1 #include <linux/mm.h> 2 #include <linux/vmacache.h> 3 #include <linux/hugetlb.h> 4 #include <linux/huge_mm.h> 5 #include <linux/mount.h> 6 #include <linux/seq_file.h> 7 #include <linux/highmem.h> 8 #include <linux/ptrace.h> 9 #include <linux/slab.h> 10 #include <linux/pagemap.h> 11 #include <linux/mempolicy.h> 12 #include <linux/rmap.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/page_idle.h> 17 #include <linux/shmem_fs.h> 18 19 #include <asm/elf.h> 20 #include <asm/uaccess.h> 21 #include <asm/tlbflush.h> 22 #include "internal.h" 23 24 void task_mem(struct seq_file *m, struct mm_struct *mm) 25 { 26 unsigned long text, lib, swap, ptes, pmds, anon, file, shmem; 27 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; 28 29 anon = get_mm_counter(mm, MM_ANONPAGES); 30 file = get_mm_counter(mm, MM_FILEPAGES); 31 shmem = get_mm_counter(mm, MM_SHMEMPAGES); 32 33 /* 34 * Note: to minimize their overhead, mm maintains hiwater_vm and 35 * hiwater_rss only when about to *lower* total_vm or rss. Any 36 * collector of these hiwater stats must therefore get total_vm 37 * and rss too, which will usually be the higher. Barriers? not 38 * worth the effort, such snapshots can always be inconsistent. 39 */ 40 hiwater_vm = total_vm = mm->total_vm; 41 if (hiwater_vm < mm->hiwater_vm) 42 hiwater_vm = mm->hiwater_vm; 43 hiwater_rss = total_rss = anon + file + shmem; 44 if (hiwater_rss < mm->hiwater_rss) 45 hiwater_rss = mm->hiwater_rss; 46 47 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10; 48 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text; 49 swap = get_mm_counter(mm, MM_SWAPENTS); 50 ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes); 51 pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm); 52 seq_printf(m, 53 "VmPeak:\t%8lu kB\n" 54 "VmSize:\t%8lu kB\n" 55 "VmLck:\t%8lu kB\n" 56 "VmPin:\t%8lu kB\n" 57 "VmHWM:\t%8lu kB\n" 58 "VmRSS:\t%8lu kB\n" 59 "RssAnon:\t%8lu kB\n" 60 "RssFile:\t%8lu kB\n" 61 "RssShmem:\t%8lu kB\n" 62 "VmData:\t%8lu kB\n" 63 "VmStk:\t%8lu kB\n" 64 "VmExe:\t%8lu kB\n" 65 "VmLib:\t%8lu kB\n" 66 "VmPTE:\t%8lu kB\n" 67 "VmPMD:\t%8lu kB\n" 68 "VmSwap:\t%8lu kB\n", 69 hiwater_vm << (PAGE_SHIFT-10), 70 total_vm << (PAGE_SHIFT-10), 71 mm->locked_vm << (PAGE_SHIFT-10), 72 mm->pinned_vm << (PAGE_SHIFT-10), 73 hiwater_rss << (PAGE_SHIFT-10), 74 total_rss << (PAGE_SHIFT-10), 75 anon << (PAGE_SHIFT-10), 76 file << (PAGE_SHIFT-10), 77 shmem << (PAGE_SHIFT-10), 78 mm->data_vm << (PAGE_SHIFT-10), 79 mm->stack_vm << (PAGE_SHIFT-10), text, lib, 80 ptes >> 10, 81 pmds >> 10, 82 swap << (PAGE_SHIFT-10)); 83 hugetlb_report_usage(m, mm); 84 } 85 86 unsigned long task_vsize(struct mm_struct *mm) 87 { 88 return PAGE_SIZE * mm->total_vm; 89 } 90 91 unsigned long task_statm(struct mm_struct *mm, 92 unsigned long *shared, unsigned long *text, 93 unsigned long *data, unsigned long *resident) 94 { 95 *shared = get_mm_counter(mm, MM_FILEPAGES) + 96 get_mm_counter(mm, MM_SHMEMPAGES); 97 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) 98 >> PAGE_SHIFT; 99 *data = mm->data_vm + mm->stack_vm; 100 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES); 101 return mm->total_vm; 102 } 103 104 #ifdef CONFIG_NUMA 105 /* 106 * Save get_task_policy() for show_numa_map(). 107 */ 108 static void hold_task_mempolicy(struct proc_maps_private *priv) 109 { 110 struct task_struct *task = priv->task; 111 112 task_lock(task); 113 priv->task_mempolicy = get_task_policy(task); 114 mpol_get(priv->task_mempolicy); 115 task_unlock(task); 116 } 117 static void release_task_mempolicy(struct proc_maps_private *priv) 118 { 119 mpol_put(priv->task_mempolicy); 120 } 121 #else 122 static void hold_task_mempolicy(struct proc_maps_private *priv) 123 { 124 } 125 static void release_task_mempolicy(struct proc_maps_private *priv) 126 { 127 } 128 #endif 129 130 static void vma_stop(struct proc_maps_private *priv) 131 { 132 struct mm_struct *mm = priv->mm; 133 134 release_task_mempolicy(priv); 135 up_read(&mm->mmap_sem); 136 mmput(mm); 137 } 138 139 static struct vm_area_struct * 140 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma) 141 { 142 if (vma == priv->tail_vma) 143 return NULL; 144 return vma->vm_next ?: priv->tail_vma; 145 } 146 147 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma) 148 { 149 if (m->count < m->size) /* vma is copied successfully */ 150 m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL; 151 } 152 153 static void *m_start(struct seq_file *m, loff_t *ppos) 154 { 155 struct proc_maps_private *priv = m->private; 156 unsigned long last_addr = m->version; 157 struct mm_struct *mm; 158 struct vm_area_struct *vma; 159 unsigned int pos = *ppos; 160 161 /* See m_cache_vma(). Zero at the start or after lseek. */ 162 if (last_addr == -1UL) 163 return NULL; 164 165 priv->task = get_proc_task(priv->inode); 166 if (!priv->task) 167 return ERR_PTR(-ESRCH); 168 169 mm = priv->mm; 170 if (!mm || !atomic_inc_not_zero(&mm->mm_users)) 171 return NULL; 172 173 down_read(&mm->mmap_sem); 174 hold_task_mempolicy(priv); 175 priv->tail_vma = get_gate_vma(mm); 176 177 if (last_addr) { 178 vma = find_vma(mm, last_addr); 179 if (vma && (vma = m_next_vma(priv, vma))) 180 return vma; 181 } 182 183 m->version = 0; 184 if (pos < mm->map_count) { 185 for (vma = mm->mmap; pos; pos--) { 186 m->version = vma->vm_start; 187 vma = vma->vm_next; 188 } 189 return vma; 190 } 191 192 /* we do not bother to update m->version in this case */ 193 if (pos == mm->map_count && priv->tail_vma) 194 return priv->tail_vma; 195 196 vma_stop(priv); 197 return NULL; 198 } 199 200 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 201 { 202 struct proc_maps_private *priv = m->private; 203 struct vm_area_struct *next; 204 205 (*pos)++; 206 next = m_next_vma(priv, v); 207 if (!next) 208 vma_stop(priv); 209 return next; 210 } 211 212 static void m_stop(struct seq_file *m, void *v) 213 { 214 struct proc_maps_private *priv = m->private; 215 216 if (!IS_ERR_OR_NULL(v)) 217 vma_stop(priv); 218 if (priv->task) { 219 put_task_struct(priv->task); 220 priv->task = NULL; 221 } 222 } 223 224 static int proc_maps_open(struct inode *inode, struct file *file, 225 const struct seq_operations *ops, int psize) 226 { 227 struct proc_maps_private *priv = __seq_open_private(file, ops, psize); 228 229 if (!priv) 230 return -ENOMEM; 231 232 priv->inode = inode; 233 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); 234 if (IS_ERR(priv->mm)) { 235 int err = PTR_ERR(priv->mm); 236 237 seq_release_private(inode, file); 238 return err; 239 } 240 241 return 0; 242 } 243 244 static int proc_map_release(struct inode *inode, struct file *file) 245 { 246 struct seq_file *seq = file->private_data; 247 struct proc_maps_private *priv = seq->private; 248 249 if (priv->mm) 250 mmdrop(priv->mm); 251 252 return seq_release_private(inode, file); 253 } 254 255 static int do_maps_open(struct inode *inode, struct file *file, 256 const struct seq_operations *ops) 257 { 258 return proc_maps_open(inode, file, ops, 259 sizeof(struct proc_maps_private)); 260 } 261 262 /* 263 * Indicate if the VMA is a stack for the given task; for 264 * /proc/PID/maps that is the stack of the main task. 265 */ 266 static int is_stack(struct proc_maps_private *priv, 267 struct vm_area_struct *vma, int is_pid) 268 { 269 int stack = 0; 270 271 if (is_pid) { 272 stack = vma->vm_start <= vma->vm_mm->start_stack && 273 vma->vm_end >= vma->vm_mm->start_stack; 274 } else { 275 struct inode *inode = priv->inode; 276 struct task_struct *task; 277 278 rcu_read_lock(); 279 task = pid_task(proc_pid(inode), PIDTYPE_PID); 280 if (task) 281 stack = vma_is_stack_for_task(vma, task); 282 rcu_read_unlock(); 283 } 284 return stack; 285 } 286 287 static void 288 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid) 289 { 290 struct mm_struct *mm = vma->vm_mm; 291 struct file *file = vma->vm_file; 292 struct proc_maps_private *priv = m->private; 293 vm_flags_t flags = vma->vm_flags; 294 unsigned long ino = 0; 295 unsigned long long pgoff = 0; 296 unsigned long start, end; 297 dev_t dev = 0; 298 const char *name = NULL; 299 300 if (file) { 301 struct inode *inode = file_inode(vma->vm_file); 302 dev = inode->i_sb->s_dev; 303 ino = inode->i_ino; 304 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT; 305 } 306 307 /* We don't show the stack guard page in /proc/maps */ 308 start = vma->vm_start; 309 if (stack_guard_page_start(vma, start)) 310 start += PAGE_SIZE; 311 end = vma->vm_end; 312 if (stack_guard_page_end(vma, end)) 313 end -= PAGE_SIZE; 314 315 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1); 316 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ", 317 start, 318 end, 319 flags & VM_READ ? 'r' : '-', 320 flags & VM_WRITE ? 'w' : '-', 321 flags & VM_EXEC ? 'x' : '-', 322 flags & VM_MAYSHARE ? 's' : 'p', 323 pgoff, 324 MAJOR(dev), MINOR(dev), ino); 325 326 /* 327 * Print the dentry name for named mappings, and a 328 * special [heap] marker for the heap: 329 */ 330 if (file) { 331 seq_pad(m, ' '); 332 seq_file_path(m, file, "\n"); 333 goto done; 334 } 335 336 if (vma->vm_ops && vma->vm_ops->name) { 337 name = vma->vm_ops->name(vma); 338 if (name) 339 goto done; 340 } 341 342 name = arch_vma_name(vma); 343 if (!name) { 344 if (!mm) { 345 name = "[vdso]"; 346 goto done; 347 } 348 349 if (vma->vm_start <= mm->brk && 350 vma->vm_end >= mm->start_brk) { 351 name = "[heap]"; 352 goto done; 353 } 354 355 if (is_stack(priv, vma, is_pid)) 356 name = "[stack]"; 357 } 358 359 done: 360 if (name) { 361 seq_pad(m, ' '); 362 seq_puts(m, name); 363 } 364 seq_putc(m, '\n'); 365 } 366 367 static int show_map(struct seq_file *m, void *v, int is_pid) 368 { 369 show_map_vma(m, v, is_pid); 370 m_cache_vma(m, v); 371 return 0; 372 } 373 374 static int show_pid_map(struct seq_file *m, void *v) 375 { 376 return show_map(m, v, 1); 377 } 378 379 static int show_tid_map(struct seq_file *m, void *v) 380 { 381 return show_map(m, v, 0); 382 } 383 384 static const struct seq_operations proc_pid_maps_op = { 385 .start = m_start, 386 .next = m_next, 387 .stop = m_stop, 388 .show = show_pid_map 389 }; 390 391 static const struct seq_operations proc_tid_maps_op = { 392 .start = m_start, 393 .next = m_next, 394 .stop = m_stop, 395 .show = show_tid_map 396 }; 397 398 static int pid_maps_open(struct inode *inode, struct file *file) 399 { 400 return do_maps_open(inode, file, &proc_pid_maps_op); 401 } 402 403 static int tid_maps_open(struct inode *inode, struct file *file) 404 { 405 return do_maps_open(inode, file, &proc_tid_maps_op); 406 } 407 408 const struct file_operations proc_pid_maps_operations = { 409 .open = pid_maps_open, 410 .read = seq_read, 411 .llseek = seq_lseek, 412 .release = proc_map_release, 413 }; 414 415 const struct file_operations proc_tid_maps_operations = { 416 .open = tid_maps_open, 417 .read = seq_read, 418 .llseek = seq_lseek, 419 .release = proc_map_release, 420 }; 421 422 /* 423 * Proportional Set Size(PSS): my share of RSS. 424 * 425 * PSS of a process is the count of pages it has in memory, where each 426 * page is divided by the number of processes sharing it. So if a 427 * process has 1000 pages all to itself, and 1000 shared with one other 428 * process, its PSS will be 1500. 429 * 430 * To keep (accumulated) division errors low, we adopt a 64bit 431 * fixed-point pss counter to minimize division errors. So (pss >> 432 * PSS_SHIFT) would be the real byte count. 433 * 434 * A shift of 12 before division means (assuming 4K page size): 435 * - 1M 3-user-pages add up to 8KB errors; 436 * - supports mapcount up to 2^24, or 16M; 437 * - supports PSS up to 2^52 bytes, or 4PB. 438 */ 439 #define PSS_SHIFT 12 440 441 #ifdef CONFIG_PROC_PAGE_MONITOR 442 struct mem_size_stats { 443 unsigned long resident; 444 unsigned long shared_clean; 445 unsigned long shared_dirty; 446 unsigned long private_clean; 447 unsigned long private_dirty; 448 unsigned long referenced; 449 unsigned long anonymous; 450 unsigned long anonymous_thp; 451 unsigned long swap; 452 unsigned long shared_hugetlb; 453 unsigned long private_hugetlb; 454 u64 pss; 455 u64 swap_pss; 456 bool check_shmem_swap; 457 }; 458 459 static void smaps_account(struct mem_size_stats *mss, struct page *page, 460 bool compound, bool young, bool dirty) 461 { 462 int i, nr = compound ? 1 << compound_order(page) : 1; 463 unsigned long size = nr * PAGE_SIZE; 464 465 if (PageAnon(page)) 466 mss->anonymous += size; 467 468 mss->resident += size; 469 /* Accumulate the size in pages that have been accessed. */ 470 if (young || page_is_young(page) || PageReferenced(page)) 471 mss->referenced += size; 472 473 /* 474 * page_count(page) == 1 guarantees the page is mapped exactly once. 475 * If any subpage of the compound page mapped with PTE it would elevate 476 * page_count(). 477 */ 478 if (page_count(page) == 1) { 479 if (dirty || PageDirty(page)) 480 mss->private_dirty += size; 481 else 482 mss->private_clean += size; 483 mss->pss += (u64)size << PSS_SHIFT; 484 return; 485 } 486 487 for (i = 0; i < nr; i++, page++) { 488 int mapcount = page_mapcount(page); 489 490 if (mapcount >= 2) { 491 if (dirty || PageDirty(page)) 492 mss->shared_dirty += PAGE_SIZE; 493 else 494 mss->shared_clean += PAGE_SIZE; 495 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount; 496 } else { 497 if (dirty || PageDirty(page)) 498 mss->private_dirty += PAGE_SIZE; 499 else 500 mss->private_clean += PAGE_SIZE; 501 mss->pss += PAGE_SIZE << PSS_SHIFT; 502 } 503 } 504 } 505 506 #ifdef CONFIG_SHMEM 507 static int smaps_pte_hole(unsigned long addr, unsigned long end, 508 struct mm_walk *walk) 509 { 510 struct mem_size_stats *mss = walk->private; 511 512 mss->swap += shmem_partial_swap_usage( 513 walk->vma->vm_file->f_mapping, addr, end); 514 515 return 0; 516 } 517 #endif 518 519 static void smaps_pte_entry(pte_t *pte, unsigned long addr, 520 struct mm_walk *walk) 521 { 522 struct mem_size_stats *mss = walk->private; 523 struct vm_area_struct *vma = walk->vma; 524 struct page *page = NULL; 525 526 if (pte_present(*pte)) { 527 page = vm_normal_page(vma, addr, *pte); 528 } else if (is_swap_pte(*pte)) { 529 swp_entry_t swpent = pte_to_swp_entry(*pte); 530 531 if (!non_swap_entry(swpent)) { 532 int mapcount; 533 534 mss->swap += PAGE_SIZE; 535 mapcount = swp_swapcount(swpent); 536 if (mapcount >= 2) { 537 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT; 538 539 do_div(pss_delta, mapcount); 540 mss->swap_pss += pss_delta; 541 } else { 542 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT; 543 } 544 } else if (is_migration_entry(swpent)) 545 page = migration_entry_to_page(swpent); 546 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap 547 && pte_none(*pte))) { 548 page = find_get_entry(vma->vm_file->f_mapping, 549 linear_page_index(vma, addr)); 550 if (!page) 551 return; 552 553 if (radix_tree_exceptional_entry(page)) 554 mss->swap += PAGE_SIZE; 555 else 556 page_cache_release(page); 557 558 return; 559 } 560 561 if (!page) 562 return; 563 564 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte)); 565 } 566 567 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 568 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 569 struct mm_walk *walk) 570 { 571 struct mem_size_stats *mss = walk->private; 572 struct vm_area_struct *vma = walk->vma; 573 struct page *page; 574 575 /* FOLL_DUMP will return -EFAULT on huge zero page */ 576 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP); 577 if (IS_ERR_OR_NULL(page)) 578 return; 579 mss->anonymous_thp += HPAGE_PMD_SIZE; 580 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd)); 581 } 582 #else 583 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 584 struct mm_walk *walk) 585 { 586 } 587 #endif 588 589 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 590 struct mm_walk *walk) 591 { 592 struct vm_area_struct *vma = walk->vma; 593 pte_t *pte; 594 spinlock_t *ptl; 595 596 ptl = pmd_trans_huge_lock(pmd, vma); 597 if (ptl) { 598 smaps_pmd_entry(pmd, addr, walk); 599 spin_unlock(ptl); 600 return 0; 601 } 602 603 if (pmd_trans_unstable(pmd)) 604 return 0; 605 /* 606 * The mmap_sem held all the way back in m_start() is what 607 * keeps khugepaged out of here and from collapsing things 608 * in here. 609 */ 610 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 611 for (; addr != end; pte++, addr += PAGE_SIZE) 612 smaps_pte_entry(pte, addr, walk); 613 pte_unmap_unlock(pte - 1, ptl); 614 cond_resched(); 615 return 0; 616 } 617 618 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma) 619 { 620 /* 621 * Don't forget to update Documentation/ on changes. 622 */ 623 static const char mnemonics[BITS_PER_LONG][2] = { 624 /* 625 * In case if we meet a flag we don't know about. 626 */ 627 [0 ... (BITS_PER_LONG-1)] = "??", 628 629 [ilog2(VM_READ)] = "rd", 630 [ilog2(VM_WRITE)] = "wr", 631 [ilog2(VM_EXEC)] = "ex", 632 [ilog2(VM_SHARED)] = "sh", 633 [ilog2(VM_MAYREAD)] = "mr", 634 [ilog2(VM_MAYWRITE)] = "mw", 635 [ilog2(VM_MAYEXEC)] = "me", 636 [ilog2(VM_MAYSHARE)] = "ms", 637 [ilog2(VM_GROWSDOWN)] = "gd", 638 [ilog2(VM_PFNMAP)] = "pf", 639 [ilog2(VM_DENYWRITE)] = "dw", 640 #ifdef CONFIG_X86_INTEL_MPX 641 [ilog2(VM_MPX)] = "mp", 642 #endif 643 [ilog2(VM_LOCKED)] = "lo", 644 [ilog2(VM_IO)] = "io", 645 [ilog2(VM_SEQ_READ)] = "sr", 646 [ilog2(VM_RAND_READ)] = "rr", 647 [ilog2(VM_DONTCOPY)] = "dc", 648 [ilog2(VM_DONTEXPAND)] = "de", 649 [ilog2(VM_ACCOUNT)] = "ac", 650 [ilog2(VM_NORESERVE)] = "nr", 651 [ilog2(VM_HUGETLB)] = "ht", 652 [ilog2(VM_ARCH_1)] = "ar", 653 [ilog2(VM_DONTDUMP)] = "dd", 654 #ifdef CONFIG_MEM_SOFT_DIRTY 655 [ilog2(VM_SOFTDIRTY)] = "sd", 656 #endif 657 [ilog2(VM_MIXEDMAP)] = "mm", 658 [ilog2(VM_HUGEPAGE)] = "hg", 659 [ilog2(VM_NOHUGEPAGE)] = "nh", 660 [ilog2(VM_MERGEABLE)] = "mg", 661 [ilog2(VM_UFFD_MISSING)]= "um", 662 [ilog2(VM_UFFD_WP)] = "uw", 663 }; 664 size_t i; 665 666 seq_puts(m, "VmFlags: "); 667 for (i = 0; i < BITS_PER_LONG; i++) { 668 if (vma->vm_flags & (1UL << i)) { 669 seq_printf(m, "%c%c ", 670 mnemonics[i][0], mnemonics[i][1]); 671 } 672 } 673 seq_putc(m, '\n'); 674 } 675 676 #ifdef CONFIG_HUGETLB_PAGE 677 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask, 678 unsigned long addr, unsigned long end, 679 struct mm_walk *walk) 680 { 681 struct mem_size_stats *mss = walk->private; 682 struct vm_area_struct *vma = walk->vma; 683 struct page *page = NULL; 684 685 if (pte_present(*pte)) { 686 page = vm_normal_page(vma, addr, *pte); 687 } else if (is_swap_pte(*pte)) { 688 swp_entry_t swpent = pte_to_swp_entry(*pte); 689 690 if (is_migration_entry(swpent)) 691 page = migration_entry_to_page(swpent); 692 } 693 if (page) { 694 int mapcount = page_mapcount(page); 695 696 if (mapcount >= 2) 697 mss->shared_hugetlb += huge_page_size(hstate_vma(vma)); 698 else 699 mss->private_hugetlb += huge_page_size(hstate_vma(vma)); 700 } 701 return 0; 702 } 703 #endif /* HUGETLB_PAGE */ 704 705 static int show_smap(struct seq_file *m, void *v, int is_pid) 706 { 707 struct vm_area_struct *vma = v; 708 struct mem_size_stats mss; 709 struct mm_walk smaps_walk = { 710 .pmd_entry = smaps_pte_range, 711 #ifdef CONFIG_HUGETLB_PAGE 712 .hugetlb_entry = smaps_hugetlb_range, 713 #endif 714 .mm = vma->vm_mm, 715 .private = &mss, 716 }; 717 718 memset(&mss, 0, sizeof mss); 719 720 #ifdef CONFIG_SHMEM 721 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) { 722 /* 723 * For shared or readonly shmem mappings we know that all 724 * swapped out pages belong to the shmem object, and we can 725 * obtain the swap value much more efficiently. For private 726 * writable mappings, we might have COW pages that are 727 * not affected by the parent swapped out pages of the shmem 728 * object, so we have to distinguish them during the page walk. 729 * Unless we know that the shmem object (or the part mapped by 730 * our VMA) has no swapped out pages at all. 731 */ 732 unsigned long shmem_swapped = shmem_swap_usage(vma); 733 734 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) || 735 !(vma->vm_flags & VM_WRITE)) { 736 mss.swap = shmem_swapped; 737 } else { 738 mss.check_shmem_swap = true; 739 smaps_walk.pte_hole = smaps_pte_hole; 740 } 741 } 742 #endif 743 744 /* mmap_sem is held in m_start */ 745 walk_page_vma(vma, &smaps_walk); 746 747 show_map_vma(m, vma, is_pid); 748 749 seq_printf(m, 750 "Size: %8lu kB\n" 751 "Rss: %8lu kB\n" 752 "Pss: %8lu kB\n" 753 "Shared_Clean: %8lu kB\n" 754 "Shared_Dirty: %8lu kB\n" 755 "Private_Clean: %8lu kB\n" 756 "Private_Dirty: %8lu kB\n" 757 "Referenced: %8lu kB\n" 758 "Anonymous: %8lu kB\n" 759 "AnonHugePages: %8lu kB\n" 760 "Shared_Hugetlb: %8lu kB\n" 761 "Private_Hugetlb: %7lu kB\n" 762 "Swap: %8lu kB\n" 763 "SwapPss: %8lu kB\n" 764 "KernelPageSize: %8lu kB\n" 765 "MMUPageSize: %8lu kB\n" 766 "Locked: %8lu kB\n", 767 (vma->vm_end - vma->vm_start) >> 10, 768 mss.resident >> 10, 769 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)), 770 mss.shared_clean >> 10, 771 mss.shared_dirty >> 10, 772 mss.private_clean >> 10, 773 mss.private_dirty >> 10, 774 mss.referenced >> 10, 775 mss.anonymous >> 10, 776 mss.anonymous_thp >> 10, 777 mss.shared_hugetlb >> 10, 778 mss.private_hugetlb >> 10, 779 mss.swap >> 10, 780 (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)), 781 vma_kernel_pagesize(vma) >> 10, 782 vma_mmu_pagesize(vma) >> 10, 783 (vma->vm_flags & VM_LOCKED) ? 784 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0); 785 786 show_smap_vma_flags(m, vma); 787 m_cache_vma(m, vma); 788 return 0; 789 } 790 791 static int show_pid_smap(struct seq_file *m, void *v) 792 { 793 return show_smap(m, v, 1); 794 } 795 796 static int show_tid_smap(struct seq_file *m, void *v) 797 { 798 return show_smap(m, v, 0); 799 } 800 801 static const struct seq_operations proc_pid_smaps_op = { 802 .start = m_start, 803 .next = m_next, 804 .stop = m_stop, 805 .show = show_pid_smap 806 }; 807 808 static const struct seq_operations proc_tid_smaps_op = { 809 .start = m_start, 810 .next = m_next, 811 .stop = m_stop, 812 .show = show_tid_smap 813 }; 814 815 static int pid_smaps_open(struct inode *inode, struct file *file) 816 { 817 return do_maps_open(inode, file, &proc_pid_smaps_op); 818 } 819 820 static int tid_smaps_open(struct inode *inode, struct file *file) 821 { 822 return do_maps_open(inode, file, &proc_tid_smaps_op); 823 } 824 825 const struct file_operations proc_pid_smaps_operations = { 826 .open = pid_smaps_open, 827 .read = seq_read, 828 .llseek = seq_lseek, 829 .release = proc_map_release, 830 }; 831 832 const struct file_operations proc_tid_smaps_operations = { 833 .open = tid_smaps_open, 834 .read = seq_read, 835 .llseek = seq_lseek, 836 .release = proc_map_release, 837 }; 838 839 enum clear_refs_types { 840 CLEAR_REFS_ALL = 1, 841 CLEAR_REFS_ANON, 842 CLEAR_REFS_MAPPED, 843 CLEAR_REFS_SOFT_DIRTY, 844 CLEAR_REFS_MM_HIWATER_RSS, 845 CLEAR_REFS_LAST, 846 }; 847 848 struct clear_refs_private { 849 enum clear_refs_types type; 850 }; 851 852 #ifdef CONFIG_MEM_SOFT_DIRTY 853 static inline void clear_soft_dirty(struct vm_area_struct *vma, 854 unsigned long addr, pte_t *pte) 855 { 856 /* 857 * The soft-dirty tracker uses #PF-s to catch writes 858 * to pages, so write-protect the pte as well. See the 859 * Documentation/vm/soft-dirty.txt for full description 860 * of how soft-dirty works. 861 */ 862 pte_t ptent = *pte; 863 864 if (pte_present(ptent)) { 865 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte); 866 ptent = pte_wrprotect(ptent); 867 ptent = pte_clear_soft_dirty(ptent); 868 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent); 869 } else if (is_swap_pte(ptent)) { 870 ptent = pte_swp_clear_soft_dirty(ptent); 871 set_pte_at(vma->vm_mm, addr, pte, ptent); 872 } 873 } 874 #else 875 static inline void clear_soft_dirty(struct vm_area_struct *vma, 876 unsigned long addr, pte_t *pte) 877 { 878 } 879 #endif 880 881 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 882 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 883 unsigned long addr, pmd_t *pmdp) 884 { 885 pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 886 887 pmd = pmd_wrprotect(pmd); 888 pmd = pmd_clear_soft_dirty(pmd); 889 890 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 891 } 892 #else 893 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 894 unsigned long addr, pmd_t *pmdp) 895 { 896 } 897 #endif 898 899 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, 900 unsigned long end, struct mm_walk *walk) 901 { 902 struct clear_refs_private *cp = walk->private; 903 struct vm_area_struct *vma = walk->vma; 904 pte_t *pte, ptent; 905 spinlock_t *ptl; 906 struct page *page; 907 908 ptl = pmd_trans_huge_lock(pmd, vma); 909 if (ptl) { 910 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 911 clear_soft_dirty_pmd(vma, addr, pmd); 912 goto out; 913 } 914 915 page = pmd_page(*pmd); 916 917 /* Clear accessed and referenced bits. */ 918 pmdp_test_and_clear_young(vma, addr, pmd); 919 test_and_clear_page_young(page); 920 ClearPageReferenced(page); 921 out: 922 spin_unlock(ptl); 923 return 0; 924 } 925 926 if (pmd_trans_unstable(pmd)) 927 return 0; 928 929 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 930 for (; addr != end; pte++, addr += PAGE_SIZE) { 931 ptent = *pte; 932 933 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 934 clear_soft_dirty(vma, addr, pte); 935 continue; 936 } 937 938 if (!pte_present(ptent)) 939 continue; 940 941 page = vm_normal_page(vma, addr, ptent); 942 if (!page) 943 continue; 944 945 /* Clear accessed and referenced bits. */ 946 ptep_test_and_clear_young(vma, addr, pte); 947 test_and_clear_page_young(page); 948 ClearPageReferenced(page); 949 } 950 pte_unmap_unlock(pte - 1, ptl); 951 cond_resched(); 952 return 0; 953 } 954 955 static int clear_refs_test_walk(unsigned long start, unsigned long end, 956 struct mm_walk *walk) 957 { 958 struct clear_refs_private *cp = walk->private; 959 struct vm_area_struct *vma = walk->vma; 960 961 if (vma->vm_flags & VM_PFNMAP) 962 return 1; 963 964 /* 965 * Writing 1 to /proc/pid/clear_refs affects all pages. 966 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages. 967 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages. 968 * Writing 4 to /proc/pid/clear_refs affects all pages. 969 */ 970 if (cp->type == CLEAR_REFS_ANON && vma->vm_file) 971 return 1; 972 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file) 973 return 1; 974 return 0; 975 } 976 977 static ssize_t clear_refs_write(struct file *file, const char __user *buf, 978 size_t count, loff_t *ppos) 979 { 980 struct task_struct *task; 981 char buffer[PROC_NUMBUF]; 982 struct mm_struct *mm; 983 struct vm_area_struct *vma; 984 enum clear_refs_types type; 985 int itype; 986 int rv; 987 988 memset(buffer, 0, sizeof(buffer)); 989 if (count > sizeof(buffer) - 1) 990 count = sizeof(buffer) - 1; 991 if (copy_from_user(buffer, buf, count)) 992 return -EFAULT; 993 rv = kstrtoint(strstrip(buffer), 10, &itype); 994 if (rv < 0) 995 return rv; 996 type = (enum clear_refs_types)itype; 997 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST) 998 return -EINVAL; 999 1000 task = get_proc_task(file_inode(file)); 1001 if (!task) 1002 return -ESRCH; 1003 mm = get_task_mm(task); 1004 if (mm) { 1005 struct clear_refs_private cp = { 1006 .type = type, 1007 }; 1008 struct mm_walk clear_refs_walk = { 1009 .pmd_entry = clear_refs_pte_range, 1010 .test_walk = clear_refs_test_walk, 1011 .mm = mm, 1012 .private = &cp, 1013 }; 1014 1015 if (type == CLEAR_REFS_MM_HIWATER_RSS) { 1016 /* 1017 * Writing 5 to /proc/pid/clear_refs resets the peak 1018 * resident set size to this mm's current rss value. 1019 */ 1020 down_write(&mm->mmap_sem); 1021 reset_mm_hiwater_rss(mm); 1022 up_write(&mm->mmap_sem); 1023 goto out_mm; 1024 } 1025 1026 down_read(&mm->mmap_sem); 1027 if (type == CLEAR_REFS_SOFT_DIRTY) { 1028 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1029 if (!(vma->vm_flags & VM_SOFTDIRTY)) 1030 continue; 1031 up_read(&mm->mmap_sem); 1032 down_write(&mm->mmap_sem); 1033 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1034 vma->vm_flags &= ~VM_SOFTDIRTY; 1035 vma_set_page_prot(vma); 1036 } 1037 downgrade_write(&mm->mmap_sem); 1038 break; 1039 } 1040 mmu_notifier_invalidate_range_start(mm, 0, -1); 1041 } 1042 walk_page_range(0, ~0UL, &clear_refs_walk); 1043 if (type == CLEAR_REFS_SOFT_DIRTY) 1044 mmu_notifier_invalidate_range_end(mm, 0, -1); 1045 flush_tlb_mm(mm); 1046 up_read(&mm->mmap_sem); 1047 out_mm: 1048 mmput(mm); 1049 } 1050 put_task_struct(task); 1051 1052 return count; 1053 } 1054 1055 const struct file_operations proc_clear_refs_operations = { 1056 .write = clear_refs_write, 1057 .llseek = noop_llseek, 1058 }; 1059 1060 typedef struct { 1061 u64 pme; 1062 } pagemap_entry_t; 1063 1064 struct pagemapread { 1065 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */ 1066 pagemap_entry_t *buffer; 1067 bool show_pfn; 1068 }; 1069 1070 #define PAGEMAP_WALK_SIZE (PMD_SIZE) 1071 #define PAGEMAP_WALK_MASK (PMD_MASK) 1072 1073 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t) 1074 #define PM_PFRAME_BITS 55 1075 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0) 1076 #define PM_SOFT_DIRTY BIT_ULL(55) 1077 #define PM_MMAP_EXCLUSIVE BIT_ULL(56) 1078 #define PM_FILE BIT_ULL(61) 1079 #define PM_SWAP BIT_ULL(62) 1080 #define PM_PRESENT BIT_ULL(63) 1081 1082 #define PM_END_OF_BUFFER 1 1083 1084 static inline pagemap_entry_t make_pme(u64 frame, u64 flags) 1085 { 1086 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags }; 1087 } 1088 1089 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme, 1090 struct pagemapread *pm) 1091 { 1092 pm->buffer[pm->pos++] = *pme; 1093 if (pm->pos >= pm->len) 1094 return PM_END_OF_BUFFER; 1095 return 0; 1096 } 1097 1098 static int pagemap_pte_hole(unsigned long start, unsigned long end, 1099 struct mm_walk *walk) 1100 { 1101 struct pagemapread *pm = walk->private; 1102 unsigned long addr = start; 1103 int err = 0; 1104 1105 while (addr < end) { 1106 struct vm_area_struct *vma = find_vma(walk->mm, addr); 1107 pagemap_entry_t pme = make_pme(0, 0); 1108 /* End of address space hole, which we mark as non-present. */ 1109 unsigned long hole_end; 1110 1111 if (vma) 1112 hole_end = min(end, vma->vm_start); 1113 else 1114 hole_end = end; 1115 1116 for (; addr < hole_end; addr += PAGE_SIZE) { 1117 err = add_to_pagemap(addr, &pme, pm); 1118 if (err) 1119 goto out; 1120 } 1121 1122 if (!vma) 1123 break; 1124 1125 /* Addresses in the VMA. */ 1126 if (vma->vm_flags & VM_SOFTDIRTY) 1127 pme = make_pme(0, PM_SOFT_DIRTY); 1128 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) { 1129 err = add_to_pagemap(addr, &pme, pm); 1130 if (err) 1131 goto out; 1132 } 1133 } 1134 out: 1135 return err; 1136 } 1137 1138 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm, 1139 struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1140 { 1141 u64 frame = 0, flags = 0; 1142 struct page *page = NULL; 1143 1144 if (pte_present(pte)) { 1145 if (pm->show_pfn) 1146 frame = pte_pfn(pte); 1147 flags |= PM_PRESENT; 1148 page = vm_normal_page(vma, addr, pte); 1149 if (pte_soft_dirty(pte)) 1150 flags |= PM_SOFT_DIRTY; 1151 } else if (is_swap_pte(pte)) { 1152 swp_entry_t entry; 1153 if (pte_swp_soft_dirty(pte)) 1154 flags |= PM_SOFT_DIRTY; 1155 entry = pte_to_swp_entry(pte); 1156 frame = swp_type(entry) | 1157 (swp_offset(entry) << MAX_SWAPFILES_SHIFT); 1158 flags |= PM_SWAP; 1159 if (is_migration_entry(entry)) 1160 page = migration_entry_to_page(entry); 1161 } 1162 1163 if (page && !PageAnon(page)) 1164 flags |= PM_FILE; 1165 if (page && page_mapcount(page) == 1) 1166 flags |= PM_MMAP_EXCLUSIVE; 1167 if (vma->vm_flags & VM_SOFTDIRTY) 1168 flags |= PM_SOFT_DIRTY; 1169 1170 return make_pme(frame, flags); 1171 } 1172 1173 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end, 1174 struct mm_walk *walk) 1175 { 1176 struct vm_area_struct *vma = walk->vma; 1177 struct pagemapread *pm = walk->private; 1178 spinlock_t *ptl; 1179 pte_t *pte, *orig_pte; 1180 int err = 0; 1181 1182 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1183 ptl = pmd_trans_huge_lock(pmdp, vma); 1184 if (ptl) { 1185 u64 flags = 0, frame = 0; 1186 pmd_t pmd = *pmdp; 1187 1188 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd)) 1189 flags |= PM_SOFT_DIRTY; 1190 1191 /* 1192 * Currently pmd for thp is always present because thp 1193 * can not be swapped-out, migrated, or HWPOISONed 1194 * (split in such cases instead.) 1195 * This if-check is just to prepare for future implementation. 1196 */ 1197 if (pmd_present(pmd)) { 1198 struct page *page = pmd_page(pmd); 1199 1200 if (page_mapcount(page) == 1) 1201 flags |= PM_MMAP_EXCLUSIVE; 1202 1203 flags |= PM_PRESENT; 1204 if (pm->show_pfn) 1205 frame = pmd_pfn(pmd) + 1206 ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1207 } 1208 1209 for (; addr != end; addr += PAGE_SIZE) { 1210 pagemap_entry_t pme = make_pme(frame, flags); 1211 1212 err = add_to_pagemap(addr, &pme, pm); 1213 if (err) 1214 break; 1215 if (pm->show_pfn && (flags & PM_PRESENT)) 1216 frame++; 1217 } 1218 spin_unlock(ptl); 1219 return err; 1220 } 1221 1222 if (pmd_trans_unstable(pmdp)) 1223 return 0; 1224 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1225 1226 /* 1227 * We can assume that @vma always points to a valid one and @end never 1228 * goes beyond vma->vm_end. 1229 */ 1230 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl); 1231 for (; addr < end; pte++, addr += PAGE_SIZE) { 1232 pagemap_entry_t pme; 1233 1234 pme = pte_to_pagemap_entry(pm, vma, addr, *pte); 1235 err = add_to_pagemap(addr, &pme, pm); 1236 if (err) 1237 break; 1238 } 1239 pte_unmap_unlock(orig_pte, ptl); 1240 1241 cond_resched(); 1242 1243 return err; 1244 } 1245 1246 #ifdef CONFIG_HUGETLB_PAGE 1247 /* This function walks within one hugetlb entry in the single call */ 1248 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask, 1249 unsigned long addr, unsigned long end, 1250 struct mm_walk *walk) 1251 { 1252 struct pagemapread *pm = walk->private; 1253 struct vm_area_struct *vma = walk->vma; 1254 u64 flags = 0, frame = 0; 1255 int err = 0; 1256 pte_t pte; 1257 1258 if (vma->vm_flags & VM_SOFTDIRTY) 1259 flags |= PM_SOFT_DIRTY; 1260 1261 pte = huge_ptep_get(ptep); 1262 if (pte_present(pte)) { 1263 struct page *page = pte_page(pte); 1264 1265 if (!PageAnon(page)) 1266 flags |= PM_FILE; 1267 1268 if (page_mapcount(page) == 1) 1269 flags |= PM_MMAP_EXCLUSIVE; 1270 1271 flags |= PM_PRESENT; 1272 if (pm->show_pfn) 1273 frame = pte_pfn(pte) + 1274 ((addr & ~hmask) >> PAGE_SHIFT); 1275 } 1276 1277 for (; addr != end; addr += PAGE_SIZE) { 1278 pagemap_entry_t pme = make_pme(frame, flags); 1279 1280 err = add_to_pagemap(addr, &pme, pm); 1281 if (err) 1282 return err; 1283 if (pm->show_pfn && (flags & PM_PRESENT)) 1284 frame++; 1285 } 1286 1287 cond_resched(); 1288 1289 return err; 1290 } 1291 #endif /* HUGETLB_PAGE */ 1292 1293 /* 1294 * /proc/pid/pagemap - an array mapping virtual pages to pfns 1295 * 1296 * For each page in the address space, this file contains one 64-bit entry 1297 * consisting of the following: 1298 * 1299 * Bits 0-54 page frame number (PFN) if present 1300 * Bits 0-4 swap type if swapped 1301 * Bits 5-54 swap offset if swapped 1302 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt) 1303 * Bit 56 page exclusively mapped 1304 * Bits 57-60 zero 1305 * Bit 61 page is file-page or shared-anon 1306 * Bit 62 page swapped 1307 * Bit 63 page present 1308 * 1309 * If the page is not present but in swap, then the PFN contains an 1310 * encoding of the swap file number and the page's offset into the 1311 * swap. Unmapped pages return a null PFN. This allows determining 1312 * precisely which pages are mapped (or in swap) and comparing mapped 1313 * pages between processes. 1314 * 1315 * Efficient users of this interface will use /proc/pid/maps to 1316 * determine which areas of memory are actually mapped and llseek to 1317 * skip over unmapped regions. 1318 */ 1319 static ssize_t pagemap_read(struct file *file, char __user *buf, 1320 size_t count, loff_t *ppos) 1321 { 1322 struct mm_struct *mm = file->private_data; 1323 struct pagemapread pm; 1324 struct mm_walk pagemap_walk = {}; 1325 unsigned long src; 1326 unsigned long svpfn; 1327 unsigned long start_vaddr; 1328 unsigned long end_vaddr; 1329 int ret = 0, copied = 0; 1330 1331 if (!mm || !atomic_inc_not_zero(&mm->mm_users)) 1332 goto out; 1333 1334 ret = -EINVAL; 1335 /* file position must be aligned */ 1336 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) 1337 goto out_mm; 1338 1339 ret = 0; 1340 if (!count) 1341 goto out_mm; 1342 1343 /* do not disclose physical addresses: attack vector */ 1344 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN); 1345 1346 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT); 1347 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY); 1348 ret = -ENOMEM; 1349 if (!pm.buffer) 1350 goto out_mm; 1351 1352 pagemap_walk.pmd_entry = pagemap_pmd_range; 1353 pagemap_walk.pte_hole = pagemap_pte_hole; 1354 #ifdef CONFIG_HUGETLB_PAGE 1355 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range; 1356 #endif 1357 pagemap_walk.mm = mm; 1358 pagemap_walk.private = ± 1359 1360 src = *ppos; 1361 svpfn = src / PM_ENTRY_BYTES; 1362 start_vaddr = svpfn << PAGE_SHIFT; 1363 end_vaddr = mm->task_size; 1364 1365 /* watch out for wraparound */ 1366 if (svpfn > mm->task_size >> PAGE_SHIFT) 1367 start_vaddr = end_vaddr; 1368 1369 /* 1370 * The odds are that this will stop walking way 1371 * before end_vaddr, because the length of the 1372 * user buffer is tracked in "pm", and the walk 1373 * will stop when we hit the end of the buffer. 1374 */ 1375 ret = 0; 1376 while (count && (start_vaddr < end_vaddr)) { 1377 int len; 1378 unsigned long end; 1379 1380 pm.pos = 0; 1381 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK; 1382 /* overflow ? */ 1383 if (end < start_vaddr || end > end_vaddr) 1384 end = end_vaddr; 1385 down_read(&mm->mmap_sem); 1386 ret = walk_page_range(start_vaddr, end, &pagemap_walk); 1387 up_read(&mm->mmap_sem); 1388 start_vaddr = end; 1389 1390 len = min(count, PM_ENTRY_BYTES * pm.pos); 1391 if (copy_to_user(buf, pm.buffer, len)) { 1392 ret = -EFAULT; 1393 goto out_free; 1394 } 1395 copied += len; 1396 buf += len; 1397 count -= len; 1398 } 1399 *ppos += copied; 1400 if (!ret || ret == PM_END_OF_BUFFER) 1401 ret = copied; 1402 1403 out_free: 1404 kfree(pm.buffer); 1405 out_mm: 1406 mmput(mm); 1407 out: 1408 return ret; 1409 } 1410 1411 static int pagemap_open(struct inode *inode, struct file *file) 1412 { 1413 struct mm_struct *mm; 1414 1415 mm = proc_mem_open(inode, PTRACE_MODE_READ); 1416 if (IS_ERR(mm)) 1417 return PTR_ERR(mm); 1418 file->private_data = mm; 1419 return 0; 1420 } 1421 1422 static int pagemap_release(struct inode *inode, struct file *file) 1423 { 1424 struct mm_struct *mm = file->private_data; 1425 1426 if (mm) 1427 mmdrop(mm); 1428 return 0; 1429 } 1430 1431 const struct file_operations proc_pagemap_operations = { 1432 .llseek = mem_lseek, /* borrow this */ 1433 .read = pagemap_read, 1434 .open = pagemap_open, 1435 .release = pagemap_release, 1436 }; 1437 #endif /* CONFIG_PROC_PAGE_MONITOR */ 1438 1439 #ifdef CONFIG_NUMA 1440 1441 struct numa_maps { 1442 unsigned long pages; 1443 unsigned long anon; 1444 unsigned long active; 1445 unsigned long writeback; 1446 unsigned long mapcount_max; 1447 unsigned long dirty; 1448 unsigned long swapcache; 1449 unsigned long node[MAX_NUMNODES]; 1450 }; 1451 1452 struct numa_maps_private { 1453 struct proc_maps_private proc_maps; 1454 struct numa_maps md; 1455 }; 1456 1457 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty, 1458 unsigned long nr_pages) 1459 { 1460 int count = page_mapcount(page); 1461 1462 md->pages += nr_pages; 1463 if (pte_dirty || PageDirty(page)) 1464 md->dirty += nr_pages; 1465 1466 if (PageSwapCache(page)) 1467 md->swapcache += nr_pages; 1468 1469 if (PageActive(page) || PageUnevictable(page)) 1470 md->active += nr_pages; 1471 1472 if (PageWriteback(page)) 1473 md->writeback += nr_pages; 1474 1475 if (PageAnon(page)) 1476 md->anon += nr_pages; 1477 1478 if (count > md->mapcount_max) 1479 md->mapcount_max = count; 1480 1481 md->node[page_to_nid(page)] += nr_pages; 1482 } 1483 1484 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma, 1485 unsigned long addr) 1486 { 1487 struct page *page; 1488 int nid; 1489 1490 if (!pte_present(pte)) 1491 return NULL; 1492 1493 page = vm_normal_page(vma, addr, pte); 1494 if (!page) 1495 return NULL; 1496 1497 if (PageReserved(page)) 1498 return NULL; 1499 1500 nid = page_to_nid(page); 1501 if (!node_isset(nid, node_states[N_MEMORY])) 1502 return NULL; 1503 1504 return page; 1505 } 1506 1507 static int gather_pte_stats(pmd_t *pmd, unsigned long addr, 1508 unsigned long end, struct mm_walk *walk) 1509 { 1510 struct numa_maps *md = walk->private; 1511 struct vm_area_struct *vma = walk->vma; 1512 spinlock_t *ptl; 1513 pte_t *orig_pte; 1514 pte_t *pte; 1515 1516 ptl = pmd_trans_huge_lock(pmd, vma); 1517 if (ptl) { 1518 pte_t huge_pte = *(pte_t *)pmd; 1519 struct page *page; 1520 1521 page = can_gather_numa_stats(huge_pte, vma, addr); 1522 if (page) 1523 gather_stats(page, md, pte_dirty(huge_pte), 1524 HPAGE_PMD_SIZE/PAGE_SIZE); 1525 spin_unlock(ptl); 1526 return 0; 1527 } 1528 1529 if (pmd_trans_unstable(pmd)) 1530 return 0; 1531 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 1532 do { 1533 struct page *page = can_gather_numa_stats(*pte, vma, addr); 1534 if (!page) 1535 continue; 1536 gather_stats(page, md, pte_dirty(*pte), 1); 1537 1538 } while (pte++, addr += PAGE_SIZE, addr != end); 1539 pte_unmap_unlock(orig_pte, ptl); 1540 return 0; 1541 } 1542 #ifdef CONFIG_HUGETLB_PAGE 1543 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1544 unsigned long addr, unsigned long end, struct mm_walk *walk) 1545 { 1546 pte_t huge_pte = huge_ptep_get(pte); 1547 struct numa_maps *md; 1548 struct page *page; 1549 1550 if (!pte_present(huge_pte)) 1551 return 0; 1552 1553 page = pte_page(huge_pte); 1554 if (!page) 1555 return 0; 1556 1557 md = walk->private; 1558 gather_stats(page, md, pte_dirty(huge_pte), 1); 1559 return 0; 1560 } 1561 1562 #else 1563 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1564 unsigned long addr, unsigned long end, struct mm_walk *walk) 1565 { 1566 return 0; 1567 } 1568 #endif 1569 1570 /* 1571 * Display pages allocated per node and memory policy via /proc. 1572 */ 1573 static int show_numa_map(struct seq_file *m, void *v, int is_pid) 1574 { 1575 struct numa_maps_private *numa_priv = m->private; 1576 struct proc_maps_private *proc_priv = &numa_priv->proc_maps; 1577 struct vm_area_struct *vma = v; 1578 struct numa_maps *md = &numa_priv->md; 1579 struct file *file = vma->vm_file; 1580 struct mm_struct *mm = vma->vm_mm; 1581 struct mm_walk walk = { 1582 .hugetlb_entry = gather_hugetlb_stats, 1583 .pmd_entry = gather_pte_stats, 1584 .private = md, 1585 .mm = mm, 1586 }; 1587 struct mempolicy *pol; 1588 char buffer[64]; 1589 int nid; 1590 1591 if (!mm) 1592 return 0; 1593 1594 /* Ensure we start with an empty set of numa_maps statistics. */ 1595 memset(md, 0, sizeof(*md)); 1596 1597 pol = __get_vma_policy(vma, vma->vm_start); 1598 if (pol) { 1599 mpol_to_str(buffer, sizeof(buffer), pol); 1600 mpol_cond_put(pol); 1601 } else { 1602 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy); 1603 } 1604 1605 seq_printf(m, "%08lx %s", vma->vm_start, buffer); 1606 1607 if (file) { 1608 seq_puts(m, " file="); 1609 seq_file_path(m, file, "\n\t= "); 1610 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) { 1611 seq_puts(m, " heap"); 1612 } else if (is_stack(proc_priv, vma, is_pid)) { 1613 seq_puts(m, " stack"); 1614 } 1615 1616 if (is_vm_hugetlb_page(vma)) 1617 seq_puts(m, " huge"); 1618 1619 /* mmap_sem is held by m_start */ 1620 walk_page_vma(vma, &walk); 1621 1622 if (!md->pages) 1623 goto out; 1624 1625 if (md->anon) 1626 seq_printf(m, " anon=%lu", md->anon); 1627 1628 if (md->dirty) 1629 seq_printf(m, " dirty=%lu", md->dirty); 1630 1631 if (md->pages != md->anon && md->pages != md->dirty) 1632 seq_printf(m, " mapped=%lu", md->pages); 1633 1634 if (md->mapcount_max > 1) 1635 seq_printf(m, " mapmax=%lu", md->mapcount_max); 1636 1637 if (md->swapcache) 1638 seq_printf(m, " swapcache=%lu", md->swapcache); 1639 1640 if (md->active < md->pages && !is_vm_hugetlb_page(vma)) 1641 seq_printf(m, " active=%lu", md->active); 1642 1643 if (md->writeback) 1644 seq_printf(m, " writeback=%lu", md->writeback); 1645 1646 for_each_node_state(nid, N_MEMORY) 1647 if (md->node[nid]) 1648 seq_printf(m, " N%d=%lu", nid, md->node[nid]); 1649 1650 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10); 1651 out: 1652 seq_putc(m, '\n'); 1653 m_cache_vma(m, vma); 1654 return 0; 1655 } 1656 1657 static int show_pid_numa_map(struct seq_file *m, void *v) 1658 { 1659 return show_numa_map(m, v, 1); 1660 } 1661 1662 static int show_tid_numa_map(struct seq_file *m, void *v) 1663 { 1664 return show_numa_map(m, v, 0); 1665 } 1666 1667 static const struct seq_operations proc_pid_numa_maps_op = { 1668 .start = m_start, 1669 .next = m_next, 1670 .stop = m_stop, 1671 .show = show_pid_numa_map, 1672 }; 1673 1674 static const struct seq_operations proc_tid_numa_maps_op = { 1675 .start = m_start, 1676 .next = m_next, 1677 .stop = m_stop, 1678 .show = show_tid_numa_map, 1679 }; 1680 1681 static int numa_maps_open(struct inode *inode, struct file *file, 1682 const struct seq_operations *ops) 1683 { 1684 return proc_maps_open(inode, file, ops, 1685 sizeof(struct numa_maps_private)); 1686 } 1687 1688 static int pid_numa_maps_open(struct inode *inode, struct file *file) 1689 { 1690 return numa_maps_open(inode, file, &proc_pid_numa_maps_op); 1691 } 1692 1693 static int tid_numa_maps_open(struct inode *inode, struct file *file) 1694 { 1695 return numa_maps_open(inode, file, &proc_tid_numa_maps_op); 1696 } 1697 1698 const struct file_operations proc_pid_numa_maps_operations = { 1699 .open = pid_numa_maps_open, 1700 .read = seq_read, 1701 .llseek = seq_lseek, 1702 .release = proc_map_release, 1703 }; 1704 1705 const struct file_operations proc_tid_numa_maps_operations = { 1706 .open = tid_numa_maps_open, 1707 .read = seq_read, 1708 .llseek = seq_lseek, 1709 .release = proc_map_release, 1710 }; 1711 #endif /* CONFIG_NUMA */ 1712