1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * /proc/sys support 4 */ 5 #include <linux/init.h> 6 #include <linux/sysctl.h> 7 #include <linux/poll.h> 8 #include <linux/proc_fs.h> 9 #include <linux/printk.h> 10 #include <linux/security.h> 11 #include <linux/sched.h> 12 #include <linux/cred.h> 13 #include <linux/namei.h> 14 #include <linux/mm.h> 15 #include <linux/uio.h> 16 #include <linux/module.h> 17 #include <linux/bpf-cgroup.h> 18 #include <linux/mount.h> 19 #include <linux/kmemleak.h> 20 #include "internal.h" 21 22 #define list_for_each_table_entry(entry, table) \ 23 for ((entry) = (table); (entry)->procname; (entry)++) 24 25 static const struct dentry_operations proc_sys_dentry_operations; 26 static const struct file_operations proc_sys_file_operations; 27 static const struct inode_operations proc_sys_inode_operations; 28 static const struct file_operations proc_sys_dir_file_operations; 29 static const struct inode_operations proc_sys_dir_operations; 30 31 /* shared constants to be used in various sysctls */ 32 const int sysctl_vals[] = { 0, 1, 2, 3, 4, 100, 200, 1000, 3000, INT_MAX, 65535, -1 }; 33 EXPORT_SYMBOL(sysctl_vals); 34 35 const unsigned long sysctl_long_vals[] = { 0, 1, LONG_MAX }; 36 EXPORT_SYMBOL_GPL(sysctl_long_vals); 37 38 /* Support for permanently empty directories */ 39 40 struct ctl_table sysctl_mount_point[] = { 41 { } 42 }; 43 44 /** 45 * register_sysctl_mount_point() - registers a sysctl mount point 46 * @path: path for the mount point 47 * 48 * Used to create a permanently empty directory to serve as mount point. 49 * There are some subtle but important permission checks this allows in the 50 * case of unprivileged mounts. 51 */ 52 struct ctl_table_header *register_sysctl_mount_point(const char *path) 53 { 54 return register_sysctl(path, sysctl_mount_point); 55 } 56 EXPORT_SYMBOL(register_sysctl_mount_point); 57 58 static bool is_empty_dir(struct ctl_table_header *head) 59 { 60 return head->ctl_table[0].child == sysctl_mount_point; 61 } 62 63 static void set_empty_dir(struct ctl_dir *dir) 64 { 65 dir->header.ctl_table[0].child = sysctl_mount_point; 66 } 67 68 static void clear_empty_dir(struct ctl_dir *dir) 69 70 { 71 dir->header.ctl_table[0].child = NULL; 72 } 73 74 void proc_sys_poll_notify(struct ctl_table_poll *poll) 75 { 76 if (!poll) 77 return; 78 79 atomic_inc(&poll->event); 80 wake_up_interruptible(&poll->wait); 81 } 82 83 static struct ctl_table root_table[] = { 84 { 85 .procname = "", 86 .mode = S_IFDIR|S_IRUGO|S_IXUGO, 87 }, 88 { } 89 }; 90 static struct ctl_table_root sysctl_table_root = { 91 .default_set.dir.header = { 92 {{.count = 1, 93 .nreg = 1, 94 .ctl_table = root_table }}, 95 .ctl_table_arg = root_table, 96 .root = &sysctl_table_root, 97 .set = &sysctl_table_root.default_set, 98 }, 99 }; 100 101 static DEFINE_SPINLOCK(sysctl_lock); 102 103 static void drop_sysctl_table(struct ctl_table_header *header); 104 static int sysctl_follow_link(struct ctl_table_header **phead, 105 struct ctl_table **pentry); 106 static int insert_links(struct ctl_table_header *head); 107 static void put_links(struct ctl_table_header *header); 108 109 static void sysctl_print_dir(struct ctl_dir *dir) 110 { 111 if (dir->header.parent) 112 sysctl_print_dir(dir->header.parent); 113 pr_cont("%s/", dir->header.ctl_table[0].procname); 114 } 115 116 static int namecmp(const char *name1, int len1, const char *name2, int len2) 117 { 118 int cmp; 119 120 cmp = memcmp(name1, name2, min(len1, len2)); 121 if (cmp == 0) 122 cmp = len1 - len2; 123 return cmp; 124 } 125 126 /* Called under sysctl_lock */ 127 static struct ctl_table *find_entry(struct ctl_table_header **phead, 128 struct ctl_dir *dir, const char *name, int namelen) 129 { 130 struct ctl_table_header *head; 131 struct ctl_table *entry; 132 struct rb_node *node = dir->root.rb_node; 133 134 while (node) 135 { 136 struct ctl_node *ctl_node; 137 const char *procname; 138 int cmp; 139 140 ctl_node = rb_entry(node, struct ctl_node, node); 141 head = ctl_node->header; 142 entry = &head->ctl_table[ctl_node - head->node]; 143 procname = entry->procname; 144 145 cmp = namecmp(name, namelen, procname, strlen(procname)); 146 if (cmp < 0) 147 node = node->rb_left; 148 else if (cmp > 0) 149 node = node->rb_right; 150 else { 151 *phead = head; 152 return entry; 153 } 154 } 155 return NULL; 156 } 157 158 static int insert_entry(struct ctl_table_header *head, struct ctl_table *entry) 159 { 160 struct rb_node *node = &head->node[entry - head->ctl_table].node; 161 struct rb_node **p = &head->parent->root.rb_node; 162 struct rb_node *parent = NULL; 163 const char *name = entry->procname; 164 int namelen = strlen(name); 165 166 while (*p) { 167 struct ctl_table_header *parent_head; 168 struct ctl_table *parent_entry; 169 struct ctl_node *parent_node; 170 const char *parent_name; 171 int cmp; 172 173 parent = *p; 174 parent_node = rb_entry(parent, struct ctl_node, node); 175 parent_head = parent_node->header; 176 parent_entry = &parent_head->ctl_table[parent_node - parent_head->node]; 177 parent_name = parent_entry->procname; 178 179 cmp = namecmp(name, namelen, parent_name, strlen(parent_name)); 180 if (cmp < 0) 181 p = &(*p)->rb_left; 182 else if (cmp > 0) 183 p = &(*p)->rb_right; 184 else { 185 pr_err("sysctl duplicate entry: "); 186 sysctl_print_dir(head->parent); 187 pr_cont("%s\n", entry->procname); 188 return -EEXIST; 189 } 190 } 191 192 rb_link_node(node, parent, p); 193 rb_insert_color(node, &head->parent->root); 194 return 0; 195 } 196 197 static void erase_entry(struct ctl_table_header *head, struct ctl_table *entry) 198 { 199 struct rb_node *node = &head->node[entry - head->ctl_table].node; 200 201 rb_erase(node, &head->parent->root); 202 } 203 204 static void init_header(struct ctl_table_header *head, 205 struct ctl_table_root *root, struct ctl_table_set *set, 206 struct ctl_node *node, struct ctl_table *table) 207 { 208 head->ctl_table = table; 209 head->ctl_table_arg = table; 210 head->used = 0; 211 head->count = 1; 212 head->nreg = 1; 213 head->unregistering = NULL; 214 head->root = root; 215 head->set = set; 216 head->parent = NULL; 217 head->node = node; 218 INIT_HLIST_HEAD(&head->inodes); 219 if (node) { 220 struct ctl_table *entry; 221 222 list_for_each_table_entry(entry, table) { 223 node->header = head; 224 node++; 225 } 226 } 227 } 228 229 static void erase_header(struct ctl_table_header *head) 230 { 231 struct ctl_table *entry; 232 233 list_for_each_table_entry(entry, head->ctl_table) 234 erase_entry(head, entry); 235 } 236 237 static int insert_header(struct ctl_dir *dir, struct ctl_table_header *header) 238 { 239 struct ctl_table *entry; 240 int err; 241 242 /* Is this a permanently empty directory? */ 243 if (is_empty_dir(&dir->header)) 244 return -EROFS; 245 246 /* Am I creating a permanently empty directory? */ 247 if (header->ctl_table == sysctl_mount_point) { 248 if (!RB_EMPTY_ROOT(&dir->root)) 249 return -EINVAL; 250 set_empty_dir(dir); 251 } 252 253 dir->header.nreg++; 254 header->parent = dir; 255 err = insert_links(header); 256 if (err) 257 goto fail_links; 258 list_for_each_table_entry(entry, header->ctl_table) { 259 err = insert_entry(header, entry); 260 if (err) 261 goto fail; 262 } 263 return 0; 264 fail: 265 erase_header(header); 266 put_links(header); 267 fail_links: 268 if (header->ctl_table == sysctl_mount_point) 269 clear_empty_dir(dir); 270 header->parent = NULL; 271 drop_sysctl_table(&dir->header); 272 return err; 273 } 274 275 /* called under sysctl_lock */ 276 static int use_table(struct ctl_table_header *p) 277 { 278 if (unlikely(p->unregistering)) 279 return 0; 280 p->used++; 281 return 1; 282 } 283 284 /* called under sysctl_lock */ 285 static void unuse_table(struct ctl_table_header *p) 286 { 287 if (!--p->used) 288 if (unlikely(p->unregistering)) 289 complete(p->unregistering); 290 } 291 292 static void proc_sys_invalidate_dcache(struct ctl_table_header *head) 293 { 294 proc_invalidate_siblings_dcache(&head->inodes, &sysctl_lock); 295 } 296 297 /* called under sysctl_lock, will reacquire if has to wait */ 298 static void start_unregistering(struct ctl_table_header *p) 299 { 300 /* 301 * if p->used is 0, nobody will ever touch that entry again; 302 * we'll eliminate all paths to it before dropping sysctl_lock 303 */ 304 if (unlikely(p->used)) { 305 struct completion wait; 306 init_completion(&wait); 307 p->unregistering = &wait; 308 spin_unlock(&sysctl_lock); 309 wait_for_completion(&wait); 310 } else { 311 /* anything non-NULL; we'll never dereference it */ 312 p->unregistering = ERR_PTR(-EINVAL); 313 spin_unlock(&sysctl_lock); 314 } 315 /* 316 * Invalidate dentries for unregistered sysctls: namespaced sysctls 317 * can have duplicate names and contaminate dcache very badly. 318 */ 319 proc_sys_invalidate_dcache(p); 320 /* 321 * do not remove from the list until nobody holds it; walking the 322 * list in do_sysctl() relies on that. 323 */ 324 spin_lock(&sysctl_lock); 325 erase_header(p); 326 } 327 328 static struct ctl_table_header *sysctl_head_grab(struct ctl_table_header *head) 329 { 330 BUG_ON(!head); 331 spin_lock(&sysctl_lock); 332 if (!use_table(head)) 333 head = ERR_PTR(-ENOENT); 334 spin_unlock(&sysctl_lock); 335 return head; 336 } 337 338 static void sysctl_head_finish(struct ctl_table_header *head) 339 { 340 if (!head) 341 return; 342 spin_lock(&sysctl_lock); 343 unuse_table(head); 344 spin_unlock(&sysctl_lock); 345 } 346 347 static struct ctl_table_set * 348 lookup_header_set(struct ctl_table_root *root) 349 { 350 struct ctl_table_set *set = &root->default_set; 351 if (root->lookup) 352 set = root->lookup(root); 353 return set; 354 } 355 356 static struct ctl_table *lookup_entry(struct ctl_table_header **phead, 357 struct ctl_dir *dir, 358 const char *name, int namelen) 359 { 360 struct ctl_table_header *head; 361 struct ctl_table *entry; 362 363 spin_lock(&sysctl_lock); 364 entry = find_entry(&head, dir, name, namelen); 365 if (entry && use_table(head)) 366 *phead = head; 367 else 368 entry = NULL; 369 spin_unlock(&sysctl_lock); 370 return entry; 371 } 372 373 static struct ctl_node *first_usable_entry(struct rb_node *node) 374 { 375 struct ctl_node *ctl_node; 376 377 for (;node; node = rb_next(node)) { 378 ctl_node = rb_entry(node, struct ctl_node, node); 379 if (use_table(ctl_node->header)) 380 return ctl_node; 381 } 382 return NULL; 383 } 384 385 static void first_entry(struct ctl_dir *dir, 386 struct ctl_table_header **phead, struct ctl_table **pentry) 387 { 388 struct ctl_table_header *head = NULL; 389 struct ctl_table *entry = NULL; 390 struct ctl_node *ctl_node; 391 392 spin_lock(&sysctl_lock); 393 ctl_node = first_usable_entry(rb_first(&dir->root)); 394 spin_unlock(&sysctl_lock); 395 if (ctl_node) { 396 head = ctl_node->header; 397 entry = &head->ctl_table[ctl_node - head->node]; 398 } 399 *phead = head; 400 *pentry = entry; 401 } 402 403 static void next_entry(struct ctl_table_header **phead, struct ctl_table **pentry) 404 { 405 struct ctl_table_header *head = *phead; 406 struct ctl_table *entry = *pentry; 407 struct ctl_node *ctl_node = &head->node[entry - head->ctl_table]; 408 409 spin_lock(&sysctl_lock); 410 unuse_table(head); 411 412 ctl_node = first_usable_entry(rb_next(&ctl_node->node)); 413 spin_unlock(&sysctl_lock); 414 head = NULL; 415 if (ctl_node) { 416 head = ctl_node->header; 417 entry = &head->ctl_table[ctl_node - head->node]; 418 } 419 *phead = head; 420 *pentry = entry; 421 } 422 423 /* 424 * sysctl_perm does NOT grant the superuser all rights automatically, because 425 * some sysctl variables are readonly even to root. 426 */ 427 428 static int test_perm(int mode, int op) 429 { 430 if (uid_eq(current_euid(), GLOBAL_ROOT_UID)) 431 mode >>= 6; 432 else if (in_egroup_p(GLOBAL_ROOT_GID)) 433 mode >>= 3; 434 if ((op & ~mode & (MAY_READ|MAY_WRITE|MAY_EXEC)) == 0) 435 return 0; 436 return -EACCES; 437 } 438 439 static int sysctl_perm(struct ctl_table_header *head, struct ctl_table *table, int op) 440 { 441 struct ctl_table_root *root = head->root; 442 int mode; 443 444 if (root->permissions) 445 mode = root->permissions(head, table); 446 else 447 mode = table->mode; 448 449 return test_perm(mode, op); 450 } 451 452 static struct inode *proc_sys_make_inode(struct super_block *sb, 453 struct ctl_table_header *head, struct ctl_table *table) 454 { 455 struct ctl_table_root *root = head->root; 456 struct inode *inode; 457 struct proc_inode *ei; 458 459 inode = new_inode(sb); 460 if (!inode) 461 return ERR_PTR(-ENOMEM); 462 463 inode->i_ino = get_next_ino(); 464 465 ei = PROC_I(inode); 466 467 spin_lock(&sysctl_lock); 468 if (unlikely(head->unregistering)) { 469 spin_unlock(&sysctl_lock); 470 iput(inode); 471 return ERR_PTR(-ENOENT); 472 } 473 ei->sysctl = head; 474 ei->sysctl_entry = table; 475 hlist_add_head_rcu(&ei->sibling_inodes, &head->inodes); 476 head->count++; 477 spin_unlock(&sysctl_lock); 478 479 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 480 inode->i_mode = table->mode; 481 if (!S_ISDIR(table->mode)) { 482 inode->i_mode |= S_IFREG; 483 inode->i_op = &proc_sys_inode_operations; 484 inode->i_fop = &proc_sys_file_operations; 485 } else { 486 inode->i_mode |= S_IFDIR; 487 inode->i_op = &proc_sys_dir_operations; 488 inode->i_fop = &proc_sys_dir_file_operations; 489 if (is_empty_dir(head)) 490 make_empty_dir_inode(inode); 491 } 492 493 if (root->set_ownership) 494 root->set_ownership(head, table, &inode->i_uid, &inode->i_gid); 495 else { 496 inode->i_uid = GLOBAL_ROOT_UID; 497 inode->i_gid = GLOBAL_ROOT_GID; 498 } 499 500 return inode; 501 } 502 503 void proc_sys_evict_inode(struct inode *inode, struct ctl_table_header *head) 504 { 505 spin_lock(&sysctl_lock); 506 hlist_del_init_rcu(&PROC_I(inode)->sibling_inodes); 507 if (!--head->count) 508 kfree_rcu(head, rcu); 509 spin_unlock(&sysctl_lock); 510 } 511 512 static struct ctl_table_header *grab_header(struct inode *inode) 513 { 514 struct ctl_table_header *head = PROC_I(inode)->sysctl; 515 if (!head) 516 head = &sysctl_table_root.default_set.dir.header; 517 return sysctl_head_grab(head); 518 } 519 520 static struct dentry *proc_sys_lookup(struct inode *dir, struct dentry *dentry, 521 unsigned int flags) 522 { 523 struct ctl_table_header *head = grab_header(dir); 524 struct ctl_table_header *h = NULL; 525 const struct qstr *name = &dentry->d_name; 526 struct ctl_table *p; 527 struct inode *inode; 528 struct dentry *err = ERR_PTR(-ENOENT); 529 struct ctl_dir *ctl_dir; 530 int ret; 531 532 if (IS_ERR(head)) 533 return ERR_CAST(head); 534 535 ctl_dir = container_of(head, struct ctl_dir, header); 536 537 p = lookup_entry(&h, ctl_dir, name->name, name->len); 538 if (!p) 539 goto out; 540 541 if (S_ISLNK(p->mode)) { 542 ret = sysctl_follow_link(&h, &p); 543 err = ERR_PTR(ret); 544 if (ret) 545 goto out; 546 } 547 548 inode = proc_sys_make_inode(dir->i_sb, h ? h : head, p); 549 if (IS_ERR(inode)) { 550 err = ERR_CAST(inode); 551 goto out; 552 } 553 554 d_set_d_op(dentry, &proc_sys_dentry_operations); 555 err = d_splice_alias(inode, dentry); 556 557 out: 558 if (h) 559 sysctl_head_finish(h); 560 sysctl_head_finish(head); 561 return err; 562 } 563 564 static ssize_t proc_sys_call_handler(struct kiocb *iocb, struct iov_iter *iter, 565 int write) 566 { 567 struct inode *inode = file_inode(iocb->ki_filp); 568 struct ctl_table_header *head = grab_header(inode); 569 struct ctl_table *table = PROC_I(inode)->sysctl_entry; 570 size_t count = iov_iter_count(iter); 571 char *kbuf; 572 ssize_t error; 573 574 if (IS_ERR(head)) 575 return PTR_ERR(head); 576 577 /* 578 * At this point we know that the sysctl was not unregistered 579 * and won't be until we finish. 580 */ 581 error = -EPERM; 582 if (sysctl_perm(head, table, write ? MAY_WRITE : MAY_READ)) 583 goto out; 584 585 /* if that can happen at all, it should be -EINVAL, not -EISDIR */ 586 error = -EINVAL; 587 if (!table->proc_handler) 588 goto out; 589 590 /* don't even try if the size is too large */ 591 error = -ENOMEM; 592 if (count >= KMALLOC_MAX_SIZE) 593 goto out; 594 kbuf = kvzalloc(count + 1, GFP_KERNEL); 595 if (!kbuf) 596 goto out; 597 598 if (write) { 599 error = -EFAULT; 600 if (!copy_from_iter_full(kbuf, count, iter)) 601 goto out_free_buf; 602 kbuf[count] = '\0'; 603 } 604 605 error = BPF_CGROUP_RUN_PROG_SYSCTL(head, table, write, &kbuf, &count, 606 &iocb->ki_pos); 607 if (error) 608 goto out_free_buf; 609 610 /* careful: calling conventions are nasty here */ 611 error = table->proc_handler(table, write, kbuf, &count, &iocb->ki_pos); 612 if (error) 613 goto out_free_buf; 614 615 if (!write) { 616 error = -EFAULT; 617 if (copy_to_iter(kbuf, count, iter) < count) 618 goto out_free_buf; 619 } 620 621 error = count; 622 out_free_buf: 623 kvfree(kbuf); 624 out: 625 sysctl_head_finish(head); 626 627 return error; 628 } 629 630 static ssize_t proc_sys_read(struct kiocb *iocb, struct iov_iter *iter) 631 { 632 return proc_sys_call_handler(iocb, iter, 0); 633 } 634 635 static ssize_t proc_sys_write(struct kiocb *iocb, struct iov_iter *iter) 636 { 637 return proc_sys_call_handler(iocb, iter, 1); 638 } 639 640 static int proc_sys_open(struct inode *inode, struct file *filp) 641 { 642 struct ctl_table_header *head = grab_header(inode); 643 struct ctl_table *table = PROC_I(inode)->sysctl_entry; 644 645 /* sysctl was unregistered */ 646 if (IS_ERR(head)) 647 return PTR_ERR(head); 648 649 if (table->poll) 650 filp->private_data = proc_sys_poll_event(table->poll); 651 652 sysctl_head_finish(head); 653 654 return 0; 655 } 656 657 static __poll_t proc_sys_poll(struct file *filp, poll_table *wait) 658 { 659 struct inode *inode = file_inode(filp); 660 struct ctl_table_header *head = grab_header(inode); 661 struct ctl_table *table = PROC_I(inode)->sysctl_entry; 662 __poll_t ret = DEFAULT_POLLMASK; 663 unsigned long event; 664 665 /* sysctl was unregistered */ 666 if (IS_ERR(head)) 667 return EPOLLERR | EPOLLHUP; 668 669 if (!table->proc_handler) 670 goto out; 671 672 if (!table->poll) 673 goto out; 674 675 event = (unsigned long)filp->private_data; 676 poll_wait(filp, &table->poll->wait, wait); 677 678 if (event != atomic_read(&table->poll->event)) { 679 filp->private_data = proc_sys_poll_event(table->poll); 680 ret = EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 681 } 682 683 out: 684 sysctl_head_finish(head); 685 686 return ret; 687 } 688 689 static bool proc_sys_fill_cache(struct file *file, 690 struct dir_context *ctx, 691 struct ctl_table_header *head, 692 struct ctl_table *table) 693 { 694 struct dentry *child, *dir = file->f_path.dentry; 695 struct inode *inode; 696 struct qstr qname; 697 ino_t ino = 0; 698 unsigned type = DT_UNKNOWN; 699 700 qname.name = table->procname; 701 qname.len = strlen(table->procname); 702 qname.hash = full_name_hash(dir, qname.name, qname.len); 703 704 child = d_lookup(dir, &qname); 705 if (!child) { 706 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 707 child = d_alloc_parallel(dir, &qname, &wq); 708 if (IS_ERR(child)) 709 return false; 710 if (d_in_lookup(child)) { 711 struct dentry *res; 712 inode = proc_sys_make_inode(dir->d_sb, head, table); 713 if (IS_ERR(inode)) { 714 d_lookup_done(child); 715 dput(child); 716 return false; 717 } 718 d_set_d_op(child, &proc_sys_dentry_operations); 719 res = d_splice_alias(inode, child); 720 d_lookup_done(child); 721 if (unlikely(res)) { 722 if (IS_ERR(res)) { 723 dput(child); 724 return false; 725 } 726 dput(child); 727 child = res; 728 } 729 } 730 } 731 inode = d_inode(child); 732 ino = inode->i_ino; 733 type = inode->i_mode >> 12; 734 dput(child); 735 return dir_emit(ctx, qname.name, qname.len, ino, type); 736 } 737 738 static bool proc_sys_link_fill_cache(struct file *file, 739 struct dir_context *ctx, 740 struct ctl_table_header *head, 741 struct ctl_table *table) 742 { 743 bool ret = true; 744 745 head = sysctl_head_grab(head); 746 if (IS_ERR(head)) 747 return false; 748 749 /* It is not an error if we can not follow the link ignore it */ 750 if (sysctl_follow_link(&head, &table)) 751 goto out; 752 753 ret = proc_sys_fill_cache(file, ctx, head, table); 754 out: 755 sysctl_head_finish(head); 756 return ret; 757 } 758 759 static int scan(struct ctl_table_header *head, struct ctl_table *table, 760 unsigned long *pos, struct file *file, 761 struct dir_context *ctx) 762 { 763 bool res; 764 765 if ((*pos)++ < ctx->pos) 766 return true; 767 768 if (unlikely(S_ISLNK(table->mode))) 769 res = proc_sys_link_fill_cache(file, ctx, head, table); 770 else 771 res = proc_sys_fill_cache(file, ctx, head, table); 772 773 if (res) 774 ctx->pos = *pos; 775 776 return res; 777 } 778 779 static int proc_sys_readdir(struct file *file, struct dir_context *ctx) 780 { 781 struct ctl_table_header *head = grab_header(file_inode(file)); 782 struct ctl_table_header *h = NULL; 783 struct ctl_table *entry; 784 struct ctl_dir *ctl_dir; 785 unsigned long pos; 786 787 if (IS_ERR(head)) 788 return PTR_ERR(head); 789 790 ctl_dir = container_of(head, struct ctl_dir, header); 791 792 if (!dir_emit_dots(file, ctx)) 793 goto out; 794 795 pos = 2; 796 797 for (first_entry(ctl_dir, &h, &entry); h; next_entry(&h, &entry)) { 798 if (!scan(h, entry, &pos, file, ctx)) { 799 sysctl_head_finish(h); 800 break; 801 } 802 } 803 out: 804 sysctl_head_finish(head); 805 return 0; 806 } 807 808 static int proc_sys_permission(struct user_namespace *mnt_userns, 809 struct inode *inode, int mask) 810 { 811 /* 812 * sysctl entries that are not writeable, 813 * are _NOT_ writeable, capabilities or not. 814 */ 815 struct ctl_table_header *head; 816 struct ctl_table *table; 817 int error; 818 819 /* Executable files are not allowed under /proc/sys/ */ 820 if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode)) 821 return -EACCES; 822 823 head = grab_header(inode); 824 if (IS_ERR(head)) 825 return PTR_ERR(head); 826 827 table = PROC_I(inode)->sysctl_entry; 828 if (!table) /* global root - r-xr-xr-x */ 829 error = mask & MAY_WRITE ? -EACCES : 0; 830 else /* Use the permissions on the sysctl table entry */ 831 error = sysctl_perm(head, table, mask & ~MAY_NOT_BLOCK); 832 833 sysctl_head_finish(head); 834 return error; 835 } 836 837 static int proc_sys_setattr(struct user_namespace *mnt_userns, 838 struct dentry *dentry, struct iattr *attr) 839 { 840 struct inode *inode = d_inode(dentry); 841 int error; 842 843 if (attr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID)) 844 return -EPERM; 845 846 error = setattr_prepare(&init_user_ns, dentry, attr); 847 if (error) 848 return error; 849 850 setattr_copy(&init_user_ns, inode, attr); 851 mark_inode_dirty(inode); 852 return 0; 853 } 854 855 static int proc_sys_getattr(struct user_namespace *mnt_userns, 856 const struct path *path, struct kstat *stat, 857 u32 request_mask, unsigned int query_flags) 858 { 859 struct inode *inode = d_inode(path->dentry); 860 struct ctl_table_header *head = grab_header(inode); 861 struct ctl_table *table = PROC_I(inode)->sysctl_entry; 862 863 if (IS_ERR(head)) 864 return PTR_ERR(head); 865 866 generic_fillattr(&init_user_ns, inode, stat); 867 if (table) 868 stat->mode = (stat->mode & S_IFMT) | table->mode; 869 870 sysctl_head_finish(head); 871 return 0; 872 } 873 874 static const struct file_operations proc_sys_file_operations = { 875 .open = proc_sys_open, 876 .poll = proc_sys_poll, 877 .read_iter = proc_sys_read, 878 .write_iter = proc_sys_write, 879 .splice_read = generic_file_splice_read, 880 .splice_write = iter_file_splice_write, 881 .llseek = default_llseek, 882 }; 883 884 static const struct file_operations proc_sys_dir_file_operations = { 885 .read = generic_read_dir, 886 .iterate_shared = proc_sys_readdir, 887 .llseek = generic_file_llseek, 888 }; 889 890 static const struct inode_operations proc_sys_inode_operations = { 891 .permission = proc_sys_permission, 892 .setattr = proc_sys_setattr, 893 .getattr = proc_sys_getattr, 894 }; 895 896 static const struct inode_operations proc_sys_dir_operations = { 897 .lookup = proc_sys_lookup, 898 .permission = proc_sys_permission, 899 .setattr = proc_sys_setattr, 900 .getattr = proc_sys_getattr, 901 }; 902 903 static int proc_sys_revalidate(struct dentry *dentry, unsigned int flags) 904 { 905 if (flags & LOOKUP_RCU) 906 return -ECHILD; 907 return !PROC_I(d_inode(dentry))->sysctl->unregistering; 908 } 909 910 static int proc_sys_delete(const struct dentry *dentry) 911 { 912 return !!PROC_I(d_inode(dentry))->sysctl->unregistering; 913 } 914 915 static int sysctl_is_seen(struct ctl_table_header *p) 916 { 917 struct ctl_table_set *set = p->set; 918 int res; 919 spin_lock(&sysctl_lock); 920 if (p->unregistering) 921 res = 0; 922 else if (!set->is_seen) 923 res = 1; 924 else 925 res = set->is_seen(set); 926 spin_unlock(&sysctl_lock); 927 return res; 928 } 929 930 static int proc_sys_compare(const struct dentry *dentry, 931 unsigned int len, const char *str, const struct qstr *name) 932 { 933 struct ctl_table_header *head; 934 struct inode *inode; 935 936 /* Although proc doesn't have negative dentries, rcu-walk means 937 * that inode here can be NULL */ 938 /* AV: can it, indeed? */ 939 inode = d_inode_rcu(dentry); 940 if (!inode) 941 return 1; 942 if (name->len != len) 943 return 1; 944 if (memcmp(name->name, str, len)) 945 return 1; 946 head = rcu_dereference(PROC_I(inode)->sysctl); 947 return !head || !sysctl_is_seen(head); 948 } 949 950 static const struct dentry_operations proc_sys_dentry_operations = { 951 .d_revalidate = proc_sys_revalidate, 952 .d_delete = proc_sys_delete, 953 .d_compare = proc_sys_compare, 954 }; 955 956 static struct ctl_dir *find_subdir(struct ctl_dir *dir, 957 const char *name, int namelen) 958 { 959 struct ctl_table_header *head; 960 struct ctl_table *entry; 961 962 entry = find_entry(&head, dir, name, namelen); 963 if (!entry) 964 return ERR_PTR(-ENOENT); 965 if (!S_ISDIR(entry->mode)) 966 return ERR_PTR(-ENOTDIR); 967 return container_of(head, struct ctl_dir, header); 968 } 969 970 static struct ctl_dir *new_dir(struct ctl_table_set *set, 971 const char *name, int namelen) 972 { 973 struct ctl_table *table; 974 struct ctl_dir *new; 975 struct ctl_node *node; 976 char *new_name; 977 978 new = kzalloc(sizeof(*new) + sizeof(struct ctl_node) + 979 sizeof(struct ctl_table)*2 + namelen + 1, 980 GFP_KERNEL); 981 if (!new) 982 return NULL; 983 984 node = (struct ctl_node *)(new + 1); 985 table = (struct ctl_table *)(node + 1); 986 new_name = (char *)(table + 2); 987 memcpy(new_name, name, namelen); 988 table[0].procname = new_name; 989 table[0].mode = S_IFDIR|S_IRUGO|S_IXUGO; 990 init_header(&new->header, set->dir.header.root, set, node, table); 991 992 return new; 993 } 994 995 /** 996 * get_subdir - find or create a subdir with the specified name. 997 * @dir: Directory to create the subdirectory in 998 * @name: The name of the subdirectory to find or create 999 * @namelen: The length of name 1000 * 1001 * Takes a directory with an elevated reference count so we know that 1002 * if we drop the lock the directory will not go away. Upon success 1003 * the reference is moved from @dir to the returned subdirectory. 1004 * Upon error an error code is returned and the reference on @dir is 1005 * simply dropped. 1006 */ 1007 static struct ctl_dir *get_subdir(struct ctl_dir *dir, 1008 const char *name, int namelen) 1009 { 1010 struct ctl_table_set *set = dir->header.set; 1011 struct ctl_dir *subdir, *new = NULL; 1012 int err; 1013 1014 spin_lock(&sysctl_lock); 1015 subdir = find_subdir(dir, name, namelen); 1016 if (!IS_ERR(subdir)) 1017 goto found; 1018 if (PTR_ERR(subdir) != -ENOENT) 1019 goto failed; 1020 1021 spin_unlock(&sysctl_lock); 1022 new = new_dir(set, name, namelen); 1023 spin_lock(&sysctl_lock); 1024 subdir = ERR_PTR(-ENOMEM); 1025 if (!new) 1026 goto failed; 1027 1028 /* Was the subdir added while we dropped the lock? */ 1029 subdir = find_subdir(dir, name, namelen); 1030 if (!IS_ERR(subdir)) 1031 goto found; 1032 if (PTR_ERR(subdir) != -ENOENT) 1033 goto failed; 1034 1035 /* Nope. Use the our freshly made directory entry. */ 1036 err = insert_header(dir, &new->header); 1037 subdir = ERR_PTR(err); 1038 if (err) 1039 goto failed; 1040 subdir = new; 1041 found: 1042 subdir->header.nreg++; 1043 failed: 1044 if (IS_ERR(subdir)) { 1045 pr_err("sysctl could not get directory: "); 1046 sysctl_print_dir(dir); 1047 pr_cont("%*.*s %ld\n", namelen, namelen, name, 1048 PTR_ERR(subdir)); 1049 } 1050 drop_sysctl_table(&dir->header); 1051 if (new) 1052 drop_sysctl_table(&new->header); 1053 spin_unlock(&sysctl_lock); 1054 return subdir; 1055 } 1056 1057 static struct ctl_dir *xlate_dir(struct ctl_table_set *set, struct ctl_dir *dir) 1058 { 1059 struct ctl_dir *parent; 1060 const char *procname; 1061 if (!dir->header.parent) 1062 return &set->dir; 1063 parent = xlate_dir(set, dir->header.parent); 1064 if (IS_ERR(parent)) 1065 return parent; 1066 procname = dir->header.ctl_table[0].procname; 1067 return find_subdir(parent, procname, strlen(procname)); 1068 } 1069 1070 static int sysctl_follow_link(struct ctl_table_header **phead, 1071 struct ctl_table **pentry) 1072 { 1073 struct ctl_table_header *head; 1074 struct ctl_table_root *root; 1075 struct ctl_table_set *set; 1076 struct ctl_table *entry; 1077 struct ctl_dir *dir; 1078 int ret; 1079 1080 spin_lock(&sysctl_lock); 1081 root = (*pentry)->data; 1082 set = lookup_header_set(root); 1083 dir = xlate_dir(set, (*phead)->parent); 1084 if (IS_ERR(dir)) 1085 ret = PTR_ERR(dir); 1086 else { 1087 const char *procname = (*pentry)->procname; 1088 head = NULL; 1089 entry = find_entry(&head, dir, procname, strlen(procname)); 1090 ret = -ENOENT; 1091 if (entry && use_table(head)) { 1092 unuse_table(*phead); 1093 *phead = head; 1094 *pentry = entry; 1095 ret = 0; 1096 } 1097 } 1098 1099 spin_unlock(&sysctl_lock); 1100 return ret; 1101 } 1102 1103 static int sysctl_err(const char *path, struct ctl_table *table, char *fmt, ...) 1104 { 1105 struct va_format vaf; 1106 va_list args; 1107 1108 va_start(args, fmt); 1109 vaf.fmt = fmt; 1110 vaf.va = &args; 1111 1112 pr_err("sysctl table check failed: %s/%s %pV\n", 1113 path, table->procname, &vaf); 1114 1115 va_end(args); 1116 return -EINVAL; 1117 } 1118 1119 static int sysctl_check_table_array(const char *path, struct ctl_table *table) 1120 { 1121 int err = 0; 1122 1123 if ((table->proc_handler == proc_douintvec) || 1124 (table->proc_handler == proc_douintvec_minmax)) { 1125 if (table->maxlen != sizeof(unsigned int)) 1126 err |= sysctl_err(path, table, "array not allowed"); 1127 } 1128 1129 if (table->proc_handler == proc_dou8vec_minmax) { 1130 if (table->maxlen != sizeof(u8)) 1131 err |= sysctl_err(path, table, "array not allowed"); 1132 } 1133 1134 return err; 1135 } 1136 1137 static int sysctl_check_table(const char *path, struct ctl_table *table) 1138 { 1139 struct ctl_table *entry; 1140 int err = 0; 1141 list_for_each_table_entry(entry, table) { 1142 if (entry->child) 1143 err |= sysctl_err(path, entry, "Not a file"); 1144 1145 if ((entry->proc_handler == proc_dostring) || 1146 (entry->proc_handler == proc_dointvec) || 1147 (entry->proc_handler == proc_douintvec) || 1148 (entry->proc_handler == proc_douintvec_minmax) || 1149 (entry->proc_handler == proc_dointvec_minmax) || 1150 (entry->proc_handler == proc_dou8vec_minmax) || 1151 (entry->proc_handler == proc_dointvec_jiffies) || 1152 (entry->proc_handler == proc_dointvec_userhz_jiffies) || 1153 (entry->proc_handler == proc_dointvec_ms_jiffies) || 1154 (entry->proc_handler == proc_doulongvec_minmax) || 1155 (entry->proc_handler == proc_doulongvec_ms_jiffies_minmax)) { 1156 if (!entry->data) 1157 err |= sysctl_err(path, entry, "No data"); 1158 if (!entry->maxlen) 1159 err |= sysctl_err(path, entry, "No maxlen"); 1160 else 1161 err |= sysctl_check_table_array(path, entry); 1162 } 1163 if (!entry->proc_handler) 1164 err |= sysctl_err(path, entry, "No proc_handler"); 1165 1166 if ((entry->mode & (S_IRUGO|S_IWUGO)) != entry->mode) 1167 err |= sysctl_err(path, entry, "bogus .mode 0%o", 1168 entry->mode); 1169 } 1170 return err; 1171 } 1172 1173 static struct ctl_table_header *new_links(struct ctl_dir *dir, struct ctl_table *table, 1174 struct ctl_table_root *link_root) 1175 { 1176 struct ctl_table *link_table, *entry, *link; 1177 struct ctl_table_header *links; 1178 struct ctl_node *node; 1179 char *link_name; 1180 int nr_entries, name_bytes; 1181 1182 name_bytes = 0; 1183 nr_entries = 0; 1184 list_for_each_table_entry(entry, table) { 1185 nr_entries++; 1186 name_bytes += strlen(entry->procname) + 1; 1187 } 1188 1189 links = kzalloc(sizeof(struct ctl_table_header) + 1190 sizeof(struct ctl_node)*nr_entries + 1191 sizeof(struct ctl_table)*(nr_entries + 1) + 1192 name_bytes, 1193 GFP_KERNEL); 1194 1195 if (!links) 1196 return NULL; 1197 1198 node = (struct ctl_node *)(links + 1); 1199 link_table = (struct ctl_table *)(node + nr_entries); 1200 link_name = (char *)&link_table[nr_entries + 1]; 1201 link = link_table; 1202 1203 list_for_each_table_entry(entry, table) { 1204 int len = strlen(entry->procname) + 1; 1205 memcpy(link_name, entry->procname, len); 1206 link->procname = link_name; 1207 link->mode = S_IFLNK|S_IRWXUGO; 1208 link->data = link_root; 1209 link_name += len; 1210 link++; 1211 } 1212 init_header(links, dir->header.root, dir->header.set, node, link_table); 1213 links->nreg = nr_entries; 1214 1215 return links; 1216 } 1217 1218 static bool get_links(struct ctl_dir *dir, 1219 struct ctl_table *table, struct ctl_table_root *link_root) 1220 { 1221 struct ctl_table_header *head; 1222 struct ctl_table *entry, *link; 1223 1224 /* Are there links available for every entry in table? */ 1225 list_for_each_table_entry(entry, table) { 1226 const char *procname = entry->procname; 1227 link = find_entry(&head, dir, procname, strlen(procname)); 1228 if (!link) 1229 return false; 1230 if (S_ISDIR(link->mode) && S_ISDIR(entry->mode)) 1231 continue; 1232 if (S_ISLNK(link->mode) && (link->data == link_root)) 1233 continue; 1234 return false; 1235 } 1236 1237 /* The checks passed. Increase the registration count on the links */ 1238 list_for_each_table_entry(entry, table) { 1239 const char *procname = entry->procname; 1240 link = find_entry(&head, dir, procname, strlen(procname)); 1241 head->nreg++; 1242 } 1243 return true; 1244 } 1245 1246 static int insert_links(struct ctl_table_header *head) 1247 { 1248 struct ctl_table_set *root_set = &sysctl_table_root.default_set; 1249 struct ctl_dir *core_parent = NULL; 1250 struct ctl_table_header *links; 1251 int err; 1252 1253 if (head->set == root_set) 1254 return 0; 1255 1256 core_parent = xlate_dir(root_set, head->parent); 1257 if (IS_ERR(core_parent)) 1258 return 0; 1259 1260 if (get_links(core_parent, head->ctl_table, head->root)) 1261 return 0; 1262 1263 core_parent->header.nreg++; 1264 spin_unlock(&sysctl_lock); 1265 1266 links = new_links(core_parent, head->ctl_table, head->root); 1267 1268 spin_lock(&sysctl_lock); 1269 err = -ENOMEM; 1270 if (!links) 1271 goto out; 1272 1273 err = 0; 1274 if (get_links(core_parent, head->ctl_table, head->root)) { 1275 kfree(links); 1276 goto out; 1277 } 1278 1279 err = insert_header(core_parent, links); 1280 if (err) 1281 kfree(links); 1282 out: 1283 drop_sysctl_table(&core_parent->header); 1284 return err; 1285 } 1286 1287 /** 1288 * __register_sysctl_table - register a leaf sysctl table 1289 * @set: Sysctl tree to register on 1290 * @path: The path to the directory the sysctl table is in. 1291 * @table: the top-level table structure 1292 * 1293 * Register a sysctl table hierarchy. @table should be a filled in ctl_table 1294 * array. A completely 0 filled entry terminates the table. 1295 * 1296 * The members of the &struct ctl_table structure are used as follows: 1297 * 1298 * procname - the name of the sysctl file under /proc/sys. Set to %NULL to not 1299 * enter a sysctl file 1300 * 1301 * data - a pointer to data for use by proc_handler 1302 * 1303 * maxlen - the maximum size in bytes of the data 1304 * 1305 * mode - the file permissions for the /proc/sys file 1306 * 1307 * child - must be %NULL. 1308 * 1309 * proc_handler - the text handler routine (described below) 1310 * 1311 * extra1, extra2 - extra pointers usable by the proc handler routines 1312 * 1313 * Leaf nodes in the sysctl tree will be represented by a single file 1314 * under /proc; non-leaf nodes will be represented by directories. 1315 * 1316 * There must be a proc_handler routine for any terminal nodes. 1317 * Several default handlers are available to cover common cases - 1318 * 1319 * proc_dostring(), proc_dointvec(), proc_dointvec_jiffies(), 1320 * proc_dointvec_userhz_jiffies(), proc_dointvec_minmax(), 1321 * proc_doulongvec_ms_jiffies_minmax(), proc_doulongvec_minmax() 1322 * 1323 * It is the handler's job to read the input buffer from user memory 1324 * and process it. The handler should return 0 on success. 1325 * 1326 * This routine returns %NULL on a failure to register, and a pointer 1327 * to the table header on success. 1328 */ 1329 struct ctl_table_header *__register_sysctl_table( 1330 struct ctl_table_set *set, 1331 const char *path, struct ctl_table *table) 1332 { 1333 struct ctl_table_root *root = set->dir.header.root; 1334 struct ctl_table_header *header; 1335 const char *name, *nextname; 1336 struct ctl_dir *dir; 1337 struct ctl_table *entry; 1338 struct ctl_node *node; 1339 int nr_entries = 0; 1340 1341 list_for_each_table_entry(entry, table) 1342 nr_entries++; 1343 1344 header = kzalloc(sizeof(struct ctl_table_header) + 1345 sizeof(struct ctl_node)*nr_entries, GFP_KERNEL_ACCOUNT); 1346 if (!header) 1347 return NULL; 1348 1349 node = (struct ctl_node *)(header + 1); 1350 init_header(header, root, set, node, table); 1351 if (sysctl_check_table(path, table)) 1352 goto fail; 1353 1354 spin_lock(&sysctl_lock); 1355 dir = &set->dir; 1356 /* Reference moved down the diretory tree get_subdir */ 1357 dir->header.nreg++; 1358 spin_unlock(&sysctl_lock); 1359 1360 /* Find the directory for the ctl_table */ 1361 for (name = path; name; name = nextname) { 1362 int namelen; 1363 nextname = strchr(name, '/'); 1364 if (nextname) { 1365 namelen = nextname - name; 1366 nextname++; 1367 } else { 1368 namelen = strlen(name); 1369 } 1370 if (namelen == 0) 1371 continue; 1372 1373 dir = get_subdir(dir, name, namelen); 1374 if (IS_ERR(dir)) 1375 goto fail; 1376 } 1377 1378 spin_lock(&sysctl_lock); 1379 if (insert_header(dir, header)) 1380 goto fail_put_dir_locked; 1381 1382 drop_sysctl_table(&dir->header); 1383 spin_unlock(&sysctl_lock); 1384 1385 return header; 1386 1387 fail_put_dir_locked: 1388 drop_sysctl_table(&dir->header); 1389 spin_unlock(&sysctl_lock); 1390 fail: 1391 kfree(header); 1392 dump_stack(); 1393 return NULL; 1394 } 1395 1396 /** 1397 * register_sysctl - register a sysctl table 1398 * @path: The path to the directory the sysctl table is in. 1399 * @table: the table structure 1400 * 1401 * Register a sysctl table. @table should be a filled in ctl_table 1402 * array. A completely 0 filled entry terminates the table. 1403 * 1404 * See __register_sysctl_table for more details. 1405 */ 1406 struct ctl_table_header *register_sysctl(const char *path, struct ctl_table *table) 1407 { 1408 return __register_sysctl_table(&sysctl_table_root.default_set, 1409 path, table); 1410 } 1411 EXPORT_SYMBOL(register_sysctl); 1412 1413 /** 1414 * __register_sysctl_init() - register sysctl table to path 1415 * @path: path name for sysctl base 1416 * @table: This is the sysctl table that needs to be registered to the path 1417 * @table_name: The name of sysctl table, only used for log printing when 1418 * registration fails 1419 * 1420 * The sysctl interface is used by userspace to query or modify at runtime 1421 * a predefined value set on a variable. These variables however have default 1422 * values pre-set. Code which depends on these variables will always work even 1423 * if register_sysctl() fails. If register_sysctl() fails you'd just loose the 1424 * ability to query or modify the sysctls dynamically at run time. Chances of 1425 * register_sysctl() failing on init are extremely low, and so for both reasons 1426 * this function does not return any error as it is used by initialization code. 1427 * 1428 * Context: Can only be called after your respective sysctl base path has been 1429 * registered. So for instance, most base directories are registered early on 1430 * init before init levels are processed through proc_sys_init() and 1431 * sysctl_init_bases(). 1432 */ 1433 void __init __register_sysctl_init(const char *path, struct ctl_table *table, 1434 const char *table_name) 1435 { 1436 struct ctl_table_header *hdr = register_sysctl(path, table); 1437 1438 if (unlikely(!hdr)) { 1439 pr_err("failed when register_sysctl %s to %s\n", table_name, path); 1440 return; 1441 } 1442 kmemleak_not_leak(hdr); 1443 } 1444 1445 static char *append_path(const char *path, char *pos, const char *name) 1446 { 1447 int namelen; 1448 namelen = strlen(name); 1449 if (((pos - path) + namelen + 2) >= PATH_MAX) 1450 return NULL; 1451 memcpy(pos, name, namelen); 1452 pos[namelen] = '/'; 1453 pos[namelen + 1] = '\0'; 1454 pos += namelen + 1; 1455 return pos; 1456 } 1457 1458 static int count_subheaders(struct ctl_table *table) 1459 { 1460 int has_files = 0; 1461 int nr_subheaders = 0; 1462 struct ctl_table *entry; 1463 1464 /* special case: no directory and empty directory */ 1465 if (!table || !table->procname) 1466 return 1; 1467 1468 list_for_each_table_entry(entry, table) { 1469 if (entry->child) 1470 nr_subheaders += count_subheaders(entry->child); 1471 else 1472 has_files = 1; 1473 } 1474 return nr_subheaders + has_files; 1475 } 1476 1477 static int register_leaf_sysctl_tables(const char *path, char *pos, 1478 struct ctl_table_header ***subheader, struct ctl_table_set *set, 1479 struct ctl_table *table) 1480 { 1481 struct ctl_table *ctl_table_arg = NULL; 1482 struct ctl_table *entry, *files; 1483 int nr_files = 0; 1484 int nr_dirs = 0; 1485 int err = -ENOMEM; 1486 1487 list_for_each_table_entry(entry, table) { 1488 if (entry->child) 1489 nr_dirs++; 1490 else 1491 nr_files++; 1492 } 1493 1494 files = table; 1495 /* If there are mixed files and directories we need a new table */ 1496 if (nr_dirs && nr_files) { 1497 struct ctl_table *new; 1498 files = kcalloc(nr_files + 1, sizeof(struct ctl_table), 1499 GFP_KERNEL); 1500 if (!files) 1501 goto out; 1502 1503 ctl_table_arg = files; 1504 new = files; 1505 1506 list_for_each_table_entry(entry, table) { 1507 if (entry->child) 1508 continue; 1509 *new = *entry; 1510 new++; 1511 } 1512 } 1513 1514 /* Register everything except a directory full of subdirectories */ 1515 if (nr_files || !nr_dirs) { 1516 struct ctl_table_header *header; 1517 header = __register_sysctl_table(set, path, files); 1518 if (!header) { 1519 kfree(ctl_table_arg); 1520 goto out; 1521 } 1522 1523 /* Remember if we need to free the file table */ 1524 header->ctl_table_arg = ctl_table_arg; 1525 **subheader = header; 1526 (*subheader)++; 1527 } 1528 1529 /* Recurse into the subdirectories. */ 1530 list_for_each_table_entry(entry, table) { 1531 char *child_pos; 1532 1533 if (!entry->child) 1534 continue; 1535 1536 err = -ENAMETOOLONG; 1537 child_pos = append_path(path, pos, entry->procname); 1538 if (!child_pos) 1539 goto out; 1540 1541 err = register_leaf_sysctl_tables(path, child_pos, subheader, 1542 set, entry->child); 1543 pos[0] = '\0'; 1544 if (err) 1545 goto out; 1546 } 1547 err = 0; 1548 out: 1549 /* On failure our caller will unregister all registered subheaders */ 1550 return err; 1551 } 1552 1553 /** 1554 * __register_sysctl_paths - register a sysctl table hierarchy 1555 * @set: Sysctl tree to register on 1556 * @path: The path to the directory the sysctl table is in. 1557 * @table: the top-level table structure 1558 * 1559 * Register a sysctl table hierarchy. @table should be a filled in ctl_table 1560 * array. A completely 0 filled entry terminates the table. 1561 * 1562 * See __register_sysctl_table for more details. 1563 */ 1564 struct ctl_table_header *__register_sysctl_paths( 1565 struct ctl_table_set *set, 1566 const struct ctl_path *path, struct ctl_table *table) 1567 { 1568 struct ctl_table *ctl_table_arg = table; 1569 int nr_subheaders = count_subheaders(table); 1570 struct ctl_table_header *header = NULL, **subheaders, **subheader; 1571 const struct ctl_path *component; 1572 char *new_path, *pos; 1573 1574 pos = new_path = kmalloc(PATH_MAX, GFP_KERNEL); 1575 if (!new_path) 1576 return NULL; 1577 1578 pos[0] = '\0'; 1579 for (component = path; component->procname; component++) { 1580 pos = append_path(new_path, pos, component->procname); 1581 if (!pos) 1582 goto out; 1583 } 1584 while (table->procname && table->child && !table[1].procname) { 1585 pos = append_path(new_path, pos, table->procname); 1586 if (!pos) 1587 goto out; 1588 table = table->child; 1589 } 1590 if (nr_subheaders == 1) { 1591 header = __register_sysctl_table(set, new_path, table); 1592 if (header) 1593 header->ctl_table_arg = ctl_table_arg; 1594 } else { 1595 header = kzalloc(sizeof(*header) + 1596 sizeof(*subheaders)*nr_subheaders, GFP_KERNEL); 1597 if (!header) 1598 goto out; 1599 1600 subheaders = (struct ctl_table_header **) (header + 1); 1601 subheader = subheaders; 1602 header->ctl_table_arg = ctl_table_arg; 1603 1604 if (register_leaf_sysctl_tables(new_path, pos, &subheader, 1605 set, table)) 1606 goto err_register_leaves; 1607 } 1608 1609 out: 1610 kfree(new_path); 1611 return header; 1612 1613 err_register_leaves: 1614 while (subheader > subheaders) { 1615 struct ctl_table_header *subh = *(--subheader); 1616 struct ctl_table *table = subh->ctl_table_arg; 1617 unregister_sysctl_table(subh); 1618 kfree(table); 1619 } 1620 kfree(header); 1621 header = NULL; 1622 goto out; 1623 } 1624 1625 /** 1626 * register_sysctl_paths - register a sysctl table hierarchy 1627 * @path: The path to the directory the sysctl table is in. 1628 * @table: the top-level table structure 1629 * 1630 * Register a sysctl table hierarchy. @table should be a filled in ctl_table 1631 * array. A completely 0 filled entry terminates the table. 1632 * 1633 * See __register_sysctl_paths for more details. 1634 */ 1635 struct ctl_table_header *register_sysctl_paths(const struct ctl_path *path, 1636 struct ctl_table *table) 1637 { 1638 return __register_sysctl_paths(&sysctl_table_root.default_set, 1639 path, table); 1640 } 1641 EXPORT_SYMBOL(register_sysctl_paths); 1642 1643 /** 1644 * register_sysctl_table - register a sysctl table hierarchy 1645 * @table: the top-level table structure 1646 * 1647 * Register a sysctl table hierarchy. @table should be a filled in ctl_table 1648 * array. A completely 0 filled entry terminates the table. 1649 * 1650 * See register_sysctl_paths for more details. 1651 */ 1652 struct ctl_table_header *register_sysctl_table(struct ctl_table *table) 1653 { 1654 static const struct ctl_path null_path[] = { {} }; 1655 1656 return register_sysctl_paths(null_path, table); 1657 } 1658 EXPORT_SYMBOL(register_sysctl_table); 1659 1660 int __register_sysctl_base(struct ctl_table *base_table) 1661 { 1662 struct ctl_table_header *hdr; 1663 1664 hdr = register_sysctl_table(base_table); 1665 kmemleak_not_leak(hdr); 1666 return 0; 1667 } 1668 1669 static void put_links(struct ctl_table_header *header) 1670 { 1671 struct ctl_table_set *root_set = &sysctl_table_root.default_set; 1672 struct ctl_table_root *root = header->root; 1673 struct ctl_dir *parent = header->parent; 1674 struct ctl_dir *core_parent; 1675 struct ctl_table *entry; 1676 1677 if (header->set == root_set) 1678 return; 1679 1680 core_parent = xlate_dir(root_set, parent); 1681 if (IS_ERR(core_parent)) 1682 return; 1683 1684 list_for_each_table_entry(entry, header->ctl_table) { 1685 struct ctl_table_header *link_head; 1686 struct ctl_table *link; 1687 const char *name = entry->procname; 1688 1689 link = find_entry(&link_head, core_parent, name, strlen(name)); 1690 if (link && 1691 ((S_ISDIR(link->mode) && S_ISDIR(entry->mode)) || 1692 (S_ISLNK(link->mode) && (link->data == root)))) { 1693 drop_sysctl_table(link_head); 1694 } 1695 else { 1696 pr_err("sysctl link missing during unregister: "); 1697 sysctl_print_dir(parent); 1698 pr_cont("%s\n", name); 1699 } 1700 } 1701 } 1702 1703 static void drop_sysctl_table(struct ctl_table_header *header) 1704 { 1705 struct ctl_dir *parent = header->parent; 1706 1707 if (--header->nreg) 1708 return; 1709 1710 if (parent) { 1711 put_links(header); 1712 start_unregistering(header); 1713 } 1714 1715 if (!--header->count) 1716 kfree_rcu(header, rcu); 1717 1718 if (parent) 1719 drop_sysctl_table(&parent->header); 1720 } 1721 1722 /** 1723 * unregister_sysctl_table - unregister a sysctl table hierarchy 1724 * @header: the header returned from register_sysctl_table 1725 * 1726 * Unregisters the sysctl table and all children. proc entries may not 1727 * actually be removed until they are no longer used by anyone. 1728 */ 1729 void unregister_sysctl_table(struct ctl_table_header * header) 1730 { 1731 int nr_subheaders; 1732 might_sleep(); 1733 1734 if (header == NULL) 1735 return; 1736 1737 nr_subheaders = count_subheaders(header->ctl_table_arg); 1738 if (unlikely(nr_subheaders > 1)) { 1739 struct ctl_table_header **subheaders; 1740 int i; 1741 1742 subheaders = (struct ctl_table_header **)(header + 1); 1743 for (i = nr_subheaders -1; i >= 0; i--) { 1744 struct ctl_table_header *subh = subheaders[i]; 1745 struct ctl_table *table = subh->ctl_table_arg; 1746 unregister_sysctl_table(subh); 1747 kfree(table); 1748 } 1749 kfree(header); 1750 return; 1751 } 1752 1753 spin_lock(&sysctl_lock); 1754 drop_sysctl_table(header); 1755 spin_unlock(&sysctl_lock); 1756 } 1757 EXPORT_SYMBOL(unregister_sysctl_table); 1758 1759 void setup_sysctl_set(struct ctl_table_set *set, 1760 struct ctl_table_root *root, 1761 int (*is_seen)(struct ctl_table_set *)) 1762 { 1763 memset(set, 0, sizeof(*set)); 1764 set->is_seen = is_seen; 1765 init_header(&set->dir.header, root, set, NULL, root_table); 1766 } 1767 1768 void retire_sysctl_set(struct ctl_table_set *set) 1769 { 1770 WARN_ON(!RB_EMPTY_ROOT(&set->dir.root)); 1771 } 1772 1773 int __init proc_sys_init(void) 1774 { 1775 struct proc_dir_entry *proc_sys_root; 1776 1777 proc_sys_root = proc_mkdir("sys", NULL); 1778 proc_sys_root->proc_iops = &proc_sys_dir_operations; 1779 proc_sys_root->proc_dir_ops = &proc_sys_dir_file_operations; 1780 proc_sys_root->nlink = 0; 1781 1782 return sysctl_init_bases(); 1783 } 1784 1785 struct sysctl_alias { 1786 const char *kernel_param; 1787 const char *sysctl_param; 1788 }; 1789 1790 /* 1791 * Historically some settings had both sysctl and a command line parameter. 1792 * With the generic sysctl. parameter support, we can handle them at a single 1793 * place and only keep the historical name for compatibility. This is not meant 1794 * to add brand new aliases. When adding existing aliases, consider whether 1795 * the possibly different moment of changing the value (e.g. from early_param 1796 * to the moment do_sysctl_args() is called) is an issue for the specific 1797 * parameter. 1798 */ 1799 static const struct sysctl_alias sysctl_aliases[] = { 1800 {"hardlockup_all_cpu_backtrace", "kernel.hardlockup_all_cpu_backtrace" }, 1801 {"hung_task_panic", "kernel.hung_task_panic" }, 1802 {"numa_zonelist_order", "vm.numa_zonelist_order" }, 1803 {"softlockup_all_cpu_backtrace", "kernel.softlockup_all_cpu_backtrace" }, 1804 {"softlockup_panic", "kernel.softlockup_panic" }, 1805 { } 1806 }; 1807 1808 static const char *sysctl_find_alias(char *param) 1809 { 1810 const struct sysctl_alias *alias; 1811 1812 for (alias = &sysctl_aliases[0]; alias->kernel_param != NULL; alias++) { 1813 if (strcmp(alias->kernel_param, param) == 0) 1814 return alias->sysctl_param; 1815 } 1816 1817 return NULL; 1818 } 1819 1820 /* Set sysctl value passed on kernel command line. */ 1821 static int process_sysctl_arg(char *param, char *val, 1822 const char *unused, void *arg) 1823 { 1824 char *path; 1825 struct vfsmount **proc_mnt = arg; 1826 struct file_system_type *proc_fs_type; 1827 struct file *file; 1828 int len; 1829 int err; 1830 loff_t pos = 0; 1831 ssize_t wret; 1832 1833 if (strncmp(param, "sysctl", sizeof("sysctl") - 1) == 0) { 1834 param += sizeof("sysctl") - 1; 1835 1836 if (param[0] != '/' && param[0] != '.') 1837 return 0; 1838 1839 param++; 1840 } else { 1841 param = (char *) sysctl_find_alias(param); 1842 if (!param) 1843 return 0; 1844 } 1845 1846 if (!val) 1847 return -EINVAL; 1848 len = strlen(val); 1849 if (len == 0) 1850 return -EINVAL; 1851 1852 /* 1853 * To set sysctl options, we use a temporary mount of proc, look up the 1854 * respective sys/ file and write to it. To avoid mounting it when no 1855 * options were given, we mount it only when the first sysctl option is 1856 * found. Why not a persistent mount? There are problems with a 1857 * persistent mount of proc in that it forces userspace not to use any 1858 * proc mount options. 1859 */ 1860 if (!*proc_mnt) { 1861 proc_fs_type = get_fs_type("proc"); 1862 if (!proc_fs_type) { 1863 pr_err("Failed to find procfs to set sysctl from command line\n"); 1864 return 0; 1865 } 1866 *proc_mnt = kern_mount(proc_fs_type); 1867 put_filesystem(proc_fs_type); 1868 if (IS_ERR(*proc_mnt)) { 1869 pr_err("Failed to mount procfs to set sysctl from command line\n"); 1870 return 0; 1871 } 1872 } 1873 1874 path = kasprintf(GFP_KERNEL, "sys/%s", param); 1875 if (!path) 1876 panic("%s: Failed to allocate path for %s\n", __func__, param); 1877 strreplace(path, '.', '/'); 1878 1879 file = file_open_root_mnt(*proc_mnt, path, O_WRONLY, 0); 1880 if (IS_ERR(file)) { 1881 err = PTR_ERR(file); 1882 if (err == -ENOENT) 1883 pr_err("Failed to set sysctl parameter '%s=%s': parameter not found\n", 1884 param, val); 1885 else if (err == -EACCES) 1886 pr_err("Failed to set sysctl parameter '%s=%s': permission denied (read-only?)\n", 1887 param, val); 1888 else 1889 pr_err("Error %pe opening proc file to set sysctl parameter '%s=%s'\n", 1890 file, param, val); 1891 goto out; 1892 } 1893 wret = kernel_write(file, val, len, &pos); 1894 if (wret < 0) { 1895 err = wret; 1896 if (err == -EINVAL) 1897 pr_err("Failed to set sysctl parameter '%s=%s': invalid value\n", 1898 param, val); 1899 else 1900 pr_err("Error %pe writing to proc file to set sysctl parameter '%s=%s'\n", 1901 ERR_PTR(err), param, val); 1902 } else if (wret != len) { 1903 pr_err("Wrote only %zd bytes of %d writing to proc file %s to set sysctl parameter '%s=%s\n", 1904 wret, len, path, param, val); 1905 } 1906 1907 err = filp_close(file, NULL); 1908 if (err) 1909 pr_err("Error %pe closing proc file to set sysctl parameter '%s=%s\n", 1910 ERR_PTR(err), param, val); 1911 out: 1912 kfree(path); 1913 return 0; 1914 } 1915 1916 void do_sysctl_args(void) 1917 { 1918 char *command_line; 1919 struct vfsmount *proc_mnt = NULL; 1920 1921 command_line = kstrdup(saved_command_line, GFP_KERNEL); 1922 if (!command_line) 1923 panic("%s: Failed to allocate copy of command line\n", __func__); 1924 1925 parse_args("Setting sysctl args", command_line, 1926 NULL, 0, -1, -1, &proc_mnt, process_sysctl_arg); 1927 1928 if (proc_mnt) 1929 kern_unmount(proc_mnt); 1930 1931 kfree(command_line); 1932 } 1933