xref: /openbmc/linux/fs/proc/base.c (revision fd589a8f)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/rcupdate.h>
67 #include <linux/kallsyms.h>
68 #include <linux/stacktrace.h>
69 #include <linux/resource.h>
70 #include <linux/module.h>
71 #include <linux/mount.h>
72 #include <linux/security.h>
73 #include <linux/ptrace.h>
74 #include <linux/tracehook.h>
75 #include <linux/cgroup.h>
76 #include <linux/cpuset.h>
77 #include <linux/audit.h>
78 #include <linux/poll.h>
79 #include <linux/nsproxy.h>
80 #include <linux/oom.h>
81 #include <linux/elf.h>
82 #include <linux/pid_namespace.h>
83 #include <linux/fs_struct.h>
84 #include "internal.h"
85 
86 /* NOTE:
87  *	Implementing inode permission operations in /proc is almost
88  *	certainly an error.  Permission checks need to happen during
89  *	each system call not at open time.  The reason is that most of
90  *	what we wish to check for permissions in /proc varies at runtime.
91  *
92  *	The classic example of a problem is opening file descriptors
93  *	in /proc for a task before it execs a suid executable.
94  */
95 
96 struct pid_entry {
97 	char *name;
98 	int len;
99 	mode_t mode;
100 	const struct inode_operations *iop;
101 	const struct file_operations *fop;
102 	union proc_op op;
103 };
104 
105 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
106 	.name = (NAME),					\
107 	.len  = sizeof(NAME) - 1,			\
108 	.mode = MODE,					\
109 	.iop  = IOP,					\
110 	.fop  = FOP,					\
111 	.op   = OP,					\
112 }
113 
114 #define DIR(NAME, MODE, iops, fops)	\
115 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
116 #define LNK(NAME, get_link)					\
117 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
118 		&proc_pid_link_inode_operations, NULL,		\
119 		{ .proc_get_link = get_link } )
120 #define REG(NAME, MODE, fops)				\
121 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
122 #define INF(NAME, MODE, read)				\
123 	NOD(NAME, (S_IFREG|(MODE)), 			\
124 		NULL, &proc_info_file_operations,	\
125 		{ .proc_read = read } )
126 #define ONE(NAME, MODE, show)				\
127 	NOD(NAME, (S_IFREG|(MODE)), 			\
128 		NULL, &proc_single_file_operations,	\
129 		{ .proc_show = show } )
130 
131 /*
132  * Count the number of hardlinks for the pid_entry table, excluding the .
133  * and .. links.
134  */
135 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
136 	unsigned int n)
137 {
138 	unsigned int i;
139 	unsigned int count;
140 
141 	count = 0;
142 	for (i = 0; i < n; ++i) {
143 		if (S_ISDIR(entries[i].mode))
144 			++count;
145 	}
146 
147 	return count;
148 }
149 
150 static int get_fs_path(struct task_struct *task, struct path *path, bool root)
151 {
152 	struct fs_struct *fs;
153 	int result = -ENOENT;
154 
155 	task_lock(task);
156 	fs = task->fs;
157 	if (fs) {
158 		read_lock(&fs->lock);
159 		*path = root ? fs->root : fs->pwd;
160 		path_get(path);
161 		read_unlock(&fs->lock);
162 		result = 0;
163 	}
164 	task_unlock(task);
165 	return result;
166 }
167 
168 static int get_nr_threads(struct task_struct *tsk)
169 {
170 	unsigned long flags;
171 	int count = 0;
172 
173 	if (lock_task_sighand(tsk, &flags)) {
174 		count = atomic_read(&tsk->signal->count);
175 		unlock_task_sighand(tsk, &flags);
176 	}
177 	return count;
178 }
179 
180 static int proc_cwd_link(struct inode *inode, struct path *path)
181 {
182 	struct task_struct *task = get_proc_task(inode);
183 	int result = -ENOENT;
184 
185 	if (task) {
186 		result = get_fs_path(task, path, 0);
187 		put_task_struct(task);
188 	}
189 	return result;
190 }
191 
192 static int proc_root_link(struct inode *inode, struct path *path)
193 {
194 	struct task_struct *task = get_proc_task(inode);
195 	int result = -ENOENT;
196 
197 	if (task) {
198 		result = get_fs_path(task, path, 1);
199 		put_task_struct(task);
200 	}
201 	return result;
202 }
203 
204 /*
205  * Return zero if current may access user memory in @task, -error if not.
206  */
207 static int check_mem_permission(struct task_struct *task)
208 {
209 	/*
210 	 * A task can always look at itself, in case it chooses
211 	 * to use system calls instead of load instructions.
212 	 */
213 	if (task == current)
214 		return 0;
215 
216 	/*
217 	 * If current is actively ptrace'ing, and would also be
218 	 * permitted to freshly attach with ptrace now, permit it.
219 	 */
220 	if (task_is_stopped_or_traced(task)) {
221 		int match;
222 		rcu_read_lock();
223 		match = (tracehook_tracer_task(task) == current);
224 		rcu_read_unlock();
225 		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
226 			return 0;
227 	}
228 
229 	/*
230 	 * Noone else is allowed.
231 	 */
232 	return -EPERM;
233 }
234 
235 struct mm_struct *mm_for_maps(struct task_struct *task)
236 {
237 	struct mm_struct *mm;
238 
239 	if (mutex_lock_killable(&task->cred_guard_mutex))
240 		return NULL;
241 
242 	mm = get_task_mm(task);
243 	if (mm && mm != current->mm &&
244 			!ptrace_may_access(task, PTRACE_MODE_READ)) {
245 		mmput(mm);
246 		mm = NULL;
247 	}
248 	mutex_unlock(&task->cred_guard_mutex);
249 
250 	return mm;
251 }
252 
253 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
254 {
255 	int res = 0;
256 	unsigned int len;
257 	struct mm_struct *mm = get_task_mm(task);
258 	if (!mm)
259 		goto out;
260 	if (!mm->arg_end)
261 		goto out_mm;	/* Shh! No looking before we're done */
262 
263  	len = mm->arg_end - mm->arg_start;
264 
265 	if (len > PAGE_SIZE)
266 		len = PAGE_SIZE;
267 
268 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
269 
270 	// If the nul at the end of args has been overwritten, then
271 	// assume application is using setproctitle(3).
272 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
273 		len = strnlen(buffer, res);
274 		if (len < res) {
275 		    res = len;
276 		} else {
277 			len = mm->env_end - mm->env_start;
278 			if (len > PAGE_SIZE - res)
279 				len = PAGE_SIZE - res;
280 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
281 			res = strnlen(buffer, res);
282 		}
283 	}
284 out_mm:
285 	mmput(mm);
286 out:
287 	return res;
288 }
289 
290 static int proc_pid_auxv(struct task_struct *task, char *buffer)
291 {
292 	int res = 0;
293 	struct mm_struct *mm = get_task_mm(task);
294 	if (mm) {
295 		unsigned int nwords = 0;
296 		do {
297 			nwords += 2;
298 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
299 		res = nwords * sizeof(mm->saved_auxv[0]);
300 		if (res > PAGE_SIZE)
301 			res = PAGE_SIZE;
302 		memcpy(buffer, mm->saved_auxv, res);
303 		mmput(mm);
304 	}
305 	return res;
306 }
307 
308 
309 #ifdef CONFIG_KALLSYMS
310 /*
311  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
312  * Returns the resolved symbol.  If that fails, simply return the address.
313  */
314 static int proc_pid_wchan(struct task_struct *task, char *buffer)
315 {
316 	unsigned long wchan;
317 	char symname[KSYM_NAME_LEN];
318 
319 	wchan = get_wchan(task);
320 
321 	if (lookup_symbol_name(wchan, symname) < 0)
322 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
323 			return 0;
324 		else
325 			return sprintf(buffer, "%lu", wchan);
326 	else
327 		return sprintf(buffer, "%s", symname);
328 }
329 #endif /* CONFIG_KALLSYMS */
330 
331 #ifdef CONFIG_STACKTRACE
332 
333 #define MAX_STACK_TRACE_DEPTH	64
334 
335 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
336 			  struct pid *pid, struct task_struct *task)
337 {
338 	struct stack_trace trace;
339 	unsigned long *entries;
340 	int i;
341 
342 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
343 	if (!entries)
344 		return -ENOMEM;
345 
346 	trace.nr_entries	= 0;
347 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
348 	trace.entries		= entries;
349 	trace.skip		= 0;
350 	save_stack_trace_tsk(task, &trace);
351 
352 	for (i = 0; i < trace.nr_entries; i++) {
353 		seq_printf(m, "[<%p>] %pS\n",
354 			   (void *)entries[i], (void *)entries[i]);
355 	}
356 	kfree(entries);
357 
358 	return 0;
359 }
360 #endif
361 
362 #ifdef CONFIG_SCHEDSTATS
363 /*
364  * Provides /proc/PID/schedstat
365  */
366 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
367 {
368 	return sprintf(buffer, "%llu %llu %lu\n",
369 			(unsigned long long)task->se.sum_exec_runtime,
370 			(unsigned long long)task->sched_info.run_delay,
371 			task->sched_info.pcount);
372 }
373 #endif
374 
375 #ifdef CONFIG_LATENCYTOP
376 static int lstats_show_proc(struct seq_file *m, void *v)
377 {
378 	int i;
379 	struct inode *inode = m->private;
380 	struct task_struct *task = get_proc_task(inode);
381 
382 	if (!task)
383 		return -ESRCH;
384 	seq_puts(m, "Latency Top version : v0.1\n");
385 	for (i = 0; i < 32; i++) {
386 		if (task->latency_record[i].backtrace[0]) {
387 			int q;
388 			seq_printf(m, "%i %li %li ",
389 				task->latency_record[i].count,
390 				task->latency_record[i].time,
391 				task->latency_record[i].max);
392 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
393 				char sym[KSYM_SYMBOL_LEN];
394 				char *c;
395 				if (!task->latency_record[i].backtrace[q])
396 					break;
397 				if (task->latency_record[i].backtrace[q] == ULONG_MAX)
398 					break;
399 				sprint_symbol(sym, task->latency_record[i].backtrace[q]);
400 				c = strchr(sym, '+');
401 				if (c)
402 					*c = 0;
403 				seq_printf(m, "%s ", sym);
404 			}
405 			seq_printf(m, "\n");
406 		}
407 
408 	}
409 	put_task_struct(task);
410 	return 0;
411 }
412 
413 static int lstats_open(struct inode *inode, struct file *file)
414 {
415 	return single_open(file, lstats_show_proc, inode);
416 }
417 
418 static ssize_t lstats_write(struct file *file, const char __user *buf,
419 			    size_t count, loff_t *offs)
420 {
421 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
422 
423 	if (!task)
424 		return -ESRCH;
425 	clear_all_latency_tracing(task);
426 	put_task_struct(task);
427 
428 	return count;
429 }
430 
431 static const struct file_operations proc_lstats_operations = {
432 	.open		= lstats_open,
433 	.read		= seq_read,
434 	.write		= lstats_write,
435 	.llseek		= seq_lseek,
436 	.release	= single_release,
437 };
438 
439 #endif
440 
441 /* The badness from the OOM killer */
442 unsigned long badness(struct task_struct *p, unsigned long uptime);
443 static int proc_oom_score(struct task_struct *task, char *buffer)
444 {
445 	unsigned long points;
446 	struct timespec uptime;
447 
448 	do_posix_clock_monotonic_gettime(&uptime);
449 	read_lock(&tasklist_lock);
450 	points = badness(task, uptime.tv_sec);
451 	read_unlock(&tasklist_lock);
452 	return sprintf(buffer, "%lu\n", points);
453 }
454 
455 struct limit_names {
456 	char *name;
457 	char *unit;
458 };
459 
460 static const struct limit_names lnames[RLIM_NLIMITS] = {
461 	[RLIMIT_CPU] = {"Max cpu time", "ms"},
462 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
463 	[RLIMIT_DATA] = {"Max data size", "bytes"},
464 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
465 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
466 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
467 	[RLIMIT_NPROC] = {"Max processes", "processes"},
468 	[RLIMIT_NOFILE] = {"Max open files", "files"},
469 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
470 	[RLIMIT_AS] = {"Max address space", "bytes"},
471 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
472 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
473 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
474 	[RLIMIT_NICE] = {"Max nice priority", NULL},
475 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
476 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
477 };
478 
479 /* Display limits for a process */
480 static int proc_pid_limits(struct task_struct *task, char *buffer)
481 {
482 	unsigned int i;
483 	int count = 0;
484 	unsigned long flags;
485 	char *bufptr = buffer;
486 
487 	struct rlimit rlim[RLIM_NLIMITS];
488 
489 	if (!lock_task_sighand(task, &flags))
490 		return 0;
491 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
492 	unlock_task_sighand(task, &flags);
493 
494 	/*
495 	 * print the file header
496 	 */
497 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
498 			"Limit", "Soft Limit", "Hard Limit", "Units");
499 
500 	for (i = 0; i < RLIM_NLIMITS; i++) {
501 		if (rlim[i].rlim_cur == RLIM_INFINITY)
502 			count += sprintf(&bufptr[count], "%-25s %-20s ",
503 					 lnames[i].name, "unlimited");
504 		else
505 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
506 					 lnames[i].name, rlim[i].rlim_cur);
507 
508 		if (rlim[i].rlim_max == RLIM_INFINITY)
509 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
510 		else
511 			count += sprintf(&bufptr[count], "%-20lu ",
512 					 rlim[i].rlim_max);
513 
514 		if (lnames[i].unit)
515 			count += sprintf(&bufptr[count], "%-10s\n",
516 					 lnames[i].unit);
517 		else
518 			count += sprintf(&bufptr[count], "\n");
519 	}
520 
521 	return count;
522 }
523 
524 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
525 static int proc_pid_syscall(struct task_struct *task, char *buffer)
526 {
527 	long nr;
528 	unsigned long args[6], sp, pc;
529 
530 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
531 		return sprintf(buffer, "running\n");
532 
533 	if (nr < 0)
534 		return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
535 
536 	return sprintf(buffer,
537 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
538 		       nr,
539 		       args[0], args[1], args[2], args[3], args[4], args[5],
540 		       sp, pc);
541 }
542 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
543 
544 /************************************************************************/
545 /*                       Here the fs part begins                        */
546 /************************************************************************/
547 
548 /* permission checks */
549 static int proc_fd_access_allowed(struct inode *inode)
550 {
551 	struct task_struct *task;
552 	int allowed = 0;
553 	/* Allow access to a task's file descriptors if it is us or we
554 	 * may use ptrace attach to the process and find out that
555 	 * information.
556 	 */
557 	task = get_proc_task(inode);
558 	if (task) {
559 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
560 		put_task_struct(task);
561 	}
562 	return allowed;
563 }
564 
565 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
566 {
567 	int error;
568 	struct inode *inode = dentry->d_inode;
569 
570 	if (attr->ia_valid & ATTR_MODE)
571 		return -EPERM;
572 
573 	error = inode_change_ok(inode, attr);
574 	if (!error)
575 		error = inode_setattr(inode, attr);
576 	return error;
577 }
578 
579 static const struct inode_operations proc_def_inode_operations = {
580 	.setattr	= proc_setattr,
581 };
582 
583 static int mounts_open_common(struct inode *inode, struct file *file,
584 			      const struct seq_operations *op)
585 {
586 	struct task_struct *task = get_proc_task(inode);
587 	struct nsproxy *nsp;
588 	struct mnt_namespace *ns = NULL;
589 	struct path root;
590 	struct proc_mounts *p;
591 	int ret = -EINVAL;
592 
593 	if (task) {
594 		rcu_read_lock();
595 		nsp = task_nsproxy(task);
596 		if (nsp) {
597 			ns = nsp->mnt_ns;
598 			if (ns)
599 				get_mnt_ns(ns);
600 		}
601 		rcu_read_unlock();
602 		if (ns && get_fs_path(task, &root, 1) == 0)
603 			ret = 0;
604 		put_task_struct(task);
605 	}
606 
607 	if (!ns)
608 		goto err;
609 	if (ret)
610 		goto err_put_ns;
611 
612 	ret = -ENOMEM;
613 	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
614 	if (!p)
615 		goto err_put_path;
616 
617 	file->private_data = &p->m;
618 	ret = seq_open(file, op);
619 	if (ret)
620 		goto err_free;
621 
622 	p->m.private = p;
623 	p->ns = ns;
624 	p->root = root;
625 	p->event = ns->event;
626 
627 	return 0;
628 
629  err_free:
630 	kfree(p);
631  err_put_path:
632 	path_put(&root);
633  err_put_ns:
634 	put_mnt_ns(ns);
635  err:
636 	return ret;
637 }
638 
639 static int mounts_release(struct inode *inode, struct file *file)
640 {
641 	struct proc_mounts *p = file->private_data;
642 	path_put(&p->root);
643 	put_mnt_ns(p->ns);
644 	return seq_release(inode, file);
645 }
646 
647 static unsigned mounts_poll(struct file *file, poll_table *wait)
648 {
649 	struct proc_mounts *p = file->private_data;
650 	struct mnt_namespace *ns = p->ns;
651 	unsigned res = POLLIN | POLLRDNORM;
652 
653 	poll_wait(file, &ns->poll, wait);
654 
655 	spin_lock(&vfsmount_lock);
656 	if (p->event != ns->event) {
657 		p->event = ns->event;
658 		res |= POLLERR | POLLPRI;
659 	}
660 	spin_unlock(&vfsmount_lock);
661 
662 	return res;
663 }
664 
665 static int mounts_open(struct inode *inode, struct file *file)
666 {
667 	return mounts_open_common(inode, file, &mounts_op);
668 }
669 
670 static const struct file_operations proc_mounts_operations = {
671 	.open		= mounts_open,
672 	.read		= seq_read,
673 	.llseek		= seq_lseek,
674 	.release	= mounts_release,
675 	.poll		= mounts_poll,
676 };
677 
678 static int mountinfo_open(struct inode *inode, struct file *file)
679 {
680 	return mounts_open_common(inode, file, &mountinfo_op);
681 }
682 
683 static const struct file_operations proc_mountinfo_operations = {
684 	.open		= mountinfo_open,
685 	.read		= seq_read,
686 	.llseek		= seq_lseek,
687 	.release	= mounts_release,
688 	.poll		= mounts_poll,
689 };
690 
691 static int mountstats_open(struct inode *inode, struct file *file)
692 {
693 	return mounts_open_common(inode, file, &mountstats_op);
694 }
695 
696 static const struct file_operations proc_mountstats_operations = {
697 	.open		= mountstats_open,
698 	.read		= seq_read,
699 	.llseek		= seq_lseek,
700 	.release	= mounts_release,
701 };
702 
703 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
704 
705 static ssize_t proc_info_read(struct file * file, char __user * buf,
706 			  size_t count, loff_t *ppos)
707 {
708 	struct inode * inode = file->f_path.dentry->d_inode;
709 	unsigned long page;
710 	ssize_t length;
711 	struct task_struct *task = get_proc_task(inode);
712 
713 	length = -ESRCH;
714 	if (!task)
715 		goto out_no_task;
716 
717 	if (count > PROC_BLOCK_SIZE)
718 		count = PROC_BLOCK_SIZE;
719 
720 	length = -ENOMEM;
721 	if (!(page = __get_free_page(GFP_TEMPORARY)))
722 		goto out;
723 
724 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
725 
726 	if (length >= 0)
727 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
728 	free_page(page);
729 out:
730 	put_task_struct(task);
731 out_no_task:
732 	return length;
733 }
734 
735 static const struct file_operations proc_info_file_operations = {
736 	.read		= proc_info_read,
737 };
738 
739 static int proc_single_show(struct seq_file *m, void *v)
740 {
741 	struct inode *inode = m->private;
742 	struct pid_namespace *ns;
743 	struct pid *pid;
744 	struct task_struct *task;
745 	int ret;
746 
747 	ns = inode->i_sb->s_fs_info;
748 	pid = proc_pid(inode);
749 	task = get_pid_task(pid, PIDTYPE_PID);
750 	if (!task)
751 		return -ESRCH;
752 
753 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
754 
755 	put_task_struct(task);
756 	return ret;
757 }
758 
759 static int proc_single_open(struct inode *inode, struct file *filp)
760 {
761 	int ret;
762 	ret = single_open(filp, proc_single_show, NULL);
763 	if (!ret) {
764 		struct seq_file *m = filp->private_data;
765 
766 		m->private = inode;
767 	}
768 	return ret;
769 }
770 
771 static const struct file_operations proc_single_file_operations = {
772 	.open		= proc_single_open,
773 	.read		= seq_read,
774 	.llseek		= seq_lseek,
775 	.release	= single_release,
776 };
777 
778 static int mem_open(struct inode* inode, struct file* file)
779 {
780 	file->private_data = (void*)((long)current->self_exec_id);
781 	return 0;
782 }
783 
784 static ssize_t mem_read(struct file * file, char __user * buf,
785 			size_t count, loff_t *ppos)
786 {
787 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
788 	char *page;
789 	unsigned long src = *ppos;
790 	int ret = -ESRCH;
791 	struct mm_struct *mm;
792 
793 	if (!task)
794 		goto out_no_task;
795 
796 	if (check_mem_permission(task))
797 		goto out;
798 
799 	ret = -ENOMEM;
800 	page = (char *)__get_free_page(GFP_TEMPORARY);
801 	if (!page)
802 		goto out;
803 
804 	ret = 0;
805 
806 	mm = get_task_mm(task);
807 	if (!mm)
808 		goto out_free;
809 
810 	ret = -EIO;
811 
812 	if (file->private_data != (void*)((long)current->self_exec_id))
813 		goto out_put;
814 
815 	ret = 0;
816 
817 	while (count > 0) {
818 		int this_len, retval;
819 
820 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
821 		retval = access_process_vm(task, src, page, this_len, 0);
822 		if (!retval || check_mem_permission(task)) {
823 			if (!ret)
824 				ret = -EIO;
825 			break;
826 		}
827 
828 		if (copy_to_user(buf, page, retval)) {
829 			ret = -EFAULT;
830 			break;
831 		}
832 
833 		ret += retval;
834 		src += retval;
835 		buf += retval;
836 		count -= retval;
837 	}
838 	*ppos = src;
839 
840 out_put:
841 	mmput(mm);
842 out_free:
843 	free_page((unsigned long) page);
844 out:
845 	put_task_struct(task);
846 out_no_task:
847 	return ret;
848 }
849 
850 #define mem_write NULL
851 
852 #ifndef mem_write
853 /* This is a security hazard */
854 static ssize_t mem_write(struct file * file, const char __user *buf,
855 			 size_t count, loff_t *ppos)
856 {
857 	int copied;
858 	char *page;
859 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
860 	unsigned long dst = *ppos;
861 
862 	copied = -ESRCH;
863 	if (!task)
864 		goto out_no_task;
865 
866 	if (check_mem_permission(task))
867 		goto out;
868 
869 	copied = -ENOMEM;
870 	page = (char *)__get_free_page(GFP_TEMPORARY);
871 	if (!page)
872 		goto out;
873 
874 	copied = 0;
875 	while (count > 0) {
876 		int this_len, retval;
877 
878 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
879 		if (copy_from_user(page, buf, this_len)) {
880 			copied = -EFAULT;
881 			break;
882 		}
883 		retval = access_process_vm(task, dst, page, this_len, 1);
884 		if (!retval) {
885 			if (!copied)
886 				copied = -EIO;
887 			break;
888 		}
889 		copied += retval;
890 		buf += retval;
891 		dst += retval;
892 		count -= retval;
893 	}
894 	*ppos = dst;
895 	free_page((unsigned long) page);
896 out:
897 	put_task_struct(task);
898 out_no_task:
899 	return copied;
900 }
901 #endif
902 
903 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
904 {
905 	switch (orig) {
906 	case 0:
907 		file->f_pos = offset;
908 		break;
909 	case 1:
910 		file->f_pos += offset;
911 		break;
912 	default:
913 		return -EINVAL;
914 	}
915 	force_successful_syscall_return();
916 	return file->f_pos;
917 }
918 
919 static const struct file_operations proc_mem_operations = {
920 	.llseek		= mem_lseek,
921 	.read		= mem_read,
922 	.write		= mem_write,
923 	.open		= mem_open,
924 };
925 
926 static ssize_t environ_read(struct file *file, char __user *buf,
927 			size_t count, loff_t *ppos)
928 {
929 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
930 	char *page;
931 	unsigned long src = *ppos;
932 	int ret = -ESRCH;
933 	struct mm_struct *mm;
934 
935 	if (!task)
936 		goto out_no_task;
937 
938 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
939 		goto out;
940 
941 	ret = -ENOMEM;
942 	page = (char *)__get_free_page(GFP_TEMPORARY);
943 	if (!page)
944 		goto out;
945 
946 	ret = 0;
947 
948 	mm = get_task_mm(task);
949 	if (!mm)
950 		goto out_free;
951 
952 	while (count > 0) {
953 		int this_len, retval, max_len;
954 
955 		this_len = mm->env_end - (mm->env_start + src);
956 
957 		if (this_len <= 0)
958 			break;
959 
960 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
961 		this_len = (this_len > max_len) ? max_len : this_len;
962 
963 		retval = access_process_vm(task, (mm->env_start + src),
964 			page, this_len, 0);
965 
966 		if (retval <= 0) {
967 			ret = retval;
968 			break;
969 		}
970 
971 		if (copy_to_user(buf, page, retval)) {
972 			ret = -EFAULT;
973 			break;
974 		}
975 
976 		ret += retval;
977 		src += retval;
978 		buf += retval;
979 		count -= retval;
980 	}
981 	*ppos = src;
982 
983 	mmput(mm);
984 out_free:
985 	free_page((unsigned long) page);
986 out:
987 	put_task_struct(task);
988 out_no_task:
989 	return ret;
990 }
991 
992 static const struct file_operations proc_environ_operations = {
993 	.read		= environ_read,
994 };
995 
996 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
997 				size_t count, loff_t *ppos)
998 {
999 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1000 	char buffer[PROC_NUMBUF];
1001 	size_t len;
1002 	int oom_adjust;
1003 
1004 	if (!task)
1005 		return -ESRCH;
1006 	oom_adjust = task->oomkilladj;
1007 	put_task_struct(task);
1008 
1009 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1010 
1011 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1012 }
1013 
1014 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1015 				size_t count, loff_t *ppos)
1016 {
1017 	struct task_struct *task;
1018 	char buffer[PROC_NUMBUF], *end;
1019 	int oom_adjust;
1020 
1021 	memset(buffer, 0, sizeof(buffer));
1022 	if (count > sizeof(buffer) - 1)
1023 		count = sizeof(buffer) - 1;
1024 	if (copy_from_user(buffer, buf, count))
1025 		return -EFAULT;
1026 	oom_adjust = simple_strtol(buffer, &end, 0);
1027 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1028 	     oom_adjust != OOM_DISABLE)
1029 		return -EINVAL;
1030 	if (*end == '\n')
1031 		end++;
1032 	task = get_proc_task(file->f_path.dentry->d_inode);
1033 	if (!task)
1034 		return -ESRCH;
1035 	if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) {
1036 		put_task_struct(task);
1037 		return -EACCES;
1038 	}
1039 	task->oomkilladj = oom_adjust;
1040 	put_task_struct(task);
1041 	if (end - buffer == 0)
1042 		return -EIO;
1043 	return end - buffer;
1044 }
1045 
1046 static const struct file_operations proc_oom_adjust_operations = {
1047 	.read		= oom_adjust_read,
1048 	.write		= oom_adjust_write,
1049 };
1050 
1051 #ifdef CONFIG_AUDITSYSCALL
1052 #define TMPBUFLEN 21
1053 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1054 				  size_t count, loff_t *ppos)
1055 {
1056 	struct inode * inode = file->f_path.dentry->d_inode;
1057 	struct task_struct *task = get_proc_task(inode);
1058 	ssize_t length;
1059 	char tmpbuf[TMPBUFLEN];
1060 
1061 	if (!task)
1062 		return -ESRCH;
1063 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1064 				audit_get_loginuid(task));
1065 	put_task_struct(task);
1066 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1067 }
1068 
1069 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1070 				   size_t count, loff_t *ppos)
1071 {
1072 	struct inode * inode = file->f_path.dentry->d_inode;
1073 	char *page, *tmp;
1074 	ssize_t length;
1075 	uid_t loginuid;
1076 
1077 	if (!capable(CAP_AUDIT_CONTROL))
1078 		return -EPERM;
1079 
1080 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
1081 		return -EPERM;
1082 
1083 	if (count >= PAGE_SIZE)
1084 		count = PAGE_SIZE - 1;
1085 
1086 	if (*ppos != 0) {
1087 		/* No partial writes. */
1088 		return -EINVAL;
1089 	}
1090 	page = (char*)__get_free_page(GFP_TEMPORARY);
1091 	if (!page)
1092 		return -ENOMEM;
1093 	length = -EFAULT;
1094 	if (copy_from_user(page, buf, count))
1095 		goto out_free_page;
1096 
1097 	page[count] = '\0';
1098 	loginuid = simple_strtoul(page, &tmp, 10);
1099 	if (tmp == page) {
1100 		length = -EINVAL;
1101 		goto out_free_page;
1102 
1103 	}
1104 	length = audit_set_loginuid(current, loginuid);
1105 	if (likely(length == 0))
1106 		length = count;
1107 
1108 out_free_page:
1109 	free_page((unsigned long) page);
1110 	return length;
1111 }
1112 
1113 static const struct file_operations proc_loginuid_operations = {
1114 	.read		= proc_loginuid_read,
1115 	.write		= proc_loginuid_write,
1116 };
1117 
1118 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1119 				  size_t count, loff_t *ppos)
1120 {
1121 	struct inode * inode = file->f_path.dentry->d_inode;
1122 	struct task_struct *task = get_proc_task(inode);
1123 	ssize_t length;
1124 	char tmpbuf[TMPBUFLEN];
1125 
1126 	if (!task)
1127 		return -ESRCH;
1128 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1129 				audit_get_sessionid(task));
1130 	put_task_struct(task);
1131 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1132 }
1133 
1134 static const struct file_operations proc_sessionid_operations = {
1135 	.read		= proc_sessionid_read,
1136 };
1137 #endif
1138 
1139 #ifdef CONFIG_FAULT_INJECTION
1140 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1141 				      size_t count, loff_t *ppos)
1142 {
1143 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1144 	char buffer[PROC_NUMBUF];
1145 	size_t len;
1146 	int make_it_fail;
1147 
1148 	if (!task)
1149 		return -ESRCH;
1150 	make_it_fail = task->make_it_fail;
1151 	put_task_struct(task);
1152 
1153 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1154 
1155 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1156 }
1157 
1158 static ssize_t proc_fault_inject_write(struct file * file,
1159 			const char __user * buf, size_t count, loff_t *ppos)
1160 {
1161 	struct task_struct *task;
1162 	char buffer[PROC_NUMBUF], *end;
1163 	int make_it_fail;
1164 
1165 	if (!capable(CAP_SYS_RESOURCE))
1166 		return -EPERM;
1167 	memset(buffer, 0, sizeof(buffer));
1168 	if (count > sizeof(buffer) - 1)
1169 		count = sizeof(buffer) - 1;
1170 	if (copy_from_user(buffer, buf, count))
1171 		return -EFAULT;
1172 	make_it_fail = simple_strtol(buffer, &end, 0);
1173 	if (*end == '\n')
1174 		end++;
1175 	task = get_proc_task(file->f_dentry->d_inode);
1176 	if (!task)
1177 		return -ESRCH;
1178 	task->make_it_fail = make_it_fail;
1179 	put_task_struct(task);
1180 	if (end - buffer == 0)
1181 		return -EIO;
1182 	return end - buffer;
1183 }
1184 
1185 static const struct file_operations proc_fault_inject_operations = {
1186 	.read		= proc_fault_inject_read,
1187 	.write		= proc_fault_inject_write,
1188 };
1189 #endif
1190 
1191 
1192 #ifdef CONFIG_SCHED_DEBUG
1193 /*
1194  * Print out various scheduling related per-task fields:
1195  */
1196 static int sched_show(struct seq_file *m, void *v)
1197 {
1198 	struct inode *inode = m->private;
1199 	struct task_struct *p;
1200 
1201 	p = get_proc_task(inode);
1202 	if (!p)
1203 		return -ESRCH;
1204 	proc_sched_show_task(p, m);
1205 
1206 	put_task_struct(p);
1207 
1208 	return 0;
1209 }
1210 
1211 static ssize_t
1212 sched_write(struct file *file, const char __user *buf,
1213 	    size_t count, loff_t *offset)
1214 {
1215 	struct inode *inode = file->f_path.dentry->d_inode;
1216 	struct task_struct *p;
1217 
1218 	p = get_proc_task(inode);
1219 	if (!p)
1220 		return -ESRCH;
1221 	proc_sched_set_task(p);
1222 
1223 	put_task_struct(p);
1224 
1225 	return count;
1226 }
1227 
1228 static int sched_open(struct inode *inode, struct file *filp)
1229 {
1230 	int ret;
1231 
1232 	ret = single_open(filp, sched_show, NULL);
1233 	if (!ret) {
1234 		struct seq_file *m = filp->private_data;
1235 
1236 		m->private = inode;
1237 	}
1238 	return ret;
1239 }
1240 
1241 static const struct file_operations proc_pid_sched_operations = {
1242 	.open		= sched_open,
1243 	.read		= seq_read,
1244 	.write		= sched_write,
1245 	.llseek		= seq_lseek,
1246 	.release	= single_release,
1247 };
1248 
1249 #endif
1250 
1251 /*
1252  * We added or removed a vma mapping the executable. The vmas are only mapped
1253  * during exec and are not mapped with the mmap system call.
1254  * Callers must hold down_write() on the mm's mmap_sem for these
1255  */
1256 void added_exe_file_vma(struct mm_struct *mm)
1257 {
1258 	mm->num_exe_file_vmas++;
1259 }
1260 
1261 void removed_exe_file_vma(struct mm_struct *mm)
1262 {
1263 	mm->num_exe_file_vmas--;
1264 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1265 		fput(mm->exe_file);
1266 		mm->exe_file = NULL;
1267 	}
1268 
1269 }
1270 
1271 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1272 {
1273 	if (new_exe_file)
1274 		get_file(new_exe_file);
1275 	if (mm->exe_file)
1276 		fput(mm->exe_file);
1277 	mm->exe_file = new_exe_file;
1278 	mm->num_exe_file_vmas = 0;
1279 }
1280 
1281 struct file *get_mm_exe_file(struct mm_struct *mm)
1282 {
1283 	struct file *exe_file;
1284 
1285 	/* We need mmap_sem to protect against races with removal of
1286 	 * VM_EXECUTABLE vmas */
1287 	down_read(&mm->mmap_sem);
1288 	exe_file = mm->exe_file;
1289 	if (exe_file)
1290 		get_file(exe_file);
1291 	up_read(&mm->mmap_sem);
1292 	return exe_file;
1293 }
1294 
1295 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1296 {
1297 	/* It's safe to write the exe_file pointer without exe_file_lock because
1298 	 * this is called during fork when the task is not yet in /proc */
1299 	newmm->exe_file = get_mm_exe_file(oldmm);
1300 }
1301 
1302 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1303 {
1304 	struct task_struct *task;
1305 	struct mm_struct *mm;
1306 	struct file *exe_file;
1307 
1308 	task = get_proc_task(inode);
1309 	if (!task)
1310 		return -ENOENT;
1311 	mm = get_task_mm(task);
1312 	put_task_struct(task);
1313 	if (!mm)
1314 		return -ENOENT;
1315 	exe_file = get_mm_exe_file(mm);
1316 	mmput(mm);
1317 	if (exe_file) {
1318 		*exe_path = exe_file->f_path;
1319 		path_get(&exe_file->f_path);
1320 		fput(exe_file);
1321 		return 0;
1322 	} else
1323 		return -ENOENT;
1324 }
1325 
1326 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1327 {
1328 	struct inode *inode = dentry->d_inode;
1329 	int error = -EACCES;
1330 
1331 	/* We don't need a base pointer in the /proc filesystem */
1332 	path_put(&nd->path);
1333 
1334 	/* Are we allowed to snoop on the tasks file descriptors? */
1335 	if (!proc_fd_access_allowed(inode))
1336 		goto out;
1337 
1338 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1339 	nd->last_type = LAST_BIND;
1340 out:
1341 	return ERR_PTR(error);
1342 }
1343 
1344 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1345 {
1346 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1347 	char *pathname;
1348 	int len;
1349 
1350 	if (!tmp)
1351 		return -ENOMEM;
1352 
1353 	pathname = d_path(path, tmp, PAGE_SIZE);
1354 	len = PTR_ERR(pathname);
1355 	if (IS_ERR(pathname))
1356 		goto out;
1357 	len = tmp + PAGE_SIZE - 1 - pathname;
1358 
1359 	if (len > buflen)
1360 		len = buflen;
1361 	if (copy_to_user(buffer, pathname, len))
1362 		len = -EFAULT;
1363  out:
1364 	free_page((unsigned long)tmp);
1365 	return len;
1366 }
1367 
1368 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1369 {
1370 	int error = -EACCES;
1371 	struct inode *inode = dentry->d_inode;
1372 	struct path path;
1373 
1374 	/* Are we allowed to snoop on the tasks file descriptors? */
1375 	if (!proc_fd_access_allowed(inode))
1376 		goto out;
1377 
1378 	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1379 	if (error)
1380 		goto out;
1381 
1382 	error = do_proc_readlink(&path, buffer, buflen);
1383 	path_put(&path);
1384 out:
1385 	return error;
1386 }
1387 
1388 static const struct inode_operations proc_pid_link_inode_operations = {
1389 	.readlink	= proc_pid_readlink,
1390 	.follow_link	= proc_pid_follow_link,
1391 	.setattr	= proc_setattr,
1392 };
1393 
1394 
1395 /* building an inode */
1396 
1397 static int task_dumpable(struct task_struct *task)
1398 {
1399 	int dumpable = 0;
1400 	struct mm_struct *mm;
1401 
1402 	task_lock(task);
1403 	mm = task->mm;
1404 	if (mm)
1405 		dumpable = get_dumpable(mm);
1406 	task_unlock(task);
1407 	if(dumpable == 1)
1408 		return 1;
1409 	return 0;
1410 }
1411 
1412 
1413 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1414 {
1415 	struct inode * inode;
1416 	struct proc_inode *ei;
1417 	const struct cred *cred;
1418 
1419 	/* We need a new inode */
1420 
1421 	inode = new_inode(sb);
1422 	if (!inode)
1423 		goto out;
1424 
1425 	/* Common stuff */
1426 	ei = PROC_I(inode);
1427 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1428 	inode->i_op = &proc_def_inode_operations;
1429 
1430 	/*
1431 	 * grab the reference to task.
1432 	 */
1433 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1434 	if (!ei->pid)
1435 		goto out_unlock;
1436 
1437 	if (task_dumpable(task)) {
1438 		rcu_read_lock();
1439 		cred = __task_cred(task);
1440 		inode->i_uid = cred->euid;
1441 		inode->i_gid = cred->egid;
1442 		rcu_read_unlock();
1443 	}
1444 	security_task_to_inode(task, inode);
1445 
1446 out:
1447 	return inode;
1448 
1449 out_unlock:
1450 	iput(inode);
1451 	return NULL;
1452 }
1453 
1454 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1455 {
1456 	struct inode *inode = dentry->d_inode;
1457 	struct task_struct *task;
1458 	const struct cred *cred;
1459 
1460 	generic_fillattr(inode, stat);
1461 
1462 	rcu_read_lock();
1463 	stat->uid = 0;
1464 	stat->gid = 0;
1465 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1466 	if (task) {
1467 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1468 		    task_dumpable(task)) {
1469 			cred = __task_cred(task);
1470 			stat->uid = cred->euid;
1471 			stat->gid = cred->egid;
1472 		}
1473 	}
1474 	rcu_read_unlock();
1475 	return 0;
1476 }
1477 
1478 /* dentry stuff */
1479 
1480 /*
1481  *	Exceptional case: normally we are not allowed to unhash a busy
1482  * directory. In this case, however, we can do it - no aliasing problems
1483  * due to the way we treat inodes.
1484  *
1485  * Rewrite the inode's ownerships here because the owning task may have
1486  * performed a setuid(), etc.
1487  *
1488  * Before the /proc/pid/status file was created the only way to read
1489  * the effective uid of a /process was to stat /proc/pid.  Reading
1490  * /proc/pid/status is slow enough that procps and other packages
1491  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1492  * made this apply to all per process world readable and executable
1493  * directories.
1494  */
1495 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1496 {
1497 	struct inode *inode = dentry->d_inode;
1498 	struct task_struct *task = get_proc_task(inode);
1499 	const struct cred *cred;
1500 
1501 	if (task) {
1502 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1503 		    task_dumpable(task)) {
1504 			rcu_read_lock();
1505 			cred = __task_cred(task);
1506 			inode->i_uid = cred->euid;
1507 			inode->i_gid = cred->egid;
1508 			rcu_read_unlock();
1509 		} else {
1510 			inode->i_uid = 0;
1511 			inode->i_gid = 0;
1512 		}
1513 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1514 		security_task_to_inode(task, inode);
1515 		put_task_struct(task);
1516 		return 1;
1517 	}
1518 	d_drop(dentry);
1519 	return 0;
1520 }
1521 
1522 static int pid_delete_dentry(struct dentry * dentry)
1523 {
1524 	/* Is the task we represent dead?
1525 	 * If so, then don't put the dentry on the lru list,
1526 	 * kill it immediately.
1527 	 */
1528 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1529 }
1530 
1531 static const struct dentry_operations pid_dentry_operations =
1532 {
1533 	.d_revalidate	= pid_revalidate,
1534 	.d_delete	= pid_delete_dentry,
1535 };
1536 
1537 /* Lookups */
1538 
1539 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1540 				struct task_struct *, const void *);
1541 
1542 /*
1543  * Fill a directory entry.
1544  *
1545  * If possible create the dcache entry and derive our inode number and
1546  * file type from dcache entry.
1547  *
1548  * Since all of the proc inode numbers are dynamically generated, the inode
1549  * numbers do not exist until the inode is cache.  This means creating the
1550  * the dcache entry in readdir is necessary to keep the inode numbers
1551  * reported by readdir in sync with the inode numbers reported
1552  * by stat.
1553  */
1554 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1555 	char *name, int len,
1556 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1557 {
1558 	struct dentry *child, *dir = filp->f_path.dentry;
1559 	struct inode *inode;
1560 	struct qstr qname;
1561 	ino_t ino = 0;
1562 	unsigned type = DT_UNKNOWN;
1563 
1564 	qname.name = name;
1565 	qname.len  = len;
1566 	qname.hash = full_name_hash(name, len);
1567 
1568 	child = d_lookup(dir, &qname);
1569 	if (!child) {
1570 		struct dentry *new;
1571 		new = d_alloc(dir, &qname);
1572 		if (new) {
1573 			child = instantiate(dir->d_inode, new, task, ptr);
1574 			if (child)
1575 				dput(new);
1576 			else
1577 				child = new;
1578 		}
1579 	}
1580 	if (!child || IS_ERR(child) || !child->d_inode)
1581 		goto end_instantiate;
1582 	inode = child->d_inode;
1583 	if (inode) {
1584 		ino = inode->i_ino;
1585 		type = inode->i_mode >> 12;
1586 	}
1587 	dput(child);
1588 end_instantiate:
1589 	if (!ino)
1590 		ino = find_inode_number(dir, &qname);
1591 	if (!ino)
1592 		ino = 1;
1593 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1594 }
1595 
1596 static unsigned name_to_int(struct dentry *dentry)
1597 {
1598 	const char *name = dentry->d_name.name;
1599 	int len = dentry->d_name.len;
1600 	unsigned n = 0;
1601 
1602 	if (len > 1 && *name == '0')
1603 		goto out;
1604 	while (len-- > 0) {
1605 		unsigned c = *name++ - '0';
1606 		if (c > 9)
1607 			goto out;
1608 		if (n >= (~0U-9)/10)
1609 			goto out;
1610 		n *= 10;
1611 		n += c;
1612 	}
1613 	return n;
1614 out:
1615 	return ~0U;
1616 }
1617 
1618 #define PROC_FDINFO_MAX 64
1619 
1620 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1621 {
1622 	struct task_struct *task = get_proc_task(inode);
1623 	struct files_struct *files = NULL;
1624 	struct file *file;
1625 	int fd = proc_fd(inode);
1626 
1627 	if (task) {
1628 		files = get_files_struct(task);
1629 		put_task_struct(task);
1630 	}
1631 	if (files) {
1632 		/*
1633 		 * We are not taking a ref to the file structure, so we must
1634 		 * hold ->file_lock.
1635 		 */
1636 		spin_lock(&files->file_lock);
1637 		file = fcheck_files(files, fd);
1638 		if (file) {
1639 			if (path) {
1640 				*path = file->f_path;
1641 				path_get(&file->f_path);
1642 			}
1643 			if (info)
1644 				snprintf(info, PROC_FDINFO_MAX,
1645 					 "pos:\t%lli\n"
1646 					 "flags:\t0%o\n",
1647 					 (long long) file->f_pos,
1648 					 file->f_flags);
1649 			spin_unlock(&files->file_lock);
1650 			put_files_struct(files);
1651 			return 0;
1652 		}
1653 		spin_unlock(&files->file_lock);
1654 		put_files_struct(files);
1655 	}
1656 	return -ENOENT;
1657 }
1658 
1659 static int proc_fd_link(struct inode *inode, struct path *path)
1660 {
1661 	return proc_fd_info(inode, path, NULL);
1662 }
1663 
1664 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1665 {
1666 	struct inode *inode = dentry->d_inode;
1667 	struct task_struct *task = get_proc_task(inode);
1668 	int fd = proc_fd(inode);
1669 	struct files_struct *files;
1670 	const struct cred *cred;
1671 
1672 	if (task) {
1673 		files = get_files_struct(task);
1674 		if (files) {
1675 			rcu_read_lock();
1676 			if (fcheck_files(files, fd)) {
1677 				rcu_read_unlock();
1678 				put_files_struct(files);
1679 				if (task_dumpable(task)) {
1680 					rcu_read_lock();
1681 					cred = __task_cred(task);
1682 					inode->i_uid = cred->euid;
1683 					inode->i_gid = cred->egid;
1684 					rcu_read_unlock();
1685 				} else {
1686 					inode->i_uid = 0;
1687 					inode->i_gid = 0;
1688 				}
1689 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1690 				security_task_to_inode(task, inode);
1691 				put_task_struct(task);
1692 				return 1;
1693 			}
1694 			rcu_read_unlock();
1695 			put_files_struct(files);
1696 		}
1697 		put_task_struct(task);
1698 	}
1699 	d_drop(dentry);
1700 	return 0;
1701 }
1702 
1703 static const struct dentry_operations tid_fd_dentry_operations =
1704 {
1705 	.d_revalidate	= tid_fd_revalidate,
1706 	.d_delete	= pid_delete_dentry,
1707 };
1708 
1709 static struct dentry *proc_fd_instantiate(struct inode *dir,
1710 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1711 {
1712 	unsigned fd = *(const unsigned *)ptr;
1713 	struct file *file;
1714 	struct files_struct *files;
1715  	struct inode *inode;
1716  	struct proc_inode *ei;
1717 	struct dentry *error = ERR_PTR(-ENOENT);
1718 
1719 	inode = proc_pid_make_inode(dir->i_sb, task);
1720 	if (!inode)
1721 		goto out;
1722 	ei = PROC_I(inode);
1723 	ei->fd = fd;
1724 	files = get_files_struct(task);
1725 	if (!files)
1726 		goto out_iput;
1727 	inode->i_mode = S_IFLNK;
1728 
1729 	/*
1730 	 * We are not taking a ref to the file structure, so we must
1731 	 * hold ->file_lock.
1732 	 */
1733 	spin_lock(&files->file_lock);
1734 	file = fcheck_files(files, fd);
1735 	if (!file)
1736 		goto out_unlock;
1737 	if (file->f_mode & FMODE_READ)
1738 		inode->i_mode |= S_IRUSR | S_IXUSR;
1739 	if (file->f_mode & FMODE_WRITE)
1740 		inode->i_mode |= S_IWUSR | S_IXUSR;
1741 	spin_unlock(&files->file_lock);
1742 	put_files_struct(files);
1743 
1744 	inode->i_op = &proc_pid_link_inode_operations;
1745 	inode->i_size = 64;
1746 	ei->op.proc_get_link = proc_fd_link;
1747 	dentry->d_op = &tid_fd_dentry_operations;
1748 	d_add(dentry, inode);
1749 	/* Close the race of the process dying before we return the dentry */
1750 	if (tid_fd_revalidate(dentry, NULL))
1751 		error = NULL;
1752 
1753  out:
1754 	return error;
1755 out_unlock:
1756 	spin_unlock(&files->file_lock);
1757 	put_files_struct(files);
1758 out_iput:
1759 	iput(inode);
1760 	goto out;
1761 }
1762 
1763 static struct dentry *proc_lookupfd_common(struct inode *dir,
1764 					   struct dentry *dentry,
1765 					   instantiate_t instantiate)
1766 {
1767 	struct task_struct *task = get_proc_task(dir);
1768 	unsigned fd = name_to_int(dentry);
1769 	struct dentry *result = ERR_PTR(-ENOENT);
1770 
1771 	if (!task)
1772 		goto out_no_task;
1773 	if (fd == ~0U)
1774 		goto out;
1775 
1776 	result = instantiate(dir, dentry, task, &fd);
1777 out:
1778 	put_task_struct(task);
1779 out_no_task:
1780 	return result;
1781 }
1782 
1783 static int proc_readfd_common(struct file * filp, void * dirent,
1784 			      filldir_t filldir, instantiate_t instantiate)
1785 {
1786 	struct dentry *dentry = filp->f_path.dentry;
1787 	struct inode *inode = dentry->d_inode;
1788 	struct task_struct *p = get_proc_task(inode);
1789 	unsigned int fd, ino;
1790 	int retval;
1791 	struct files_struct * files;
1792 
1793 	retval = -ENOENT;
1794 	if (!p)
1795 		goto out_no_task;
1796 	retval = 0;
1797 
1798 	fd = filp->f_pos;
1799 	switch (fd) {
1800 		case 0:
1801 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1802 				goto out;
1803 			filp->f_pos++;
1804 		case 1:
1805 			ino = parent_ino(dentry);
1806 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1807 				goto out;
1808 			filp->f_pos++;
1809 		default:
1810 			files = get_files_struct(p);
1811 			if (!files)
1812 				goto out;
1813 			rcu_read_lock();
1814 			for (fd = filp->f_pos-2;
1815 			     fd < files_fdtable(files)->max_fds;
1816 			     fd++, filp->f_pos++) {
1817 				char name[PROC_NUMBUF];
1818 				int len;
1819 
1820 				if (!fcheck_files(files, fd))
1821 					continue;
1822 				rcu_read_unlock();
1823 
1824 				len = snprintf(name, sizeof(name), "%d", fd);
1825 				if (proc_fill_cache(filp, dirent, filldir,
1826 						    name, len, instantiate,
1827 						    p, &fd) < 0) {
1828 					rcu_read_lock();
1829 					break;
1830 				}
1831 				rcu_read_lock();
1832 			}
1833 			rcu_read_unlock();
1834 			put_files_struct(files);
1835 	}
1836 out:
1837 	put_task_struct(p);
1838 out_no_task:
1839 	return retval;
1840 }
1841 
1842 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1843 				    struct nameidata *nd)
1844 {
1845 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1846 }
1847 
1848 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1849 {
1850 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1851 }
1852 
1853 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1854 				      size_t len, loff_t *ppos)
1855 {
1856 	char tmp[PROC_FDINFO_MAX];
1857 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1858 	if (!err)
1859 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1860 	return err;
1861 }
1862 
1863 static const struct file_operations proc_fdinfo_file_operations = {
1864 	.open		= nonseekable_open,
1865 	.read		= proc_fdinfo_read,
1866 };
1867 
1868 static const struct file_operations proc_fd_operations = {
1869 	.read		= generic_read_dir,
1870 	.readdir	= proc_readfd,
1871 };
1872 
1873 /*
1874  * /proc/pid/fd needs a special permission handler so that a process can still
1875  * access /proc/self/fd after it has executed a setuid().
1876  */
1877 static int proc_fd_permission(struct inode *inode, int mask)
1878 {
1879 	int rv;
1880 
1881 	rv = generic_permission(inode, mask, NULL);
1882 	if (rv == 0)
1883 		return 0;
1884 	if (task_pid(current) == proc_pid(inode))
1885 		rv = 0;
1886 	return rv;
1887 }
1888 
1889 /*
1890  * proc directories can do almost nothing..
1891  */
1892 static const struct inode_operations proc_fd_inode_operations = {
1893 	.lookup		= proc_lookupfd,
1894 	.permission	= proc_fd_permission,
1895 	.setattr	= proc_setattr,
1896 };
1897 
1898 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1899 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1900 {
1901 	unsigned fd = *(unsigned *)ptr;
1902  	struct inode *inode;
1903  	struct proc_inode *ei;
1904 	struct dentry *error = ERR_PTR(-ENOENT);
1905 
1906 	inode = proc_pid_make_inode(dir->i_sb, task);
1907 	if (!inode)
1908 		goto out;
1909 	ei = PROC_I(inode);
1910 	ei->fd = fd;
1911 	inode->i_mode = S_IFREG | S_IRUSR;
1912 	inode->i_fop = &proc_fdinfo_file_operations;
1913 	dentry->d_op = &tid_fd_dentry_operations;
1914 	d_add(dentry, inode);
1915 	/* Close the race of the process dying before we return the dentry */
1916 	if (tid_fd_revalidate(dentry, NULL))
1917 		error = NULL;
1918 
1919  out:
1920 	return error;
1921 }
1922 
1923 static struct dentry *proc_lookupfdinfo(struct inode *dir,
1924 					struct dentry *dentry,
1925 					struct nameidata *nd)
1926 {
1927 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1928 }
1929 
1930 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1931 {
1932 	return proc_readfd_common(filp, dirent, filldir,
1933 				  proc_fdinfo_instantiate);
1934 }
1935 
1936 static const struct file_operations proc_fdinfo_operations = {
1937 	.read		= generic_read_dir,
1938 	.readdir	= proc_readfdinfo,
1939 };
1940 
1941 /*
1942  * proc directories can do almost nothing..
1943  */
1944 static const struct inode_operations proc_fdinfo_inode_operations = {
1945 	.lookup		= proc_lookupfdinfo,
1946 	.setattr	= proc_setattr,
1947 };
1948 
1949 
1950 static struct dentry *proc_pident_instantiate(struct inode *dir,
1951 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1952 {
1953 	const struct pid_entry *p = ptr;
1954 	struct inode *inode;
1955 	struct proc_inode *ei;
1956 	struct dentry *error = ERR_PTR(-ENOENT);
1957 
1958 	inode = proc_pid_make_inode(dir->i_sb, task);
1959 	if (!inode)
1960 		goto out;
1961 
1962 	ei = PROC_I(inode);
1963 	inode->i_mode = p->mode;
1964 	if (S_ISDIR(inode->i_mode))
1965 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
1966 	if (p->iop)
1967 		inode->i_op = p->iop;
1968 	if (p->fop)
1969 		inode->i_fop = p->fop;
1970 	ei->op = p->op;
1971 	dentry->d_op = &pid_dentry_operations;
1972 	d_add(dentry, inode);
1973 	/* Close the race of the process dying before we return the dentry */
1974 	if (pid_revalidate(dentry, NULL))
1975 		error = NULL;
1976 out:
1977 	return error;
1978 }
1979 
1980 static struct dentry *proc_pident_lookup(struct inode *dir,
1981 					 struct dentry *dentry,
1982 					 const struct pid_entry *ents,
1983 					 unsigned int nents)
1984 {
1985 	struct dentry *error;
1986 	struct task_struct *task = get_proc_task(dir);
1987 	const struct pid_entry *p, *last;
1988 
1989 	error = ERR_PTR(-ENOENT);
1990 
1991 	if (!task)
1992 		goto out_no_task;
1993 
1994 	/*
1995 	 * Yes, it does not scale. And it should not. Don't add
1996 	 * new entries into /proc/<tgid>/ without very good reasons.
1997 	 */
1998 	last = &ents[nents - 1];
1999 	for (p = ents; p <= last; p++) {
2000 		if (p->len != dentry->d_name.len)
2001 			continue;
2002 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2003 			break;
2004 	}
2005 	if (p > last)
2006 		goto out;
2007 
2008 	error = proc_pident_instantiate(dir, dentry, task, p);
2009 out:
2010 	put_task_struct(task);
2011 out_no_task:
2012 	return error;
2013 }
2014 
2015 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2016 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2017 {
2018 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2019 				proc_pident_instantiate, task, p);
2020 }
2021 
2022 static int proc_pident_readdir(struct file *filp,
2023 		void *dirent, filldir_t filldir,
2024 		const struct pid_entry *ents, unsigned int nents)
2025 {
2026 	int i;
2027 	struct dentry *dentry = filp->f_path.dentry;
2028 	struct inode *inode = dentry->d_inode;
2029 	struct task_struct *task = get_proc_task(inode);
2030 	const struct pid_entry *p, *last;
2031 	ino_t ino;
2032 	int ret;
2033 
2034 	ret = -ENOENT;
2035 	if (!task)
2036 		goto out_no_task;
2037 
2038 	ret = 0;
2039 	i = filp->f_pos;
2040 	switch (i) {
2041 	case 0:
2042 		ino = inode->i_ino;
2043 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2044 			goto out;
2045 		i++;
2046 		filp->f_pos++;
2047 		/* fall through */
2048 	case 1:
2049 		ino = parent_ino(dentry);
2050 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2051 			goto out;
2052 		i++;
2053 		filp->f_pos++;
2054 		/* fall through */
2055 	default:
2056 		i -= 2;
2057 		if (i >= nents) {
2058 			ret = 1;
2059 			goto out;
2060 		}
2061 		p = ents + i;
2062 		last = &ents[nents - 1];
2063 		while (p <= last) {
2064 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2065 				goto out;
2066 			filp->f_pos++;
2067 			p++;
2068 		}
2069 	}
2070 
2071 	ret = 1;
2072 out:
2073 	put_task_struct(task);
2074 out_no_task:
2075 	return ret;
2076 }
2077 
2078 #ifdef CONFIG_SECURITY
2079 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2080 				  size_t count, loff_t *ppos)
2081 {
2082 	struct inode * inode = file->f_path.dentry->d_inode;
2083 	char *p = NULL;
2084 	ssize_t length;
2085 	struct task_struct *task = get_proc_task(inode);
2086 
2087 	if (!task)
2088 		return -ESRCH;
2089 
2090 	length = security_getprocattr(task,
2091 				      (char*)file->f_path.dentry->d_name.name,
2092 				      &p);
2093 	put_task_struct(task);
2094 	if (length > 0)
2095 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2096 	kfree(p);
2097 	return length;
2098 }
2099 
2100 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2101 				   size_t count, loff_t *ppos)
2102 {
2103 	struct inode * inode = file->f_path.dentry->d_inode;
2104 	char *page;
2105 	ssize_t length;
2106 	struct task_struct *task = get_proc_task(inode);
2107 
2108 	length = -ESRCH;
2109 	if (!task)
2110 		goto out_no_task;
2111 	if (count > PAGE_SIZE)
2112 		count = PAGE_SIZE;
2113 
2114 	/* No partial writes. */
2115 	length = -EINVAL;
2116 	if (*ppos != 0)
2117 		goto out;
2118 
2119 	length = -ENOMEM;
2120 	page = (char*)__get_free_page(GFP_TEMPORARY);
2121 	if (!page)
2122 		goto out;
2123 
2124 	length = -EFAULT;
2125 	if (copy_from_user(page, buf, count))
2126 		goto out_free;
2127 
2128 	/* Guard against adverse ptrace interaction */
2129 	length = mutex_lock_interruptible(&task->cred_guard_mutex);
2130 	if (length < 0)
2131 		goto out_free;
2132 
2133 	length = security_setprocattr(task,
2134 				      (char*)file->f_path.dentry->d_name.name,
2135 				      (void*)page, count);
2136 	mutex_unlock(&task->cred_guard_mutex);
2137 out_free:
2138 	free_page((unsigned long) page);
2139 out:
2140 	put_task_struct(task);
2141 out_no_task:
2142 	return length;
2143 }
2144 
2145 static const struct file_operations proc_pid_attr_operations = {
2146 	.read		= proc_pid_attr_read,
2147 	.write		= proc_pid_attr_write,
2148 };
2149 
2150 static const struct pid_entry attr_dir_stuff[] = {
2151 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2152 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2153 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2154 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2155 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2156 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2157 };
2158 
2159 static int proc_attr_dir_readdir(struct file * filp,
2160 			     void * dirent, filldir_t filldir)
2161 {
2162 	return proc_pident_readdir(filp,dirent,filldir,
2163 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2164 }
2165 
2166 static const struct file_operations proc_attr_dir_operations = {
2167 	.read		= generic_read_dir,
2168 	.readdir	= proc_attr_dir_readdir,
2169 };
2170 
2171 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2172 				struct dentry *dentry, struct nameidata *nd)
2173 {
2174 	return proc_pident_lookup(dir, dentry,
2175 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2176 }
2177 
2178 static const struct inode_operations proc_attr_dir_inode_operations = {
2179 	.lookup		= proc_attr_dir_lookup,
2180 	.getattr	= pid_getattr,
2181 	.setattr	= proc_setattr,
2182 };
2183 
2184 #endif
2185 
2186 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2187 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2188 					 size_t count, loff_t *ppos)
2189 {
2190 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2191 	struct mm_struct *mm;
2192 	char buffer[PROC_NUMBUF];
2193 	size_t len;
2194 	int ret;
2195 
2196 	if (!task)
2197 		return -ESRCH;
2198 
2199 	ret = 0;
2200 	mm = get_task_mm(task);
2201 	if (mm) {
2202 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2203 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2204 				MMF_DUMP_FILTER_SHIFT));
2205 		mmput(mm);
2206 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2207 	}
2208 
2209 	put_task_struct(task);
2210 
2211 	return ret;
2212 }
2213 
2214 static ssize_t proc_coredump_filter_write(struct file *file,
2215 					  const char __user *buf,
2216 					  size_t count,
2217 					  loff_t *ppos)
2218 {
2219 	struct task_struct *task;
2220 	struct mm_struct *mm;
2221 	char buffer[PROC_NUMBUF], *end;
2222 	unsigned int val;
2223 	int ret;
2224 	int i;
2225 	unsigned long mask;
2226 
2227 	ret = -EFAULT;
2228 	memset(buffer, 0, sizeof(buffer));
2229 	if (count > sizeof(buffer) - 1)
2230 		count = sizeof(buffer) - 1;
2231 	if (copy_from_user(buffer, buf, count))
2232 		goto out_no_task;
2233 
2234 	ret = -EINVAL;
2235 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2236 	if (*end == '\n')
2237 		end++;
2238 	if (end - buffer == 0)
2239 		goto out_no_task;
2240 
2241 	ret = -ESRCH;
2242 	task = get_proc_task(file->f_dentry->d_inode);
2243 	if (!task)
2244 		goto out_no_task;
2245 
2246 	ret = end - buffer;
2247 	mm = get_task_mm(task);
2248 	if (!mm)
2249 		goto out_no_mm;
2250 
2251 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2252 		if (val & mask)
2253 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2254 		else
2255 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2256 	}
2257 
2258 	mmput(mm);
2259  out_no_mm:
2260 	put_task_struct(task);
2261  out_no_task:
2262 	return ret;
2263 }
2264 
2265 static const struct file_operations proc_coredump_filter_operations = {
2266 	.read		= proc_coredump_filter_read,
2267 	.write		= proc_coredump_filter_write,
2268 };
2269 #endif
2270 
2271 /*
2272  * /proc/self:
2273  */
2274 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2275 			      int buflen)
2276 {
2277 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2278 	pid_t tgid = task_tgid_nr_ns(current, ns);
2279 	char tmp[PROC_NUMBUF];
2280 	if (!tgid)
2281 		return -ENOENT;
2282 	sprintf(tmp, "%d", tgid);
2283 	return vfs_readlink(dentry,buffer,buflen,tmp);
2284 }
2285 
2286 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2287 {
2288 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2289 	pid_t tgid = task_tgid_nr_ns(current, ns);
2290 	char tmp[PROC_NUMBUF];
2291 	if (!tgid)
2292 		return ERR_PTR(-ENOENT);
2293 	sprintf(tmp, "%d", task_tgid_nr_ns(current, ns));
2294 	return ERR_PTR(vfs_follow_link(nd,tmp));
2295 }
2296 
2297 static const struct inode_operations proc_self_inode_operations = {
2298 	.readlink	= proc_self_readlink,
2299 	.follow_link	= proc_self_follow_link,
2300 };
2301 
2302 /*
2303  * proc base
2304  *
2305  * These are the directory entries in the root directory of /proc
2306  * that properly belong to the /proc filesystem, as they describe
2307  * describe something that is process related.
2308  */
2309 static const struct pid_entry proc_base_stuff[] = {
2310 	NOD("self", S_IFLNK|S_IRWXUGO,
2311 		&proc_self_inode_operations, NULL, {}),
2312 };
2313 
2314 /*
2315  *	Exceptional case: normally we are not allowed to unhash a busy
2316  * directory. In this case, however, we can do it - no aliasing problems
2317  * due to the way we treat inodes.
2318  */
2319 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2320 {
2321 	struct inode *inode = dentry->d_inode;
2322 	struct task_struct *task = get_proc_task(inode);
2323 	if (task) {
2324 		put_task_struct(task);
2325 		return 1;
2326 	}
2327 	d_drop(dentry);
2328 	return 0;
2329 }
2330 
2331 static const struct dentry_operations proc_base_dentry_operations =
2332 {
2333 	.d_revalidate	= proc_base_revalidate,
2334 	.d_delete	= pid_delete_dentry,
2335 };
2336 
2337 static struct dentry *proc_base_instantiate(struct inode *dir,
2338 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2339 {
2340 	const struct pid_entry *p = ptr;
2341 	struct inode *inode;
2342 	struct proc_inode *ei;
2343 	struct dentry *error = ERR_PTR(-EINVAL);
2344 
2345 	/* Allocate the inode */
2346 	error = ERR_PTR(-ENOMEM);
2347 	inode = new_inode(dir->i_sb);
2348 	if (!inode)
2349 		goto out;
2350 
2351 	/* Initialize the inode */
2352 	ei = PROC_I(inode);
2353 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2354 
2355 	/*
2356 	 * grab the reference to the task.
2357 	 */
2358 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2359 	if (!ei->pid)
2360 		goto out_iput;
2361 
2362 	inode->i_mode = p->mode;
2363 	if (S_ISDIR(inode->i_mode))
2364 		inode->i_nlink = 2;
2365 	if (S_ISLNK(inode->i_mode))
2366 		inode->i_size = 64;
2367 	if (p->iop)
2368 		inode->i_op = p->iop;
2369 	if (p->fop)
2370 		inode->i_fop = p->fop;
2371 	ei->op = p->op;
2372 	dentry->d_op = &proc_base_dentry_operations;
2373 	d_add(dentry, inode);
2374 	error = NULL;
2375 out:
2376 	return error;
2377 out_iput:
2378 	iput(inode);
2379 	goto out;
2380 }
2381 
2382 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2383 {
2384 	struct dentry *error;
2385 	struct task_struct *task = get_proc_task(dir);
2386 	const struct pid_entry *p, *last;
2387 
2388 	error = ERR_PTR(-ENOENT);
2389 
2390 	if (!task)
2391 		goto out_no_task;
2392 
2393 	/* Lookup the directory entry */
2394 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2395 	for (p = proc_base_stuff; p <= last; p++) {
2396 		if (p->len != dentry->d_name.len)
2397 			continue;
2398 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2399 			break;
2400 	}
2401 	if (p > last)
2402 		goto out;
2403 
2404 	error = proc_base_instantiate(dir, dentry, task, p);
2405 
2406 out:
2407 	put_task_struct(task);
2408 out_no_task:
2409 	return error;
2410 }
2411 
2412 static int proc_base_fill_cache(struct file *filp, void *dirent,
2413 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2414 {
2415 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2416 				proc_base_instantiate, task, p);
2417 }
2418 
2419 #ifdef CONFIG_TASK_IO_ACCOUNTING
2420 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2421 {
2422 	struct task_io_accounting acct = task->ioac;
2423 	unsigned long flags;
2424 
2425 	if (whole && lock_task_sighand(task, &flags)) {
2426 		struct task_struct *t = task;
2427 
2428 		task_io_accounting_add(&acct, &task->signal->ioac);
2429 		while_each_thread(task, t)
2430 			task_io_accounting_add(&acct, &t->ioac);
2431 
2432 		unlock_task_sighand(task, &flags);
2433 	}
2434 	return sprintf(buffer,
2435 			"rchar: %llu\n"
2436 			"wchar: %llu\n"
2437 			"syscr: %llu\n"
2438 			"syscw: %llu\n"
2439 			"read_bytes: %llu\n"
2440 			"write_bytes: %llu\n"
2441 			"cancelled_write_bytes: %llu\n",
2442 			(unsigned long long)acct.rchar,
2443 			(unsigned long long)acct.wchar,
2444 			(unsigned long long)acct.syscr,
2445 			(unsigned long long)acct.syscw,
2446 			(unsigned long long)acct.read_bytes,
2447 			(unsigned long long)acct.write_bytes,
2448 			(unsigned long long)acct.cancelled_write_bytes);
2449 }
2450 
2451 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2452 {
2453 	return do_io_accounting(task, buffer, 0);
2454 }
2455 
2456 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2457 {
2458 	return do_io_accounting(task, buffer, 1);
2459 }
2460 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2461 
2462 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2463 				struct pid *pid, struct task_struct *task)
2464 {
2465 	seq_printf(m, "%08x\n", task->personality);
2466 	return 0;
2467 }
2468 
2469 /*
2470  * Thread groups
2471  */
2472 static const struct file_operations proc_task_operations;
2473 static const struct inode_operations proc_task_inode_operations;
2474 
2475 static const struct pid_entry tgid_base_stuff[] = {
2476 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2477 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2478 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2479 #ifdef CONFIG_NET
2480 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2481 #endif
2482 	REG("environ",    S_IRUSR, proc_environ_operations),
2483 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2484 	ONE("status",     S_IRUGO, proc_pid_status),
2485 	ONE("personality", S_IRUSR, proc_pid_personality),
2486 	INF("limits",	  S_IRUSR, proc_pid_limits),
2487 #ifdef CONFIG_SCHED_DEBUG
2488 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2489 #endif
2490 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2491 	INF("syscall",    S_IRUSR, proc_pid_syscall),
2492 #endif
2493 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2494 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2495 	ONE("statm",      S_IRUGO, proc_pid_statm),
2496 	REG("maps",       S_IRUGO, proc_maps_operations),
2497 #ifdef CONFIG_NUMA
2498 	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2499 #endif
2500 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2501 	LNK("cwd",        proc_cwd_link),
2502 	LNK("root",       proc_root_link),
2503 	LNK("exe",        proc_exe_link),
2504 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2505 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2506 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2507 #ifdef CONFIG_PROC_PAGE_MONITOR
2508 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2509 	REG("smaps",      S_IRUGO, proc_smaps_operations),
2510 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2511 #endif
2512 #ifdef CONFIG_SECURITY
2513 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2514 #endif
2515 #ifdef CONFIG_KALLSYMS
2516 	INF("wchan",      S_IRUGO, proc_pid_wchan),
2517 #endif
2518 #ifdef CONFIG_STACKTRACE
2519 	ONE("stack",      S_IRUSR, proc_pid_stack),
2520 #endif
2521 #ifdef CONFIG_SCHEDSTATS
2522 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2523 #endif
2524 #ifdef CONFIG_LATENCYTOP
2525 	REG("latency",  S_IRUGO, proc_lstats_operations),
2526 #endif
2527 #ifdef CONFIG_PROC_PID_CPUSET
2528 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2529 #endif
2530 #ifdef CONFIG_CGROUPS
2531 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2532 #endif
2533 	INF("oom_score",  S_IRUGO, proc_oom_score),
2534 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2535 #ifdef CONFIG_AUDITSYSCALL
2536 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2537 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2538 #endif
2539 #ifdef CONFIG_FAULT_INJECTION
2540 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2541 #endif
2542 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2543 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2544 #endif
2545 #ifdef CONFIG_TASK_IO_ACCOUNTING
2546 	INF("io",	S_IRUGO, proc_tgid_io_accounting),
2547 #endif
2548 };
2549 
2550 static int proc_tgid_base_readdir(struct file * filp,
2551 			     void * dirent, filldir_t filldir)
2552 {
2553 	return proc_pident_readdir(filp,dirent,filldir,
2554 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2555 }
2556 
2557 static const struct file_operations proc_tgid_base_operations = {
2558 	.read		= generic_read_dir,
2559 	.readdir	= proc_tgid_base_readdir,
2560 };
2561 
2562 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2563 	return proc_pident_lookup(dir, dentry,
2564 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2565 }
2566 
2567 static const struct inode_operations proc_tgid_base_inode_operations = {
2568 	.lookup		= proc_tgid_base_lookup,
2569 	.getattr	= pid_getattr,
2570 	.setattr	= proc_setattr,
2571 };
2572 
2573 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2574 {
2575 	struct dentry *dentry, *leader, *dir;
2576 	char buf[PROC_NUMBUF];
2577 	struct qstr name;
2578 
2579 	name.name = buf;
2580 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2581 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2582 	if (dentry) {
2583 		if (!(current->flags & PF_EXITING))
2584 			shrink_dcache_parent(dentry);
2585 		d_drop(dentry);
2586 		dput(dentry);
2587 	}
2588 
2589 	if (tgid == 0)
2590 		goto out;
2591 
2592 	name.name = buf;
2593 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2594 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2595 	if (!leader)
2596 		goto out;
2597 
2598 	name.name = "task";
2599 	name.len = strlen(name.name);
2600 	dir = d_hash_and_lookup(leader, &name);
2601 	if (!dir)
2602 		goto out_put_leader;
2603 
2604 	name.name = buf;
2605 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2606 	dentry = d_hash_and_lookup(dir, &name);
2607 	if (dentry) {
2608 		shrink_dcache_parent(dentry);
2609 		d_drop(dentry);
2610 		dput(dentry);
2611 	}
2612 
2613 	dput(dir);
2614 out_put_leader:
2615 	dput(leader);
2616 out:
2617 	return;
2618 }
2619 
2620 /**
2621  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2622  * @task: task that should be flushed.
2623  *
2624  * When flushing dentries from proc, one needs to flush them from global
2625  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2626  * in. This call is supposed to do all of this job.
2627  *
2628  * Looks in the dcache for
2629  * /proc/@pid
2630  * /proc/@tgid/task/@pid
2631  * if either directory is present flushes it and all of it'ts children
2632  * from the dcache.
2633  *
2634  * It is safe and reasonable to cache /proc entries for a task until
2635  * that task exits.  After that they just clog up the dcache with
2636  * useless entries, possibly causing useful dcache entries to be
2637  * flushed instead.  This routine is proved to flush those useless
2638  * dcache entries at process exit time.
2639  *
2640  * NOTE: This routine is just an optimization so it does not guarantee
2641  *       that no dcache entries will exist at process exit time it
2642  *       just makes it very unlikely that any will persist.
2643  */
2644 
2645 void proc_flush_task(struct task_struct *task)
2646 {
2647 	int i;
2648 	struct pid *pid, *tgid = NULL;
2649 	struct upid *upid;
2650 
2651 	pid = task_pid(task);
2652 	if (thread_group_leader(task))
2653 		tgid = task_tgid(task);
2654 
2655 	for (i = 0; i <= pid->level; i++) {
2656 		upid = &pid->numbers[i];
2657 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2658 			tgid ? tgid->numbers[i].nr : 0);
2659 	}
2660 
2661 	upid = &pid->numbers[pid->level];
2662 	if (upid->nr == 1)
2663 		pid_ns_release_proc(upid->ns);
2664 }
2665 
2666 static struct dentry *proc_pid_instantiate(struct inode *dir,
2667 					   struct dentry * dentry,
2668 					   struct task_struct *task, const void *ptr)
2669 {
2670 	struct dentry *error = ERR_PTR(-ENOENT);
2671 	struct inode *inode;
2672 
2673 	inode = proc_pid_make_inode(dir->i_sb, task);
2674 	if (!inode)
2675 		goto out;
2676 
2677 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2678 	inode->i_op = &proc_tgid_base_inode_operations;
2679 	inode->i_fop = &proc_tgid_base_operations;
2680 	inode->i_flags|=S_IMMUTABLE;
2681 
2682 	inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2683 		ARRAY_SIZE(tgid_base_stuff));
2684 
2685 	dentry->d_op = &pid_dentry_operations;
2686 
2687 	d_add(dentry, inode);
2688 	/* Close the race of the process dying before we return the dentry */
2689 	if (pid_revalidate(dentry, NULL))
2690 		error = NULL;
2691 out:
2692 	return error;
2693 }
2694 
2695 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2696 {
2697 	struct dentry *result = ERR_PTR(-ENOENT);
2698 	struct task_struct *task;
2699 	unsigned tgid;
2700 	struct pid_namespace *ns;
2701 
2702 	result = proc_base_lookup(dir, dentry);
2703 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2704 		goto out;
2705 
2706 	tgid = name_to_int(dentry);
2707 	if (tgid == ~0U)
2708 		goto out;
2709 
2710 	ns = dentry->d_sb->s_fs_info;
2711 	rcu_read_lock();
2712 	task = find_task_by_pid_ns(tgid, ns);
2713 	if (task)
2714 		get_task_struct(task);
2715 	rcu_read_unlock();
2716 	if (!task)
2717 		goto out;
2718 
2719 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2720 	put_task_struct(task);
2721 out:
2722 	return result;
2723 }
2724 
2725 /*
2726  * Find the first task with tgid >= tgid
2727  *
2728  */
2729 struct tgid_iter {
2730 	unsigned int tgid;
2731 	struct task_struct *task;
2732 };
2733 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2734 {
2735 	struct pid *pid;
2736 
2737 	if (iter.task)
2738 		put_task_struct(iter.task);
2739 	rcu_read_lock();
2740 retry:
2741 	iter.task = NULL;
2742 	pid = find_ge_pid(iter.tgid, ns);
2743 	if (pid) {
2744 		iter.tgid = pid_nr_ns(pid, ns);
2745 		iter.task = pid_task(pid, PIDTYPE_PID);
2746 		/* What we to know is if the pid we have find is the
2747 		 * pid of a thread_group_leader.  Testing for task
2748 		 * being a thread_group_leader is the obvious thing
2749 		 * todo but there is a window when it fails, due to
2750 		 * the pid transfer logic in de_thread.
2751 		 *
2752 		 * So we perform the straight forward test of seeing
2753 		 * if the pid we have found is the pid of a thread
2754 		 * group leader, and don't worry if the task we have
2755 		 * found doesn't happen to be a thread group leader.
2756 		 * As we don't care in the case of readdir.
2757 		 */
2758 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2759 			iter.tgid += 1;
2760 			goto retry;
2761 		}
2762 		get_task_struct(iter.task);
2763 	}
2764 	rcu_read_unlock();
2765 	return iter;
2766 }
2767 
2768 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2769 
2770 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2771 	struct tgid_iter iter)
2772 {
2773 	char name[PROC_NUMBUF];
2774 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2775 	return proc_fill_cache(filp, dirent, filldir, name, len,
2776 				proc_pid_instantiate, iter.task, NULL);
2777 }
2778 
2779 /* for the /proc/ directory itself, after non-process stuff has been done */
2780 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2781 {
2782 	unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2783 	struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2784 	struct tgid_iter iter;
2785 	struct pid_namespace *ns;
2786 
2787 	if (!reaper)
2788 		goto out_no_task;
2789 
2790 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2791 		const struct pid_entry *p = &proc_base_stuff[nr];
2792 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2793 			goto out;
2794 	}
2795 
2796 	ns = filp->f_dentry->d_sb->s_fs_info;
2797 	iter.task = NULL;
2798 	iter.tgid = filp->f_pos - TGID_OFFSET;
2799 	for (iter = next_tgid(ns, iter);
2800 	     iter.task;
2801 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2802 		filp->f_pos = iter.tgid + TGID_OFFSET;
2803 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2804 			put_task_struct(iter.task);
2805 			goto out;
2806 		}
2807 	}
2808 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2809 out:
2810 	put_task_struct(reaper);
2811 out_no_task:
2812 	return 0;
2813 }
2814 
2815 /*
2816  * Tasks
2817  */
2818 static const struct pid_entry tid_base_stuff[] = {
2819 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2820 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fd_operations),
2821 	REG("environ",   S_IRUSR, proc_environ_operations),
2822 	INF("auxv",      S_IRUSR, proc_pid_auxv),
2823 	ONE("status",    S_IRUGO, proc_pid_status),
2824 	ONE("personality", S_IRUSR, proc_pid_personality),
2825 	INF("limits",	 S_IRUSR, proc_pid_limits),
2826 #ifdef CONFIG_SCHED_DEBUG
2827 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2828 #endif
2829 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2830 	INF("syscall",   S_IRUSR, proc_pid_syscall),
2831 #endif
2832 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
2833 	ONE("stat",      S_IRUGO, proc_tid_stat),
2834 	ONE("statm",     S_IRUGO, proc_pid_statm),
2835 	REG("maps",      S_IRUGO, proc_maps_operations),
2836 #ifdef CONFIG_NUMA
2837 	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2838 #endif
2839 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
2840 	LNK("cwd",       proc_cwd_link),
2841 	LNK("root",      proc_root_link),
2842 	LNK("exe",       proc_exe_link),
2843 	REG("mounts",    S_IRUGO, proc_mounts_operations),
2844 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2845 #ifdef CONFIG_PROC_PAGE_MONITOR
2846 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2847 	REG("smaps",     S_IRUGO, proc_smaps_operations),
2848 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2849 #endif
2850 #ifdef CONFIG_SECURITY
2851 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2852 #endif
2853 #ifdef CONFIG_KALLSYMS
2854 	INF("wchan",     S_IRUGO, proc_pid_wchan),
2855 #endif
2856 #ifdef CONFIG_STACKTRACE
2857 	ONE("stack",      S_IRUSR, proc_pid_stack),
2858 #endif
2859 #ifdef CONFIG_SCHEDSTATS
2860 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
2861 #endif
2862 #ifdef CONFIG_LATENCYTOP
2863 	REG("latency",  S_IRUGO, proc_lstats_operations),
2864 #endif
2865 #ifdef CONFIG_PROC_PID_CPUSET
2866 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
2867 #endif
2868 #ifdef CONFIG_CGROUPS
2869 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2870 #endif
2871 	INF("oom_score", S_IRUGO, proc_oom_score),
2872 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2873 #ifdef CONFIG_AUDITSYSCALL
2874 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
2875 	REG("sessionid",  S_IRUSR, proc_sessionid_operations),
2876 #endif
2877 #ifdef CONFIG_FAULT_INJECTION
2878 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2879 #endif
2880 #ifdef CONFIG_TASK_IO_ACCOUNTING
2881 	INF("io",	S_IRUGO, proc_tid_io_accounting),
2882 #endif
2883 };
2884 
2885 static int proc_tid_base_readdir(struct file * filp,
2886 			     void * dirent, filldir_t filldir)
2887 {
2888 	return proc_pident_readdir(filp,dirent,filldir,
2889 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2890 }
2891 
2892 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2893 	return proc_pident_lookup(dir, dentry,
2894 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2895 }
2896 
2897 static const struct file_operations proc_tid_base_operations = {
2898 	.read		= generic_read_dir,
2899 	.readdir	= proc_tid_base_readdir,
2900 };
2901 
2902 static const struct inode_operations proc_tid_base_inode_operations = {
2903 	.lookup		= proc_tid_base_lookup,
2904 	.getattr	= pid_getattr,
2905 	.setattr	= proc_setattr,
2906 };
2907 
2908 static struct dentry *proc_task_instantiate(struct inode *dir,
2909 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2910 {
2911 	struct dentry *error = ERR_PTR(-ENOENT);
2912 	struct inode *inode;
2913 	inode = proc_pid_make_inode(dir->i_sb, task);
2914 
2915 	if (!inode)
2916 		goto out;
2917 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2918 	inode->i_op = &proc_tid_base_inode_operations;
2919 	inode->i_fop = &proc_tid_base_operations;
2920 	inode->i_flags|=S_IMMUTABLE;
2921 
2922 	inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
2923 		ARRAY_SIZE(tid_base_stuff));
2924 
2925 	dentry->d_op = &pid_dentry_operations;
2926 
2927 	d_add(dentry, inode);
2928 	/* Close the race of the process dying before we return the dentry */
2929 	if (pid_revalidate(dentry, NULL))
2930 		error = NULL;
2931 out:
2932 	return error;
2933 }
2934 
2935 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2936 {
2937 	struct dentry *result = ERR_PTR(-ENOENT);
2938 	struct task_struct *task;
2939 	struct task_struct *leader = get_proc_task(dir);
2940 	unsigned tid;
2941 	struct pid_namespace *ns;
2942 
2943 	if (!leader)
2944 		goto out_no_task;
2945 
2946 	tid = name_to_int(dentry);
2947 	if (tid == ~0U)
2948 		goto out;
2949 
2950 	ns = dentry->d_sb->s_fs_info;
2951 	rcu_read_lock();
2952 	task = find_task_by_pid_ns(tid, ns);
2953 	if (task)
2954 		get_task_struct(task);
2955 	rcu_read_unlock();
2956 	if (!task)
2957 		goto out;
2958 	if (!same_thread_group(leader, task))
2959 		goto out_drop_task;
2960 
2961 	result = proc_task_instantiate(dir, dentry, task, NULL);
2962 out_drop_task:
2963 	put_task_struct(task);
2964 out:
2965 	put_task_struct(leader);
2966 out_no_task:
2967 	return result;
2968 }
2969 
2970 /*
2971  * Find the first tid of a thread group to return to user space.
2972  *
2973  * Usually this is just the thread group leader, but if the users
2974  * buffer was too small or there was a seek into the middle of the
2975  * directory we have more work todo.
2976  *
2977  * In the case of a short read we start with find_task_by_pid.
2978  *
2979  * In the case of a seek we start with the leader and walk nr
2980  * threads past it.
2981  */
2982 static struct task_struct *first_tid(struct task_struct *leader,
2983 		int tid, int nr, struct pid_namespace *ns)
2984 {
2985 	struct task_struct *pos;
2986 
2987 	rcu_read_lock();
2988 	/* Attempt to start with the pid of a thread */
2989 	if (tid && (nr > 0)) {
2990 		pos = find_task_by_pid_ns(tid, ns);
2991 		if (pos && (pos->group_leader == leader))
2992 			goto found;
2993 	}
2994 
2995 	/* If nr exceeds the number of threads there is nothing todo */
2996 	pos = NULL;
2997 	if (nr && nr >= get_nr_threads(leader))
2998 		goto out;
2999 
3000 	/* If we haven't found our starting place yet start
3001 	 * with the leader and walk nr threads forward.
3002 	 */
3003 	for (pos = leader; nr > 0; --nr) {
3004 		pos = next_thread(pos);
3005 		if (pos == leader) {
3006 			pos = NULL;
3007 			goto out;
3008 		}
3009 	}
3010 found:
3011 	get_task_struct(pos);
3012 out:
3013 	rcu_read_unlock();
3014 	return pos;
3015 }
3016 
3017 /*
3018  * Find the next thread in the thread list.
3019  * Return NULL if there is an error or no next thread.
3020  *
3021  * The reference to the input task_struct is released.
3022  */
3023 static struct task_struct *next_tid(struct task_struct *start)
3024 {
3025 	struct task_struct *pos = NULL;
3026 	rcu_read_lock();
3027 	if (pid_alive(start)) {
3028 		pos = next_thread(start);
3029 		if (thread_group_leader(pos))
3030 			pos = NULL;
3031 		else
3032 			get_task_struct(pos);
3033 	}
3034 	rcu_read_unlock();
3035 	put_task_struct(start);
3036 	return pos;
3037 }
3038 
3039 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3040 	struct task_struct *task, int tid)
3041 {
3042 	char name[PROC_NUMBUF];
3043 	int len = snprintf(name, sizeof(name), "%d", tid);
3044 	return proc_fill_cache(filp, dirent, filldir, name, len,
3045 				proc_task_instantiate, task, NULL);
3046 }
3047 
3048 /* for the /proc/TGID/task/ directories */
3049 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3050 {
3051 	struct dentry *dentry = filp->f_path.dentry;
3052 	struct inode *inode = dentry->d_inode;
3053 	struct task_struct *leader = NULL;
3054 	struct task_struct *task;
3055 	int retval = -ENOENT;
3056 	ino_t ino;
3057 	int tid;
3058 	struct pid_namespace *ns;
3059 
3060 	task = get_proc_task(inode);
3061 	if (!task)
3062 		goto out_no_task;
3063 	rcu_read_lock();
3064 	if (pid_alive(task)) {
3065 		leader = task->group_leader;
3066 		get_task_struct(leader);
3067 	}
3068 	rcu_read_unlock();
3069 	put_task_struct(task);
3070 	if (!leader)
3071 		goto out_no_task;
3072 	retval = 0;
3073 
3074 	switch ((unsigned long)filp->f_pos) {
3075 	case 0:
3076 		ino = inode->i_ino;
3077 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3078 			goto out;
3079 		filp->f_pos++;
3080 		/* fall through */
3081 	case 1:
3082 		ino = parent_ino(dentry);
3083 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3084 			goto out;
3085 		filp->f_pos++;
3086 		/* fall through */
3087 	}
3088 
3089 	/* f_version caches the tgid value that the last readdir call couldn't
3090 	 * return. lseek aka telldir automagically resets f_version to 0.
3091 	 */
3092 	ns = filp->f_dentry->d_sb->s_fs_info;
3093 	tid = (int)filp->f_version;
3094 	filp->f_version = 0;
3095 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3096 	     task;
3097 	     task = next_tid(task), filp->f_pos++) {
3098 		tid = task_pid_nr_ns(task, ns);
3099 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3100 			/* returning this tgid failed, save it as the first
3101 			 * pid for the next readir call */
3102 			filp->f_version = (u64)tid;
3103 			put_task_struct(task);
3104 			break;
3105 		}
3106 	}
3107 out:
3108 	put_task_struct(leader);
3109 out_no_task:
3110 	return retval;
3111 }
3112 
3113 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3114 {
3115 	struct inode *inode = dentry->d_inode;
3116 	struct task_struct *p = get_proc_task(inode);
3117 	generic_fillattr(inode, stat);
3118 
3119 	if (p) {
3120 		stat->nlink += get_nr_threads(p);
3121 		put_task_struct(p);
3122 	}
3123 
3124 	return 0;
3125 }
3126 
3127 static const struct inode_operations proc_task_inode_operations = {
3128 	.lookup		= proc_task_lookup,
3129 	.getattr	= proc_task_getattr,
3130 	.setattr	= proc_setattr,
3131 };
3132 
3133 static const struct file_operations proc_task_operations = {
3134 	.read		= generic_read_dir,
3135 	.readdir	= proc_task_readdir,
3136 };
3137