE;
1423 
1424 		if (page_mapcount(page) == 1)
1425 			flags |= PM_MMAP_EXCLUSIVE;
1426 
1427 		flags |= PM_PRESENT;
1428 		if (pm->show_pfn)
1429 			frame = pte_pfn(pte) +
1430 				((addr & ~hmask) >> PAGE_SHIFT);
1431 	}
1432 
1433 	for (; addr != end; addr += PAGE_SIZE) {
1434 		pagemap_entry_t pme = make_pme(frame, flags);
1435 
1436 		err = add_to_pagemap(addr, &pme, pm);
1437 		if (err)
1438 			return err;
1439 		if (pm->show_pfn && (flags & PM_PRESENT))
1440 			frame++;
1441 	}
1442 
1443 	cond_resched();
1444 
1445 	return err;
1446 }
1447 #endif /* HUGETLB_PAGE */
1448 
1449 /*
1450  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1451  *
1452  * For each page in the address space, this file contains one 64-bit entry
1453  * consisting of the following:
1454  *
1455  * Bits 0-54  page frame number (PFN) if present
1456  * Bits 0-4   swap type if swapped
1457  * Bits 5-54  swap offset if swapped
1458  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1459  * Bit  56    page exclusively mapped
1460  * Bits 57-60 zero
1461  * Bit  61    page is file-page or shared-anon
1462  * Bit  62    page swapped
1463  * Bit  63    page present
1464  *
1465  * If the page is not present but in swap, then the PFN contains an
1466  * encoding of the swap file number and the page's offset into the
1467  * swap. Unmapped pages return a null PFN. This allows determining
1468  * precisely which pages are mapped (or in swap) and comparing mapped
1469  * pages between processes.
1470  *
1471  * Efficient users of this interface will use /proc/pid/maps to
1472  * determine which areas of memory are actually mapped and llseek to
1473  * skip over unmapped regions.
1474  */
1475 static ssize_t pagemap_read(struct file *file, char __user *buf,
1476 			    size_t count, loff_t *ppos)
1477 {
1478 	struct mm_struct *mm = file->private_data;
1479 	struct pagemapread pm;
1480 	struct mm_walk pagemap_walk = {};
1481 	unsigned long src;
1482 	unsigned long svpfn;
1483 	unsigned long start_vaddr;
1484 	unsigned long end_vaddr;
1485 	int ret = 0, copied = 0;
1486 
1487 	if (!mm || !mmget_not_zero(mm))
1488 		goto out;
1489 
1490 	ret = -EINVAL;
1491 	/* file position must be aligned */
1492 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1493 		goto out_mm;
1494 
1495 	ret = 0;
1496 	if (!count)
1497 		goto out_mm;
1498 
1499 	/* do not disclose physical addresses: attack vector */
1500 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1501 
1502 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1503 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1504 	ret = -ENOMEM;
1505 	if (!pm.buffer)
1506 		goto out_mm;
1507 
1508 	pagemap_walk.pmd_entry = pagemap_pmd_range;
1509 	pagemap_walk.pte_hole = pagemap_pte_hole;
1510 #ifdef CONFIG_HUGETLB_PAGE
1511 	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1512 #endif
1513 	pagemap_walk.mm = mm;
1514 	pagemap_walk.private = &pm;
1515 
1516 	src = *ppos;
1517 	svpfn = src / PM_ENTRY_BYTES;
1518 	start_vaddr = svpfn << PAGE_SHIFT;
1519 	end_vaddr = mm->task_size;
1520 
1521 	/* watch out for wraparound */
1522 	if (svpfn > mm->task_size >> PAGE_SHIFT)
1523 		start_vaddr = end_vaddr;
1524 
1525 	/*
1526 	 * The odds are that this will stop walking way
1527 	 * before end_vaddr, because the length of the
1528 	 * user buffer is tracked in "pm", and the walk
1529 	 * will stop when we hit the end of the buffer.
1530 	 */
1531 	ret = 0;
1532 	while (count && (start_vaddr < end_vaddr)) {
1533 		int len;
1534 		unsigned long end;
1535 
1536 		pm.pos = 0;
1537 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1538 		/* overflow ? */
1539 		if (end < start_vaddr || end > end_vaddr)
1540 			end = end_vaddr;
1541 		down_read(&mm->mmap_sem);
1542 		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1543 		up_read(&mm->mmap_sem);
1544 		start_vaddr = end;
1545 
1546 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1547 		if (copy_to_user(buf, pm.buffer, len)) {
1548 			ret = -EFAULT;
1549 			goto out_free;
1550 		}
1551 		copied += len;
1552 		buf += len;
1553 		count -= len;
1554 	}
1555 	*ppos += copied;
1556 	if (!ret || ret == PM_END_OF_BUFFER)
1557 		ret = copied;
1558 
1559 out_free:
1560 	kfree(pm.buffer);
1561 out_mm:
1562 	mmput(mm);
1563 out:
1564 	return ret;
1565 }
1566 
1567 static int pagemap_open(struct inode *inode, struct file *file)
1568 {
1569 	struct mm_struct *mm;
1570 
1571 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1572 	if (IS_ERR(mm))
1573 		return PTR_ERR(mm);
1574 	file->private_data = mm;
1575 	return 0;
1576 }
1577 
1578 static int pagemap_release(struct inode *inode, struct file *file)
1579 {
1580 	struct mm_struct *mm = file->private_data;
1581 
1582 	if (mm)
1583 		mmdrop(mm);
1584 	return 0;
1585 }
1586 
1587 const struct file_operations proc_pagemap_operations = {
1588 	.llseek		= mem_lseek, /* borrow this */
1589 	.read		= pagemap_read,
1590 	.open		= pagemap_open,
1591 	.release	= pagemap_release,
1592 };
1593 #endif /* CONFIG_PROC_PAGE_MONITOR */
1594 
1595 #ifdef CONFIG_NUMA
1596 
1597 struct numa_maps {
1598 	unsigned long pages;
1599 	unsigned long anon;
1600 	unsigned long active;
1601 	unsigned long writeback;
1602 	unsigned long mapcount_max;
1603 	unsigned long dirty;
1604 	unsigned long swapcache;
1605 	unsigned long node[MAX_NUMNODES];
1606 };
1607 
1608 struct numa_maps_private {
1609 	struct proc_maps_private proc_maps;
1610 	struct numa_maps md;
1611 };
1612 
1613 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1614 			unsigned long nr_pages)
1615 {
1616 	int count = page_mapcount(page);
1617 
1618 	md->pages += nr_pages;
1619 	if (pte_dirty || PageDirty(page))
1620 		md->dirty += nr_pages;
1621 
1622 	if (PageSwapCache(page))
1623 		md->swapcache += nr_pages;
1624 
1625 	if (PageActive(page) || PageUnevictable(page))
1626 		md->active += nr_pages;
1627 
1628 	if (PageWriteback(page))
1629 		md->writeback += nr_pages;
1630 
1631 	if (PageAnon(page))
1632 		md->anon += nr_pages;
1633 
1634 	if (count > md->mapcount_max)
1635 		md->mapcount_max = count;
1636 
1637 	md->node[page_to_nid(page)] += nr_pages;
1638 }
1639 
1640 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1641 		unsigned long addr)
1642 {
1643 	struct page *page;
1644 	int nid;
1645 
1646 	if (!pte_present(pte))
1647 		return NULL;
1648 
1649 	page = vm_normal_page(vma, addr, pte);
1650 	if (!page)
1651 		return NULL;
1652 
1653 	if (PageReserved(page))
1654 		return NULL;
1655 
1656 	nid = page_to_nid(page);
1657 	if (!node_isset(nid, node_states[N_MEMORY]))
1658 		return NULL;
1659 
1660 	return page;
1661 }
1662 
1663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1664 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1665 					      struct vm_area_struct *vma,
1666 					      unsigned long addr)
1667 {
1668 	struct page *page;
1669 	int nid;
1670 
1671 	if (!pmd_present(pmd))
1672 		return NULL;
1673 
1674 	page = vm_normal_page_pmd(vma, addr, pmd);
1675 	if (!page)
1676 		return NULL;
1677 
1678 	if (PageReserved(page))
1679 		return NULL;
1680 
1681 	nid = page_to_nid(page);
1682 	if (!node_isset(nid, node_states[N_MEMORY]))
1683 		return NULL;
1684 
1685 	return page;
1686 }
1687 #endif
1688 
1689 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1690 		unsigned long end, struct mm_walk *walk)
1691 {
1692 	struct numa_maps *md = walk->private;
1693 	struct vm_area_struct *vma = walk->vma;
1694 	spinlock_t *ptl;
1695 	pte_t *orig_pte;
1696 	pte_t *pte;
1697 
1698 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1699 	ptl = pmd_trans_huge_lock(pmd, vma);
1700 	if (ptl) {
1701 		struct page *page;
1702 
1703 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1704 		if (page)
1705 			gather_stats(page, md, pmd_dirty(*pmd),
1706 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1707 		spin_unlock(ptl);
1708 		return 0;
1709 	}
1710 
1711 	if (pmd_trans_unstable(pmd))
1712 		return 0;
1713 #endif
1714 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1715 	do {
1716 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1717 		if (!page)
1718 			continue;
1719 		gather_stats(page, md, pte_dirty(*pte), 1);
1720 
1721 	} while (pte++, addr += PAGE_SIZE, addr != end);
1722 	pte_unmap_unlock(orig_pte, ptl);
1723 	cond_resched();
1724 	return 0;
1725 }
1726 #ifdef CONFIG_HUGETLB_PAGE
1727 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1728 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1729 {
1730 	pte_t huge_pte = huge_ptep_get(pte);
1731 	struct numa_maps *md;
1732 	struct page *page;
1733 
1734 	if (!pte_present(huge_pte))
1735 		return 0;
1736 
1737 	page = pte_page(huge_pte);
1738 	if (!page)
1739 		return 0;
1740 
1741 	md = walk->private;
1742 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1743 	return 0;
1744 }
1745 
1746 #else
1747 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1748 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1749 {
1750 	return 0;
1751 }
1752 #endif
1753 
1754 /*
1755  * Display pages allocated per node and memory policy via /proc.
1756  */
1757 static int show_numa_map(struct seq_file *m, void *v)
1758 {
1759 	struct numa_maps_private *numa_priv = m->private;
1760 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1761 	struct vm_area_struct *vma = v;
1762 	struct numa_maps *md = &numa_priv->md;
1763 	struct file *file = vma->vm_file;
1764 	struct mm_struct *mm = vma->vm_mm;
1765 	struct mm_walk walk = {
1766 		.hugetlb_entry = gather_hugetlb_stats,
1767 		.pmd_entry = gather_pte_stats,
1768 		.private = md,
1769 		.mm = mm,
1770 	};
1771 	struct mempolicy *pol;
1772 	char buffer[64];
1773 	int nid;
1774 
1775 	if (!mm)
1776 		return 0;
1777 
1778 	/* Ensure we start with an empty set of numa_maps statistics. */
1779 	memset(md, 0, sizeof(*md));
1780 
1781 	pol = __get_vma_policy(vma, vma->vm_start);
1782 	if (pol) {
1783 		mpol_to_str(buffer, sizeof(buffer), pol);
1784 		mpol_cond_put(pol);
1785 	} else {
1786 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1787 	}
1788 
1789 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1790 
1791 	if (file) {
1792 		seq_puts(m, " file=");
1793 		seq_file_path(m, file, "\n\t= ");
1794 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1795 		seq_puts(m, " heap");
1796 	} else if (is_stack(vma)) {
1797 		seq_puts(m, " stack");
1798 	}
1799 
1800 	if (is_vm_hugetlb_page(vma))
1801 		seq_puts(m, " huge");
1802 
1803 	/* mmap_sem is held by m_start */
1804 	walk_page_vma(vma, &walk);
1805 
1806 	if (!md->pages)
1807 		goto out;
1808 
1809 	if (md->anon)
1810 		seq_printf(m, " anon=%lu", md->anon);
1811 
1812 	if (md->dirty)
1813 		seq_printf(m, " dirty=%lu", md->dirty);
1814 
1815 	if (md->pages != md->anon && md->pages != md->dirty)
1816 		seq_printf(m, " mapped=%lu", md->pages);
1817 
1818 	if (md->mapcount_max > 1)
1819 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1820 
1821 	if (md->swapcache)
1822 		seq_printf(m, " swapcache=%lu", md->swapcache);
1823 
1824 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1825 		seq_printf(m, " active=%lu", md->active);
1826 
1827 	if (md->writeback)
1828 		seq_printf(m, " writeback=%lu", md->writeback);
1829 
1830 	for_each_node_state(nid, N_MEMORY)
1831 		if (md->node[nid])
1832 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1833 
1834 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1835 out:
1836 	seq_putc(m, '\n');
1837 	m_cache_vma(m, vma);
1838 	return 0;
1839 }
1840 
1841 static const struct seq_operations proc_pid_numa_maps_op = {
1842 	.start  = m_start,
1843 	.next   = m_next,
1844 	.stop   = m_stop,
1845 	.show   = show_numa_map,
1846 };
1847 
1848 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1849 {
1850 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1851 				sizeof(struct numa_maps_private));
1852 }
1853 
1854 const struct file_operations proc_pid_numa_maps_operations = {
1855 	.open		= pid_numa_maps_open,
1856 	.read		= seq_read,
1857 	.llseek		= seq_lseek,
1858 	.release	= proc_map_release,
1859 };
1860 
1861 #endif /* CONFIG_NUMA */
1862