xref: /openbmc/linux/fs/proc/task_mmu.c (revision 0ad53fe3)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22 
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27 
28 #define SEQ_PUT_DEC(str, val) \
29 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32 	unsigned long text, lib, swap, anon, file, shmem;
33 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34 
35 	anon = get_mm_counter(mm, MM_ANONPAGES);
36 	file = get_mm_counter(mm, MM_FILEPAGES);
37 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38 
39 	/*
40 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
42 	 * collector of these hiwater stats must therefore get total_vm
43 	 * and rss too, which will usually be the higher.  Barriers? not
44 	 * worth the effort, such snapshots can always be inconsistent.
45 	 */
46 	hiwater_vm = total_vm = mm->total_vm;
47 	if (hiwater_vm < mm->hiwater_vm)
48 		hiwater_vm = mm->hiwater_vm;
49 	hiwater_rss = total_rss = anon + file + shmem;
50 	if (hiwater_rss < mm->hiwater_rss)
51 		hiwater_rss = mm->hiwater_rss;
52 
53 	/* split executable areas between text and lib */
54 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 	text = min(text, mm->exec_vm << PAGE_SHIFT);
56 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
57 
58 	swap = get_mm_counter(mm, MM_SWAPENTS);
59 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 	seq_put_decimal_ull_width(m,
71 		    " kB\nVmExe:\t", text >> 10, 8);
72 	seq_put_decimal_ull_width(m,
73 		    " kB\nVmLib:\t", lib >> 10, 8);
74 	seq_put_decimal_ull_width(m,
75 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 	seq_puts(m, " kB\n");
78 	hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81 
82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84 	return PAGE_SIZE * mm->total_vm;
85 }
86 
87 unsigned long task_statm(struct mm_struct *mm,
88 			 unsigned long *shared, unsigned long *text,
89 			 unsigned long *data, unsigned long *resident)
90 {
91 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
92 			get_mm_counter(mm, MM_SHMEMPAGES);
93 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 								>> PAGE_SHIFT;
95 	*data = mm->data_vm + mm->stack_vm;
96 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 	return mm->total_vm;
98 }
99 
100 #ifdef CONFIG_NUMA
101 /*
102  * Save get_task_policy() for show_numa_map().
103  */
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106 	struct task_struct *task = priv->task;
107 
108 	task_lock(task);
109 	priv->task_mempolicy = get_task_policy(task);
110 	mpol_get(priv->task_mempolicy);
111 	task_unlock(task);
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115 	mpol_put(priv->task_mempolicy);
116 }
117 #else
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125 
126 static void *m_start(struct seq_file *m, loff_t *ppos)
127 {
128 	struct proc_maps_private *priv = m->private;
129 	unsigned long last_addr = *ppos;
130 	struct mm_struct *mm;
131 	struct vm_area_struct *vma;
132 
133 	/* See m_next(). Zero at the start or after lseek. */
134 	if (last_addr == -1UL)
135 		return NULL;
136 
137 	priv->task = get_proc_task(priv->inode);
138 	if (!priv->task)
139 		return ERR_PTR(-ESRCH);
140 
141 	mm = priv->mm;
142 	if (!mm || !mmget_not_zero(mm)) {
143 		put_task_struct(priv->task);
144 		priv->task = NULL;
145 		return NULL;
146 	}
147 
148 	if (mmap_read_lock_killable(mm)) {
149 		mmput(mm);
150 		put_task_struct(priv->task);
151 		priv->task = NULL;
152 		return ERR_PTR(-EINTR);
153 	}
154 
155 	hold_task_mempolicy(priv);
156 	priv->tail_vma = get_gate_vma(mm);
157 
158 	vma = find_vma(mm, last_addr);
159 	if (vma)
160 		return vma;
161 
162 	return priv->tail_vma;
163 }
164 
165 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
166 {
167 	struct proc_maps_private *priv = m->private;
168 	struct vm_area_struct *next, *vma = v;
169 
170 	if (vma == priv->tail_vma)
171 		next = NULL;
172 	else if (vma->vm_next)
173 		next = vma->vm_next;
174 	else
175 		next = priv->tail_vma;
176 
177 	*ppos = next ? next->vm_start : -1UL;
178 
179 	return next;
180 }
181 
182 static void m_stop(struct seq_file *m, void *v)
183 {
184 	struct proc_maps_private *priv = m->private;
185 	struct mm_struct *mm = priv->mm;
186 
187 	if (!priv->task)
188 		return;
189 
190 	release_task_mempolicy(priv);
191 	mmap_read_unlock(mm);
192 	mmput(mm);
193 	put_task_struct(priv->task);
194 	priv->task = NULL;
195 }
196 
197 static int proc_maps_open(struct inode *inode, struct file *file,
198 			const struct seq_operations *ops, int psize)
199 {
200 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
201 
202 	if (!priv)
203 		return -ENOMEM;
204 
205 	priv->inode = inode;
206 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
207 	if (IS_ERR(priv->mm)) {
208 		int err = PTR_ERR(priv->mm);
209 
210 		seq_release_private(inode, file);
211 		return err;
212 	}
213 
214 	return 0;
215 }
216 
217 static int proc_map_release(struct inode *inode, struct file *file)
218 {
219 	struct seq_file *seq = file->private_data;
220 	struct proc_maps_private *priv = seq->private;
221 
222 	if (priv->mm)
223 		mmdrop(priv->mm);
224 
225 	return seq_release_private(inode, file);
226 }
227 
228 static int do_maps_open(struct inode *inode, struct file *file,
229 			const struct seq_operations *ops)
230 {
231 	return proc_maps_open(inode, file, ops,
232 				sizeof(struct proc_maps_private));
233 }
234 
235 /*
236  * Indicate if the VMA is a stack for the given task; for
237  * /proc/PID/maps that is the stack of the main task.
238  */
239 static int is_stack(struct vm_area_struct *vma)
240 {
241 	/*
242 	 * We make no effort to guess what a given thread considers to be
243 	 * its "stack".  It's not even well-defined for programs written
244 	 * languages like Go.
245 	 */
246 	return vma->vm_start <= vma->vm_mm->start_stack &&
247 		vma->vm_end >= vma->vm_mm->start_stack;
248 }
249 
250 static void show_vma_header_prefix(struct seq_file *m,
251 				   unsigned long start, unsigned long end,
252 				   vm_flags_t flags, unsigned long long pgoff,
253 				   dev_t dev, unsigned long ino)
254 {
255 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
256 	seq_put_hex_ll(m, NULL, start, 8);
257 	seq_put_hex_ll(m, "-", end, 8);
258 	seq_putc(m, ' ');
259 	seq_putc(m, flags & VM_READ ? 'r' : '-');
260 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
261 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
262 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
263 	seq_put_hex_ll(m, " ", pgoff, 8);
264 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
265 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
266 	seq_put_decimal_ull(m, " ", ino);
267 	seq_putc(m, ' ');
268 }
269 
270 static void
271 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
272 {
273 	struct mm_struct *mm = vma->vm_mm;
274 	struct file *file = vma->vm_file;
275 	vm_flags_t flags = vma->vm_flags;
276 	unsigned long ino = 0;
277 	unsigned long long pgoff = 0;
278 	unsigned long start, end;
279 	dev_t dev = 0;
280 	const char *name = NULL;
281 
282 	if (file) {
283 		struct inode *inode = file_inode(vma->vm_file);
284 		dev = inode->i_sb->s_dev;
285 		ino = inode->i_ino;
286 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
287 	}
288 
289 	start = vma->vm_start;
290 	end = vma->vm_end;
291 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
292 
293 	/*
294 	 * Print the dentry name for named mappings, and a
295 	 * special [heap] marker for the heap:
296 	 */
297 	if (file) {
298 		seq_pad(m, ' ');
299 		seq_file_path(m, file, "\n");
300 		goto done;
301 	}
302 
303 	if (vma->vm_ops && vma->vm_ops->name) {
304 		name = vma->vm_ops->name(vma);
305 		if (name)
306 			goto done;
307 	}
308 
309 	name = arch_vma_name(vma);
310 	if (!name) {
311 		if (!mm) {
312 			name = "[vdso]";
313 			goto done;
314 		}
315 
316 		if (vma->vm_start <= mm->brk &&
317 		    vma->vm_end >= mm->start_brk) {
318 			name = "[heap]";
319 			goto done;
320 		}
321 
322 		if (is_stack(vma))
323 			name = "[stack]";
324 	}
325 
326 done:
327 	if (name) {
328 		seq_pad(m, ' ');
329 		seq_puts(m, name);
330 	}
331 	seq_putc(m, '\n');
332 }
333 
334 static int show_map(struct seq_file *m, void *v)
335 {
336 	show_map_vma(m, v);
337 	return 0;
338 }
339 
340 static const struct seq_operations proc_pid_maps_op = {
341 	.start	= m_start,
342 	.next	= m_next,
343 	.stop	= m_stop,
344 	.show	= show_map
345 };
346 
347 static int pid_maps_open(struct inode *inode, struct file *file)
348 {
349 	return do_maps_open(inode, file, &proc_pid_maps_op);
350 }
351 
352 const struct file_operations proc_pid_maps_operations = {
353 	.open		= pid_maps_open,
354 	.read		= seq_read,
355 	.llseek		= seq_lseek,
356 	.release	= proc_map_release,
357 };
358 
359 /*
360  * Proportional Set Size(PSS): my share of RSS.
361  *
362  * PSS of a process is the count of pages it has in memory, where each
363  * page is divided by the number of processes sharing it.  So if a
364  * process has 1000 pages all to itself, and 1000 shared with one other
365  * process, its PSS will be 1500.
366  *
367  * To keep (accumulated) division errors low, we adopt a 64bit
368  * fixed-point pss counter to minimize division errors. So (pss >>
369  * PSS_SHIFT) would be the real byte count.
370  *
371  * A shift of 12 before division means (assuming 4K page size):
372  * 	- 1M 3-user-pages add up to 8KB errors;
373  * 	- supports mapcount up to 2^24, or 16M;
374  * 	- supports PSS up to 2^52 bytes, or 4PB.
375  */
376 #define PSS_SHIFT 12
377 
378 #ifdef CONFIG_PROC_PAGE_MONITOR
379 struct mem_size_stats {
380 	unsigned long resident;
381 	unsigned long shared_clean;
382 	unsigned long shared_dirty;
383 	unsigned long private_clean;
384 	unsigned long private_dirty;
385 	unsigned long referenced;
386 	unsigned long anonymous;
387 	unsigned long lazyfree;
388 	unsigned long anonymous_thp;
389 	unsigned long shmem_thp;
390 	unsigned long file_thp;
391 	unsigned long swap;
392 	unsigned long shared_hugetlb;
393 	unsigned long private_hugetlb;
394 	u64 pss;
395 	u64 pss_anon;
396 	u64 pss_file;
397 	u64 pss_shmem;
398 	u64 pss_locked;
399 	u64 swap_pss;
400 	bool check_shmem_swap;
401 };
402 
403 static void smaps_page_accumulate(struct mem_size_stats *mss,
404 		struct page *page, unsigned long size, unsigned long pss,
405 		bool dirty, bool locked, bool private)
406 {
407 	mss->pss += pss;
408 
409 	if (PageAnon(page))
410 		mss->pss_anon += pss;
411 	else if (PageSwapBacked(page))
412 		mss->pss_shmem += pss;
413 	else
414 		mss->pss_file += pss;
415 
416 	if (locked)
417 		mss->pss_locked += pss;
418 
419 	if (dirty || PageDirty(page)) {
420 		if (private)
421 			mss->private_dirty += size;
422 		else
423 			mss->shared_dirty += size;
424 	} else {
425 		if (private)
426 			mss->private_clean += size;
427 		else
428 			mss->shared_clean += size;
429 	}
430 }
431 
432 static void smaps_account(struct mem_size_stats *mss, struct page *page,
433 		bool compound, bool young, bool dirty, bool locked)
434 {
435 	int i, nr = compound ? compound_nr(page) : 1;
436 	unsigned long size = nr * PAGE_SIZE;
437 
438 	/*
439 	 * First accumulate quantities that depend only on |size| and the type
440 	 * of the compound page.
441 	 */
442 	if (PageAnon(page)) {
443 		mss->anonymous += size;
444 		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
445 			mss->lazyfree += size;
446 	}
447 
448 	mss->resident += size;
449 	/* Accumulate the size in pages that have been accessed. */
450 	if (young || page_is_young(page) || PageReferenced(page))
451 		mss->referenced += size;
452 
453 	/*
454 	 * Then accumulate quantities that may depend on sharing, or that may
455 	 * differ page-by-page.
456 	 *
457 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
458 	 * If any subpage of the compound page mapped with PTE it would elevate
459 	 * page_count().
460 	 */
461 	if (page_count(page) == 1) {
462 		smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
463 			locked, true);
464 		return;
465 	}
466 	for (i = 0; i < nr; i++, page++) {
467 		int mapcount = page_mapcount(page);
468 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
469 		if (mapcount >= 2)
470 			pss /= mapcount;
471 		smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
472 				      mapcount < 2);
473 	}
474 }
475 
476 #ifdef CONFIG_SHMEM
477 static int smaps_pte_hole(unsigned long addr, unsigned long end,
478 			  __always_unused int depth, struct mm_walk *walk)
479 {
480 	struct mem_size_stats *mss = walk->private;
481 
482 	mss->swap += shmem_partial_swap_usage(
483 			walk->vma->vm_file->f_mapping, addr, end);
484 
485 	return 0;
486 }
487 #else
488 #define smaps_pte_hole		NULL
489 #endif /* CONFIG_SHMEM */
490 
491 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
492 		struct mm_walk *walk)
493 {
494 	struct mem_size_stats *mss = walk->private;
495 	struct vm_area_struct *vma = walk->vma;
496 	bool locked = !!(vma->vm_flags & VM_LOCKED);
497 	struct page *page = NULL;
498 
499 	if (pte_present(*pte)) {
500 		page = vm_normal_page(vma, addr, *pte);
501 	} else if (is_swap_pte(*pte)) {
502 		swp_entry_t swpent = pte_to_swp_entry(*pte);
503 
504 		if (!non_swap_entry(swpent)) {
505 			int mapcount;
506 
507 			mss->swap += PAGE_SIZE;
508 			mapcount = swp_swapcount(swpent);
509 			if (mapcount >= 2) {
510 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
511 
512 				do_div(pss_delta, mapcount);
513 				mss->swap_pss += pss_delta;
514 			} else {
515 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
516 			}
517 		} else if (is_pfn_swap_entry(swpent))
518 			page = pfn_swap_entry_to_page(swpent);
519 	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
520 							&& pte_none(*pte))) {
521 		page = xa_load(&vma->vm_file->f_mapping->i_pages,
522 						linear_page_index(vma, addr));
523 		if (xa_is_value(page))
524 			mss->swap += PAGE_SIZE;
525 		return;
526 	}
527 
528 	if (!page)
529 		return;
530 
531 	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
532 }
533 
534 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
535 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
536 		struct mm_walk *walk)
537 {
538 	struct mem_size_stats *mss = walk->private;
539 	struct vm_area_struct *vma = walk->vma;
540 	bool locked = !!(vma->vm_flags & VM_LOCKED);
541 	struct page *page = NULL;
542 
543 	if (pmd_present(*pmd)) {
544 		/* FOLL_DUMP will return -EFAULT on huge zero page */
545 		page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
546 	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
547 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
548 
549 		if (is_migration_entry(entry))
550 			page = pfn_swap_entry_to_page(entry);
551 	}
552 	if (IS_ERR_OR_NULL(page))
553 		return;
554 	if (PageAnon(page))
555 		mss->anonymous_thp += HPAGE_PMD_SIZE;
556 	else if (PageSwapBacked(page))
557 		mss->shmem_thp += HPAGE_PMD_SIZE;
558 	else if (is_zone_device_page(page))
559 		/* pass */;
560 	else
561 		mss->file_thp += HPAGE_PMD_SIZE;
562 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
563 }
564 #else
565 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
566 		struct mm_walk *walk)
567 {
568 }
569 #endif
570 
571 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
572 			   struct mm_walk *walk)
573 {
574 	struct vm_area_struct *vma = walk->vma;
575 	pte_t *pte;
576 	spinlock_t *ptl;
577 
578 	ptl = pmd_trans_huge_lock(pmd, vma);
579 	if (ptl) {
580 		smaps_pmd_entry(pmd, addr, walk);
581 		spin_unlock(ptl);
582 		goto out;
583 	}
584 
585 	if (pmd_trans_unstable(pmd))
586 		goto out;
587 	/*
588 	 * The mmap_lock held all the way back in m_start() is what
589 	 * keeps khugepaged out of here and from collapsing things
590 	 * in here.
591 	 */
592 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
593 	for (; addr != end; pte++, addr += PAGE_SIZE)
594 		smaps_pte_entry(pte, addr, walk);
595 	pte_unmap_unlock(pte - 1, ptl);
596 out:
597 	cond_resched();
598 	return 0;
599 }
600 
601 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
602 {
603 	/*
604 	 * Don't forget to update Documentation/ on changes.
605 	 */
606 	static const char mnemonics[BITS_PER_LONG][2] = {
607 		/*
608 		 * In case if we meet a flag we don't know about.
609 		 */
610 		[0 ... (BITS_PER_LONG-1)] = "??",
611 
612 		[ilog2(VM_READ)]	= "rd",
613 		[ilog2(VM_WRITE)]	= "wr",
614 		[ilog2(VM_EXEC)]	= "ex",
615 		[ilog2(VM_SHARED)]	= "sh",
616 		[ilog2(VM_MAYREAD)]	= "mr",
617 		[ilog2(VM_MAYWRITE)]	= "mw",
618 		[ilog2(VM_MAYEXEC)]	= "me",
619 		[ilog2(VM_MAYSHARE)]	= "ms",
620 		[ilog2(VM_GROWSDOWN)]	= "gd",
621 		[ilog2(VM_PFNMAP)]	= "pf",
622 		[ilog2(VM_LOCKED)]	= "lo",
623 		[ilog2(VM_IO)]		= "io",
624 		[ilog2(VM_SEQ_READ)]	= "sr",
625 		[ilog2(VM_RAND_READ)]	= "rr",
626 		[ilog2(VM_DONTCOPY)]	= "dc",
627 		[ilog2(VM_DONTEXPAND)]	= "de",
628 		[ilog2(VM_ACCOUNT)]	= "ac",
629 		[ilog2(VM_NORESERVE)]	= "nr",
630 		[ilog2(VM_HUGETLB)]	= "ht",
631 		[ilog2(VM_SYNC)]	= "sf",
632 		[ilog2(VM_ARCH_1)]	= "ar",
633 		[ilog2(VM_WIPEONFORK)]	= "wf",
634 		[ilog2(VM_DONTDUMP)]	= "dd",
635 #ifdef CONFIG_ARM64_BTI
636 		[ilog2(VM_ARM64_BTI)]	= "bt",
637 #endif
638 #ifdef CONFIG_MEM_SOFT_DIRTY
639 		[ilog2(VM_SOFTDIRTY)]	= "sd",
640 #endif
641 		[ilog2(VM_MIXEDMAP)]	= "mm",
642 		[ilog2(VM_HUGEPAGE)]	= "hg",
643 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
644 		[ilog2(VM_MERGEABLE)]	= "mg",
645 		[ilog2(VM_UFFD_MISSING)]= "um",
646 		[ilog2(VM_UFFD_WP)]	= "uw",
647 #ifdef CONFIG_ARM64_MTE
648 		[ilog2(VM_MTE)]		= "mt",
649 		[ilog2(VM_MTE_ALLOWED)]	= "",
650 #endif
651 #ifdef CONFIG_ARCH_HAS_PKEYS
652 		/* These come out via ProtectionKey: */
653 		[ilog2(VM_PKEY_BIT0)]	= "",
654 		[ilog2(VM_PKEY_BIT1)]	= "",
655 		[ilog2(VM_PKEY_BIT2)]	= "",
656 		[ilog2(VM_PKEY_BIT3)]	= "",
657 #if VM_PKEY_BIT4
658 		[ilog2(VM_PKEY_BIT4)]	= "",
659 #endif
660 #endif /* CONFIG_ARCH_HAS_PKEYS */
661 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
662 		[ilog2(VM_UFFD_MINOR)]	= "ui",
663 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
664 	};
665 	size_t i;
666 
667 	seq_puts(m, "VmFlags: ");
668 	for (i = 0; i < BITS_PER_LONG; i++) {
669 		if (!mnemonics[i][0])
670 			continue;
671 		if (vma->vm_flags & (1UL << i)) {
672 			seq_putc(m, mnemonics[i][0]);
673 			seq_putc(m, mnemonics[i][1]);
674 			seq_putc(m, ' ');
675 		}
676 	}
677 	seq_putc(m, '\n');
678 }
679 
680 #ifdef CONFIG_HUGETLB_PAGE
681 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
682 				 unsigned long addr, unsigned long end,
683 				 struct mm_walk *walk)
684 {
685 	struct mem_size_stats *mss = walk->private;
686 	struct vm_area_struct *vma = walk->vma;
687 	struct page *page = NULL;
688 
689 	if (pte_present(*pte)) {
690 		page = vm_normal_page(vma, addr, *pte);
691 	} else if (is_swap_pte(*pte)) {
692 		swp_entry_t swpent = pte_to_swp_entry(*pte);
693 
694 		if (is_pfn_swap_entry(swpent))
695 			page = pfn_swap_entry_to_page(swpent);
696 	}
697 	if (page) {
698 		int mapcount = page_mapcount(page);
699 
700 		if (mapcount >= 2)
701 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
702 		else
703 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
704 	}
705 	return 0;
706 }
707 #else
708 #define smaps_hugetlb_range	NULL
709 #endif /* HUGETLB_PAGE */
710 
711 static const struct mm_walk_ops smaps_walk_ops = {
712 	.pmd_entry		= smaps_pte_range,
713 	.hugetlb_entry		= smaps_hugetlb_range,
714 };
715 
716 static const struct mm_walk_ops smaps_shmem_walk_ops = {
717 	.pmd_entry		= smaps_pte_range,
718 	.hugetlb_entry		= smaps_hugetlb_range,
719 	.pte_hole		= smaps_pte_hole,
720 };
721 
722 /*
723  * Gather mem stats from @vma with the indicated beginning
724  * address @start, and keep them in @mss.
725  *
726  * Use vm_start of @vma as the beginning address if @start is 0.
727  */
728 static void smap_gather_stats(struct vm_area_struct *vma,
729 		struct mem_size_stats *mss, unsigned long start)
730 {
731 	const struct mm_walk_ops *ops = &smaps_walk_ops;
732 
733 	/* Invalid start */
734 	if (start >= vma->vm_end)
735 		return;
736 
737 #ifdef CONFIG_SHMEM
738 	/* In case of smaps_rollup, reset the value from previous vma */
739 	mss->check_shmem_swap = false;
740 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
741 		/*
742 		 * For shared or readonly shmem mappings we know that all
743 		 * swapped out pages belong to the shmem object, and we can
744 		 * obtain the swap value much more efficiently. For private
745 		 * writable mappings, we might have COW pages that are
746 		 * not affected by the parent swapped out pages of the shmem
747 		 * object, so we have to distinguish them during the page walk.
748 		 * Unless we know that the shmem object (or the part mapped by
749 		 * our VMA) has no swapped out pages at all.
750 		 */
751 		unsigned long shmem_swapped = shmem_swap_usage(vma);
752 
753 		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
754 					!(vma->vm_flags & VM_WRITE))) {
755 			mss->swap += shmem_swapped;
756 		} else {
757 			mss->check_shmem_swap = true;
758 			ops = &smaps_shmem_walk_ops;
759 		}
760 	}
761 #endif
762 	/* mmap_lock is held in m_start */
763 	if (!start)
764 		walk_page_vma(vma, ops, mss);
765 	else
766 		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
767 }
768 
769 #define SEQ_PUT_DEC(str, val) \
770 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
771 
772 /* Show the contents common for smaps and smaps_rollup */
773 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
774 	bool rollup_mode)
775 {
776 	SEQ_PUT_DEC("Rss:            ", mss->resident);
777 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
778 	if (rollup_mode) {
779 		/*
780 		 * These are meaningful only for smaps_rollup, otherwise two of
781 		 * them are zero, and the other one is the same as Pss.
782 		 */
783 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
784 			mss->pss_anon >> PSS_SHIFT);
785 		SEQ_PUT_DEC(" kB\nPss_File:       ",
786 			mss->pss_file >> PSS_SHIFT);
787 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
788 			mss->pss_shmem >> PSS_SHIFT);
789 	}
790 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
791 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
792 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
793 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
794 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
795 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
796 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
797 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
798 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
799 	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
800 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
801 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
802 				  mss->private_hugetlb >> 10, 7);
803 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
804 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
805 					mss->swap_pss >> PSS_SHIFT);
806 	SEQ_PUT_DEC(" kB\nLocked:         ",
807 					mss->pss_locked >> PSS_SHIFT);
808 	seq_puts(m, " kB\n");
809 }
810 
811 static int show_smap(struct seq_file *m, void *v)
812 {
813 	struct vm_area_struct *vma = v;
814 	struct mem_size_stats mss;
815 
816 	memset(&mss, 0, sizeof(mss));
817 
818 	smap_gather_stats(vma, &mss, 0);
819 
820 	show_map_vma(m, vma);
821 
822 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
823 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
824 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
825 	seq_puts(m, " kB\n");
826 
827 	__show_smap(m, &mss, false);
828 
829 	seq_printf(m, "THPeligible:    %d\n",
830 		   transparent_hugepage_active(vma));
831 
832 	if (arch_pkeys_enabled())
833 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
834 	show_smap_vma_flags(m, vma);
835 
836 	return 0;
837 }
838 
839 static int show_smaps_rollup(struct seq_file *m, void *v)
840 {
841 	struct proc_maps_private *priv = m->private;
842 	struct mem_size_stats mss;
843 	struct mm_struct *mm;
844 	struct vm_area_struct *vma;
845 	unsigned long last_vma_end = 0;
846 	int ret = 0;
847 
848 	priv->task = get_proc_task(priv->inode);
849 	if (!priv->task)
850 		return -ESRCH;
851 
852 	mm = priv->mm;
853 	if (!mm || !mmget_not_zero(mm)) {
854 		ret = -ESRCH;
855 		goto out_put_task;
856 	}
857 
858 	memset(&mss, 0, sizeof(mss));
859 
860 	ret = mmap_read_lock_killable(mm);
861 	if (ret)
862 		goto out_put_mm;
863 
864 	hold_task_mempolicy(priv);
865 
866 	for (vma = priv->mm->mmap; vma;) {
867 		smap_gather_stats(vma, &mss, 0);
868 		last_vma_end = vma->vm_end;
869 
870 		/*
871 		 * Release mmap_lock temporarily if someone wants to
872 		 * access it for write request.
873 		 */
874 		if (mmap_lock_is_contended(mm)) {
875 			mmap_read_unlock(mm);
876 			ret = mmap_read_lock_killable(mm);
877 			if (ret) {
878 				release_task_mempolicy(priv);
879 				goto out_put_mm;
880 			}
881 
882 			/*
883 			 * After dropping the lock, there are four cases to
884 			 * consider. See the following example for explanation.
885 			 *
886 			 *   +------+------+-----------+
887 			 *   | VMA1 | VMA2 | VMA3      |
888 			 *   +------+------+-----------+
889 			 *   |      |      |           |
890 			 *  4k     8k     16k         400k
891 			 *
892 			 * Suppose we drop the lock after reading VMA2 due to
893 			 * contention, then we get:
894 			 *
895 			 *	last_vma_end = 16k
896 			 *
897 			 * 1) VMA2 is freed, but VMA3 exists:
898 			 *
899 			 *    find_vma(mm, 16k - 1) will return VMA3.
900 			 *    In this case, just continue from VMA3.
901 			 *
902 			 * 2) VMA2 still exists:
903 			 *
904 			 *    find_vma(mm, 16k - 1) will return VMA2.
905 			 *    Iterate the loop like the original one.
906 			 *
907 			 * 3) No more VMAs can be found:
908 			 *
909 			 *    find_vma(mm, 16k - 1) will return NULL.
910 			 *    No more things to do, just break.
911 			 *
912 			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
913 			 *
914 			 *    find_vma(mm, 16k - 1) will return VMA' whose range
915 			 *    contains last_vma_end.
916 			 *    Iterate VMA' from last_vma_end.
917 			 */
918 			vma = find_vma(mm, last_vma_end - 1);
919 			/* Case 3 above */
920 			if (!vma)
921 				break;
922 
923 			/* Case 1 above */
924 			if (vma->vm_start >= last_vma_end)
925 				continue;
926 
927 			/* Case 4 above */
928 			if (vma->vm_end > last_vma_end)
929 				smap_gather_stats(vma, &mss, last_vma_end);
930 		}
931 		/* Case 2 above */
932 		vma = vma->vm_next;
933 	}
934 
935 	show_vma_header_prefix(m, priv->mm->mmap->vm_start,
936 			       last_vma_end, 0, 0, 0, 0);
937 	seq_pad(m, ' ');
938 	seq_puts(m, "[rollup]\n");
939 
940 	__show_smap(m, &mss, true);
941 
942 	release_task_mempolicy(priv);
943 	mmap_read_unlock(mm);
944 
945 out_put_mm:
946 	mmput(mm);
947 out_put_task:
948 	put_task_struct(priv->task);
949 	priv->task = NULL;
950 
951 	return ret;
952 }
953 #undef SEQ_PUT_DEC
954 
955 static const struct seq_operations proc_pid_smaps_op = {
956 	.start	= m_start,
957 	.next	= m_next,
958 	.stop	= m_stop,
959 	.show	= show_smap
960 };
961 
962 static int pid_smaps_open(struct inode *inode, struct file *file)
963 {
964 	return do_maps_open(inode, file, &proc_pid_smaps_op);
965 }
966 
967 static int smaps_rollup_open(struct inode *inode, struct file *file)
968 {
969 	int ret;
970 	struct proc_maps_private *priv;
971 
972 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
973 	if (!priv)
974 		return -ENOMEM;
975 
976 	ret = single_open(file, show_smaps_rollup, priv);
977 	if (ret)
978 		goto out_free;
979 
980 	priv->inode = inode;
981 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
982 	if (IS_ERR(priv->mm)) {
983 		ret = PTR_ERR(priv->mm);
984 
985 		single_release(inode, file);
986 		goto out_free;
987 	}
988 
989 	return 0;
990 
991 out_free:
992 	kfree(priv);
993 	return ret;
994 }
995 
996 static int smaps_rollup_release(struct inode *inode, struct file *file)
997 {
998 	struct seq_file *seq = file->private_data;
999 	struct proc_maps_private *priv = seq->private;
1000 
1001 	if (priv->mm)
1002 		mmdrop(priv->mm);
1003 
1004 	kfree(priv);
1005 	return single_release(inode, file);
1006 }
1007 
1008 const struct file_operations proc_pid_smaps_operations = {
1009 	.open		= pid_smaps_open,
1010 	.read		= seq_read,
1011 	.llseek		= seq_lseek,
1012 	.release	= proc_map_release,
1013 };
1014 
1015 const struct file_operations proc_pid_smaps_rollup_operations = {
1016 	.open		= smaps_rollup_open,
1017 	.read		= seq_read,
1018 	.llseek		= seq_lseek,
1019 	.release	= smaps_rollup_release,
1020 };
1021 
1022 enum clear_refs_types {
1023 	CLEAR_REFS_ALL = 1,
1024 	CLEAR_REFS_ANON,
1025 	CLEAR_REFS_MAPPED,
1026 	CLEAR_REFS_SOFT_DIRTY,
1027 	CLEAR_REFS_MM_HIWATER_RSS,
1028 	CLEAR_REFS_LAST,
1029 };
1030 
1031 struct clear_refs_private {
1032 	enum clear_refs_types type;
1033 };
1034 
1035 #ifdef CONFIG_MEM_SOFT_DIRTY
1036 
1037 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1038 {
1039 	struct page *page;
1040 
1041 	if (!pte_write(pte))
1042 		return false;
1043 	if (!is_cow_mapping(vma->vm_flags))
1044 		return false;
1045 	if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1046 		return false;
1047 	page = vm_normal_page(vma, addr, pte);
1048 	if (!page)
1049 		return false;
1050 	return page_maybe_dma_pinned(page);
1051 }
1052 
1053 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1054 		unsigned long addr, pte_t *pte)
1055 {
1056 	/*
1057 	 * The soft-dirty tracker uses #PF-s to catch writes
1058 	 * to pages, so write-protect the pte as well. See the
1059 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1060 	 * of how soft-dirty works.
1061 	 */
1062 	pte_t ptent = *pte;
1063 
1064 	if (pte_present(ptent)) {
1065 		pte_t old_pte;
1066 
1067 		if (pte_is_pinned(vma, addr, ptent))
1068 			return;
1069 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1070 		ptent = pte_wrprotect(old_pte);
1071 		ptent = pte_clear_soft_dirty(ptent);
1072 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1073 	} else if (is_swap_pte(ptent)) {
1074 		ptent = pte_swp_clear_soft_dirty(ptent);
1075 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1076 	}
1077 }
1078 #else
1079 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1080 		unsigned long addr, pte_t *pte)
1081 {
1082 }
1083 #endif
1084 
1085 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1086 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1087 		unsigned long addr, pmd_t *pmdp)
1088 {
1089 	pmd_t old, pmd = *pmdp;
1090 
1091 	if (pmd_present(pmd)) {
1092 		/* See comment in change_huge_pmd() */
1093 		old = pmdp_invalidate(vma, addr, pmdp);
1094 		if (pmd_dirty(old))
1095 			pmd = pmd_mkdirty(pmd);
1096 		if (pmd_young(old))
1097 			pmd = pmd_mkyoung(pmd);
1098 
1099 		pmd = pmd_wrprotect(pmd);
1100 		pmd = pmd_clear_soft_dirty(pmd);
1101 
1102 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1103 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1104 		pmd = pmd_swp_clear_soft_dirty(pmd);
1105 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1106 	}
1107 }
1108 #else
1109 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1110 		unsigned long addr, pmd_t *pmdp)
1111 {
1112 }
1113 #endif
1114 
1115 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1116 				unsigned long end, struct mm_walk *walk)
1117 {
1118 	struct clear_refs_private *cp = walk->private;
1119 	struct vm_area_struct *vma = walk->vma;
1120 	pte_t *pte, ptent;
1121 	spinlock_t *ptl;
1122 	struct page *page;
1123 
1124 	ptl = pmd_trans_huge_lock(pmd, vma);
1125 	if (ptl) {
1126 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1127 			clear_soft_dirty_pmd(vma, addr, pmd);
1128 			goto out;
1129 		}
1130 
1131 		if (!pmd_present(*pmd))
1132 			goto out;
1133 
1134 		page = pmd_page(*pmd);
1135 
1136 		/* Clear accessed and referenced bits. */
1137 		pmdp_test_and_clear_young(vma, addr, pmd);
1138 		test_and_clear_page_young(page);
1139 		ClearPageReferenced(page);
1140 out:
1141 		spin_unlock(ptl);
1142 		return 0;
1143 	}
1144 
1145 	if (pmd_trans_unstable(pmd))
1146 		return 0;
1147 
1148 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1149 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1150 		ptent = *pte;
1151 
1152 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1153 			clear_soft_dirty(vma, addr, pte);
1154 			continue;
1155 		}
1156 
1157 		if (!pte_present(ptent))
1158 			continue;
1159 
1160 		page = vm_normal_page(vma, addr, ptent);
1161 		if (!page)
1162 			continue;
1163 
1164 		/* Clear accessed and referenced bits. */
1165 		ptep_test_and_clear_young(vma, addr, pte);
1166 		test_and_clear_page_young(page);
1167 		ClearPageReferenced(page);
1168 	}
1169 	pte_unmap_unlock(pte - 1, ptl);
1170 	cond_resched();
1171 	return 0;
1172 }
1173 
1174 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1175 				struct mm_walk *walk)
1176 {
1177 	struct clear_refs_private *cp = walk->private;
1178 	struct vm_area_struct *vma = walk->vma;
1179 
1180 	if (vma->vm_flags & VM_PFNMAP)
1181 		return 1;
1182 
1183 	/*
1184 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1185 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1186 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1187 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1188 	 */
1189 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1190 		return 1;
1191 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1192 		return 1;
1193 	return 0;
1194 }
1195 
1196 static const struct mm_walk_ops clear_refs_walk_ops = {
1197 	.pmd_entry		= clear_refs_pte_range,
1198 	.test_walk		= clear_refs_test_walk,
1199 };
1200 
1201 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1202 				size_t count, loff_t *ppos)
1203 {
1204 	struct task_struct *task;
1205 	char buffer[PROC_NUMBUF];
1206 	struct mm_struct *mm;
1207 	struct vm_area_struct *vma;
1208 	enum clear_refs_types type;
1209 	int itype;
1210 	int rv;
1211 
1212 	memset(buffer, 0, sizeof(buffer));
1213 	if (count > sizeof(buffer) - 1)
1214 		count = sizeof(buffer) - 1;
1215 	if (copy_from_user(buffer, buf, count))
1216 		return -EFAULT;
1217 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1218 	if (rv < 0)
1219 		return rv;
1220 	type = (enum clear_refs_types)itype;
1221 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1222 		return -EINVAL;
1223 
1224 	task = get_proc_task(file_inode(file));
1225 	if (!task)
1226 		return -ESRCH;
1227 	mm = get_task_mm(task);
1228 	if (mm) {
1229 		struct mmu_notifier_range range;
1230 		struct clear_refs_private cp = {
1231 			.type = type,
1232 		};
1233 
1234 		if (mmap_write_lock_killable(mm)) {
1235 			count = -EINTR;
1236 			goto out_mm;
1237 		}
1238 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1239 			/*
1240 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1241 			 * resident set size to this mm's current rss value.
1242 			 */
1243 			reset_mm_hiwater_rss(mm);
1244 			goto out_unlock;
1245 		}
1246 
1247 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1248 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1249 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1250 					continue;
1251 				vma->vm_flags &= ~VM_SOFTDIRTY;
1252 				vma_set_page_prot(vma);
1253 			}
1254 
1255 			inc_tlb_flush_pending(mm);
1256 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1257 						0, NULL, mm, 0, -1UL);
1258 			mmu_notifier_invalidate_range_start(&range);
1259 		}
1260 		walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1261 				&cp);
1262 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1263 			mmu_notifier_invalidate_range_end(&range);
1264 			flush_tlb_mm(mm);
1265 			dec_tlb_flush_pending(mm);
1266 		}
1267 out_unlock:
1268 		mmap_write_unlock(mm);
1269 out_mm:
1270 		mmput(mm);
1271 	}
1272 	put_task_struct(task);
1273 
1274 	return count;
1275 }
1276 
1277 const struct file_operations proc_clear_refs_operations = {
1278 	.write		= clear_refs_write,
1279 	.llseek		= noop_llseek,
1280 };
1281 
1282 typedef struct {
1283 	u64 pme;
1284 } pagemap_entry_t;
1285 
1286 struct pagemapread {
1287 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1288 	pagemap_entry_t *buffer;
1289 	bool show_pfn;
1290 };
1291 
1292 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1293 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1294 
1295 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1296 #define PM_PFRAME_BITS		55
1297 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1298 #define PM_SOFT_DIRTY		BIT_ULL(55)
1299 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1300 #define PM_UFFD_WP		BIT_ULL(57)
1301 #define PM_FILE			BIT_ULL(61)
1302 #define PM_SWAP			BIT_ULL(62)
1303 #define PM_PRESENT		BIT_ULL(63)
1304 
1305 #define PM_END_OF_BUFFER    1
1306 
1307 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1308 {
1309 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1310 }
1311 
1312 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1313 			  struct pagemapread *pm)
1314 {
1315 	pm->buffer[pm->pos++] = *pme;
1316 	if (pm->pos >= pm->len)
1317 		return PM_END_OF_BUFFER;
1318 	return 0;
1319 }
1320 
1321 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1322 			    __always_unused int depth, struct mm_walk *walk)
1323 {
1324 	struct pagemapread *pm = walk->private;
1325 	unsigned long addr = start;
1326 	int err = 0;
1327 
1328 	while (addr < end) {
1329 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1330 		pagemap_entry_t pme = make_pme(0, 0);
1331 		/* End of address space hole, which we mark as non-present. */
1332 		unsigned long hole_end;
1333 
1334 		if (vma)
1335 			hole_end = min(end, vma->vm_start);
1336 		else
1337 			hole_end = end;
1338 
1339 		for (; addr < hole_end; addr += PAGE_SIZE) {
1340 			err = add_to_pagemap(addr, &pme, pm);
1341 			if (err)
1342 				goto out;
1343 		}
1344 
1345 		if (!vma)
1346 			break;
1347 
1348 		/* Addresses in the VMA. */
1349 		if (vma->vm_flags & VM_SOFTDIRTY)
1350 			pme = make_pme(0, PM_SOFT_DIRTY);
1351 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1352 			err = add_to_pagemap(addr, &pme, pm);
1353 			if (err)
1354 				goto out;
1355 		}
1356 	}
1357 out:
1358 	return err;
1359 }
1360 
1361 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1362 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1363 {
1364 	u64 frame = 0, flags = 0;
1365 	struct page *page = NULL;
1366 
1367 	if (pte_present(pte)) {
1368 		if (pm->show_pfn)
1369 			frame = pte_pfn(pte);
1370 		flags |= PM_PRESENT;
1371 		page = vm_normal_page(vma, addr, pte);
1372 		if (pte_soft_dirty(pte))
1373 			flags |= PM_SOFT_DIRTY;
1374 		if (pte_uffd_wp(pte))
1375 			flags |= PM_UFFD_WP;
1376 	} else if (is_swap_pte(pte)) {
1377 		swp_entry_t entry;
1378 		if (pte_swp_soft_dirty(pte))
1379 			flags |= PM_SOFT_DIRTY;
1380 		if (pte_swp_uffd_wp(pte))
1381 			flags |= PM_UFFD_WP;
1382 		entry = pte_to_swp_entry(pte);
1383 		if (pm->show_pfn)
1384 			frame = swp_type(entry) |
1385 				(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1386 		flags |= PM_SWAP;
1387 		if (is_pfn_swap_entry(entry))
1388 			page = pfn_swap_entry_to_page(entry);
1389 	}
1390 
1391 	if (page && !PageAnon(page))
1392 		flags |= PM_FILE;
1393 	if (page && page_mapcount(page) == 1)
1394 		flags |= PM_MMAP_EXCLUSIVE;
1395 	if (vma->vm_flags & VM_SOFTDIRTY)
1396 		flags |= PM_SOFT_DIRTY;
1397 
1398 	return make_pme(frame, flags);
1399 }
1400 
1401 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1402 			     struct mm_walk *walk)
1403 {
1404 	struct vm_area_struct *vma = walk->vma;
1405 	struct pagemapread *pm = walk->private;
1406 	spinlock_t *ptl;
1407 	pte_t *pte, *orig_pte;
1408 	int err = 0;
1409 
1410 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1411 	ptl = pmd_trans_huge_lock(pmdp, vma);
1412 	if (ptl) {
1413 		u64 flags = 0, frame = 0;
1414 		pmd_t pmd = *pmdp;
1415 		struct page *page = NULL;
1416 
1417 		if (vma->vm_flags & VM_SOFTDIRTY)
1418 			flags |= PM_SOFT_DIRTY;
1419 
1420 		if (pmd_present(pmd)) {
1421 			page = pmd_page(pmd);
1422 
1423 			flags |= PM_PRESENT;
1424 			if (pmd_soft_dirty(pmd))
1425 				flags |= PM_SOFT_DIRTY;
1426 			if (pmd_uffd_wp(pmd))
1427 				flags |= PM_UFFD_WP;
1428 			if (pm->show_pfn)
1429 				frame = pmd_pfn(pmd) +
1430 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1431 		}
1432 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1433 		else if (is_swap_pmd(pmd)) {
1434 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1435 			unsigned long offset;
1436 
1437 			if (pm->show_pfn) {
1438 				offset = swp_offset(entry) +
1439 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1440 				frame = swp_type(entry) |
1441 					(offset << MAX_SWAPFILES_SHIFT);
1442 			}
1443 			flags |= PM_SWAP;
1444 			if (pmd_swp_soft_dirty(pmd))
1445 				flags |= PM_SOFT_DIRTY;
1446 			if (pmd_swp_uffd_wp(pmd))
1447 				flags |= PM_UFFD_WP;
1448 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1449 			page = pfn_swap_entry_to_page(entry);
1450 		}
1451 #endif
1452 
1453 		if (page && page_mapcount(page) == 1)
1454 			flags |= PM_MMAP_EXCLUSIVE;
1455 
1456 		for (; addr != end; addr += PAGE_SIZE) {
1457 			pagemap_entry_t pme = make_pme(frame, flags);
1458 
1459 			err = add_to_pagemap(addr, &pme, pm);
1460 			if (err)
1461 				break;
1462 			if (pm->show_pfn) {
1463 				if (flags & PM_PRESENT)
1464 					frame++;
1465 				else if (flags & PM_SWAP)
1466 					frame += (1 << MAX_SWAPFILES_SHIFT);
1467 			}
1468 		}
1469 		spin_unlock(ptl);
1470 		return err;
1471 	}
1472 
1473 	if (pmd_trans_unstable(pmdp))
1474 		return 0;
1475 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1476 
1477 	/*
1478 	 * We can assume that @vma always points to a valid one and @end never
1479 	 * goes beyond vma->vm_end.
1480 	 */
1481 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1482 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1483 		pagemap_entry_t pme;
1484 
1485 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1486 		err = add_to_pagemap(addr, &pme, pm);
1487 		if (err)
1488 			break;
1489 	}
1490 	pte_unmap_unlock(orig_pte, ptl);
1491 
1492 	cond_resched();
1493 
1494 	return err;
1495 }
1496 
1497 #ifdef CONFIG_HUGETLB_PAGE
1498 /* This function walks within one hugetlb entry in the single call */
1499 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1500 				 unsigned long addr, unsigned long end,
1501 				 struct mm_walk *walk)
1502 {
1503 	struct pagemapread *pm = walk->private;
1504 	struct vm_area_struct *vma = walk->vma;
1505 	u64 flags = 0, frame = 0;
1506 	int err = 0;
1507 	pte_t pte;
1508 
1509 	if (vma->vm_flags & VM_SOFTDIRTY)
1510 		flags |= PM_SOFT_DIRTY;
1511 
1512 	pte = huge_ptep_get(ptep);
1513 	if (pte_present(pte)) {
1514 		struct page *page = pte_page(pte);
1515 
1516 		if (!PageAnon(page))
1517 			flags |= PM_FILE;
1518 
1519 		if (page_mapcount(page) == 1)
1520 			flags |= PM_MMAP_EXCLUSIVE;
1521 
1522 		flags |= PM_PRESENT;
1523 		if (pm->show_pfn)
1524 			frame = pte_pfn(pte) +
1525 				((addr & ~hmask) >> PAGE_SHIFT);
1526 	}
1527 
1528 	for (; addr != end; addr += PAGE_SIZE) {
1529 		pagemap_entry_t pme = make_pme(frame, flags);
1530 
1531 		err = add_to_pagemap(addr, &pme, pm);
1532 		if (err)
1533 			return err;
1534 		if (pm->show_pfn && (flags & PM_PRESENT))
1535 			frame++;
1536 	}
1537 
1538 	cond_resched();
1539 
1540 	return err;
1541 }
1542 #else
1543 #define pagemap_hugetlb_range	NULL
1544 #endif /* HUGETLB_PAGE */
1545 
1546 static const struct mm_walk_ops pagemap_ops = {
1547 	.pmd_entry	= pagemap_pmd_range,
1548 	.pte_hole	= pagemap_pte_hole,
1549 	.hugetlb_entry	= pagemap_hugetlb_range,
1550 };
1551 
1552 /*
1553  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1554  *
1555  * For each page in the address space, this file contains one 64-bit entry
1556  * consisting of the following:
1557  *
1558  * Bits 0-54  page frame number (PFN) if present
1559  * Bits 0-4   swap type if swapped
1560  * Bits 5-54  swap offset if swapped
1561  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1562  * Bit  56    page exclusively mapped
1563  * Bits 57-60 zero
1564  * Bit  61    page is file-page or shared-anon
1565  * Bit  62    page swapped
1566  * Bit  63    page present
1567  *
1568  * If the page is not present but in swap, then the PFN contains an
1569  * encoding of the swap file number and the page's offset into the
1570  * swap. Unmapped pages return a null PFN. This allows determining
1571  * precisely which pages are mapped (or in swap) and comparing mapped
1572  * pages between processes.
1573  *
1574  * Efficient users of this interface will use /proc/pid/maps to
1575  * determine which areas of memory are actually mapped and llseek to
1576  * skip over unmapped regions.
1577  */
1578 static ssize_t pagemap_read(struct file *file, char __user *buf,
1579 			    size_t count, loff_t *ppos)
1580 {
1581 	struct mm_struct *mm = file->private_data;
1582 	struct pagemapread pm;
1583 	unsigned long src;
1584 	unsigned long svpfn;
1585 	unsigned long start_vaddr;
1586 	unsigned long end_vaddr;
1587 	int ret = 0, copied = 0;
1588 
1589 	if (!mm || !mmget_not_zero(mm))
1590 		goto out;
1591 
1592 	ret = -EINVAL;
1593 	/* file position must be aligned */
1594 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1595 		goto out_mm;
1596 
1597 	ret = 0;
1598 	if (!count)
1599 		goto out_mm;
1600 
1601 	/* do not disclose physical addresses: attack vector */
1602 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1603 
1604 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1605 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1606 	ret = -ENOMEM;
1607 	if (!pm.buffer)
1608 		goto out_mm;
1609 
1610 	src = *ppos;
1611 	svpfn = src / PM_ENTRY_BYTES;
1612 	end_vaddr = mm->task_size;
1613 
1614 	/* watch out for wraparound */
1615 	start_vaddr = end_vaddr;
1616 	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1617 		start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1618 
1619 	/* Ensure the address is inside the task */
1620 	if (start_vaddr > mm->task_size)
1621 		start_vaddr = end_vaddr;
1622 
1623 	/*
1624 	 * The odds are that this will stop walking way
1625 	 * before end_vaddr, because the length of the
1626 	 * user buffer is tracked in "pm", and the walk
1627 	 * will stop when we hit the end of the buffer.
1628 	 */
1629 	ret = 0;
1630 	while (count && (start_vaddr < end_vaddr)) {
1631 		int len;
1632 		unsigned long end;
1633 
1634 		pm.pos = 0;
1635 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1636 		/* overflow ? */
1637 		if (end < start_vaddr || end > end_vaddr)
1638 			end = end_vaddr;
1639 		ret = mmap_read_lock_killable(mm);
1640 		if (ret)
1641 			goto out_free;
1642 		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1643 		mmap_read_unlock(mm);
1644 		start_vaddr = end;
1645 
1646 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1647 		if (copy_to_user(buf, pm.buffer, len)) {
1648 			ret = -EFAULT;
1649 			goto out_free;
1650 		}
1651 		copied += len;
1652 		buf += len;
1653 		count -= len;
1654 	}
1655 	*ppos += copied;
1656 	if (!ret || ret == PM_END_OF_BUFFER)
1657 		ret = copied;
1658 
1659 out_free:
1660 	kfree(pm.buffer);
1661 out_mm:
1662 	mmput(mm);
1663 out:
1664 	return ret;
1665 }
1666 
1667 static int pagemap_open(struct inode *inode, struct file *file)
1668 {
1669 	struct mm_struct *mm;
1670 
1671 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1672 	if (IS_ERR(mm))
1673 		return PTR_ERR(mm);
1674 	file->private_data = mm;
1675 	return 0;
1676 }
1677 
1678 static int pagemap_release(struct inode *inode, struct file *file)
1679 {
1680 	struct mm_struct *mm = file->private_data;
1681 
1682 	if (mm)
1683 		mmdrop(mm);
1684 	return 0;
1685 }
1686 
1687 const struct file_operations proc_pagemap_operations = {
1688 	.llseek		= mem_lseek, /* borrow this */
1689 	.read		= pagemap_read,
1690 	.open		= pagemap_open,
1691 	.release	= pagemap_release,
1692 };
1693 #endif /* CONFIG_PROC_PAGE_MONITOR */
1694 
1695 #ifdef CONFIG_NUMA
1696 
1697 struct numa_maps {
1698 	unsigned long pages;
1699 	unsigned long anon;
1700 	unsigned long active;
1701 	unsigned long writeback;
1702 	unsigned long mapcount_max;
1703 	unsigned long dirty;
1704 	unsigned long swapcache;
1705 	unsigned long node[MAX_NUMNODES];
1706 };
1707 
1708 struct numa_maps_private {
1709 	struct proc_maps_private proc_maps;
1710 	struct numa_maps md;
1711 };
1712 
1713 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1714 			unsigned long nr_pages)
1715 {
1716 	int count = page_mapcount(page);
1717 
1718 	md->pages += nr_pages;
1719 	if (pte_dirty || PageDirty(page))
1720 		md->dirty += nr_pages;
1721 
1722 	if (PageSwapCache(page))
1723 		md->swapcache += nr_pages;
1724 
1725 	if (PageActive(page) || PageUnevictable(page))
1726 		md->active += nr_pages;
1727 
1728 	if (PageWriteback(page))
1729 		md->writeback += nr_pages;
1730 
1731 	if (PageAnon(page))
1732 		md->anon += nr_pages;
1733 
1734 	if (count > md->mapcount_max)
1735 		md->mapcount_max = count;
1736 
1737 	md->node[page_to_nid(page)] += nr_pages;
1738 }
1739 
1740 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1741 		unsigned long addr)
1742 {
1743 	struct page *page;
1744 	int nid;
1745 
1746 	if (!pte_present(pte))
1747 		return NULL;
1748 
1749 	page = vm_normal_page(vma, addr, pte);
1750 	if (!page)
1751 		return NULL;
1752 
1753 	if (PageReserved(page))
1754 		return NULL;
1755 
1756 	nid = page_to_nid(page);
1757 	if (!node_isset(nid, node_states[N_MEMORY]))
1758 		return NULL;
1759 
1760 	return page;
1761 }
1762 
1763 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1764 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1765 					      struct vm_area_struct *vma,
1766 					      unsigned long addr)
1767 {
1768 	struct page *page;
1769 	int nid;
1770 
1771 	if (!pmd_present(pmd))
1772 		return NULL;
1773 
1774 	page = vm_normal_page_pmd(vma, addr, pmd);
1775 	if (!page)
1776 		return NULL;
1777 
1778 	if (PageReserved(page))
1779 		return NULL;
1780 
1781 	nid = page_to_nid(page);
1782 	if (!node_isset(nid, node_states[N_MEMORY]))
1783 		return NULL;
1784 
1785 	return page;
1786 }
1787 #endif
1788 
1789 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1790 		unsigned long end, struct mm_walk *walk)
1791 {
1792 	struct numa_maps *md = walk->private;
1793 	struct vm_area_struct *vma = walk->vma;
1794 	spinlock_t *ptl;
1795 	pte_t *orig_pte;
1796 	pte_t *pte;
1797 
1798 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1799 	ptl = pmd_trans_huge_lock(pmd, vma);
1800 	if (ptl) {
1801 		struct page *page;
1802 
1803 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1804 		if (page)
1805 			gather_stats(page, md, pmd_dirty(*pmd),
1806 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1807 		spin_unlock(ptl);
1808 		return 0;
1809 	}
1810 
1811 	if (pmd_trans_unstable(pmd))
1812 		return 0;
1813 #endif
1814 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1815 	do {
1816 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1817 		if (!page)
1818 			continue;
1819 		gather_stats(page, md, pte_dirty(*pte), 1);
1820 
1821 	} while (pte++, addr += PAGE_SIZE, addr != end);
1822 	pte_unmap_unlock(orig_pte, ptl);
1823 	cond_resched();
1824 	return 0;
1825 }
1826 #ifdef CONFIG_HUGETLB_PAGE
1827 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1828 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1829 {
1830 	pte_t huge_pte = huge_ptep_get(pte);
1831 	struct numa_maps *md;
1832 	struct page *page;
1833 
1834 	if (!pte_present(huge_pte))
1835 		return 0;
1836 
1837 	page = pte_page(huge_pte);
1838 	if (!page)
1839 		return 0;
1840 
1841 	md = walk->private;
1842 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1843 	return 0;
1844 }
1845 
1846 #else
1847 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1848 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1849 {
1850 	return 0;
1851 }
1852 #endif
1853 
1854 static const struct mm_walk_ops show_numa_ops = {
1855 	.hugetlb_entry = gather_hugetlb_stats,
1856 	.pmd_entry = gather_pte_stats,
1857 };
1858 
1859 /*
1860  * Display pages allocated per node and memory policy via /proc.
1861  */
1862 static int show_numa_map(struct seq_file *m, void *v)
1863 {
1864 	struct numa_maps_private *numa_priv = m->private;
1865 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1866 	struct vm_area_struct *vma = v;
1867 	struct numa_maps *md = &numa_priv->md;
1868 	struct file *file = vma->vm_file;
1869 	struct mm_struct *mm = vma->vm_mm;
1870 	struct mempolicy *pol;
1871 	char buffer[64];
1872 	int nid;
1873 
1874 	if (!mm)
1875 		return 0;
1876 
1877 	/* Ensure we start with an empty set of numa_maps statistics. */
1878 	memset(md, 0, sizeof(*md));
1879 
1880 	pol = __get_vma_policy(vma, vma->vm_start);
1881 	if (pol) {
1882 		mpol_to_str(buffer, sizeof(buffer), pol);
1883 		mpol_cond_put(pol);
1884 	} else {
1885 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1886 	}
1887 
1888 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1889 
1890 	if (file) {
1891 		seq_puts(m, " file=");
1892 		seq_file_path(m, file, "\n\t= ");
1893 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1894 		seq_puts(m, " heap");
1895 	} else if (is_stack(vma)) {
1896 		seq_puts(m, " stack");
1897 	}
1898 
1899 	if (is_vm_hugetlb_page(vma))
1900 		seq_puts(m, " huge");
1901 
1902 	/* mmap_lock is held by m_start */
1903 	walk_page_vma(vma, &show_numa_ops, md);
1904 
1905 	if (!md->pages)
1906 		goto out;
1907 
1908 	if (md->anon)
1909 		seq_printf(m, " anon=%lu", md->anon);
1910 
1911 	if (md->dirty)
1912 		seq_printf(m, " dirty=%lu", md->dirty);
1913 
1914 	if (md->pages != md->anon && md->pages != md->dirty)
1915 		seq_printf(m, " mapped=%lu", md->pages);
1916 
1917 	if (md->mapcount_max > 1)
1918 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1919 
1920 	if (md->swapcache)
1921 		seq_printf(m, " swapcache=%lu", md->swapcache);
1922 
1923 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1924 		seq_printf(m, " active=%lu", md->active);
1925 
1926 	if (md->writeback)
1927 		seq_printf(m, " writeback=%lu", md->writeback);
1928 
1929 	for_each_node_state(nid, N_MEMORY)
1930 		if (md->node[nid])
1931 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1932 
1933 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1934 out:
1935 	seq_putc(m, '\n');
1936 	return 0;
1937 }
1938 
1939 static const struct seq_operations proc_pid_numa_maps_op = {
1940 	.start  = m_start,
1941 	.next   = m_next,
1942 	.stop   = m_stop,
1943 	.show   = show_numa_map,
1944 };
1945 
1946 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1947 {
1948 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1949 				sizeof(struct numa_maps_private));
1950 }
1951 
1952 const struct file_operations proc_pid_numa_maps_operations = {
1953 	.open		= pid_numa_maps_open,
1954 	.read		= seq_read,
1955 	.llseek		= seq_lseek,
1956 	.release	= proc_map_release,
1957 };
1958 
1959 #endif /* CONFIG_NUMA */
1960