xref: /openbmc/linux/fs/proc/task_mmu.c (revision 2f190ac2)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/mm_inline.h>
5 #include <linux/hugetlb.h>
6 #include <linux/huge_mm.h>
7 #include <linux/mount.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/swapops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
23 
24 #include <asm/elf.h>
25 #include <asm/tlb.h>
26 #include <asm/tlbflush.h>
27 #include "internal.h"
28 
29 #define SEQ_PUT_DEC(str, val) \
30 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
31 void task_mem(struct seq_file *m, struct mm_struct *mm)
32 {
33 	unsigned long text, lib, swap, anon, file, shmem;
34 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
35 
36 	anon = get_mm_counter(mm, MM_ANONPAGES);
37 	file = get_mm_counter(mm, MM_FILEPAGES);
38 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
39 
40 	/*
41 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
42 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
43 	 * collector of these hiwater stats must therefore get total_vm
44 	 * and rss too, which will usually be the higher.  Barriers? not
45 	 * worth the effort, such snapshots can always be inconsistent.
46 	 */
47 	hiwater_vm = total_vm = mm->total_vm;
48 	if (hiwater_vm < mm->hiwater_vm)
49 		hiwater_vm = mm->hiwater_vm;
50 	hiwater_rss = total_rss = anon + file + shmem;
51 	if (hiwater_rss < mm->hiwater_rss)
52 		hiwater_rss = mm->hiwater_rss;
53 
54 	/* split executable areas between text and lib */
55 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
56 	text = min(text, mm->exec_vm << PAGE_SHIFT);
57 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
58 
59 	swap = get_mm_counter(mm, MM_SWAPENTS);
60 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
61 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
62 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
63 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
64 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
65 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
66 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
67 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
68 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
69 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
70 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
71 	seq_put_decimal_ull_width(m,
72 		    " kB\nVmExe:\t", text >> 10, 8);
73 	seq_put_decimal_ull_width(m,
74 		    " kB\nVmLib:\t", lib >> 10, 8);
75 	seq_put_decimal_ull_width(m,
76 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
77 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
78 	seq_puts(m, " kB\n");
79 	hugetlb_report_usage(m, mm);
80 }
81 #undef SEQ_PUT_DEC
82 
83 unsigned long task_vsize(struct mm_struct *mm)
84 {
85 	return PAGE_SIZE * mm->total_vm;
86 }
87 
88 unsigned long task_statm(struct mm_struct *mm,
89 			 unsigned long *shared, unsigned long *text,
90 			 unsigned long *data, unsigned long *resident)
91 {
92 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
93 			get_mm_counter(mm, MM_SHMEMPAGES);
94 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
95 								>> PAGE_SHIFT;
96 	*data = mm->data_vm + mm->stack_vm;
97 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
98 	return mm->total_vm;
99 }
100 
101 #ifdef CONFIG_NUMA
102 /*
103  * Save get_task_policy() for show_numa_map().
104  */
105 static void hold_task_mempolicy(struct proc_maps_private *priv)
106 {
107 	struct task_struct *task = priv->task;
108 
109 	task_lock(task);
110 	priv->task_mempolicy = get_task_policy(task);
111 	mpol_get(priv->task_mempolicy);
112 	task_unlock(task);
113 }
114 static void release_task_mempolicy(struct proc_maps_private *priv)
115 {
116 	mpol_put(priv->task_mempolicy);
117 }
118 #else
119 static void hold_task_mempolicy(struct proc_maps_private *priv)
120 {
121 }
122 static void release_task_mempolicy(struct proc_maps_private *priv)
123 {
124 }
125 #endif
126 
127 static void *m_start(struct seq_file *m, loff_t *ppos)
128 {
129 	struct proc_maps_private *priv = m->private;
130 	unsigned long last_addr = *ppos;
131 	struct mm_struct *mm;
132 	struct vm_area_struct *vma;
133 
134 	/* See m_next(). Zero at the start or after lseek. */
135 	if (last_addr == -1UL)
136 		return NULL;
137 
138 	priv->task = get_proc_task(priv->inode);
139 	if (!priv->task)
140 		return ERR_PTR(-ESRCH);
141 
142 	mm = priv->mm;
143 	if (!mm || !mmget_not_zero(mm)) {
144 		put_task_struct(priv->task);
145 		priv->task = NULL;
146 		return NULL;
147 	}
148 
149 	if (mmap_read_lock_killable(mm)) {
150 		mmput(mm);
151 		put_task_struct(priv->task);
152 		priv->task = NULL;
153 		return ERR_PTR(-EINTR);
154 	}
155 
156 	hold_task_mempolicy(priv);
157 	priv->tail_vma = get_gate_vma(mm);
158 
159 	vma = find_vma(mm, last_addr);
160 	if (vma)
161 		return vma;
162 
163 	return priv->tail_vma;
164 }
165 
166 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
167 {
168 	struct proc_maps_private *priv = m->private;
169 	struct vm_area_struct *next, *vma = v;
170 
171 	if (vma == priv->tail_vma)
172 		next = NULL;
173 	else if (vma->vm_next)
174 		next = vma->vm_next;
175 	else
176 		next = priv->tail_vma;
177 
178 	*ppos = next ? next->vm_start : -1UL;
179 
180 	return next;
181 }
182 
183 static void m_stop(struct seq_file *m, void *v)
184 {
185 	struct proc_maps_private *priv = m->private;
186 	struct mm_struct *mm = priv->mm;
187 
188 	if (!priv->task)
189 		return;
190 
191 	release_task_mempolicy(priv);
192 	mmap_read_unlock(mm);
193 	mmput(mm);
194 	put_task_struct(priv->task);
195 	priv->task = NULL;
196 }
197 
198 static int proc_maps_open(struct inode *inode, struct file *file,
199 			const struct seq_operations *ops, int psize)
200 {
201 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
202 
203 	if (!priv)
204 		return -ENOMEM;
205 
206 	priv->inode = inode;
207 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
208 	if (IS_ERR(priv->mm)) {
209 		int err = PTR_ERR(priv->mm);
210 
211 		seq_release_private(inode, file);
212 		return err;
213 	}
214 
215 	return 0;
216 }
217 
218 static int proc_map_release(struct inode *inode, struct file *file)
219 {
220 	struct seq_file *seq = file->private_data;
221 	struct proc_maps_private *priv = seq->private;
222 
223 	if (priv->mm)
224 		mmdrop(priv->mm);
225 
226 	return seq_release_private(inode, file);
227 }
228 
229 static int do_maps_open(struct inode *inode, struct file *file,
230 			const struct seq_operations *ops)
231 {
232 	return proc_maps_open(inode, file, ops,
233 				sizeof(struct proc_maps_private));
234 }
235 
236 /*
237  * Indicate if the VMA is a stack for the given task; for
238  * /proc/PID/maps that is the stack of the main task.
239  */
240 static int is_stack(struct vm_area_struct *vma)
241 {
242 	/*
243 	 * We make no effort to guess what a given thread considers to be
244 	 * its "stack".  It's not even well-defined for programs written
245 	 * languages like Go.
246 	 */
247 	return vma->vm_start <= vma->vm_mm->start_stack &&
248 		vma->vm_end >= vma->vm_mm->start_stack;
249 }
250 
251 static void show_vma_header_prefix(struct seq_file *m,
252 				   unsigned long start, unsigned long end,
253 				   vm_flags_t flags, unsigned long long pgoff,
254 				   dev_t dev, unsigned long ino)
255 {
256 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
257 	seq_put_hex_ll(m, NULL, start, 8);
258 	seq_put_hex_ll(m, "-", end, 8);
259 	seq_putc(m, ' ');
260 	seq_putc(m, flags & VM_READ ? 'r' : '-');
261 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
262 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
263 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
264 	seq_put_hex_ll(m, " ", pgoff, 8);
265 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
266 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
267 	seq_put_decimal_ull(m, " ", ino);
268 	seq_putc(m, ' ');
269 }
270 
271 static void
272 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
273 {
274 	struct mm_struct *mm = vma->vm_mm;
275 	struct file *file = vma->vm_file;
276 	vm_flags_t flags = vma->vm_flags;
277 	unsigned long ino = 0;
278 	unsigned long long pgoff = 0;
279 	unsigned long start, end;
280 	dev_t dev = 0;
281 	const char *name = NULL;
282 
283 	if (file) {
284 		struct inode *inode = file_inode(vma->vm_file);
285 		dev = inode->i_sb->s_dev;
286 		ino = inode->i_ino;
287 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
288 	}
289 
290 	start = vma->vm_start;
291 	end = vma->vm_end;
292 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
293 
294 	/*
295 	 * Print the dentry name for named mappings, and a
296 	 * special [heap] marker for the heap:
297 	 */
298 	if (file) {
299 		seq_pad(m, ' ');
300 		seq_file_path(m, file, "\n");
301 		goto done;
302 	}
303 
304 	if (vma->vm_ops && vma->vm_ops->name) {
305 		name = vma->vm_ops->name(vma);
306 		if (name)
307 			goto done;
308 	}
309 
310 	name = arch_vma_name(vma);
311 	if (!name) {
312 		struct anon_vma_name *anon_name;
313 
314 		if (!mm) {
315 			name = "[vdso]";
316 			goto done;
317 		}
318 
319 		if (vma->vm_start <= mm->brk &&
320 		    vma->vm_end >= mm->start_brk) {
321 			name = "[heap]";
322 			goto done;
323 		}
324 
325 		if (is_stack(vma)) {
326 			name = "[stack]";
327 			goto done;
328 		}
329 
330 		anon_name = anon_vma_name(vma);
331 		if (anon_name) {
332 			seq_pad(m, ' ');
333 			seq_printf(m, "[anon:%s]", anon_name->name);
334 		}
335 	}
336 
337 done:
338 	if (name) {
339 		seq_pad(m, ' ');
340 		seq_puts(m, name);
341 	}
342 	seq_putc(m, '\n');
343 }
344 
345 static int show_map(struct seq_file *m, void *v)
346 {
347 	show_map_vma(m, v);
348 	return 0;
349 }
350 
351 static const struct seq_operations proc_pid_maps_op = {
352 	.start	= m_start,
353 	.next	= m_next,
354 	.stop	= m_stop,
355 	.show	= show_map
356 };
357 
358 static int pid_maps_open(struct inode *inode, struct file *file)
359 {
360 	return do_maps_open(inode, file, &proc_pid_maps_op);
361 }
362 
363 const struct file_operations proc_pid_maps_operations = {
364 	.open		= pid_maps_open,
365 	.read		= seq_read,
366 	.llseek		= seq_lseek,
367 	.release	= proc_map_release,
368 };
369 
370 /*
371  * Proportional Set Size(PSS): my share of RSS.
372  *
373  * PSS of a process is the count of pages it has in memory, where each
374  * page is divided by the number of processes sharing it.  So if a
375  * process has 1000 pages all to itself, and 1000 shared with one other
376  * process, its PSS will be 1500.
377  *
378  * To keep (accumulated) division errors low, we adopt a 64bit
379  * fixed-point pss counter to minimize division errors. So (pss >>
380  * PSS_SHIFT) would be the real byte count.
381  *
382  * A shift of 12 before division means (assuming 4K page size):
383  * 	- 1M 3-user-pages add up to 8KB errors;
384  * 	- supports mapcount up to 2^24, or 16M;
385  * 	- supports PSS up to 2^52 bytes, or 4PB.
386  */
387 #define PSS_SHIFT 12
388 
389 #ifdef CONFIG_PROC_PAGE_MONITOR
390 struct mem_size_stats {
391 	unsigned long resident;
392 	unsigned long shared_clean;
393 	unsigned long shared_dirty;
394 	unsigned long private_clean;
395 	unsigned long private_dirty;
396 	unsigned long referenced;
397 	unsigned long anonymous;
398 	unsigned long lazyfree;
399 	unsigned long anonymous_thp;
400 	unsigned long shmem_thp;
401 	unsigned long file_thp;
402 	unsigned long swap;
403 	unsigned long shared_hugetlb;
404 	unsigned long private_hugetlb;
405 	u64 pss;
406 	u64 pss_anon;
407 	u64 pss_file;
408 	u64 pss_shmem;
409 	u64 pss_dirty;
410 	u64 pss_locked;
411 	u64 swap_pss;
412 };
413 
414 static void smaps_page_accumulate(struct mem_size_stats *mss,
415 		struct page *page, unsigned long size, unsigned long pss,
416 		bool dirty, bool locked, bool private)
417 {
418 	mss->pss += pss;
419 
420 	if (PageAnon(page))
421 		mss->pss_anon += pss;
422 	else if (PageSwapBacked(page))
423 		mss->pss_shmem += pss;
424 	else
425 		mss->pss_file += pss;
426 
427 	if (locked)
428 		mss->pss_locked += pss;
429 
430 	if (dirty || PageDirty(page)) {
431 		mss->pss_dirty += pss;
432 		if (private)
433 			mss->private_dirty += size;
434 		else
435 			mss->shared_dirty += size;
436 	} else {
437 		if (private)
438 			mss->private_clean += size;
439 		else
440 			mss->shared_clean += size;
441 	}
442 }
443 
444 static void smaps_account(struct mem_size_stats *mss, struct page *page,
445 		bool compound, bool young, bool dirty, bool locked,
446 		bool migration)
447 {
448 	int i, nr = compound ? compound_nr(page) : 1;
449 	unsigned long size = nr * PAGE_SIZE;
450 
451 	/*
452 	 * First accumulate quantities that depend only on |size| and the type
453 	 * of the compound page.
454 	 */
455 	if (PageAnon(page)) {
456 		mss->anonymous += size;
457 		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
458 			mss->lazyfree += size;
459 	}
460 
461 	mss->resident += size;
462 	/* Accumulate the size in pages that have been accessed. */
463 	if (young || page_is_young(page) || PageReferenced(page))
464 		mss->referenced += size;
465 
466 	/*
467 	 * Then accumulate quantities that may depend on sharing, or that may
468 	 * differ page-by-page.
469 	 *
470 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
471 	 * If any subpage of the compound page mapped with PTE it would elevate
472 	 * page_count().
473 	 *
474 	 * The page_mapcount() is called to get a snapshot of the mapcount.
475 	 * Without holding the page lock this snapshot can be slightly wrong as
476 	 * we cannot always read the mapcount atomically.  It is not safe to
477 	 * call page_mapcount() even with PTL held if the page is not mapped,
478 	 * especially for migration entries.  Treat regular migration entries
479 	 * as mapcount == 1.
480 	 */
481 	if ((page_count(page) == 1) || migration) {
482 		smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
483 			locked, true);
484 		return;
485 	}
486 	for (i = 0; i < nr; i++, page++) {
487 		int mapcount = page_mapcount(page);
488 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
489 		if (mapcount >= 2)
490 			pss /= mapcount;
491 		smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
492 				      mapcount < 2);
493 	}
494 }
495 
496 #ifdef CONFIG_SHMEM
497 static int smaps_pte_hole(unsigned long addr, unsigned long end,
498 			  __always_unused int depth, struct mm_walk *walk)
499 {
500 	struct mem_size_stats *mss = walk->private;
501 	struct vm_area_struct *vma = walk->vma;
502 
503 	mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
504 					      linear_page_index(vma, addr),
505 					      linear_page_index(vma, end));
506 
507 	return 0;
508 }
509 #else
510 #define smaps_pte_hole		NULL
511 #endif /* CONFIG_SHMEM */
512 
513 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
514 {
515 #ifdef CONFIG_SHMEM
516 	if (walk->ops->pte_hole) {
517 		/* depth is not used */
518 		smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
519 	}
520 #endif
521 }
522 
523 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
524 		struct mm_walk *walk)
525 {
526 	struct mem_size_stats *mss = walk->private;
527 	struct vm_area_struct *vma = walk->vma;
528 	bool locked = !!(vma->vm_flags & VM_LOCKED);
529 	struct page *page = NULL;
530 	bool migration = false;
531 
532 	if (pte_present(*pte)) {
533 		page = vm_normal_page(vma, addr, *pte);
534 	} else if (is_swap_pte(*pte)) {
535 		swp_entry_t swpent = pte_to_swp_entry(*pte);
536 
537 		if (!non_swap_entry(swpent)) {
538 			int mapcount;
539 
540 			mss->swap += PAGE_SIZE;
541 			mapcount = swp_swapcount(swpent);
542 			if (mapcount >= 2) {
543 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
544 
545 				do_div(pss_delta, mapcount);
546 				mss->swap_pss += pss_delta;
547 			} else {
548 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
549 			}
550 		} else if (is_pfn_swap_entry(swpent)) {
551 			if (is_migration_entry(swpent))
552 				migration = true;
553 			page = pfn_swap_entry_to_page(swpent);
554 		}
555 	} else {
556 		smaps_pte_hole_lookup(addr, walk);
557 		return;
558 	}
559 
560 	if (!page)
561 		return;
562 
563 	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte),
564 		      locked, migration);
565 }
566 
567 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
568 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
569 		struct mm_walk *walk)
570 {
571 	struct mem_size_stats *mss = walk->private;
572 	struct vm_area_struct *vma = walk->vma;
573 	bool locked = !!(vma->vm_flags & VM_LOCKED);
574 	struct page *page = NULL;
575 	bool migration = false;
576 
577 	if (pmd_present(*pmd)) {
578 		/* FOLL_DUMP will return -EFAULT on huge zero page */
579 		page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
580 	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
581 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
582 
583 		if (is_migration_entry(entry)) {
584 			migration = true;
585 			page = pfn_swap_entry_to_page(entry);
586 		}
587 	}
588 	if (IS_ERR_OR_NULL(page))
589 		return;
590 	if (PageAnon(page))
591 		mss->anonymous_thp += HPAGE_PMD_SIZE;
592 	else if (PageSwapBacked(page))
593 		mss->shmem_thp += HPAGE_PMD_SIZE;
594 	else if (is_zone_device_page(page))
595 		/* pass */;
596 	else
597 		mss->file_thp += HPAGE_PMD_SIZE;
598 
599 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
600 		      locked, migration);
601 }
602 #else
603 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
604 		struct mm_walk *walk)
605 {
606 }
607 #endif
608 
609 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
610 			   struct mm_walk *walk)
611 {
612 	struct vm_area_struct *vma = walk->vma;
613 	pte_t *pte;
614 	spinlock_t *ptl;
615 
616 	ptl = pmd_trans_huge_lock(pmd, vma);
617 	if (ptl) {
618 		smaps_pmd_entry(pmd, addr, walk);
619 		spin_unlock(ptl);
620 		goto out;
621 	}
622 
623 	if (pmd_trans_unstable(pmd))
624 		goto out;
625 	/*
626 	 * The mmap_lock held all the way back in m_start() is what
627 	 * keeps khugepaged out of here and from collapsing things
628 	 * in here.
629 	 */
630 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
631 	for (; addr != end; pte++, addr += PAGE_SIZE)
632 		smaps_pte_entry(pte, addr, walk);
633 	pte_unmap_unlock(pte - 1, ptl);
634 out:
635 	cond_resched();
636 	return 0;
637 }
638 
639 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
640 {
641 	/*
642 	 * Don't forget to update Documentation/ on changes.
643 	 */
644 	static const char mnemonics[BITS_PER_LONG][2] = {
645 		/*
646 		 * In case if we meet a flag we don't know about.
647 		 */
648 		[0 ... (BITS_PER_LONG-1)] = "??",
649 
650 		[ilog2(VM_READ)]	= "rd",
651 		[ilog2(VM_WRITE)]	= "wr",
652 		[ilog2(VM_EXEC)]	= "ex",
653 		[ilog2(VM_SHARED)]	= "sh",
654 		[ilog2(VM_MAYREAD)]	= "mr",
655 		[ilog2(VM_MAYWRITE)]	= "mw",
656 		[ilog2(VM_MAYEXEC)]	= "me",
657 		[ilog2(VM_MAYSHARE)]	= "ms",
658 		[ilog2(VM_GROWSDOWN)]	= "gd",
659 		[ilog2(VM_PFNMAP)]	= "pf",
660 		[ilog2(VM_LOCKED)]	= "lo",
661 		[ilog2(VM_IO)]		= "io",
662 		[ilog2(VM_SEQ_READ)]	= "sr",
663 		[ilog2(VM_RAND_READ)]	= "rr",
664 		[ilog2(VM_DONTCOPY)]	= "dc",
665 		[ilog2(VM_DONTEXPAND)]	= "de",
666 		[ilog2(VM_ACCOUNT)]	= "ac",
667 		[ilog2(VM_NORESERVE)]	= "nr",
668 		[ilog2(VM_HUGETLB)]	= "ht",
669 		[ilog2(VM_SYNC)]	= "sf",
670 		[ilog2(VM_ARCH_1)]	= "ar",
671 		[ilog2(VM_WIPEONFORK)]	= "wf",
672 		[ilog2(VM_DONTDUMP)]	= "dd",
673 #ifdef CONFIG_ARM64_BTI
674 		[ilog2(VM_ARM64_BTI)]	= "bt",
675 #endif
676 #ifdef CONFIG_MEM_SOFT_DIRTY
677 		[ilog2(VM_SOFTDIRTY)]	= "sd",
678 #endif
679 		[ilog2(VM_MIXEDMAP)]	= "mm",
680 		[ilog2(VM_HUGEPAGE)]	= "hg",
681 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
682 		[ilog2(VM_MERGEABLE)]	= "mg",
683 		[ilog2(VM_UFFD_MISSING)]= "um",
684 		[ilog2(VM_UFFD_WP)]	= "uw",
685 #ifdef CONFIG_ARM64_MTE
686 		[ilog2(VM_MTE)]		= "mt",
687 		[ilog2(VM_MTE_ALLOWED)]	= "",
688 #endif
689 #ifdef CONFIG_ARCH_HAS_PKEYS
690 		/* These come out via ProtectionKey: */
691 		[ilog2(VM_PKEY_BIT0)]	= "",
692 		[ilog2(VM_PKEY_BIT1)]	= "",
693 		[ilog2(VM_PKEY_BIT2)]	= "",
694 		[ilog2(VM_PKEY_BIT3)]	= "",
695 #if VM_PKEY_BIT4
696 		[ilog2(VM_PKEY_BIT4)]	= "",
697 #endif
698 #endif /* CONFIG_ARCH_HAS_PKEYS */
699 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
700 		[ilog2(VM_UFFD_MINOR)]	= "ui",
701 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
702 	};
703 	size_t i;
704 
705 	seq_puts(m, "VmFlags: ");
706 	for (i = 0; i < BITS_PER_LONG; i++) {
707 		if (!mnemonics[i][0])
708 			continue;
709 		if (vma->vm_flags & (1UL << i)) {
710 			seq_putc(m, mnemonics[i][0]);
711 			seq_putc(m, mnemonics[i][1]);
712 			seq_putc(m, ' ');
713 		}
714 	}
715 	seq_putc(m, '\n');
716 }
717 
718 #ifdef CONFIG_HUGETLB_PAGE
719 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
720 				 unsigned long addr, unsigned long end,
721 				 struct mm_walk *walk)
722 {
723 	struct mem_size_stats *mss = walk->private;
724 	struct vm_area_struct *vma = walk->vma;
725 	struct page *page = NULL;
726 
727 	if (pte_present(*pte)) {
728 		page = vm_normal_page(vma, addr, *pte);
729 	} else if (is_swap_pte(*pte)) {
730 		swp_entry_t swpent = pte_to_swp_entry(*pte);
731 
732 		if (is_pfn_swap_entry(swpent))
733 			page = pfn_swap_entry_to_page(swpent);
734 	}
735 	if (page) {
736 		int mapcount = page_mapcount(page);
737 
738 		if (mapcount >= 2)
739 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
740 		else
741 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
742 	}
743 	return 0;
744 }
745 #else
746 #define smaps_hugetlb_range	NULL
747 #endif /* HUGETLB_PAGE */
748 
749 static const struct mm_walk_ops smaps_walk_ops = {
750 	.pmd_entry		= smaps_pte_range,
751 	.hugetlb_entry		= smaps_hugetlb_range,
752 };
753 
754 static const struct mm_walk_ops smaps_shmem_walk_ops = {
755 	.pmd_entry		= smaps_pte_range,
756 	.hugetlb_entry		= smaps_hugetlb_range,
757 	.pte_hole		= smaps_pte_hole,
758 };
759 
760 /*
761  * Gather mem stats from @vma with the indicated beginning
762  * address @start, and keep them in @mss.
763  *
764  * Use vm_start of @vma as the beginning address if @start is 0.
765  */
766 static void smap_gather_stats(struct vm_area_struct *vma,
767 		struct mem_size_stats *mss, unsigned long start)
768 {
769 	const struct mm_walk_ops *ops = &smaps_walk_ops;
770 
771 	/* Invalid start */
772 	if (start >= vma->vm_end)
773 		return;
774 
775 #ifdef CONFIG_SHMEM
776 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
777 		/*
778 		 * For shared or readonly shmem mappings we know that all
779 		 * swapped out pages belong to the shmem object, and we can
780 		 * obtain the swap value much more efficiently. For private
781 		 * writable mappings, we might have COW pages that are
782 		 * not affected by the parent swapped out pages of the shmem
783 		 * object, so we have to distinguish them during the page walk.
784 		 * Unless we know that the shmem object (or the part mapped by
785 		 * our VMA) has no swapped out pages at all.
786 		 */
787 		unsigned long shmem_swapped = shmem_swap_usage(vma);
788 
789 		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
790 					!(vma->vm_flags & VM_WRITE))) {
791 			mss->swap += shmem_swapped;
792 		} else {
793 			ops = &smaps_shmem_walk_ops;
794 		}
795 	}
796 #endif
797 	/* mmap_lock is held in m_start */
798 	if (!start)
799 		walk_page_vma(vma, ops, mss);
800 	else
801 		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
802 }
803 
804 #define SEQ_PUT_DEC(str, val) \
805 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
806 
807 /* Show the contents common for smaps and smaps_rollup */
808 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
809 	bool rollup_mode)
810 {
811 	SEQ_PUT_DEC("Rss:            ", mss->resident);
812 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
813 	SEQ_PUT_DEC(" kB\nPss_Dirty:      ", mss->pss_dirty >> PSS_SHIFT);
814 	if (rollup_mode) {
815 		/*
816 		 * These are meaningful only for smaps_rollup, otherwise two of
817 		 * them are zero, and the other one is the same as Pss.
818 		 */
819 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
820 			mss->pss_anon >> PSS_SHIFT);
821 		SEQ_PUT_DEC(" kB\nPss_File:       ",
822 			mss->pss_file >> PSS_SHIFT);
823 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
824 			mss->pss_shmem >> PSS_SHIFT);
825 	}
826 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
827 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
828 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
829 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
830 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
831 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
832 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
833 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
834 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
835 	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
836 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
837 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
838 				  mss->private_hugetlb >> 10, 7);
839 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
840 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
841 					mss->swap_pss >> PSS_SHIFT);
842 	SEQ_PUT_DEC(" kB\nLocked:         ",
843 					mss->pss_locked >> PSS_SHIFT);
844 	seq_puts(m, " kB\n");
845 }
846 
847 static int show_smap(struct seq_file *m, void *v)
848 {
849 	struct vm_area_struct *vma = v;
850 	struct mem_size_stats mss;
851 
852 	memset(&mss, 0, sizeof(mss));
853 
854 	smap_gather_stats(vma, &mss, 0);
855 
856 	show_map_vma(m, vma);
857 
858 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
859 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
860 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
861 	seq_puts(m, " kB\n");
862 
863 	__show_smap(m, &mss, false);
864 
865 	seq_printf(m, "THPeligible:    %d\n",
866 		   hugepage_vma_check(vma, vma->vm_flags, true, false));
867 
868 	if (arch_pkeys_enabled())
869 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
870 	show_smap_vma_flags(m, vma);
871 
872 	return 0;
873 }
874 
875 static int show_smaps_rollup(struct seq_file *m, void *v)
876 {
877 	struct proc_maps_private *priv = m->private;
878 	struct mem_size_stats mss;
879 	struct mm_struct *mm;
880 	struct vm_area_struct *vma;
881 	unsigned long last_vma_end = 0;
882 	int ret = 0;
883 
884 	priv->task = get_proc_task(priv->inode);
885 	if (!priv->task)
886 		return -ESRCH;
887 
888 	mm = priv->mm;
889 	if (!mm || !mmget_not_zero(mm)) {
890 		ret = -ESRCH;
891 		goto out_put_task;
892 	}
893 
894 	memset(&mss, 0, sizeof(mss));
895 
896 	ret = mmap_read_lock_killable(mm);
897 	if (ret)
898 		goto out_put_mm;
899 
900 	hold_task_mempolicy(priv);
901 
902 	for (vma = priv->mm->mmap; vma;) {
903 		smap_gather_stats(vma, &mss, 0);
904 		last_vma_end = vma->vm_end;
905 
906 		/*
907 		 * Release mmap_lock temporarily if someone wants to
908 		 * access it for write request.
909 		 */
910 		if (mmap_lock_is_contended(mm)) {
911 			mmap_read_unlock(mm);
912 			ret = mmap_read_lock_killable(mm);
913 			if (ret) {
914 				release_task_mempolicy(priv);
915 				goto out_put_mm;
916 			}
917 
918 			/*
919 			 * After dropping the lock, there are four cases to
920 			 * consider. See the following example for explanation.
921 			 *
922 			 *   +------+------+-----------+
923 			 *   | VMA1 | VMA2 | VMA3      |
924 			 *   +------+------+-----------+
925 			 *   |      |      |           |
926 			 *  4k     8k     16k         400k
927 			 *
928 			 * Suppose we drop the lock after reading VMA2 due to
929 			 * contention, then we get:
930 			 *
931 			 *	last_vma_end = 16k
932 			 *
933 			 * 1) VMA2 is freed, but VMA3 exists:
934 			 *
935 			 *    find_vma(mm, 16k - 1) will return VMA3.
936 			 *    In this case, just continue from VMA3.
937 			 *
938 			 * 2) VMA2 still exists:
939 			 *
940 			 *    find_vma(mm, 16k - 1) will return VMA2.
941 			 *    Iterate the loop like the original one.
942 			 *
943 			 * 3) No more VMAs can be found:
944 			 *
945 			 *    find_vma(mm, 16k - 1) will return NULL.
946 			 *    No more things to do, just break.
947 			 *
948 			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
949 			 *
950 			 *    find_vma(mm, 16k - 1) will return VMA' whose range
951 			 *    contains last_vma_end.
952 			 *    Iterate VMA' from last_vma_end.
953 			 */
954 			vma = find_vma(mm, last_vma_end - 1);
955 			/* Case 3 above */
956 			if (!vma)
957 				break;
958 
959 			/* Case 1 above */
960 			if (vma->vm_start >= last_vma_end)
961 				continue;
962 
963 			/* Case 4 above */
964 			if (vma->vm_end > last_vma_end)
965 				smap_gather_stats(vma, &mss, last_vma_end);
966 		}
967 		/* Case 2 above */
968 		vma = vma->vm_next;
969 	}
970 
971 	show_vma_header_prefix(m, priv->mm->mmap->vm_start,
972 			       last_vma_end, 0, 0, 0, 0);
973 	seq_pad(m, ' ');
974 	seq_puts(m, "[rollup]\n");
975 
976 	__show_smap(m, &mss, true);
977 
978 	release_task_mempolicy(priv);
979 	mmap_read_unlock(mm);
980 
981 out_put_mm:
982 	mmput(mm);
983 out_put_task:
984 	put_task_struct(priv->task);
985 	priv->task = NULL;
986 
987 	return ret;
988 }
989 #undef SEQ_PUT_DEC
990 
991 static const struct seq_operations proc_pid_smaps_op = {
992 	.start	= m_start,
993 	.next	= m_next,
994 	.stop	= m_stop,
995 	.show	= show_smap
996 };
997 
998 static int pid_smaps_open(struct inode *inode, struct file *file)
999 {
1000 	return do_maps_open(inode, file, &proc_pid_smaps_op);
1001 }
1002 
1003 static int smaps_rollup_open(struct inode *inode, struct file *file)
1004 {
1005 	int ret;
1006 	struct proc_maps_private *priv;
1007 
1008 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1009 	if (!priv)
1010 		return -ENOMEM;
1011 
1012 	ret = single_open(file, show_smaps_rollup, priv);
1013 	if (ret)
1014 		goto out_free;
1015 
1016 	priv->inode = inode;
1017 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1018 	if (IS_ERR(priv->mm)) {
1019 		ret = PTR_ERR(priv->mm);
1020 
1021 		single_release(inode, file);
1022 		goto out_free;
1023 	}
1024 
1025 	return 0;
1026 
1027 out_free:
1028 	kfree(priv);
1029 	return ret;
1030 }
1031 
1032 static int smaps_rollup_release(struct inode *inode, struct file *file)
1033 {
1034 	struct seq_file *seq = file->private_data;
1035 	struct proc_maps_private *priv = seq->private;
1036 
1037 	if (priv->mm)
1038 		mmdrop(priv->mm);
1039 
1040 	kfree(priv);
1041 	return single_release(inode, file);
1042 }
1043 
1044 const struct file_operations proc_pid_smaps_operations = {
1045 	.open		= pid_smaps_open,
1046 	.read		= seq_read,
1047 	.llseek		= seq_lseek,
1048 	.release	= proc_map_release,
1049 };
1050 
1051 const struct file_operations proc_pid_smaps_rollup_operations = {
1052 	.open		= smaps_rollup_open,
1053 	.read		= seq_read,
1054 	.llseek		= seq_lseek,
1055 	.release	= smaps_rollup_release,
1056 };
1057 
1058 enum clear_refs_types {
1059 	CLEAR_REFS_ALL = 1,
1060 	CLEAR_REFS_ANON,
1061 	CLEAR_REFS_MAPPED,
1062 	CLEAR_REFS_SOFT_DIRTY,
1063 	CLEAR_REFS_MM_HIWATER_RSS,
1064 	CLEAR_REFS_LAST,
1065 };
1066 
1067 struct clear_refs_private {
1068 	enum clear_refs_types type;
1069 };
1070 
1071 #ifdef CONFIG_MEM_SOFT_DIRTY
1072 
1073 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1074 {
1075 	struct page *page;
1076 
1077 	if (!pte_write(pte))
1078 		return false;
1079 	if (!is_cow_mapping(vma->vm_flags))
1080 		return false;
1081 	if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1082 		return false;
1083 	page = vm_normal_page(vma, addr, pte);
1084 	if (!page)
1085 		return false;
1086 	return page_maybe_dma_pinned(page);
1087 }
1088 
1089 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1090 		unsigned long addr, pte_t *pte)
1091 {
1092 	/*
1093 	 * The soft-dirty tracker uses #PF-s to catch writes
1094 	 * to pages, so write-protect the pte as well. See the
1095 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1096 	 * of how soft-dirty works.
1097 	 */
1098 	pte_t ptent = *pte;
1099 
1100 	if (pte_present(ptent)) {
1101 		pte_t old_pte;
1102 
1103 		if (pte_is_pinned(vma, addr, ptent))
1104 			return;
1105 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1106 		ptent = pte_wrprotect(old_pte);
1107 		ptent = pte_clear_soft_dirty(ptent);
1108 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1109 	} else if (is_swap_pte(ptent)) {
1110 		ptent = pte_swp_clear_soft_dirty(ptent);
1111 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1112 	}
1113 }
1114 #else
1115 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1116 		unsigned long addr, pte_t *pte)
1117 {
1118 }
1119 #endif
1120 
1121 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1122 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1123 		unsigned long addr, pmd_t *pmdp)
1124 {
1125 	pmd_t old, pmd = *pmdp;
1126 
1127 	if (pmd_present(pmd)) {
1128 		/* See comment in change_huge_pmd() */
1129 		old = pmdp_invalidate(vma, addr, pmdp);
1130 		if (pmd_dirty(old))
1131 			pmd = pmd_mkdirty(pmd);
1132 		if (pmd_young(old))
1133 			pmd = pmd_mkyoung(pmd);
1134 
1135 		pmd = pmd_wrprotect(pmd);
1136 		pmd = pmd_clear_soft_dirty(pmd);
1137 
1138 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1139 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1140 		pmd = pmd_swp_clear_soft_dirty(pmd);
1141 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1142 	}
1143 }
1144 #else
1145 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1146 		unsigned long addr, pmd_t *pmdp)
1147 {
1148 }
1149 #endif
1150 
1151 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1152 				unsigned long end, struct mm_walk *walk)
1153 {
1154 	struct clear_refs_private *cp = walk->private;
1155 	struct vm_area_struct *vma = walk->vma;
1156 	pte_t *pte, ptent;
1157 	spinlock_t *ptl;
1158 	struct page *page;
1159 
1160 	ptl = pmd_trans_huge_lock(pmd, vma);
1161 	if (ptl) {
1162 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1163 			clear_soft_dirty_pmd(vma, addr, pmd);
1164 			goto out;
1165 		}
1166 
1167 		if (!pmd_present(*pmd))
1168 			goto out;
1169 
1170 		page = pmd_page(*pmd);
1171 
1172 		/* Clear accessed and referenced bits. */
1173 		pmdp_test_and_clear_young(vma, addr, pmd);
1174 		test_and_clear_page_young(page);
1175 		ClearPageReferenced(page);
1176 out:
1177 		spin_unlock(ptl);
1178 		return 0;
1179 	}
1180 
1181 	if (pmd_trans_unstable(pmd))
1182 		return 0;
1183 
1184 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1185 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1186 		ptent = *pte;
1187 
1188 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1189 			clear_soft_dirty(vma, addr, pte);
1190 			continue;
1191 		}
1192 
1193 		if (!pte_present(ptent))
1194 			continue;
1195 
1196 		page = vm_normal_page(vma, addr, ptent);
1197 		if (!page)
1198 			continue;
1199 
1200 		/* Clear accessed and referenced bits. */
1201 		ptep_test_and_clear_young(vma, addr, pte);
1202 		test_and_clear_page_young(page);
1203 		ClearPageReferenced(page);
1204 	}
1205 	pte_unmap_unlock(pte - 1, ptl);
1206 	cond_resched();
1207 	return 0;
1208 }
1209 
1210 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1211 				struct mm_walk *walk)
1212 {
1213 	struct clear_refs_private *cp = walk->private;
1214 	struct vm_area_struct *vma = walk->vma;
1215 
1216 	if (vma->vm_flags & VM_PFNMAP)
1217 		return 1;
1218 
1219 	/*
1220 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1221 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1222 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1223 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1224 	 */
1225 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1226 		return 1;
1227 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1228 		return 1;
1229 	return 0;
1230 }
1231 
1232 static const struct mm_walk_ops clear_refs_walk_ops = {
1233 	.pmd_entry		= clear_refs_pte_range,
1234 	.test_walk		= clear_refs_test_walk,
1235 };
1236 
1237 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1238 				size_t count, loff_t *ppos)
1239 {
1240 	struct task_struct *task;
1241 	char buffer[PROC_NUMBUF];
1242 	struct mm_struct *mm;
1243 	struct vm_area_struct *vma;
1244 	enum clear_refs_types type;
1245 	int itype;
1246 	int rv;
1247 
1248 	memset(buffer, 0, sizeof(buffer));
1249 	if (count > sizeof(buffer) - 1)
1250 		count = sizeof(buffer) - 1;
1251 	if (copy_from_user(buffer, buf, count))
1252 		return -EFAULT;
1253 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1254 	if (rv < 0)
1255 		return rv;
1256 	type = (enum clear_refs_types)itype;
1257 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1258 		return -EINVAL;
1259 
1260 	task = get_proc_task(file_inode(file));
1261 	if (!task)
1262 		return -ESRCH;
1263 	mm = get_task_mm(task);
1264 	if (mm) {
1265 		struct mmu_notifier_range range;
1266 		struct clear_refs_private cp = {
1267 			.type = type,
1268 		};
1269 
1270 		if (mmap_write_lock_killable(mm)) {
1271 			count = -EINTR;
1272 			goto out_mm;
1273 		}
1274 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1275 			/*
1276 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1277 			 * resident set size to this mm's current rss value.
1278 			 */
1279 			reset_mm_hiwater_rss(mm);
1280 			goto out_unlock;
1281 		}
1282 
1283 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1284 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1285 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1286 					continue;
1287 				vma->vm_flags &= ~VM_SOFTDIRTY;
1288 				vma_set_page_prot(vma);
1289 			}
1290 
1291 			inc_tlb_flush_pending(mm);
1292 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1293 						0, NULL, mm, 0, -1UL);
1294 			mmu_notifier_invalidate_range_start(&range);
1295 		}
1296 		walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1297 				&cp);
1298 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1299 			mmu_notifier_invalidate_range_end(&range);
1300 			flush_tlb_mm(mm);
1301 			dec_tlb_flush_pending(mm);
1302 		}
1303 out_unlock:
1304 		mmap_write_unlock(mm);
1305 out_mm:
1306 		mmput(mm);
1307 	}
1308 	put_task_struct(task);
1309 
1310 	return count;
1311 }
1312 
1313 const struct file_operations proc_clear_refs_operations = {
1314 	.write		= clear_refs_write,
1315 	.llseek		= noop_llseek,
1316 };
1317 
1318 typedef struct {
1319 	u64 pme;
1320 } pagemap_entry_t;
1321 
1322 struct pagemapread {
1323 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1324 	pagemap_entry_t *buffer;
1325 	bool show_pfn;
1326 };
1327 
1328 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1329 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1330 
1331 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1332 #define PM_PFRAME_BITS		55
1333 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1334 #define PM_SOFT_DIRTY		BIT_ULL(55)
1335 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1336 #define PM_UFFD_WP		BIT_ULL(57)
1337 #define PM_FILE			BIT_ULL(61)
1338 #define PM_SWAP			BIT_ULL(62)
1339 #define PM_PRESENT		BIT_ULL(63)
1340 
1341 #define PM_END_OF_BUFFER    1
1342 
1343 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1344 {
1345 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1346 }
1347 
1348 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1349 			  struct pagemapread *pm)
1350 {
1351 	pm->buffer[pm->pos++] = *pme;
1352 	if (pm->pos >= pm->len)
1353 		return PM_END_OF_BUFFER;
1354 	return 0;
1355 }
1356 
1357 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1358 			    __always_unused int depth, struct mm_walk *walk)
1359 {
1360 	struct pagemapread *pm = walk->private;
1361 	unsigned long addr = start;
1362 	int err = 0;
1363 
1364 	while (addr < end) {
1365 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1366 		pagemap_entry_t pme = make_pme(0, 0);
1367 		/* End of address space hole, which we mark as non-present. */
1368 		unsigned long hole_end;
1369 
1370 		if (vma)
1371 			hole_end = min(end, vma->vm_start);
1372 		else
1373 			hole_end = end;
1374 
1375 		for (; addr < hole_end; addr += PAGE_SIZE) {
1376 			err = add_to_pagemap(addr, &pme, pm);
1377 			if (err)
1378 				goto out;
1379 		}
1380 
1381 		if (!vma)
1382 			break;
1383 
1384 		/* Addresses in the VMA. */
1385 		if (vma->vm_flags & VM_SOFTDIRTY)
1386 			pme = make_pme(0, PM_SOFT_DIRTY);
1387 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1388 			err = add_to_pagemap(addr, &pme, pm);
1389 			if (err)
1390 				goto out;
1391 		}
1392 	}
1393 out:
1394 	return err;
1395 }
1396 
1397 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1398 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1399 {
1400 	u64 frame = 0, flags = 0;
1401 	struct page *page = NULL;
1402 	bool migration = false;
1403 
1404 	if (pte_present(pte)) {
1405 		if (pm->show_pfn)
1406 			frame = pte_pfn(pte);
1407 		flags |= PM_PRESENT;
1408 		page = vm_normal_page(vma, addr, pte);
1409 		if (pte_soft_dirty(pte))
1410 			flags |= PM_SOFT_DIRTY;
1411 		if (pte_uffd_wp(pte))
1412 			flags |= PM_UFFD_WP;
1413 	} else if (is_swap_pte(pte)) {
1414 		swp_entry_t entry;
1415 		if (pte_swp_soft_dirty(pte))
1416 			flags |= PM_SOFT_DIRTY;
1417 		if (pte_swp_uffd_wp(pte))
1418 			flags |= PM_UFFD_WP;
1419 		entry = pte_to_swp_entry(pte);
1420 		if (pm->show_pfn)
1421 			frame = swp_type(entry) |
1422 				(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1423 		flags |= PM_SWAP;
1424 		migration = is_migration_entry(entry);
1425 		if (is_pfn_swap_entry(entry))
1426 			page = pfn_swap_entry_to_page(entry);
1427 		if (pte_marker_entry_uffd_wp(entry))
1428 			flags |= PM_UFFD_WP;
1429 	}
1430 
1431 	if (page && !PageAnon(page))
1432 		flags |= PM_FILE;
1433 	if (page && !migration && page_mapcount(page) == 1)
1434 		flags |= PM_MMAP_EXCLUSIVE;
1435 	if (vma->vm_flags & VM_SOFTDIRTY)
1436 		flags |= PM_SOFT_DIRTY;
1437 
1438 	return make_pme(frame, flags);
1439 }
1440 
1441 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1442 			     struct mm_walk *walk)
1443 {
1444 	struct vm_area_struct *vma = walk->vma;
1445 	struct pagemapread *pm = walk->private;
1446 	spinlock_t *ptl;
1447 	pte_t *pte, *orig_pte;
1448 	int err = 0;
1449 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1450 	bool migration = false;
1451 
1452 	ptl = pmd_trans_huge_lock(pmdp, vma);
1453 	if (ptl) {
1454 		u64 flags = 0, frame = 0;
1455 		pmd_t pmd = *pmdp;
1456 		struct page *page = NULL;
1457 
1458 		if (vma->vm_flags & VM_SOFTDIRTY)
1459 			flags |= PM_SOFT_DIRTY;
1460 
1461 		if (pmd_present(pmd)) {
1462 			page = pmd_page(pmd);
1463 
1464 			flags |= PM_PRESENT;
1465 			if (pmd_soft_dirty(pmd))
1466 				flags |= PM_SOFT_DIRTY;
1467 			if (pmd_uffd_wp(pmd))
1468 				flags |= PM_UFFD_WP;
1469 			if (pm->show_pfn)
1470 				frame = pmd_pfn(pmd) +
1471 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1472 		}
1473 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1474 		else if (is_swap_pmd(pmd)) {
1475 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1476 			unsigned long offset;
1477 
1478 			if (pm->show_pfn) {
1479 				offset = swp_offset(entry) +
1480 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1481 				frame = swp_type(entry) |
1482 					(offset << MAX_SWAPFILES_SHIFT);
1483 			}
1484 			flags |= PM_SWAP;
1485 			if (pmd_swp_soft_dirty(pmd))
1486 				flags |= PM_SOFT_DIRTY;
1487 			if (pmd_swp_uffd_wp(pmd))
1488 				flags |= PM_UFFD_WP;
1489 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1490 			migration = is_migration_entry(entry);
1491 			page = pfn_swap_entry_to_page(entry);
1492 		}
1493 #endif
1494 
1495 		if (page && !migration && page_mapcount(page) == 1)
1496 			flags |= PM_MMAP_EXCLUSIVE;
1497 
1498 		for (; addr != end; addr += PAGE_SIZE) {
1499 			pagemap_entry_t pme = make_pme(frame, flags);
1500 
1501 			err = add_to_pagemap(addr, &pme, pm);
1502 			if (err)
1503 				break;
1504 			if (pm->show_pfn) {
1505 				if (flags & PM_PRESENT)
1506 					frame++;
1507 				else if (flags & PM_SWAP)
1508 					frame += (1 << MAX_SWAPFILES_SHIFT);
1509 			}
1510 		}
1511 		spin_unlock(ptl);
1512 		return err;
1513 	}
1514 
1515 	if (pmd_trans_unstable(pmdp))
1516 		return 0;
1517 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1518 
1519 	/*
1520 	 * We can assume that @vma always points to a valid one and @end never
1521 	 * goes beyond vma->vm_end.
1522 	 */
1523 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1524 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1525 		pagemap_entry_t pme;
1526 
1527 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1528 		err = add_to_pagemap(addr, &pme, pm);
1529 		if (err)
1530 			break;
1531 	}
1532 	pte_unmap_unlock(orig_pte, ptl);
1533 
1534 	cond_resched();
1535 
1536 	return err;
1537 }
1538 
1539 #ifdef CONFIG_HUGETLB_PAGE
1540 /* This function walks within one hugetlb entry in the single call */
1541 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1542 				 unsigned long addr, unsigned long end,
1543 				 struct mm_walk *walk)
1544 {
1545 	struct pagemapread *pm = walk->private;
1546 	struct vm_area_struct *vma = walk->vma;
1547 	u64 flags = 0, frame = 0;
1548 	int err = 0;
1549 	pte_t pte;
1550 
1551 	if (vma->vm_flags & VM_SOFTDIRTY)
1552 		flags |= PM_SOFT_DIRTY;
1553 
1554 	pte = huge_ptep_get(ptep);
1555 	if (pte_present(pte)) {
1556 		struct page *page = pte_page(pte);
1557 
1558 		if (!PageAnon(page))
1559 			flags |= PM_FILE;
1560 
1561 		if (page_mapcount(page) == 1)
1562 			flags |= PM_MMAP_EXCLUSIVE;
1563 
1564 		if (huge_pte_uffd_wp(pte))
1565 			flags |= PM_UFFD_WP;
1566 
1567 		flags |= PM_PRESENT;
1568 		if (pm->show_pfn)
1569 			frame = pte_pfn(pte) +
1570 				((addr & ~hmask) >> PAGE_SHIFT);
1571 	} else if (pte_swp_uffd_wp_any(pte)) {
1572 		flags |= PM_UFFD_WP;
1573 	}
1574 
1575 	for (; addr != end; addr += PAGE_SIZE) {
1576 		pagemap_entry_t pme = make_pme(frame, flags);
1577 
1578 		err = add_to_pagemap(addr, &pme, pm);
1579 		if (err)
1580 			return err;
1581 		if (pm->show_pfn && (flags & PM_PRESENT))
1582 			frame++;
1583 	}
1584 
1585 	cond_resched();
1586 
1587 	return err;
1588 }
1589 #else
1590 #define pagemap_hugetlb_range	NULL
1591 #endif /* HUGETLB_PAGE */
1592 
1593 static const struct mm_walk_ops pagemap_ops = {
1594 	.pmd_entry	= pagemap_pmd_range,
1595 	.pte_hole	= pagemap_pte_hole,
1596 	.hugetlb_entry	= pagemap_hugetlb_range,
1597 };
1598 
1599 /*
1600  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1601  *
1602  * For each page in the address space, this file contains one 64-bit entry
1603  * consisting of the following:
1604  *
1605  * Bits 0-54  page frame number (PFN) if present
1606  * Bits 0-4   swap type if swapped
1607  * Bits 5-54  swap offset if swapped
1608  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1609  * Bit  56    page exclusively mapped
1610  * Bit  57    pte is uffd-wp write-protected
1611  * Bits 58-60 zero
1612  * Bit  61    page is file-page or shared-anon
1613  * Bit  62    page swapped
1614  * Bit  63    page present
1615  *
1616  * If the page is not present but in swap, then the PFN contains an
1617  * encoding of the swap file number and the page's offset into the
1618  * swap. Unmapped pages return a null PFN. This allows determining
1619  * precisely which pages are mapped (or in swap) and comparing mapped
1620  * pages between processes.
1621  *
1622  * Efficient users of this interface will use /proc/pid/maps to
1623  * determine which areas of memory are actually mapped and llseek to
1624  * skip over unmapped regions.
1625  */
1626 static ssize_t pagemap_read(struct file *file, char __user *buf,
1627 			    size_t count, loff_t *ppos)
1628 {
1629 	struct mm_struct *mm = file->private_data;
1630 	struct pagemapread pm;
1631 	unsigned long src;
1632 	unsigned long svpfn;
1633 	unsigned long start_vaddr;
1634 	unsigned long end_vaddr;
1635 	int ret = 0, copied = 0;
1636 
1637 	if (!mm || !mmget_not_zero(mm))
1638 		goto out;
1639 
1640 	ret = -EINVAL;
1641 	/* file position must be aligned */
1642 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1643 		goto out_mm;
1644 
1645 	ret = 0;
1646 	if (!count)
1647 		goto out_mm;
1648 
1649 	/* do not disclose physical addresses: attack vector */
1650 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1651 
1652 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1653 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1654 	ret = -ENOMEM;
1655 	if (!pm.buffer)
1656 		goto out_mm;
1657 
1658 	src = *ppos;
1659 	svpfn = src / PM_ENTRY_BYTES;
1660 	end_vaddr = mm->task_size;
1661 
1662 	/* watch out for wraparound */
1663 	start_vaddr = end_vaddr;
1664 	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1665 		start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1666 
1667 	/* Ensure the address is inside the task */
1668 	if (start_vaddr > mm->task_size)
1669 		start_vaddr = end_vaddr;
1670 
1671 	/*
1672 	 * The odds are that this will stop walking way
1673 	 * before end_vaddr, because the length of the
1674 	 * user buffer is tracked in "pm", and the walk
1675 	 * will stop when we hit the end of the buffer.
1676 	 */
1677 	ret = 0;
1678 	while (count && (start_vaddr < end_vaddr)) {
1679 		int len;
1680 		unsigned long end;
1681 
1682 		pm.pos = 0;
1683 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1684 		/* overflow ? */
1685 		if (end < start_vaddr || end > end_vaddr)
1686 			end = end_vaddr;
1687 		ret = mmap_read_lock_killable(mm);
1688 		if (ret)
1689 			goto out_free;
1690 		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1691 		mmap_read_unlock(mm);
1692 		start_vaddr = end;
1693 
1694 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1695 		if (copy_to_user(buf, pm.buffer, len)) {
1696 			ret = -EFAULT;
1697 			goto out_free;
1698 		}
1699 		copied += len;
1700 		buf += len;
1701 		count -= len;
1702 	}
1703 	*ppos += copied;
1704 	if (!ret || ret == PM_END_OF_BUFFER)
1705 		ret = copied;
1706 
1707 out_free:
1708 	kfree(pm.buffer);
1709 out_mm:
1710 	mmput(mm);
1711 out:
1712 	return ret;
1713 }
1714 
1715 static int pagemap_open(struct inode *inode, struct file *file)
1716 {
1717 	struct mm_struct *mm;
1718 
1719 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1720 	if (IS_ERR(mm))
1721 		return PTR_ERR(mm);
1722 	file->private_data = mm;
1723 	return 0;
1724 }
1725 
1726 static int pagemap_release(struct inode *inode, struct file *file)
1727 {
1728 	struct mm_struct *mm = file->private_data;
1729 
1730 	if (mm)
1731 		mmdrop(mm);
1732 	return 0;
1733 }
1734 
1735 const struct file_operations proc_pagemap_operations = {
1736 	.llseek		= mem_lseek, /* borrow this */
1737 	.read		= pagemap_read,
1738 	.open		= pagemap_open,
1739 	.release	= pagemap_release,
1740 };
1741 #endif /* CONFIG_PROC_PAGE_MONITOR */
1742 
1743 #ifdef CONFIG_NUMA
1744 
1745 struct numa_maps {
1746 	unsigned long pages;
1747 	unsigned long anon;
1748 	unsigned long active;
1749 	unsigned long writeback;
1750 	unsigned long mapcount_max;
1751 	unsigned long dirty;
1752 	unsigned long swapcache;
1753 	unsigned long node[MAX_NUMNODES];
1754 };
1755 
1756 struct numa_maps_private {
1757 	struct proc_maps_private proc_maps;
1758 	struct numa_maps md;
1759 };
1760 
1761 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1762 			unsigned long nr_pages)
1763 {
1764 	int count = page_mapcount(page);
1765 
1766 	md->pages += nr_pages;
1767 	if (pte_dirty || PageDirty(page))
1768 		md->dirty += nr_pages;
1769 
1770 	if (PageSwapCache(page))
1771 		md->swapcache += nr_pages;
1772 
1773 	if (PageActive(page) || PageUnevictable(page))
1774 		md->active += nr_pages;
1775 
1776 	if (PageWriteback(page))
1777 		md->writeback += nr_pages;
1778 
1779 	if (PageAnon(page))
1780 		md->anon += nr_pages;
1781 
1782 	if (count > md->mapcount_max)
1783 		md->mapcount_max = count;
1784 
1785 	md->node[page_to_nid(page)] += nr_pages;
1786 }
1787 
1788 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1789 		unsigned long addr)
1790 {
1791 	struct page *page;
1792 	int nid;
1793 
1794 	if (!pte_present(pte))
1795 		return NULL;
1796 
1797 	page = vm_normal_page(vma, addr, pte);
1798 	if (!page || is_zone_device_page(page))
1799 		return NULL;
1800 
1801 	if (PageReserved(page))
1802 		return NULL;
1803 
1804 	nid = page_to_nid(page);
1805 	if (!node_isset(nid, node_states[N_MEMORY]))
1806 		return NULL;
1807 
1808 	return page;
1809 }
1810 
1811 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1812 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1813 					      struct vm_area_struct *vma,
1814 					      unsigned long addr)
1815 {
1816 	struct page *page;
1817 	int nid;
1818 
1819 	if (!pmd_present(pmd))
1820 		return NULL;
1821 
1822 	page = vm_normal_page_pmd(vma, addr, pmd);
1823 	if (!page)
1824 		return NULL;
1825 
1826 	if (PageReserved(page))
1827 		return NULL;
1828 
1829 	nid = page_to_nid(page);
1830 	if (!node_isset(nid, node_states[N_MEMORY]))
1831 		return NULL;
1832 
1833 	return page;
1834 }
1835 #endif
1836 
1837 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1838 		unsigned long end, struct mm_walk *walk)
1839 {
1840 	struct numa_maps *md = walk->private;
1841 	struct vm_area_struct *vma = walk->vma;
1842 	spinlock_t *ptl;
1843 	pte_t *orig_pte;
1844 	pte_t *pte;
1845 
1846 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1847 	ptl = pmd_trans_huge_lock(pmd, vma);
1848 	if (ptl) {
1849 		struct page *page;
1850 
1851 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1852 		if (page)
1853 			gather_stats(page, md, pmd_dirty(*pmd),
1854 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1855 		spin_unlock(ptl);
1856 		return 0;
1857 	}
1858 
1859 	if (pmd_trans_unstable(pmd))
1860 		return 0;
1861 #endif
1862 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1863 	do {
1864 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1865 		if (!page)
1866 			continue;
1867 		gather_stats(page, md, pte_dirty(*pte), 1);
1868 
1869 	} while (pte++, addr += PAGE_SIZE, addr != end);
1870 	pte_unmap_unlock(orig_pte, ptl);
1871 	cond_resched();
1872 	return 0;
1873 }
1874 #ifdef CONFIG_HUGETLB_PAGE
1875 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1876 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1877 {
1878 	pte_t huge_pte = huge_ptep_get(pte);
1879 	struct numa_maps *md;
1880 	struct page *page;
1881 
1882 	if (!pte_present(huge_pte))
1883 		return 0;
1884 
1885 	page = pte_page(huge_pte);
1886 
1887 	md = walk->private;
1888 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1889 	return 0;
1890 }
1891 
1892 #else
1893 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1894 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1895 {
1896 	return 0;
1897 }
1898 #endif
1899 
1900 static const struct mm_walk_ops show_numa_ops = {
1901 	.hugetlb_entry = gather_hugetlb_stats,
1902 	.pmd_entry = gather_pte_stats,
1903 };
1904 
1905 /*
1906  * Display pages allocated per node and memory policy via /proc.
1907  */
1908 static int show_numa_map(struct seq_file *m, void *v)
1909 {
1910 	struct numa_maps_private *numa_priv = m->private;
1911 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1912 	struct vm_area_struct *vma = v;
1913 	struct numa_maps *md = &numa_priv->md;
1914 	struct file *file = vma->vm_file;
1915 	struct mm_struct *mm = vma->vm_mm;
1916 	struct mempolicy *pol;
1917 	char buffer[64];
1918 	int nid;
1919 
1920 	if (!mm)
1921 		return 0;
1922 
1923 	/* Ensure we start with an empty set of numa_maps statistics. */
1924 	memset(md, 0, sizeof(*md));
1925 
1926 	pol = __get_vma_policy(vma, vma->vm_start);
1927 	if (pol) {
1928 		mpol_to_str(buffer, sizeof(buffer), pol);
1929 		mpol_cond_put(pol);
1930 	} else {
1931 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1932 	}
1933 
1934 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1935 
1936 	if (file) {
1937 		seq_puts(m, " file=");
1938 		seq_file_path(m, file, "\n\t= ");
1939 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1940 		seq_puts(m, " heap");
1941 	} else if (is_stack(vma)) {
1942 		seq_puts(m, " stack");
1943 	}
1944 
1945 	if (is_vm_hugetlb_page(vma))
1946 		seq_puts(m, " huge");
1947 
1948 	/* mmap_lock is held by m_start */
1949 	walk_page_vma(vma, &show_numa_ops, md);
1950 
1951 	if (!md->pages)
1952 		goto out;
1953 
1954 	if (md->anon)
1955 		seq_printf(m, " anon=%lu", md->anon);
1956 
1957 	if (md->dirty)
1958 		seq_printf(m, " dirty=%lu", md->dirty);
1959 
1960 	if (md->pages != md->anon && md->pages != md->dirty)
1961 		seq_printf(m, " mapped=%lu", md->pages);
1962 
1963 	if (md->mapcount_max > 1)
1964 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1965 
1966 	if (md->swapcache)
1967 		seq_printf(m, " swapcache=%lu", md->swapcache);
1968 
1969 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1970 		seq_printf(m, " active=%lu", md->active);
1971 
1972 	if (md->writeback)
1973 		seq_printf(m, " writeback=%lu", md->writeback);
1974 
1975 	for_each_node_state(nid, N_MEMORY)
1976 		if (md->node[nid])
1977 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1978 
1979 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1980 out:
1981 	seq_putc(m, '\n');
1982 	return 0;
1983 }
1984 
1985 static const struct seq_operations proc_pid_numa_maps_op = {
1986 	.start  = m_start,
1987 	.next   = m_next,
1988 	.stop   = m_stop,
1989 	.show   = show_numa_map,
1990 };
1991 
1992 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1993 {
1994 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1995 				sizeof(struct numa_maps_private));
1996 }
1997 
1998 const struct file_operations proc_pid_numa_maps_operations = {
1999 	.open		= pid_numa_maps_open,
2000 	.read		= seq_read,
2001 	.llseek		= seq_lseek,
2002 	.release	= proc_map_release,
2003 };
2004 
2005 #endif /* CONFIG_NUMA */
2006