1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/pagewalk.h> 3 #include <linux/mm_inline.h> 4 #include <linux/hugetlb.h> 5 #include <linux/huge_mm.h> 6 #include <linux/mount.h> 7 #include <linux/seq_file.h> 8 #include <linux/highmem.h> 9 #include <linux/ptrace.h> 10 #include <linux/slab.h> 11 #include <linux/pagemap.h> 12 #include <linux/mempolicy.h> 13 #include <linux/rmap.h> 14 #include <linux/swap.h> 15 #include <linux/sched/mm.h> 16 #include <linux/swapops.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/page_idle.h> 19 #include <linux/shmem_fs.h> 20 #include <linux/uaccess.h> 21 #include <linux/pkeys.h> 22 23 #include <asm/elf.h> 24 #include <asm/tlb.h> 25 #include <asm/tlbflush.h> 26 #include "internal.h" 27 28 #define SEQ_PUT_DEC(str, val) \ 29 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8) 30 void task_mem(struct seq_file *m, struct mm_struct *mm) 31 { 32 unsigned long text, lib, swap, anon, file, shmem; 33 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; 34 35 anon = get_mm_counter(mm, MM_ANONPAGES); 36 file = get_mm_counter(mm, MM_FILEPAGES); 37 shmem = get_mm_counter(mm, MM_SHMEMPAGES); 38 39 /* 40 * Note: to minimize their overhead, mm maintains hiwater_vm and 41 * hiwater_rss only when about to *lower* total_vm or rss. Any 42 * collector of these hiwater stats must therefore get total_vm 43 * and rss too, which will usually be the higher. Barriers? not 44 * worth the effort, such snapshots can always be inconsistent. 45 */ 46 hiwater_vm = total_vm = mm->total_vm; 47 if (hiwater_vm < mm->hiwater_vm) 48 hiwater_vm = mm->hiwater_vm; 49 hiwater_rss = total_rss = anon + file + shmem; 50 if (hiwater_rss < mm->hiwater_rss) 51 hiwater_rss = mm->hiwater_rss; 52 53 /* split executable areas between text and lib */ 54 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK); 55 text = min(text, mm->exec_vm << PAGE_SHIFT); 56 lib = (mm->exec_vm << PAGE_SHIFT) - text; 57 58 swap = get_mm_counter(mm, MM_SWAPENTS); 59 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm); 60 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm); 61 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm); 62 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm)); 63 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss); 64 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss); 65 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon); 66 SEQ_PUT_DEC(" kB\nRssFile:\t", file); 67 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem); 68 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm); 69 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm); 70 seq_put_decimal_ull_width(m, 71 " kB\nVmExe:\t", text >> 10, 8); 72 seq_put_decimal_ull_width(m, 73 " kB\nVmLib:\t", lib >> 10, 8); 74 seq_put_decimal_ull_width(m, 75 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8); 76 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap); 77 seq_puts(m, " kB\n"); 78 hugetlb_report_usage(m, mm); 79 } 80 #undef SEQ_PUT_DEC 81 82 unsigned long task_vsize(struct mm_struct *mm) 83 { 84 return PAGE_SIZE * mm->total_vm; 85 } 86 87 unsigned long task_statm(struct mm_struct *mm, 88 unsigned long *shared, unsigned long *text, 89 unsigned long *data, unsigned long *resident) 90 { 91 *shared = get_mm_counter(mm, MM_FILEPAGES) + 92 get_mm_counter(mm, MM_SHMEMPAGES); 93 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) 94 >> PAGE_SHIFT; 95 *data = mm->data_vm + mm->stack_vm; 96 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES); 97 return mm->total_vm; 98 } 99 100 #ifdef CONFIG_NUMA 101 /* 102 * Save get_task_policy() for show_numa_map(). 103 */ 104 static void hold_task_mempolicy(struct proc_maps_private *priv) 105 { 106 struct task_struct *task = priv->task; 107 108 task_lock(task); 109 priv->task_mempolicy = get_task_policy(task); 110 mpol_get(priv->task_mempolicy); 111 task_unlock(task); 112 } 113 static void release_task_mempolicy(struct proc_maps_private *priv) 114 { 115 mpol_put(priv->task_mempolicy); 116 } 117 #else 118 static void hold_task_mempolicy(struct proc_maps_private *priv) 119 { 120 } 121 static void release_task_mempolicy(struct proc_maps_private *priv) 122 { 123 } 124 #endif 125 126 static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv, 127 loff_t *ppos) 128 { 129 struct vm_area_struct *vma = vma_next(&priv->iter); 130 131 if (vma) { 132 *ppos = vma->vm_start; 133 } else { 134 *ppos = -2UL; 135 vma = get_gate_vma(priv->mm); 136 } 137 138 return vma; 139 } 140 141 static void *m_start(struct seq_file *m, loff_t *ppos) 142 { 143 struct proc_maps_private *priv = m->private; 144 unsigned long last_addr = *ppos; 145 struct mm_struct *mm; 146 147 /* See m_next(). Zero at the start or after lseek. */ 148 if (last_addr == -1UL) 149 return NULL; 150 151 priv->task = get_proc_task(priv->inode); 152 if (!priv->task) 153 return ERR_PTR(-ESRCH); 154 155 mm = priv->mm; 156 if (!mm || !mmget_not_zero(mm)) { 157 put_task_struct(priv->task); 158 priv->task = NULL; 159 return NULL; 160 } 161 162 if (mmap_read_lock_killable(mm)) { 163 mmput(mm); 164 put_task_struct(priv->task); 165 priv->task = NULL; 166 return ERR_PTR(-EINTR); 167 } 168 169 vma_iter_init(&priv->iter, mm, last_addr); 170 hold_task_mempolicy(priv); 171 if (last_addr == -2UL) 172 return get_gate_vma(mm); 173 174 return proc_get_vma(priv, ppos); 175 } 176 177 static void *m_next(struct seq_file *m, void *v, loff_t *ppos) 178 { 179 if (*ppos == -2UL) { 180 *ppos = -1UL; 181 return NULL; 182 } 183 return proc_get_vma(m->private, ppos); 184 } 185 186 static void m_stop(struct seq_file *m, void *v) 187 { 188 struct proc_maps_private *priv = m->private; 189 struct mm_struct *mm = priv->mm; 190 191 if (!priv->task) 192 return; 193 194 release_task_mempolicy(priv); 195 mmap_read_unlock(mm); 196 mmput(mm); 197 put_task_struct(priv->task); 198 priv->task = NULL; 199 } 200 201 static int proc_maps_open(struct inode *inode, struct file *file, 202 const struct seq_operations *ops, int psize) 203 { 204 struct proc_maps_private *priv = __seq_open_private(file, ops, psize); 205 206 if (!priv) 207 return -ENOMEM; 208 209 priv->inode = inode; 210 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); 211 if (IS_ERR(priv->mm)) { 212 int err = PTR_ERR(priv->mm); 213 214 seq_release_private(inode, file); 215 return err; 216 } 217 218 return 0; 219 } 220 221 static int proc_map_release(struct inode *inode, struct file *file) 222 { 223 struct seq_file *seq = file->private_data; 224 struct proc_maps_private *priv = seq->private; 225 226 if (priv->mm) 227 mmdrop(priv->mm); 228 229 return seq_release_private(inode, file); 230 } 231 232 static int do_maps_open(struct inode *inode, struct file *file, 233 const struct seq_operations *ops) 234 { 235 return proc_maps_open(inode, file, ops, 236 sizeof(struct proc_maps_private)); 237 } 238 239 /* 240 * Indicate if the VMA is a stack for the given task; for 241 * /proc/PID/maps that is the stack of the main task. 242 */ 243 static int is_stack(struct vm_area_struct *vma) 244 { 245 /* 246 * We make no effort to guess what a given thread considers to be 247 * its "stack". It's not even well-defined for programs written 248 * languages like Go. 249 */ 250 return vma->vm_start <= vma->vm_mm->start_stack && 251 vma->vm_end >= vma->vm_mm->start_stack; 252 } 253 254 static void show_vma_header_prefix(struct seq_file *m, 255 unsigned long start, unsigned long end, 256 vm_flags_t flags, unsigned long long pgoff, 257 dev_t dev, unsigned long ino) 258 { 259 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1); 260 seq_put_hex_ll(m, NULL, start, 8); 261 seq_put_hex_ll(m, "-", end, 8); 262 seq_putc(m, ' '); 263 seq_putc(m, flags & VM_READ ? 'r' : '-'); 264 seq_putc(m, flags & VM_WRITE ? 'w' : '-'); 265 seq_putc(m, flags & VM_EXEC ? 'x' : '-'); 266 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p'); 267 seq_put_hex_ll(m, " ", pgoff, 8); 268 seq_put_hex_ll(m, " ", MAJOR(dev), 2); 269 seq_put_hex_ll(m, ":", MINOR(dev), 2); 270 seq_put_decimal_ull(m, " ", ino); 271 seq_putc(m, ' '); 272 } 273 274 static void 275 show_map_vma(struct seq_file *m, struct vm_area_struct *vma) 276 { 277 struct anon_vma_name *anon_name = NULL; 278 struct mm_struct *mm = vma->vm_mm; 279 struct file *file = vma->vm_file; 280 vm_flags_t flags = vma->vm_flags; 281 unsigned long ino = 0; 282 unsigned long long pgoff = 0; 283 unsigned long start, end; 284 dev_t dev = 0; 285 const char *name = NULL; 286 287 if (file) { 288 struct inode *inode = file_inode(vma->vm_file); 289 dev = inode->i_sb->s_dev; 290 ino = inode->i_ino; 291 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT; 292 } 293 294 start = vma->vm_start; 295 end = vma->vm_end; 296 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino); 297 if (mm) 298 anon_name = anon_vma_name(vma); 299 300 /* 301 * Print the dentry name for named mappings, and a 302 * special [heap] marker for the heap: 303 */ 304 if (file) { 305 seq_pad(m, ' '); 306 /* 307 * If user named this anon shared memory via 308 * prctl(PR_SET_VMA ..., use the provided name. 309 */ 310 if (anon_name) 311 seq_printf(m, "[anon_shmem:%s]", anon_name->name); 312 else 313 seq_file_path(m, file, "\n"); 314 goto done; 315 } 316 317 if (vma->vm_ops && vma->vm_ops->name) { 318 name = vma->vm_ops->name(vma); 319 if (name) 320 goto done; 321 } 322 323 name = arch_vma_name(vma); 324 if (!name) { 325 if (!mm) { 326 name = "[vdso]"; 327 goto done; 328 } 329 330 if (vma->vm_start <= mm->brk && 331 vma->vm_end >= mm->start_brk) { 332 name = "[heap]"; 333 goto done; 334 } 335 336 if (is_stack(vma)) { 337 name = "[stack]"; 338 goto done; 339 } 340 341 if (anon_name) { 342 seq_pad(m, ' '); 343 seq_printf(m, "[anon:%s]", anon_name->name); 344 } 345 } 346 347 done: 348 if (name) { 349 seq_pad(m, ' '); 350 seq_puts(m, name); 351 } 352 seq_putc(m, '\n'); 353 } 354 355 static int show_map(struct seq_file *m, void *v) 356 { 357 show_map_vma(m, v); 358 return 0; 359 } 360 361 static const struct seq_operations proc_pid_maps_op = { 362 .start = m_start, 363 .next = m_next, 364 .stop = m_stop, 365 .show = show_map 366 }; 367 368 static int pid_maps_open(struct inode *inode, struct file *file) 369 { 370 return do_maps_open(inode, file, &proc_pid_maps_op); 371 } 372 373 const struct file_operations proc_pid_maps_operations = { 374 .open = pid_maps_open, 375 .read = seq_read, 376 .llseek = seq_lseek, 377 .release = proc_map_release, 378 }; 379 380 /* 381 * Proportional Set Size(PSS): my share of RSS. 382 * 383 * PSS of a process is the count of pages it has in memory, where each 384 * page is divided by the number of processes sharing it. So if a 385 * process has 1000 pages all to itself, and 1000 shared with one other 386 * process, its PSS will be 1500. 387 * 388 * To keep (accumulated) division errors low, we adopt a 64bit 389 * fixed-point pss counter to minimize division errors. So (pss >> 390 * PSS_SHIFT) would be the real byte count. 391 * 392 * A shift of 12 before division means (assuming 4K page size): 393 * - 1M 3-user-pages add up to 8KB errors; 394 * - supports mapcount up to 2^24, or 16M; 395 * - supports PSS up to 2^52 bytes, or 4PB. 396 */ 397 #define PSS_SHIFT 12 398 399 #ifdef CONFIG_PROC_PAGE_MONITOR 400 struct mem_size_stats { 401 unsigned long resident; 402 unsigned long shared_clean; 403 unsigned long shared_dirty; 404 unsigned long private_clean; 405 unsigned long private_dirty; 406 unsigned long referenced; 407 unsigned long anonymous; 408 unsigned long lazyfree; 409 unsigned long anonymous_thp; 410 unsigned long shmem_thp; 411 unsigned long file_thp; 412 unsigned long swap; 413 unsigned long shared_hugetlb; 414 unsigned long private_hugetlb; 415 u64 pss; 416 u64 pss_anon; 417 u64 pss_file; 418 u64 pss_shmem; 419 u64 pss_dirty; 420 u64 pss_locked; 421 u64 swap_pss; 422 }; 423 424 static void smaps_page_accumulate(struct mem_size_stats *mss, 425 struct page *page, unsigned long size, unsigned long pss, 426 bool dirty, bool locked, bool private) 427 { 428 mss->pss += pss; 429 430 if (PageAnon(page)) 431 mss->pss_anon += pss; 432 else if (PageSwapBacked(page)) 433 mss->pss_shmem += pss; 434 else 435 mss->pss_file += pss; 436 437 if (locked) 438 mss->pss_locked += pss; 439 440 if (dirty || PageDirty(page)) { 441 mss->pss_dirty += pss; 442 if (private) 443 mss->private_dirty += size; 444 else 445 mss->shared_dirty += size; 446 } else { 447 if (private) 448 mss->private_clean += size; 449 else 450 mss->shared_clean += size; 451 } 452 } 453 454 static void smaps_account(struct mem_size_stats *mss, struct page *page, 455 bool compound, bool young, bool dirty, bool locked, 456 bool migration) 457 { 458 int i, nr = compound ? compound_nr(page) : 1; 459 unsigned long size = nr * PAGE_SIZE; 460 461 /* 462 * First accumulate quantities that depend only on |size| and the type 463 * of the compound page. 464 */ 465 if (PageAnon(page)) { 466 mss->anonymous += size; 467 if (!PageSwapBacked(page) && !dirty && !PageDirty(page)) 468 mss->lazyfree += size; 469 } 470 471 mss->resident += size; 472 /* Accumulate the size in pages that have been accessed. */ 473 if (young || page_is_young(page) || PageReferenced(page)) 474 mss->referenced += size; 475 476 /* 477 * Then accumulate quantities that may depend on sharing, or that may 478 * differ page-by-page. 479 * 480 * page_count(page) == 1 guarantees the page is mapped exactly once. 481 * If any subpage of the compound page mapped with PTE it would elevate 482 * page_count(). 483 * 484 * The page_mapcount() is called to get a snapshot of the mapcount. 485 * Without holding the page lock this snapshot can be slightly wrong as 486 * we cannot always read the mapcount atomically. It is not safe to 487 * call page_mapcount() even with PTL held if the page is not mapped, 488 * especially for migration entries. Treat regular migration entries 489 * as mapcount == 1. 490 */ 491 if ((page_count(page) == 1) || migration) { 492 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty, 493 locked, true); 494 return; 495 } 496 for (i = 0; i < nr; i++, page++) { 497 int mapcount = page_mapcount(page); 498 unsigned long pss = PAGE_SIZE << PSS_SHIFT; 499 if (mapcount >= 2) 500 pss /= mapcount; 501 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked, 502 mapcount < 2); 503 } 504 } 505 506 #ifdef CONFIG_SHMEM 507 static int smaps_pte_hole(unsigned long addr, unsigned long end, 508 __always_unused int depth, struct mm_walk *walk) 509 { 510 struct mem_size_stats *mss = walk->private; 511 struct vm_area_struct *vma = walk->vma; 512 513 mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping, 514 linear_page_index(vma, addr), 515 linear_page_index(vma, end)); 516 517 return 0; 518 } 519 #else 520 #define smaps_pte_hole NULL 521 #endif /* CONFIG_SHMEM */ 522 523 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk) 524 { 525 #ifdef CONFIG_SHMEM 526 if (walk->ops->pte_hole) { 527 /* depth is not used */ 528 smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk); 529 } 530 #endif 531 } 532 533 static void smaps_pte_entry(pte_t *pte, unsigned long addr, 534 struct mm_walk *walk) 535 { 536 struct mem_size_stats *mss = walk->private; 537 struct vm_area_struct *vma = walk->vma; 538 bool locked = !!(vma->vm_flags & VM_LOCKED); 539 struct page *page = NULL; 540 bool migration = false, young = false, dirty = false; 541 542 if (pte_present(*pte)) { 543 page = vm_normal_page(vma, addr, *pte); 544 young = pte_young(*pte); 545 dirty = pte_dirty(*pte); 546 } else if (is_swap_pte(*pte)) { 547 swp_entry_t swpent = pte_to_swp_entry(*pte); 548 549 if (!non_swap_entry(swpent)) { 550 int mapcount; 551 552 mss->swap += PAGE_SIZE; 553 mapcount = swp_swapcount(swpent); 554 if (mapcount >= 2) { 555 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT; 556 557 do_div(pss_delta, mapcount); 558 mss->swap_pss += pss_delta; 559 } else { 560 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT; 561 } 562 } else if (is_pfn_swap_entry(swpent)) { 563 if (is_migration_entry(swpent)) 564 migration = true; 565 page = pfn_swap_entry_to_page(swpent); 566 } 567 } else { 568 smaps_pte_hole_lookup(addr, walk); 569 return; 570 } 571 572 if (!page) 573 return; 574 575 smaps_account(mss, page, false, young, dirty, locked, migration); 576 } 577 578 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 579 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 580 struct mm_walk *walk) 581 { 582 struct mem_size_stats *mss = walk->private; 583 struct vm_area_struct *vma = walk->vma; 584 bool locked = !!(vma->vm_flags & VM_LOCKED); 585 struct page *page = NULL; 586 bool migration = false; 587 588 if (pmd_present(*pmd)) { 589 /* FOLL_DUMP will return -EFAULT on huge zero page */ 590 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP); 591 } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) { 592 swp_entry_t entry = pmd_to_swp_entry(*pmd); 593 594 if (is_migration_entry(entry)) { 595 migration = true; 596 page = pfn_swap_entry_to_page(entry); 597 } 598 } 599 if (IS_ERR_OR_NULL(page)) 600 return; 601 if (PageAnon(page)) 602 mss->anonymous_thp += HPAGE_PMD_SIZE; 603 else if (PageSwapBacked(page)) 604 mss->shmem_thp += HPAGE_PMD_SIZE; 605 else if (is_zone_device_page(page)) 606 /* pass */; 607 else 608 mss->file_thp += HPAGE_PMD_SIZE; 609 610 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), 611 locked, migration); 612 } 613 #else 614 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 615 struct mm_walk *walk) 616 { 617 } 618 #endif 619 620 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 621 struct mm_walk *walk) 622 { 623 struct vm_area_struct *vma = walk->vma; 624 pte_t *pte; 625 spinlock_t *ptl; 626 627 ptl = pmd_trans_huge_lock(pmd, vma); 628 if (ptl) { 629 smaps_pmd_entry(pmd, addr, walk); 630 spin_unlock(ptl); 631 goto out; 632 } 633 634 if (pmd_trans_unstable(pmd)) 635 goto out; 636 /* 637 * The mmap_lock held all the way back in m_start() is what 638 * keeps khugepaged out of here and from collapsing things 639 * in here. 640 */ 641 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 642 for (; addr != end; pte++, addr += PAGE_SIZE) 643 smaps_pte_entry(pte, addr, walk); 644 pte_unmap_unlock(pte - 1, ptl); 645 out: 646 cond_resched(); 647 return 0; 648 } 649 650 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma) 651 { 652 /* 653 * Don't forget to update Documentation/ on changes. 654 */ 655 static const char mnemonics[BITS_PER_LONG][2] = { 656 /* 657 * In case if we meet a flag we don't know about. 658 */ 659 [0 ... (BITS_PER_LONG-1)] = "??", 660 661 [ilog2(VM_READ)] = "rd", 662 [ilog2(VM_WRITE)] = "wr", 663 [ilog2(VM_EXEC)] = "ex", 664 [ilog2(VM_SHARED)] = "sh", 665 [ilog2(VM_MAYREAD)] = "mr", 666 [ilog2(VM_MAYWRITE)] = "mw", 667 [ilog2(VM_MAYEXEC)] = "me", 668 [ilog2(VM_MAYSHARE)] = "ms", 669 [ilog2(VM_GROWSDOWN)] = "gd", 670 [ilog2(VM_PFNMAP)] = "pf", 671 [ilog2(VM_LOCKED)] = "lo", 672 [ilog2(VM_IO)] = "io", 673 [ilog2(VM_SEQ_READ)] = "sr", 674 [ilog2(VM_RAND_READ)] = "rr", 675 [ilog2(VM_DONTCOPY)] = "dc", 676 [ilog2(VM_DONTEXPAND)] = "de", 677 [ilog2(VM_LOCKONFAULT)] = "lf", 678 [ilog2(VM_ACCOUNT)] = "ac", 679 [ilog2(VM_NORESERVE)] = "nr", 680 [ilog2(VM_HUGETLB)] = "ht", 681 [ilog2(VM_SYNC)] = "sf", 682 [ilog2(VM_ARCH_1)] = "ar", 683 [ilog2(VM_WIPEONFORK)] = "wf", 684 [ilog2(VM_DONTDUMP)] = "dd", 685 #ifdef CONFIG_ARM64_BTI 686 [ilog2(VM_ARM64_BTI)] = "bt", 687 #endif 688 #ifdef CONFIG_MEM_SOFT_DIRTY 689 [ilog2(VM_SOFTDIRTY)] = "sd", 690 #endif 691 [ilog2(VM_MIXEDMAP)] = "mm", 692 [ilog2(VM_HUGEPAGE)] = "hg", 693 [ilog2(VM_NOHUGEPAGE)] = "nh", 694 [ilog2(VM_MERGEABLE)] = "mg", 695 [ilog2(VM_UFFD_MISSING)]= "um", 696 [ilog2(VM_UFFD_WP)] = "uw", 697 #ifdef CONFIG_ARM64_MTE 698 [ilog2(VM_MTE)] = "mt", 699 [ilog2(VM_MTE_ALLOWED)] = "", 700 #endif 701 #ifdef CONFIG_ARCH_HAS_PKEYS 702 /* These come out via ProtectionKey: */ 703 [ilog2(VM_PKEY_BIT0)] = "", 704 [ilog2(VM_PKEY_BIT1)] = "", 705 [ilog2(VM_PKEY_BIT2)] = "", 706 [ilog2(VM_PKEY_BIT3)] = "", 707 #if VM_PKEY_BIT4 708 [ilog2(VM_PKEY_BIT4)] = "", 709 #endif 710 #endif /* CONFIG_ARCH_HAS_PKEYS */ 711 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 712 [ilog2(VM_UFFD_MINOR)] = "ui", 713 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 714 }; 715 size_t i; 716 717 seq_puts(m, "VmFlags: "); 718 for (i = 0; i < BITS_PER_LONG; i++) { 719 if (!mnemonics[i][0]) 720 continue; 721 if (vma->vm_flags & (1UL << i)) { 722 seq_putc(m, mnemonics[i][0]); 723 seq_putc(m, mnemonics[i][1]); 724 seq_putc(m, ' '); 725 } 726 } 727 seq_putc(m, '\n'); 728 } 729 730 #ifdef CONFIG_HUGETLB_PAGE 731 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask, 732 unsigned long addr, unsigned long end, 733 struct mm_walk *walk) 734 { 735 struct mem_size_stats *mss = walk->private; 736 struct vm_area_struct *vma = walk->vma; 737 struct page *page = NULL; 738 739 if (pte_present(*pte)) { 740 page = vm_normal_page(vma, addr, *pte); 741 } else if (is_swap_pte(*pte)) { 742 swp_entry_t swpent = pte_to_swp_entry(*pte); 743 744 if (is_pfn_swap_entry(swpent)) 745 page = pfn_swap_entry_to_page(swpent); 746 } 747 if (page) { 748 if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte)) 749 mss->shared_hugetlb += huge_page_size(hstate_vma(vma)); 750 else 751 mss->private_hugetlb += huge_page_size(hstate_vma(vma)); 752 } 753 return 0; 754 } 755 #else 756 #define smaps_hugetlb_range NULL 757 #endif /* HUGETLB_PAGE */ 758 759 static const struct mm_walk_ops smaps_walk_ops = { 760 .pmd_entry = smaps_pte_range, 761 .hugetlb_entry = smaps_hugetlb_range, 762 }; 763 764 static const struct mm_walk_ops smaps_shmem_walk_ops = { 765 .pmd_entry = smaps_pte_range, 766 .hugetlb_entry = smaps_hugetlb_range, 767 .pte_hole = smaps_pte_hole, 768 }; 769 770 /* 771 * Gather mem stats from @vma with the indicated beginning 772 * address @start, and keep them in @mss. 773 * 774 * Use vm_start of @vma as the beginning address if @start is 0. 775 */ 776 static void smap_gather_stats(struct vm_area_struct *vma, 777 struct mem_size_stats *mss, unsigned long start) 778 { 779 const struct mm_walk_ops *ops = &smaps_walk_ops; 780 781 /* Invalid start */ 782 if (start >= vma->vm_end) 783 return; 784 785 #ifdef CONFIG_SHMEM 786 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) { 787 /* 788 * For shared or readonly shmem mappings we know that all 789 * swapped out pages belong to the shmem object, and we can 790 * obtain the swap value much more efficiently. For private 791 * writable mappings, we might have COW pages that are 792 * not affected by the parent swapped out pages of the shmem 793 * object, so we have to distinguish them during the page walk. 794 * Unless we know that the shmem object (or the part mapped by 795 * our VMA) has no swapped out pages at all. 796 */ 797 unsigned long shmem_swapped = shmem_swap_usage(vma); 798 799 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) || 800 !(vma->vm_flags & VM_WRITE))) { 801 mss->swap += shmem_swapped; 802 } else { 803 ops = &smaps_shmem_walk_ops; 804 } 805 } 806 #endif 807 /* mmap_lock is held in m_start */ 808 if (!start) 809 walk_page_vma(vma, ops, mss); 810 else 811 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss); 812 } 813 814 #define SEQ_PUT_DEC(str, val) \ 815 seq_put_decimal_ull_width(m, str, (val) >> 10, 8) 816 817 /* Show the contents common for smaps and smaps_rollup */ 818 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss, 819 bool rollup_mode) 820 { 821 SEQ_PUT_DEC("Rss: ", mss->resident); 822 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT); 823 SEQ_PUT_DEC(" kB\nPss_Dirty: ", mss->pss_dirty >> PSS_SHIFT); 824 if (rollup_mode) { 825 /* 826 * These are meaningful only for smaps_rollup, otherwise two of 827 * them are zero, and the other one is the same as Pss. 828 */ 829 SEQ_PUT_DEC(" kB\nPss_Anon: ", 830 mss->pss_anon >> PSS_SHIFT); 831 SEQ_PUT_DEC(" kB\nPss_File: ", 832 mss->pss_file >> PSS_SHIFT); 833 SEQ_PUT_DEC(" kB\nPss_Shmem: ", 834 mss->pss_shmem >> PSS_SHIFT); 835 } 836 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean); 837 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty); 838 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean); 839 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty); 840 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced); 841 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous); 842 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree); 843 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp); 844 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp); 845 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp); 846 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb); 847 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ", 848 mss->private_hugetlb >> 10, 7); 849 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap); 850 SEQ_PUT_DEC(" kB\nSwapPss: ", 851 mss->swap_pss >> PSS_SHIFT); 852 SEQ_PUT_DEC(" kB\nLocked: ", 853 mss->pss_locked >> PSS_SHIFT); 854 seq_puts(m, " kB\n"); 855 } 856 857 static int show_smap(struct seq_file *m, void *v) 858 { 859 struct vm_area_struct *vma = v; 860 struct mem_size_stats mss; 861 862 memset(&mss, 0, sizeof(mss)); 863 864 smap_gather_stats(vma, &mss, 0); 865 866 show_map_vma(m, vma); 867 868 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start); 869 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma)); 870 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma)); 871 seq_puts(m, " kB\n"); 872 873 __show_smap(m, &mss, false); 874 875 seq_printf(m, "THPeligible: %d\n", 876 hugepage_vma_check(vma, vma->vm_flags, true, false, true)); 877 878 if (arch_pkeys_enabled()) 879 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma)); 880 show_smap_vma_flags(m, vma); 881 882 return 0; 883 } 884 885 static int show_smaps_rollup(struct seq_file *m, void *v) 886 { 887 struct proc_maps_private *priv = m->private; 888 struct mem_size_stats mss; 889 struct mm_struct *mm = priv->mm; 890 struct vm_area_struct *vma; 891 unsigned long vma_start = 0, last_vma_end = 0; 892 int ret = 0; 893 MA_STATE(mas, &mm->mm_mt, 0, 0); 894 895 priv->task = get_proc_task(priv->inode); 896 if (!priv->task) 897 return -ESRCH; 898 899 if (!mm || !mmget_not_zero(mm)) { 900 ret = -ESRCH; 901 goto out_put_task; 902 } 903 904 memset(&mss, 0, sizeof(mss)); 905 906 ret = mmap_read_lock_killable(mm); 907 if (ret) 908 goto out_put_mm; 909 910 hold_task_mempolicy(priv); 911 vma = mas_find(&mas, ULONG_MAX); 912 913 if (unlikely(!vma)) 914 goto empty_set; 915 916 vma_start = vma->vm_start; 917 do { 918 smap_gather_stats(vma, &mss, 0); 919 last_vma_end = vma->vm_end; 920 921 /* 922 * Release mmap_lock temporarily if someone wants to 923 * access it for write request. 924 */ 925 if (mmap_lock_is_contended(mm)) { 926 mas_pause(&mas); 927 mmap_read_unlock(mm); 928 ret = mmap_read_lock_killable(mm); 929 if (ret) { 930 release_task_mempolicy(priv); 931 goto out_put_mm; 932 } 933 934 /* 935 * After dropping the lock, there are four cases to 936 * consider. See the following example for explanation. 937 * 938 * +------+------+-----------+ 939 * | VMA1 | VMA2 | VMA3 | 940 * +------+------+-----------+ 941 * | | | | 942 * 4k 8k 16k 400k 943 * 944 * Suppose we drop the lock after reading VMA2 due to 945 * contention, then we get: 946 * 947 * last_vma_end = 16k 948 * 949 * 1) VMA2 is freed, but VMA3 exists: 950 * 951 * find_vma(mm, 16k - 1) will return VMA3. 952 * In this case, just continue from VMA3. 953 * 954 * 2) VMA2 still exists: 955 * 956 * find_vma(mm, 16k - 1) will return VMA2. 957 * Iterate the loop like the original one. 958 * 959 * 3) No more VMAs can be found: 960 * 961 * find_vma(mm, 16k - 1) will return NULL. 962 * No more things to do, just break. 963 * 964 * 4) (last_vma_end - 1) is the middle of a vma (VMA'): 965 * 966 * find_vma(mm, 16k - 1) will return VMA' whose range 967 * contains last_vma_end. 968 * Iterate VMA' from last_vma_end. 969 */ 970 vma = mas_find(&mas, ULONG_MAX); 971 /* Case 3 above */ 972 if (!vma) 973 break; 974 975 /* Case 1 above */ 976 if (vma->vm_start >= last_vma_end) 977 continue; 978 979 /* Case 4 above */ 980 if (vma->vm_end > last_vma_end) 981 smap_gather_stats(vma, &mss, last_vma_end); 982 } 983 /* Case 2 above */ 984 } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL); 985 986 empty_set: 987 show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0); 988 seq_pad(m, ' '); 989 seq_puts(m, "[rollup]\n"); 990 991 __show_smap(m, &mss, true); 992 993 release_task_mempolicy(priv); 994 mmap_read_unlock(mm); 995 996 out_put_mm: 997 mmput(mm); 998 out_put_task: 999 put_task_struct(priv->task); 1000 priv->task = NULL; 1001 1002 return ret; 1003 } 1004 #undef SEQ_PUT_DEC 1005 1006 static const struct seq_operations proc_pid_smaps_op = { 1007 .start = m_start, 1008 .next = m_next, 1009 .stop = m_stop, 1010 .show = show_smap 1011 }; 1012 1013 static int pid_smaps_open(struct inode *inode, struct file *file) 1014 { 1015 return do_maps_open(inode, file, &proc_pid_smaps_op); 1016 } 1017 1018 static int smaps_rollup_open(struct inode *inode, struct file *file) 1019 { 1020 int ret; 1021 struct proc_maps_private *priv; 1022 1023 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT); 1024 if (!priv) 1025 return -ENOMEM; 1026 1027 ret = single_open(file, show_smaps_rollup, priv); 1028 if (ret) 1029 goto out_free; 1030 1031 priv->inode = inode; 1032 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); 1033 if (IS_ERR(priv->mm)) { 1034 ret = PTR_ERR(priv->mm); 1035 1036 single_release(inode, file); 1037 goto out_free; 1038 } 1039 1040 return 0; 1041 1042 out_free: 1043 kfree(priv); 1044 return ret; 1045 } 1046 1047 static int smaps_rollup_release(struct inode *inode, struct file *file) 1048 { 1049 struct seq_file *seq = file->private_data; 1050 struct proc_maps_private *priv = seq->private; 1051 1052 if (priv->mm) 1053 mmdrop(priv->mm); 1054 1055 kfree(priv); 1056 return single_release(inode, file); 1057 } 1058 1059 const struct file_operations proc_pid_smaps_operations = { 1060 .open = pid_smaps_open, 1061 .read = seq_read, 1062 .llseek = seq_lseek, 1063 .release = proc_map_release, 1064 }; 1065 1066 const struct file_operations proc_pid_smaps_rollup_operations = { 1067 .open = smaps_rollup_open, 1068 .read = seq_read, 1069 .llseek = seq_lseek, 1070 .release = smaps_rollup_release, 1071 }; 1072 1073 enum clear_refs_types { 1074 CLEAR_REFS_ALL = 1, 1075 CLEAR_REFS_ANON, 1076 CLEAR_REFS_MAPPED, 1077 CLEAR_REFS_SOFT_DIRTY, 1078 CLEAR_REFS_MM_HIWATER_RSS, 1079 CLEAR_REFS_LAST, 1080 }; 1081 1082 struct clear_refs_private { 1083 enum clear_refs_types type; 1084 }; 1085 1086 #ifdef CONFIG_MEM_SOFT_DIRTY 1087 1088 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1089 { 1090 struct page *page; 1091 1092 if (!pte_write(pte)) 1093 return false; 1094 if (!is_cow_mapping(vma->vm_flags)) 1095 return false; 1096 if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))) 1097 return false; 1098 page = vm_normal_page(vma, addr, pte); 1099 if (!page) 1100 return false; 1101 return page_maybe_dma_pinned(page); 1102 } 1103 1104 static inline void clear_soft_dirty(struct vm_area_struct *vma, 1105 unsigned long addr, pte_t *pte) 1106 { 1107 /* 1108 * The soft-dirty tracker uses #PF-s to catch writes 1109 * to pages, so write-protect the pte as well. See the 1110 * Documentation/admin-guide/mm/soft-dirty.rst for full description 1111 * of how soft-dirty works. 1112 */ 1113 pte_t ptent = *pte; 1114 1115 if (pte_present(ptent)) { 1116 pte_t old_pte; 1117 1118 if (pte_is_pinned(vma, addr, ptent)) 1119 return; 1120 old_pte = ptep_modify_prot_start(vma, addr, pte); 1121 ptent = pte_wrprotect(old_pte); 1122 ptent = pte_clear_soft_dirty(ptent); 1123 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent); 1124 } else if (is_swap_pte(ptent)) { 1125 ptent = pte_swp_clear_soft_dirty(ptent); 1126 set_pte_at(vma->vm_mm, addr, pte, ptent); 1127 } 1128 } 1129 #else 1130 static inline void clear_soft_dirty(struct vm_area_struct *vma, 1131 unsigned long addr, pte_t *pte) 1132 { 1133 } 1134 #endif 1135 1136 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1137 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 1138 unsigned long addr, pmd_t *pmdp) 1139 { 1140 pmd_t old, pmd = *pmdp; 1141 1142 if (pmd_present(pmd)) { 1143 /* See comment in change_huge_pmd() */ 1144 old = pmdp_invalidate(vma, addr, pmdp); 1145 if (pmd_dirty(old)) 1146 pmd = pmd_mkdirty(pmd); 1147 if (pmd_young(old)) 1148 pmd = pmd_mkyoung(pmd); 1149 1150 pmd = pmd_wrprotect(pmd); 1151 pmd = pmd_clear_soft_dirty(pmd); 1152 1153 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 1154 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) { 1155 pmd = pmd_swp_clear_soft_dirty(pmd); 1156 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 1157 } 1158 } 1159 #else 1160 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 1161 unsigned long addr, pmd_t *pmdp) 1162 { 1163 } 1164 #endif 1165 1166 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, 1167 unsigned long end, struct mm_walk *walk) 1168 { 1169 struct clear_refs_private *cp = walk->private; 1170 struct vm_area_struct *vma = walk->vma; 1171 pte_t *pte, ptent; 1172 spinlock_t *ptl; 1173 struct page *page; 1174 1175 ptl = pmd_trans_huge_lock(pmd, vma); 1176 if (ptl) { 1177 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 1178 clear_soft_dirty_pmd(vma, addr, pmd); 1179 goto out; 1180 } 1181 1182 if (!pmd_present(*pmd)) 1183 goto out; 1184 1185 page = pmd_page(*pmd); 1186 1187 /* Clear accessed and referenced bits. */ 1188 pmdp_test_and_clear_young(vma, addr, pmd); 1189 test_and_clear_page_young(page); 1190 ClearPageReferenced(page); 1191 out: 1192 spin_unlock(ptl); 1193 return 0; 1194 } 1195 1196 if (pmd_trans_unstable(pmd)) 1197 return 0; 1198 1199 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1200 for (; addr != end; pte++, addr += PAGE_SIZE) { 1201 ptent = *pte; 1202 1203 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 1204 clear_soft_dirty(vma, addr, pte); 1205 continue; 1206 } 1207 1208 if (!pte_present(ptent)) 1209 continue; 1210 1211 page = vm_normal_page(vma, addr, ptent); 1212 if (!page) 1213 continue; 1214 1215 /* Clear accessed and referenced bits. */ 1216 ptep_test_and_clear_young(vma, addr, pte); 1217 test_and_clear_page_young(page); 1218 ClearPageReferenced(page); 1219 } 1220 pte_unmap_unlock(pte - 1, ptl); 1221 cond_resched(); 1222 return 0; 1223 } 1224 1225 static int clear_refs_test_walk(unsigned long start, unsigned long end, 1226 struct mm_walk *walk) 1227 { 1228 struct clear_refs_private *cp = walk->private; 1229 struct vm_area_struct *vma = walk->vma; 1230 1231 if (vma->vm_flags & VM_PFNMAP) 1232 return 1; 1233 1234 /* 1235 * Writing 1 to /proc/pid/clear_refs affects all pages. 1236 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages. 1237 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages. 1238 * Writing 4 to /proc/pid/clear_refs affects all pages. 1239 */ 1240 if (cp->type == CLEAR_REFS_ANON && vma->vm_file) 1241 return 1; 1242 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file) 1243 return 1; 1244 return 0; 1245 } 1246 1247 static const struct mm_walk_ops clear_refs_walk_ops = { 1248 .pmd_entry = clear_refs_pte_range, 1249 .test_walk = clear_refs_test_walk, 1250 }; 1251 1252 static ssize_t clear_refs_write(struct file *file, const char __user *buf, 1253 size_t count, loff_t *ppos) 1254 { 1255 struct task_struct *task; 1256 char buffer[PROC_NUMBUF]; 1257 struct mm_struct *mm; 1258 struct vm_area_struct *vma; 1259 enum clear_refs_types type; 1260 int itype; 1261 int rv; 1262 1263 memset(buffer, 0, sizeof(buffer)); 1264 if (count > sizeof(buffer) - 1) 1265 count = sizeof(buffer) - 1; 1266 if (copy_from_user(buffer, buf, count)) 1267 return -EFAULT; 1268 rv = kstrtoint(strstrip(buffer), 10, &itype); 1269 if (rv < 0) 1270 return rv; 1271 type = (enum clear_refs_types)itype; 1272 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST) 1273 return -EINVAL; 1274 1275 task = get_proc_task(file_inode(file)); 1276 if (!task) 1277 return -ESRCH; 1278 mm = get_task_mm(task); 1279 if (mm) { 1280 MA_STATE(mas, &mm->mm_mt, 0, 0); 1281 struct mmu_notifier_range range; 1282 struct clear_refs_private cp = { 1283 .type = type, 1284 }; 1285 1286 if (mmap_write_lock_killable(mm)) { 1287 count = -EINTR; 1288 goto out_mm; 1289 } 1290 if (type == CLEAR_REFS_MM_HIWATER_RSS) { 1291 /* 1292 * Writing 5 to /proc/pid/clear_refs resets the peak 1293 * resident set size to this mm's current rss value. 1294 */ 1295 reset_mm_hiwater_rss(mm); 1296 goto out_unlock; 1297 } 1298 1299 if (type == CLEAR_REFS_SOFT_DIRTY) { 1300 mas_for_each(&mas, vma, ULONG_MAX) { 1301 if (!(vma->vm_flags & VM_SOFTDIRTY)) 1302 continue; 1303 vma->vm_flags &= ~VM_SOFTDIRTY; 1304 vma_set_page_prot(vma); 1305 } 1306 1307 inc_tlb_flush_pending(mm); 1308 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY, 1309 0, NULL, mm, 0, -1UL); 1310 mmu_notifier_invalidate_range_start(&range); 1311 } 1312 walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp); 1313 if (type == CLEAR_REFS_SOFT_DIRTY) { 1314 mmu_notifier_invalidate_range_end(&range); 1315 flush_tlb_mm(mm); 1316 dec_tlb_flush_pending(mm); 1317 } 1318 out_unlock: 1319 mmap_write_unlock(mm); 1320 out_mm: 1321 mmput(mm); 1322 } 1323 put_task_struct(task); 1324 1325 return count; 1326 } 1327 1328 const struct file_operations proc_clear_refs_operations = { 1329 .write = clear_refs_write, 1330 .llseek = noop_llseek, 1331 }; 1332 1333 typedef struct { 1334 u64 pme; 1335 } pagemap_entry_t; 1336 1337 struct pagemapread { 1338 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */ 1339 pagemap_entry_t *buffer; 1340 bool show_pfn; 1341 }; 1342 1343 #define PAGEMAP_WALK_SIZE (PMD_SIZE) 1344 #define PAGEMAP_WALK_MASK (PMD_MASK) 1345 1346 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t) 1347 #define PM_PFRAME_BITS 55 1348 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0) 1349 #define PM_SOFT_DIRTY BIT_ULL(55) 1350 #define PM_MMAP_EXCLUSIVE BIT_ULL(56) 1351 #define PM_UFFD_WP BIT_ULL(57) 1352 #define PM_FILE BIT_ULL(61) 1353 #define PM_SWAP BIT_ULL(62) 1354 #define PM_PRESENT BIT_ULL(63) 1355 1356 #define PM_END_OF_BUFFER 1 1357 1358 static inline pagemap_entry_t make_pme(u64 frame, u64 flags) 1359 { 1360 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags }; 1361 } 1362 1363 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme, 1364 struct pagemapread *pm) 1365 { 1366 pm->buffer[pm->pos++] = *pme; 1367 if (pm->pos >= pm->len) 1368 return PM_END_OF_BUFFER; 1369 return 0; 1370 } 1371 1372 static int pagemap_pte_hole(unsigned long start, unsigned long end, 1373 __always_unused int depth, struct mm_walk *walk) 1374 { 1375 struct pagemapread *pm = walk->private; 1376 unsigned long addr = start; 1377 int err = 0; 1378 1379 while (addr < end) { 1380 struct vm_area_struct *vma = find_vma(walk->mm, addr); 1381 pagemap_entry_t pme = make_pme(0, 0); 1382 /* End of address space hole, which we mark as non-present. */ 1383 unsigned long hole_end; 1384 1385 if (vma) 1386 hole_end = min(end, vma->vm_start); 1387 else 1388 hole_end = end; 1389 1390 for (; addr < hole_end; addr += PAGE_SIZE) { 1391 err = add_to_pagemap(addr, &pme, pm); 1392 if (err) 1393 goto out; 1394 } 1395 1396 if (!vma) 1397 break; 1398 1399 /* Addresses in the VMA. */ 1400 if (vma->vm_flags & VM_SOFTDIRTY) 1401 pme = make_pme(0, PM_SOFT_DIRTY); 1402 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) { 1403 err = add_to_pagemap(addr, &pme, pm); 1404 if (err) 1405 goto out; 1406 } 1407 } 1408 out: 1409 return err; 1410 } 1411 1412 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm, 1413 struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1414 { 1415 u64 frame = 0, flags = 0; 1416 struct page *page = NULL; 1417 bool migration = false; 1418 1419 if (pte_present(pte)) { 1420 if (pm->show_pfn) 1421 frame = pte_pfn(pte); 1422 flags |= PM_PRESENT; 1423 page = vm_normal_page(vma, addr, pte); 1424 if (pte_soft_dirty(pte)) 1425 flags |= PM_SOFT_DIRTY; 1426 if (pte_uffd_wp(pte)) 1427 flags |= PM_UFFD_WP; 1428 } else if (is_swap_pte(pte)) { 1429 swp_entry_t entry; 1430 if (pte_swp_soft_dirty(pte)) 1431 flags |= PM_SOFT_DIRTY; 1432 if (pte_swp_uffd_wp(pte)) 1433 flags |= PM_UFFD_WP; 1434 entry = pte_to_swp_entry(pte); 1435 if (pm->show_pfn) { 1436 pgoff_t offset; 1437 /* 1438 * For PFN swap offsets, keeping the offset field 1439 * to be PFN only to be compatible with old smaps. 1440 */ 1441 if (is_pfn_swap_entry(entry)) 1442 offset = swp_offset_pfn(entry); 1443 else 1444 offset = swp_offset(entry); 1445 frame = swp_type(entry) | 1446 (offset << MAX_SWAPFILES_SHIFT); 1447 } 1448 flags |= PM_SWAP; 1449 migration = is_migration_entry(entry); 1450 if (is_pfn_swap_entry(entry)) 1451 page = pfn_swap_entry_to_page(entry); 1452 if (pte_marker_entry_uffd_wp(entry)) 1453 flags |= PM_UFFD_WP; 1454 } 1455 1456 if (page && !PageAnon(page)) 1457 flags |= PM_FILE; 1458 if (page && !migration && page_mapcount(page) == 1) 1459 flags |= PM_MMAP_EXCLUSIVE; 1460 if (vma->vm_flags & VM_SOFTDIRTY) 1461 flags |= PM_SOFT_DIRTY; 1462 1463 return make_pme(frame, flags); 1464 } 1465 1466 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end, 1467 struct mm_walk *walk) 1468 { 1469 struct vm_area_struct *vma = walk->vma; 1470 struct pagemapread *pm = walk->private; 1471 spinlock_t *ptl; 1472 pte_t *pte, *orig_pte; 1473 int err = 0; 1474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1475 bool migration = false; 1476 1477 ptl = pmd_trans_huge_lock(pmdp, vma); 1478 if (ptl) { 1479 u64 flags = 0, frame = 0; 1480 pmd_t pmd = *pmdp; 1481 struct page *page = NULL; 1482 1483 if (vma->vm_flags & VM_SOFTDIRTY) 1484 flags |= PM_SOFT_DIRTY; 1485 1486 if (pmd_present(pmd)) { 1487 page = pmd_page(pmd); 1488 1489 flags |= PM_PRESENT; 1490 if (pmd_soft_dirty(pmd)) 1491 flags |= PM_SOFT_DIRTY; 1492 if (pmd_uffd_wp(pmd)) 1493 flags |= PM_UFFD_WP; 1494 if (pm->show_pfn) 1495 frame = pmd_pfn(pmd) + 1496 ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1497 } 1498 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1499 else if (is_swap_pmd(pmd)) { 1500 swp_entry_t entry = pmd_to_swp_entry(pmd); 1501 unsigned long offset; 1502 1503 if (pm->show_pfn) { 1504 if (is_pfn_swap_entry(entry)) 1505 offset = swp_offset_pfn(entry); 1506 else 1507 offset = swp_offset(entry); 1508 offset = offset + 1509 ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1510 frame = swp_type(entry) | 1511 (offset << MAX_SWAPFILES_SHIFT); 1512 } 1513 flags |= PM_SWAP; 1514 if (pmd_swp_soft_dirty(pmd)) 1515 flags |= PM_SOFT_DIRTY; 1516 if (pmd_swp_uffd_wp(pmd)) 1517 flags |= PM_UFFD_WP; 1518 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1519 migration = is_migration_entry(entry); 1520 page = pfn_swap_entry_to_page(entry); 1521 } 1522 #endif 1523 1524 if (page && !migration && page_mapcount(page) == 1) 1525 flags |= PM_MMAP_EXCLUSIVE; 1526 1527 for (; addr != end; addr += PAGE_SIZE) { 1528 pagemap_entry_t pme = make_pme(frame, flags); 1529 1530 err = add_to_pagemap(addr, &pme, pm); 1531 if (err) 1532 break; 1533 if (pm->show_pfn) { 1534 if (flags & PM_PRESENT) 1535 frame++; 1536 else if (flags & PM_SWAP) 1537 frame += (1 << MAX_SWAPFILES_SHIFT); 1538 } 1539 } 1540 spin_unlock(ptl); 1541 return err; 1542 } 1543 1544 if (pmd_trans_unstable(pmdp)) 1545 return 0; 1546 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1547 1548 /* 1549 * We can assume that @vma always points to a valid one and @end never 1550 * goes beyond vma->vm_end. 1551 */ 1552 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl); 1553 for (; addr < end; pte++, addr += PAGE_SIZE) { 1554 pagemap_entry_t pme; 1555 1556 pme = pte_to_pagemap_entry(pm, vma, addr, *pte); 1557 err = add_to_pagemap(addr, &pme, pm); 1558 if (err) 1559 break; 1560 } 1561 pte_unmap_unlock(orig_pte, ptl); 1562 1563 cond_resched(); 1564 1565 return err; 1566 } 1567 1568 #ifdef CONFIG_HUGETLB_PAGE 1569 /* This function walks within one hugetlb entry in the single call */ 1570 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask, 1571 unsigned long addr, unsigned long end, 1572 struct mm_walk *walk) 1573 { 1574 struct pagemapread *pm = walk->private; 1575 struct vm_area_struct *vma = walk->vma; 1576 u64 flags = 0, frame = 0; 1577 int err = 0; 1578 pte_t pte; 1579 1580 if (vma->vm_flags & VM_SOFTDIRTY) 1581 flags |= PM_SOFT_DIRTY; 1582 1583 pte = huge_ptep_get(ptep); 1584 if (pte_present(pte)) { 1585 struct page *page = pte_page(pte); 1586 1587 if (!PageAnon(page)) 1588 flags |= PM_FILE; 1589 1590 if (page_mapcount(page) == 1) 1591 flags |= PM_MMAP_EXCLUSIVE; 1592 1593 if (huge_pte_uffd_wp(pte)) 1594 flags |= PM_UFFD_WP; 1595 1596 flags |= PM_PRESENT; 1597 if (pm->show_pfn) 1598 frame = pte_pfn(pte) + 1599 ((addr & ~hmask) >> PAGE_SHIFT); 1600 } else if (pte_swp_uffd_wp_any(pte)) { 1601 flags |= PM_UFFD_WP; 1602 } 1603 1604 for (; addr != end; addr += PAGE_SIZE) { 1605 pagemap_entry_t pme = make_pme(frame, flags); 1606 1607 err = add_to_pagemap(addr, &pme, pm); 1608 if (err) 1609 return err; 1610 if (pm->show_pfn && (flags & PM_PRESENT)) 1611 frame++; 1612 } 1613 1614 cond_resched(); 1615 1616 return err; 1617 } 1618 #else 1619 #define pagemap_hugetlb_range NULL 1620 #endif /* HUGETLB_PAGE */ 1621 1622 static const struct mm_walk_ops pagemap_ops = { 1623 .pmd_entry = pagemap_pmd_range, 1624 .pte_hole = pagemap_pte_hole, 1625 .hugetlb_entry = pagemap_hugetlb_range, 1626 }; 1627 1628 /* 1629 * /proc/pid/pagemap - an array mapping virtual pages to pfns 1630 * 1631 * For each page in the address space, this file contains one 64-bit entry 1632 * consisting of the following: 1633 * 1634 * Bits 0-54 page frame number (PFN) if present 1635 * Bits 0-4 swap type if swapped 1636 * Bits 5-54 swap offset if swapped 1637 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst) 1638 * Bit 56 page exclusively mapped 1639 * Bit 57 pte is uffd-wp write-protected 1640 * Bits 58-60 zero 1641 * Bit 61 page is file-page or shared-anon 1642 * Bit 62 page swapped 1643 * Bit 63 page present 1644 * 1645 * If the page is not present but in swap, then the PFN contains an 1646 * encoding of the swap file number and the page's offset into the 1647 * swap. Unmapped pages return a null PFN. This allows determining 1648 * precisely which pages are mapped (or in swap) and comparing mapped 1649 * pages between processes. 1650 * 1651 * Efficient users of this interface will use /proc/pid/maps to 1652 * determine which areas of memory are actually mapped and llseek to 1653 * skip over unmapped regions. 1654 */ 1655 static ssize_t pagemap_read(struct file *file, char __user *buf, 1656 size_t count, loff_t *ppos) 1657 { 1658 struct mm_struct *mm = file->private_data; 1659 struct pagemapread pm; 1660 unsigned long src; 1661 unsigned long svpfn; 1662 unsigned long start_vaddr; 1663 unsigned long end_vaddr; 1664 int ret = 0, copied = 0; 1665 1666 if (!mm || !mmget_not_zero(mm)) 1667 goto out; 1668 1669 ret = -EINVAL; 1670 /* file position must be aligned */ 1671 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) 1672 goto out_mm; 1673 1674 ret = 0; 1675 if (!count) 1676 goto out_mm; 1677 1678 /* do not disclose physical addresses: attack vector */ 1679 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN); 1680 1681 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT); 1682 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL); 1683 ret = -ENOMEM; 1684 if (!pm.buffer) 1685 goto out_mm; 1686 1687 src = *ppos; 1688 svpfn = src / PM_ENTRY_BYTES; 1689 end_vaddr = mm->task_size; 1690 1691 /* watch out for wraparound */ 1692 start_vaddr = end_vaddr; 1693 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) 1694 start_vaddr = untagged_addr(svpfn << PAGE_SHIFT); 1695 1696 /* Ensure the address is inside the task */ 1697 if (start_vaddr > mm->task_size) 1698 start_vaddr = end_vaddr; 1699 1700 /* 1701 * The odds are that this will stop walking way 1702 * before end_vaddr, because the length of the 1703 * user buffer is tracked in "pm", and the walk 1704 * will stop when we hit the end of the buffer. 1705 */ 1706 ret = 0; 1707 while (count && (start_vaddr < end_vaddr)) { 1708 int len; 1709 unsigned long end; 1710 1711 pm.pos = 0; 1712 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK; 1713 /* overflow ? */ 1714 if (end < start_vaddr || end > end_vaddr) 1715 end = end_vaddr; 1716 ret = mmap_read_lock_killable(mm); 1717 if (ret) 1718 goto out_free; 1719 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm); 1720 mmap_read_unlock(mm); 1721 start_vaddr = end; 1722 1723 len = min(count, PM_ENTRY_BYTES * pm.pos); 1724 if (copy_to_user(buf, pm.buffer, len)) { 1725 ret = -EFAULT; 1726 goto out_free; 1727 } 1728 copied += len; 1729 buf += len; 1730 count -= len; 1731 } 1732 *ppos += copied; 1733 if (!ret || ret == PM_END_OF_BUFFER) 1734 ret = copied; 1735 1736 out_free: 1737 kfree(pm.buffer); 1738 out_mm: 1739 mmput(mm); 1740 out: 1741 return ret; 1742 } 1743 1744 static int pagemap_open(struct inode *inode, struct file *file) 1745 { 1746 struct mm_struct *mm; 1747 1748 mm = proc_mem_open(inode, PTRACE_MODE_READ); 1749 if (IS_ERR(mm)) 1750 return PTR_ERR(mm); 1751 file->private_data = mm; 1752 return 0; 1753 } 1754 1755 static int pagemap_release(struct inode *inode, struct file *file) 1756 { 1757 struct mm_struct *mm = file->private_data; 1758 1759 if (mm) 1760 mmdrop(mm); 1761 return 0; 1762 } 1763 1764 const struct file_operations proc_pagemap_operations = { 1765 .llseek = mem_lseek, /* borrow this */ 1766 .read = pagemap_read, 1767 .open = pagemap_open, 1768 .release = pagemap_release, 1769 }; 1770 #endif /* CONFIG_PROC_PAGE_MONITOR */ 1771 1772 #ifdef CONFIG_NUMA 1773 1774 struct numa_maps { 1775 unsigned long pages; 1776 unsigned long anon; 1777 unsigned long active; 1778 unsigned long writeback; 1779 unsigned long mapcount_max; 1780 unsigned long dirty; 1781 unsigned long swapcache; 1782 unsigned long node[MAX_NUMNODES]; 1783 }; 1784 1785 struct numa_maps_private { 1786 struct proc_maps_private proc_maps; 1787 struct numa_maps md; 1788 }; 1789 1790 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty, 1791 unsigned long nr_pages) 1792 { 1793 int count = page_mapcount(page); 1794 1795 md->pages += nr_pages; 1796 if (pte_dirty || PageDirty(page)) 1797 md->dirty += nr_pages; 1798 1799 if (PageSwapCache(page)) 1800 md->swapcache += nr_pages; 1801 1802 if (PageActive(page) || PageUnevictable(page)) 1803 md->active += nr_pages; 1804 1805 if (PageWriteback(page)) 1806 md->writeback += nr_pages; 1807 1808 if (PageAnon(page)) 1809 md->anon += nr_pages; 1810 1811 if (count > md->mapcount_max) 1812 md->mapcount_max = count; 1813 1814 md->node[page_to_nid(page)] += nr_pages; 1815 } 1816 1817 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma, 1818 unsigned long addr) 1819 { 1820 struct page *page; 1821 int nid; 1822 1823 if (!pte_present(pte)) 1824 return NULL; 1825 1826 page = vm_normal_page(vma, addr, pte); 1827 if (!page || is_zone_device_page(page)) 1828 return NULL; 1829 1830 if (PageReserved(page)) 1831 return NULL; 1832 1833 nid = page_to_nid(page); 1834 if (!node_isset(nid, node_states[N_MEMORY])) 1835 return NULL; 1836 1837 return page; 1838 } 1839 1840 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1841 static struct page *can_gather_numa_stats_pmd(pmd_t pmd, 1842 struct vm_area_struct *vma, 1843 unsigned long addr) 1844 { 1845 struct page *page; 1846 int nid; 1847 1848 if (!pmd_present(pmd)) 1849 return NULL; 1850 1851 page = vm_normal_page_pmd(vma, addr, pmd); 1852 if (!page) 1853 return NULL; 1854 1855 if (PageReserved(page)) 1856 return NULL; 1857 1858 nid = page_to_nid(page); 1859 if (!node_isset(nid, node_states[N_MEMORY])) 1860 return NULL; 1861 1862 return page; 1863 } 1864 #endif 1865 1866 static int gather_pte_stats(pmd_t *pmd, unsigned long addr, 1867 unsigned long end, struct mm_walk *walk) 1868 { 1869 struct numa_maps *md = walk->private; 1870 struct vm_area_struct *vma = walk->vma; 1871 spinlock_t *ptl; 1872 pte_t *orig_pte; 1873 pte_t *pte; 1874 1875 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1876 ptl = pmd_trans_huge_lock(pmd, vma); 1877 if (ptl) { 1878 struct page *page; 1879 1880 page = can_gather_numa_stats_pmd(*pmd, vma, addr); 1881 if (page) 1882 gather_stats(page, md, pmd_dirty(*pmd), 1883 HPAGE_PMD_SIZE/PAGE_SIZE); 1884 spin_unlock(ptl); 1885 return 0; 1886 } 1887 1888 if (pmd_trans_unstable(pmd)) 1889 return 0; 1890 #endif 1891 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 1892 do { 1893 struct page *page = can_gather_numa_stats(*pte, vma, addr); 1894 if (!page) 1895 continue; 1896 gather_stats(page, md, pte_dirty(*pte), 1); 1897 1898 } while (pte++, addr += PAGE_SIZE, addr != end); 1899 pte_unmap_unlock(orig_pte, ptl); 1900 cond_resched(); 1901 return 0; 1902 } 1903 #ifdef CONFIG_HUGETLB_PAGE 1904 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1905 unsigned long addr, unsigned long end, struct mm_walk *walk) 1906 { 1907 pte_t huge_pte = huge_ptep_get(pte); 1908 struct numa_maps *md; 1909 struct page *page; 1910 1911 if (!pte_present(huge_pte)) 1912 return 0; 1913 1914 page = pte_page(huge_pte); 1915 1916 md = walk->private; 1917 gather_stats(page, md, pte_dirty(huge_pte), 1); 1918 return 0; 1919 } 1920 1921 #else 1922 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1923 unsigned long addr, unsigned long end, struct mm_walk *walk) 1924 { 1925 return 0; 1926 } 1927 #endif 1928 1929 static const struct mm_walk_ops show_numa_ops = { 1930 .hugetlb_entry = gather_hugetlb_stats, 1931 .pmd_entry = gather_pte_stats, 1932 }; 1933 1934 /* 1935 * Display pages allocated per node and memory policy via /proc. 1936 */ 1937 static int show_numa_map(struct seq_file *m, void *v) 1938 { 1939 struct numa_maps_private *numa_priv = m->private; 1940 struct proc_maps_private *proc_priv = &numa_priv->proc_maps; 1941 struct vm_area_struct *vma = v; 1942 struct numa_maps *md = &numa_priv->md; 1943 struct file *file = vma->vm_file; 1944 struct mm_struct *mm = vma->vm_mm; 1945 struct mempolicy *pol; 1946 char buffer[64]; 1947 int nid; 1948 1949 if (!mm) 1950 return 0; 1951 1952 /* Ensure we start with an empty set of numa_maps statistics. */ 1953 memset(md, 0, sizeof(*md)); 1954 1955 pol = __get_vma_policy(vma, vma->vm_start); 1956 if (pol) { 1957 mpol_to_str(buffer, sizeof(buffer), pol); 1958 mpol_cond_put(pol); 1959 } else { 1960 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy); 1961 } 1962 1963 seq_printf(m, "%08lx %s", vma->vm_start, buffer); 1964 1965 if (file) { 1966 seq_puts(m, " file="); 1967 seq_file_path(m, file, "\n\t= "); 1968 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) { 1969 seq_puts(m, " heap"); 1970 } else if (is_stack(vma)) { 1971 seq_puts(m, " stack"); 1972 } 1973 1974 if (is_vm_hugetlb_page(vma)) 1975 seq_puts(m, " huge"); 1976 1977 /* mmap_lock is held by m_start */ 1978 walk_page_vma(vma, &show_numa_ops, md); 1979 1980 if (!md->pages) 1981 goto out; 1982 1983 if (md->anon) 1984 seq_printf(m, " anon=%lu", md->anon); 1985 1986 if (md->dirty) 1987 seq_printf(m, " dirty=%lu", md->dirty); 1988 1989 if (md->pages != md->anon && md->pages != md->dirty) 1990 seq_printf(m, " mapped=%lu", md->pages); 1991 1992 if (md->mapcount_max > 1) 1993 seq_printf(m, " mapmax=%lu", md->mapcount_max); 1994 1995 if (md->swapcache) 1996 seq_printf(m, " swapcache=%lu", md->swapcache); 1997 1998 if (md->active < md->pages && !is_vm_hugetlb_page(vma)) 1999 seq_printf(m, " active=%lu", md->active); 2000 2001 if (md->writeback) 2002 seq_printf(m, " writeback=%lu", md->writeback); 2003 2004 for_each_node_state(nid, N_MEMORY) 2005 if (md->node[nid]) 2006 seq_printf(m, " N%d=%lu", nid, md->node[nid]); 2007 2008 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10); 2009 out: 2010 seq_putc(m, '\n'); 2011 return 0; 2012 } 2013 2014 static const struct seq_operations proc_pid_numa_maps_op = { 2015 .start = m_start, 2016 .next = m_next, 2017 .stop = m_stop, 2018 .show = show_numa_map, 2019 }; 2020 2021 static int pid_numa_maps_open(struct inode *inode, struct file *file) 2022 { 2023 return proc_maps_open(inode, file, &proc_pid_numa_maps_op, 2024 sizeof(struct numa_maps_private)); 2025 } 2026 2027 const struct file_operations proc_pid_numa_maps_operations = { 2028 .open = pid_numa_maps_open, 2029 .read = seq_read, 2030 .llseek = seq_lseek, 2031 .release = proc_map_release, 2032 }; 2033 2034 #endif /* CONFIG_NUMA */ 2035