1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * /proc/sys support 4 */ 5 #include <linux/init.h> 6 #include <linux/sysctl.h> 7 #include <linux/poll.h> 8 #include <linux/proc_fs.h> 9 #include <linux/printk.h> 10 #include <linux/security.h> 11 #include <linux/sched.h> 12 #include <linux/cred.h> 13 #include <linux/namei.h> 14 #include <linux/mm.h> 15 #include <linux/uio.h> 16 #include <linux/module.h> 17 #include <linux/bpf-cgroup.h> 18 #include <linux/mount.h> 19 #include <linux/kmemleak.h> 20 #include "internal.h" 21 22 static const struct dentry_operations proc_sys_dentry_operations; 23 static const struct file_operations proc_sys_file_operations; 24 static const struct inode_operations proc_sys_inode_operations; 25 static const struct file_operations proc_sys_dir_file_operations; 26 static const struct inode_operations proc_sys_dir_operations; 27 28 /* shared constants to be used in various sysctls */ 29 const int sysctl_vals[] = { 0, 1, 2, 3, 4, 100, 200, 1000, 3000, INT_MAX, 65535, -1 }; 30 EXPORT_SYMBOL(sysctl_vals); 31 32 const unsigned long sysctl_long_vals[] = { 0, 1, LONG_MAX }; 33 EXPORT_SYMBOL_GPL(sysctl_long_vals); 34 35 /* Support for permanently empty directories */ 36 37 struct ctl_table sysctl_mount_point[] = { 38 { } 39 }; 40 41 /** 42 * register_sysctl_mount_point() - registers a sysctl mount point 43 * @path: path for the mount point 44 * 45 * Used to create a permanently empty directory to serve as mount point. 46 * There are some subtle but important permission checks this allows in the 47 * case of unprivileged mounts. 48 */ 49 struct ctl_table_header *register_sysctl_mount_point(const char *path) 50 { 51 return register_sysctl(path, sysctl_mount_point); 52 } 53 EXPORT_SYMBOL(register_sysctl_mount_point); 54 55 static bool is_empty_dir(struct ctl_table_header *head) 56 { 57 return head->ctl_table[0].child == sysctl_mount_point; 58 } 59 60 static void set_empty_dir(struct ctl_dir *dir) 61 { 62 dir->header.ctl_table[0].child = sysctl_mount_point; 63 } 64 65 static void clear_empty_dir(struct ctl_dir *dir) 66 67 { 68 dir->header.ctl_table[0].child = NULL; 69 } 70 71 void proc_sys_poll_notify(struct ctl_table_poll *poll) 72 { 73 if (!poll) 74 return; 75 76 atomic_inc(&poll->event); 77 wake_up_interruptible(&poll->wait); 78 } 79 80 static struct ctl_table root_table[] = { 81 { 82 .procname = "", 83 .mode = S_IFDIR|S_IRUGO|S_IXUGO, 84 }, 85 { } 86 }; 87 static struct ctl_table_root sysctl_table_root = { 88 .default_set.dir.header = { 89 {{.count = 1, 90 .nreg = 1, 91 .ctl_table = root_table }}, 92 .ctl_table_arg = root_table, 93 .root = &sysctl_table_root, 94 .set = &sysctl_table_root.default_set, 95 }, 96 }; 97 98 static DEFINE_SPINLOCK(sysctl_lock); 99 100 static void drop_sysctl_table(struct ctl_table_header *header); 101 static int sysctl_follow_link(struct ctl_table_header **phead, 102 struct ctl_table **pentry); 103 static int insert_links(struct ctl_table_header *head); 104 static void put_links(struct ctl_table_header *header); 105 106 static void sysctl_print_dir(struct ctl_dir *dir) 107 { 108 if (dir->header.parent) 109 sysctl_print_dir(dir->header.parent); 110 pr_cont("%s/", dir->header.ctl_table[0].procname); 111 } 112 113 static int namecmp(const char *name1, int len1, const char *name2, int len2) 114 { 115 int cmp; 116 117 cmp = memcmp(name1, name2, min(len1, len2)); 118 if (cmp == 0) 119 cmp = len1 - len2; 120 return cmp; 121 } 122 123 /* Called under sysctl_lock */ 124 static struct ctl_table *find_entry(struct ctl_table_header **phead, 125 struct ctl_dir *dir, const char *name, int namelen) 126 { 127 struct ctl_table_header *head; 128 struct ctl_table *entry; 129 struct rb_node *node = dir->root.rb_node; 130 131 while (node) 132 { 133 struct ctl_node *ctl_node; 134 const char *procname; 135 int cmp; 136 137 ctl_node = rb_entry(node, struct ctl_node, node); 138 head = ctl_node->header; 139 entry = &head->ctl_table[ctl_node - head->node]; 140 procname = entry->procname; 141 142 cmp = namecmp(name, namelen, procname, strlen(procname)); 143 if (cmp < 0) 144 node = node->rb_left; 145 else if (cmp > 0) 146 node = node->rb_right; 147 else { 148 *phead = head; 149 return entry; 150 } 151 } 152 return NULL; 153 } 154 155 static int insert_entry(struct ctl_table_header *head, struct ctl_table *entry) 156 { 157 struct rb_node *node = &head->node[entry - head->ctl_table].node; 158 struct rb_node **p = &head->parent->root.rb_node; 159 struct rb_node *parent = NULL; 160 const char *name = entry->procname; 161 int namelen = strlen(name); 162 163 while (*p) { 164 struct ctl_table_header *parent_head; 165 struct ctl_table *parent_entry; 166 struct ctl_node *parent_node; 167 const char *parent_name; 168 int cmp; 169 170 parent = *p; 171 parent_node = rb_entry(parent, struct ctl_node, node); 172 parent_head = parent_node->header; 173 parent_entry = &parent_head->ctl_table[parent_node - parent_head->node]; 174 parent_name = parent_entry->procname; 175 176 cmp = namecmp(name, namelen, parent_name, strlen(parent_name)); 177 if (cmp < 0) 178 p = &(*p)->rb_left; 179 else if (cmp > 0) 180 p = &(*p)->rb_right; 181 else { 182 pr_err("sysctl duplicate entry: "); 183 sysctl_print_dir(head->parent); 184 pr_cont("%s\n", entry->procname); 185 return -EEXIST; 186 } 187 } 188 189 rb_link_node(node, parent, p); 190 rb_insert_color(node, &head->parent->root); 191 return 0; 192 } 193 194 static void erase_entry(struct ctl_table_header *head, struct ctl_table *entry) 195 { 196 struct rb_node *node = &head->node[entry - head->ctl_table].node; 197 198 rb_erase(node, &head->parent->root); 199 } 200 201 static void init_header(struct ctl_table_header *head, 202 struct ctl_table_root *root, struct ctl_table_set *set, 203 struct ctl_node *node, struct ctl_table *table) 204 { 205 head->ctl_table = table; 206 head->ctl_table_arg = table; 207 head->used = 0; 208 head->count = 1; 209 head->nreg = 1; 210 head->unregistering = NULL; 211 head->root = root; 212 head->set = set; 213 head->parent = NULL; 214 head->node = node; 215 INIT_HLIST_HEAD(&head->inodes); 216 if (node) { 217 struct ctl_table *entry; 218 for (entry = table; entry->procname; entry++, node++) 219 node->header = head; 220 } 221 } 222 223 static void erase_header(struct ctl_table_header *head) 224 { 225 struct ctl_table *entry; 226 for (entry = head->ctl_table; entry->procname; entry++) 227 erase_entry(head, entry); 228 } 229 230 static int insert_header(struct ctl_dir *dir, struct ctl_table_header *header) 231 { 232 struct ctl_table *entry; 233 int err; 234 235 /* Is this a permanently empty directory? */ 236 if (is_empty_dir(&dir->header)) 237 return -EROFS; 238 239 /* Am I creating a permanently empty directory? */ 240 if (header->ctl_table == sysctl_mount_point) { 241 if (!RB_EMPTY_ROOT(&dir->root)) 242 return -EINVAL; 243 set_empty_dir(dir); 244 } 245 246 dir->header.nreg++; 247 header->parent = dir; 248 err = insert_links(header); 249 if (err) 250 goto fail_links; 251 for (entry = header->ctl_table; entry->procname; entry++) { 252 err = insert_entry(header, entry); 253 if (err) 254 goto fail; 255 } 256 return 0; 257 fail: 258 erase_header(header); 259 put_links(header); 260 fail_links: 261 if (header->ctl_table == sysctl_mount_point) 262 clear_empty_dir(dir); 263 header->parent = NULL; 264 drop_sysctl_table(&dir->header); 265 return err; 266 } 267 268 /* called under sysctl_lock */ 269 static int use_table(struct ctl_table_header *p) 270 { 271 if (unlikely(p->unregistering)) 272 return 0; 273 p->used++; 274 return 1; 275 } 276 277 /* called under sysctl_lock */ 278 static void unuse_table(struct ctl_table_header *p) 279 { 280 if (!--p->used) 281 if (unlikely(p->unregistering)) 282 complete(p->unregistering); 283 } 284 285 static void proc_sys_invalidate_dcache(struct ctl_table_header *head) 286 { 287 proc_invalidate_siblings_dcache(&head->inodes, &sysctl_lock); 288 } 289 290 /* called under sysctl_lock, will reacquire if has to wait */ 291 static void start_unregistering(struct ctl_table_header *p) 292 { 293 /* 294 * if p->used is 0, nobody will ever touch that entry again; 295 * we'll eliminate all paths to it before dropping sysctl_lock 296 */ 297 if (unlikely(p->used)) { 298 struct completion wait; 299 init_completion(&wait); 300 p->unregistering = &wait; 301 spin_unlock(&sysctl_lock); 302 wait_for_completion(&wait); 303 } else { 304 /* anything non-NULL; we'll never dereference it */ 305 p->unregistering = ERR_PTR(-EINVAL); 306 spin_unlock(&sysctl_lock); 307 } 308 /* 309 * Invalidate dentries for unregistered sysctls: namespaced sysctls 310 * can have duplicate names and contaminate dcache very badly. 311 */ 312 proc_sys_invalidate_dcache(p); 313 /* 314 * do not remove from the list until nobody holds it; walking the 315 * list in do_sysctl() relies on that. 316 */ 317 spin_lock(&sysctl_lock); 318 erase_header(p); 319 } 320 321 static struct ctl_table_header *sysctl_head_grab(struct ctl_table_header *head) 322 { 323 BUG_ON(!head); 324 spin_lock(&sysctl_lock); 325 if (!use_table(head)) 326 head = ERR_PTR(-ENOENT); 327 spin_unlock(&sysctl_lock); 328 return head; 329 } 330 331 static void sysctl_head_finish(struct ctl_table_header *head) 332 { 333 if (!head) 334 return; 335 spin_lock(&sysctl_lock); 336 unuse_table(head); 337 spin_unlock(&sysctl_lock); 338 } 339 340 static struct ctl_table_set * 341 lookup_header_set(struct ctl_table_root *root) 342 { 343 struct ctl_table_set *set = &root->default_set; 344 if (root->lookup) 345 set = root->lookup(root); 346 return set; 347 } 348 349 static struct ctl_table *lookup_entry(struct ctl_table_header **phead, 350 struct ctl_dir *dir, 351 const char *name, int namelen) 352 { 353 struct ctl_table_header *head; 354 struct ctl_table *entry; 355 356 spin_lock(&sysctl_lock); 357 entry = find_entry(&head, dir, name, namelen); 358 if (entry && use_table(head)) 359 *phead = head; 360 else 361 entry = NULL; 362 spin_unlock(&sysctl_lock); 363 return entry; 364 } 365 366 static struct ctl_node *first_usable_entry(struct rb_node *node) 367 { 368 struct ctl_node *ctl_node; 369 370 for (;node; node = rb_next(node)) { 371 ctl_node = rb_entry(node, struct ctl_node, node); 372 if (use_table(ctl_node->header)) 373 return ctl_node; 374 } 375 return NULL; 376 } 377 378 static void first_entry(struct ctl_dir *dir, 379 struct ctl_table_header **phead, struct ctl_table **pentry) 380 { 381 struct ctl_table_header *head = NULL; 382 struct ctl_table *entry = NULL; 383 struct ctl_node *ctl_node; 384 385 spin_lock(&sysctl_lock); 386 ctl_node = first_usable_entry(rb_first(&dir->root)); 387 spin_unlock(&sysctl_lock); 388 if (ctl_node) { 389 head = ctl_node->header; 390 entry = &head->ctl_table[ctl_node - head->node]; 391 } 392 *phead = head; 393 *pentry = entry; 394 } 395 396 static void next_entry(struct ctl_table_header **phead, struct ctl_table **pentry) 397 { 398 struct ctl_table_header *head = *phead; 399 struct ctl_table *entry = *pentry; 400 struct ctl_node *ctl_node = &head->node[entry - head->ctl_table]; 401 402 spin_lock(&sysctl_lock); 403 unuse_table(head); 404 405 ctl_node = first_usable_entry(rb_next(&ctl_node->node)); 406 spin_unlock(&sysctl_lock); 407 head = NULL; 408 if (ctl_node) { 409 head = ctl_node->header; 410 entry = &head->ctl_table[ctl_node - head->node]; 411 } 412 *phead = head; 413 *pentry = entry; 414 } 415 416 /* 417 * sysctl_perm does NOT grant the superuser all rights automatically, because 418 * some sysctl variables are readonly even to root. 419 */ 420 421 static int test_perm(int mode, int op) 422 { 423 if (uid_eq(current_euid(), GLOBAL_ROOT_UID)) 424 mode >>= 6; 425 else if (in_egroup_p(GLOBAL_ROOT_GID)) 426 mode >>= 3; 427 if ((op & ~mode & (MAY_READ|MAY_WRITE|MAY_EXEC)) == 0) 428 return 0; 429 return -EACCES; 430 } 431 432 static int sysctl_perm(struct ctl_table_header *head, struct ctl_table *table, int op) 433 { 434 struct ctl_table_root *root = head->root; 435 int mode; 436 437 if (root->permissions) 438 mode = root->permissions(head, table); 439 else 440 mode = table->mode; 441 442 return test_perm(mode, op); 443 } 444 445 static struct inode *proc_sys_make_inode(struct super_block *sb, 446 struct ctl_table_header *head, struct ctl_table *table) 447 { 448 struct ctl_table_root *root = head->root; 449 struct inode *inode; 450 struct proc_inode *ei; 451 452 inode = new_inode(sb); 453 if (!inode) 454 return ERR_PTR(-ENOMEM); 455 456 inode->i_ino = get_next_ino(); 457 458 ei = PROC_I(inode); 459 460 spin_lock(&sysctl_lock); 461 if (unlikely(head->unregistering)) { 462 spin_unlock(&sysctl_lock); 463 iput(inode); 464 return ERR_PTR(-ENOENT); 465 } 466 ei->sysctl = head; 467 ei->sysctl_entry = table; 468 hlist_add_head_rcu(&ei->sibling_inodes, &head->inodes); 469 head->count++; 470 spin_unlock(&sysctl_lock); 471 472 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 473 inode->i_mode = table->mode; 474 if (!S_ISDIR(table->mode)) { 475 inode->i_mode |= S_IFREG; 476 inode->i_op = &proc_sys_inode_operations; 477 inode->i_fop = &proc_sys_file_operations; 478 } else { 479 inode->i_mode |= S_IFDIR; 480 inode->i_op = &proc_sys_dir_operations; 481 inode->i_fop = &proc_sys_dir_file_operations; 482 if (is_empty_dir(head)) 483 make_empty_dir_inode(inode); 484 } 485 486 if (root->set_ownership) 487 root->set_ownership(head, table, &inode->i_uid, &inode->i_gid); 488 else { 489 inode->i_uid = GLOBAL_ROOT_UID; 490 inode->i_gid = GLOBAL_ROOT_GID; 491 } 492 493 return inode; 494 } 495 496 void proc_sys_evict_inode(struct inode *inode, struct ctl_table_header *head) 497 { 498 spin_lock(&sysctl_lock); 499 hlist_del_init_rcu(&PROC_I(inode)->sibling_inodes); 500 if (!--head->count) 501 kfree_rcu(head, rcu); 502 spin_unlock(&sysctl_lock); 503 } 504 505 static struct ctl_table_header *grab_header(struct inode *inode) 506 { 507 struct ctl_table_header *head = PROC_I(inode)->sysctl; 508 if (!head) 509 head = &sysctl_table_root.default_set.dir.header; 510 return sysctl_head_grab(head); 511 } 512 513 static struct dentry *proc_sys_lookup(struct inode *dir, struct dentry *dentry, 514 unsigned int flags) 515 { 516 struct ctl_table_header *head = grab_header(dir); 517 struct ctl_table_header *h = NULL; 518 const struct qstr *name = &dentry->d_name; 519 struct ctl_table *p; 520 struct inode *inode; 521 struct dentry *err = ERR_PTR(-ENOENT); 522 struct ctl_dir *ctl_dir; 523 int ret; 524 525 if (IS_ERR(head)) 526 return ERR_CAST(head); 527 528 ctl_dir = container_of(head, struct ctl_dir, header); 529 530 p = lookup_entry(&h, ctl_dir, name->name, name->len); 531 if (!p) 532 goto out; 533 534 if (S_ISLNK(p->mode)) { 535 ret = sysctl_follow_link(&h, &p); 536 err = ERR_PTR(ret); 537 if (ret) 538 goto out; 539 } 540 541 inode = proc_sys_make_inode(dir->i_sb, h ? h : head, p); 542 if (IS_ERR(inode)) { 543 err = ERR_CAST(inode); 544 goto out; 545 } 546 547 d_set_d_op(dentry, &proc_sys_dentry_operations); 548 err = d_splice_alias(inode, dentry); 549 550 out: 551 if (h) 552 sysctl_head_finish(h); 553 sysctl_head_finish(head); 554 return err; 555 } 556 557 static ssize_t proc_sys_call_handler(struct kiocb *iocb, struct iov_iter *iter, 558 int write) 559 { 560 struct inode *inode = file_inode(iocb->ki_filp); 561 struct ctl_table_header *head = grab_header(inode); 562 struct ctl_table *table = PROC_I(inode)->sysctl_entry; 563 size_t count = iov_iter_count(iter); 564 char *kbuf; 565 ssize_t error; 566 567 if (IS_ERR(head)) 568 return PTR_ERR(head); 569 570 /* 571 * At this point we know that the sysctl was not unregistered 572 * and won't be until we finish. 573 */ 574 error = -EPERM; 575 if (sysctl_perm(head, table, write ? MAY_WRITE : MAY_READ)) 576 goto out; 577 578 /* if that can happen at all, it should be -EINVAL, not -EISDIR */ 579 error = -EINVAL; 580 if (!table->proc_handler) 581 goto out; 582 583 /* don't even try if the size is too large */ 584 error = -ENOMEM; 585 if (count >= KMALLOC_MAX_SIZE) 586 goto out; 587 kbuf = kvzalloc(count + 1, GFP_KERNEL); 588 if (!kbuf) 589 goto out; 590 591 if (write) { 592 error = -EFAULT; 593 if (!copy_from_iter_full(kbuf, count, iter)) 594 goto out_free_buf; 595 kbuf[count] = '\0'; 596 } 597 598 error = BPF_CGROUP_RUN_PROG_SYSCTL(head, table, write, &kbuf, &count, 599 &iocb->ki_pos); 600 if (error) 601 goto out_free_buf; 602 603 /* careful: calling conventions are nasty here */ 604 error = table->proc_handler(table, write, kbuf, &count, &iocb->ki_pos); 605 if (error) 606 goto out_free_buf; 607 608 if (!write) { 609 error = -EFAULT; 610 if (copy_to_iter(kbuf, count, iter) < count) 611 goto out_free_buf; 612 } 613 614 error = count; 615 out_free_buf: 616 kvfree(kbuf); 617 out: 618 sysctl_head_finish(head); 619 620 return error; 621 } 622 623 static ssize_t proc_sys_read(struct kiocb *iocb, struct iov_iter *iter) 624 { 625 return proc_sys_call_handler(iocb, iter, 0); 626 } 627 628 static ssize_t proc_sys_write(struct kiocb *iocb, struct iov_iter *iter) 629 { 630 return proc_sys_call_handler(iocb, iter, 1); 631 } 632 633 static int proc_sys_open(struct inode *inode, struct file *filp) 634 { 635 struct ctl_table_header *head = grab_header(inode); 636 struct ctl_table *table = PROC_I(inode)->sysctl_entry; 637 638 /* sysctl was unregistered */ 639 if (IS_ERR(head)) 640 return PTR_ERR(head); 641 642 if (table->poll) 643 filp->private_data = proc_sys_poll_event(table->poll); 644 645 sysctl_head_finish(head); 646 647 return 0; 648 } 649 650 static __poll_t proc_sys_poll(struct file *filp, poll_table *wait) 651 { 652 struct inode *inode = file_inode(filp); 653 struct ctl_table_header *head = grab_header(inode); 654 struct ctl_table *table = PROC_I(inode)->sysctl_entry; 655 __poll_t ret = DEFAULT_POLLMASK; 656 unsigned long event; 657 658 /* sysctl was unregistered */ 659 if (IS_ERR(head)) 660 return EPOLLERR | EPOLLHUP; 661 662 if (!table->proc_handler) 663 goto out; 664 665 if (!table->poll) 666 goto out; 667 668 event = (unsigned long)filp->private_data; 669 poll_wait(filp, &table->poll->wait, wait); 670 671 if (event != atomic_read(&table->poll->event)) { 672 filp->private_data = proc_sys_poll_event(table->poll); 673 ret = EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 674 } 675 676 out: 677 sysctl_head_finish(head); 678 679 return ret; 680 } 681 682 static bool proc_sys_fill_cache(struct file *file, 683 struct dir_context *ctx, 684 struct ctl_table_header *head, 685 struct ctl_table *table) 686 { 687 struct dentry *child, *dir = file->f_path.dentry; 688 struct inode *inode; 689 struct qstr qname; 690 ino_t ino = 0; 691 unsigned type = DT_UNKNOWN; 692 693 qname.name = table->procname; 694 qname.len = strlen(table->procname); 695 qname.hash = full_name_hash(dir, qname.name, qname.len); 696 697 child = d_lookup(dir, &qname); 698 if (!child) { 699 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 700 child = d_alloc_parallel(dir, &qname, &wq); 701 if (IS_ERR(child)) 702 return false; 703 if (d_in_lookup(child)) { 704 struct dentry *res; 705 inode = proc_sys_make_inode(dir->d_sb, head, table); 706 if (IS_ERR(inode)) { 707 d_lookup_done(child); 708 dput(child); 709 return false; 710 } 711 d_set_d_op(child, &proc_sys_dentry_operations); 712 res = d_splice_alias(inode, child); 713 d_lookup_done(child); 714 if (unlikely(res)) { 715 if (IS_ERR(res)) { 716 dput(child); 717 return false; 718 } 719 dput(child); 720 child = res; 721 } 722 } 723 } 724 inode = d_inode(child); 725 ino = inode->i_ino; 726 type = inode->i_mode >> 12; 727 dput(child); 728 return dir_emit(ctx, qname.name, qname.len, ino, type); 729 } 730 731 static bool proc_sys_link_fill_cache(struct file *file, 732 struct dir_context *ctx, 733 struct ctl_table_header *head, 734 struct ctl_table *table) 735 { 736 bool ret = true; 737 738 head = sysctl_head_grab(head); 739 if (IS_ERR(head)) 740 return false; 741 742 /* It is not an error if we can not follow the link ignore it */ 743 if (sysctl_follow_link(&head, &table)) 744 goto out; 745 746 ret = proc_sys_fill_cache(file, ctx, head, table); 747 out: 748 sysctl_head_finish(head); 749 return ret; 750 } 751 752 static int scan(struct ctl_table_header *head, struct ctl_table *table, 753 unsigned long *pos, struct file *file, 754 struct dir_context *ctx) 755 { 756 bool res; 757 758 if ((*pos)++ < ctx->pos) 759 return true; 760 761 if (unlikely(S_ISLNK(table->mode))) 762 res = proc_sys_link_fill_cache(file, ctx, head, table); 763 else 764 res = proc_sys_fill_cache(file, ctx, head, table); 765 766 if (res) 767 ctx->pos = *pos; 768 769 return res; 770 } 771 772 static int proc_sys_readdir(struct file *file, struct dir_context *ctx) 773 { 774 struct ctl_table_header *head = grab_header(file_inode(file)); 775 struct ctl_table_header *h = NULL; 776 struct ctl_table *entry; 777 struct ctl_dir *ctl_dir; 778 unsigned long pos; 779 780 if (IS_ERR(head)) 781 return PTR_ERR(head); 782 783 ctl_dir = container_of(head, struct ctl_dir, header); 784 785 if (!dir_emit_dots(file, ctx)) 786 goto out; 787 788 pos = 2; 789 790 for (first_entry(ctl_dir, &h, &entry); h; next_entry(&h, &entry)) { 791 if (!scan(h, entry, &pos, file, ctx)) { 792 sysctl_head_finish(h); 793 break; 794 } 795 } 796 out: 797 sysctl_head_finish(head); 798 return 0; 799 } 800 801 static int proc_sys_permission(struct user_namespace *mnt_userns, 802 struct inode *inode, int mask) 803 { 804 /* 805 * sysctl entries that are not writeable, 806 * are _NOT_ writeable, capabilities or not. 807 */ 808 struct ctl_table_header *head; 809 struct ctl_table *table; 810 int error; 811 812 /* Executable files are not allowed under /proc/sys/ */ 813 if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode)) 814 return -EACCES; 815 816 head = grab_header(inode); 817 if (IS_ERR(head)) 818 return PTR_ERR(head); 819 820 table = PROC_I(inode)->sysctl_entry; 821 if (!table) /* global root - r-xr-xr-x */ 822 error = mask & MAY_WRITE ? -EACCES : 0; 823 else /* Use the permissions on the sysctl table entry */ 824 error = sysctl_perm(head, table, mask & ~MAY_NOT_BLOCK); 825 826 sysctl_head_finish(head); 827 return error; 828 } 829 830 static int proc_sys_setattr(struct user_namespace *mnt_userns, 831 struct dentry *dentry, struct iattr *attr) 832 { 833 struct inode *inode = d_inode(dentry); 834 int error; 835 836 if (attr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID)) 837 return -EPERM; 838 839 error = setattr_prepare(&init_user_ns, dentry, attr); 840 if (error) 841 return error; 842 843 setattr_copy(&init_user_ns, inode, attr); 844 mark_inode_dirty(inode); 845 return 0; 846 } 847 848 static int proc_sys_getattr(struct user_namespace *mnt_userns, 849 const struct path *path, struct kstat *stat, 850 u32 request_mask, unsigned int query_flags) 851 { 852 struct inode *inode = d_inode(path->dentry); 853 struct ctl_table_header *head = grab_header(inode); 854 struct ctl_table *table = PROC_I(inode)->sysctl_entry; 855 856 if (IS_ERR(head)) 857 return PTR_ERR(head); 858 859 generic_fillattr(&init_user_ns, inode, stat); 860 if (table) 861 stat->mode = (stat->mode & S_IFMT) | table->mode; 862 863 sysctl_head_finish(head); 864 return 0; 865 } 866 867 static const struct file_operations proc_sys_file_operations = { 868 .open = proc_sys_open, 869 .poll = proc_sys_poll, 870 .read_iter = proc_sys_read, 871 .write_iter = proc_sys_write, 872 .splice_read = generic_file_splice_read, 873 .splice_write = iter_file_splice_write, 874 .llseek = default_llseek, 875 }; 876 877 static const struct file_operations proc_sys_dir_file_operations = { 878 .read = generic_read_dir, 879 .iterate_shared = proc_sys_readdir, 880 .llseek = generic_file_llseek, 881 }; 882 883 static const struct inode_operations proc_sys_inode_operations = { 884 .permission = proc_sys_permission, 885 .setattr = proc_sys_setattr, 886 .getattr = proc_sys_getattr, 887 }; 888 889 static const struct inode_operations proc_sys_dir_operations = { 890 .lookup = proc_sys_lookup, 891 .permission = proc_sys_permission, 892 .setattr = proc_sys_setattr, 893 .getattr = proc_sys_getattr, 894 }; 895 896 static int proc_sys_revalidate(struct dentry *dentry, unsigned int flags) 897 { 898 if (flags & LOOKUP_RCU) 899 return -ECHILD; 900 return !PROC_I(d_inode(dentry))->sysctl->unregistering; 901 } 902 903 static int proc_sys_delete(const struct dentry *dentry) 904 { 905 return !!PROC_I(d_inode(dentry))->sysctl->unregistering; 906 } 907 908 static int sysctl_is_seen(struct ctl_table_header *p) 909 { 910 struct ctl_table_set *set = p->set; 911 int res; 912 spin_lock(&sysctl_lock); 913 if (p->unregistering) 914 res = 0; 915 else if (!set->is_seen) 916 res = 1; 917 else 918 res = set->is_seen(set); 919 spin_unlock(&sysctl_lock); 920 return res; 921 } 922 923 static int proc_sys_compare(const struct dentry *dentry, 924 unsigned int len, const char *str, const struct qstr *name) 925 { 926 struct ctl_table_header *head; 927 struct inode *inode; 928 929 /* Although proc doesn't have negative dentries, rcu-walk means 930 * that inode here can be NULL */ 931 /* AV: can it, indeed? */ 932 inode = d_inode_rcu(dentry); 933 if (!inode) 934 return 1; 935 if (name->len != len) 936 return 1; 937 if (memcmp(name->name, str, len)) 938 return 1; 939 head = rcu_dereference(PROC_I(inode)->sysctl); 940 return !head || !sysctl_is_seen(head); 941 } 942 943 static const struct dentry_operations proc_sys_dentry_operations = { 944 .d_revalidate = proc_sys_revalidate, 945 .d_delete = proc_sys_delete, 946 .d_compare = proc_sys_compare, 947 }; 948 949 static struct ctl_dir *find_subdir(struct ctl_dir *dir, 950 const char *name, int namelen) 951 { 952 struct ctl_table_header *head; 953 struct ctl_table *entry; 954 955 entry = find_entry(&head, dir, name, namelen); 956 if (!entry) 957 return ERR_PTR(-ENOENT); 958 if (!S_ISDIR(entry->mode)) 959 return ERR_PTR(-ENOTDIR); 960 return container_of(head, struct ctl_dir, header); 961 } 962 963 static struct ctl_dir *new_dir(struct ctl_table_set *set, 964 const char *name, int namelen) 965 { 966 struct ctl_table *table; 967 struct ctl_dir *new; 968 struct ctl_node *node; 969 char *new_name; 970 971 new = kzalloc(sizeof(*new) + sizeof(struct ctl_node) + 972 sizeof(struct ctl_table)*2 + namelen + 1, 973 GFP_KERNEL); 974 if (!new) 975 return NULL; 976 977 node = (struct ctl_node *)(new + 1); 978 table = (struct ctl_table *)(node + 1); 979 new_name = (char *)(table + 2); 980 memcpy(new_name, name, namelen); 981 new_name[namelen] = '\0'; 982 table[0].procname = new_name; 983 table[0].mode = S_IFDIR|S_IRUGO|S_IXUGO; 984 init_header(&new->header, set->dir.header.root, set, node, table); 985 986 return new; 987 } 988 989 /** 990 * get_subdir - find or create a subdir with the specified name. 991 * @dir: Directory to create the subdirectory in 992 * @name: The name of the subdirectory to find or create 993 * @namelen: The length of name 994 * 995 * Takes a directory with an elevated reference count so we know that 996 * if we drop the lock the directory will not go away. Upon success 997 * the reference is moved from @dir to the returned subdirectory. 998 * Upon error an error code is returned and the reference on @dir is 999 * simply dropped. 1000 */ 1001 static struct ctl_dir *get_subdir(struct ctl_dir *dir, 1002 const char *name, int namelen) 1003 { 1004 struct ctl_table_set *set = dir->header.set; 1005 struct ctl_dir *subdir, *new = NULL; 1006 int err; 1007 1008 spin_lock(&sysctl_lock); 1009 subdir = find_subdir(dir, name, namelen); 1010 if (!IS_ERR(subdir)) 1011 goto found; 1012 if (PTR_ERR(subdir) != -ENOENT) 1013 goto failed; 1014 1015 spin_unlock(&sysctl_lock); 1016 new = new_dir(set, name, namelen); 1017 spin_lock(&sysctl_lock); 1018 subdir = ERR_PTR(-ENOMEM); 1019 if (!new) 1020 goto failed; 1021 1022 /* Was the subdir added while we dropped the lock? */ 1023 subdir = find_subdir(dir, name, namelen); 1024 if (!IS_ERR(subdir)) 1025 goto found; 1026 if (PTR_ERR(subdir) != -ENOENT) 1027 goto failed; 1028 1029 /* Nope. Use the our freshly made directory entry. */ 1030 err = insert_header(dir, &new->header); 1031 subdir = ERR_PTR(err); 1032 if (err) 1033 goto failed; 1034 subdir = new; 1035 found: 1036 subdir->header.nreg++; 1037 failed: 1038 if (IS_ERR(subdir)) { 1039 pr_err("sysctl could not get directory: "); 1040 sysctl_print_dir(dir); 1041 pr_cont("%*.*s %ld\n", namelen, namelen, name, 1042 PTR_ERR(subdir)); 1043 } 1044 drop_sysctl_table(&dir->header); 1045 if (new) 1046 drop_sysctl_table(&new->header); 1047 spin_unlock(&sysctl_lock); 1048 return subdir; 1049 } 1050 1051 static struct ctl_dir *xlate_dir(struct ctl_table_set *set, struct ctl_dir *dir) 1052 { 1053 struct ctl_dir *parent; 1054 const char *procname; 1055 if (!dir->header.parent) 1056 return &set->dir; 1057 parent = xlate_dir(set, dir->header.parent); 1058 if (IS_ERR(parent)) 1059 return parent; 1060 procname = dir->header.ctl_table[0].procname; 1061 return find_subdir(parent, procname, strlen(procname)); 1062 } 1063 1064 static int sysctl_follow_link(struct ctl_table_header **phead, 1065 struct ctl_table **pentry) 1066 { 1067 struct ctl_table_header *head; 1068 struct ctl_table_root *root; 1069 struct ctl_table_set *set; 1070 struct ctl_table *entry; 1071 struct ctl_dir *dir; 1072 int ret; 1073 1074 spin_lock(&sysctl_lock); 1075 root = (*pentry)->data; 1076 set = lookup_header_set(root); 1077 dir = xlate_dir(set, (*phead)->parent); 1078 if (IS_ERR(dir)) 1079 ret = PTR_ERR(dir); 1080 else { 1081 const char *procname = (*pentry)->procname; 1082 head = NULL; 1083 entry = find_entry(&head, dir, procname, strlen(procname)); 1084 ret = -ENOENT; 1085 if (entry && use_table(head)) { 1086 unuse_table(*phead); 1087 *phead = head; 1088 *pentry = entry; 1089 ret = 0; 1090 } 1091 } 1092 1093 spin_unlock(&sysctl_lock); 1094 return ret; 1095 } 1096 1097 static int sysctl_err(const char *path, struct ctl_table *table, char *fmt, ...) 1098 { 1099 struct va_format vaf; 1100 va_list args; 1101 1102 va_start(args, fmt); 1103 vaf.fmt = fmt; 1104 vaf.va = &args; 1105 1106 pr_err("sysctl table check failed: %s/%s %pV\n", 1107 path, table->procname, &vaf); 1108 1109 va_end(args); 1110 return -EINVAL; 1111 } 1112 1113 static int sysctl_check_table_array(const char *path, struct ctl_table *table) 1114 { 1115 int err = 0; 1116 1117 if ((table->proc_handler == proc_douintvec) || 1118 (table->proc_handler == proc_douintvec_minmax)) { 1119 if (table->maxlen != sizeof(unsigned int)) 1120 err |= sysctl_err(path, table, "array not allowed"); 1121 } 1122 1123 if (table->proc_handler == proc_dou8vec_minmax) { 1124 if (table->maxlen != sizeof(u8)) 1125 err |= sysctl_err(path, table, "array not allowed"); 1126 } 1127 1128 return err; 1129 } 1130 1131 static int sysctl_check_table(const char *path, struct ctl_table *table) 1132 { 1133 int err = 0; 1134 for (; table->procname; table++) { 1135 if (table->child) 1136 err |= sysctl_err(path, table, "Not a file"); 1137 1138 if ((table->proc_handler == proc_dostring) || 1139 (table->proc_handler == proc_dointvec) || 1140 (table->proc_handler == proc_douintvec) || 1141 (table->proc_handler == proc_douintvec_minmax) || 1142 (table->proc_handler == proc_dointvec_minmax) || 1143 (table->proc_handler == proc_dou8vec_minmax) || 1144 (table->proc_handler == proc_dointvec_jiffies) || 1145 (table->proc_handler == proc_dointvec_userhz_jiffies) || 1146 (table->proc_handler == proc_dointvec_ms_jiffies) || 1147 (table->proc_handler == proc_doulongvec_minmax) || 1148 (table->proc_handler == proc_doulongvec_ms_jiffies_minmax)) { 1149 if (!table->data) 1150 err |= sysctl_err(path, table, "No data"); 1151 if (!table->maxlen) 1152 err |= sysctl_err(path, table, "No maxlen"); 1153 else 1154 err |= sysctl_check_table_array(path, table); 1155 } 1156 if (!table->proc_handler) 1157 err |= sysctl_err(path, table, "No proc_handler"); 1158 1159 if ((table->mode & (S_IRUGO|S_IWUGO)) != table->mode) 1160 err |= sysctl_err(path, table, "bogus .mode 0%o", 1161 table->mode); 1162 } 1163 return err; 1164 } 1165 1166 static struct ctl_table_header *new_links(struct ctl_dir *dir, struct ctl_table *table, 1167 struct ctl_table_root *link_root) 1168 { 1169 struct ctl_table *link_table, *entry, *link; 1170 struct ctl_table_header *links; 1171 struct ctl_node *node; 1172 char *link_name; 1173 int nr_entries, name_bytes; 1174 1175 name_bytes = 0; 1176 nr_entries = 0; 1177 for (entry = table; entry->procname; entry++) { 1178 nr_entries++; 1179 name_bytes += strlen(entry->procname) + 1; 1180 } 1181 1182 links = kzalloc(sizeof(struct ctl_table_header) + 1183 sizeof(struct ctl_node)*nr_entries + 1184 sizeof(struct ctl_table)*(nr_entries + 1) + 1185 name_bytes, 1186 GFP_KERNEL); 1187 1188 if (!links) 1189 return NULL; 1190 1191 node = (struct ctl_node *)(links + 1); 1192 link_table = (struct ctl_table *)(node + nr_entries); 1193 link_name = (char *)&link_table[nr_entries + 1]; 1194 1195 for (link = link_table, entry = table; entry->procname; link++, entry++) { 1196 int len = strlen(entry->procname) + 1; 1197 memcpy(link_name, entry->procname, len); 1198 link->procname = link_name; 1199 link->mode = S_IFLNK|S_IRWXUGO; 1200 link->data = link_root; 1201 link_name += len; 1202 } 1203 init_header(links, dir->header.root, dir->header.set, node, link_table); 1204 links->nreg = nr_entries; 1205 1206 return links; 1207 } 1208 1209 static bool get_links(struct ctl_dir *dir, 1210 struct ctl_table *table, struct ctl_table_root *link_root) 1211 { 1212 struct ctl_table_header *head; 1213 struct ctl_table *entry, *link; 1214 1215 /* Are there links available for every entry in table? */ 1216 for (entry = table; entry->procname; entry++) { 1217 const char *procname = entry->procname; 1218 link = find_entry(&head, dir, procname, strlen(procname)); 1219 if (!link) 1220 return false; 1221 if (S_ISDIR(link->mode) && S_ISDIR(entry->mode)) 1222 continue; 1223 if (S_ISLNK(link->mode) && (link->data == link_root)) 1224 continue; 1225 return false; 1226 } 1227 1228 /* The checks passed. Increase the registration count on the links */ 1229 for (entry = table; entry->procname; entry++) { 1230 const char *procname = entry->procname; 1231 link = find_entry(&head, dir, procname, strlen(procname)); 1232 head->nreg++; 1233 } 1234 return true; 1235 } 1236 1237 static int insert_links(struct ctl_table_header *head) 1238 { 1239 struct ctl_table_set *root_set = &sysctl_table_root.default_set; 1240 struct ctl_dir *core_parent = NULL; 1241 struct ctl_table_header *links; 1242 int err; 1243 1244 if (head->set == root_set) 1245 return 0; 1246 1247 core_parent = xlate_dir(root_set, head->parent); 1248 if (IS_ERR(core_parent)) 1249 return 0; 1250 1251 if (get_links(core_parent, head->ctl_table, head->root)) 1252 return 0; 1253 1254 core_parent->header.nreg++; 1255 spin_unlock(&sysctl_lock); 1256 1257 links = new_links(core_parent, head->ctl_table, head->root); 1258 1259 spin_lock(&sysctl_lock); 1260 err = -ENOMEM; 1261 if (!links) 1262 goto out; 1263 1264 err = 0; 1265 if (get_links(core_parent, head->ctl_table, head->root)) { 1266 kfree(links); 1267 goto out; 1268 } 1269 1270 err = insert_header(core_parent, links); 1271 if (err) 1272 kfree(links); 1273 out: 1274 drop_sysctl_table(&core_parent->header); 1275 return err; 1276 } 1277 1278 /** 1279 * __register_sysctl_table - register a leaf sysctl table 1280 * @set: Sysctl tree to register on 1281 * @path: The path to the directory the sysctl table is in. 1282 * @table: the top-level table structure 1283 * 1284 * Register a sysctl table hierarchy. @table should be a filled in ctl_table 1285 * array. A completely 0 filled entry terminates the table. 1286 * 1287 * The members of the &struct ctl_table structure are used as follows: 1288 * 1289 * procname - the name of the sysctl file under /proc/sys. Set to %NULL to not 1290 * enter a sysctl file 1291 * 1292 * data - a pointer to data for use by proc_handler 1293 * 1294 * maxlen - the maximum size in bytes of the data 1295 * 1296 * mode - the file permissions for the /proc/sys file 1297 * 1298 * child - must be %NULL. 1299 * 1300 * proc_handler - the text handler routine (described below) 1301 * 1302 * extra1, extra2 - extra pointers usable by the proc handler routines 1303 * 1304 * Leaf nodes in the sysctl tree will be represented by a single file 1305 * under /proc; non-leaf nodes will be represented by directories. 1306 * 1307 * There must be a proc_handler routine for any terminal nodes. 1308 * Several default handlers are available to cover common cases - 1309 * 1310 * proc_dostring(), proc_dointvec(), proc_dointvec_jiffies(), 1311 * proc_dointvec_userhz_jiffies(), proc_dointvec_minmax(), 1312 * proc_doulongvec_ms_jiffies_minmax(), proc_doulongvec_minmax() 1313 * 1314 * It is the handler's job to read the input buffer from user memory 1315 * and process it. The handler should return 0 on success. 1316 * 1317 * This routine returns %NULL on a failure to register, and a pointer 1318 * to the table header on success. 1319 */ 1320 struct ctl_table_header *__register_sysctl_table( 1321 struct ctl_table_set *set, 1322 const char *path, struct ctl_table *table) 1323 { 1324 struct ctl_table_root *root = set->dir.header.root; 1325 struct ctl_table_header *header; 1326 const char *name, *nextname; 1327 struct ctl_dir *dir; 1328 struct ctl_table *entry; 1329 struct ctl_node *node; 1330 int nr_entries = 0; 1331 1332 for (entry = table; entry->procname; entry++) 1333 nr_entries++; 1334 1335 header = kzalloc(sizeof(struct ctl_table_header) + 1336 sizeof(struct ctl_node)*nr_entries, GFP_KERNEL_ACCOUNT); 1337 if (!header) 1338 return NULL; 1339 1340 node = (struct ctl_node *)(header + 1); 1341 init_header(header, root, set, node, table); 1342 if (sysctl_check_table(path, table)) 1343 goto fail; 1344 1345 spin_lock(&sysctl_lock); 1346 dir = &set->dir; 1347 /* Reference moved down the diretory tree get_subdir */ 1348 dir->header.nreg++; 1349 spin_unlock(&sysctl_lock); 1350 1351 /* Find the directory for the ctl_table */ 1352 for (name = path; name; name = nextname) { 1353 int namelen; 1354 nextname = strchr(name, '/'); 1355 if (nextname) { 1356 namelen = nextname - name; 1357 nextname++; 1358 } else { 1359 namelen = strlen(name); 1360 } 1361 if (namelen == 0) 1362 continue; 1363 1364 dir = get_subdir(dir, name, namelen); 1365 if (IS_ERR(dir)) 1366 goto fail; 1367 } 1368 1369 spin_lock(&sysctl_lock); 1370 if (insert_header(dir, header)) 1371 goto fail_put_dir_locked; 1372 1373 drop_sysctl_table(&dir->header); 1374 spin_unlock(&sysctl_lock); 1375 1376 return header; 1377 1378 fail_put_dir_locked: 1379 drop_sysctl_table(&dir->header); 1380 spin_unlock(&sysctl_lock); 1381 fail: 1382 kfree(header); 1383 dump_stack(); 1384 return NULL; 1385 } 1386 1387 /** 1388 * register_sysctl - register a sysctl table 1389 * @path: The path to the directory the sysctl table is in. 1390 * @table: the table structure 1391 * 1392 * Register a sysctl table. @table should be a filled in ctl_table 1393 * array. A completely 0 filled entry terminates the table. 1394 * 1395 * See __register_sysctl_table for more details. 1396 */ 1397 struct ctl_table_header *register_sysctl(const char *path, struct ctl_table *table) 1398 { 1399 return __register_sysctl_table(&sysctl_table_root.default_set, 1400 path, table); 1401 } 1402 EXPORT_SYMBOL(register_sysctl); 1403 1404 /** 1405 * __register_sysctl_init() - register sysctl table to path 1406 * @path: path name for sysctl base 1407 * @table: This is the sysctl table that needs to be registered to the path 1408 * @table_name: The name of sysctl table, only used for log printing when 1409 * registration fails 1410 * 1411 * The sysctl interface is used by userspace to query or modify at runtime 1412 * a predefined value set on a variable. These variables however have default 1413 * values pre-set. Code which depends on these variables will always work even 1414 * if register_sysctl() fails. If register_sysctl() fails you'd just loose the 1415 * ability to query or modify the sysctls dynamically at run time. Chances of 1416 * register_sysctl() failing on init are extremely low, and so for both reasons 1417 * this function does not return any error as it is used by initialization code. 1418 * 1419 * Context: Can only be called after your respective sysctl base path has been 1420 * registered. So for instance, most base directories are registered early on 1421 * init before init levels are processed through proc_sys_init() and 1422 * sysctl_init_bases(). 1423 */ 1424 void __init __register_sysctl_init(const char *path, struct ctl_table *table, 1425 const char *table_name) 1426 { 1427 struct ctl_table_header *hdr = register_sysctl(path, table); 1428 1429 if (unlikely(!hdr)) { 1430 pr_err("failed when register_sysctl %s to %s\n", table_name, path); 1431 return; 1432 } 1433 kmemleak_not_leak(hdr); 1434 } 1435 1436 static char *append_path(const char *path, char *pos, const char *name) 1437 { 1438 int namelen; 1439 namelen = strlen(name); 1440 if (((pos - path) + namelen + 2) >= PATH_MAX) 1441 return NULL; 1442 memcpy(pos, name, namelen); 1443 pos[namelen] = '/'; 1444 pos[namelen + 1] = '\0'; 1445 pos += namelen + 1; 1446 return pos; 1447 } 1448 1449 static int count_subheaders(struct ctl_table *table) 1450 { 1451 int has_files = 0; 1452 int nr_subheaders = 0; 1453 struct ctl_table *entry; 1454 1455 /* special case: no directory and empty directory */ 1456 if (!table || !table->procname) 1457 return 1; 1458 1459 for (entry = table; entry->procname; entry++) { 1460 if (entry->child) 1461 nr_subheaders += count_subheaders(entry->child); 1462 else 1463 has_files = 1; 1464 } 1465 return nr_subheaders + has_files; 1466 } 1467 1468 static int register_leaf_sysctl_tables(const char *path, char *pos, 1469 struct ctl_table_header ***subheader, struct ctl_table_set *set, 1470 struct ctl_table *table) 1471 { 1472 struct ctl_table *ctl_table_arg = NULL; 1473 struct ctl_table *entry, *files; 1474 int nr_files = 0; 1475 int nr_dirs = 0; 1476 int err = -ENOMEM; 1477 1478 for (entry = table; entry->procname; entry++) { 1479 if (entry->child) 1480 nr_dirs++; 1481 else 1482 nr_files++; 1483 } 1484 1485 files = table; 1486 /* If there are mixed files and directories we need a new table */ 1487 if (nr_dirs && nr_files) { 1488 struct ctl_table *new; 1489 files = kcalloc(nr_files + 1, sizeof(struct ctl_table), 1490 GFP_KERNEL); 1491 if (!files) 1492 goto out; 1493 1494 ctl_table_arg = files; 1495 for (new = files, entry = table; entry->procname; entry++) { 1496 if (entry->child) 1497 continue; 1498 *new = *entry; 1499 new++; 1500 } 1501 } 1502 1503 /* Register everything except a directory full of subdirectories */ 1504 if (nr_files || !nr_dirs) { 1505 struct ctl_table_header *header; 1506 header = __register_sysctl_table(set, path, files); 1507 if (!header) { 1508 kfree(ctl_table_arg); 1509 goto out; 1510 } 1511 1512 /* Remember if we need to free the file table */ 1513 header->ctl_table_arg = ctl_table_arg; 1514 **subheader = header; 1515 (*subheader)++; 1516 } 1517 1518 /* Recurse into the subdirectories. */ 1519 for (entry = table; entry->procname; entry++) { 1520 char *child_pos; 1521 1522 if (!entry->child) 1523 continue; 1524 1525 err = -ENAMETOOLONG; 1526 child_pos = append_path(path, pos, entry->procname); 1527 if (!child_pos) 1528 goto out; 1529 1530 err = register_leaf_sysctl_tables(path, child_pos, subheader, 1531 set, entry->child); 1532 pos[0] = '\0'; 1533 if (err) 1534 goto out; 1535 } 1536 err = 0; 1537 out: 1538 /* On failure our caller will unregister all registered subheaders */ 1539 return err; 1540 } 1541 1542 /** 1543 * __register_sysctl_paths - register a sysctl table hierarchy 1544 * @set: Sysctl tree to register on 1545 * @path: The path to the directory the sysctl table is in. 1546 * @table: the top-level table structure 1547 * 1548 * Register a sysctl table hierarchy. @table should be a filled in ctl_table 1549 * array. A completely 0 filled entry terminates the table. 1550 * 1551 * See __register_sysctl_table for more details. 1552 */ 1553 struct ctl_table_header *__register_sysctl_paths( 1554 struct ctl_table_set *set, 1555 const struct ctl_path *path, struct ctl_table *table) 1556 { 1557 struct ctl_table *ctl_table_arg = table; 1558 int nr_subheaders = count_subheaders(table); 1559 struct ctl_table_header *header = NULL, **subheaders, **subheader; 1560 const struct ctl_path *component; 1561 char *new_path, *pos; 1562 1563 pos = new_path = kmalloc(PATH_MAX, GFP_KERNEL); 1564 if (!new_path) 1565 return NULL; 1566 1567 pos[0] = '\0'; 1568 for (component = path; component->procname; component++) { 1569 pos = append_path(new_path, pos, component->procname); 1570 if (!pos) 1571 goto out; 1572 } 1573 while (table->procname && table->child && !table[1].procname) { 1574 pos = append_path(new_path, pos, table->procname); 1575 if (!pos) 1576 goto out; 1577 table = table->child; 1578 } 1579 if (nr_subheaders == 1) { 1580 header = __register_sysctl_table(set, new_path, table); 1581 if (header) 1582 header->ctl_table_arg = ctl_table_arg; 1583 } else { 1584 header = kzalloc(sizeof(*header) + 1585 sizeof(*subheaders)*nr_subheaders, GFP_KERNEL); 1586 if (!header) 1587 goto out; 1588 1589 subheaders = (struct ctl_table_header **) (header + 1); 1590 subheader = subheaders; 1591 header->ctl_table_arg = ctl_table_arg; 1592 1593 if (register_leaf_sysctl_tables(new_path, pos, &subheader, 1594 set, table)) 1595 goto err_register_leaves; 1596 } 1597 1598 out: 1599 kfree(new_path); 1600 return header; 1601 1602 err_register_leaves: 1603 while (subheader > subheaders) { 1604 struct ctl_table_header *subh = *(--subheader); 1605 struct ctl_table *table = subh->ctl_table_arg; 1606 unregister_sysctl_table(subh); 1607 kfree(table); 1608 } 1609 kfree(header); 1610 header = NULL; 1611 goto out; 1612 } 1613 1614 /** 1615 * register_sysctl_paths - register a sysctl table hierarchy 1616 * @path: The path to the directory the sysctl table is in. 1617 * @table: the top-level table structure 1618 * 1619 * Register a sysctl table hierarchy. @table should be a filled in ctl_table 1620 * array. A completely 0 filled entry terminates the table. 1621 * 1622 * See __register_sysctl_paths for more details. 1623 */ 1624 struct ctl_table_header *register_sysctl_paths(const struct ctl_path *path, 1625 struct ctl_table *table) 1626 { 1627 return __register_sysctl_paths(&sysctl_table_root.default_set, 1628 path, table); 1629 } 1630 EXPORT_SYMBOL(register_sysctl_paths); 1631 1632 /** 1633 * register_sysctl_table - register a sysctl table hierarchy 1634 * @table: the top-level table structure 1635 * 1636 * Register a sysctl table hierarchy. @table should be a filled in ctl_table 1637 * array. A completely 0 filled entry terminates the table. 1638 * 1639 * See register_sysctl_paths for more details. 1640 */ 1641 struct ctl_table_header *register_sysctl_table(struct ctl_table *table) 1642 { 1643 static const struct ctl_path null_path[] = { {} }; 1644 1645 return register_sysctl_paths(null_path, table); 1646 } 1647 EXPORT_SYMBOL(register_sysctl_table); 1648 1649 int __register_sysctl_base(struct ctl_table *base_table) 1650 { 1651 struct ctl_table_header *hdr; 1652 1653 hdr = register_sysctl_table(base_table); 1654 kmemleak_not_leak(hdr); 1655 return 0; 1656 } 1657 1658 static void put_links(struct ctl_table_header *header) 1659 { 1660 struct ctl_table_set *root_set = &sysctl_table_root.default_set; 1661 struct ctl_table_root *root = header->root; 1662 struct ctl_dir *parent = header->parent; 1663 struct ctl_dir *core_parent; 1664 struct ctl_table *entry; 1665 1666 if (header->set == root_set) 1667 return; 1668 1669 core_parent = xlate_dir(root_set, parent); 1670 if (IS_ERR(core_parent)) 1671 return; 1672 1673 for (entry = header->ctl_table; entry->procname; entry++) { 1674 struct ctl_table_header *link_head; 1675 struct ctl_table *link; 1676 const char *name = entry->procname; 1677 1678 link = find_entry(&link_head, core_parent, name, strlen(name)); 1679 if (link && 1680 ((S_ISDIR(link->mode) && S_ISDIR(entry->mode)) || 1681 (S_ISLNK(link->mode) && (link->data == root)))) { 1682 drop_sysctl_table(link_head); 1683 } 1684 else { 1685 pr_err("sysctl link missing during unregister: "); 1686 sysctl_print_dir(parent); 1687 pr_cont("%s\n", name); 1688 } 1689 } 1690 } 1691 1692 static void drop_sysctl_table(struct ctl_table_header *header) 1693 { 1694 struct ctl_dir *parent = header->parent; 1695 1696 if (--header->nreg) 1697 return; 1698 1699 if (parent) { 1700 put_links(header); 1701 start_unregistering(header); 1702 } 1703 1704 if (!--header->count) 1705 kfree_rcu(header, rcu); 1706 1707 if (parent) 1708 drop_sysctl_table(&parent->header); 1709 } 1710 1711 /** 1712 * unregister_sysctl_table - unregister a sysctl table hierarchy 1713 * @header: the header returned from register_sysctl_table 1714 * 1715 * Unregisters the sysctl table and all children. proc entries may not 1716 * actually be removed until they are no longer used by anyone. 1717 */ 1718 void unregister_sysctl_table(struct ctl_table_header * header) 1719 { 1720 int nr_subheaders; 1721 might_sleep(); 1722 1723 if (header == NULL) 1724 return; 1725 1726 nr_subheaders = count_subheaders(header->ctl_table_arg); 1727 if (unlikely(nr_subheaders > 1)) { 1728 struct ctl_table_header **subheaders; 1729 int i; 1730 1731 subheaders = (struct ctl_table_header **)(header + 1); 1732 for (i = nr_subheaders -1; i >= 0; i--) { 1733 struct ctl_table_header *subh = subheaders[i]; 1734 struct ctl_table *table = subh->ctl_table_arg; 1735 unregister_sysctl_table(subh); 1736 kfree(table); 1737 } 1738 kfree(header); 1739 return; 1740 } 1741 1742 spin_lock(&sysctl_lock); 1743 drop_sysctl_table(header); 1744 spin_unlock(&sysctl_lock); 1745 } 1746 EXPORT_SYMBOL(unregister_sysctl_table); 1747 1748 void setup_sysctl_set(struct ctl_table_set *set, 1749 struct ctl_table_root *root, 1750 int (*is_seen)(struct ctl_table_set *)) 1751 { 1752 memset(set, 0, sizeof(*set)); 1753 set->is_seen = is_seen; 1754 init_header(&set->dir.header, root, set, NULL, root_table); 1755 } 1756 1757 void retire_sysctl_set(struct ctl_table_set *set) 1758 { 1759 WARN_ON(!RB_EMPTY_ROOT(&set->dir.root)); 1760 } 1761 1762 int __init proc_sys_init(void) 1763 { 1764 struct proc_dir_entry *proc_sys_root; 1765 1766 proc_sys_root = proc_mkdir("sys", NULL); 1767 proc_sys_root->proc_iops = &proc_sys_dir_operations; 1768 proc_sys_root->proc_dir_ops = &proc_sys_dir_file_operations; 1769 proc_sys_root->nlink = 0; 1770 1771 return sysctl_init_bases(); 1772 } 1773 1774 struct sysctl_alias { 1775 const char *kernel_param; 1776 const char *sysctl_param; 1777 }; 1778 1779 /* 1780 * Historically some settings had both sysctl and a command line parameter. 1781 * With the generic sysctl. parameter support, we can handle them at a single 1782 * place and only keep the historical name for compatibility. This is not meant 1783 * to add brand new aliases. When adding existing aliases, consider whether 1784 * the possibly different moment of changing the value (e.g. from early_param 1785 * to the moment do_sysctl_args() is called) is an issue for the specific 1786 * parameter. 1787 */ 1788 static const struct sysctl_alias sysctl_aliases[] = { 1789 {"hardlockup_all_cpu_backtrace", "kernel.hardlockup_all_cpu_backtrace" }, 1790 {"hung_task_panic", "kernel.hung_task_panic" }, 1791 {"numa_zonelist_order", "vm.numa_zonelist_order" }, 1792 {"softlockup_all_cpu_backtrace", "kernel.softlockup_all_cpu_backtrace" }, 1793 {"softlockup_panic", "kernel.softlockup_panic" }, 1794 { } 1795 }; 1796 1797 static const char *sysctl_find_alias(char *param) 1798 { 1799 const struct sysctl_alias *alias; 1800 1801 for (alias = &sysctl_aliases[0]; alias->kernel_param != NULL; alias++) { 1802 if (strcmp(alias->kernel_param, param) == 0) 1803 return alias->sysctl_param; 1804 } 1805 1806 return NULL; 1807 } 1808 1809 /* Set sysctl value passed on kernel command line. */ 1810 static int process_sysctl_arg(char *param, char *val, 1811 const char *unused, void *arg) 1812 { 1813 char *path; 1814 struct vfsmount **proc_mnt = arg; 1815 struct file_system_type *proc_fs_type; 1816 struct file *file; 1817 int len; 1818 int err; 1819 loff_t pos = 0; 1820 ssize_t wret; 1821 1822 if (strncmp(param, "sysctl", sizeof("sysctl") - 1) == 0) { 1823 param += sizeof("sysctl") - 1; 1824 1825 if (param[0] != '/' && param[0] != '.') 1826 return 0; 1827 1828 param++; 1829 } else { 1830 param = (char *) sysctl_find_alias(param); 1831 if (!param) 1832 return 0; 1833 } 1834 1835 if (!val) 1836 return -EINVAL; 1837 len = strlen(val); 1838 if (len == 0) 1839 return -EINVAL; 1840 1841 /* 1842 * To set sysctl options, we use a temporary mount of proc, look up the 1843 * respective sys/ file and write to it. To avoid mounting it when no 1844 * options were given, we mount it only when the first sysctl option is 1845 * found. Why not a persistent mount? There are problems with a 1846 * persistent mount of proc in that it forces userspace not to use any 1847 * proc mount options. 1848 */ 1849 if (!*proc_mnt) { 1850 proc_fs_type = get_fs_type("proc"); 1851 if (!proc_fs_type) { 1852 pr_err("Failed to find procfs to set sysctl from command line\n"); 1853 return 0; 1854 } 1855 *proc_mnt = kern_mount(proc_fs_type); 1856 put_filesystem(proc_fs_type); 1857 if (IS_ERR(*proc_mnt)) { 1858 pr_err("Failed to mount procfs to set sysctl from command line\n"); 1859 return 0; 1860 } 1861 } 1862 1863 path = kasprintf(GFP_KERNEL, "sys/%s", param); 1864 if (!path) 1865 panic("%s: Failed to allocate path for %s\n", __func__, param); 1866 strreplace(path, '.', '/'); 1867 1868 file = file_open_root_mnt(*proc_mnt, path, O_WRONLY, 0); 1869 if (IS_ERR(file)) { 1870 err = PTR_ERR(file); 1871 if (err == -ENOENT) 1872 pr_err("Failed to set sysctl parameter '%s=%s': parameter not found\n", 1873 param, val); 1874 else if (err == -EACCES) 1875 pr_err("Failed to set sysctl parameter '%s=%s': permission denied (read-only?)\n", 1876 param, val); 1877 else 1878 pr_err("Error %pe opening proc file to set sysctl parameter '%s=%s'\n", 1879 file, param, val); 1880 goto out; 1881 } 1882 wret = kernel_write(file, val, len, &pos); 1883 if (wret < 0) { 1884 err = wret; 1885 if (err == -EINVAL) 1886 pr_err("Failed to set sysctl parameter '%s=%s': invalid value\n", 1887 param, val); 1888 else 1889 pr_err("Error %pe writing to proc file to set sysctl parameter '%s=%s'\n", 1890 ERR_PTR(err), param, val); 1891 } else if (wret != len) { 1892 pr_err("Wrote only %zd bytes of %d writing to proc file %s to set sysctl parameter '%s=%s\n", 1893 wret, len, path, param, val); 1894 } 1895 1896 err = filp_close(file, NULL); 1897 if (err) 1898 pr_err("Error %pe closing proc file to set sysctl parameter '%s=%s\n", 1899 ERR_PTR(err), param, val); 1900 out: 1901 kfree(path); 1902 return 0; 1903 } 1904 1905 void do_sysctl_args(void) 1906 { 1907 char *command_line; 1908 struct vfsmount *proc_mnt = NULL; 1909 1910 command_line = kstrdup(saved_command_line, GFP_KERNEL); 1911 if (!command_line) 1912 panic("%s: Failed to allocate copy of command line\n", __func__); 1913 1914 parse_args("Setting sysctl args", command_line, 1915 NULL, 0, -1, -1, &proc_mnt, process_sysctl_arg); 1916 1917 if (proc_mnt) 1918 kern_unmount(proc_mnt); 1919 1920 kfree(command_line); 1921 } 1922