1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * /proc/sys support 4 */ 5 #include <linux/init.h> 6 #include <linux/sysctl.h> 7 #include <linux/poll.h> 8 #include <linux/proc_fs.h> 9 #include <linux/printk.h> 10 #include <linux/security.h> 11 #include <linux/sched.h> 12 #include <linux/cred.h> 13 #include <linux/namei.h> 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/bpf-cgroup.h> 17 #include <linux/mount.h> 18 #include "internal.h" 19 20 static const struct dentry_operations proc_sys_dentry_operations; 21 static const struct file_operations proc_sys_file_operations; 22 static const struct inode_operations proc_sys_inode_operations; 23 static const struct file_operations proc_sys_dir_file_operations; 24 static const struct inode_operations proc_sys_dir_operations; 25 26 /* shared constants to be used in various sysctls */ 27 const int sysctl_vals[] = { 0, 1, INT_MAX }; 28 EXPORT_SYMBOL(sysctl_vals); 29 30 /* Support for permanently empty directories */ 31 32 struct ctl_table sysctl_mount_point[] = { 33 { } 34 }; 35 36 static bool is_empty_dir(struct ctl_table_header *head) 37 { 38 return head->ctl_table[0].child == sysctl_mount_point; 39 } 40 41 static void set_empty_dir(struct ctl_dir *dir) 42 { 43 dir->header.ctl_table[0].child = sysctl_mount_point; 44 } 45 46 static void clear_empty_dir(struct ctl_dir *dir) 47 48 { 49 dir->header.ctl_table[0].child = NULL; 50 } 51 52 void proc_sys_poll_notify(struct ctl_table_poll *poll) 53 { 54 if (!poll) 55 return; 56 57 atomic_inc(&poll->event); 58 wake_up_interruptible(&poll->wait); 59 } 60 61 static struct ctl_table root_table[] = { 62 { 63 .procname = "", 64 .mode = S_IFDIR|S_IRUGO|S_IXUGO, 65 }, 66 { } 67 }; 68 static struct ctl_table_root sysctl_table_root = { 69 .default_set.dir.header = { 70 {{.count = 1, 71 .nreg = 1, 72 .ctl_table = root_table }}, 73 .ctl_table_arg = root_table, 74 .root = &sysctl_table_root, 75 .set = &sysctl_table_root.default_set, 76 }, 77 }; 78 79 static DEFINE_SPINLOCK(sysctl_lock); 80 81 static void drop_sysctl_table(struct ctl_table_header *header); 82 static int sysctl_follow_link(struct ctl_table_header **phead, 83 struct ctl_table **pentry); 84 static int insert_links(struct ctl_table_header *head); 85 static void put_links(struct ctl_table_header *header); 86 87 static void sysctl_print_dir(struct ctl_dir *dir) 88 { 89 if (dir->header.parent) 90 sysctl_print_dir(dir->header.parent); 91 pr_cont("%s/", dir->header.ctl_table[0].procname); 92 } 93 94 static int namecmp(const char *name1, int len1, const char *name2, int len2) 95 { 96 int minlen; 97 int cmp; 98 99 minlen = len1; 100 if (minlen > len2) 101 minlen = len2; 102 103 cmp = memcmp(name1, name2, minlen); 104 if (cmp == 0) 105 cmp = len1 - len2; 106 return cmp; 107 } 108 109 /* Called under sysctl_lock */ 110 static struct ctl_table *find_entry(struct ctl_table_header **phead, 111 struct ctl_dir *dir, const char *name, int namelen) 112 { 113 struct ctl_table_header *head; 114 struct ctl_table *entry; 115 struct rb_node *node = dir->root.rb_node; 116 117 while (node) 118 { 119 struct ctl_node *ctl_node; 120 const char *procname; 121 int cmp; 122 123 ctl_node = rb_entry(node, struct ctl_node, node); 124 head = ctl_node->header; 125 entry = &head->ctl_table[ctl_node - head->node]; 126 procname = entry->procname; 127 128 cmp = namecmp(name, namelen, procname, strlen(procname)); 129 if (cmp < 0) 130 node = node->rb_left; 131 else if (cmp > 0) 132 node = node->rb_right; 133 else { 134 *phead = head; 135 return entry; 136 } 137 } 138 return NULL; 139 } 140 141 static int insert_entry(struct ctl_table_header *head, struct ctl_table *entry) 142 { 143 struct rb_node *node = &head->node[entry - head->ctl_table].node; 144 struct rb_node **p = &head->parent->root.rb_node; 145 struct rb_node *parent = NULL; 146 const char *name = entry->procname; 147 int namelen = strlen(name); 148 149 while (*p) { 150 struct ctl_table_header *parent_head; 151 struct ctl_table *parent_entry; 152 struct ctl_node *parent_node; 153 const char *parent_name; 154 int cmp; 155 156 parent = *p; 157 parent_node = rb_entry(parent, struct ctl_node, node); 158 parent_head = parent_node->header; 159 parent_entry = &parent_head->ctl_table[parent_node - parent_head->node]; 160 parent_name = parent_entry->procname; 161 162 cmp = namecmp(name, namelen, parent_name, strlen(parent_name)); 163 if (cmp < 0) 164 p = &(*p)->rb_left; 165 else if (cmp > 0) 166 p = &(*p)->rb_right; 167 else { 168 pr_err("sysctl duplicate entry: "); 169 sysctl_print_dir(head->parent); 170 pr_cont("/%s\n", entry->procname); 171 return -EEXIST; 172 } 173 } 174 175 rb_link_node(node, parent, p); 176 rb_insert_color(node, &head->parent->root); 177 return 0; 178 } 179 180 static void erase_entry(struct ctl_table_header *head, struct ctl_table *entry) 181 { 182 struct rb_node *node = &head->node[entry - head->ctl_table].node; 183 184 rb_erase(node, &head->parent->root); 185 } 186 187 static void init_header(struct ctl_table_header *head, 188 struct ctl_table_root *root, struct ctl_table_set *set, 189 struct ctl_node *node, struct ctl_table *table) 190 { 191 head->ctl_table = table; 192 head->ctl_table_arg = table; 193 head->used = 0; 194 head->count = 1; 195 head->nreg = 1; 196 head->unregistering = NULL; 197 head->root = root; 198 head->set = set; 199 head->parent = NULL; 200 head->node = node; 201 INIT_HLIST_HEAD(&head->inodes); 202 if (node) { 203 struct ctl_table *entry; 204 for (entry = table; entry->procname; entry++, node++) 205 node->header = head; 206 } 207 } 208 209 static void erase_header(struct ctl_table_header *head) 210 { 211 struct ctl_table *entry; 212 for (entry = head->ctl_table; entry->procname; entry++) 213 erase_entry(head, entry); 214 } 215 216 static int insert_header(struct ctl_dir *dir, struct ctl_table_header *header) 217 { 218 struct ctl_table *entry; 219 int err; 220 221 /* Is this a permanently empty directory? */ 222 if (is_empty_dir(&dir->header)) 223 return -EROFS; 224 225 /* Am I creating a permanently empty directory? */ 226 if (header->ctl_table == sysctl_mount_point) { 227 if (!RB_EMPTY_ROOT(&dir->root)) 228 return -EINVAL; 229 set_empty_dir(dir); 230 } 231 232 dir->header.nreg++; 233 header->parent = dir; 234 err = insert_links(header); 235 if (err) 236 goto fail_links; 237 for (entry = header->ctl_table; entry->procname; entry++) { 238 err = insert_entry(header, entry); 239 if (err) 240 goto fail; 241 } 242 return 0; 243 fail: 244 erase_header(header); 245 put_links(header); 246 fail_links: 247 if (header->ctl_table == sysctl_mount_point) 248 clear_empty_dir(dir); 249 header->parent = NULL; 250 drop_sysctl_table(&dir->header); 251 return err; 252 } 253 254 /* called under sysctl_lock */ 255 static int use_table(struct ctl_table_header *p) 256 { 257 if (unlikely(p->unregistering)) 258 return 0; 259 p->used++; 260 return 1; 261 } 262 263 /* called under sysctl_lock */ 264 static void unuse_table(struct ctl_table_header *p) 265 { 266 if (!--p->used) 267 if (unlikely(p->unregistering)) 268 complete(p->unregistering); 269 } 270 271 static void proc_sys_invalidate_dcache(struct ctl_table_header *head) 272 { 273 proc_invalidate_siblings_dcache(&head->inodes, &sysctl_lock); 274 } 275 276 /* called under sysctl_lock, will reacquire if has to wait */ 277 static void start_unregistering(struct ctl_table_header *p) 278 { 279 /* 280 * if p->used is 0, nobody will ever touch that entry again; 281 * we'll eliminate all paths to it before dropping sysctl_lock 282 */ 283 if (unlikely(p->used)) { 284 struct completion wait; 285 init_completion(&wait); 286 p->unregistering = &wait; 287 spin_unlock(&sysctl_lock); 288 wait_for_completion(&wait); 289 } else { 290 /* anything non-NULL; we'll never dereference it */ 291 p->unregistering = ERR_PTR(-EINVAL); 292 spin_unlock(&sysctl_lock); 293 } 294 /* 295 * Invalidate dentries for unregistered sysctls: namespaced sysctls 296 * can have duplicate names and contaminate dcache very badly. 297 */ 298 proc_sys_invalidate_dcache(p); 299 /* 300 * do not remove from the list until nobody holds it; walking the 301 * list in do_sysctl() relies on that. 302 */ 303 spin_lock(&sysctl_lock); 304 erase_header(p); 305 } 306 307 static struct ctl_table_header *sysctl_head_grab(struct ctl_table_header *head) 308 { 309 BUG_ON(!head); 310 spin_lock(&sysctl_lock); 311 if (!use_table(head)) 312 head = ERR_PTR(-ENOENT); 313 spin_unlock(&sysctl_lock); 314 return head; 315 } 316 317 static void sysctl_head_finish(struct ctl_table_header *head) 318 { 319 if (!head) 320 return; 321 spin_lock(&sysctl_lock); 322 unuse_table(head); 323 spin_unlock(&sysctl_lock); 324 } 325 326 static struct ctl_table_set * 327 lookup_header_set(struct ctl_table_root *root) 328 { 329 struct ctl_table_set *set = &root->default_set; 330 if (root->lookup) 331 set = root->lookup(root); 332 return set; 333 } 334 335 static struct ctl_table *lookup_entry(struct ctl_table_header **phead, 336 struct ctl_dir *dir, 337 const char *name, int namelen) 338 { 339 struct ctl_table_header *head; 340 struct ctl_table *entry; 341 342 spin_lock(&sysctl_lock); 343 entry = find_entry(&head, dir, name, namelen); 344 if (entry && use_table(head)) 345 *phead = head; 346 else 347 entry = NULL; 348 spin_unlock(&sysctl_lock); 349 return entry; 350 } 351 352 static struct ctl_node *first_usable_entry(struct rb_node *node) 353 { 354 struct ctl_node *ctl_node; 355 356 for (;node; node = rb_next(node)) { 357 ctl_node = rb_entry(node, struct ctl_node, node); 358 if (use_table(ctl_node->header)) 359 return ctl_node; 360 } 361 return NULL; 362 } 363 364 static void first_entry(struct ctl_dir *dir, 365 struct ctl_table_header **phead, struct ctl_table **pentry) 366 { 367 struct ctl_table_header *head = NULL; 368 struct ctl_table *entry = NULL; 369 struct ctl_node *ctl_node; 370 371 spin_lock(&sysctl_lock); 372 ctl_node = first_usable_entry(rb_first(&dir->root)); 373 spin_unlock(&sysctl_lock); 374 if (ctl_node) { 375 head = ctl_node->header; 376 entry = &head->ctl_table[ctl_node - head->node]; 377 } 378 *phead = head; 379 *pentry = entry; 380 } 381 382 static void next_entry(struct ctl_table_header **phead, struct ctl_table **pentry) 383 { 384 struct ctl_table_header *head = *phead; 385 struct ctl_table *entry = *pentry; 386 struct ctl_node *ctl_node = &head->node[entry - head->ctl_table]; 387 388 spin_lock(&sysctl_lock); 389 unuse_table(head); 390 391 ctl_node = first_usable_entry(rb_next(&ctl_node->node)); 392 spin_unlock(&sysctl_lock); 393 head = NULL; 394 if (ctl_node) { 395 head = ctl_node->header; 396 entry = &head->ctl_table[ctl_node - head->node]; 397 } 398 *phead = head; 399 *pentry = entry; 400 } 401 402 /* 403 * sysctl_perm does NOT grant the superuser all rights automatically, because 404 * some sysctl variables are readonly even to root. 405 */ 406 407 static int test_perm(int mode, int op) 408 { 409 if (uid_eq(current_euid(), GLOBAL_ROOT_UID)) 410 mode >>= 6; 411 else if (in_egroup_p(GLOBAL_ROOT_GID)) 412 mode >>= 3; 413 if ((op & ~mode & (MAY_READ|MAY_WRITE|MAY_EXEC)) == 0) 414 return 0; 415 return -EACCES; 416 } 417 418 static int sysctl_perm(struct ctl_table_header *head, struct ctl_table *table, int op) 419 { 420 struct ctl_table_root *root = head->root; 421 int mode; 422 423 if (root->permissions) 424 mode = root->permissions(head, table); 425 else 426 mode = table->mode; 427 428 return test_perm(mode, op); 429 } 430 431 static struct inode *proc_sys_make_inode(struct super_block *sb, 432 struct ctl_table_header *head, struct ctl_table *table) 433 { 434 struct ctl_table_root *root = head->root; 435 struct inode *inode; 436 struct proc_inode *ei; 437 438 inode = new_inode(sb); 439 if (!inode) 440 return ERR_PTR(-ENOMEM); 441 442 inode->i_ino = get_next_ino(); 443 444 ei = PROC_I(inode); 445 446 spin_lock(&sysctl_lock); 447 if (unlikely(head->unregistering)) { 448 spin_unlock(&sysctl_lock); 449 iput(inode); 450 return ERR_PTR(-ENOENT); 451 } 452 ei->sysctl = head; 453 ei->sysctl_entry = table; 454 hlist_add_head_rcu(&ei->sibling_inodes, &head->inodes); 455 head->count++; 456 spin_unlock(&sysctl_lock); 457 458 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 459 inode->i_mode = table->mode; 460 if (!S_ISDIR(table->mode)) { 461 inode->i_mode |= S_IFREG; 462 inode->i_op = &proc_sys_inode_operations; 463 inode->i_fop = &proc_sys_file_operations; 464 } else { 465 inode->i_mode |= S_IFDIR; 466 inode->i_op = &proc_sys_dir_operations; 467 inode->i_fop = &proc_sys_dir_file_operations; 468 if (is_empty_dir(head)) 469 make_empty_dir_inode(inode); 470 } 471 472 if (root->set_ownership) 473 root->set_ownership(head, table, &inode->i_uid, &inode->i_gid); 474 else { 475 inode->i_uid = GLOBAL_ROOT_UID; 476 inode->i_gid = GLOBAL_ROOT_GID; 477 } 478 479 return inode; 480 } 481 482 void proc_sys_evict_inode(struct inode *inode, struct ctl_table_header *head) 483 { 484 spin_lock(&sysctl_lock); 485 hlist_del_init_rcu(&PROC_I(inode)->sibling_inodes); 486 if (!--head->count) 487 kfree_rcu(head, rcu); 488 spin_unlock(&sysctl_lock); 489 } 490 491 static struct ctl_table_header *grab_header(struct inode *inode) 492 { 493 struct ctl_table_header *head = PROC_I(inode)->sysctl; 494 if (!head) 495 head = &sysctl_table_root.default_set.dir.header; 496 return sysctl_head_grab(head); 497 } 498 499 static struct dentry *proc_sys_lookup(struct inode *dir, struct dentry *dentry, 500 unsigned int flags) 501 { 502 struct ctl_table_header *head = grab_header(dir); 503 struct ctl_table_header *h = NULL; 504 const struct qstr *name = &dentry->d_name; 505 struct ctl_table *p; 506 struct inode *inode; 507 struct dentry *err = ERR_PTR(-ENOENT); 508 struct ctl_dir *ctl_dir; 509 int ret; 510 511 if (IS_ERR(head)) 512 return ERR_CAST(head); 513 514 ctl_dir = container_of(head, struct ctl_dir, header); 515 516 p = lookup_entry(&h, ctl_dir, name->name, name->len); 517 if (!p) 518 goto out; 519 520 if (S_ISLNK(p->mode)) { 521 ret = sysctl_follow_link(&h, &p); 522 err = ERR_PTR(ret); 523 if (ret) 524 goto out; 525 } 526 527 inode = proc_sys_make_inode(dir->i_sb, h ? h : head, p); 528 if (IS_ERR(inode)) { 529 err = ERR_CAST(inode); 530 goto out; 531 } 532 533 d_set_d_op(dentry, &proc_sys_dentry_operations); 534 err = d_splice_alias(inode, dentry); 535 536 out: 537 if (h) 538 sysctl_head_finish(h); 539 sysctl_head_finish(head); 540 return err; 541 } 542 543 static ssize_t proc_sys_call_handler(struct file *filp, void __user *ubuf, 544 size_t count, loff_t *ppos, int write) 545 { 546 struct inode *inode = file_inode(filp); 547 struct ctl_table_header *head = grab_header(inode); 548 struct ctl_table *table = PROC_I(inode)->sysctl_entry; 549 void *kbuf; 550 ssize_t error; 551 552 if (IS_ERR(head)) 553 return PTR_ERR(head); 554 555 /* 556 * At this point we know that the sysctl was not unregistered 557 * and won't be until we finish. 558 */ 559 error = -EPERM; 560 if (sysctl_perm(head, table, write ? MAY_WRITE : MAY_READ)) 561 goto out; 562 563 /* if that can happen at all, it should be -EINVAL, not -EISDIR */ 564 error = -EINVAL; 565 if (!table->proc_handler) 566 goto out; 567 568 /* don't even try if the size is too large */ 569 if (count > KMALLOC_MAX_SIZE) 570 return -ENOMEM; 571 572 if (write) { 573 kbuf = memdup_user_nul(ubuf, count); 574 if (IS_ERR(kbuf)) { 575 error = PTR_ERR(kbuf); 576 goto out; 577 } 578 } else { 579 error = -ENOMEM; 580 kbuf = kzalloc(count, GFP_KERNEL); 581 if (!kbuf) 582 goto out; 583 } 584 585 error = BPF_CGROUP_RUN_PROG_SYSCTL(head, table, write, &kbuf, &count, 586 ppos); 587 if (error) 588 goto out_free_buf; 589 590 /* careful: calling conventions are nasty here */ 591 error = table->proc_handler(table, write, kbuf, &count, ppos); 592 if (error) 593 goto out_free_buf; 594 595 if (!write) { 596 error = -EFAULT; 597 if (copy_to_user(ubuf, kbuf, count)) 598 goto out_free_buf; 599 } 600 601 error = count; 602 out_free_buf: 603 kfree(kbuf); 604 out: 605 sysctl_head_finish(head); 606 607 return error; 608 } 609 610 static ssize_t proc_sys_read(struct file *filp, char __user *buf, 611 size_t count, loff_t *ppos) 612 { 613 return proc_sys_call_handler(filp, (void __user *)buf, count, ppos, 0); 614 } 615 616 static ssize_t proc_sys_write(struct file *filp, const char __user *buf, 617 size_t count, loff_t *ppos) 618 { 619 return proc_sys_call_handler(filp, (void __user *)buf, count, ppos, 1); 620 } 621 622 static int proc_sys_open(struct inode *inode, struct file *filp) 623 { 624 struct ctl_table_header *head = grab_header(inode); 625 struct ctl_table *table = PROC_I(inode)->sysctl_entry; 626 627 /* sysctl was unregistered */ 628 if (IS_ERR(head)) 629 return PTR_ERR(head); 630 631 if (table->poll) 632 filp->private_data = proc_sys_poll_event(table->poll); 633 634 sysctl_head_finish(head); 635 636 return 0; 637 } 638 639 static __poll_t proc_sys_poll(struct file *filp, poll_table *wait) 640 { 641 struct inode *inode = file_inode(filp); 642 struct ctl_table_header *head = grab_header(inode); 643 struct ctl_table *table = PROC_I(inode)->sysctl_entry; 644 __poll_t ret = DEFAULT_POLLMASK; 645 unsigned long event; 646 647 /* sysctl was unregistered */ 648 if (IS_ERR(head)) 649 return EPOLLERR | EPOLLHUP; 650 651 if (!table->proc_handler) 652 goto out; 653 654 if (!table->poll) 655 goto out; 656 657 event = (unsigned long)filp->private_data; 658 poll_wait(filp, &table->poll->wait, wait); 659 660 if (event != atomic_read(&table->poll->event)) { 661 filp->private_data = proc_sys_poll_event(table->poll); 662 ret = EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 663 } 664 665 out: 666 sysctl_head_finish(head); 667 668 return ret; 669 } 670 671 static bool proc_sys_fill_cache(struct file *file, 672 struct dir_context *ctx, 673 struct ctl_table_header *head, 674 struct ctl_table *table) 675 { 676 struct dentry *child, *dir = file->f_path.dentry; 677 struct inode *inode; 678 struct qstr qname; 679 ino_t ino = 0; 680 unsigned type = DT_UNKNOWN; 681 682 qname.name = table->procname; 683 qname.len = strlen(table->procname); 684 qname.hash = full_name_hash(dir, qname.name, qname.len); 685 686 child = d_lookup(dir, &qname); 687 if (!child) { 688 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 689 child = d_alloc_parallel(dir, &qname, &wq); 690 if (IS_ERR(child)) 691 return false; 692 if (d_in_lookup(child)) { 693 struct dentry *res; 694 inode = proc_sys_make_inode(dir->d_sb, head, table); 695 if (IS_ERR(inode)) { 696 d_lookup_done(child); 697 dput(child); 698 return false; 699 } 700 d_set_d_op(child, &proc_sys_dentry_operations); 701 res = d_splice_alias(inode, child); 702 d_lookup_done(child); 703 if (unlikely(res)) { 704 if (IS_ERR(res)) { 705 dput(child); 706 return false; 707 } 708 dput(child); 709 child = res; 710 } 711 } 712 } 713 inode = d_inode(child); 714 ino = inode->i_ino; 715 type = inode->i_mode >> 12; 716 dput(child); 717 return dir_emit(ctx, qname.name, qname.len, ino, type); 718 } 719 720 static bool proc_sys_link_fill_cache(struct file *file, 721 struct dir_context *ctx, 722 struct ctl_table_header *head, 723 struct ctl_table *table) 724 { 725 bool ret = true; 726 727 head = sysctl_head_grab(head); 728 if (IS_ERR(head)) 729 return false; 730 731 /* It is not an error if we can not follow the link ignore it */ 732 if (sysctl_follow_link(&head, &table)) 733 goto out; 734 735 ret = proc_sys_fill_cache(file, ctx, head, table); 736 out: 737 sysctl_head_finish(head); 738 return ret; 739 } 740 741 static int scan(struct ctl_table_header *head, struct ctl_table *table, 742 unsigned long *pos, struct file *file, 743 struct dir_context *ctx) 744 { 745 bool res; 746 747 if ((*pos)++ < ctx->pos) 748 return true; 749 750 if (unlikely(S_ISLNK(table->mode))) 751 res = proc_sys_link_fill_cache(file, ctx, head, table); 752 else 753 res = proc_sys_fill_cache(file, ctx, head, table); 754 755 if (res) 756 ctx->pos = *pos; 757 758 return res; 759 } 760 761 static int proc_sys_readdir(struct file *file, struct dir_context *ctx) 762 { 763 struct ctl_table_header *head = grab_header(file_inode(file)); 764 struct ctl_table_header *h = NULL; 765 struct ctl_table *entry; 766 struct ctl_dir *ctl_dir; 767 unsigned long pos; 768 769 if (IS_ERR(head)) 770 return PTR_ERR(head); 771 772 ctl_dir = container_of(head, struct ctl_dir, header); 773 774 if (!dir_emit_dots(file, ctx)) 775 goto out; 776 777 pos = 2; 778 779 for (first_entry(ctl_dir, &h, &entry); h; next_entry(&h, &entry)) { 780 if (!scan(h, entry, &pos, file, ctx)) { 781 sysctl_head_finish(h); 782 break; 783 } 784 } 785 out: 786 sysctl_head_finish(head); 787 return 0; 788 } 789 790 static int proc_sys_permission(struct inode *inode, int mask) 791 { 792 /* 793 * sysctl entries that are not writeable, 794 * are _NOT_ writeable, capabilities or not. 795 */ 796 struct ctl_table_header *head; 797 struct ctl_table *table; 798 int error; 799 800 /* Executable files are not allowed under /proc/sys/ */ 801 if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode)) 802 return -EACCES; 803 804 head = grab_header(inode); 805 if (IS_ERR(head)) 806 return PTR_ERR(head); 807 808 table = PROC_I(inode)->sysctl_entry; 809 if (!table) /* global root - r-xr-xr-x */ 810 error = mask & MAY_WRITE ? -EACCES : 0; 811 else /* Use the permissions on the sysctl table entry */ 812 error = sysctl_perm(head, table, mask & ~MAY_NOT_BLOCK); 813 814 sysctl_head_finish(head); 815 return error; 816 } 817 818 static int proc_sys_setattr(struct dentry *dentry, struct iattr *attr) 819 { 820 struct inode *inode = d_inode(dentry); 821 int error; 822 823 if (attr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID)) 824 return -EPERM; 825 826 error = setattr_prepare(dentry, attr); 827 if (error) 828 return error; 829 830 setattr_copy(inode, attr); 831 mark_inode_dirty(inode); 832 return 0; 833 } 834 835 static int proc_sys_getattr(const struct path *path, struct kstat *stat, 836 u32 request_mask, unsigned int query_flags) 837 { 838 struct inode *inode = d_inode(path->dentry); 839 struct ctl_table_header *head = grab_header(inode); 840 struct ctl_table *table = PROC_I(inode)->sysctl_entry; 841 842 if (IS_ERR(head)) 843 return PTR_ERR(head); 844 845 generic_fillattr(inode, stat); 846 if (table) 847 stat->mode = (stat->mode & S_IFMT) | table->mode; 848 849 sysctl_head_finish(head); 850 return 0; 851 } 852 853 static const struct file_operations proc_sys_file_operations = { 854 .open = proc_sys_open, 855 .poll = proc_sys_poll, 856 .read = proc_sys_read, 857 .write = proc_sys_write, 858 .llseek = default_llseek, 859 }; 860 861 static const struct file_operations proc_sys_dir_file_operations = { 862 .read = generic_read_dir, 863 .iterate_shared = proc_sys_readdir, 864 .llseek = generic_file_llseek, 865 }; 866 867 static const struct inode_operations proc_sys_inode_operations = { 868 .permission = proc_sys_permission, 869 .setattr = proc_sys_setattr, 870 .getattr = proc_sys_getattr, 871 }; 872 873 static const struct inode_operations proc_sys_dir_operations = { 874 .lookup = proc_sys_lookup, 875 .permission = proc_sys_permission, 876 .setattr = proc_sys_setattr, 877 .getattr = proc_sys_getattr, 878 }; 879 880 static int proc_sys_revalidate(struct dentry *dentry, unsigned int flags) 881 { 882 if (flags & LOOKUP_RCU) 883 return -ECHILD; 884 return !PROC_I(d_inode(dentry))->sysctl->unregistering; 885 } 886 887 static int proc_sys_delete(const struct dentry *dentry) 888 { 889 return !!PROC_I(d_inode(dentry))->sysctl->unregistering; 890 } 891 892 static int sysctl_is_seen(struct ctl_table_header *p) 893 { 894 struct ctl_table_set *set = p->set; 895 int res; 896 spin_lock(&sysctl_lock); 897 if (p->unregistering) 898 res = 0; 899 else if (!set->is_seen) 900 res = 1; 901 else 902 res = set->is_seen(set); 903 spin_unlock(&sysctl_lock); 904 return res; 905 } 906 907 static int proc_sys_compare(const struct dentry *dentry, 908 unsigned int len, const char *str, const struct qstr *name) 909 { 910 struct ctl_table_header *head; 911 struct inode *inode; 912 913 /* Although proc doesn't have negative dentries, rcu-walk means 914 * that inode here can be NULL */ 915 /* AV: can it, indeed? */ 916 inode = d_inode_rcu(dentry); 917 if (!inode) 918 return 1; 919 if (name->len != len) 920 return 1; 921 if (memcmp(name->name, str, len)) 922 return 1; 923 head = rcu_dereference(PROC_I(inode)->sysctl); 924 return !head || !sysctl_is_seen(head); 925 } 926 927 static const struct dentry_operations proc_sys_dentry_operations = { 928 .d_revalidate = proc_sys_revalidate, 929 .d_delete = proc_sys_delete, 930 .d_compare = proc_sys_compare, 931 }; 932 933 static struct ctl_dir *find_subdir(struct ctl_dir *dir, 934 const char *name, int namelen) 935 { 936 struct ctl_table_header *head; 937 struct ctl_table *entry; 938 939 entry = find_entry(&head, dir, name, namelen); 940 if (!entry) 941 return ERR_PTR(-ENOENT); 942 if (!S_ISDIR(entry->mode)) 943 return ERR_PTR(-ENOTDIR); 944 return container_of(head, struct ctl_dir, header); 945 } 946 947 static struct ctl_dir *new_dir(struct ctl_table_set *set, 948 const char *name, int namelen) 949 { 950 struct ctl_table *table; 951 struct ctl_dir *new; 952 struct ctl_node *node; 953 char *new_name; 954 955 new = kzalloc(sizeof(*new) + sizeof(struct ctl_node) + 956 sizeof(struct ctl_table)*2 + namelen + 1, 957 GFP_KERNEL); 958 if (!new) 959 return NULL; 960 961 node = (struct ctl_node *)(new + 1); 962 table = (struct ctl_table *)(node + 1); 963 new_name = (char *)(table + 2); 964 memcpy(new_name, name, namelen); 965 new_name[namelen] = '\0'; 966 table[0].procname = new_name; 967 table[0].mode = S_IFDIR|S_IRUGO|S_IXUGO; 968 init_header(&new->header, set->dir.header.root, set, node, table); 969 970 return new; 971 } 972 973 /** 974 * get_subdir - find or create a subdir with the specified name. 975 * @dir: Directory to create the subdirectory in 976 * @name: The name of the subdirectory to find or create 977 * @namelen: The length of name 978 * 979 * Takes a directory with an elevated reference count so we know that 980 * if we drop the lock the directory will not go away. Upon success 981 * the reference is moved from @dir to the returned subdirectory. 982 * Upon error an error code is returned and the reference on @dir is 983 * simply dropped. 984 */ 985 static struct ctl_dir *get_subdir(struct ctl_dir *dir, 986 const char *name, int namelen) 987 { 988 struct ctl_table_set *set = dir->header.set; 989 struct ctl_dir *subdir, *new = NULL; 990 int err; 991 992 spin_lock(&sysctl_lock); 993 subdir = find_subdir(dir, name, namelen); 994 if (!IS_ERR(subdir)) 995 goto found; 996 if (PTR_ERR(subdir) != -ENOENT) 997 goto failed; 998 999 spin_unlock(&sysctl_lock); 1000 new = new_dir(set, name, namelen); 1001 spin_lock(&sysctl_lock); 1002 subdir = ERR_PTR(-ENOMEM); 1003 if (!new) 1004 goto failed; 1005 1006 /* Was the subdir added while we dropped the lock? */ 1007 subdir = find_subdir(dir, name, namelen); 1008 if (!IS_ERR(subdir)) 1009 goto found; 1010 if (PTR_ERR(subdir) != -ENOENT) 1011 goto failed; 1012 1013 /* Nope. Use the our freshly made directory entry. */ 1014 err = insert_header(dir, &new->header); 1015 subdir = ERR_PTR(err); 1016 if (err) 1017 goto failed; 1018 subdir = new; 1019 found: 1020 subdir->header.nreg++; 1021 failed: 1022 if (IS_ERR(subdir)) { 1023 pr_err("sysctl could not get directory: "); 1024 sysctl_print_dir(dir); 1025 pr_cont("/%*.*s %ld\n", 1026 namelen, namelen, name, PTR_ERR(subdir)); 1027 } 1028 drop_sysctl_table(&dir->header); 1029 if (new) 1030 drop_sysctl_table(&new->header); 1031 spin_unlock(&sysctl_lock); 1032 return subdir; 1033 } 1034 1035 static struct ctl_dir *xlate_dir(struct ctl_table_set *set, struct ctl_dir *dir) 1036 { 1037 struct ctl_dir *parent; 1038 const char *procname; 1039 if (!dir->header.parent) 1040 return &set->dir; 1041 parent = xlate_dir(set, dir->header.parent); 1042 if (IS_ERR(parent)) 1043 return parent; 1044 procname = dir->header.ctl_table[0].procname; 1045 return find_subdir(parent, procname, strlen(procname)); 1046 } 1047 1048 static int sysctl_follow_link(struct ctl_table_header **phead, 1049 struct ctl_table **pentry) 1050 { 1051 struct ctl_table_header *head; 1052 struct ctl_table_root *root; 1053 struct ctl_table_set *set; 1054 struct ctl_table *entry; 1055 struct ctl_dir *dir; 1056 int ret; 1057 1058 ret = 0; 1059 spin_lock(&sysctl_lock); 1060 root = (*pentry)->data; 1061 set = lookup_header_set(root); 1062 dir = xlate_dir(set, (*phead)->parent); 1063 if (IS_ERR(dir)) 1064 ret = PTR_ERR(dir); 1065 else { 1066 const char *procname = (*pentry)->procname; 1067 head = NULL; 1068 entry = find_entry(&head, dir, procname, strlen(procname)); 1069 ret = -ENOENT; 1070 if (entry && use_table(head)) { 1071 unuse_table(*phead); 1072 *phead = head; 1073 *pentry = entry; 1074 ret = 0; 1075 } 1076 } 1077 1078 spin_unlock(&sysctl_lock); 1079 return ret; 1080 } 1081 1082 static int sysctl_err(const char *path, struct ctl_table *table, char *fmt, ...) 1083 { 1084 struct va_format vaf; 1085 va_list args; 1086 1087 va_start(args, fmt); 1088 vaf.fmt = fmt; 1089 vaf.va = &args; 1090 1091 pr_err("sysctl table check failed: %s/%s %pV\n", 1092 path, table->procname, &vaf); 1093 1094 va_end(args); 1095 return -EINVAL; 1096 } 1097 1098 static int sysctl_check_table_array(const char *path, struct ctl_table *table) 1099 { 1100 int err = 0; 1101 1102 if ((table->proc_handler == proc_douintvec) || 1103 (table->proc_handler == proc_douintvec_minmax)) { 1104 if (table->maxlen != sizeof(unsigned int)) 1105 err |= sysctl_err(path, table, "array not allowed"); 1106 } 1107 1108 return err; 1109 } 1110 1111 static int sysctl_check_table(const char *path, struct ctl_table *table) 1112 { 1113 int err = 0; 1114 for (; table->procname; table++) { 1115 if (table->child) 1116 err |= sysctl_err(path, table, "Not a file"); 1117 1118 if ((table->proc_handler == proc_dostring) || 1119 (table->proc_handler == proc_dointvec) || 1120 (table->proc_handler == proc_douintvec) || 1121 (table->proc_handler == proc_douintvec_minmax) || 1122 (table->proc_handler == proc_dointvec_minmax) || 1123 (table->proc_handler == proc_dointvec_jiffies) || 1124 (table->proc_handler == proc_dointvec_userhz_jiffies) || 1125 (table->proc_handler == proc_dointvec_ms_jiffies) || 1126 (table->proc_handler == proc_doulongvec_minmax) || 1127 (table->proc_handler == proc_doulongvec_ms_jiffies_minmax)) { 1128 if (!table->data) 1129 err |= sysctl_err(path, table, "No data"); 1130 if (!table->maxlen) 1131 err |= sysctl_err(path, table, "No maxlen"); 1132 else 1133 err |= sysctl_check_table_array(path, table); 1134 } 1135 if (!table->proc_handler) 1136 err |= sysctl_err(path, table, "No proc_handler"); 1137 1138 if ((table->mode & (S_IRUGO|S_IWUGO)) != table->mode) 1139 err |= sysctl_err(path, table, "bogus .mode 0%o", 1140 table->mode); 1141 } 1142 return err; 1143 } 1144 1145 static struct ctl_table_header *new_links(struct ctl_dir *dir, struct ctl_table *table, 1146 struct ctl_table_root *link_root) 1147 { 1148 struct ctl_table *link_table, *entry, *link; 1149 struct ctl_table_header *links; 1150 struct ctl_node *node; 1151 char *link_name; 1152 int nr_entries, name_bytes; 1153 1154 name_bytes = 0; 1155 nr_entries = 0; 1156 for (entry = table; entry->procname; entry++) { 1157 nr_entries++; 1158 name_bytes += strlen(entry->procname) + 1; 1159 } 1160 1161 links = kzalloc(sizeof(struct ctl_table_header) + 1162 sizeof(struct ctl_node)*nr_entries + 1163 sizeof(struct ctl_table)*(nr_entries + 1) + 1164 name_bytes, 1165 GFP_KERNEL); 1166 1167 if (!links) 1168 return NULL; 1169 1170 node = (struct ctl_node *)(links + 1); 1171 link_table = (struct ctl_table *)(node + nr_entries); 1172 link_name = (char *)&link_table[nr_entries + 1]; 1173 1174 for (link = link_table, entry = table; entry->procname; link++, entry++) { 1175 int len = strlen(entry->procname) + 1; 1176 memcpy(link_name, entry->procname, len); 1177 link->procname = link_name; 1178 link->mode = S_IFLNK|S_IRWXUGO; 1179 link->data = link_root; 1180 link_name += len; 1181 } 1182 init_header(links, dir->header.root, dir->header.set, node, link_table); 1183 links->nreg = nr_entries; 1184 1185 return links; 1186 } 1187 1188 static bool get_links(struct ctl_dir *dir, 1189 struct ctl_table *table, struct ctl_table_root *link_root) 1190 { 1191 struct ctl_table_header *head; 1192 struct ctl_table *entry, *link; 1193 1194 /* Are there links available for every entry in table? */ 1195 for (entry = table; entry->procname; entry++) { 1196 const char *procname = entry->procname; 1197 link = find_entry(&head, dir, procname, strlen(procname)); 1198 if (!link) 1199 return false; 1200 if (S_ISDIR(link->mode) && S_ISDIR(entry->mode)) 1201 continue; 1202 if (S_ISLNK(link->mode) && (link->data == link_root)) 1203 continue; 1204 return false; 1205 } 1206 1207 /* The checks passed. Increase the registration count on the links */ 1208 for (entry = table; entry->procname; entry++) { 1209 const char *procname = entry->procname; 1210 link = find_entry(&head, dir, procname, strlen(procname)); 1211 head->nreg++; 1212 } 1213 return true; 1214 } 1215 1216 static int insert_links(struct ctl_table_header *head) 1217 { 1218 struct ctl_table_set *root_set = &sysctl_table_root.default_set; 1219 struct ctl_dir *core_parent = NULL; 1220 struct ctl_table_header *links; 1221 int err; 1222 1223 if (head->set == root_set) 1224 return 0; 1225 1226 core_parent = xlate_dir(root_set, head->parent); 1227 if (IS_ERR(core_parent)) 1228 return 0; 1229 1230 if (get_links(core_parent, head->ctl_table, head->root)) 1231 return 0; 1232 1233 core_parent->header.nreg++; 1234 spin_unlock(&sysctl_lock); 1235 1236 links = new_links(core_parent, head->ctl_table, head->root); 1237 1238 spin_lock(&sysctl_lock); 1239 err = -ENOMEM; 1240 if (!links) 1241 goto out; 1242 1243 err = 0; 1244 if (get_links(core_parent, head->ctl_table, head->root)) { 1245 kfree(links); 1246 goto out; 1247 } 1248 1249 err = insert_header(core_parent, links); 1250 if (err) 1251 kfree(links); 1252 out: 1253 drop_sysctl_table(&core_parent->header); 1254 return err; 1255 } 1256 1257 /** 1258 * __register_sysctl_table - register a leaf sysctl table 1259 * @set: Sysctl tree to register on 1260 * @path: The path to the directory the sysctl table is in. 1261 * @table: the top-level table structure 1262 * 1263 * Register a sysctl table hierarchy. @table should be a filled in ctl_table 1264 * array. A completely 0 filled entry terminates the table. 1265 * 1266 * The members of the &struct ctl_table structure are used as follows: 1267 * 1268 * procname - the name of the sysctl file under /proc/sys. Set to %NULL to not 1269 * enter a sysctl file 1270 * 1271 * data - a pointer to data for use by proc_handler 1272 * 1273 * maxlen - the maximum size in bytes of the data 1274 * 1275 * mode - the file permissions for the /proc/sys file 1276 * 1277 * child - must be %NULL. 1278 * 1279 * proc_handler - the text handler routine (described below) 1280 * 1281 * extra1, extra2 - extra pointers usable by the proc handler routines 1282 * 1283 * Leaf nodes in the sysctl tree will be represented by a single file 1284 * under /proc; non-leaf nodes will be represented by directories. 1285 * 1286 * There must be a proc_handler routine for any terminal nodes. 1287 * Several default handlers are available to cover common cases - 1288 * 1289 * proc_dostring(), proc_dointvec(), proc_dointvec_jiffies(), 1290 * proc_dointvec_userhz_jiffies(), proc_dointvec_minmax(), 1291 * proc_doulongvec_ms_jiffies_minmax(), proc_doulongvec_minmax() 1292 * 1293 * It is the handler's job to read the input buffer from user memory 1294 * and process it. The handler should return 0 on success. 1295 * 1296 * This routine returns %NULL on a failure to register, and a pointer 1297 * to the table header on success. 1298 */ 1299 struct ctl_table_header *__register_sysctl_table( 1300 struct ctl_table_set *set, 1301 const char *path, struct ctl_table *table) 1302 { 1303 struct ctl_table_root *root = set->dir.header.root; 1304 struct ctl_table_header *header; 1305 const char *name, *nextname; 1306 struct ctl_dir *dir; 1307 struct ctl_table *entry; 1308 struct ctl_node *node; 1309 int nr_entries = 0; 1310 1311 for (entry = table; entry->procname; entry++) 1312 nr_entries++; 1313 1314 header = kzalloc(sizeof(struct ctl_table_header) + 1315 sizeof(struct ctl_node)*nr_entries, GFP_KERNEL); 1316 if (!header) 1317 return NULL; 1318 1319 node = (struct ctl_node *)(header + 1); 1320 init_header(header, root, set, node, table); 1321 if (sysctl_check_table(path, table)) 1322 goto fail; 1323 1324 spin_lock(&sysctl_lock); 1325 dir = &set->dir; 1326 /* Reference moved down the diretory tree get_subdir */ 1327 dir->header.nreg++; 1328 spin_unlock(&sysctl_lock); 1329 1330 /* Find the directory for the ctl_table */ 1331 for (name = path; name; name = nextname) { 1332 int namelen; 1333 nextname = strchr(name, '/'); 1334 if (nextname) { 1335 namelen = nextname - name; 1336 nextname++; 1337 } else { 1338 namelen = strlen(name); 1339 } 1340 if (namelen == 0) 1341 continue; 1342 1343 dir = get_subdir(dir, name, namelen); 1344 if (IS_ERR(dir)) 1345 goto fail; 1346 } 1347 1348 spin_lock(&sysctl_lock); 1349 if (insert_header(dir, header)) 1350 goto fail_put_dir_locked; 1351 1352 drop_sysctl_table(&dir->header); 1353 spin_unlock(&sysctl_lock); 1354 1355 return header; 1356 1357 fail_put_dir_locked: 1358 drop_sysctl_table(&dir->header); 1359 spin_unlock(&sysctl_lock); 1360 fail: 1361 kfree(header); 1362 dump_stack(); 1363 return NULL; 1364 } 1365 1366 /** 1367 * register_sysctl - register a sysctl table 1368 * @path: The path to the directory the sysctl table is in. 1369 * @table: the table structure 1370 * 1371 * Register a sysctl table. @table should be a filled in ctl_table 1372 * array. A completely 0 filled entry terminates the table. 1373 * 1374 * See __register_sysctl_table for more details. 1375 */ 1376 struct ctl_table_header *register_sysctl(const char *path, struct ctl_table *table) 1377 { 1378 return __register_sysctl_table(&sysctl_table_root.default_set, 1379 path, table); 1380 } 1381 EXPORT_SYMBOL(register_sysctl); 1382 1383 static char *append_path(const char *path, char *pos, const char *name) 1384 { 1385 int namelen; 1386 namelen = strlen(name); 1387 if (((pos - path) + namelen + 2) >= PATH_MAX) 1388 return NULL; 1389 memcpy(pos, name, namelen); 1390 pos[namelen] = '/'; 1391 pos[namelen + 1] = '\0'; 1392 pos += namelen + 1; 1393 return pos; 1394 } 1395 1396 static int count_subheaders(struct ctl_table *table) 1397 { 1398 int has_files = 0; 1399 int nr_subheaders = 0; 1400 struct ctl_table *entry; 1401 1402 /* special case: no directory and empty directory */ 1403 if (!table || !table->procname) 1404 return 1; 1405 1406 for (entry = table; entry->procname; entry++) { 1407 if (entry->child) 1408 nr_subheaders += count_subheaders(entry->child); 1409 else 1410 has_files = 1; 1411 } 1412 return nr_subheaders + has_files; 1413 } 1414 1415 static int register_leaf_sysctl_tables(const char *path, char *pos, 1416 struct ctl_table_header ***subheader, struct ctl_table_set *set, 1417 struct ctl_table *table) 1418 { 1419 struct ctl_table *ctl_table_arg = NULL; 1420 struct ctl_table *entry, *files; 1421 int nr_files = 0; 1422 int nr_dirs = 0; 1423 int err = -ENOMEM; 1424 1425 for (entry = table; entry->procname; entry++) { 1426 if (entry->child) 1427 nr_dirs++; 1428 else 1429 nr_files++; 1430 } 1431 1432 files = table; 1433 /* If there are mixed files and directories we need a new table */ 1434 if (nr_dirs && nr_files) { 1435 struct ctl_table *new; 1436 files = kcalloc(nr_files + 1, sizeof(struct ctl_table), 1437 GFP_KERNEL); 1438 if (!files) 1439 goto out; 1440 1441 ctl_table_arg = files; 1442 for (new = files, entry = table; entry->procname; entry++) { 1443 if (entry->child) 1444 continue; 1445 *new = *entry; 1446 new++; 1447 } 1448 } 1449 1450 /* Register everything except a directory full of subdirectories */ 1451 if (nr_files || !nr_dirs) { 1452 struct ctl_table_header *header; 1453 header = __register_sysctl_table(set, path, files); 1454 if (!header) { 1455 kfree(ctl_table_arg); 1456 goto out; 1457 } 1458 1459 /* Remember if we need to free the file table */ 1460 header->ctl_table_arg = ctl_table_arg; 1461 **subheader = header; 1462 (*subheader)++; 1463 } 1464 1465 /* Recurse into the subdirectories. */ 1466 for (entry = table; entry->procname; entry++) { 1467 char *child_pos; 1468 1469 if (!entry->child) 1470 continue; 1471 1472 err = -ENAMETOOLONG; 1473 child_pos = append_path(path, pos, entry->procname); 1474 if (!child_pos) 1475 goto out; 1476 1477 err = register_leaf_sysctl_tables(path, child_pos, subheader, 1478 set, entry->child); 1479 pos[0] = '\0'; 1480 if (err) 1481 goto out; 1482 } 1483 err = 0; 1484 out: 1485 /* On failure our caller will unregister all registered subheaders */ 1486 return err; 1487 } 1488 1489 /** 1490 * __register_sysctl_paths - register a sysctl table hierarchy 1491 * @set: Sysctl tree to register on 1492 * @path: The path to the directory the sysctl table is in. 1493 * @table: the top-level table structure 1494 * 1495 * Register a sysctl table hierarchy. @table should be a filled in ctl_table 1496 * array. A completely 0 filled entry terminates the table. 1497 * 1498 * See __register_sysctl_table for more details. 1499 */ 1500 struct ctl_table_header *__register_sysctl_paths( 1501 struct ctl_table_set *set, 1502 const struct ctl_path *path, struct ctl_table *table) 1503 { 1504 struct ctl_table *ctl_table_arg = table; 1505 int nr_subheaders = count_subheaders(table); 1506 struct ctl_table_header *header = NULL, **subheaders, **subheader; 1507 const struct ctl_path *component; 1508 char *new_path, *pos; 1509 1510 pos = new_path = kmalloc(PATH_MAX, GFP_KERNEL); 1511 if (!new_path) 1512 return NULL; 1513 1514 pos[0] = '\0'; 1515 for (component = path; component->procname; component++) { 1516 pos = append_path(new_path, pos, component->procname); 1517 if (!pos) 1518 goto out; 1519 } 1520 while (table->procname && table->child && !table[1].procname) { 1521 pos = append_path(new_path, pos, table->procname); 1522 if (!pos) 1523 goto out; 1524 table = table->child; 1525 } 1526 if (nr_subheaders == 1) { 1527 header = __register_sysctl_table(set, new_path, table); 1528 if (header) 1529 header->ctl_table_arg = ctl_table_arg; 1530 } else { 1531 header = kzalloc(sizeof(*header) + 1532 sizeof(*subheaders)*nr_subheaders, GFP_KERNEL); 1533 if (!header) 1534 goto out; 1535 1536 subheaders = (struct ctl_table_header **) (header + 1); 1537 subheader = subheaders; 1538 header->ctl_table_arg = ctl_table_arg; 1539 1540 if (register_leaf_sysctl_tables(new_path, pos, &subheader, 1541 set, table)) 1542 goto err_register_leaves; 1543 } 1544 1545 out: 1546 kfree(new_path); 1547 return header; 1548 1549 err_register_leaves: 1550 while (subheader > subheaders) { 1551 struct ctl_table_header *subh = *(--subheader); 1552 struct ctl_table *table = subh->ctl_table_arg; 1553 unregister_sysctl_table(subh); 1554 kfree(table); 1555 } 1556 kfree(header); 1557 header = NULL; 1558 goto out; 1559 } 1560 1561 /** 1562 * register_sysctl_table_path - register a sysctl table hierarchy 1563 * @path: The path to the directory the sysctl table is in. 1564 * @table: the top-level table structure 1565 * 1566 * Register a sysctl table hierarchy. @table should be a filled in ctl_table 1567 * array. A completely 0 filled entry terminates the table. 1568 * 1569 * See __register_sysctl_paths for more details. 1570 */ 1571 struct ctl_table_header *register_sysctl_paths(const struct ctl_path *path, 1572 struct ctl_table *table) 1573 { 1574 return __register_sysctl_paths(&sysctl_table_root.default_set, 1575 path, table); 1576 } 1577 EXPORT_SYMBOL(register_sysctl_paths); 1578 1579 /** 1580 * register_sysctl_table - register a sysctl table hierarchy 1581 * @table: the top-level table structure 1582 * 1583 * Register a sysctl table hierarchy. @table should be a filled in ctl_table 1584 * array. A completely 0 filled entry terminates the table. 1585 * 1586 * See register_sysctl_paths for more details. 1587 */ 1588 struct ctl_table_header *register_sysctl_table(struct ctl_table *table) 1589 { 1590 static const struct ctl_path null_path[] = { {} }; 1591 1592 return register_sysctl_paths(null_path, table); 1593 } 1594 EXPORT_SYMBOL(register_sysctl_table); 1595 1596 static void put_links(struct ctl_table_header *header) 1597 { 1598 struct ctl_table_set *root_set = &sysctl_table_root.default_set; 1599 struct ctl_table_root *root = header->root; 1600 struct ctl_dir *parent = header->parent; 1601 struct ctl_dir *core_parent; 1602 struct ctl_table *entry; 1603 1604 if (header->set == root_set) 1605 return; 1606 1607 core_parent = xlate_dir(root_set, parent); 1608 if (IS_ERR(core_parent)) 1609 return; 1610 1611 for (entry = header->ctl_table; entry->procname; entry++) { 1612 struct ctl_table_header *link_head; 1613 struct ctl_table *link; 1614 const char *name = entry->procname; 1615 1616 link = find_entry(&link_head, core_parent, name, strlen(name)); 1617 if (link && 1618 ((S_ISDIR(link->mode) && S_ISDIR(entry->mode)) || 1619 (S_ISLNK(link->mode) && (link->data == root)))) { 1620 drop_sysctl_table(link_head); 1621 } 1622 else { 1623 pr_err("sysctl link missing during unregister: "); 1624 sysctl_print_dir(parent); 1625 pr_cont("/%s\n", name); 1626 } 1627 } 1628 } 1629 1630 static void drop_sysctl_table(struct ctl_table_header *header) 1631 { 1632 struct ctl_dir *parent = header->parent; 1633 1634 if (--header->nreg) 1635 return; 1636 1637 if (parent) { 1638 put_links(header); 1639 start_unregistering(header); 1640 } 1641 1642 if (!--header->count) 1643 kfree_rcu(header, rcu); 1644 1645 if (parent) 1646 drop_sysctl_table(&parent->header); 1647 } 1648 1649 /** 1650 * unregister_sysctl_table - unregister a sysctl table hierarchy 1651 * @header: the header returned from register_sysctl_table 1652 * 1653 * Unregisters the sysctl table and all children. proc entries may not 1654 * actually be removed until they are no longer used by anyone. 1655 */ 1656 void unregister_sysctl_table(struct ctl_table_header * header) 1657 { 1658 int nr_subheaders; 1659 might_sleep(); 1660 1661 if (header == NULL) 1662 return; 1663 1664 nr_subheaders = count_subheaders(header->ctl_table_arg); 1665 if (unlikely(nr_subheaders > 1)) { 1666 struct ctl_table_header **subheaders; 1667 int i; 1668 1669 subheaders = (struct ctl_table_header **)(header + 1); 1670 for (i = nr_subheaders -1; i >= 0; i--) { 1671 struct ctl_table_header *subh = subheaders[i]; 1672 struct ctl_table *table = subh->ctl_table_arg; 1673 unregister_sysctl_table(subh); 1674 kfree(table); 1675 } 1676 kfree(header); 1677 return; 1678 } 1679 1680 spin_lock(&sysctl_lock); 1681 drop_sysctl_table(header); 1682 spin_unlock(&sysctl_lock); 1683 } 1684 EXPORT_SYMBOL(unregister_sysctl_table); 1685 1686 void setup_sysctl_set(struct ctl_table_set *set, 1687 struct ctl_table_root *root, 1688 int (*is_seen)(struct ctl_table_set *)) 1689 { 1690 memset(set, 0, sizeof(*set)); 1691 set->is_seen = is_seen; 1692 init_header(&set->dir.header, root, set, NULL, root_table); 1693 } 1694 1695 void retire_sysctl_set(struct ctl_table_set *set) 1696 { 1697 WARN_ON(!RB_EMPTY_ROOT(&set->dir.root)); 1698 } 1699 1700 int __init proc_sys_init(void) 1701 { 1702 struct proc_dir_entry *proc_sys_root; 1703 1704 proc_sys_root = proc_mkdir("sys", NULL); 1705 proc_sys_root->proc_iops = &proc_sys_dir_operations; 1706 proc_sys_root->proc_dir_ops = &proc_sys_dir_file_operations; 1707 proc_sys_root->nlink = 0; 1708 1709 return sysctl_init(); 1710 } 1711 1712 struct sysctl_alias { 1713 const char *kernel_param; 1714 const char *sysctl_param; 1715 }; 1716 1717 /* 1718 * Historically some settings had both sysctl and a command line parameter. 1719 * With the generic sysctl. parameter support, we can handle them at a single 1720 * place and only keep the historical name for compatibility. This is not meant 1721 * to add brand new aliases. When adding existing aliases, consider whether 1722 * the possibly different moment of changing the value (e.g. from early_param 1723 * to the moment do_sysctl_args() is called) is an issue for the specific 1724 * parameter. 1725 */ 1726 static const struct sysctl_alias sysctl_aliases[] = { 1727 {"hardlockup_all_cpu_backtrace", "kernel.hardlockup_all_cpu_backtrace" }, 1728 {"hung_task_panic", "kernel.hung_task_panic" }, 1729 {"numa_zonelist_order", "vm.numa_zonelist_order" }, 1730 {"softlockup_all_cpu_backtrace", "kernel.softlockup_all_cpu_backtrace" }, 1731 {"softlockup_panic", "kernel.softlockup_panic" }, 1732 { } 1733 }; 1734 1735 static const char *sysctl_find_alias(char *param) 1736 { 1737 const struct sysctl_alias *alias; 1738 1739 for (alias = &sysctl_aliases[0]; alias->kernel_param != NULL; alias++) { 1740 if (strcmp(alias->kernel_param, param) == 0) 1741 return alias->sysctl_param; 1742 } 1743 1744 return NULL; 1745 } 1746 1747 /* Set sysctl value passed on kernel command line. */ 1748 static int process_sysctl_arg(char *param, char *val, 1749 const char *unused, void *arg) 1750 { 1751 char *path; 1752 struct vfsmount **proc_mnt = arg; 1753 struct file_system_type *proc_fs_type; 1754 struct file *file; 1755 int len; 1756 int err; 1757 loff_t pos = 0; 1758 ssize_t wret; 1759 1760 if (strncmp(param, "sysctl", sizeof("sysctl") - 1) == 0) { 1761 param += sizeof("sysctl") - 1; 1762 1763 if (param[0] != '/' && param[0] != '.') 1764 return 0; 1765 1766 param++; 1767 } else { 1768 param = (char *) sysctl_find_alias(param); 1769 if (!param) 1770 return 0; 1771 } 1772 1773 /* 1774 * To set sysctl options, we use a temporary mount of proc, look up the 1775 * respective sys/ file and write to it. To avoid mounting it when no 1776 * options were given, we mount it only when the first sysctl option is 1777 * found. Why not a persistent mount? There are problems with a 1778 * persistent mount of proc in that it forces userspace not to use any 1779 * proc mount options. 1780 */ 1781 if (!*proc_mnt) { 1782 proc_fs_type = get_fs_type("proc"); 1783 if (!proc_fs_type) { 1784 pr_err("Failed to find procfs to set sysctl from command line\n"); 1785 return 0; 1786 } 1787 *proc_mnt = kern_mount(proc_fs_type); 1788 put_filesystem(proc_fs_type); 1789 if (IS_ERR(*proc_mnt)) { 1790 pr_err("Failed to mount procfs to set sysctl from command line\n"); 1791 return 0; 1792 } 1793 } 1794 1795 path = kasprintf(GFP_KERNEL, "sys/%s", param); 1796 if (!path) 1797 panic("%s: Failed to allocate path for %s\n", __func__, param); 1798 strreplace(path, '.', '/'); 1799 1800 file = file_open_root((*proc_mnt)->mnt_root, *proc_mnt, path, O_WRONLY, 0); 1801 if (IS_ERR(file)) { 1802 err = PTR_ERR(file); 1803 if (err == -ENOENT) 1804 pr_err("Failed to set sysctl parameter '%s=%s': parameter not found\n", 1805 param, val); 1806 else if (err == -EACCES) 1807 pr_err("Failed to set sysctl parameter '%s=%s': permission denied (read-only?)\n", 1808 param, val); 1809 else 1810 pr_err("Error %pe opening proc file to set sysctl parameter '%s=%s'\n", 1811 file, param, val); 1812 goto out; 1813 } 1814 len = strlen(val); 1815 wret = kernel_write(file, val, len, &pos); 1816 if (wret < 0) { 1817 err = wret; 1818 if (err == -EINVAL) 1819 pr_err("Failed to set sysctl parameter '%s=%s': invalid value\n", 1820 param, val); 1821 else 1822 pr_err("Error %pe writing to proc file to set sysctl parameter '%s=%s'\n", 1823 ERR_PTR(err), param, val); 1824 } else if (wret != len) { 1825 pr_err("Wrote only %zd bytes of %d writing to proc file %s to set sysctl parameter '%s=%s\n", 1826 wret, len, path, param, val); 1827 } 1828 1829 err = filp_close(file, NULL); 1830 if (err) 1831 pr_err("Error %pe closing proc file to set sysctl parameter '%s=%s\n", 1832 ERR_PTR(err), param, val); 1833 out: 1834 kfree(path); 1835 return 0; 1836 } 1837 1838 void do_sysctl_args(void) 1839 { 1840 char *command_line; 1841 struct vfsmount *proc_mnt = NULL; 1842 1843 command_line = kstrdup(saved_command_line, GFP_KERNEL); 1844 if (!command_line) 1845 panic("%s: Failed to allocate copy of command line\n", __func__); 1846 1847 parse_args("Setting sysctl args", command_line, 1848 NULL, 0, -1, -1, &proc_mnt, process_sysctl_arg); 1849 1850 if (proc_mnt) 1851 kern_unmount(proc_mnt); 1852 1853 kfree(command_line); 1854 } 1855