1 #include <linux/mm.h> 2 #include <linux/vmacache.h> 3 #include <linux/hugetlb.h> 4 #include <linux/huge_mm.h> 5 #include <linux/mount.h> 6 #include <linux/seq_file.h> 7 #include <linux/highmem.h> 8 #include <linux/ptrace.h> 9 #include <linux/slab.h> 10 #include <linux/pagemap.h> 11 #include <linux/mempolicy.h> 12 #include <linux/rmap.h> 13 #include <linux/swap.h> 14 #include <linux/sched/mm.h> 15 #include <linux/swapops.h> 16 #include <linux/mmu_notifier.h> 17 #include <linux/page_idle.h> 18 #include <linux/shmem_fs.h> 19 20 #include <asm/elf.h> 21 #include <linux/uaccess.h> 22 #include <asm/tlbflush.h> 23 #include "internal.h" 24 25 void task_mem(struct seq_file *m, struct mm_struct *mm) 26 { 27 unsigned long text, lib, swap, ptes, pmds, anon, file, shmem; 28 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; 29 30 anon = get_mm_counter(mm, MM_ANONPAGES); 31 file = get_mm_counter(mm, MM_FILEPAGES); 32 shmem = get_mm_counter(mm, MM_SHMEMPAGES); 33 34 /* 35 * Note: to minimize their overhead, mm maintains hiwater_vm and 36 * hiwater_rss only when about to *lower* total_vm or rss. Any 37 * collector of these hiwater stats must therefore get total_vm 38 * and rss too, which will usually be the higher. Barriers? not 39 * worth the effort, such snapshots can always be inconsistent. 40 */ 41 hiwater_vm = total_vm = mm->total_vm; 42 if (hiwater_vm < mm->hiwater_vm) 43 hiwater_vm = mm->hiwater_vm; 44 hiwater_rss = total_rss = anon + file + shmem; 45 if (hiwater_rss < mm->hiwater_rss) 46 hiwater_rss = mm->hiwater_rss; 47 48 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10; 49 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text; 50 swap = get_mm_counter(mm, MM_SWAPENTS); 51 ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes); 52 pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm); 53 seq_printf(m, 54 "VmPeak:\t%8lu kB\n" 55 "VmSize:\t%8lu kB\n" 56 "VmLck:\t%8lu kB\n" 57 "VmPin:\t%8lu kB\n" 58 "VmHWM:\t%8lu kB\n" 59 "VmRSS:\t%8lu kB\n" 60 "RssAnon:\t%8lu kB\n" 61 "RssFile:\t%8lu kB\n" 62 "RssShmem:\t%8lu kB\n" 63 "VmData:\t%8lu kB\n" 64 "VmStk:\t%8lu kB\n" 65 "VmExe:\t%8lu kB\n" 66 "VmLib:\t%8lu kB\n" 67 "VmPTE:\t%8lu kB\n" 68 "VmPMD:\t%8lu kB\n" 69 "VmSwap:\t%8lu kB\n", 70 hiwater_vm << (PAGE_SHIFT-10), 71 total_vm << (PAGE_SHIFT-10), 72 mm->locked_vm << (PAGE_SHIFT-10), 73 mm->pinned_vm << (PAGE_SHIFT-10), 74 hiwater_rss << (PAGE_SHIFT-10), 75 total_rss << (PAGE_SHIFT-10), 76 anon << (PAGE_SHIFT-10), 77 file << (PAGE_SHIFT-10), 78 shmem << (PAGE_SHIFT-10), 79 mm->data_vm << (PAGE_SHIFT-10), 80 mm->stack_vm << (PAGE_SHIFT-10), text, lib, 81 ptes >> 10, 82 pmds >> 10, 83 swap << (PAGE_SHIFT-10)); 84 hugetlb_report_usage(m, mm); 85 } 86 87 unsigned long task_vsize(struct mm_struct *mm) 88 { 89 return PAGE_SIZE * mm->total_vm; 90 } 91 92 unsigned long task_statm(struct mm_struct *mm, 93 unsigned long *shared, unsigned long *text, 94 unsigned long *data, unsigned long *resident) 95 { 96 *shared = get_mm_counter(mm, MM_FILEPAGES) + 97 get_mm_counter(mm, MM_SHMEMPAGES); 98 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) 99 >> PAGE_SHIFT; 100 *data = mm->data_vm + mm->stack_vm; 101 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES); 102 return mm->total_vm; 103 } 104 105 #ifdef CONFIG_NUMA 106 /* 107 * Save get_task_policy() for show_numa_map(). 108 */ 109 static void hold_task_mempolicy(struct proc_maps_private *priv) 110 { 111 struct task_struct *task = priv->task; 112 113 task_lock(task); 114 priv->task_mempolicy = get_task_policy(task); 115 mpol_get(priv->task_mempolicy); 116 task_unlock(task); 117 } 118 static void release_task_mempolicy(struct proc_maps_private *priv) 119 { 120 mpol_put(priv->task_mempolicy); 121 } 122 #else 123 static void hold_task_mempolicy(struct proc_maps_private *priv) 124 { 125 } 126 static void release_task_mempolicy(struct proc_maps_private *priv) 127 { 128 } 129 #endif 130 131 static void vma_stop(struct proc_maps_private *priv) 132 { 133 struct mm_struct *mm = priv->mm; 134 135 release_task_mempolicy(priv); 136 up_read(&mm->mmap_sem); 137 mmput(mm); 138 } 139 140 static struct vm_area_struct * 141 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma) 142 { 143 if (vma == priv->tail_vma) 144 return NULL; 145 return vma->vm_next ?: priv->tail_vma; 146 } 147 148 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma) 149 { 150 if (m->count < m->size) /* vma is copied successfully */ 151 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL; 152 } 153 154 static void *m_start(struct seq_file *m, loff_t *ppos) 155 { 156 struct proc_maps_private *priv = m->private; 157 unsigned long last_addr = m->version; 158 struct mm_struct *mm; 159 struct vm_area_struct *vma; 160 unsigned int pos = *ppos; 161 162 /* See m_cache_vma(). Zero at the start or after lseek. */ 163 if (last_addr == -1UL) 164 return NULL; 165 166 priv->task = get_proc_task(priv->inode); 167 if (!priv->task) 168 return ERR_PTR(-ESRCH); 169 170 mm = priv->mm; 171 if (!mm || !mmget_not_zero(mm)) 172 return NULL; 173 174 down_read(&mm->mmap_sem); 175 hold_task_mempolicy(priv); 176 priv->tail_vma = get_gate_vma(mm); 177 178 if (last_addr) { 179 vma = find_vma(mm, last_addr - 1); 180 if (vma && vma->vm_start <= last_addr) 181 vma = m_next_vma(priv, vma); 182 if (vma) 183 return vma; 184 } 185 186 m->version = 0; 187 if (pos < mm->map_count) { 188 for (vma = mm->mmap; pos; pos--) { 189 m->version = vma->vm_start; 190 vma = vma->vm_next; 191 } 192 return vma; 193 } 194 195 /* we do not bother to update m->version in this case */ 196 if (pos == mm->map_count && priv->tail_vma) 197 return priv->tail_vma; 198 199 vma_stop(priv); 200 return NULL; 201 } 202 203 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 204 { 205 struct proc_maps_private *priv = m->private; 206 struct vm_area_struct *next; 207 208 (*pos)++; 209 next = m_next_vma(priv, v); 210 if (!next) 211 vma_stop(priv); 212 return next; 213 } 214 215 static void m_stop(struct seq_file *m, void *v) 216 { 217 struct proc_maps_private *priv = m->private; 218 219 if (!IS_ERR_OR_NULL(v)) 220 vma_stop(priv); 221 if (priv->task) { 222 put_task_struct(priv->task); 223 priv->task = NULL; 224 } 225 } 226 227 static int proc_maps_open(struct inode *inode, struct file *file, 228 const struct seq_operations *ops, int psize) 229 { 230 struct proc_maps_private *priv = __seq_open_private(file, ops, psize); 231 232 if (!priv) 233 return -ENOMEM; 234 235 priv->inode = inode; 236 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); 237 if (IS_ERR(priv->mm)) { 238 int err = PTR_ERR(priv->mm); 239 240 seq_release_private(inode, file); 241 return err; 242 } 243 244 return 0; 245 } 246 247 static int proc_map_release(struct inode *inode, struct file *file) 248 { 249 struct seq_file *seq = file->private_data; 250 struct proc_maps_private *priv = seq->private; 251 252 if (priv->mm) 253 mmdrop(priv->mm); 254 255 return seq_release_private(inode, file); 256 } 257 258 static int do_maps_open(struct inode *inode, struct file *file, 259 const struct seq_operations *ops) 260 { 261 return proc_maps_open(inode, file, ops, 262 sizeof(struct proc_maps_private)); 263 } 264 265 /* 266 * Indicate if the VMA is a stack for the given task; for 267 * /proc/PID/maps that is the stack of the main task. 268 */ 269 static int is_stack(struct proc_maps_private *priv, 270 struct vm_area_struct *vma) 271 { 272 /* 273 * We make no effort to guess what a given thread considers to be 274 * its "stack". It's not even well-defined for programs written 275 * languages like Go. 276 */ 277 return vma->vm_start <= vma->vm_mm->start_stack && 278 vma->vm_end >= vma->vm_mm->start_stack; 279 } 280 281 static void 282 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid) 283 { 284 struct mm_struct *mm = vma->vm_mm; 285 struct file *file = vma->vm_file; 286 struct proc_maps_private *priv = m->private; 287 vm_flags_t flags = vma->vm_flags; 288 unsigned long ino = 0; 289 unsigned long long pgoff = 0; 290 unsigned long start, end; 291 dev_t dev = 0; 292 const char *name = NULL; 293 294 if (file) { 295 struct inode *inode = file_inode(vma->vm_file); 296 dev = inode->i_sb->s_dev; 297 ino = inode->i_ino; 298 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT; 299 } 300 301 /* We don't show the stack guard page in /proc/maps */ 302 start = vma->vm_start; 303 if (stack_guard_page_start(vma, start)) 304 start += PAGE_SIZE; 305 end = vma->vm_end; 306 if (stack_guard_page_end(vma, end)) 307 end -= PAGE_SIZE; 308 309 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1); 310 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ", 311 start, 312 end, 313 flags & VM_READ ? 'r' : '-', 314 flags & VM_WRITE ? 'w' : '-', 315 flags & VM_EXEC ? 'x' : '-', 316 flags & VM_MAYSHARE ? 's' : 'p', 317 pgoff, 318 MAJOR(dev), MINOR(dev), ino); 319 320 /* 321 * Print the dentry name for named mappings, and a 322 * special [heap] marker for the heap: 323 */ 324 if (file) { 325 seq_pad(m, ' '); 326 seq_file_path(m, file, "\n"); 327 goto done; 328 } 329 330 if (vma->vm_ops && vma->vm_ops->name) { 331 name = vma->vm_ops->name(vma); 332 if (name) 333 goto done; 334 } 335 336 name = arch_vma_name(vma); 337 if (!name) { 338 if (!mm) { 339 name = "[vdso]"; 340 goto done; 341 } 342 343 if (vma->vm_start <= mm->brk && 344 vma->vm_end >= mm->start_brk) { 345 name = "[heap]"; 346 goto done; 347 } 348 349 if (is_stack(priv, vma)) 350 name = "[stack]"; 351 } 352 353 done: 354 if (name) { 355 seq_pad(m, ' '); 356 seq_puts(m, name); 357 } 358 seq_putc(m, '\n'); 359 } 360 361 static int show_map(struct seq_file *m, void *v, int is_pid) 362 { 363 show_map_vma(m, v, is_pid); 364 m_cache_vma(m, v); 365 return 0; 366 } 367 368 static int show_pid_map(struct seq_file *m, void *v) 369 { 370 return show_map(m, v, 1); 371 } 372 373 static int show_tid_map(struct seq_file *m, void *v) 374 { 375 return show_map(m, v, 0); 376 } 377 378 static const struct seq_operations proc_pid_maps_op = { 379 .start = m_start, 380 .next = m_next, 381 .stop = m_stop, 382 .show = show_pid_map 383 }; 384 385 static const struct seq_operations proc_tid_maps_op = { 386 .start = m_start, 387 .next = m_next, 388 .stop = m_stop, 389 .show = show_tid_map 390 }; 391 392 static int pid_maps_open(struct inode *inode, struct file *file) 393 { 394 return do_maps_open(inode, file, &proc_pid_maps_op); 395 } 396 397 static int tid_maps_open(struct inode *inode, struct file *file) 398 { 399 return do_maps_open(inode, file, &proc_tid_maps_op); 400 } 401 402 const struct file_operations proc_pid_maps_operations = { 403 .open = pid_maps_open, 404 .read = seq_read, 405 .llseek = seq_lseek, 406 .release = proc_map_release, 407 }; 408 409 const struct file_operations proc_tid_maps_operations = { 410 .open = tid_maps_open, 411 .read = seq_read, 412 .llseek = seq_lseek, 413 .release = proc_map_release, 414 }; 415 416 /* 417 * Proportional Set Size(PSS): my share of RSS. 418 * 419 * PSS of a process is the count of pages it has in memory, where each 420 * page is divided by the number of processes sharing it. So if a 421 * process has 1000 pages all to itself, and 1000 shared with one other 422 * process, its PSS will be 1500. 423 * 424 * To keep (accumulated) division errors low, we adopt a 64bit 425 * fixed-point pss counter to minimize division errors. So (pss >> 426 * PSS_SHIFT) would be the real byte count. 427 * 428 * A shift of 12 before division means (assuming 4K page size): 429 * - 1M 3-user-pages add up to 8KB errors; 430 * - supports mapcount up to 2^24, or 16M; 431 * - supports PSS up to 2^52 bytes, or 4PB. 432 */ 433 #define PSS_SHIFT 12 434 435 #ifdef CONFIG_PROC_PAGE_MONITOR 436 struct mem_size_stats { 437 unsigned long resident; 438 unsigned long shared_clean; 439 unsigned long shared_dirty; 440 unsigned long private_clean; 441 unsigned long private_dirty; 442 unsigned long referenced; 443 unsigned long anonymous; 444 unsigned long anonymous_thp; 445 unsigned long shmem_thp; 446 unsigned long swap; 447 unsigned long shared_hugetlb; 448 unsigned long private_hugetlb; 449 u64 pss; 450 u64 swap_pss; 451 bool check_shmem_swap; 452 }; 453 454 static void smaps_account(struct mem_size_stats *mss, struct page *page, 455 bool compound, bool young, bool dirty) 456 { 457 int i, nr = compound ? 1 << compound_order(page) : 1; 458 unsigned long size = nr * PAGE_SIZE; 459 460 if (PageAnon(page)) 461 mss->anonymous += size; 462 463 mss->resident += size; 464 /* Accumulate the size in pages that have been accessed. */ 465 if (young || page_is_young(page) || PageReferenced(page)) 466 mss->referenced += size; 467 468 /* 469 * page_count(page) == 1 guarantees the page is mapped exactly once. 470 * If any subpage of the compound page mapped with PTE it would elevate 471 * page_count(). 472 */ 473 if (page_count(page) == 1) { 474 if (dirty || PageDirty(page)) 475 mss->private_dirty += size; 476 else 477 mss->private_clean += size; 478 mss->pss += (u64)size << PSS_SHIFT; 479 return; 480 } 481 482 for (i = 0; i < nr; i++, page++) { 483 int mapcount = page_mapcount(page); 484 485 if (mapcount >= 2) { 486 if (dirty || PageDirty(page)) 487 mss->shared_dirty += PAGE_SIZE; 488 else 489 mss->shared_clean += PAGE_SIZE; 490 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount; 491 } else { 492 if (dirty || PageDirty(page)) 493 mss->private_dirty += PAGE_SIZE; 494 else 495 mss->private_clean += PAGE_SIZE; 496 mss->pss += PAGE_SIZE << PSS_SHIFT; 497 } 498 } 499 } 500 501 #ifdef CONFIG_SHMEM 502 static int smaps_pte_hole(unsigned long addr, unsigned long end, 503 struct mm_walk *walk) 504 { 505 struct mem_size_stats *mss = walk->private; 506 507 mss->swap += shmem_partial_swap_usage( 508 walk->vma->vm_file->f_mapping, addr, end); 509 510 return 0; 511 } 512 #endif 513 514 static void smaps_pte_entry(pte_t *pte, unsigned long addr, 515 struct mm_walk *walk) 516 { 517 struct mem_size_stats *mss = walk->private; 518 struct vm_area_struct *vma = walk->vma; 519 struct page *page = NULL; 520 521 if (pte_present(*pte)) { 522 page = vm_normal_page(vma, addr, *pte); 523 } else if (is_swap_pte(*pte)) { 524 swp_entry_t swpent = pte_to_swp_entry(*pte); 525 526 if (!non_swap_entry(swpent)) { 527 int mapcount; 528 529 mss->swap += PAGE_SIZE; 530 mapcount = swp_swapcount(swpent); 531 if (mapcount >= 2) { 532 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT; 533 534 do_div(pss_delta, mapcount); 535 mss->swap_pss += pss_delta; 536 } else { 537 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT; 538 } 539 } else if (is_migration_entry(swpent)) 540 page = migration_entry_to_page(swpent); 541 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap 542 && pte_none(*pte))) { 543 page = find_get_entry(vma->vm_file->f_mapping, 544 linear_page_index(vma, addr)); 545 if (!page) 546 return; 547 548 if (radix_tree_exceptional_entry(page)) 549 mss->swap += PAGE_SIZE; 550 else 551 put_page(page); 552 553 return; 554 } 555 556 if (!page) 557 return; 558 559 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte)); 560 } 561 562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 563 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 564 struct mm_walk *walk) 565 { 566 struct mem_size_stats *mss = walk->private; 567 struct vm_area_struct *vma = walk->vma; 568 struct page *page; 569 570 /* FOLL_DUMP will return -EFAULT on huge zero page */ 571 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP); 572 if (IS_ERR_OR_NULL(page)) 573 return; 574 if (PageAnon(page)) 575 mss->anonymous_thp += HPAGE_PMD_SIZE; 576 else if (PageSwapBacked(page)) 577 mss->shmem_thp += HPAGE_PMD_SIZE; 578 else if (is_zone_device_page(page)) 579 /* pass */; 580 else 581 VM_BUG_ON_PAGE(1, page); 582 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd)); 583 } 584 #else 585 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 586 struct mm_walk *walk) 587 { 588 } 589 #endif 590 591 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 592 struct mm_walk *walk) 593 { 594 struct vm_area_struct *vma = walk->vma; 595 pte_t *pte; 596 spinlock_t *ptl; 597 598 ptl = pmd_trans_huge_lock(pmd, vma); 599 if (ptl) { 600 smaps_pmd_entry(pmd, addr, walk); 601 spin_unlock(ptl); 602 return 0; 603 } 604 605 if (pmd_trans_unstable(pmd)) 606 return 0; 607 /* 608 * The mmap_sem held all the way back in m_start() is what 609 * keeps khugepaged out of here and from collapsing things 610 * in here. 611 */ 612 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 613 for (; addr != end; pte++, addr += PAGE_SIZE) 614 smaps_pte_entry(pte, addr, walk); 615 pte_unmap_unlock(pte - 1, ptl); 616 cond_resched(); 617 return 0; 618 } 619 620 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma) 621 { 622 /* 623 * Don't forget to update Documentation/ on changes. 624 */ 625 static const char mnemonics[BITS_PER_LONG][2] = { 626 /* 627 * In case if we meet a flag we don't know about. 628 */ 629 [0 ... (BITS_PER_LONG-1)] = "??", 630 631 [ilog2(VM_READ)] = "rd", 632 [ilog2(VM_WRITE)] = "wr", 633 [ilog2(VM_EXEC)] = "ex", 634 [ilog2(VM_SHARED)] = "sh", 635 [ilog2(VM_MAYREAD)] = "mr", 636 [ilog2(VM_MAYWRITE)] = "mw", 637 [ilog2(VM_MAYEXEC)] = "me", 638 [ilog2(VM_MAYSHARE)] = "ms", 639 [ilog2(VM_GROWSDOWN)] = "gd", 640 [ilog2(VM_PFNMAP)] = "pf", 641 [ilog2(VM_DENYWRITE)] = "dw", 642 #ifdef CONFIG_X86_INTEL_MPX 643 [ilog2(VM_MPX)] = "mp", 644 #endif 645 [ilog2(VM_LOCKED)] = "lo", 646 [ilog2(VM_IO)] = "io", 647 [ilog2(VM_SEQ_READ)] = "sr", 648 [ilog2(VM_RAND_READ)] = "rr", 649 [ilog2(VM_DONTCOPY)] = "dc", 650 [ilog2(VM_DONTEXPAND)] = "de", 651 [ilog2(VM_ACCOUNT)] = "ac", 652 [ilog2(VM_NORESERVE)] = "nr", 653 [ilog2(VM_HUGETLB)] = "ht", 654 [ilog2(VM_ARCH_1)] = "ar", 655 [ilog2(VM_DONTDUMP)] = "dd", 656 #ifdef CONFIG_MEM_SOFT_DIRTY 657 [ilog2(VM_SOFTDIRTY)] = "sd", 658 #endif 659 [ilog2(VM_MIXEDMAP)] = "mm", 660 [ilog2(VM_HUGEPAGE)] = "hg", 661 [ilog2(VM_NOHUGEPAGE)] = "nh", 662 [ilog2(VM_MERGEABLE)] = "mg", 663 [ilog2(VM_UFFD_MISSING)]= "um", 664 [ilog2(VM_UFFD_WP)] = "uw", 665 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 666 /* These come out via ProtectionKey: */ 667 [ilog2(VM_PKEY_BIT0)] = "", 668 [ilog2(VM_PKEY_BIT1)] = "", 669 [ilog2(VM_PKEY_BIT2)] = "", 670 [ilog2(VM_PKEY_BIT3)] = "", 671 #endif 672 }; 673 size_t i; 674 675 seq_puts(m, "VmFlags: "); 676 for (i = 0; i < BITS_PER_LONG; i++) { 677 if (!mnemonics[i][0]) 678 continue; 679 if (vma->vm_flags & (1UL << i)) { 680 seq_printf(m, "%c%c ", 681 mnemonics[i][0], mnemonics[i][1]); 682 } 683 } 684 seq_putc(m, '\n'); 685 } 686 687 #ifdef CONFIG_HUGETLB_PAGE 688 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask, 689 unsigned long addr, unsigned long end, 690 struct mm_walk *walk) 691 { 692 struct mem_size_stats *mss = walk->private; 693 struct vm_area_struct *vma = walk->vma; 694 struct page *page = NULL; 695 696 if (pte_present(*pte)) { 697 page = vm_normal_page(vma, addr, *pte); 698 } else if (is_swap_pte(*pte)) { 699 swp_entry_t swpent = pte_to_swp_entry(*pte); 700 701 if (is_migration_entry(swpent)) 702 page = migration_entry_to_page(swpent); 703 } 704 if (page) { 705 int mapcount = page_mapcount(page); 706 707 if (mapcount >= 2) 708 mss->shared_hugetlb += huge_page_size(hstate_vma(vma)); 709 else 710 mss->private_hugetlb += huge_page_size(hstate_vma(vma)); 711 } 712 return 0; 713 } 714 #endif /* HUGETLB_PAGE */ 715 716 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma) 717 { 718 } 719 720 static int show_smap(struct seq_file *m, void *v, int is_pid) 721 { 722 struct vm_area_struct *vma = v; 723 struct mem_size_stats mss; 724 struct mm_walk smaps_walk = { 725 .pmd_entry = smaps_pte_range, 726 #ifdef CONFIG_HUGETLB_PAGE 727 .hugetlb_entry = smaps_hugetlb_range, 728 #endif 729 .mm = vma->vm_mm, 730 .private = &mss, 731 }; 732 733 memset(&mss, 0, sizeof mss); 734 735 #ifdef CONFIG_SHMEM 736 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) { 737 /* 738 * For shared or readonly shmem mappings we know that all 739 * swapped out pages belong to the shmem object, and we can 740 * obtain the swap value much more efficiently. For private 741 * writable mappings, we might have COW pages that are 742 * not affected by the parent swapped out pages of the shmem 743 * object, so we have to distinguish them during the page walk. 744 * Unless we know that the shmem object (or the part mapped by 745 * our VMA) has no swapped out pages at all. 746 */ 747 unsigned long shmem_swapped = shmem_swap_usage(vma); 748 749 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) || 750 !(vma->vm_flags & VM_WRITE)) { 751 mss.swap = shmem_swapped; 752 } else { 753 mss.check_shmem_swap = true; 754 smaps_walk.pte_hole = smaps_pte_hole; 755 } 756 } 757 #endif 758 759 /* mmap_sem is held in m_start */ 760 walk_page_vma(vma, &smaps_walk); 761 762 show_map_vma(m, vma, is_pid); 763 764 seq_printf(m, 765 "Size: %8lu kB\n" 766 "Rss: %8lu kB\n" 767 "Pss: %8lu kB\n" 768 "Shared_Clean: %8lu kB\n" 769 "Shared_Dirty: %8lu kB\n" 770 "Private_Clean: %8lu kB\n" 771 "Private_Dirty: %8lu kB\n" 772 "Referenced: %8lu kB\n" 773 "Anonymous: %8lu kB\n" 774 "AnonHugePages: %8lu kB\n" 775 "ShmemPmdMapped: %8lu kB\n" 776 "Shared_Hugetlb: %8lu kB\n" 777 "Private_Hugetlb: %7lu kB\n" 778 "Swap: %8lu kB\n" 779 "SwapPss: %8lu kB\n" 780 "KernelPageSize: %8lu kB\n" 781 "MMUPageSize: %8lu kB\n" 782 "Locked: %8lu kB\n", 783 (vma->vm_end - vma->vm_start) >> 10, 784 mss.resident >> 10, 785 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)), 786 mss.shared_clean >> 10, 787 mss.shared_dirty >> 10, 788 mss.private_clean >> 10, 789 mss.private_dirty >> 10, 790 mss.referenced >> 10, 791 mss.anonymous >> 10, 792 mss.anonymous_thp >> 10, 793 mss.shmem_thp >> 10, 794 mss.shared_hugetlb >> 10, 795 mss.private_hugetlb >> 10, 796 mss.swap >> 10, 797 (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)), 798 vma_kernel_pagesize(vma) >> 10, 799 vma_mmu_pagesize(vma) >> 10, 800 (vma->vm_flags & VM_LOCKED) ? 801 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0); 802 803 arch_show_smap(m, vma); 804 show_smap_vma_flags(m, vma); 805 m_cache_vma(m, vma); 806 return 0; 807 } 808 809 static int show_pid_smap(struct seq_file *m, void *v) 810 { 811 return show_smap(m, v, 1); 812 } 813 814 static int show_tid_smap(struct seq_file *m, void *v) 815 { 816 return show_smap(m, v, 0); 817 } 818 819 static const struct seq_operations proc_pid_smaps_op = { 820 .start = m_start, 821 .next = m_next, 822 .stop = m_stop, 823 .show = show_pid_smap 824 }; 825 826 static const struct seq_operations proc_tid_smaps_op = { 827 .start = m_start, 828 .next = m_next, 829 .stop = m_stop, 830 .show = show_tid_smap 831 }; 832 833 static int pid_smaps_open(struct inode *inode, struct file *file) 834 { 835 return do_maps_open(inode, file, &proc_pid_smaps_op); 836 } 837 838 static int tid_smaps_open(struct inode *inode, struct file *file) 839 { 840 return do_maps_open(inode, file, &proc_tid_smaps_op); 841 } 842 843 const struct file_operations proc_pid_smaps_operations = { 844 .open = pid_smaps_open, 845 .read = seq_read, 846 .llseek = seq_lseek, 847 .release = proc_map_release, 848 }; 849 850 const struct file_operations proc_tid_smaps_operations = { 851 .open = tid_smaps_open, 852 .read = seq_read, 853 .llseek = seq_lseek, 854 .release = proc_map_release, 855 }; 856 857 enum clear_refs_types { 858 CLEAR_REFS_ALL = 1, 859 CLEAR_REFS_ANON, 860 CLEAR_REFS_MAPPED, 861 CLEAR_REFS_SOFT_DIRTY, 862 CLEAR_REFS_MM_HIWATER_RSS, 863 CLEAR_REFS_LAST, 864 }; 865 866 struct clear_refs_private { 867 enum clear_refs_types type; 868 }; 869 870 #ifdef CONFIG_MEM_SOFT_DIRTY 871 static inline void clear_soft_dirty(struct vm_area_struct *vma, 872 unsigned long addr, pte_t *pte) 873 { 874 /* 875 * The soft-dirty tracker uses #PF-s to catch writes 876 * to pages, so write-protect the pte as well. See the 877 * Documentation/vm/soft-dirty.txt for full description 878 * of how soft-dirty works. 879 */ 880 pte_t ptent = *pte; 881 882 if (pte_present(ptent)) { 883 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte); 884 ptent = pte_wrprotect(ptent); 885 ptent = pte_clear_soft_dirty(ptent); 886 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent); 887 } else if (is_swap_pte(ptent)) { 888 ptent = pte_swp_clear_soft_dirty(ptent); 889 set_pte_at(vma->vm_mm, addr, pte, ptent); 890 } 891 } 892 #else 893 static inline void clear_soft_dirty(struct vm_area_struct *vma, 894 unsigned long addr, pte_t *pte) 895 { 896 } 897 #endif 898 899 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 900 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 901 unsigned long addr, pmd_t *pmdp) 902 { 903 pmd_t pmd = *pmdp; 904 905 /* See comment in change_huge_pmd() */ 906 pmdp_invalidate(vma, addr, pmdp); 907 if (pmd_dirty(*pmdp)) 908 pmd = pmd_mkdirty(pmd); 909 if (pmd_young(*pmdp)) 910 pmd = pmd_mkyoung(pmd); 911 912 pmd = pmd_wrprotect(pmd); 913 pmd = pmd_clear_soft_dirty(pmd); 914 915 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 916 } 917 #else 918 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 919 unsigned long addr, pmd_t *pmdp) 920 { 921 } 922 #endif 923 924 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, 925 unsigned long end, struct mm_walk *walk) 926 { 927 struct clear_refs_private *cp = walk->private; 928 struct vm_area_struct *vma = walk->vma; 929 pte_t *pte, ptent; 930 spinlock_t *ptl; 931 struct page *page; 932 933 ptl = pmd_trans_huge_lock(pmd, vma); 934 if (ptl) { 935 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 936 clear_soft_dirty_pmd(vma, addr, pmd); 937 goto out; 938 } 939 940 page = pmd_page(*pmd); 941 942 /* Clear accessed and referenced bits. */ 943 pmdp_test_and_clear_young(vma, addr, pmd); 944 test_and_clear_page_young(page); 945 ClearPageReferenced(page); 946 out: 947 spin_unlock(ptl); 948 return 0; 949 } 950 951 if (pmd_trans_unstable(pmd)) 952 return 0; 953 954 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 955 for (; addr != end; pte++, addr += PAGE_SIZE) { 956 ptent = *pte; 957 958 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 959 clear_soft_dirty(vma, addr, pte); 960 continue; 961 } 962 963 if (!pte_present(ptent)) 964 continue; 965 966 page = vm_normal_page(vma, addr, ptent); 967 if (!page) 968 continue; 969 970 /* Clear accessed and referenced bits. */ 971 ptep_test_and_clear_young(vma, addr, pte); 972 test_and_clear_page_young(page); 973 ClearPageReferenced(page); 974 } 975 pte_unmap_unlock(pte - 1, ptl); 976 cond_resched(); 977 return 0; 978 } 979 980 static int clear_refs_test_walk(unsigned long start, unsigned long end, 981 struct mm_walk *walk) 982 { 983 struct clear_refs_private *cp = walk->private; 984 struct vm_area_struct *vma = walk->vma; 985 986 if (vma->vm_flags & VM_PFNMAP) 987 return 1; 988 989 /* 990 * Writing 1 to /proc/pid/clear_refs affects all pages. 991 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages. 992 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages. 993 * Writing 4 to /proc/pid/clear_refs affects all pages. 994 */ 995 if (cp->type == CLEAR_REFS_ANON && vma->vm_file) 996 return 1; 997 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file) 998 return 1; 999 return 0; 1000 } 1001 1002 static ssize_t clear_refs_write(struct file *file, const char __user *buf, 1003 size_t count, loff_t *ppos) 1004 { 1005 struct task_struct *task; 1006 char buffer[PROC_NUMBUF]; 1007 struct mm_struct *mm; 1008 struct vm_area_struct *vma; 1009 enum clear_refs_types type; 1010 int itype; 1011 int rv; 1012 1013 memset(buffer, 0, sizeof(buffer)); 1014 if (count > sizeof(buffer) - 1) 1015 count = sizeof(buffer) - 1; 1016 if (copy_from_user(buffer, buf, count)) 1017 return -EFAULT; 1018 rv = kstrtoint(strstrip(buffer), 10, &itype); 1019 if (rv < 0) 1020 return rv; 1021 type = (enum clear_refs_types)itype; 1022 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST) 1023 return -EINVAL; 1024 1025 task = get_proc_task(file_inode(file)); 1026 if (!task) 1027 return -ESRCH; 1028 mm = get_task_mm(task); 1029 if (mm) { 1030 struct clear_refs_private cp = { 1031 .type = type, 1032 }; 1033 struct mm_walk clear_refs_walk = { 1034 .pmd_entry = clear_refs_pte_range, 1035 .test_walk = clear_refs_test_walk, 1036 .mm = mm, 1037 .private = &cp, 1038 }; 1039 1040 if (type == CLEAR_REFS_MM_HIWATER_RSS) { 1041 if (down_write_killable(&mm->mmap_sem)) { 1042 count = -EINTR; 1043 goto out_mm; 1044 } 1045 1046 /* 1047 * Writing 5 to /proc/pid/clear_refs resets the peak 1048 * resident set size to this mm's current rss value. 1049 */ 1050 reset_mm_hiwater_rss(mm); 1051 up_write(&mm->mmap_sem); 1052 goto out_mm; 1053 } 1054 1055 down_read(&mm->mmap_sem); 1056 if (type == CLEAR_REFS_SOFT_DIRTY) { 1057 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1058 if (!(vma->vm_flags & VM_SOFTDIRTY)) 1059 continue; 1060 up_read(&mm->mmap_sem); 1061 if (down_write_killable(&mm->mmap_sem)) { 1062 count = -EINTR; 1063 goto out_mm; 1064 } 1065 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1066 vma->vm_flags &= ~VM_SOFTDIRTY; 1067 vma_set_page_prot(vma); 1068 } 1069 downgrade_write(&mm->mmap_sem); 1070 break; 1071 } 1072 mmu_notifier_invalidate_range_start(mm, 0, -1); 1073 } 1074 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk); 1075 if (type == CLEAR_REFS_SOFT_DIRTY) 1076 mmu_notifier_invalidate_range_end(mm, 0, -1); 1077 flush_tlb_mm(mm); 1078 up_read(&mm->mmap_sem); 1079 out_mm: 1080 mmput(mm); 1081 } 1082 put_task_struct(task); 1083 1084 return count; 1085 } 1086 1087 const struct file_operations proc_clear_refs_operations = { 1088 .write = clear_refs_write, 1089 .llseek = noop_llseek, 1090 }; 1091 1092 typedef struct { 1093 u64 pme; 1094 } pagemap_entry_t; 1095 1096 struct pagemapread { 1097 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */ 1098 pagemap_entry_t *buffer; 1099 bool show_pfn; 1100 }; 1101 1102 #define PAGEMAP_WALK_SIZE (PMD_SIZE) 1103 #define PAGEMAP_WALK_MASK (PMD_MASK) 1104 1105 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t) 1106 #define PM_PFRAME_BITS 55 1107 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0) 1108 #define PM_SOFT_DIRTY BIT_ULL(55) 1109 #define PM_MMAP_EXCLUSIVE BIT_ULL(56) 1110 #define PM_FILE BIT_ULL(61) 1111 #define PM_SWAP BIT_ULL(62) 1112 #define PM_PRESENT BIT_ULL(63) 1113 1114 #define PM_END_OF_BUFFER 1 1115 1116 static inline pagemap_entry_t make_pme(u64 frame, u64 flags) 1117 { 1118 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags }; 1119 } 1120 1121 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme, 1122 struct pagemapread *pm) 1123 { 1124 pm->buffer[pm->pos++] = *pme; 1125 if (pm->pos >= pm->len) 1126 return PM_END_OF_BUFFER; 1127 return 0; 1128 } 1129 1130 static int pagemap_pte_hole(unsigned long start, unsigned long end, 1131 struct mm_walk *walk) 1132 { 1133 struct pagemapread *pm = walk->private; 1134 unsigned long addr = start; 1135 int err = 0; 1136 1137 while (addr < end) { 1138 struct vm_area_struct *vma = find_vma(walk->mm, addr); 1139 pagemap_entry_t pme = make_pme(0, 0); 1140 /* End of address space hole, which we mark as non-present. */ 1141 unsigned long hole_end; 1142 1143 if (vma) 1144 hole_end = min(end, vma->vm_start); 1145 else 1146 hole_end = end; 1147 1148 for (; addr < hole_end; addr += PAGE_SIZE) { 1149 err = add_to_pagemap(addr, &pme, pm); 1150 if (err) 1151 goto out; 1152 } 1153 1154 if (!vma) 1155 break; 1156 1157 /* Addresses in the VMA. */ 1158 if (vma->vm_flags & VM_SOFTDIRTY) 1159 pme = make_pme(0, PM_SOFT_DIRTY); 1160 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) { 1161 err = add_to_pagemap(addr, &pme, pm); 1162 if (err) 1163 goto out; 1164 } 1165 } 1166 out: 1167 return err; 1168 } 1169 1170 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm, 1171 struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1172 { 1173 u64 frame = 0, flags = 0; 1174 struct page *page = NULL; 1175 1176 if (pte_present(pte)) { 1177 if (pm->show_pfn) 1178 frame = pte_pfn(pte); 1179 flags |= PM_PRESENT; 1180 page = vm_normal_page(vma, addr, pte); 1181 if (pte_soft_dirty(pte)) 1182 flags |= PM_SOFT_DIRTY; 1183 } else if (is_swap_pte(pte)) { 1184 swp_entry_t entry; 1185 if (pte_swp_soft_dirty(pte)) 1186 flags |= PM_SOFT_DIRTY; 1187 entry = pte_to_swp_entry(pte); 1188 frame = swp_type(entry) | 1189 (swp_offset(entry) << MAX_SWAPFILES_SHIFT); 1190 flags |= PM_SWAP; 1191 if (is_migration_entry(entry)) 1192 page = migration_entry_to_page(entry); 1193 } 1194 1195 if (page && !PageAnon(page)) 1196 flags |= PM_FILE; 1197 if (page && page_mapcount(page) == 1) 1198 flags |= PM_MMAP_EXCLUSIVE; 1199 if (vma->vm_flags & VM_SOFTDIRTY) 1200 flags |= PM_SOFT_DIRTY; 1201 1202 return make_pme(frame, flags); 1203 } 1204 1205 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end, 1206 struct mm_walk *walk) 1207 { 1208 struct vm_area_struct *vma = walk->vma; 1209 struct pagemapread *pm = walk->private; 1210 spinlock_t *ptl; 1211 pte_t *pte, *orig_pte; 1212 int err = 0; 1213 1214 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1215 ptl = pmd_trans_huge_lock(pmdp, vma); 1216 if (ptl) { 1217 u64 flags = 0, frame = 0; 1218 pmd_t pmd = *pmdp; 1219 1220 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd)) 1221 flags |= PM_SOFT_DIRTY; 1222 1223 /* 1224 * Currently pmd for thp is always present because thp 1225 * can not be swapped-out, migrated, or HWPOISONed 1226 * (split in such cases instead.) 1227 * This if-check is just to prepare for future implementation. 1228 */ 1229 if (pmd_present(pmd)) { 1230 struct page *page = pmd_page(pmd); 1231 1232 if (page_mapcount(page) == 1) 1233 flags |= PM_MMAP_EXCLUSIVE; 1234 1235 flags |= PM_PRESENT; 1236 if (pm->show_pfn) 1237 frame = pmd_pfn(pmd) + 1238 ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1239 } 1240 1241 for (; addr != end; addr += PAGE_SIZE) { 1242 pagemap_entry_t pme = make_pme(frame, flags); 1243 1244 err = add_to_pagemap(addr, &pme, pm); 1245 if (err) 1246 break; 1247 if (pm->show_pfn && (flags & PM_PRESENT)) 1248 frame++; 1249 } 1250 spin_unlock(ptl); 1251 return err; 1252 } 1253 1254 if (pmd_trans_unstable(pmdp)) 1255 return 0; 1256 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1257 1258 /* 1259 * We can assume that @vma always points to a valid one and @end never 1260 * goes beyond vma->vm_end. 1261 */ 1262 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl); 1263 for (; addr < end; pte++, addr += PAGE_SIZE) { 1264 pagemap_entry_t pme; 1265 1266 pme = pte_to_pagemap_entry(pm, vma, addr, *pte); 1267 err = add_to_pagemap(addr, &pme, pm); 1268 if (err) 1269 break; 1270 } 1271 pte_unmap_unlock(orig_pte, ptl); 1272 1273 cond_resched(); 1274 1275 return err; 1276 } 1277 1278 #ifdef CONFIG_HUGETLB_PAGE 1279 /* This function walks within one hugetlb entry in the single call */ 1280 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask, 1281 unsigned long addr, unsigned long end, 1282 struct mm_walk *walk) 1283 { 1284 struct pagemapread *pm = walk->private; 1285 struct vm_area_struct *vma = walk->vma; 1286 u64 flags = 0, frame = 0; 1287 int err = 0; 1288 pte_t pte; 1289 1290 if (vma->vm_flags & VM_SOFTDIRTY) 1291 flags |= PM_SOFT_DIRTY; 1292 1293 pte = huge_ptep_get(ptep); 1294 if (pte_present(pte)) { 1295 struct page *page = pte_page(pte); 1296 1297 if (!PageAnon(page)) 1298 flags |= PM_FILE; 1299 1300 if (page_mapcount(page) == 1) 1301 flags |= PM_MMAP_EXCLUSIVE; 1302 1303 flags |= PM_PRESENT; 1304 if (pm->show_pfn) 1305 frame = pte_pfn(pte) + 1306 ((addr & ~hmask) >> PAGE_SHIFT); 1307 } 1308 1309 for (; addr != end; addr += PAGE_SIZE) { 1310 pagemap_entry_t pme = make_pme(frame, flags); 1311 1312 err = add_to_pagemap(addr, &pme, pm); 1313 if (err) 1314 return err; 1315 if (pm->show_pfn && (flags & PM_PRESENT)) 1316 frame++; 1317 } 1318 1319 cond_resched(); 1320 1321 return err; 1322 } 1323 #endif /* HUGETLB_PAGE */ 1324 1325 /* 1326 * /proc/pid/pagemap - an array mapping virtual pages to pfns 1327 * 1328 * For each page in the address space, this file contains one 64-bit entry 1329 * consisting of the following: 1330 * 1331 * Bits 0-54 page frame number (PFN) if present 1332 * Bits 0-4 swap type if swapped 1333 * Bits 5-54 swap offset if swapped 1334 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt) 1335 * Bit 56 page exclusively mapped 1336 * Bits 57-60 zero 1337 * Bit 61 page is file-page or shared-anon 1338 * Bit 62 page swapped 1339 * Bit 63 page present 1340 * 1341 * If the page is not present but in swap, then the PFN contains an 1342 * encoding of the swap file number and the page's offset into the 1343 * swap. Unmapped pages return a null PFN. This allows determining 1344 * precisely which pages are mapped (or in swap) and comparing mapped 1345 * pages between processes. 1346 * 1347 * Efficient users of this interface will use /proc/pid/maps to 1348 * determine which areas of memory are actually mapped and llseek to 1349 * skip over unmapped regions. 1350 */ 1351 static ssize_t pagemap_read(struct file *file, char __user *buf, 1352 size_t count, loff_t *ppos) 1353 { 1354 struct mm_struct *mm = file->private_data; 1355 struct pagemapread pm; 1356 struct mm_walk pagemap_walk = {}; 1357 unsigned long src; 1358 unsigned long svpfn; 1359 unsigned long start_vaddr; 1360 unsigned long end_vaddr; 1361 int ret = 0, copied = 0; 1362 1363 if (!mm || !mmget_not_zero(mm)) 1364 goto out; 1365 1366 ret = -EINVAL; 1367 /* file position must be aligned */ 1368 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) 1369 goto out_mm; 1370 1371 ret = 0; 1372 if (!count) 1373 goto out_mm; 1374 1375 /* do not disclose physical addresses: attack vector */ 1376 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN); 1377 1378 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT); 1379 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY); 1380 ret = -ENOMEM; 1381 if (!pm.buffer) 1382 goto out_mm; 1383 1384 pagemap_walk.pmd_entry = pagemap_pmd_range; 1385 pagemap_walk.pte_hole = pagemap_pte_hole; 1386 #ifdef CONFIG_HUGETLB_PAGE 1387 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range; 1388 #endif 1389 pagemap_walk.mm = mm; 1390 pagemap_walk.private = ± 1391 1392 src = *ppos; 1393 svpfn = src / PM_ENTRY_BYTES; 1394 start_vaddr = svpfn << PAGE_SHIFT; 1395 end_vaddr = mm->task_size; 1396 1397 /* watch out for wraparound */ 1398 if (svpfn > mm->task_size >> PAGE_SHIFT) 1399 start_vaddr = end_vaddr; 1400 1401 /* 1402 * The odds are that this will stop walking way 1403 * before end_vaddr, because the length of the 1404 * user buffer is tracked in "pm", and the walk 1405 * will stop when we hit the end of the buffer. 1406 */ 1407 ret = 0; 1408 while (count && (start_vaddr < end_vaddr)) { 1409 int len; 1410 unsigned long end; 1411 1412 pm.pos = 0; 1413 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK; 1414 /* overflow ? */ 1415 if (end < start_vaddr || end > end_vaddr) 1416 end = end_vaddr; 1417 down_read(&mm->mmap_sem); 1418 ret = walk_page_range(start_vaddr, end, &pagemap_walk); 1419 up_read(&mm->mmap_sem); 1420 start_vaddr = end; 1421 1422 len = min(count, PM_ENTRY_BYTES * pm.pos); 1423 if (copy_to_user(buf, pm.buffer, len)) { 1424 ret = -EFAULT; 1425 goto out_free; 1426 } 1427 copied += len; 1428 buf += len; 1429 count -= len; 1430 } 1431 *ppos += copied; 1432 if (!ret || ret == PM_END_OF_BUFFER) 1433 ret = copied; 1434 1435 out_free: 1436 kfree(pm.buffer); 1437 out_mm: 1438 mmput(mm); 1439 out: 1440 return ret; 1441 } 1442 1443 static int pagemap_open(struct inode *inode, struct file *file) 1444 { 1445 struct mm_struct *mm; 1446 1447 mm = proc_mem_open(inode, PTRACE_MODE_READ); 1448 if (IS_ERR(mm)) 1449 return PTR_ERR(mm); 1450 file->private_data = mm; 1451 return 0; 1452 } 1453 1454 static int pagemap_release(struct inode *inode, struct file *file) 1455 { 1456 struct mm_struct *mm = file->private_data; 1457 1458 if (mm) 1459 mmdrop(mm); 1460 return 0; 1461 } 1462 1463 const struct file_operations proc_pagemap_operations = { 1464 .llseek = mem_lseek, /* borrow this */ 1465 .read = pagemap_read, 1466 .open = pagemap_open, 1467 .release = pagemap_release, 1468 }; 1469 #endif /* CONFIG_PROC_PAGE_MONITOR */ 1470 1471 #ifdef CONFIG_NUMA 1472 1473 struct numa_maps { 1474 unsigned long pages; 1475 unsigned long anon; 1476 unsigned long active; 1477 unsigned long writeback; 1478 unsigned long mapcount_max; 1479 unsigned long dirty; 1480 unsigned long swapcache; 1481 unsigned long node[MAX_NUMNODES]; 1482 }; 1483 1484 struct numa_maps_private { 1485 struct proc_maps_private proc_maps; 1486 struct numa_maps md; 1487 }; 1488 1489 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty, 1490 unsigned long nr_pages) 1491 { 1492 int count = page_mapcount(page); 1493 1494 md->pages += nr_pages; 1495 if (pte_dirty || PageDirty(page)) 1496 md->dirty += nr_pages; 1497 1498 if (PageSwapCache(page)) 1499 md->swapcache += nr_pages; 1500 1501 if (PageActive(page) || PageUnevictable(page)) 1502 md->active += nr_pages; 1503 1504 if (PageWriteback(page)) 1505 md->writeback += nr_pages; 1506 1507 if (PageAnon(page)) 1508 md->anon += nr_pages; 1509 1510 if (count > md->mapcount_max) 1511 md->mapcount_max = count; 1512 1513 md->node[page_to_nid(page)] += nr_pages; 1514 } 1515 1516 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma, 1517 unsigned long addr) 1518 { 1519 struct page *page; 1520 int nid; 1521 1522 if (!pte_present(pte)) 1523 return NULL; 1524 1525 page = vm_normal_page(vma, addr, pte); 1526 if (!page) 1527 return NULL; 1528 1529 if (PageReserved(page)) 1530 return NULL; 1531 1532 nid = page_to_nid(page); 1533 if (!node_isset(nid, node_states[N_MEMORY])) 1534 return NULL; 1535 1536 return page; 1537 } 1538 1539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1540 static struct page *can_gather_numa_stats_pmd(pmd_t pmd, 1541 struct vm_area_struct *vma, 1542 unsigned long addr) 1543 { 1544 struct page *page; 1545 int nid; 1546 1547 if (!pmd_present(pmd)) 1548 return NULL; 1549 1550 page = vm_normal_page_pmd(vma, addr, pmd); 1551 if (!page) 1552 return NULL; 1553 1554 if (PageReserved(page)) 1555 return NULL; 1556 1557 nid = page_to_nid(page); 1558 if (!node_isset(nid, node_states[N_MEMORY])) 1559 return NULL; 1560 1561 return page; 1562 } 1563 #endif 1564 1565 static int gather_pte_stats(pmd_t *pmd, unsigned long addr, 1566 unsigned long end, struct mm_walk *walk) 1567 { 1568 struct numa_maps *md = walk->private; 1569 struct vm_area_struct *vma = walk->vma; 1570 spinlock_t *ptl; 1571 pte_t *orig_pte; 1572 pte_t *pte; 1573 1574 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1575 ptl = pmd_trans_huge_lock(pmd, vma); 1576 if (ptl) { 1577 struct page *page; 1578 1579 page = can_gather_numa_stats_pmd(*pmd, vma, addr); 1580 if (page) 1581 gather_stats(page, md, pmd_dirty(*pmd), 1582 HPAGE_PMD_SIZE/PAGE_SIZE); 1583 spin_unlock(ptl); 1584 return 0; 1585 } 1586 1587 if (pmd_trans_unstable(pmd)) 1588 return 0; 1589 #endif 1590 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 1591 do { 1592 struct page *page = can_gather_numa_stats(*pte, vma, addr); 1593 if (!page) 1594 continue; 1595 gather_stats(page, md, pte_dirty(*pte), 1); 1596 1597 } while (pte++, addr += PAGE_SIZE, addr != end); 1598 pte_unmap_unlock(orig_pte, ptl); 1599 cond_resched(); 1600 return 0; 1601 } 1602 #ifdef CONFIG_HUGETLB_PAGE 1603 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1604 unsigned long addr, unsigned long end, struct mm_walk *walk) 1605 { 1606 pte_t huge_pte = huge_ptep_get(pte); 1607 struct numa_maps *md; 1608 struct page *page; 1609 1610 if (!pte_present(huge_pte)) 1611 return 0; 1612 1613 page = pte_page(huge_pte); 1614 if (!page) 1615 return 0; 1616 1617 md = walk->private; 1618 gather_stats(page, md, pte_dirty(huge_pte), 1); 1619 return 0; 1620 } 1621 1622 #else 1623 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1624 unsigned long addr, unsigned long end, struct mm_walk *walk) 1625 { 1626 return 0; 1627 } 1628 #endif 1629 1630 /* 1631 * Display pages allocated per node and memory policy via /proc. 1632 */ 1633 static int show_numa_map(struct seq_file *m, void *v, int is_pid) 1634 { 1635 struct numa_maps_private *numa_priv = m->private; 1636 struct proc_maps_private *proc_priv = &numa_priv->proc_maps; 1637 struct vm_area_struct *vma = v; 1638 struct numa_maps *md = &numa_priv->md; 1639 struct file *file = vma->vm_file; 1640 struct mm_struct *mm = vma->vm_mm; 1641 struct mm_walk walk = { 1642 .hugetlb_entry = gather_hugetlb_stats, 1643 .pmd_entry = gather_pte_stats, 1644 .private = md, 1645 .mm = mm, 1646 }; 1647 struct mempolicy *pol; 1648 char buffer[64]; 1649 int nid; 1650 1651 if (!mm) 1652 return 0; 1653 1654 /* Ensure we start with an empty set of numa_maps statistics. */ 1655 memset(md, 0, sizeof(*md)); 1656 1657 pol = __get_vma_policy(vma, vma->vm_start); 1658 if (pol) { 1659 mpol_to_str(buffer, sizeof(buffer), pol); 1660 mpol_cond_put(pol); 1661 } else { 1662 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy); 1663 } 1664 1665 seq_printf(m, "%08lx %s", vma->vm_start, buffer); 1666 1667 if (file) { 1668 seq_puts(m, " file="); 1669 seq_file_path(m, file, "\n\t= "); 1670 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) { 1671 seq_puts(m, " heap"); 1672 } else if (is_stack(proc_priv, vma)) { 1673 seq_puts(m, " stack"); 1674 } 1675 1676 if (is_vm_hugetlb_page(vma)) 1677 seq_puts(m, " huge"); 1678 1679 /* mmap_sem is held by m_start */ 1680 walk_page_vma(vma, &walk); 1681 1682 if (!md->pages) 1683 goto out; 1684 1685 if (md->anon) 1686 seq_printf(m, " anon=%lu", md->anon); 1687 1688 if (md->dirty) 1689 seq_printf(m, " dirty=%lu", md->dirty); 1690 1691 if (md->pages != md->anon && md->pages != md->dirty) 1692 seq_printf(m, " mapped=%lu", md->pages); 1693 1694 if (md->mapcount_max > 1) 1695 seq_printf(m, " mapmax=%lu", md->mapcount_max); 1696 1697 if (md->swapcache) 1698 seq_printf(m, " swapcache=%lu", md->swapcache); 1699 1700 if (md->active < md->pages && !is_vm_hugetlb_page(vma)) 1701 seq_printf(m, " active=%lu", md->active); 1702 1703 if (md->writeback) 1704 seq_printf(m, " writeback=%lu", md->writeback); 1705 1706 for_each_node_state(nid, N_MEMORY) 1707 if (md->node[nid]) 1708 seq_printf(m, " N%d=%lu", nid, md->node[nid]); 1709 1710 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10); 1711 out: 1712 seq_putc(m, '\n'); 1713 m_cache_vma(m, vma); 1714 return 0; 1715 } 1716 1717 static int show_pid_numa_map(struct seq_file *m, void *v) 1718 { 1719 return show_numa_map(m, v, 1); 1720 } 1721 1722 static int show_tid_numa_map(struct seq_file *m, void *v) 1723 { 1724 return show_numa_map(m, v, 0); 1725 } 1726 1727 static const struct seq_operations proc_pid_numa_maps_op = { 1728 .start = m_start, 1729 .next = m_next, 1730 .stop = m_stop, 1731 .show = show_pid_numa_map, 1732 }; 1733 1734 static const struct seq_operations proc_tid_numa_maps_op = { 1735 .start = m_start, 1736 .next = m_next, 1737 .stop = m_stop, 1738 .show = show_tid_numa_map, 1739 }; 1740 1741 static int numa_maps_open(struct inode *inode, struct file *file, 1742 const struct seq_operations *ops) 1743 { 1744 return proc_maps_open(inode, file, ops, 1745 sizeof(struct numa_maps_private)); 1746 } 1747 1748 static int pid_numa_maps_open(struct inode *inode, struct file *file) 1749 { 1750 return numa_maps_open(inode, file, &proc_pid_numa_maps_op); 1751 } 1752 1753 static int tid_numa_maps_open(struct inode *inode, struct file *file) 1754 { 1755 return numa_maps_open(inode, file, &proc_tid_numa_maps_op); 1756 } 1757 1758 const struct file_operations proc_pid_numa_maps_operations = { 1759 .open = pid_numa_maps_open, 1760 .read = seq_read, 1761 .llseek = seq_lseek, 1762 .release = proc_map_release, 1763 }; 1764 1765 const struct file_operations proc_tid_numa_maps_operations = { 1766 .open = tid_numa_maps_open, 1767 .read = seq_read, 1768 .llseek = seq_lseek, 1769 .release = proc_map_release, 1770 }; 1771 #endif /* CONFIG_NUMA */ 1772