xref: /openbmc/linux/fs/proc/task_mmu.c (revision 29c37341)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22 
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27 
28 #define SEQ_PUT_DEC(str, val) \
29 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32 	unsigned long text, lib, swap, anon, file, shmem;
33 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34 
35 	anon = get_mm_counter(mm, MM_ANONPAGES);
36 	file = get_mm_counter(mm, MM_FILEPAGES);
37 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38 
39 	/*
40 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
42 	 * collector of these hiwater stats must therefore get total_vm
43 	 * and rss too, which will usually be the higher.  Barriers? not
44 	 * worth the effort, such snapshots can always be inconsistent.
45 	 */
46 	hiwater_vm = total_vm = mm->total_vm;
47 	if (hiwater_vm < mm->hiwater_vm)
48 		hiwater_vm = mm->hiwater_vm;
49 	hiwater_rss = total_rss = anon + file + shmem;
50 	if (hiwater_rss < mm->hiwater_rss)
51 		hiwater_rss = mm->hiwater_rss;
52 
53 	/* split executable areas between text and lib */
54 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 	text = min(text, mm->exec_vm << PAGE_SHIFT);
56 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
57 
58 	swap = get_mm_counter(mm, MM_SWAPENTS);
59 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 	seq_put_decimal_ull_width(m,
71 		    " kB\nVmExe:\t", text >> 10, 8);
72 	seq_put_decimal_ull_width(m,
73 		    " kB\nVmLib:\t", lib >> 10, 8);
74 	seq_put_decimal_ull_width(m,
75 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 	seq_puts(m, " kB\n");
78 	hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81 
82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84 	return PAGE_SIZE * mm->total_vm;
85 }
86 
87 unsigned long task_statm(struct mm_struct *mm,
88 			 unsigned long *shared, unsigned long *text,
89 			 unsigned long *data, unsigned long *resident)
90 {
91 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
92 			get_mm_counter(mm, MM_SHMEMPAGES);
93 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 								>> PAGE_SHIFT;
95 	*data = mm->data_vm + mm->stack_vm;
96 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 	return mm->total_vm;
98 }
99 
100 #ifdef CONFIG_NUMA
101 /*
102  * Save get_task_policy() for show_numa_map().
103  */
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106 	struct task_struct *task = priv->task;
107 
108 	task_lock(task);
109 	priv->task_mempolicy = get_task_policy(task);
110 	mpol_get(priv->task_mempolicy);
111 	task_unlock(task);
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115 	mpol_put(priv->task_mempolicy);
116 }
117 #else
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125 
126 static void *m_start(struct seq_file *m, loff_t *ppos)
127 {
128 	struct proc_maps_private *priv = m->private;
129 	unsigned long last_addr = *ppos;
130 	struct mm_struct *mm;
131 	struct vm_area_struct *vma;
132 
133 	/* See m_next(). Zero at the start or after lseek. */
134 	if (last_addr == -1UL)
135 		return NULL;
136 
137 	priv->task = get_proc_task(priv->inode);
138 	if (!priv->task)
139 		return ERR_PTR(-ESRCH);
140 
141 	mm = priv->mm;
142 	if (!mm || !mmget_not_zero(mm)) {
143 		put_task_struct(priv->task);
144 		priv->task = NULL;
145 		return NULL;
146 	}
147 
148 	if (mmap_read_lock_killable(mm)) {
149 		mmput(mm);
150 		put_task_struct(priv->task);
151 		priv->task = NULL;
152 		return ERR_PTR(-EINTR);
153 	}
154 
155 	hold_task_mempolicy(priv);
156 	priv->tail_vma = get_gate_vma(mm);
157 
158 	vma = find_vma(mm, last_addr);
159 	if (vma)
160 		return vma;
161 
162 	return priv->tail_vma;
163 }
164 
165 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
166 {
167 	struct proc_maps_private *priv = m->private;
168 	struct vm_area_struct *next, *vma = v;
169 
170 	if (vma == priv->tail_vma)
171 		next = NULL;
172 	else if (vma->vm_next)
173 		next = vma->vm_next;
174 	else
175 		next = priv->tail_vma;
176 
177 	*ppos = next ? next->vm_start : -1UL;
178 
179 	return next;
180 }
181 
182 static void m_stop(struct seq_file *m, void *v)
183 {
184 	struct proc_maps_private *priv = m->private;
185 	struct mm_struct *mm = priv->mm;
186 
187 	if (!priv->task)
188 		return;
189 
190 	release_task_mempolicy(priv);
191 	mmap_read_unlock(mm);
192 	mmput(mm);
193 	put_task_struct(priv->task);
194 	priv->task = NULL;
195 }
196 
197 static int proc_maps_open(struct inode *inode, struct file *file,
198 			const struct seq_operations *ops, int psize)
199 {
200 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
201 
202 	if (!priv)
203 		return -ENOMEM;
204 
205 	priv->inode = inode;
206 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
207 	if (IS_ERR(priv->mm)) {
208 		int err = PTR_ERR(priv->mm);
209 
210 		seq_release_private(inode, file);
211 		return err;
212 	}
213 
214 	return 0;
215 }
216 
217 static int proc_map_release(struct inode *inode, struct file *file)
218 {
219 	struct seq_file *seq = file->private_data;
220 	struct proc_maps_private *priv = seq->private;
221 
222 	if (priv->mm)
223 		mmdrop(priv->mm);
224 
225 	return seq_release_private(inode, file);
226 }
227 
228 static int do_maps_open(struct inode *inode, struct file *file,
229 			const struct seq_operations *ops)
230 {
231 	return proc_maps_open(inode, file, ops,
232 				sizeof(struct proc_maps_private));
233 }
234 
235 /*
236  * Indicate if the VMA is a stack for the given task; for
237  * /proc/PID/maps that is the stack of the main task.
238  */
239 static int is_stack(struct vm_area_struct *vma)
240 {
241 	/*
242 	 * We make no effort to guess what a given thread considers to be
243 	 * its "stack".  It's not even well-defined for programs written
244 	 * languages like Go.
245 	 */
246 	return vma->vm_start <= vma->vm_mm->start_stack &&
247 		vma->vm_end >= vma->vm_mm->start_stack;
248 }
249 
250 static void show_vma_header_prefix(struct seq_file *m,
251 				   unsigned long start, unsigned long end,
252 				   vm_flags_t flags, unsigned long long pgoff,
253 				   dev_t dev, unsigned long ino)
254 {
255 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
256 	seq_put_hex_ll(m, NULL, start, 8);
257 	seq_put_hex_ll(m, "-", end, 8);
258 	seq_putc(m, ' ');
259 	seq_putc(m, flags & VM_READ ? 'r' : '-');
260 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
261 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
262 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
263 	seq_put_hex_ll(m, " ", pgoff, 8);
264 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
265 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
266 	seq_put_decimal_ull(m, " ", ino);
267 	seq_putc(m, ' ');
268 }
269 
270 static void
271 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
272 {
273 	struct mm_struct *mm = vma->vm_mm;
274 	struct file *file = vma->vm_file;
275 	vm_flags_t flags = vma->vm_flags;
276 	unsigned long ino = 0;
277 	unsigned long long pgoff = 0;
278 	unsigned long start, end;
279 	dev_t dev = 0;
280 	const char *name = NULL;
281 
282 	if (file) {
283 		struct inode *inode = file_inode(vma->vm_file);
284 		dev = inode->i_sb->s_dev;
285 		ino = inode->i_ino;
286 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
287 	}
288 
289 	start = vma->vm_start;
290 	end = vma->vm_end;
291 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
292 
293 	/*
294 	 * Print the dentry name for named mappings, and a
295 	 * special [heap] marker for the heap:
296 	 */
297 	if (file) {
298 		seq_pad(m, ' ');
299 		seq_file_path(m, file, "\n");
300 		goto done;
301 	}
302 
303 	if (vma->vm_ops && vma->vm_ops->name) {
304 		name = vma->vm_ops->name(vma);
305 		if (name)
306 			goto done;
307 	}
308 
309 	name = arch_vma_name(vma);
310 	if (!name) {
311 		if (!mm) {
312 			name = "[vdso]";
313 			goto done;
314 		}
315 
316 		if (vma->vm_start <= mm->brk &&
317 		    vma->vm_end >= mm->start_brk) {
318 			name = "[heap]";
319 			goto done;
320 		}
321 
322 		if (is_stack(vma))
323 			name = "[stack]";
324 	}
325 
326 done:
327 	if (name) {
328 		seq_pad(m, ' ');
329 		seq_puts(m, name);
330 	}
331 	seq_putc(m, '\n');
332 }
333 
334 static int show_map(struct seq_file *m, void *v)
335 {
336 	show_map_vma(m, v);
337 	return 0;
338 }
339 
340 static const struct seq_operations proc_pid_maps_op = {
341 	.start	= m_start,
342 	.next	= m_next,
343 	.stop	= m_stop,
344 	.show	= show_map
345 };
346 
347 static int pid_maps_open(struct inode *inode, struct file *file)
348 {
349 	return do_maps_open(inode, file, &proc_pid_maps_op);
350 }
351 
352 const struct file_operations proc_pid_maps_operations = {
353 	.open		= pid_maps_open,
354 	.read		= seq_read,
355 	.llseek		= seq_lseek,
356 	.release	= proc_map_release,
357 };
358 
359 /*
360  * Proportional Set Size(PSS): my share of RSS.
361  *
362  * PSS of a process is the count of pages it has in memory, where each
363  * page is divided by the number of processes sharing it.  So if a
364  * process has 1000 pages all to itself, and 1000 shared with one other
365  * process, its PSS will be 1500.
366  *
367  * To keep (accumulated) division errors low, we adopt a 64bit
368  * fixed-point pss counter to minimize division errors. So (pss >>
369  * PSS_SHIFT) would be the real byte count.
370  *
371  * A shift of 12 before division means (assuming 4K page size):
372  * 	- 1M 3-user-pages add up to 8KB errors;
373  * 	- supports mapcount up to 2^24, or 16M;
374  * 	- supports PSS up to 2^52 bytes, or 4PB.
375  */
376 #define PSS_SHIFT 12
377 
378 #ifdef CONFIG_PROC_PAGE_MONITOR
379 struct mem_size_stats {
380 	unsigned long resident;
381 	unsigned long shared_clean;
382 	unsigned long shared_dirty;
383 	unsigned long private_clean;
384 	unsigned long private_dirty;
385 	unsigned long referenced;
386 	unsigned long anonymous;
387 	unsigned long lazyfree;
388 	unsigned long anonymous_thp;
389 	unsigned long shmem_thp;
390 	unsigned long file_thp;
391 	unsigned long swap;
392 	unsigned long shared_hugetlb;
393 	unsigned long private_hugetlb;
394 	u64 pss;
395 	u64 pss_anon;
396 	u64 pss_file;
397 	u64 pss_shmem;
398 	u64 pss_locked;
399 	u64 swap_pss;
400 	bool check_shmem_swap;
401 };
402 
403 static void smaps_page_accumulate(struct mem_size_stats *mss,
404 		struct page *page, unsigned long size, unsigned long pss,
405 		bool dirty, bool locked, bool private)
406 {
407 	mss->pss += pss;
408 
409 	if (PageAnon(page))
410 		mss->pss_anon += pss;
411 	else if (PageSwapBacked(page))
412 		mss->pss_shmem += pss;
413 	else
414 		mss->pss_file += pss;
415 
416 	if (locked)
417 		mss->pss_locked += pss;
418 
419 	if (dirty || PageDirty(page)) {
420 		if (private)
421 			mss->private_dirty += size;
422 		else
423 			mss->shared_dirty += size;
424 	} else {
425 		if (private)
426 			mss->private_clean += size;
427 		else
428 			mss->shared_clean += size;
429 	}
430 }
431 
432 static void smaps_account(struct mem_size_stats *mss, struct page *page,
433 		bool compound, bool young, bool dirty, bool locked)
434 {
435 	int i, nr = compound ? compound_nr(page) : 1;
436 	unsigned long size = nr * PAGE_SIZE;
437 
438 	/*
439 	 * First accumulate quantities that depend only on |size| and the type
440 	 * of the compound page.
441 	 */
442 	if (PageAnon(page)) {
443 		mss->anonymous += size;
444 		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
445 			mss->lazyfree += size;
446 	}
447 
448 	mss->resident += size;
449 	/* Accumulate the size in pages that have been accessed. */
450 	if (young || page_is_young(page) || PageReferenced(page))
451 		mss->referenced += size;
452 
453 	/*
454 	 * Then accumulate quantities that may depend on sharing, or that may
455 	 * differ page-by-page.
456 	 *
457 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
458 	 * If any subpage of the compound page mapped with PTE it would elevate
459 	 * page_count().
460 	 */
461 	if (page_count(page) == 1) {
462 		smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
463 			locked, true);
464 		return;
465 	}
466 	for (i = 0; i < nr; i++, page++) {
467 		int mapcount = page_mapcount(page);
468 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
469 		if (mapcount >= 2)
470 			pss /= mapcount;
471 		smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
472 				      mapcount < 2);
473 	}
474 }
475 
476 #ifdef CONFIG_SHMEM
477 static int smaps_pte_hole(unsigned long addr, unsigned long end,
478 			  __always_unused int depth, struct mm_walk *walk)
479 {
480 	struct mem_size_stats *mss = walk->private;
481 
482 	mss->swap += shmem_partial_swap_usage(
483 			walk->vma->vm_file->f_mapping, addr, end);
484 
485 	return 0;
486 }
487 #else
488 #define smaps_pte_hole		NULL
489 #endif /* CONFIG_SHMEM */
490 
491 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
492 		struct mm_walk *walk)
493 {
494 	struct mem_size_stats *mss = walk->private;
495 	struct vm_area_struct *vma = walk->vma;
496 	bool locked = !!(vma->vm_flags & VM_LOCKED);
497 	struct page *page = NULL;
498 
499 	if (pte_present(*pte)) {
500 		page = vm_normal_page(vma, addr, *pte);
501 	} else if (is_swap_pte(*pte)) {
502 		swp_entry_t swpent = pte_to_swp_entry(*pte);
503 
504 		if (!non_swap_entry(swpent)) {
505 			int mapcount;
506 
507 			mss->swap += PAGE_SIZE;
508 			mapcount = swp_swapcount(swpent);
509 			if (mapcount >= 2) {
510 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
511 
512 				do_div(pss_delta, mapcount);
513 				mss->swap_pss += pss_delta;
514 			} else {
515 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
516 			}
517 		} else if (is_migration_entry(swpent))
518 			page = migration_entry_to_page(swpent);
519 		else if (is_device_private_entry(swpent))
520 			page = device_private_entry_to_page(swpent);
521 	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
522 							&& pte_none(*pte))) {
523 		page = find_get_entry(vma->vm_file->f_mapping,
524 						linear_page_index(vma, addr));
525 		if (!page)
526 			return;
527 
528 		if (xa_is_value(page))
529 			mss->swap += PAGE_SIZE;
530 		else
531 			put_page(page);
532 
533 		return;
534 	}
535 
536 	if (!page)
537 		return;
538 
539 	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
540 }
541 
542 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
543 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
544 		struct mm_walk *walk)
545 {
546 	struct mem_size_stats *mss = walk->private;
547 	struct vm_area_struct *vma = walk->vma;
548 	bool locked = !!(vma->vm_flags & VM_LOCKED);
549 	struct page *page = NULL;
550 
551 	if (pmd_present(*pmd)) {
552 		/* FOLL_DUMP will return -EFAULT on huge zero page */
553 		page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
554 	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
555 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
556 
557 		if (is_migration_entry(entry))
558 			page = migration_entry_to_page(entry);
559 	}
560 	if (IS_ERR_OR_NULL(page))
561 		return;
562 	if (PageAnon(page))
563 		mss->anonymous_thp += HPAGE_PMD_SIZE;
564 	else if (PageSwapBacked(page))
565 		mss->shmem_thp += HPAGE_PMD_SIZE;
566 	else if (is_zone_device_page(page))
567 		/* pass */;
568 	else
569 		mss->file_thp += HPAGE_PMD_SIZE;
570 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
571 }
572 #else
573 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
574 		struct mm_walk *walk)
575 {
576 }
577 #endif
578 
579 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
580 			   struct mm_walk *walk)
581 {
582 	struct vm_area_struct *vma = walk->vma;
583 	pte_t *pte;
584 	spinlock_t *ptl;
585 
586 	ptl = pmd_trans_huge_lock(pmd, vma);
587 	if (ptl) {
588 		smaps_pmd_entry(pmd, addr, walk);
589 		spin_unlock(ptl);
590 		goto out;
591 	}
592 
593 	if (pmd_trans_unstable(pmd))
594 		goto out;
595 	/*
596 	 * The mmap_lock held all the way back in m_start() is what
597 	 * keeps khugepaged out of here and from collapsing things
598 	 * in here.
599 	 */
600 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
601 	for (; addr != end; pte++, addr += PAGE_SIZE)
602 		smaps_pte_entry(pte, addr, walk);
603 	pte_unmap_unlock(pte - 1, ptl);
604 out:
605 	cond_resched();
606 	return 0;
607 }
608 
609 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
610 {
611 	/*
612 	 * Don't forget to update Documentation/ on changes.
613 	 */
614 	static const char mnemonics[BITS_PER_LONG][2] = {
615 		/*
616 		 * In case if we meet a flag we don't know about.
617 		 */
618 		[0 ... (BITS_PER_LONG-1)] = "??",
619 
620 		[ilog2(VM_READ)]	= "rd",
621 		[ilog2(VM_WRITE)]	= "wr",
622 		[ilog2(VM_EXEC)]	= "ex",
623 		[ilog2(VM_SHARED)]	= "sh",
624 		[ilog2(VM_MAYREAD)]	= "mr",
625 		[ilog2(VM_MAYWRITE)]	= "mw",
626 		[ilog2(VM_MAYEXEC)]	= "me",
627 		[ilog2(VM_MAYSHARE)]	= "ms",
628 		[ilog2(VM_GROWSDOWN)]	= "gd",
629 		[ilog2(VM_PFNMAP)]	= "pf",
630 		[ilog2(VM_DENYWRITE)]	= "dw",
631 		[ilog2(VM_LOCKED)]	= "lo",
632 		[ilog2(VM_IO)]		= "io",
633 		[ilog2(VM_SEQ_READ)]	= "sr",
634 		[ilog2(VM_RAND_READ)]	= "rr",
635 		[ilog2(VM_DONTCOPY)]	= "dc",
636 		[ilog2(VM_DONTEXPAND)]	= "de",
637 		[ilog2(VM_ACCOUNT)]	= "ac",
638 		[ilog2(VM_NORESERVE)]	= "nr",
639 		[ilog2(VM_HUGETLB)]	= "ht",
640 		[ilog2(VM_SYNC)]	= "sf",
641 		[ilog2(VM_ARCH_1)]	= "ar",
642 		[ilog2(VM_WIPEONFORK)]	= "wf",
643 		[ilog2(VM_DONTDUMP)]	= "dd",
644 #ifdef CONFIG_ARM64_BTI
645 		[ilog2(VM_ARM64_BTI)]	= "bt",
646 #endif
647 #ifdef CONFIG_MEM_SOFT_DIRTY
648 		[ilog2(VM_SOFTDIRTY)]	= "sd",
649 #endif
650 		[ilog2(VM_MIXEDMAP)]	= "mm",
651 		[ilog2(VM_HUGEPAGE)]	= "hg",
652 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
653 		[ilog2(VM_MERGEABLE)]	= "mg",
654 		[ilog2(VM_UFFD_MISSING)]= "um",
655 		[ilog2(VM_UFFD_WP)]	= "uw",
656 #ifdef CONFIG_ARCH_HAS_PKEYS
657 		/* These come out via ProtectionKey: */
658 		[ilog2(VM_PKEY_BIT0)]	= "",
659 		[ilog2(VM_PKEY_BIT1)]	= "",
660 		[ilog2(VM_PKEY_BIT2)]	= "",
661 		[ilog2(VM_PKEY_BIT3)]	= "",
662 #if VM_PKEY_BIT4
663 		[ilog2(VM_PKEY_BIT4)]	= "",
664 #endif
665 #endif /* CONFIG_ARCH_HAS_PKEYS */
666 	};
667 	size_t i;
668 
669 	seq_puts(m, "VmFlags: ");
670 	for (i = 0; i < BITS_PER_LONG; i++) {
671 		if (!mnemonics[i][0])
672 			continue;
673 		if (vma->vm_flags & (1UL << i)) {
674 			seq_putc(m, mnemonics[i][0]);
675 			seq_putc(m, mnemonics[i][1]);
676 			seq_putc(m, ' ');
677 		}
678 	}
679 	seq_putc(m, '\n');
680 }
681 
682 #ifdef CONFIG_HUGETLB_PAGE
683 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
684 				 unsigned long addr, unsigned long end,
685 				 struct mm_walk *walk)
686 {
687 	struct mem_size_stats *mss = walk->private;
688 	struct vm_area_struct *vma = walk->vma;
689 	struct page *page = NULL;
690 
691 	if (pte_present(*pte)) {
692 		page = vm_normal_page(vma, addr, *pte);
693 	} else if (is_swap_pte(*pte)) {
694 		swp_entry_t swpent = pte_to_swp_entry(*pte);
695 
696 		if (is_migration_entry(swpent))
697 			page = migration_entry_to_page(swpent);
698 		else if (is_device_private_entry(swpent))
699 			page = device_private_entry_to_page(swpent);
700 	}
701 	if (page) {
702 		int mapcount = page_mapcount(page);
703 
704 		if (mapcount >= 2)
705 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
706 		else
707 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
708 	}
709 	return 0;
710 }
711 #else
712 #define smaps_hugetlb_range	NULL
713 #endif /* HUGETLB_PAGE */
714 
715 static const struct mm_walk_ops smaps_walk_ops = {
716 	.pmd_entry		= smaps_pte_range,
717 	.hugetlb_entry		= smaps_hugetlb_range,
718 };
719 
720 static const struct mm_walk_ops smaps_shmem_walk_ops = {
721 	.pmd_entry		= smaps_pte_range,
722 	.hugetlb_entry		= smaps_hugetlb_range,
723 	.pte_hole		= smaps_pte_hole,
724 };
725 
726 static void smap_gather_stats(struct vm_area_struct *vma,
727 			     struct mem_size_stats *mss)
728 {
729 #ifdef CONFIG_SHMEM
730 	/* In case of smaps_rollup, reset the value from previous vma */
731 	mss->check_shmem_swap = false;
732 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
733 		/*
734 		 * For shared or readonly shmem mappings we know that all
735 		 * swapped out pages belong to the shmem object, and we can
736 		 * obtain the swap value much more efficiently. For private
737 		 * writable mappings, we might have COW pages that are
738 		 * not affected by the parent swapped out pages of the shmem
739 		 * object, so we have to distinguish them during the page walk.
740 		 * Unless we know that the shmem object (or the part mapped by
741 		 * our VMA) has no swapped out pages at all.
742 		 */
743 		unsigned long shmem_swapped = shmem_swap_usage(vma);
744 
745 		if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
746 					!(vma->vm_flags & VM_WRITE)) {
747 			mss->swap += shmem_swapped;
748 		} else {
749 			mss->check_shmem_swap = true;
750 			walk_page_vma(vma, &smaps_shmem_walk_ops, mss);
751 			return;
752 		}
753 	}
754 #endif
755 	/* mmap_lock is held in m_start */
756 	walk_page_vma(vma, &smaps_walk_ops, mss);
757 }
758 
759 #define SEQ_PUT_DEC(str, val) \
760 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
761 
762 /* Show the contents common for smaps and smaps_rollup */
763 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
764 	bool rollup_mode)
765 {
766 	SEQ_PUT_DEC("Rss:            ", mss->resident);
767 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
768 	if (rollup_mode) {
769 		/*
770 		 * These are meaningful only for smaps_rollup, otherwise two of
771 		 * them are zero, and the other one is the same as Pss.
772 		 */
773 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
774 			mss->pss_anon >> PSS_SHIFT);
775 		SEQ_PUT_DEC(" kB\nPss_File:       ",
776 			mss->pss_file >> PSS_SHIFT);
777 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
778 			mss->pss_shmem >> PSS_SHIFT);
779 	}
780 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
781 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
782 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
783 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
784 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
785 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
786 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
787 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
788 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
789 	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
790 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
791 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
792 				  mss->private_hugetlb >> 10, 7);
793 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
794 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
795 					mss->swap_pss >> PSS_SHIFT);
796 	SEQ_PUT_DEC(" kB\nLocked:         ",
797 					mss->pss_locked >> PSS_SHIFT);
798 	seq_puts(m, " kB\n");
799 }
800 
801 static int show_smap(struct seq_file *m, void *v)
802 {
803 	struct vm_area_struct *vma = v;
804 	struct mem_size_stats mss;
805 
806 	memset(&mss, 0, sizeof(mss));
807 
808 	smap_gather_stats(vma, &mss);
809 
810 	show_map_vma(m, vma);
811 
812 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
813 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
814 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
815 	seq_puts(m, " kB\n");
816 
817 	__show_smap(m, &mss, false);
818 
819 	seq_printf(m, "THPeligible:    %d\n",
820 		   transparent_hugepage_enabled(vma));
821 
822 	if (arch_pkeys_enabled())
823 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
824 	show_smap_vma_flags(m, vma);
825 
826 	return 0;
827 }
828 
829 static int show_smaps_rollup(struct seq_file *m, void *v)
830 {
831 	struct proc_maps_private *priv = m->private;
832 	struct mem_size_stats mss;
833 	struct mm_struct *mm;
834 	struct vm_area_struct *vma;
835 	unsigned long last_vma_end = 0;
836 	int ret = 0;
837 
838 	priv->task = get_proc_task(priv->inode);
839 	if (!priv->task)
840 		return -ESRCH;
841 
842 	mm = priv->mm;
843 	if (!mm || !mmget_not_zero(mm)) {
844 		ret = -ESRCH;
845 		goto out_put_task;
846 	}
847 
848 	memset(&mss, 0, sizeof(mss));
849 
850 	ret = mmap_read_lock_killable(mm);
851 	if (ret)
852 		goto out_put_mm;
853 
854 	hold_task_mempolicy(priv);
855 
856 	for (vma = priv->mm->mmap; vma; vma = vma->vm_next) {
857 		smap_gather_stats(vma, &mss);
858 		last_vma_end = vma->vm_end;
859 	}
860 
861 	show_vma_header_prefix(m, priv->mm->mmap->vm_start,
862 			       last_vma_end, 0, 0, 0, 0);
863 	seq_pad(m, ' ');
864 	seq_puts(m, "[rollup]\n");
865 
866 	__show_smap(m, &mss, true);
867 
868 	release_task_mempolicy(priv);
869 	mmap_read_unlock(mm);
870 
871 out_put_mm:
872 	mmput(mm);
873 out_put_task:
874 	put_task_struct(priv->task);
875 	priv->task = NULL;
876 
877 	return ret;
878 }
879 #undef SEQ_PUT_DEC
880 
881 static const struct seq_operations proc_pid_smaps_op = {
882 	.start	= m_start,
883 	.next	= m_next,
884 	.stop	= m_stop,
885 	.show	= show_smap
886 };
887 
888 static int pid_smaps_open(struct inode *inode, struct file *file)
889 {
890 	return do_maps_open(inode, file, &proc_pid_smaps_op);
891 }
892 
893 static int smaps_rollup_open(struct inode *inode, struct file *file)
894 {
895 	int ret;
896 	struct proc_maps_private *priv;
897 
898 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
899 	if (!priv)
900 		return -ENOMEM;
901 
902 	ret = single_open(file, show_smaps_rollup, priv);
903 	if (ret)
904 		goto out_free;
905 
906 	priv->inode = inode;
907 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
908 	if (IS_ERR(priv->mm)) {
909 		ret = PTR_ERR(priv->mm);
910 
911 		single_release(inode, file);
912 		goto out_free;
913 	}
914 
915 	return 0;
916 
917 out_free:
918 	kfree(priv);
919 	return ret;
920 }
921 
922 static int smaps_rollup_release(struct inode *inode, struct file *file)
923 {
924 	struct seq_file *seq = file->private_data;
925 	struct proc_maps_private *priv = seq->private;
926 
927 	if (priv->mm)
928 		mmdrop(priv->mm);
929 
930 	kfree(priv);
931 	return single_release(inode, file);
932 }
933 
934 const struct file_operations proc_pid_smaps_operations = {
935 	.open		= pid_smaps_open,
936 	.read		= seq_read,
937 	.llseek		= seq_lseek,
938 	.release	= proc_map_release,
939 };
940 
941 const struct file_operations proc_pid_smaps_rollup_operations = {
942 	.open		= smaps_rollup_open,
943 	.read		= seq_read,
944 	.llseek		= seq_lseek,
945 	.release	= smaps_rollup_release,
946 };
947 
948 enum clear_refs_types {
949 	CLEAR_REFS_ALL = 1,
950 	CLEAR_REFS_ANON,
951 	CLEAR_REFS_MAPPED,
952 	CLEAR_REFS_SOFT_DIRTY,
953 	CLEAR_REFS_MM_HIWATER_RSS,
954 	CLEAR_REFS_LAST,
955 };
956 
957 struct clear_refs_private {
958 	enum clear_refs_types type;
959 };
960 
961 #ifdef CONFIG_MEM_SOFT_DIRTY
962 static inline void clear_soft_dirty(struct vm_area_struct *vma,
963 		unsigned long addr, pte_t *pte)
964 {
965 	/*
966 	 * The soft-dirty tracker uses #PF-s to catch writes
967 	 * to pages, so write-protect the pte as well. See the
968 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
969 	 * of how soft-dirty works.
970 	 */
971 	pte_t ptent = *pte;
972 
973 	if (pte_present(ptent)) {
974 		pte_t old_pte;
975 
976 		old_pte = ptep_modify_prot_start(vma, addr, pte);
977 		ptent = pte_wrprotect(old_pte);
978 		ptent = pte_clear_soft_dirty(ptent);
979 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
980 	} else if (is_swap_pte(ptent)) {
981 		ptent = pte_swp_clear_soft_dirty(ptent);
982 		set_pte_at(vma->vm_mm, addr, pte, ptent);
983 	}
984 }
985 #else
986 static inline void clear_soft_dirty(struct vm_area_struct *vma,
987 		unsigned long addr, pte_t *pte)
988 {
989 }
990 #endif
991 
992 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
993 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
994 		unsigned long addr, pmd_t *pmdp)
995 {
996 	pmd_t old, pmd = *pmdp;
997 
998 	if (pmd_present(pmd)) {
999 		/* See comment in change_huge_pmd() */
1000 		old = pmdp_invalidate(vma, addr, pmdp);
1001 		if (pmd_dirty(old))
1002 			pmd = pmd_mkdirty(pmd);
1003 		if (pmd_young(old))
1004 			pmd = pmd_mkyoung(pmd);
1005 
1006 		pmd = pmd_wrprotect(pmd);
1007 		pmd = pmd_clear_soft_dirty(pmd);
1008 
1009 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1010 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1011 		pmd = pmd_swp_clear_soft_dirty(pmd);
1012 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1013 	}
1014 }
1015 #else
1016 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1017 		unsigned long addr, pmd_t *pmdp)
1018 {
1019 }
1020 #endif
1021 
1022 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1023 				unsigned long end, struct mm_walk *walk)
1024 {
1025 	struct clear_refs_private *cp = walk->private;
1026 	struct vm_area_struct *vma = walk->vma;
1027 	pte_t *pte, ptent;
1028 	spinlock_t *ptl;
1029 	struct page *page;
1030 
1031 	ptl = pmd_trans_huge_lock(pmd, vma);
1032 	if (ptl) {
1033 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1034 			clear_soft_dirty_pmd(vma, addr, pmd);
1035 			goto out;
1036 		}
1037 
1038 		if (!pmd_present(*pmd))
1039 			goto out;
1040 
1041 		page = pmd_page(*pmd);
1042 
1043 		/* Clear accessed and referenced bits. */
1044 		pmdp_test_and_clear_young(vma, addr, pmd);
1045 		test_and_clear_page_young(page);
1046 		ClearPageReferenced(page);
1047 out:
1048 		spin_unlock(ptl);
1049 		return 0;
1050 	}
1051 
1052 	if (pmd_trans_unstable(pmd))
1053 		return 0;
1054 
1055 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1056 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1057 		ptent = *pte;
1058 
1059 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1060 			clear_soft_dirty(vma, addr, pte);
1061 			continue;
1062 		}
1063 
1064 		if (!pte_present(ptent))
1065 			continue;
1066 
1067 		page = vm_normal_page(vma, addr, ptent);
1068 		if (!page)
1069 			continue;
1070 
1071 		/* Clear accessed and referenced bits. */
1072 		ptep_test_and_clear_young(vma, addr, pte);
1073 		test_and_clear_page_young(page);
1074 		ClearPageReferenced(page);
1075 	}
1076 	pte_unmap_unlock(pte - 1, ptl);
1077 	cond_resched();
1078 	return 0;
1079 }
1080 
1081 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1082 				struct mm_walk *walk)
1083 {
1084 	struct clear_refs_private *cp = walk->private;
1085 	struct vm_area_struct *vma = walk->vma;
1086 
1087 	if (vma->vm_flags & VM_PFNMAP)
1088 		return 1;
1089 
1090 	/*
1091 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1092 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1093 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1094 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1095 	 */
1096 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1097 		return 1;
1098 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1099 		return 1;
1100 	return 0;
1101 }
1102 
1103 static const struct mm_walk_ops clear_refs_walk_ops = {
1104 	.pmd_entry		= clear_refs_pte_range,
1105 	.test_walk		= clear_refs_test_walk,
1106 };
1107 
1108 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1109 				size_t count, loff_t *ppos)
1110 {
1111 	struct task_struct *task;
1112 	char buffer[PROC_NUMBUF];
1113 	struct mm_struct *mm;
1114 	struct vm_area_struct *vma;
1115 	enum clear_refs_types type;
1116 	struct mmu_gather tlb;
1117 	int itype;
1118 	int rv;
1119 
1120 	memset(buffer, 0, sizeof(buffer));
1121 	if (count > sizeof(buffer) - 1)
1122 		count = sizeof(buffer) - 1;
1123 	if (copy_from_user(buffer, buf, count))
1124 		return -EFAULT;
1125 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1126 	if (rv < 0)
1127 		return rv;
1128 	type = (enum clear_refs_types)itype;
1129 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1130 		return -EINVAL;
1131 
1132 	task = get_proc_task(file_inode(file));
1133 	if (!task)
1134 		return -ESRCH;
1135 	mm = get_task_mm(task);
1136 	if (mm) {
1137 		struct mmu_notifier_range range;
1138 		struct clear_refs_private cp = {
1139 			.type = type,
1140 		};
1141 
1142 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1143 			if (mmap_write_lock_killable(mm)) {
1144 				count = -EINTR;
1145 				goto out_mm;
1146 			}
1147 
1148 			/*
1149 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1150 			 * resident set size to this mm's current rss value.
1151 			 */
1152 			reset_mm_hiwater_rss(mm);
1153 			mmap_write_unlock(mm);
1154 			goto out_mm;
1155 		}
1156 
1157 		if (mmap_read_lock_killable(mm)) {
1158 			count = -EINTR;
1159 			goto out_mm;
1160 		}
1161 		tlb_gather_mmu(&tlb, mm, 0, -1);
1162 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1163 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1164 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1165 					continue;
1166 				mmap_read_unlock(mm);
1167 				if (mmap_write_lock_killable(mm)) {
1168 					count = -EINTR;
1169 					goto out_mm;
1170 				}
1171 				/*
1172 				 * Avoid to modify vma->vm_flags
1173 				 * without locked ops while the
1174 				 * coredump reads the vm_flags.
1175 				 */
1176 				if (!mmget_still_valid(mm)) {
1177 					/*
1178 					 * Silently return "count"
1179 					 * like if get_task_mm()
1180 					 * failed. FIXME: should this
1181 					 * function have returned
1182 					 * -ESRCH if get_task_mm()
1183 					 * failed like if
1184 					 * get_proc_task() fails?
1185 					 */
1186 					mmap_write_unlock(mm);
1187 					goto out_mm;
1188 				}
1189 				for (vma = mm->mmap; vma; vma = vma->vm_next) {
1190 					vma->vm_flags &= ~VM_SOFTDIRTY;
1191 					vma_set_page_prot(vma);
1192 				}
1193 				mmap_write_downgrade(mm);
1194 				break;
1195 			}
1196 
1197 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1198 						0, NULL, mm, 0, -1UL);
1199 			mmu_notifier_invalidate_range_start(&range);
1200 		}
1201 		walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1202 				&cp);
1203 		if (type == CLEAR_REFS_SOFT_DIRTY)
1204 			mmu_notifier_invalidate_range_end(&range);
1205 		tlb_finish_mmu(&tlb, 0, -1);
1206 		mmap_read_unlock(mm);
1207 out_mm:
1208 		mmput(mm);
1209 	}
1210 	put_task_struct(task);
1211 
1212 	return count;
1213 }
1214 
1215 const struct file_operations proc_clear_refs_operations = {
1216 	.write		= clear_refs_write,
1217 	.llseek		= noop_llseek,
1218 };
1219 
1220 typedef struct {
1221 	u64 pme;
1222 } pagemap_entry_t;
1223 
1224 struct pagemapread {
1225 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1226 	pagemap_entry_t *buffer;
1227 	bool show_pfn;
1228 };
1229 
1230 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1231 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1232 
1233 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1234 #define PM_PFRAME_BITS		55
1235 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1236 #define PM_SOFT_DIRTY		BIT_ULL(55)
1237 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1238 #define PM_FILE			BIT_ULL(61)
1239 #define PM_SWAP			BIT_ULL(62)
1240 #define PM_PRESENT		BIT_ULL(63)
1241 
1242 #define PM_END_OF_BUFFER    1
1243 
1244 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1245 {
1246 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1247 }
1248 
1249 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1250 			  struct pagemapread *pm)
1251 {
1252 	pm->buffer[pm->pos++] = *pme;
1253 	if (pm->pos >= pm->len)
1254 		return PM_END_OF_BUFFER;
1255 	return 0;
1256 }
1257 
1258 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1259 			    __always_unused int depth, struct mm_walk *walk)
1260 {
1261 	struct pagemapread *pm = walk->private;
1262 	unsigned long addr = start;
1263 	int err = 0;
1264 
1265 	while (addr < end) {
1266 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1267 		pagemap_entry_t pme = make_pme(0, 0);
1268 		/* End of address space hole, which we mark as non-present. */
1269 		unsigned long hole_end;
1270 
1271 		if (vma)
1272 			hole_end = min(end, vma->vm_start);
1273 		else
1274 			hole_end = end;
1275 
1276 		for (; addr < hole_end; addr += PAGE_SIZE) {
1277 			err = add_to_pagemap(addr, &pme, pm);
1278 			if (err)
1279 				goto out;
1280 		}
1281 
1282 		if (!vma)
1283 			break;
1284 
1285 		/* Addresses in the VMA. */
1286 		if (vma->vm_flags & VM_SOFTDIRTY)
1287 			pme = make_pme(0, PM_SOFT_DIRTY);
1288 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1289 			err = add_to_pagemap(addr, &pme, pm);
1290 			if (err)
1291 				goto out;
1292 		}
1293 	}
1294 out:
1295 	return err;
1296 }
1297 
1298 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1299 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1300 {
1301 	u64 frame = 0, flags = 0;
1302 	struct page *page = NULL;
1303 
1304 	if (pte_present(pte)) {
1305 		if (pm->show_pfn)
1306 			frame = pte_pfn(pte);
1307 		flags |= PM_PRESENT;
1308 		page = vm_normal_page(vma, addr, pte);
1309 		if (pte_soft_dirty(pte))
1310 			flags |= PM_SOFT_DIRTY;
1311 	} else if (is_swap_pte(pte)) {
1312 		swp_entry_t entry;
1313 		if (pte_swp_soft_dirty(pte))
1314 			flags |= PM_SOFT_DIRTY;
1315 		entry = pte_to_swp_entry(pte);
1316 		if (pm->show_pfn)
1317 			frame = swp_type(entry) |
1318 				(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1319 		flags |= PM_SWAP;
1320 		if (is_migration_entry(entry))
1321 			page = migration_entry_to_page(entry);
1322 
1323 		if (is_device_private_entry(entry))
1324 			page = device_private_entry_to_page(entry);
1325 	}
1326 
1327 	if (page && !PageAnon(page))
1328 		flags |= PM_FILE;
1329 	if (page && page_mapcount(page) == 1)
1330 		flags |= PM_MMAP_EXCLUSIVE;
1331 	if (vma->vm_flags & VM_SOFTDIRTY)
1332 		flags |= PM_SOFT_DIRTY;
1333 
1334 	return make_pme(frame, flags);
1335 }
1336 
1337 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1338 			     struct mm_walk *walk)
1339 {
1340 	struct vm_area_struct *vma = walk->vma;
1341 	struct pagemapread *pm = walk->private;
1342 	spinlock_t *ptl;
1343 	pte_t *pte, *orig_pte;
1344 	int err = 0;
1345 
1346 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1347 	ptl = pmd_trans_huge_lock(pmdp, vma);
1348 	if (ptl) {
1349 		u64 flags = 0, frame = 0;
1350 		pmd_t pmd = *pmdp;
1351 		struct page *page = NULL;
1352 
1353 		if (vma->vm_flags & VM_SOFTDIRTY)
1354 			flags |= PM_SOFT_DIRTY;
1355 
1356 		if (pmd_present(pmd)) {
1357 			page = pmd_page(pmd);
1358 
1359 			flags |= PM_PRESENT;
1360 			if (pmd_soft_dirty(pmd))
1361 				flags |= PM_SOFT_DIRTY;
1362 			if (pm->show_pfn)
1363 				frame = pmd_pfn(pmd) +
1364 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1365 		}
1366 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1367 		else if (is_swap_pmd(pmd)) {
1368 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1369 			unsigned long offset;
1370 
1371 			if (pm->show_pfn) {
1372 				offset = swp_offset(entry) +
1373 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1374 				frame = swp_type(entry) |
1375 					(offset << MAX_SWAPFILES_SHIFT);
1376 			}
1377 			flags |= PM_SWAP;
1378 			if (pmd_swp_soft_dirty(pmd))
1379 				flags |= PM_SOFT_DIRTY;
1380 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1381 			page = migration_entry_to_page(entry);
1382 		}
1383 #endif
1384 
1385 		if (page && page_mapcount(page) == 1)
1386 			flags |= PM_MMAP_EXCLUSIVE;
1387 
1388 		for (; addr != end; addr += PAGE_SIZE) {
1389 			pagemap_entry_t pme = make_pme(frame, flags);
1390 
1391 			err = add_to_pagemap(addr, &pme, pm);
1392 			if (err)
1393 				break;
1394 			if (pm->show_pfn) {
1395 				if (flags & PM_PRESENT)
1396 					frame++;
1397 				else if (flags & PM_SWAP)
1398 					frame += (1 << MAX_SWAPFILES_SHIFT);
1399 			}
1400 		}
1401 		spin_unlock(ptl);
1402 		return err;
1403 	}
1404 
1405 	if (pmd_trans_unstable(pmdp))
1406 		return 0;
1407 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1408 
1409 	/*
1410 	 * We can assume that @vma always points to a valid one and @end never
1411 	 * goes beyond vma->vm_end.
1412 	 */
1413 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1414 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1415 		pagemap_entry_t pme;
1416 
1417 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1418 		err = add_to_pagemap(addr, &pme, pm);
1419 		if (err)
1420 			break;
1421 	}
1422 	pte_unmap_unlock(orig_pte, ptl);
1423 
1424 	cond_resched();
1425 
1426 	return err;
1427 }
1428 
1429 #ifdef CONFIG_HUGETLB_PAGE
1430 /* This function walks within one hugetlb entry in the single call */
1431 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1432 				 unsigned long addr, unsigned long end,
1433 				 struct mm_walk *walk)
1434 {
1435 	struct pagemapread *pm = walk->private;
1436 	struct vm_area_struct *vma = walk->vma;
1437 	u64 flags = 0, frame = 0;
1438 	int err = 0;
1439 	pte_t pte;
1440 
1441 	if (vma->vm_flags & VM_SOFTDIRTY)
1442 		flags |= PM_SOFT_DIRTY;
1443 
1444 	pte = huge_ptep_get(ptep);
1445 	if (pte_present(pte)) {
1446 		struct page *page = pte_page(pte);
1447 
1448 		if (!PageAnon(page))
1449 			flags |= PM_FILE;
1450 
1451 		if (page_mapcount(page) == 1)
1452 			flags |= PM_MMAP_EXCLUSIVE;
1453 
1454 		flags |= PM_PRESENT;
1455 		if (pm->show_pfn)
1456 			frame = pte_pfn(pte) +
1457 				((addr & ~hmask) >> PAGE_SHIFT);
1458 	}
1459 
1460 	for (; addr != end; addr += PAGE_SIZE) {
1461 		pagemap_entry_t pme = make_pme(frame, flags);
1462 
1463 		err = add_to_pagemap(addr, &pme, pm);
1464 		if (err)
1465 			return err;
1466 		if (pm->show_pfn && (flags & PM_PRESENT))
1467 			frame++;
1468 	}
1469 
1470 	cond_resched();
1471 
1472 	return err;
1473 }
1474 #else
1475 #define pagemap_hugetlb_range	NULL
1476 #endif /* HUGETLB_PAGE */
1477 
1478 static const struct mm_walk_ops pagemap_ops = {
1479 	.pmd_entry	= pagemap_pmd_range,
1480 	.pte_hole	= pagemap_pte_hole,
1481 	.hugetlb_entry	= pagemap_hugetlb_range,
1482 };
1483 
1484 /*
1485  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1486  *
1487  * For each page in the address space, this file contains one 64-bit entry
1488  * consisting of the following:
1489  *
1490  * Bits 0-54  page frame number (PFN) if present
1491  * Bits 0-4   swap type if swapped
1492  * Bits 5-54  swap offset if swapped
1493  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1494  * Bit  56    page exclusively mapped
1495  * Bits 57-60 zero
1496  * Bit  61    page is file-page or shared-anon
1497  * Bit  62    page swapped
1498  * Bit  63    page present
1499  *
1500  * If the page is not present but in swap, then the PFN contains an
1501  * encoding of the swap file number and the page's offset into the
1502  * swap. Unmapped pages return a null PFN. This allows determining
1503  * precisely which pages are mapped (or in swap) and comparing mapped
1504  * pages between processes.
1505  *
1506  * Efficient users of this interface will use /proc/pid/maps to
1507  * determine which areas of memory are actually mapped and llseek to
1508  * skip over unmapped regions.
1509  */
1510 static ssize_t pagemap_read(struct file *file, char __user *buf,
1511 			    size_t count, loff_t *ppos)
1512 {
1513 	struct mm_struct *mm = file->private_data;
1514 	struct pagemapread pm;
1515 	unsigned long src;
1516 	unsigned long svpfn;
1517 	unsigned long start_vaddr;
1518 	unsigned long end_vaddr;
1519 	int ret = 0, copied = 0;
1520 
1521 	if (!mm || !mmget_not_zero(mm))
1522 		goto out;
1523 
1524 	ret = -EINVAL;
1525 	/* file position must be aligned */
1526 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1527 		goto out_mm;
1528 
1529 	ret = 0;
1530 	if (!count)
1531 		goto out_mm;
1532 
1533 	/* do not disclose physical addresses: attack vector */
1534 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1535 
1536 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1537 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1538 	ret = -ENOMEM;
1539 	if (!pm.buffer)
1540 		goto out_mm;
1541 
1542 	src = *ppos;
1543 	svpfn = src / PM_ENTRY_BYTES;
1544 	start_vaddr = svpfn << PAGE_SHIFT;
1545 	end_vaddr = mm->task_size;
1546 
1547 	/* watch out for wraparound */
1548 	if (svpfn > mm->task_size >> PAGE_SHIFT)
1549 		start_vaddr = end_vaddr;
1550 
1551 	/*
1552 	 * The odds are that this will stop walking way
1553 	 * before end_vaddr, because the length of the
1554 	 * user buffer is tracked in "pm", and the walk
1555 	 * will stop when we hit the end of the buffer.
1556 	 */
1557 	ret = 0;
1558 	while (count && (start_vaddr < end_vaddr)) {
1559 		int len;
1560 		unsigned long end;
1561 
1562 		pm.pos = 0;
1563 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1564 		/* overflow ? */
1565 		if (end < start_vaddr || end > end_vaddr)
1566 			end = end_vaddr;
1567 		ret = mmap_read_lock_killable(mm);
1568 		if (ret)
1569 			goto out_free;
1570 		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1571 		mmap_read_unlock(mm);
1572 		start_vaddr = end;
1573 
1574 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1575 		if (copy_to_user(buf, pm.buffer, len)) {
1576 			ret = -EFAULT;
1577 			goto out_free;
1578 		}
1579 		copied += len;
1580 		buf += len;
1581 		count -= len;
1582 	}
1583 	*ppos += copied;
1584 	if (!ret || ret == PM_END_OF_BUFFER)
1585 		ret = copied;
1586 
1587 out_free:
1588 	kfree(pm.buffer);
1589 out_mm:
1590 	mmput(mm);
1591 out:
1592 	return ret;
1593 }
1594 
1595 static int pagemap_open(struct inode *inode, struct file *file)
1596 {
1597 	struct mm_struct *mm;
1598 
1599 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1600 	if (IS_ERR(mm))
1601 		return PTR_ERR(mm);
1602 	file->private_data = mm;
1603 	return 0;
1604 }
1605 
1606 static int pagemap_release(struct inode *inode, struct file *file)
1607 {
1608 	struct mm_struct *mm = file->private_data;
1609 
1610 	if (mm)
1611 		mmdrop(mm);
1612 	return 0;
1613 }
1614 
1615 const struct file_operations proc_pagemap_operations = {
1616 	.llseek		= mem_lseek, /* borrow this */
1617 	.read		= pagemap_read,
1618 	.open		= pagemap_open,
1619 	.release	= pagemap_release,
1620 };
1621 #endif /* CONFIG_PROC_PAGE_MONITOR */
1622 
1623 #ifdef CONFIG_NUMA
1624 
1625 struct numa_maps {
1626 	unsigned long pages;
1627 	unsigned long anon;
1628 	unsigned long active;
1629 	unsigned long writeback;
1630 	unsigned long mapcount_max;
1631 	unsigned long dirty;
1632 	unsigned long swapcache;
1633 	unsigned long node[MAX_NUMNODES];
1634 };
1635 
1636 struct numa_maps_private {
1637 	struct proc_maps_private proc_maps;
1638 	struct numa_maps md;
1639 };
1640 
1641 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1642 			unsigned long nr_pages)
1643 {
1644 	int count = page_mapcount(page);
1645 
1646 	md->pages += nr_pages;
1647 	if (pte_dirty || PageDirty(page))
1648 		md->dirty += nr_pages;
1649 
1650 	if (PageSwapCache(page))
1651 		md->swapcache += nr_pages;
1652 
1653 	if (PageActive(page) || PageUnevictable(page))
1654 		md->active += nr_pages;
1655 
1656 	if (PageWriteback(page))
1657 		md->writeback += nr_pages;
1658 
1659 	if (PageAnon(page))
1660 		md->anon += nr_pages;
1661 
1662 	if (count > md->mapcount_max)
1663 		md->mapcount_max = count;
1664 
1665 	md->node[page_to_nid(page)] += nr_pages;
1666 }
1667 
1668 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1669 		unsigned long addr)
1670 {
1671 	struct page *page;
1672 	int nid;
1673 
1674 	if (!pte_present(pte))
1675 		return NULL;
1676 
1677 	page = vm_normal_page(vma, addr, pte);
1678 	if (!page)
1679 		return NULL;
1680 
1681 	if (PageReserved(page))
1682 		return NULL;
1683 
1684 	nid = page_to_nid(page);
1685 	if (!node_isset(nid, node_states[N_MEMORY]))
1686 		return NULL;
1687 
1688 	return page;
1689 }
1690 
1691 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1692 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1693 					      struct vm_area_struct *vma,
1694 					      unsigned long addr)
1695 {
1696 	struct page *page;
1697 	int nid;
1698 
1699 	if (!pmd_present(pmd))
1700 		return NULL;
1701 
1702 	page = vm_normal_page_pmd(vma, addr, pmd);
1703 	if (!page)
1704 		return NULL;
1705 
1706 	if (PageReserved(page))
1707 		return NULL;
1708 
1709 	nid = page_to_nid(page);
1710 	if (!node_isset(nid, node_states[N_MEMORY]))
1711 		return NULL;
1712 
1713 	return page;
1714 }
1715 #endif
1716 
1717 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1718 		unsigned long end, struct mm_walk *walk)
1719 {
1720 	struct numa_maps *md = walk->private;
1721 	struct vm_area_struct *vma = walk->vma;
1722 	spinlock_t *ptl;
1723 	pte_t *orig_pte;
1724 	pte_t *pte;
1725 
1726 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1727 	ptl = pmd_trans_huge_lock(pmd, vma);
1728 	if (ptl) {
1729 		struct page *page;
1730 
1731 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1732 		if (page)
1733 			gather_stats(page, md, pmd_dirty(*pmd),
1734 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1735 		spin_unlock(ptl);
1736 		return 0;
1737 	}
1738 
1739 	if (pmd_trans_unstable(pmd))
1740 		return 0;
1741 #endif
1742 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1743 	do {
1744 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1745 		if (!page)
1746 			continue;
1747 		gather_stats(page, md, pte_dirty(*pte), 1);
1748 
1749 	} while (pte++, addr += PAGE_SIZE, addr != end);
1750 	pte_unmap_unlock(orig_pte, ptl);
1751 	cond_resched();
1752 	return 0;
1753 }
1754 #ifdef CONFIG_HUGETLB_PAGE
1755 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1756 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1757 {
1758 	pte_t huge_pte = huge_ptep_get(pte);
1759 	struct numa_maps *md;
1760 	struct page *page;
1761 
1762 	if (!pte_present(huge_pte))
1763 		return 0;
1764 
1765 	page = pte_page(huge_pte);
1766 	if (!page)
1767 		return 0;
1768 
1769 	md = walk->private;
1770 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1771 	return 0;
1772 }
1773 
1774 #else
1775 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1776 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1777 {
1778 	return 0;
1779 }
1780 #endif
1781 
1782 static const struct mm_walk_ops show_numa_ops = {
1783 	.hugetlb_entry = gather_hugetlb_stats,
1784 	.pmd_entry = gather_pte_stats,
1785 };
1786 
1787 /*
1788  * Display pages allocated per node and memory policy via /proc.
1789  */
1790 static int show_numa_map(struct seq_file *m, void *v)
1791 {
1792 	struct numa_maps_private *numa_priv = m->private;
1793 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1794 	struct vm_area_struct *vma = v;
1795 	struct numa_maps *md = &numa_priv->md;
1796 	struct file *file = vma->vm_file;
1797 	struct mm_struct *mm = vma->vm_mm;
1798 	struct mempolicy *pol;
1799 	char buffer[64];
1800 	int nid;
1801 
1802 	if (!mm)
1803 		return 0;
1804 
1805 	/* Ensure we start with an empty set of numa_maps statistics. */
1806 	memset(md, 0, sizeof(*md));
1807 
1808 	pol = __get_vma_policy(vma, vma->vm_start);
1809 	if (pol) {
1810 		mpol_to_str(buffer, sizeof(buffer), pol);
1811 		mpol_cond_put(pol);
1812 	} else {
1813 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1814 	}
1815 
1816 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1817 
1818 	if (file) {
1819 		seq_puts(m, " file=");
1820 		seq_file_path(m, file, "\n\t= ");
1821 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1822 		seq_puts(m, " heap");
1823 	} else if (is_stack(vma)) {
1824 		seq_puts(m, " stack");
1825 	}
1826 
1827 	if (is_vm_hugetlb_page(vma))
1828 		seq_puts(m, " huge");
1829 
1830 	/* mmap_lock is held by m_start */
1831 	walk_page_vma(vma, &show_numa_ops, md);
1832 
1833 	if (!md->pages)
1834 		goto out;
1835 
1836 	if (md->anon)
1837 		seq_printf(m, " anon=%lu", md->anon);
1838 
1839 	if (md->dirty)
1840 		seq_printf(m, " dirty=%lu", md->dirty);
1841 
1842 	if (md->pages != md->anon && md->pages != md->dirty)
1843 		seq_printf(m, " mapped=%lu", md->pages);
1844 
1845 	if (md->mapcount_max > 1)
1846 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1847 
1848 	if (md->swapcache)
1849 		seq_printf(m, " swapcache=%lu", md->swapcache);
1850 
1851 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1852 		seq_printf(m, " active=%lu", md->active);
1853 
1854 	if (md->writeback)
1855 		seq_printf(m, " writeback=%lu", md->writeback);
1856 
1857 	for_each_node_state(nid, N_MEMORY)
1858 		if (md->node[nid])
1859 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1860 
1861 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1862 out:
1863 	seq_putc(m, '\n');
1864 	return 0;
1865 }
1866 
1867 static const struct seq_operations proc_pid_numa_maps_op = {
1868 	.start  = m_start,
1869 	.next   = m_next,
1870 	.stop   = m_stop,
1871 	.show   = show_numa_map,
1872 };
1873 
1874 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1875 {
1876 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1877 				sizeof(struct numa_maps_private));
1878 }
1879 
1880 const struct file_operations proc_pid_numa_maps_operations = {
1881 	.open		= pid_numa_maps_open,
1882 	.read		= seq_read,
1883 	.llseek		= seq_lseek,
1884 	.release	= proc_map_release,
1885 };
1886 
1887 #endif /* CONFIG_NUMA */
1888