xref: /openbmc/linux/fs/proc/task_mmu.c (revision 2f0754f2)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/mm_inline.h>
5 #include <linux/hugetlb.h>
6 #include <linux/huge_mm.h>
7 #include <linux/mount.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/swapops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
23 
24 #include <asm/elf.h>
25 #include <asm/tlb.h>
26 #include <asm/tlbflush.h>
27 #include "internal.h"
28 
29 #define SEQ_PUT_DEC(str, val) \
30 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
31 void task_mem(struct seq_file *m, struct mm_struct *mm)
32 {
33 	unsigned long text, lib, swap, anon, file, shmem;
34 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
35 
36 	anon = get_mm_counter(mm, MM_ANONPAGES);
37 	file = get_mm_counter(mm, MM_FILEPAGES);
38 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
39 
40 	/*
41 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
42 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
43 	 * collector of these hiwater stats must therefore get total_vm
44 	 * and rss too, which will usually be the higher.  Barriers? not
45 	 * worth the effort, such snapshots can always be inconsistent.
46 	 */
47 	hiwater_vm = total_vm = mm->total_vm;
48 	if (hiwater_vm < mm->hiwater_vm)
49 		hiwater_vm = mm->hiwater_vm;
50 	hiwater_rss = total_rss = anon + file + shmem;
51 	if (hiwater_rss < mm->hiwater_rss)
52 		hiwater_rss = mm->hiwater_rss;
53 
54 	/* split executable areas between text and lib */
55 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
56 	text = min(text, mm->exec_vm << PAGE_SHIFT);
57 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
58 
59 	swap = get_mm_counter(mm, MM_SWAPENTS);
60 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
61 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
62 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
63 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
64 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
65 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
66 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
67 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
68 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
69 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
70 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
71 	seq_put_decimal_ull_width(m,
72 		    " kB\nVmExe:\t", text >> 10, 8);
73 	seq_put_decimal_ull_width(m,
74 		    " kB\nVmLib:\t", lib >> 10, 8);
75 	seq_put_decimal_ull_width(m,
76 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
77 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
78 	seq_puts(m, " kB\n");
79 	hugetlb_report_usage(m, mm);
80 }
81 #undef SEQ_PUT_DEC
82 
83 unsigned long task_vsize(struct mm_struct *mm)
84 {
85 	return PAGE_SIZE * mm->total_vm;
86 }
87 
88 unsigned long task_statm(struct mm_struct *mm,
89 			 unsigned long *shared, unsigned long *text,
90 			 unsigned long *data, unsigned long *resident)
91 {
92 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
93 			get_mm_counter(mm, MM_SHMEMPAGES);
94 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
95 								>> PAGE_SHIFT;
96 	*data = mm->data_vm + mm->stack_vm;
97 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
98 	return mm->total_vm;
99 }
100 
101 #ifdef CONFIG_NUMA
102 /*
103  * Save get_task_policy() for show_numa_map().
104  */
105 static void hold_task_mempolicy(struct proc_maps_private *priv)
106 {
107 	struct task_struct *task = priv->task;
108 
109 	task_lock(task);
110 	priv->task_mempolicy = get_task_policy(task);
111 	mpol_get(priv->task_mempolicy);
112 	task_unlock(task);
113 }
114 static void release_task_mempolicy(struct proc_maps_private *priv)
115 {
116 	mpol_put(priv->task_mempolicy);
117 }
118 #else
119 static void hold_task_mempolicy(struct proc_maps_private *priv)
120 {
121 }
122 static void release_task_mempolicy(struct proc_maps_private *priv)
123 {
124 }
125 #endif
126 
127 static void *m_start(struct seq_file *m, loff_t *ppos)
128 {
129 	struct proc_maps_private *priv = m->private;
130 	unsigned long last_addr = *ppos;
131 	struct mm_struct *mm;
132 	struct vm_area_struct *vma;
133 
134 	/* See m_next(). Zero at the start or after lseek. */
135 	if (last_addr == -1UL)
136 		return NULL;
137 
138 	priv->task = get_proc_task(priv->inode);
139 	if (!priv->task)
140 		return ERR_PTR(-ESRCH);
141 
142 	mm = priv->mm;
143 	if (!mm || !mmget_not_zero(mm)) {
144 		put_task_struct(priv->task);
145 		priv->task = NULL;
146 		return NULL;
147 	}
148 
149 	if (mmap_read_lock_killable(mm)) {
150 		mmput(mm);
151 		put_task_struct(priv->task);
152 		priv->task = NULL;
153 		return ERR_PTR(-EINTR);
154 	}
155 
156 	hold_task_mempolicy(priv);
157 	priv->tail_vma = get_gate_vma(mm);
158 
159 	vma = find_vma(mm, last_addr);
160 	if (vma)
161 		return vma;
162 
163 	return priv->tail_vma;
164 }
165 
166 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
167 {
168 	struct proc_maps_private *priv = m->private;
169 	struct vm_area_struct *next, *vma = v;
170 
171 	if (vma == priv->tail_vma)
172 		next = NULL;
173 	else if (vma->vm_next)
174 		next = vma->vm_next;
175 	else
176 		next = priv->tail_vma;
177 
178 	*ppos = next ? next->vm_start : -1UL;
179 
180 	return next;
181 }
182 
183 static void m_stop(struct seq_file *m, void *v)
184 {
185 	struct proc_maps_private *priv = m->private;
186 	struct mm_struct *mm = priv->mm;
187 
188 	if (!priv->task)
189 		return;
190 
191 	release_task_mempolicy(priv);
192 	mmap_read_unlock(mm);
193 	mmput(mm);
194 	put_task_struct(priv->task);
195 	priv->task = NULL;
196 }
197 
198 static int proc_maps_open(struct inode *inode, struct file *file,
199 			const struct seq_operations *ops, int psize)
200 {
201 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
202 
203 	if (!priv)
204 		return -ENOMEM;
205 
206 	priv->inode = inode;
207 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
208 	if (IS_ERR(priv->mm)) {
209 		int err = PTR_ERR(priv->mm);
210 
211 		seq_release_private(inode, file);
212 		return err;
213 	}
214 
215 	return 0;
216 }
217 
218 static int proc_map_release(struct inode *inode, struct file *file)
219 {
220 	struct seq_file *seq = file->private_data;
221 	struct proc_maps_private *priv = seq->private;
222 
223 	if (priv->mm)
224 		mmdrop(priv->mm);
225 
226 	return seq_release_private(inode, file);
227 }
228 
229 static int do_maps_open(struct inode *inode, struct file *file,
230 			const struct seq_operations *ops)
231 {
232 	return proc_maps_open(inode, file, ops,
233 				sizeof(struct proc_maps_private));
234 }
235 
236 /*
237  * Indicate if the VMA is a stack for the given task; for
238  * /proc/PID/maps that is the stack of the main task.
239  */
240 static int is_stack(struct vm_area_struct *vma)
241 {
242 	/*
243 	 * We make no effort to guess what a given thread considers to be
244 	 * its "stack".  It's not even well-defined for programs written
245 	 * languages like Go.
246 	 */
247 	return vma->vm_start <= vma->vm_mm->start_stack &&
248 		vma->vm_end >= vma->vm_mm->start_stack;
249 }
250 
251 static void show_vma_header_prefix(struct seq_file *m,
252 				   unsigned long start, unsigned long end,
253 				   vm_flags_t flags, unsigned long long pgoff,
254 				   dev_t dev, unsigned long ino)
255 {
256 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
257 	seq_put_hex_ll(m, NULL, start, 8);
258 	seq_put_hex_ll(m, "-", end, 8);
259 	seq_putc(m, ' ');
260 	seq_putc(m, flags & VM_READ ? 'r' : '-');
261 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
262 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
263 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
264 	seq_put_hex_ll(m, " ", pgoff, 8);
265 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
266 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
267 	seq_put_decimal_ull(m, " ", ino);
268 	seq_putc(m, ' ');
269 }
270 
271 static void
272 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
273 {
274 	struct mm_struct *mm = vma->vm_mm;
275 	struct file *file = vma->vm_file;
276 	vm_flags_t flags = vma->vm_flags;
277 	unsigned long ino = 0;
278 	unsigned long long pgoff = 0;
279 	unsigned long start, end;
280 	dev_t dev = 0;
281 	const char *name = NULL;
282 
283 	if (file) {
284 		struct inode *inode = file_inode(vma->vm_file);
285 		dev = inode->i_sb->s_dev;
286 		ino = inode->i_ino;
287 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
288 	}
289 
290 	start = vma->vm_start;
291 	end = vma->vm_end;
292 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
293 
294 	/*
295 	 * Print the dentry name for named mappings, and a
296 	 * special [heap] marker for the heap:
297 	 */
298 	if (file) {
299 		seq_pad(m, ' ');
300 		seq_file_path(m, file, "\n");
301 		goto done;
302 	}
303 
304 	if (vma->vm_ops && vma->vm_ops->name) {
305 		name = vma->vm_ops->name(vma);
306 		if (name)
307 			goto done;
308 	}
309 
310 	name = arch_vma_name(vma);
311 	if (!name) {
312 		const char *anon_name;
313 
314 		if (!mm) {
315 			name = "[vdso]";
316 			goto done;
317 		}
318 
319 		if (vma->vm_start <= mm->brk &&
320 		    vma->vm_end >= mm->start_brk) {
321 			name = "[heap]";
322 			goto done;
323 		}
324 
325 		if (is_stack(vma)) {
326 			name = "[stack]";
327 			goto done;
328 		}
329 
330 		anon_name = vma_anon_name(vma);
331 		if (anon_name) {
332 			seq_pad(m, ' ');
333 			seq_printf(m, "[anon:%s]", anon_name);
334 		}
335 	}
336 
337 done:
338 	if (name) {
339 		seq_pad(m, ' ');
340 		seq_puts(m, name);
341 	}
342 	seq_putc(m, '\n');
343 }
344 
345 static int show_map(struct seq_file *m, void *v)
346 {
347 	show_map_vma(m, v);
348 	return 0;
349 }
350 
351 static const struct seq_operations proc_pid_maps_op = {
352 	.start	= m_start,
353 	.next	= m_next,
354 	.stop	= m_stop,
355 	.show	= show_map
356 };
357 
358 static int pid_maps_open(struct inode *inode, struct file *file)
359 {
360 	return do_maps_open(inode, file, &proc_pid_maps_op);
361 }
362 
363 const struct file_operations proc_pid_maps_operations = {
364 	.open		= pid_maps_open,
365 	.read		= seq_read,
366 	.llseek		= seq_lseek,
367 	.release	= proc_map_release,
368 };
369 
370 /*
371  * Proportional Set Size(PSS): my share of RSS.
372  *
373  * PSS of a process is the count of pages it has in memory, where each
374  * page is divided by the number of processes sharing it.  So if a
375  * process has 1000 pages all to itself, and 1000 shared with one other
376  * process, its PSS will be 1500.
377  *
378  * To keep (accumulated) division errors low, we adopt a 64bit
379  * fixed-point pss counter to minimize division errors. So (pss >>
380  * PSS_SHIFT) would be the real byte count.
381  *
382  * A shift of 12 before division means (assuming 4K page size):
383  * 	- 1M 3-user-pages add up to 8KB errors;
384  * 	- supports mapcount up to 2^24, or 16M;
385  * 	- supports PSS up to 2^52 bytes, or 4PB.
386  */
387 #define PSS_SHIFT 12
388 
389 #ifdef CONFIG_PROC_PAGE_MONITOR
390 struct mem_size_stats {
391 	unsigned long resident;
392 	unsigned long shared_clean;
393 	unsigned long shared_dirty;
394 	unsigned long private_clean;
395 	unsigned long private_dirty;
396 	unsigned long referenced;
397 	unsigned long anonymous;
398 	unsigned long lazyfree;
399 	unsigned long anonymous_thp;
400 	unsigned long shmem_thp;
401 	unsigned long file_thp;
402 	unsigned long swap;
403 	unsigned long shared_hugetlb;
404 	unsigned long private_hugetlb;
405 	u64 pss;
406 	u64 pss_anon;
407 	u64 pss_file;
408 	u64 pss_shmem;
409 	u64 pss_locked;
410 	u64 swap_pss;
411 };
412 
413 static void smaps_page_accumulate(struct mem_size_stats *mss,
414 		struct page *page, unsigned long size, unsigned long pss,
415 		bool dirty, bool locked, bool private)
416 {
417 	mss->pss += pss;
418 
419 	if (PageAnon(page))
420 		mss->pss_anon += pss;
421 	else if (PageSwapBacked(page))
422 		mss->pss_shmem += pss;
423 	else
424 		mss->pss_file += pss;
425 
426 	if (locked)
427 		mss->pss_locked += pss;
428 
429 	if (dirty || PageDirty(page)) {
430 		if (private)
431 			mss->private_dirty += size;
432 		else
433 			mss->shared_dirty += size;
434 	} else {
435 		if (private)
436 			mss->private_clean += size;
437 		else
438 			mss->shared_clean += size;
439 	}
440 }
441 
442 static void smaps_account(struct mem_size_stats *mss, struct page *page,
443 		bool compound, bool young, bool dirty, bool locked)
444 {
445 	int i, nr = compound ? compound_nr(page) : 1;
446 	unsigned long size = nr * PAGE_SIZE;
447 
448 	/*
449 	 * First accumulate quantities that depend only on |size| and the type
450 	 * of the compound page.
451 	 */
452 	if (PageAnon(page)) {
453 		mss->anonymous += size;
454 		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
455 			mss->lazyfree += size;
456 	}
457 
458 	mss->resident += size;
459 	/* Accumulate the size in pages that have been accessed. */
460 	if (young || page_is_young(page) || PageReferenced(page))
461 		mss->referenced += size;
462 
463 	/*
464 	 * Then accumulate quantities that may depend on sharing, or that may
465 	 * differ page-by-page.
466 	 *
467 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
468 	 * If any subpage of the compound page mapped with PTE it would elevate
469 	 * page_count().
470 	 */
471 	if (page_count(page) == 1) {
472 		smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
473 			locked, true);
474 		return;
475 	}
476 	for (i = 0; i < nr; i++, page++) {
477 		int mapcount = page_mapcount(page);
478 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
479 		if (mapcount >= 2)
480 			pss /= mapcount;
481 		smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
482 				      mapcount < 2);
483 	}
484 }
485 
486 #ifdef CONFIG_SHMEM
487 static int smaps_pte_hole(unsigned long addr, unsigned long end,
488 			  __always_unused int depth, struct mm_walk *walk)
489 {
490 	struct mem_size_stats *mss = walk->private;
491 	struct vm_area_struct *vma = walk->vma;
492 
493 	mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
494 					      linear_page_index(vma, addr),
495 					      linear_page_index(vma, end));
496 
497 	return 0;
498 }
499 #else
500 #define smaps_pte_hole		NULL
501 #endif /* CONFIG_SHMEM */
502 
503 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
504 {
505 #ifdef CONFIG_SHMEM
506 	if (walk->ops->pte_hole) {
507 		/* depth is not used */
508 		smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
509 	}
510 #endif
511 }
512 
513 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
514 		struct mm_walk *walk)
515 {
516 	struct mem_size_stats *mss = walk->private;
517 	struct vm_area_struct *vma = walk->vma;
518 	bool locked = !!(vma->vm_flags & VM_LOCKED);
519 	struct page *page = NULL;
520 
521 	if (pte_present(*pte)) {
522 		page = vm_normal_page(vma, addr, *pte);
523 	} else if (is_swap_pte(*pte)) {
524 		swp_entry_t swpent = pte_to_swp_entry(*pte);
525 
526 		if (!non_swap_entry(swpent)) {
527 			int mapcount;
528 
529 			mss->swap += PAGE_SIZE;
530 			mapcount = swp_swapcount(swpent);
531 			if (mapcount >= 2) {
532 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
533 
534 				do_div(pss_delta, mapcount);
535 				mss->swap_pss += pss_delta;
536 			} else {
537 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
538 			}
539 		} else if (is_pfn_swap_entry(swpent))
540 			page = pfn_swap_entry_to_page(swpent);
541 	} else {
542 		smaps_pte_hole_lookup(addr, walk);
543 		return;
544 	}
545 
546 	if (!page)
547 		return;
548 
549 	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
550 }
551 
552 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
553 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
554 		struct mm_walk *walk)
555 {
556 	struct mem_size_stats *mss = walk->private;
557 	struct vm_area_struct *vma = walk->vma;
558 	bool locked = !!(vma->vm_flags & VM_LOCKED);
559 	struct page *page = NULL;
560 
561 	if (pmd_present(*pmd)) {
562 		/* FOLL_DUMP will return -EFAULT on huge zero page */
563 		page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
564 	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
565 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
566 
567 		if (is_migration_entry(entry))
568 			page = pfn_swap_entry_to_page(entry);
569 	}
570 	if (IS_ERR_OR_NULL(page))
571 		return;
572 	if (PageAnon(page))
573 		mss->anonymous_thp += HPAGE_PMD_SIZE;
574 	else if (PageSwapBacked(page))
575 		mss->shmem_thp += HPAGE_PMD_SIZE;
576 	else if (is_zone_device_page(page))
577 		/* pass */;
578 	else
579 		mss->file_thp += HPAGE_PMD_SIZE;
580 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
581 }
582 #else
583 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
584 		struct mm_walk *walk)
585 {
586 }
587 #endif
588 
589 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
590 			   struct mm_walk *walk)
591 {
592 	struct vm_area_struct *vma = walk->vma;
593 	pte_t *pte;
594 	spinlock_t *ptl;
595 
596 	ptl = pmd_trans_huge_lock(pmd, vma);
597 	if (ptl) {
598 		smaps_pmd_entry(pmd, addr, walk);
599 		spin_unlock(ptl);
600 		goto out;
601 	}
602 
603 	if (pmd_trans_unstable(pmd))
604 		goto out;
605 	/*
606 	 * The mmap_lock held all the way back in m_start() is what
607 	 * keeps khugepaged out of here and from collapsing things
608 	 * in here.
609 	 */
610 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
611 	for (; addr != end; pte++, addr += PAGE_SIZE)
612 		smaps_pte_entry(pte, addr, walk);
613 	pte_unmap_unlock(pte - 1, ptl);
614 out:
615 	cond_resched();
616 	return 0;
617 }
618 
619 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
620 {
621 	/*
622 	 * Don't forget to update Documentation/ on changes.
623 	 */
624 	static const char mnemonics[BITS_PER_LONG][2] = {
625 		/*
626 		 * In case if we meet a flag we don't know about.
627 		 */
628 		[0 ... (BITS_PER_LONG-1)] = "??",
629 
630 		[ilog2(VM_READ)]	= "rd",
631 		[ilog2(VM_WRITE)]	= "wr",
632 		[ilog2(VM_EXEC)]	= "ex",
633 		[ilog2(VM_SHARED)]	= "sh",
634 		[ilog2(VM_MAYREAD)]	= "mr",
635 		[ilog2(VM_MAYWRITE)]	= "mw",
636 		[ilog2(VM_MAYEXEC)]	= "me",
637 		[ilog2(VM_MAYSHARE)]	= "ms",
638 		[ilog2(VM_GROWSDOWN)]	= "gd",
639 		[ilog2(VM_PFNMAP)]	= "pf",
640 		[ilog2(VM_LOCKED)]	= "lo",
641 		[ilog2(VM_IO)]		= "io",
642 		[ilog2(VM_SEQ_READ)]	= "sr",
643 		[ilog2(VM_RAND_READ)]	= "rr",
644 		[ilog2(VM_DONTCOPY)]	= "dc",
645 		[ilog2(VM_DONTEXPAND)]	= "de",
646 		[ilog2(VM_ACCOUNT)]	= "ac",
647 		[ilog2(VM_NORESERVE)]	= "nr",
648 		[ilog2(VM_HUGETLB)]	= "ht",
649 		[ilog2(VM_SYNC)]	= "sf",
650 		[ilog2(VM_ARCH_1)]	= "ar",
651 		[ilog2(VM_WIPEONFORK)]	= "wf",
652 		[ilog2(VM_DONTDUMP)]	= "dd",
653 #ifdef CONFIG_ARM64_BTI
654 		[ilog2(VM_ARM64_BTI)]	= "bt",
655 #endif
656 #ifdef CONFIG_MEM_SOFT_DIRTY
657 		[ilog2(VM_SOFTDIRTY)]	= "sd",
658 #endif
659 		[ilog2(VM_MIXEDMAP)]	= "mm",
660 		[ilog2(VM_HUGEPAGE)]	= "hg",
661 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
662 		[ilog2(VM_MERGEABLE)]	= "mg",
663 		[ilog2(VM_UFFD_MISSING)]= "um",
664 		[ilog2(VM_UFFD_WP)]	= "uw",
665 #ifdef CONFIG_ARM64_MTE
666 		[ilog2(VM_MTE)]		= "mt",
667 		[ilog2(VM_MTE_ALLOWED)]	= "",
668 #endif
669 #ifdef CONFIG_ARCH_HAS_PKEYS
670 		/* These come out via ProtectionKey: */
671 		[ilog2(VM_PKEY_BIT0)]	= "",
672 		[ilog2(VM_PKEY_BIT1)]	= "",
673 		[ilog2(VM_PKEY_BIT2)]	= "",
674 		[ilog2(VM_PKEY_BIT3)]	= "",
675 #if VM_PKEY_BIT4
676 		[ilog2(VM_PKEY_BIT4)]	= "",
677 #endif
678 #endif /* CONFIG_ARCH_HAS_PKEYS */
679 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
680 		[ilog2(VM_UFFD_MINOR)]	= "ui",
681 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
682 	};
683 	size_t i;
684 
685 	seq_puts(m, "VmFlags: ");
686 	for (i = 0; i < BITS_PER_LONG; i++) {
687 		if (!mnemonics[i][0])
688 			continue;
689 		if (vma->vm_flags & (1UL << i)) {
690 			seq_putc(m, mnemonics[i][0]);
691 			seq_putc(m, mnemonics[i][1]);
692 			seq_putc(m, ' ');
693 		}
694 	}
695 	seq_putc(m, '\n');
696 }
697 
698 #ifdef CONFIG_HUGETLB_PAGE
699 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
700 				 unsigned long addr, unsigned long end,
701 				 struct mm_walk *walk)
702 {
703 	struct mem_size_stats *mss = walk->private;
704 	struct vm_area_struct *vma = walk->vma;
705 	struct page *page = NULL;
706 
707 	if (pte_present(*pte)) {
708 		page = vm_normal_page(vma, addr, *pte);
709 	} else if (is_swap_pte(*pte)) {
710 		swp_entry_t swpent = pte_to_swp_entry(*pte);
711 
712 		if (is_pfn_swap_entry(swpent))
713 			page = pfn_swap_entry_to_page(swpent);
714 	}
715 	if (page) {
716 		int mapcount = page_mapcount(page);
717 
718 		if (mapcount >= 2)
719 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
720 		else
721 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
722 	}
723 	return 0;
724 }
725 #else
726 #define smaps_hugetlb_range	NULL
727 #endif /* HUGETLB_PAGE */
728 
729 static const struct mm_walk_ops smaps_walk_ops = {
730 	.pmd_entry		= smaps_pte_range,
731 	.hugetlb_entry		= smaps_hugetlb_range,
732 };
733 
734 static const struct mm_walk_ops smaps_shmem_walk_ops = {
735 	.pmd_entry		= smaps_pte_range,
736 	.hugetlb_entry		= smaps_hugetlb_range,
737 	.pte_hole		= smaps_pte_hole,
738 };
739 
740 /*
741  * Gather mem stats from @vma with the indicated beginning
742  * address @start, and keep them in @mss.
743  *
744  * Use vm_start of @vma as the beginning address if @start is 0.
745  */
746 static void smap_gather_stats(struct vm_area_struct *vma,
747 		struct mem_size_stats *mss, unsigned long start)
748 {
749 	const struct mm_walk_ops *ops = &smaps_walk_ops;
750 
751 	/* Invalid start */
752 	if (start >= vma->vm_end)
753 		return;
754 
755 #ifdef CONFIG_SHMEM
756 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
757 		/*
758 		 * For shared or readonly shmem mappings we know that all
759 		 * swapped out pages belong to the shmem object, and we can
760 		 * obtain the swap value much more efficiently. For private
761 		 * writable mappings, we might have COW pages that are
762 		 * not affected by the parent swapped out pages of the shmem
763 		 * object, so we have to distinguish them during the page walk.
764 		 * Unless we know that the shmem object (or the part mapped by
765 		 * our VMA) has no swapped out pages at all.
766 		 */
767 		unsigned long shmem_swapped = shmem_swap_usage(vma);
768 
769 		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
770 					!(vma->vm_flags & VM_WRITE))) {
771 			mss->swap += shmem_swapped;
772 		} else {
773 			ops = &smaps_shmem_walk_ops;
774 		}
775 	}
776 #endif
777 	/* mmap_lock is held in m_start */
778 	if (!start)
779 		walk_page_vma(vma, ops, mss);
780 	else
781 		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
782 }
783 
784 #define SEQ_PUT_DEC(str, val) \
785 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
786 
787 /* Show the contents common for smaps and smaps_rollup */
788 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
789 	bool rollup_mode)
790 {
791 	SEQ_PUT_DEC("Rss:            ", mss->resident);
792 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
793 	if (rollup_mode) {
794 		/*
795 		 * These are meaningful only for smaps_rollup, otherwise two of
796 		 * them are zero, and the other one is the same as Pss.
797 		 */
798 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
799 			mss->pss_anon >> PSS_SHIFT);
800 		SEQ_PUT_DEC(" kB\nPss_File:       ",
801 			mss->pss_file >> PSS_SHIFT);
802 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
803 			mss->pss_shmem >> PSS_SHIFT);
804 	}
805 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
806 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
807 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
808 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
809 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
810 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
811 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
812 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
813 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
814 	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
815 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
816 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
817 				  mss->private_hugetlb >> 10, 7);
818 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
819 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
820 					mss->swap_pss >> PSS_SHIFT);
821 	SEQ_PUT_DEC(" kB\nLocked:         ",
822 					mss->pss_locked >> PSS_SHIFT);
823 	seq_puts(m, " kB\n");
824 }
825 
826 static int show_smap(struct seq_file *m, void *v)
827 {
828 	struct vm_area_struct *vma = v;
829 	struct mem_size_stats mss;
830 
831 	memset(&mss, 0, sizeof(mss));
832 
833 	smap_gather_stats(vma, &mss, 0);
834 
835 	show_map_vma(m, vma);
836 
837 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
838 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
839 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
840 	seq_puts(m, " kB\n");
841 
842 	__show_smap(m, &mss, false);
843 
844 	seq_printf(m, "THPeligible:    %d\n",
845 		   transparent_hugepage_active(vma));
846 
847 	if (arch_pkeys_enabled())
848 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
849 	show_smap_vma_flags(m, vma);
850 
851 	return 0;
852 }
853 
854 static int show_smaps_rollup(struct seq_file *m, void *v)
855 {
856 	struct proc_maps_private *priv = m->private;
857 	struct mem_size_stats mss;
858 	struct mm_struct *mm;
859 	struct vm_area_struct *vma;
860 	unsigned long last_vma_end = 0;
861 	int ret = 0;
862 
863 	priv->task = get_proc_task(priv->inode);
864 	if (!priv->task)
865 		return -ESRCH;
866 
867 	mm = priv->mm;
868 	if (!mm || !mmget_not_zero(mm)) {
869 		ret = -ESRCH;
870 		goto out_put_task;
871 	}
872 
873 	memset(&mss, 0, sizeof(mss));
874 
875 	ret = mmap_read_lock_killable(mm);
876 	if (ret)
877 		goto out_put_mm;
878 
879 	hold_task_mempolicy(priv);
880 
881 	for (vma = priv->mm->mmap; vma;) {
882 		smap_gather_stats(vma, &mss, 0);
883 		last_vma_end = vma->vm_end;
884 
885 		/*
886 		 * Release mmap_lock temporarily if someone wants to
887 		 * access it for write request.
888 		 */
889 		if (mmap_lock_is_contended(mm)) {
890 			mmap_read_unlock(mm);
891 			ret = mmap_read_lock_killable(mm);
892 			if (ret) {
893 				release_task_mempolicy(priv);
894 				goto out_put_mm;
895 			}
896 
897 			/*
898 			 * After dropping the lock, there are four cases to
899 			 * consider. See the following example for explanation.
900 			 *
901 			 *   +------+------+-----------+
902 			 *   | VMA1 | VMA2 | VMA3      |
903 			 *   +------+------+-----------+
904 			 *   |      |      |           |
905 			 *  4k     8k     16k         400k
906 			 *
907 			 * Suppose we drop the lock after reading VMA2 due to
908 			 * contention, then we get:
909 			 *
910 			 *	last_vma_end = 16k
911 			 *
912 			 * 1) VMA2 is freed, but VMA3 exists:
913 			 *
914 			 *    find_vma(mm, 16k - 1) will return VMA3.
915 			 *    In this case, just continue from VMA3.
916 			 *
917 			 * 2) VMA2 still exists:
918 			 *
919 			 *    find_vma(mm, 16k - 1) will return VMA2.
920 			 *    Iterate the loop like the original one.
921 			 *
922 			 * 3) No more VMAs can be found:
923 			 *
924 			 *    find_vma(mm, 16k - 1) will return NULL.
925 			 *    No more things to do, just break.
926 			 *
927 			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
928 			 *
929 			 *    find_vma(mm, 16k - 1) will return VMA' whose range
930 			 *    contains last_vma_end.
931 			 *    Iterate VMA' from last_vma_end.
932 			 */
933 			vma = find_vma(mm, last_vma_end - 1);
934 			/* Case 3 above */
935 			if (!vma)
936 				break;
937 
938 			/* Case 1 above */
939 			if (vma->vm_start >= last_vma_end)
940 				continue;
941 
942 			/* Case 4 above */
943 			if (vma->vm_end > last_vma_end)
944 				smap_gather_stats(vma, &mss, last_vma_end);
945 		}
946 		/* Case 2 above */
947 		vma = vma->vm_next;
948 	}
949 
950 	show_vma_header_prefix(m, priv->mm->mmap->vm_start,
951 			       last_vma_end, 0, 0, 0, 0);
952 	seq_pad(m, ' ');
953 	seq_puts(m, "[rollup]\n");
954 
955 	__show_smap(m, &mss, true);
956 
957 	release_task_mempolicy(priv);
958 	mmap_read_unlock(mm);
959 
960 out_put_mm:
961 	mmput(mm);
962 out_put_task:
963 	put_task_struct(priv->task);
964 	priv->task = NULL;
965 
966 	return ret;
967 }
968 #undef SEQ_PUT_DEC
969 
970 static const struct seq_operations proc_pid_smaps_op = {
971 	.start	= m_start,
972 	.next	= m_next,
973 	.stop	= m_stop,
974 	.show	= show_smap
975 };
976 
977 static int pid_smaps_open(struct inode *inode, struct file *file)
978 {
979 	return do_maps_open(inode, file, &proc_pid_smaps_op);
980 }
981 
982 static int smaps_rollup_open(struct inode *inode, struct file *file)
983 {
984 	int ret;
985 	struct proc_maps_private *priv;
986 
987 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
988 	if (!priv)
989 		return -ENOMEM;
990 
991 	ret = single_open(file, show_smaps_rollup, priv);
992 	if (ret)
993 		goto out_free;
994 
995 	priv->inode = inode;
996 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
997 	if (IS_ERR(priv->mm)) {
998 		ret = PTR_ERR(priv->mm);
999 
1000 		single_release(inode, file);
1001 		goto out_free;
1002 	}
1003 
1004 	return 0;
1005 
1006 out_free:
1007 	kfree(priv);
1008 	return ret;
1009 }
1010 
1011 static int smaps_rollup_release(struct inode *inode, struct file *file)
1012 {
1013 	struct seq_file *seq = file->private_data;
1014 	struct proc_maps_private *priv = seq->private;
1015 
1016 	if (priv->mm)
1017 		mmdrop(priv->mm);
1018 
1019 	kfree(priv);
1020 	return single_release(inode, file);
1021 }
1022 
1023 const struct file_operations proc_pid_smaps_operations = {
1024 	.open		= pid_smaps_open,
1025 	.read		= seq_read,
1026 	.llseek		= seq_lseek,
1027 	.release	= proc_map_release,
1028 };
1029 
1030 const struct file_operations proc_pid_smaps_rollup_operations = {
1031 	.open		= smaps_rollup_open,
1032 	.read		= seq_read,
1033 	.llseek		= seq_lseek,
1034 	.release	= smaps_rollup_release,
1035 };
1036 
1037 enum clear_refs_types {
1038 	CLEAR_REFS_ALL = 1,
1039 	CLEAR_REFS_ANON,
1040 	CLEAR_REFS_MAPPED,
1041 	CLEAR_REFS_SOFT_DIRTY,
1042 	CLEAR_REFS_MM_HIWATER_RSS,
1043 	CLEAR_REFS_LAST,
1044 };
1045 
1046 struct clear_refs_private {
1047 	enum clear_refs_types type;
1048 };
1049 
1050 #ifdef CONFIG_MEM_SOFT_DIRTY
1051 
1052 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1053 {
1054 	struct page *page;
1055 
1056 	if (!pte_write(pte))
1057 		return false;
1058 	if (!is_cow_mapping(vma->vm_flags))
1059 		return false;
1060 	if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1061 		return false;
1062 	page = vm_normal_page(vma, addr, pte);
1063 	if (!page)
1064 		return false;
1065 	return page_maybe_dma_pinned(page);
1066 }
1067 
1068 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1069 		unsigned long addr, pte_t *pte)
1070 {
1071 	/*
1072 	 * The soft-dirty tracker uses #PF-s to catch writes
1073 	 * to pages, so write-protect the pte as well. See the
1074 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1075 	 * of how soft-dirty works.
1076 	 */
1077 	pte_t ptent = *pte;
1078 
1079 	if (pte_present(ptent)) {
1080 		pte_t old_pte;
1081 
1082 		if (pte_is_pinned(vma, addr, ptent))
1083 			return;
1084 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1085 		ptent = pte_wrprotect(old_pte);
1086 		ptent = pte_clear_soft_dirty(ptent);
1087 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1088 	} else if (is_swap_pte(ptent)) {
1089 		ptent = pte_swp_clear_soft_dirty(ptent);
1090 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1091 	}
1092 }
1093 #else
1094 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1095 		unsigned long addr, pte_t *pte)
1096 {
1097 }
1098 #endif
1099 
1100 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1101 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1102 		unsigned long addr, pmd_t *pmdp)
1103 {
1104 	pmd_t old, pmd = *pmdp;
1105 
1106 	if (pmd_present(pmd)) {
1107 		/* See comment in change_huge_pmd() */
1108 		old = pmdp_invalidate(vma, addr, pmdp);
1109 		if (pmd_dirty(old))
1110 			pmd = pmd_mkdirty(pmd);
1111 		if (pmd_young(old))
1112 			pmd = pmd_mkyoung(pmd);
1113 
1114 		pmd = pmd_wrprotect(pmd);
1115 		pmd = pmd_clear_soft_dirty(pmd);
1116 
1117 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1118 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1119 		pmd = pmd_swp_clear_soft_dirty(pmd);
1120 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1121 	}
1122 }
1123 #else
1124 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1125 		unsigned long addr, pmd_t *pmdp)
1126 {
1127 }
1128 #endif
1129 
1130 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1131 				unsigned long end, struct mm_walk *walk)
1132 {
1133 	struct clear_refs_private *cp = walk->private;
1134 	struct vm_area_struct *vma = walk->vma;
1135 	pte_t *pte, ptent;
1136 	spinlock_t *ptl;
1137 	struct page *page;
1138 
1139 	ptl = pmd_trans_huge_lock(pmd, vma);
1140 	if (ptl) {
1141 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1142 			clear_soft_dirty_pmd(vma, addr, pmd);
1143 			goto out;
1144 		}
1145 
1146 		if (!pmd_present(*pmd))
1147 			goto out;
1148 
1149 		page = pmd_page(*pmd);
1150 
1151 		/* Clear accessed and referenced bits. */
1152 		pmdp_test_and_clear_young(vma, addr, pmd);
1153 		test_and_clear_page_young(page);
1154 		ClearPageReferenced(page);
1155 out:
1156 		spin_unlock(ptl);
1157 		return 0;
1158 	}
1159 
1160 	if (pmd_trans_unstable(pmd))
1161 		return 0;
1162 
1163 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1164 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1165 		ptent = *pte;
1166 
1167 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1168 			clear_soft_dirty(vma, addr, pte);
1169 			continue;
1170 		}
1171 
1172 		if (!pte_present(ptent))
1173 			continue;
1174 
1175 		page = vm_normal_page(vma, addr, ptent);
1176 		if (!page)
1177 			continue;
1178 
1179 		/* Clear accessed and referenced bits. */
1180 		ptep_test_and_clear_young(vma, addr, pte);
1181 		test_and_clear_page_young(page);
1182 		ClearPageReferenced(page);
1183 	}
1184 	pte_unmap_unlock(pte - 1, ptl);
1185 	cond_resched();
1186 	return 0;
1187 }
1188 
1189 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1190 				struct mm_walk *walk)
1191 {
1192 	struct clear_refs_private *cp = walk->private;
1193 	struct vm_area_struct *vma = walk->vma;
1194 
1195 	if (vma->vm_flags & VM_PFNMAP)
1196 		return 1;
1197 
1198 	/*
1199 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1200 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1201 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1202 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1203 	 */
1204 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1205 		return 1;
1206 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1207 		return 1;
1208 	return 0;
1209 }
1210 
1211 static const struct mm_walk_ops clear_refs_walk_ops = {
1212 	.pmd_entry		= clear_refs_pte_range,
1213 	.test_walk		= clear_refs_test_walk,
1214 };
1215 
1216 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1217 				size_t count, loff_t *ppos)
1218 {
1219 	struct task_struct *task;
1220 	char buffer[PROC_NUMBUF];
1221 	struct mm_struct *mm;
1222 	struct vm_area_struct *vma;
1223 	enum clear_refs_types type;
1224 	int itype;
1225 	int rv;
1226 
1227 	memset(buffer, 0, sizeof(buffer));
1228 	if (count > sizeof(buffer) - 1)
1229 		count = sizeof(buffer) - 1;
1230 	if (copy_from_user(buffer, buf, count))
1231 		return -EFAULT;
1232 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1233 	if (rv < 0)
1234 		return rv;
1235 	type = (enum clear_refs_types)itype;
1236 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1237 		return -EINVAL;
1238 
1239 	task = get_proc_task(file_inode(file));
1240 	if (!task)
1241 		return -ESRCH;
1242 	mm = get_task_mm(task);
1243 	if (mm) {
1244 		struct mmu_notifier_range range;
1245 		struct clear_refs_private cp = {
1246 			.type = type,
1247 		};
1248 
1249 		if (mmap_write_lock_killable(mm)) {
1250 			count = -EINTR;
1251 			goto out_mm;
1252 		}
1253 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1254 			/*
1255 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1256 			 * resident set size to this mm's current rss value.
1257 			 */
1258 			reset_mm_hiwater_rss(mm);
1259 			goto out_unlock;
1260 		}
1261 
1262 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1263 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1264 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1265 					continue;
1266 				vma->vm_flags &= ~VM_SOFTDIRTY;
1267 				vma_set_page_prot(vma);
1268 			}
1269 
1270 			inc_tlb_flush_pending(mm);
1271 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1272 						0, NULL, mm, 0, -1UL);
1273 			mmu_notifier_invalidate_range_start(&range);
1274 		}
1275 		walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1276 				&cp);
1277 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1278 			mmu_notifier_invalidate_range_end(&range);
1279 			flush_tlb_mm(mm);
1280 			dec_tlb_flush_pending(mm);
1281 		}
1282 out_unlock:
1283 		mmap_write_unlock(mm);
1284 out_mm:
1285 		mmput(mm);
1286 	}
1287 	put_task_struct(task);
1288 
1289 	return count;
1290 }
1291 
1292 const struct file_operations proc_clear_refs_operations = {
1293 	.write		= clear_refs_write,
1294 	.llseek		= noop_llseek,
1295 };
1296 
1297 typedef struct {
1298 	u64 pme;
1299 } pagemap_entry_t;
1300 
1301 struct pagemapread {
1302 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1303 	pagemap_entry_t *buffer;
1304 	bool show_pfn;
1305 };
1306 
1307 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1308 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1309 
1310 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1311 #define PM_PFRAME_BITS		55
1312 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1313 #define PM_SOFT_DIRTY		BIT_ULL(55)
1314 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1315 #define PM_UFFD_WP		BIT_ULL(57)
1316 #define PM_FILE			BIT_ULL(61)
1317 #define PM_SWAP			BIT_ULL(62)
1318 #define PM_PRESENT		BIT_ULL(63)
1319 
1320 #define PM_END_OF_BUFFER    1
1321 
1322 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1323 {
1324 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1325 }
1326 
1327 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1328 			  struct pagemapread *pm)
1329 {
1330 	pm->buffer[pm->pos++] = *pme;
1331 	if (pm->pos >= pm->len)
1332 		return PM_END_OF_BUFFER;
1333 	return 0;
1334 }
1335 
1336 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1337 			    __always_unused int depth, struct mm_walk *walk)
1338 {
1339 	struct pagemapread *pm = walk->private;
1340 	unsigned long addr = start;
1341 	int err = 0;
1342 
1343 	while (addr < end) {
1344 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1345 		pagemap_entry_t pme = make_pme(0, 0);
1346 		/* End of address space hole, which we mark as non-present. */
1347 		unsigned long hole_end;
1348 
1349 		if (vma)
1350 			hole_end = min(end, vma->vm_start);
1351 		else
1352 			hole_end = end;
1353 
1354 		for (; addr < hole_end; addr += PAGE_SIZE) {
1355 			err = add_to_pagemap(addr, &pme, pm);
1356 			if (err)
1357 				goto out;
1358 		}
1359 
1360 		if (!vma)
1361 			break;
1362 
1363 		/* Addresses in the VMA. */
1364 		if (vma->vm_flags & VM_SOFTDIRTY)
1365 			pme = make_pme(0, PM_SOFT_DIRTY);
1366 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1367 			err = add_to_pagemap(addr, &pme, pm);
1368 			if (err)
1369 				goto out;
1370 		}
1371 	}
1372 out:
1373 	return err;
1374 }
1375 
1376 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1377 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1378 {
1379 	u64 frame = 0, flags = 0;
1380 	struct page *page = NULL;
1381 
1382 	if (pte_present(pte)) {
1383 		if (pm->show_pfn)
1384 			frame = pte_pfn(pte);
1385 		flags |= PM_PRESENT;
1386 		page = vm_normal_page(vma, addr, pte);
1387 		if (pte_soft_dirty(pte))
1388 			flags |= PM_SOFT_DIRTY;
1389 		if (pte_uffd_wp(pte))
1390 			flags |= PM_UFFD_WP;
1391 	} else if (is_swap_pte(pte)) {
1392 		swp_entry_t entry;
1393 		if (pte_swp_soft_dirty(pte))
1394 			flags |= PM_SOFT_DIRTY;
1395 		if (pte_swp_uffd_wp(pte))
1396 			flags |= PM_UFFD_WP;
1397 		entry = pte_to_swp_entry(pte);
1398 		if (pm->show_pfn)
1399 			frame = swp_type(entry) |
1400 				(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1401 		flags |= PM_SWAP;
1402 		if (is_pfn_swap_entry(entry))
1403 			page = pfn_swap_entry_to_page(entry);
1404 	}
1405 
1406 	if (page && !PageAnon(page))
1407 		flags |= PM_FILE;
1408 	if (page && page_mapcount(page) == 1)
1409 		flags |= PM_MMAP_EXCLUSIVE;
1410 	if (vma->vm_flags & VM_SOFTDIRTY)
1411 		flags |= PM_SOFT_DIRTY;
1412 
1413 	return make_pme(frame, flags);
1414 }
1415 
1416 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1417 			     struct mm_walk *walk)
1418 {
1419 	struct vm_area_struct *vma = walk->vma;
1420 	struct pagemapread *pm = walk->private;
1421 	spinlock_t *ptl;
1422 	pte_t *pte, *orig_pte;
1423 	int err = 0;
1424 
1425 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1426 	ptl = pmd_trans_huge_lock(pmdp, vma);
1427 	if (ptl) {
1428 		u64 flags = 0, frame = 0;
1429 		pmd_t pmd = *pmdp;
1430 		struct page *page = NULL;
1431 
1432 		if (vma->vm_flags & VM_SOFTDIRTY)
1433 			flags |= PM_SOFT_DIRTY;
1434 
1435 		if (pmd_present(pmd)) {
1436 			page = pmd_page(pmd);
1437 
1438 			flags |= PM_PRESENT;
1439 			if (pmd_soft_dirty(pmd))
1440 				flags |= PM_SOFT_DIRTY;
1441 			if (pmd_uffd_wp(pmd))
1442 				flags |= PM_UFFD_WP;
1443 			if (pm->show_pfn)
1444 				frame = pmd_pfn(pmd) +
1445 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1446 		}
1447 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1448 		else if (is_swap_pmd(pmd)) {
1449 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1450 			unsigned long offset;
1451 
1452 			if (pm->show_pfn) {
1453 				offset = swp_offset(entry) +
1454 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1455 				frame = swp_type(entry) |
1456 					(offset << MAX_SWAPFILES_SHIFT);
1457 			}
1458 			flags |= PM_SWAP;
1459 			if (pmd_swp_soft_dirty(pmd))
1460 				flags |= PM_SOFT_DIRTY;
1461 			if (pmd_swp_uffd_wp(pmd))
1462 				flags |= PM_UFFD_WP;
1463 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1464 			page = pfn_swap_entry_to_page(entry);
1465 		}
1466 #endif
1467 
1468 		if (page && page_mapcount(page) == 1)
1469 			flags |= PM_MMAP_EXCLUSIVE;
1470 
1471 		for (; addr != end; addr += PAGE_SIZE) {
1472 			pagemap_entry_t pme = make_pme(frame, flags);
1473 
1474 			err = add_to_pagemap(addr, &pme, pm);
1475 			if (err)
1476 				break;
1477 			if (pm->show_pfn) {
1478 				if (flags & PM_PRESENT)
1479 					frame++;
1480 				else if (flags & PM_SWAP)
1481 					frame += (1 << MAX_SWAPFILES_SHIFT);
1482 			}
1483 		}
1484 		spin_unlock(ptl);
1485 		return err;
1486 	}
1487 
1488 	if (pmd_trans_unstable(pmdp))
1489 		return 0;
1490 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1491 
1492 	/*
1493 	 * We can assume that @vma always points to a valid one and @end never
1494 	 * goes beyond vma->vm_end.
1495 	 */
1496 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1497 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1498 		pagemap_entry_t pme;
1499 
1500 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1501 		err = add_to_pagemap(addr, &pme, pm);
1502 		if (err)
1503 			break;
1504 	}
1505 	pte_unmap_unlock(orig_pte, ptl);
1506 
1507 	cond_resched();
1508 
1509 	return err;
1510 }
1511 
1512 #ifdef CONFIG_HUGETLB_PAGE
1513 /* This function walks within one hugetlb entry in the single call */
1514 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1515 				 unsigned long addr, unsigned long end,
1516 				 struct mm_walk *walk)
1517 {
1518 	struct pagemapread *pm = walk->private;
1519 	struct vm_area_struct *vma = walk->vma;
1520 	u64 flags = 0, frame = 0;
1521 	int err = 0;
1522 	pte_t pte;
1523 
1524 	if (vma->vm_flags & VM_SOFTDIRTY)
1525 		flags |= PM_SOFT_DIRTY;
1526 
1527 	pte = huge_ptep_get(ptep);
1528 	if (pte_present(pte)) {
1529 		struct page *page = pte_page(pte);
1530 
1531 		if (!PageAnon(page))
1532 			flags |= PM_FILE;
1533 
1534 		if (page_mapcount(page) == 1)
1535 			flags |= PM_MMAP_EXCLUSIVE;
1536 
1537 		flags |= PM_PRESENT;
1538 		if (pm->show_pfn)
1539 			frame = pte_pfn(pte) +
1540 				((addr & ~hmask) >> PAGE_SHIFT);
1541 	}
1542 
1543 	for (; addr != end; addr += PAGE_SIZE) {
1544 		pagemap_entry_t pme = make_pme(frame, flags);
1545 
1546 		err = add_to_pagemap(addr, &pme, pm);
1547 		if (err)
1548 			return err;
1549 		if (pm->show_pfn && (flags & PM_PRESENT))
1550 			frame++;
1551 	}
1552 
1553 	cond_resched();
1554 
1555 	return err;
1556 }
1557 #else
1558 #define pagemap_hugetlb_range	NULL
1559 #endif /* HUGETLB_PAGE */
1560 
1561 static const struct mm_walk_ops pagemap_ops = {
1562 	.pmd_entry	= pagemap_pmd_range,
1563 	.pte_hole	= pagemap_pte_hole,
1564 	.hugetlb_entry	= pagemap_hugetlb_range,
1565 };
1566 
1567 /*
1568  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1569  *
1570  * For each page in the address space, this file contains one 64-bit entry
1571  * consisting of the following:
1572  *
1573  * Bits 0-54  page frame number (PFN) if present
1574  * Bits 0-4   swap type if swapped
1575  * Bits 5-54  swap offset if swapped
1576  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1577  * Bit  56    page exclusively mapped
1578  * Bits 57-60 zero
1579  * Bit  61    page is file-page or shared-anon
1580  * Bit  62    page swapped
1581  * Bit  63    page present
1582  *
1583  * If the page is not present but in swap, then the PFN contains an
1584  * encoding of the swap file number and the page's offset into the
1585  * swap. Unmapped pages return a null PFN. This allows determining
1586  * precisely which pages are mapped (or in swap) and comparing mapped
1587  * pages between processes.
1588  *
1589  * Efficient users of this interface will use /proc/pid/maps to
1590  * determine which areas of memory are actually mapped and llseek to
1591  * skip over unmapped regions.
1592  */
1593 static ssize_t pagemap_read(struct file *file, char __user *buf,
1594 			    size_t count, loff_t *ppos)
1595 {
1596 	struct mm_struct *mm = file->private_data;
1597 	struct pagemapread pm;
1598 	unsigned long src;
1599 	unsigned long svpfn;
1600 	unsigned long start_vaddr;
1601 	unsigned long end_vaddr;
1602 	int ret = 0, copied = 0;
1603 
1604 	if (!mm || !mmget_not_zero(mm))
1605 		goto out;
1606 
1607 	ret = -EINVAL;
1608 	/* file position must be aligned */
1609 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1610 		goto out_mm;
1611 
1612 	ret = 0;
1613 	if (!count)
1614 		goto out_mm;
1615 
1616 	/* do not disclose physical addresses: attack vector */
1617 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1618 
1619 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1620 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1621 	ret = -ENOMEM;
1622 	if (!pm.buffer)
1623 		goto out_mm;
1624 
1625 	src = *ppos;
1626 	svpfn = src / PM_ENTRY_BYTES;
1627 	end_vaddr = mm->task_size;
1628 
1629 	/* watch out for wraparound */
1630 	start_vaddr = end_vaddr;
1631 	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1632 		start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1633 
1634 	/* Ensure the address is inside the task */
1635 	if (start_vaddr > mm->task_size)
1636 		start_vaddr = end_vaddr;
1637 
1638 	/*
1639 	 * The odds are that this will stop walking way
1640 	 * before end_vaddr, because the length of the
1641 	 * user buffer is tracked in "pm", and the walk
1642 	 * will stop when we hit the end of the buffer.
1643 	 */
1644 	ret = 0;
1645 	while (count && (start_vaddr < end_vaddr)) {
1646 		int len;
1647 		unsigned long end;
1648 
1649 		pm.pos = 0;
1650 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1651 		/* overflow ? */
1652 		if (end < start_vaddr || end > end_vaddr)
1653 			end = end_vaddr;
1654 		ret = mmap_read_lock_killable(mm);
1655 		if (ret)
1656 			goto out_free;
1657 		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1658 		mmap_read_unlock(mm);
1659 		start_vaddr = end;
1660 
1661 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1662 		if (copy_to_user(buf, pm.buffer, len)) {
1663 			ret = -EFAULT;
1664 			goto out_free;
1665 		}
1666 		copied += len;
1667 		buf += len;
1668 		count -= len;
1669 	}
1670 	*ppos += copied;
1671 	if (!ret || ret == PM_END_OF_BUFFER)
1672 		ret = copied;
1673 
1674 out_free:
1675 	kfree(pm.buffer);
1676 out_mm:
1677 	mmput(mm);
1678 out:
1679 	return ret;
1680 }
1681 
1682 static int pagemap_open(struct inode *inode, struct file *file)
1683 {
1684 	struct mm_struct *mm;
1685 
1686 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1687 	if (IS_ERR(mm))
1688 		return PTR_ERR(mm);
1689 	file->private_data = mm;
1690 	return 0;
1691 }
1692 
1693 static int pagemap_release(struct inode *inode, struct file *file)
1694 {
1695 	struct mm_struct *mm = file->private_data;
1696 
1697 	if (mm)
1698 		mmdrop(mm);
1699 	return 0;
1700 }
1701 
1702 const struct file_operations proc_pagemap_operations = {
1703 	.llseek		= mem_lseek, /* borrow this */
1704 	.read		= pagemap_read,
1705 	.open		= pagemap_open,
1706 	.release	= pagemap_release,
1707 };
1708 #endif /* CONFIG_PROC_PAGE_MONITOR */
1709 
1710 #ifdef CONFIG_NUMA
1711 
1712 struct numa_maps {
1713 	unsigned long pages;
1714 	unsigned long anon;
1715 	unsigned long active;
1716 	unsigned long writeback;
1717 	unsigned long mapcount_max;
1718 	unsigned long dirty;
1719 	unsigned long swapcache;
1720 	unsigned long node[MAX_NUMNODES];
1721 };
1722 
1723 struct numa_maps_private {
1724 	struct proc_maps_private proc_maps;
1725 	struct numa_maps md;
1726 };
1727 
1728 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1729 			unsigned long nr_pages)
1730 {
1731 	int count = page_mapcount(page);
1732 
1733 	md->pages += nr_pages;
1734 	if (pte_dirty || PageDirty(page))
1735 		md->dirty += nr_pages;
1736 
1737 	if (PageSwapCache(page))
1738 		md->swapcache += nr_pages;
1739 
1740 	if (PageActive(page) || PageUnevictable(page))
1741 		md->active += nr_pages;
1742 
1743 	if (PageWriteback(page))
1744 		md->writeback += nr_pages;
1745 
1746 	if (PageAnon(page))
1747 		md->anon += nr_pages;
1748 
1749 	if (count > md->mapcount_max)
1750 		md->mapcount_max = count;
1751 
1752 	md->node[page_to_nid(page)] += nr_pages;
1753 }
1754 
1755 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1756 		unsigned long addr)
1757 {
1758 	struct page *page;
1759 	int nid;
1760 
1761 	if (!pte_present(pte))
1762 		return NULL;
1763 
1764 	page = vm_normal_page(vma, addr, pte);
1765 	if (!page)
1766 		return NULL;
1767 
1768 	if (PageReserved(page))
1769 		return NULL;
1770 
1771 	nid = page_to_nid(page);
1772 	if (!node_isset(nid, node_states[N_MEMORY]))
1773 		return NULL;
1774 
1775 	return page;
1776 }
1777 
1778 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1779 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1780 					      struct vm_area_struct *vma,
1781 					      unsigned long addr)
1782 {
1783 	struct page *page;
1784 	int nid;
1785 
1786 	if (!pmd_present(pmd))
1787 		return NULL;
1788 
1789 	page = vm_normal_page_pmd(vma, addr, pmd);
1790 	if (!page)
1791 		return NULL;
1792 
1793 	if (PageReserved(page))
1794 		return NULL;
1795 
1796 	nid = page_to_nid(page);
1797 	if (!node_isset(nid, node_states[N_MEMORY]))
1798 		return NULL;
1799 
1800 	return page;
1801 }
1802 #endif
1803 
1804 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1805 		unsigned long end, struct mm_walk *walk)
1806 {
1807 	struct numa_maps *md = walk->private;
1808 	struct vm_area_struct *vma = walk->vma;
1809 	spinlock_t *ptl;
1810 	pte_t *orig_pte;
1811 	pte_t *pte;
1812 
1813 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1814 	ptl = pmd_trans_huge_lock(pmd, vma);
1815 	if (ptl) {
1816 		struct page *page;
1817 
1818 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1819 		if (page)
1820 			gather_stats(page, md, pmd_dirty(*pmd),
1821 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1822 		spin_unlock(ptl);
1823 		return 0;
1824 	}
1825 
1826 	if (pmd_trans_unstable(pmd))
1827 		return 0;
1828 #endif
1829 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1830 	do {
1831 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1832 		if (!page)
1833 			continue;
1834 		gather_stats(page, md, pte_dirty(*pte), 1);
1835 
1836 	} while (pte++, addr += PAGE_SIZE, addr != end);
1837 	pte_unmap_unlock(orig_pte, ptl);
1838 	cond_resched();
1839 	return 0;
1840 }
1841 #ifdef CONFIG_HUGETLB_PAGE
1842 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1843 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1844 {
1845 	pte_t huge_pte = huge_ptep_get(pte);
1846 	struct numa_maps *md;
1847 	struct page *page;
1848 
1849 	if (!pte_present(huge_pte))
1850 		return 0;
1851 
1852 	page = pte_page(huge_pte);
1853 	if (!page)
1854 		return 0;
1855 
1856 	md = walk->private;
1857 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1858 	return 0;
1859 }
1860 
1861 #else
1862 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1863 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1864 {
1865 	return 0;
1866 }
1867 #endif
1868 
1869 static const struct mm_walk_ops show_numa_ops = {
1870 	.hugetlb_entry = gather_hugetlb_stats,
1871 	.pmd_entry = gather_pte_stats,
1872 };
1873 
1874 /*
1875  * Display pages allocated per node and memory policy via /proc.
1876  */
1877 static int show_numa_map(struct seq_file *m, void *v)
1878 {
1879 	struct numa_maps_private *numa_priv = m->private;
1880 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1881 	struct vm_area_struct *vma = v;
1882 	struct numa_maps *md = &numa_priv->md;
1883 	struct file *file = vma->vm_file;
1884 	struct mm_struct *mm = vma->vm_mm;
1885 	struct mempolicy *pol;
1886 	char buffer[64];
1887 	int nid;
1888 
1889 	if (!mm)
1890 		return 0;
1891 
1892 	/* Ensure we start with an empty set of numa_maps statistics. */
1893 	memset(md, 0, sizeof(*md));
1894 
1895 	pol = __get_vma_policy(vma, vma->vm_start);
1896 	if (pol) {
1897 		mpol_to_str(buffer, sizeof(buffer), pol);
1898 		mpol_cond_put(pol);
1899 	} else {
1900 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1901 	}
1902 
1903 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1904 
1905 	if (file) {
1906 		seq_puts(m, " file=");
1907 		seq_file_path(m, file, "\n\t= ");
1908 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1909 		seq_puts(m, " heap");
1910 	} else if (is_stack(vma)) {
1911 		seq_puts(m, " stack");
1912 	}
1913 
1914 	if (is_vm_hugetlb_page(vma))
1915 		seq_puts(m, " huge");
1916 
1917 	/* mmap_lock is held by m_start */
1918 	walk_page_vma(vma, &show_numa_ops, md);
1919 
1920 	if (!md->pages)
1921 		goto out;
1922 
1923 	if (md->anon)
1924 		seq_printf(m, " anon=%lu", md->anon);
1925 
1926 	if (md->dirty)
1927 		seq_printf(m, " dirty=%lu", md->dirty);
1928 
1929 	if (md->pages != md->anon && md->pages != md->dirty)
1930 		seq_printf(m, " mapped=%lu", md->pages);
1931 
1932 	if (md->mapcount_max > 1)
1933 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1934 
1935 	if (md->swapcache)
1936 		seq_printf(m, " swapcache=%lu", md->swapcache);
1937 
1938 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1939 		seq_printf(m, " active=%lu", md->active);
1940 
1941 	if (md->writeback)
1942 		seq_printf(m, " writeback=%lu", md->writeback);
1943 
1944 	for_each_node_state(nid, N_MEMORY)
1945 		if (md->node[nid])
1946 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1947 
1948 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1949 out:
1950 	seq_putc(m, '\n');
1951 	return 0;
1952 }
1953 
1954 static const struct seq_operations proc_pid_numa_maps_op = {
1955 	.start  = m_start,
1956 	.next   = m_next,
1957 	.stop   = m_stop,
1958 	.show   = show_numa_map,
1959 };
1960 
1961 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1962 {
1963 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1964 				sizeof(struct numa_maps_private));
1965 }
1966 
1967 const struct file_operations proc_pid_numa_maps_operations = {
1968 	.open		= pid_numa_maps_open,
1969 	.read		= seq_read,
1970 	.llseek		= seq_lseek,
1971 	.release	= proc_map_release,
1972 };
1973 
1974 #endif /* CONFIG_NUMA */
1975