xref: /openbmc/linux/fs/proc/base.c (revision f77f13e2)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/rcupdate.h>
67 #include <linux/kallsyms.h>
68 #include <linux/stacktrace.h>
69 #include <linux/resource.h>
70 #include <linux/module.h>
71 #include <linux/mount.h>
72 #include <linux/security.h>
73 #include <linux/ptrace.h>
74 #include <linux/tracehook.h>
75 #include <linux/cgroup.h>
76 #include <linux/cpuset.h>
77 #include <linux/audit.h>
78 #include <linux/poll.h>
79 #include <linux/nsproxy.h>
80 #include <linux/oom.h>
81 #include <linux/elf.h>
82 #include <linux/pid_namespace.h>
83 #include <linux/fs_struct.h>
84 #include "internal.h"
85 
86 /* NOTE:
87  *	Implementing inode permission operations in /proc is almost
88  *	certainly an error.  Permission checks need to happen during
89  *	each system call not at open time.  The reason is that most of
90  *	what we wish to check for permissions in /proc varies at runtime.
91  *
92  *	The classic example of a problem is opening file descriptors
93  *	in /proc for a task before it execs a suid executable.
94  */
95 
96 struct pid_entry {
97 	char *name;
98 	int len;
99 	mode_t mode;
100 	const struct inode_operations *iop;
101 	const struct file_operations *fop;
102 	union proc_op op;
103 };
104 
105 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
106 	.name = (NAME),					\
107 	.len  = sizeof(NAME) - 1,			\
108 	.mode = MODE,					\
109 	.iop  = IOP,					\
110 	.fop  = FOP,					\
111 	.op   = OP,					\
112 }
113 
114 #define DIR(NAME, MODE, iops, fops)	\
115 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
116 #define LNK(NAME, get_link)					\
117 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
118 		&proc_pid_link_inode_operations, NULL,		\
119 		{ .proc_get_link = get_link } )
120 #define REG(NAME, MODE, fops)				\
121 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
122 #define INF(NAME, MODE, read)				\
123 	NOD(NAME, (S_IFREG|(MODE)), 			\
124 		NULL, &proc_info_file_operations,	\
125 		{ .proc_read = read } )
126 #define ONE(NAME, MODE, show)				\
127 	NOD(NAME, (S_IFREG|(MODE)), 			\
128 		NULL, &proc_single_file_operations,	\
129 		{ .proc_show = show } )
130 
131 /*
132  * Count the number of hardlinks for the pid_entry table, excluding the .
133  * and .. links.
134  */
135 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
136 	unsigned int n)
137 {
138 	unsigned int i;
139 	unsigned int count;
140 
141 	count = 0;
142 	for (i = 0; i < n; ++i) {
143 		if (S_ISDIR(entries[i].mode))
144 			++count;
145 	}
146 
147 	return count;
148 }
149 
150 static int get_fs_path(struct task_struct *task, struct path *path, bool root)
151 {
152 	struct fs_struct *fs;
153 	int result = -ENOENT;
154 
155 	task_lock(task);
156 	fs = task->fs;
157 	if (fs) {
158 		read_lock(&fs->lock);
159 		*path = root ? fs->root : fs->pwd;
160 		path_get(path);
161 		read_unlock(&fs->lock);
162 		result = 0;
163 	}
164 	task_unlock(task);
165 	return result;
166 }
167 
168 static int get_nr_threads(struct task_struct *tsk)
169 {
170 	unsigned long flags;
171 	int count = 0;
172 
173 	if (lock_task_sighand(tsk, &flags)) {
174 		count = atomic_read(&tsk->signal->count);
175 		unlock_task_sighand(tsk, &flags);
176 	}
177 	return count;
178 }
179 
180 static int proc_cwd_link(struct inode *inode, struct path *path)
181 {
182 	struct task_struct *task = get_proc_task(inode);
183 	int result = -ENOENT;
184 
185 	if (task) {
186 		result = get_fs_path(task, path, 0);
187 		put_task_struct(task);
188 	}
189 	return result;
190 }
191 
192 static int proc_root_link(struct inode *inode, struct path *path)
193 {
194 	struct task_struct *task = get_proc_task(inode);
195 	int result = -ENOENT;
196 
197 	if (task) {
198 		result = get_fs_path(task, path, 1);
199 		put_task_struct(task);
200 	}
201 	return result;
202 }
203 
204 /*
205  * Return zero if current may access user memory in @task, -error if not.
206  */
207 static int check_mem_permission(struct task_struct *task)
208 {
209 	/*
210 	 * A task can always look at itself, in case it chooses
211 	 * to use system calls instead of load instructions.
212 	 */
213 	if (task == current)
214 		return 0;
215 
216 	/*
217 	 * If current is actively ptrace'ing, and would also be
218 	 * permitted to freshly attach with ptrace now, permit it.
219 	 */
220 	if (task_is_stopped_or_traced(task)) {
221 		int match;
222 		rcu_read_lock();
223 		match = (tracehook_tracer_task(task) == current);
224 		rcu_read_unlock();
225 		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
226 			return 0;
227 	}
228 
229 	/*
230 	 * Noone else is allowed.
231 	 */
232 	return -EPERM;
233 }
234 
235 struct mm_struct *mm_for_maps(struct task_struct *task)
236 {
237 	struct mm_struct *mm;
238 
239 	if (mutex_lock_killable(&task->cred_guard_mutex))
240 		return NULL;
241 
242 	mm = get_task_mm(task);
243 	if (mm && mm != current->mm &&
244 			!ptrace_may_access(task, PTRACE_MODE_READ)) {
245 		mmput(mm);
246 		mm = NULL;
247 	}
248 	mutex_unlock(&task->cred_guard_mutex);
249 
250 	return mm;
251 }
252 
253 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
254 {
255 	int res = 0;
256 	unsigned int len;
257 	struct mm_struct *mm = get_task_mm(task);
258 	if (!mm)
259 		goto out;
260 	if (!mm->arg_end)
261 		goto out_mm;	/* Shh! No looking before we're done */
262 
263  	len = mm->arg_end - mm->arg_start;
264 
265 	if (len > PAGE_SIZE)
266 		len = PAGE_SIZE;
267 
268 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
269 
270 	// If the nul at the end of args has been overwritten, then
271 	// assume application is using setproctitle(3).
272 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
273 		len = strnlen(buffer, res);
274 		if (len < res) {
275 		    res = len;
276 		} else {
277 			len = mm->env_end - mm->env_start;
278 			if (len > PAGE_SIZE - res)
279 				len = PAGE_SIZE - res;
280 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
281 			res = strnlen(buffer, res);
282 		}
283 	}
284 out_mm:
285 	mmput(mm);
286 out:
287 	return res;
288 }
289 
290 static int proc_pid_auxv(struct task_struct *task, char *buffer)
291 {
292 	int res = 0;
293 	struct mm_struct *mm = get_task_mm(task);
294 	if (mm) {
295 		unsigned int nwords = 0;
296 		do {
297 			nwords += 2;
298 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
299 		res = nwords * sizeof(mm->saved_auxv[0]);
300 		if (res > PAGE_SIZE)
301 			res = PAGE_SIZE;
302 		memcpy(buffer, mm->saved_auxv, res);
303 		mmput(mm);
304 	}
305 	return res;
306 }
307 
308 
309 #ifdef CONFIG_KALLSYMS
310 /*
311  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
312  * Returns the resolved symbol.  If that fails, simply return the address.
313  */
314 static int proc_pid_wchan(struct task_struct *task, char *buffer)
315 {
316 	unsigned long wchan;
317 	char symname[KSYM_NAME_LEN];
318 
319 	wchan = get_wchan(task);
320 
321 	if (lookup_symbol_name(wchan, symname) < 0)
322 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
323 			return 0;
324 		else
325 			return sprintf(buffer, "%lu", wchan);
326 	else
327 		return sprintf(buffer, "%s", symname);
328 }
329 #endif /* CONFIG_KALLSYMS */
330 
331 #ifdef CONFIG_STACKTRACE
332 
333 #define MAX_STACK_TRACE_DEPTH	64
334 
335 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
336 			  struct pid *pid, struct task_struct *task)
337 {
338 	struct stack_trace trace;
339 	unsigned long *entries;
340 	int i;
341 
342 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
343 	if (!entries)
344 		return -ENOMEM;
345 
346 	trace.nr_entries	= 0;
347 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
348 	trace.entries		= entries;
349 	trace.skip		= 0;
350 	save_stack_trace_tsk(task, &trace);
351 
352 	for (i = 0; i < trace.nr_entries; i++) {
353 		seq_printf(m, "[<%p>] %pS\n",
354 			   (void *)entries[i], (void *)entries[i]);
355 	}
356 	kfree(entries);
357 
358 	return 0;
359 }
360 #endif
361 
362 #ifdef CONFIG_SCHEDSTATS
363 /*
364  * Provides /proc/PID/schedstat
365  */
366 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
367 {
368 	return sprintf(buffer, "%llu %llu %lu\n",
369 			(unsigned long long)task->se.sum_exec_runtime,
370 			(unsigned long long)task->sched_info.run_delay,
371 			task->sched_info.pcount);
372 }
373 #endif
374 
375 #ifdef CONFIG_LATENCYTOP
376 static int lstats_show_proc(struct seq_file *m, void *v)
377 {
378 	int i;
379 	struct inode *inode = m->private;
380 	struct task_struct *task = get_proc_task(inode);
381 
382 	if (!task)
383 		return -ESRCH;
384 	seq_puts(m, "Latency Top version : v0.1\n");
385 	for (i = 0; i < 32; i++) {
386 		if (task->latency_record[i].backtrace[0]) {
387 			int q;
388 			seq_printf(m, "%i %li %li ",
389 				task->latency_record[i].count,
390 				task->latency_record[i].time,
391 				task->latency_record[i].max);
392 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
393 				char sym[KSYM_SYMBOL_LEN];
394 				char *c;
395 				if (!task->latency_record[i].backtrace[q])
396 					break;
397 				if (task->latency_record[i].backtrace[q] == ULONG_MAX)
398 					break;
399 				sprint_symbol(sym, task->latency_record[i].backtrace[q]);
400 				c = strchr(sym, '+');
401 				if (c)
402 					*c = 0;
403 				seq_printf(m, "%s ", sym);
404 			}
405 			seq_printf(m, "\n");
406 		}
407 
408 	}
409 	put_task_struct(task);
410 	return 0;
411 }
412 
413 static int lstats_open(struct inode *inode, struct file *file)
414 {
415 	return single_open(file, lstats_show_proc, inode);
416 }
417 
418 static ssize_t lstats_write(struct file *file, const char __user *buf,
419 			    size_t count, loff_t *offs)
420 {
421 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
422 
423 	if (!task)
424 		return -ESRCH;
425 	clear_all_latency_tracing(task);
426 	put_task_struct(task);
427 
428 	return count;
429 }
430 
431 static const struct file_operations proc_lstats_operations = {
432 	.open		= lstats_open,
433 	.read		= seq_read,
434 	.write		= lstats_write,
435 	.llseek		= seq_lseek,
436 	.release	= single_release,
437 };
438 
439 #endif
440 
441 /* The badness from the OOM killer */
442 unsigned long badness(struct task_struct *p, unsigned long uptime);
443 static int proc_oom_score(struct task_struct *task, char *buffer)
444 {
445 	unsigned long points;
446 	struct timespec uptime;
447 
448 	do_posix_clock_monotonic_gettime(&uptime);
449 	read_lock(&tasklist_lock);
450 	points = badness(task->group_leader, uptime.tv_sec);
451 	read_unlock(&tasklist_lock);
452 	return sprintf(buffer, "%lu\n", points);
453 }
454 
455 struct limit_names {
456 	char *name;
457 	char *unit;
458 };
459 
460 static const struct limit_names lnames[RLIM_NLIMITS] = {
461 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
462 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
463 	[RLIMIT_DATA] = {"Max data size", "bytes"},
464 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
465 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
466 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
467 	[RLIMIT_NPROC] = {"Max processes", "processes"},
468 	[RLIMIT_NOFILE] = {"Max open files", "files"},
469 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
470 	[RLIMIT_AS] = {"Max address space", "bytes"},
471 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
472 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
473 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
474 	[RLIMIT_NICE] = {"Max nice priority", NULL},
475 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
476 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
477 };
478 
479 /* Display limits for a process */
480 static int proc_pid_limits(struct task_struct *task, char *buffer)
481 {
482 	unsigned int i;
483 	int count = 0;
484 	unsigned long flags;
485 	char *bufptr = buffer;
486 
487 	struct rlimit rlim[RLIM_NLIMITS];
488 
489 	if (!lock_task_sighand(task, &flags))
490 		return 0;
491 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
492 	unlock_task_sighand(task, &flags);
493 
494 	/*
495 	 * print the file header
496 	 */
497 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
498 			"Limit", "Soft Limit", "Hard Limit", "Units");
499 
500 	for (i = 0; i < RLIM_NLIMITS; i++) {
501 		if (rlim[i].rlim_cur == RLIM_INFINITY)
502 			count += sprintf(&bufptr[count], "%-25s %-20s ",
503 					 lnames[i].name, "unlimited");
504 		else
505 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
506 					 lnames[i].name, rlim[i].rlim_cur);
507 
508 		if (rlim[i].rlim_max == RLIM_INFINITY)
509 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
510 		else
511 			count += sprintf(&bufptr[count], "%-20lu ",
512 					 rlim[i].rlim_max);
513 
514 		if (lnames[i].unit)
515 			count += sprintf(&bufptr[count], "%-10s\n",
516 					 lnames[i].unit);
517 		else
518 			count += sprintf(&bufptr[count], "\n");
519 	}
520 
521 	return count;
522 }
523 
524 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
525 static int proc_pid_syscall(struct task_struct *task, char *buffer)
526 {
527 	long nr;
528 	unsigned long args[6], sp, pc;
529 
530 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
531 		return sprintf(buffer, "running\n");
532 
533 	if (nr < 0)
534 		return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
535 
536 	return sprintf(buffer,
537 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
538 		       nr,
539 		       args[0], args[1], args[2], args[3], args[4], args[5],
540 		       sp, pc);
541 }
542 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
543 
544 /************************************************************************/
545 /*                       Here the fs part begins                        */
546 /************************************************************************/
547 
548 /* permission checks */
549 static int proc_fd_access_allowed(struct inode *inode)
550 {
551 	struct task_struct *task;
552 	int allowed = 0;
553 	/* Allow access to a task's file descriptors if it is us or we
554 	 * may use ptrace attach to the process and find out that
555 	 * information.
556 	 */
557 	task = get_proc_task(inode);
558 	if (task) {
559 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
560 		put_task_struct(task);
561 	}
562 	return allowed;
563 }
564 
565 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
566 {
567 	int error;
568 	struct inode *inode = dentry->d_inode;
569 
570 	if (attr->ia_valid & ATTR_MODE)
571 		return -EPERM;
572 
573 	error = inode_change_ok(inode, attr);
574 	if (!error)
575 		error = inode_setattr(inode, attr);
576 	return error;
577 }
578 
579 static const struct inode_operations proc_def_inode_operations = {
580 	.setattr	= proc_setattr,
581 };
582 
583 static int mounts_open_common(struct inode *inode, struct file *file,
584 			      const struct seq_operations *op)
585 {
586 	struct task_struct *task = get_proc_task(inode);
587 	struct nsproxy *nsp;
588 	struct mnt_namespace *ns = NULL;
589 	struct path root;
590 	struct proc_mounts *p;
591 	int ret = -EINVAL;
592 
593 	if (task) {
594 		rcu_read_lock();
595 		nsp = task_nsproxy(task);
596 		if (nsp) {
597 			ns = nsp->mnt_ns;
598 			if (ns)
599 				get_mnt_ns(ns);
600 		}
601 		rcu_read_unlock();
602 		if (ns && get_fs_path(task, &root, 1) == 0)
603 			ret = 0;
604 		put_task_struct(task);
605 	}
606 
607 	if (!ns)
608 		goto err;
609 	if (ret)
610 		goto err_put_ns;
611 
612 	ret = -ENOMEM;
613 	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
614 	if (!p)
615 		goto err_put_path;
616 
617 	file->private_data = &p->m;
618 	ret = seq_open(file, op);
619 	if (ret)
620 		goto err_free;
621 
622 	p->m.private = p;
623 	p->ns = ns;
624 	p->root = root;
625 	p->event = ns->event;
626 
627 	return 0;
628 
629  err_free:
630 	kfree(p);
631  err_put_path:
632 	path_put(&root);
633  err_put_ns:
634 	put_mnt_ns(ns);
635  err:
636 	return ret;
637 }
638 
639 static int mounts_release(struct inode *inode, struct file *file)
640 {
641 	struct proc_mounts *p = file->private_data;
642 	path_put(&p->root);
643 	put_mnt_ns(p->ns);
644 	return seq_release(inode, file);
645 }
646 
647 static unsigned mounts_poll(struct file *file, poll_table *wait)
648 {
649 	struct proc_mounts *p = file->private_data;
650 	unsigned res = POLLIN | POLLRDNORM;
651 
652 	poll_wait(file, &p->ns->poll, wait);
653 	if (mnt_had_events(p))
654 		res |= POLLERR | POLLPRI;
655 
656 	return res;
657 }
658 
659 static int mounts_open(struct inode *inode, struct file *file)
660 {
661 	return mounts_open_common(inode, file, &mounts_op);
662 }
663 
664 static const struct file_operations proc_mounts_operations = {
665 	.open		= mounts_open,
666 	.read		= seq_read,
667 	.llseek		= seq_lseek,
668 	.release	= mounts_release,
669 	.poll		= mounts_poll,
670 };
671 
672 static int mountinfo_open(struct inode *inode, struct file *file)
673 {
674 	return mounts_open_common(inode, file, &mountinfo_op);
675 }
676 
677 static const struct file_operations proc_mountinfo_operations = {
678 	.open		= mountinfo_open,
679 	.read		= seq_read,
680 	.llseek		= seq_lseek,
681 	.release	= mounts_release,
682 	.poll		= mounts_poll,
683 };
684 
685 static int mountstats_open(struct inode *inode, struct file *file)
686 {
687 	return mounts_open_common(inode, file, &mountstats_op);
688 }
689 
690 static const struct file_operations proc_mountstats_operations = {
691 	.open		= mountstats_open,
692 	.read		= seq_read,
693 	.llseek		= seq_lseek,
694 	.release	= mounts_release,
695 };
696 
697 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
698 
699 static ssize_t proc_info_read(struct file * file, char __user * buf,
700 			  size_t count, loff_t *ppos)
701 {
702 	struct inode * inode = file->f_path.dentry->d_inode;
703 	unsigned long page;
704 	ssize_t length;
705 	struct task_struct *task = get_proc_task(inode);
706 
707 	length = -ESRCH;
708 	if (!task)
709 		goto out_no_task;
710 
711 	if (count > PROC_BLOCK_SIZE)
712 		count = PROC_BLOCK_SIZE;
713 
714 	length = -ENOMEM;
715 	if (!(page = __get_free_page(GFP_TEMPORARY)))
716 		goto out;
717 
718 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
719 
720 	if (length >= 0)
721 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
722 	free_page(page);
723 out:
724 	put_task_struct(task);
725 out_no_task:
726 	return length;
727 }
728 
729 static const struct file_operations proc_info_file_operations = {
730 	.read		= proc_info_read,
731 };
732 
733 static int proc_single_show(struct seq_file *m, void *v)
734 {
735 	struct inode *inode = m->private;
736 	struct pid_namespace *ns;
737 	struct pid *pid;
738 	struct task_struct *task;
739 	int ret;
740 
741 	ns = inode->i_sb->s_fs_info;
742 	pid = proc_pid(inode);
743 	task = get_pid_task(pid, PIDTYPE_PID);
744 	if (!task)
745 		return -ESRCH;
746 
747 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
748 
749 	put_task_struct(task);
750 	return ret;
751 }
752 
753 static int proc_single_open(struct inode *inode, struct file *filp)
754 {
755 	int ret;
756 	ret = single_open(filp, proc_single_show, NULL);
757 	if (!ret) {
758 		struct seq_file *m = filp->private_data;
759 
760 		m->private = inode;
761 	}
762 	return ret;
763 }
764 
765 static const struct file_operations proc_single_file_operations = {
766 	.open		= proc_single_open,
767 	.read		= seq_read,
768 	.llseek		= seq_lseek,
769 	.release	= single_release,
770 };
771 
772 static int mem_open(struct inode* inode, struct file* file)
773 {
774 	file->private_data = (void*)((long)current->self_exec_id);
775 	return 0;
776 }
777 
778 static ssize_t mem_read(struct file * file, char __user * buf,
779 			size_t count, loff_t *ppos)
780 {
781 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
782 	char *page;
783 	unsigned long src = *ppos;
784 	int ret = -ESRCH;
785 	struct mm_struct *mm;
786 
787 	if (!task)
788 		goto out_no_task;
789 
790 	if (check_mem_permission(task))
791 		goto out;
792 
793 	ret = -ENOMEM;
794 	page = (char *)__get_free_page(GFP_TEMPORARY);
795 	if (!page)
796 		goto out;
797 
798 	ret = 0;
799 
800 	mm = get_task_mm(task);
801 	if (!mm)
802 		goto out_free;
803 
804 	ret = -EIO;
805 
806 	if (file->private_data != (void*)((long)current->self_exec_id))
807 		goto out_put;
808 
809 	ret = 0;
810 
811 	while (count > 0) {
812 		int this_len, retval;
813 
814 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
815 		retval = access_process_vm(task, src, page, this_len, 0);
816 		if (!retval || check_mem_permission(task)) {
817 			if (!ret)
818 				ret = -EIO;
819 			break;
820 		}
821 
822 		if (copy_to_user(buf, page, retval)) {
823 			ret = -EFAULT;
824 			break;
825 		}
826 
827 		ret += retval;
828 		src += retval;
829 		buf += retval;
830 		count -= retval;
831 	}
832 	*ppos = src;
833 
834 out_put:
835 	mmput(mm);
836 out_free:
837 	free_page((unsigned long) page);
838 out:
839 	put_task_struct(task);
840 out_no_task:
841 	return ret;
842 }
843 
844 #define mem_write NULL
845 
846 #ifndef mem_write
847 /* This is a security hazard */
848 static ssize_t mem_write(struct file * file, const char __user *buf,
849 			 size_t count, loff_t *ppos)
850 {
851 	int copied;
852 	char *page;
853 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
854 	unsigned long dst = *ppos;
855 
856 	copied = -ESRCH;
857 	if (!task)
858 		goto out_no_task;
859 
860 	if (check_mem_permission(task))
861 		goto out;
862 
863 	copied = -ENOMEM;
864 	page = (char *)__get_free_page(GFP_TEMPORARY);
865 	if (!page)
866 		goto out;
867 
868 	copied = 0;
869 	while (count > 0) {
870 		int this_len, retval;
871 
872 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
873 		if (copy_from_user(page, buf, this_len)) {
874 			copied = -EFAULT;
875 			break;
876 		}
877 		retval = access_process_vm(task, dst, page, this_len, 1);
878 		if (!retval) {
879 			if (!copied)
880 				copied = -EIO;
881 			break;
882 		}
883 		copied += retval;
884 		buf += retval;
885 		dst += retval;
886 		count -= retval;
887 	}
888 	*ppos = dst;
889 	free_page((unsigned long) page);
890 out:
891 	put_task_struct(task);
892 out_no_task:
893 	return copied;
894 }
895 #endif
896 
897 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
898 {
899 	switch (orig) {
900 	case 0:
901 		file->f_pos = offset;
902 		break;
903 	case 1:
904 		file->f_pos += offset;
905 		break;
906 	default:
907 		return -EINVAL;
908 	}
909 	force_successful_syscall_return();
910 	return file->f_pos;
911 }
912 
913 static const struct file_operations proc_mem_operations = {
914 	.llseek		= mem_lseek,
915 	.read		= mem_read,
916 	.write		= mem_write,
917 	.open		= mem_open,
918 };
919 
920 static ssize_t environ_read(struct file *file, char __user *buf,
921 			size_t count, loff_t *ppos)
922 {
923 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
924 	char *page;
925 	unsigned long src = *ppos;
926 	int ret = -ESRCH;
927 	struct mm_struct *mm;
928 
929 	if (!task)
930 		goto out_no_task;
931 
932 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
933 		goto out;
934 
935 	ret = -ENOMEM;
936 	page = (char *)__get_free_page(GFP_TEMPORARY);
937 	if (!page)
938 		goto out;
939 
940 	ret = 0;
941 
942 	mm = get_task_mm(task);
943 	if (!mm)
944 		goto out_free;
945 
946 	while (count > 0) {
947 		int this_len, retval, max_len;
948 
949 		this_len = mm->env_end - (mm->env_start + src);
950 
951 		if (this_len <= 0)
952 			break;
953 
954 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
955 		this_len = (this_len > max_len) ? max_len : this_len;
956 
957 		retval = access_process_vm(task, (mm->env_start + src),
958 			page, this_len, 0);
959 
960 		if (retval <= 0) {
961 			ret = retval;
962 			break;
963 		}
964 
965 		if (copy_to_user(buf, page, retval)) {
966 			ret = -EFAULT;
967 			break;
968 		}
969 
970 		ret += retval;
971 		src += retval;
972 		buf += retval;
973 		count -= retval;
974 	}
975 	*ppos = src;
976 
977 	mmput(mm);
978 out_free:
979 	free_page((unsigned long) page);
980 out:
981 	put_task_struct(task);
982 out_no_task:
983 	return ret;
984 }
985 
986 static const struct file_operations proc_environ_operations = {
987 	.read		= environ_read,
988 };
989 
990 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
991 				size_t count, loff_t *ppos)
992 {
993 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
994 	char buffer[PROC_NUMBUF];
995 	size_t len;
996 	int oom_adjust = OOM_DISABLE;
997 	unsigned long flags;
998 
999 	if (!task)
1000 		return -ESRCH;
1001 
1002 	if (lock_task_sighand(task, &flags)) {
1003 		oom_adjust = task->signal->oom_adj;
1004 		unlock_task_sighand(task, &flags);
1005 	}
1006 
1007 	put_task_struct(task);
1008 
1009 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1010 
1011 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1012 }
1013 
1014 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1015 				size_t count, loff_t *ppos)
1016 {
1017 	struct task_struct *task;
1018 	char buffer[PROC_NUMBUF];
1019 	long oom_adjust;
1020 	unsigned long flags;
1021 	int err;
1022 
1023 	memset(buffer, 0, sizeof(buffer));
1024 	if (count > sizeof(buffer) - 1)
1025 		count = sizeof(buffer) - 1;
1026 	if (copy_from_user(buffer, buf, count))
1027 		return -EFAULT;
1028 
1029 	err = strict_strtol(strstrip(buffer), 0, &oom_adjust);
1030 	if (err)
1031 		return -EINVAL;
1032 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1033 	     oom_adjust != OOM_DISABLE)
1034 		return -EINVAL;
1035 
1036 	task = get_proc_task(file->f_path.dentry->d_inode);
1037 	if (!task)
1038 		return -ESRCH;
1039 	if (!lock_task_sighand(task, &flags)) {
1040 		put_task_struct(task);
1041 		return -ESRCH;
1042 	}
1043 
1044 	if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1045 		unlock_task_sighand(task, &flags);
1046 		put_task_struct(task);
1047 		return -EACCES;
1048 	}
1049 
1050 	task->signal->oom_adj = oom_adjust;
1051 
1052 	unlock_task_sighand(task, &flags);
1053 	put_task_struct(task);
1054 
1055 	return count;
1056 }
1057 
1058 static const struct file_operations proc_oom_adjust_operations = {
1059 	.read		= oom_adjust_read,
1060 	.write		= oom_adjust_write,
1061 };
1062 
1063 #ifdef CONFIG_AUDITSYSCALL
1064 #define TMPBUFLEN 21
1065 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1066 				  size_t count, loff_t *ppos)
1067 {
1068 	struct inode * inode = file->f_path.dentry->d_inode;
1069 	struct task_struct *task = get_proc_task(inode);
1070 	ssize_t length;
1071 	char tmpbuf[TMPBUFLEN];
1072 
1073 	if (!task)
1074 		return -ESRCH;
1075 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1076 				audit_get_loginuid(task));
1077 	put_task_struct(task);
1078 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1079 }
1080 
1081 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1082 				   size_t count, loff_t *ppos)
1083 {
1084 	struct inode * inode = file->f_path.dentry->d_inode;
1085 	char *page, *tmp;
1086 	ssize_t length;
1087 	uid_t loginuid;
1088 
1089 	if (!capable(CAP_AUDIT_CONTROL))
1090 		return -EPERM;
1091 
1092 	rcu_read_lock();
1093 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1094 		rcu_read_unlock();
1095 		return -EPERM;
1096 	}
1097 	rcu_read_unlock();
1098 
1099 	if (count >= PAGE_SIZE)
1100 		count = PAGE_SIZE - 1;
1101 
1102 	if (*ppos != 0) {
1103 		/* No partial writes. */
1104 		return -EINVAL;
1105 	}
1106 	page = (char*)__get_free_page(GFP_TEMPORARY);
1107 	if (!page)
1108 		return -ENOMEM;
1109 	length = -EFAULT;
1110 	if (copy_from_user(page, buf, count))
1111 		goto out_free_page;
1112 
1113 	page[count] = '\0';
1114 	loginuid = simple_strtoul(page, &tmp, 10);
1115 	if (tmp == page) {
1116 		length = -EINVAL;
1117 		goto out_free_page;
1118 
1119 	}
1120 	length = audit_set_loginuid(current, loginuid);
1121 	if (likely(length == 0))
1122 		length = count;
1123 
1124 out_free_page:
1125 	free_page((unsigned long) page);
1126 	return length;
1127 }
1128 
1129 static const struct file_operations proc_loginuid_operations = {
1130 	.read		= proc_loginuid_read,
1131 	.write		= proc_loginuid_write,
1132 };
1133 
1134 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1135 				  size_t count, loff_t *ppos)
1136 {
1137 	struct inode * inode = file->f_path.dentry->d_inode;
1138 	struct task_struct *task = get_proc_task(inode);
1139 	ssize_t length;
1140 	char tmpbuf[TMPBUFLEN];
1141 
1142 	if (!task)
1143 		return -ESRCH;
1144 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1145 				audit_get_sessionid(task));
1146 	put_task_struct(task);
1147 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1148 }
1149 
1150 static const struct file_operations proc_sessionid_operations = {
1151 	.read		= proc_sessionid_read,
1152 };
1153 #endif
1154 
1155 #ifdef CONFIG_FAULT_INJECTION
1156 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1157 				      size_t count, loff_t *ppos)
1158 {
1159 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1160 	char buffer[PROC_NUMBUF];
1161 	size_t len;
1162 	int make_it_fail;
1163 
1164 	if (!task)
1165 		return -ESRCH;
1166 	make_it_fail = task->make_it_fail;
1167 	put_task_struct(task);
1168 
1169 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1170 
1171 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1172 }
1173 
1174 static ssize_t proc_fault_inject_write(struct file * file,
1175 			const char __user * buf, size_t count, loff_t *ppos)
1176 {
1177 	struct task_struct *task;
1178 	char buffer[PROC_NUMBUF], *end;
1179 	int make_it_fail;
1180 
1181 	if (!capable(CAP_SYS_RESOURCE))
1182 		return -EPERM;
1183 	memset(buffer, 0, sizeof(buffer));
1184 	if (count > sizeof(buffer) - 1)
1185 		count = sizeof(buffer) - 1;
1186 	if (copy_from_user(buffer, buf, count))
1187 		return -EFAULT;
1188 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1189 	if (*end)
1190 		return -EINVAL;
1191 	task = get_proc_task(file->f_dentry->d_inode);
1192 	if (!task)
1193 		return -ESRCH;
1194 	task->make_it_fail = make_it_fail;
1195 	put_task_struct(task);
1196 
1197 	return count;
1198 }
1199 
1200 static const struct file_operations proc_fault_inject_operations = {
1201 	.read		= proc_fault_inject_read,
1202 	.write		= proc_fault_inject_write,
1203 };
1204 #endif
1205 
1206 
1207 #ifdef CONFIG_SCHED_DEBUG
1208 /*
1209  * Print out various scheduling related per-task fields:
1210  */
1211 static int sched_show(struct seq_file *m, void *v)
1212 {
1213 	struct inode *inode = m->private;
1214 	struct task_struct *p;
1215 
1216 	p = get_proc_task(inode);
1217 	if (!p)
1218 		return -ESRCH;
1219 	proc_sched_show_task(p, m);
1220 
1221 	put_task_struct(p);
1222 
1223 	return 0;
1224 }
1225 
1226 static ssize_t
1227 sched_write(struct file *file, const char __user *buf,
1228 	    size_t count, loff_t *offset)
1229 {
1230 	struct inode *inode = file->f_path.dentry->d_inode;
1231 	struct task_struct *p;
1232 
1233 	p = get_proc_task(inode);
1234 	if (!p)
1235 		return -ESRCH;
1236 	proc_sched_set_task(p);
1237 
1238 	put_task_struct(p);
1239 
1240 	return count;
1241 }
1242 
1243 static int sched_open(struct inode *inode, struct file *filp)
1244 {
1245 	int ret;
1246 
1247 	ret = single_open(filp, sched_show, NULL);
1248 	if (!ret) {
1249 		struct seq_file *m = filp->private_data;
1250 
1251 		m->private = inode;
1252 	}
1253 	return ret;
1254 }
1255 
1256 static const struct file_operations proc_pid_sched_operations = {
1257 	.open		= sched_open,
1258 	.read		= seq_read,
1259 	.write		= sched_write,
1260 	.llseek		= seq_lseek,
1261 	.release	= single_release,
1262 };
1263 
1264 #endif
1265 
1266 static ssize_t comm_write(struct file *file, const char __user *buf,
1267 				size_t count, loff_t *offset)
1268 {
1269 	struct inode *inode = file->f_path.dentry->d_inode;
1270 	struct task_struct *p;
1271 	char buffer[TASK_COMM_LEN];
1272 
1273 	memset(buffer, 0, sizeof(buffer));
1274 	if (count > sizeof(buffer) - 1)
1275 		count = sizeof(buffer) - 1;
1276 	if (copy_from_user(buffer, buf, count))
1277 		return -EFAULT;
1278 
1279 	p = get_proc_task(inode);
1280 	if (!p)
1281 		return -ESRCH;
1282 
1283 	if (same_thread_group(current, p))
1284 		set_task_comm(p, buffer);
1285 	else
1286 		count = -EINVAL;
1287 
1288 	put_task_struct(p);
1289 
1290 	return count;
1291 }
1292 
1293 static int comm_show(struct seq_file *m, void *v)
1294 {
1295 	struct inode *inode = m->private;
1296 	struct task_struct *p;
1297 
1298 	p = get_proc_task(inode);
1299 	if (!p)
1300 		return -ESRCH;
1301 
1302 	task_lock(p);
1303 	seq_printf(m, "%s\n", p->comm);
1304 	task_unlock(p);
1305 
1306 	put_task_struct(p);
1307 
1308 	return 0;
1309 }
1310 
1311 static int comm_open(struct inode *inode, struct file *filp)
1312 {
1313 	int ret;
1314 
1315 	ret = single_open(filp, comm_show, NULL);
1316 	if (!ret) {
1317 		struct seq_file *m = filp->private_data;
1318 
1319 		m->private = inode;
1320 	}
1321 	return ret;
1322 }
1323 
1324 static const struct file_operations proc_pid_set_comm_operations = {
1325 	.open		= comm_open,
1326 	.read		= seq_read,
1327 	.write		= comm_write,
1328 	.llseek		= seq_lseek,
1329 	.release	= single_release,
1330 };
1331 
1332 /*
1333  * We added or removed a vma mapping the executable. The vmas are only mapped
1334  * during exec and are not mapped with the mmap system call.
1335  * Callers must hold down_write() on the mm's mmap_sem for these
1336  */
1337 void added_exe_file_vma(struct mm_struct *mm)
1338 {
1339 	mm->num_exe_file_vmas++;
1340 }
1341 
1342 void removed_exe_file_vma(struct mm_struct *mm)
1343 {
1344 	mm->num_exe_file_vmas--;
1345 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1346 		fput(mm->exe_file);
1347 		mm->exe_file = NULL;
1348 	}
1349 
1350 }
1351 
1352 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1353 {
1354 	if (new_exe_file)
1355 		get_file(new_exe_file);
1356 	if (mm->exe_file)
1357 		fput(mm->exe_file);
1358 	mm->exe_file = new_exe_file;
1359 	mm->num_exe_file_vmas = 0;
1360 }
1361 
1362 struct file *get_mm_exe_file(struct mm_struct *mm)
1363 {
1364 	struct file *exe_file;
1365 
1366 	/* We need mmap_sem to protect against races with removal of
1367 	 * VM_EXECUTABLE vmas */
1368 	down_read(&mm->mmap_sem);
1369 	exe_file = mm->exe_file;
1370 	if (exe_file)
1371 		get_file(exe_file);
1372 	up_read(&mm->mmap_sem);
1373 	return exe_file;
1374 }
1375 
1376 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1377 {
1378 	/* It's safe to write the exe_file pointer without exe_file_lock because
1379 	 * this is called during fork when the task is not yet in /proc */
1380 	newmm->exe_file = get_mm_exe_file(oldmm);
1381 }
1382 
1383 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1384 {
1385 	struct task_struct *task;
1386 	struct mm_struct *mm;
1387 	struct file *exe_file;
1388 
1389 	task = get_proc_task(inode);
1390 	if (!task)
1391 		return -ENOENT;
1392 	mm = get_task_mm(task);
1393 	put_task_struct(task);
1394 	if (!mm)
1395 		return -ENOENT;
1396 	exe_file = get_mm_exe_file(mm);
1397 	mmput(mm);
1398 	if (exe_file) {
1399 		*exe_path = exe_file->f_path;
1400 		path_get(&exe_file->f_path);
1401 		fput(exe_file);
1402 		return 0;
1403 	} else
1404 		return -ENOENT;
1405 }
1406 
1407 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1408 {
1409 	struct inode *inode = dentry->d_inode;
1410 	int error = -EACCES;
1411 
1412 	/* We don't need a base pointer in the /proc filesystem */
1413 	path_put(&nd->path);
1414 
1415 	/* Are we allowed to snoop on the tasks file descriptors? */
1416 	if (!proc_fd_access_allowed(inode))
1417 		goto out;
1418 
1419 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1420 out:
1421 	return ERR_PTR(error);
1422 }
1423 
1424 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1425 {
1426 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1427 	char *pathname;
1428 	int len;
1429 
1430 	if (!tmp)
1431 		return -ENOMEM;
1432 
1433 	pathname = d_path(path, tmp, PAGE_SIZE);
1434 	len = PTR_ERR(pathname);
1435 	if (IS_ERR(pathname))
1436 		goto out;
1437 	len = tmp + PAGE_SIZE - 1 - pathname;
1438 
1439 	if (len > buflen)
1440 		len = buflen;
1441 	if (copy_to_user(buffer, pathname, len))
1442 		len = -EFAULT;
1443  out:
1444 	free_page((unsigned long)tmp);
1445 	return len;
1446 }
1447 
1448 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1449 {
1450 	int error = -EACCES;
1451 	struct inode *inode = dentry->d_inode;
1452 	struct path path;
1453 
1454 	/* Are we allowed to snoop on the tasks file descriptors? */
1455 	if (!proc_fd_access_allowed(inode))
1456 		goto out;
1457 
1458 	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1459 	if (error)
1460 		goto out;
1461 
1462 	error = do_proc_readlink(&path, buffer, buflen);
1463 	path_put(&path);
1464 out:
1465 	return error;
1466 }
1467 
1468 static const struct inode_operations proc_pid_link_inode_operations = {
1469 	.readlink	= proc_pid_readlink,
1470 	.follow_link	= proc_pid_follow_link,
1471 	.setattr	= proc_setattr,
1472 };
1473 
1474 
1475 /* building an inode */
1476 
1477 static int task_dumpable(struct task_struct *task)
1478 {
1479 	int dumpable = 0;
1480 	struct mm_struct *mm;
1481 
1482 	task_lock(task);
1483 	mm = task->mm;
1484 	if (mm)
1485 		dumpable = get_dumpable(mm);
1486 	task_unlock(task);
1487 	if(dumpable == 1)
1488 		return 1;
1489 	return 0;
1490 }
1491 
1492 
1493 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1494 {
1495 	struct inode * inode;
1496 	struct proc_inode *ei;
1497 	const struct cred *cred;
1498 
1499 	/* We need a new inode */
1500 
1501 	inode = new_inode(sb);
1502 	if (!inode)
1503 		goto out;
1504 
1505 	/* Common stuff */
1506 	ei = PROC_I(inode);
1507 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1508 	inode->i_op = &proc_def_inode_operations;
1509 
1510 	/*
1511 	 * grab the reference to task.
1512 	 */
1513 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1514 	if (!ei->pid)
1515 		goto out_unlock;
1516 
1517 	if (task_dumpable(task)) {
1518 		rcu_read_lock();
1519 		cred = __task_cred(task);
1520 		inode->i_uid = cred->euid;
1521 		inode->i_gid = cred->egid;
1522 		rcu_read_unlock();
1523 	}
1524 	security_task_to_inode(task, inode);
1525 
1526 out:
1527 	return inode;
1528 
1529 out_unlock:
1530 	iput(inode);
1531 	return NULL;
1532 }
1533 
1534 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1535 {
1536 	struct inode *inode = dentry->d_inode;
1537 	struct task_struct *task;
1538 	const struct cred *cred;
1539 
1540 	generic_fillattr(inode, stat);
1541 
1542 	rcu_read_lock();
1543 	stat->uid = 0;
1544 	stat->gid = 0;
1545 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1546 	if (task) {
1547 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1548 		    task_dumpable(task)) {
1549 			cred = __task_cred(task);
1550 			stat->uid = cred->euid;
1551 			stat->gid = cred->egid;
1552 		}
1553 	}
1554 	rcu_read_unlock();
1555 	return 0;
1556 }
1557 
1558 /* dentry stuff */
1559 
1560 /*
1561  *	Exceptional case: normally we are not allowed to unhash a busy
1562  * directory. In this case, however, we can do it - no aliasing problems
1563  * due to the way we treat inodes.
1564  *
1565  * Rewrite the inode's ownerships here because the owning task may have
1566  * performed a setuid(), etc.
1567  *
1568  * Before the /proc/pid/status file was created the only way to read
1569  * the effective uid of a /process was to stat /proc/pid.  Reading
1570  * /proc/pid/status is slow enough that procps and other packages
1571  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1572  * made this apply to all per process world readable and executable
1573  * directories.
1574  */
1575 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1576 {
1577 	struct inode *inode = dentry->d_inode;
1578 	struct task_struct *task = get_proc_task(inode);
1579 	const struct cred *cred;
1580 
1581 	if (task) {
1582 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1583 		    task_dumpable(task)) {
1584 			rcu_read_lock();
1585 			cred = __task_cred(task);
1586 			inode->i_uid = cred->euid;
1587 			inode->i_gid = cred->egid;
1588 			rcu_read_unlock();
1589 		} else {
1590 			inode->i_uid = 0;
1591 			inode->i_gid = 0;
1592 		}
1593 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1594 		security_task_to_inode(task, inode);
1595 		put_task_struct(task);
1596 		return 1;
1597 	}
1598 	d_drop(dentry);
1599 	return 0;
1600 }
1601 
1602 static int pid_delete_dentry(struct dentry * dentry)
1603 {
1604 	/* Is the task we represent dead?
1605 	 * If so, then don't put the dentry on the lru list,
1606 	 * kill it immediately.
1607 	 */
1608 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1609 }
1610 
1611 static const struct dentry_operations pid_dentry_operations =
1612 {
1613 	.d_revalidate	= pid_revalidate,
1614 	.d_delete	= pid_delete_dentry,
1615 };
1616 
1617 /* Lookups */
1618 
1619 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1620 				struct task_struct *, const void *);
1621 
1622 /*
1623  * Fill a directory entry.
1624  *
1625  * If possible create the dcache entry and derive our inode number and
1626  * file type from dcache entry.
1627  *
1628  * Since all of the proc inode numbers are dynamically generated, the inode
1629  * numbers do not exist until the inode is cache.  This means creating the
1630  * the dcache entry in readdir is necessary to keep the inode numbers
1631  * reported by readdir in sync with the inode numbers reported
1632  * by stat.
1633  */
1634 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1635 	char *name, int len,
1636 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1637 {
1638 	struct dentry *child, *dir = filp->f_path.dentry;
1639 	struct inode *inode;
1640 	struct qstr qname;
1641 	ino_t ino = 0;
1642 	unsigned type = DT_UNKNOWN;
1643 
1644 	qname.name = name;
1645 	qname.len  = len;
1646 	qname.hash = full_name_hash(name, len);
1647 
1648 	child = d_lookup(dir, &qname);
1649 	if (!child) {
1650 		struct dentry *new;
1651 		new = d_alloc(dir, &qname);
1652 		if (new) {
1653 			child = instantiate(dir->d_inode, new, task, ptr);
1654 			if (child)
1655 				dput(new);
1656 			else
1657 				child = new;
1658 		}
1659 	}
1660 	if (!child || IS_ERR(child) || !child->d_inode)
1661 		goto end_instantiate;
1662 	inode = child->d_inode;
1663 	if (inode) {
1664 		ino = inode->i_ino;
1665 		type = inode->i_mode >> 12;
1666 	}
1667 	dput(child);
1668 end_instantiate:
1669 	if (!ino)
1670 		ino = find_inode_number(dir, &qname);
1671 	if (!ino)
1672 		ino = 1;
1673 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1674 }
1675 
1676 static unsigned name_to_int(struct dentry *dentry)
1677 {
1678 	const char *name = dentry->d_name.name;
1679 	int len = dentry->d_name.len;
1680 	unsigned n = 0;
1681 
1682 	if (len > 1 && *name == '0')
1683 		goto out;
1684 	while (len-- > 0) {
1685 		unsigned c = *name++ - '0';
1686 		if (c > 9)
1687 			goto out;
1688 		if (n >= (~0U-9)/10)
1689 			goto out;
1690 		n *= 10;
1691 		n += c;
1692 	}
1693 	return n;
1694 out:
1695 	return ~0U;
1696 }
1697 
1698 #define PROC_FDINFO_MAX 64
1699 
1700 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1701 {
1702 	struct task_struct *task = get_proc_task(inode);
1703 	struct files_struct *files = NULL;
1704 	struct file *file;
1705 	int fd = proc_fd(inode);
1706 
1707 	if (task) {
1708 		files = get_files_struct(task);
1709 		put_task_struct(task);
1710 	}
1711 	if (files) {
1712 		/*
1713 		 * We are not taking a ref to the file structure, so we must
1714 		 * hold ->file_lock.
1715 		 */
1716 		spin_lock(&files->file_lock);
1717 		file = fcheck_files(files, fd);
1718 		if (file) {
1719 			if (path) {
1720 				*path = file->f_path;
1721 				path_get(&file->f_path);
1722 			}
1723 			if (info)
1724 				snprintf(info, PROC_FDINFO_MAX,
1725 					 "pos:\t%lli\n"
1726 					 "flags:\t0%o\n",
1727 					 (long long) file->f_pos,
1728 					 file->f_flags);
1729 			spin_unlock(&files->file_lock);
1730 			put_files_struct(files);
1731 			return 0;
1732 		}
1733 		spin_unlock(&files->file_lock);
1734 		put_files_struct(files);
1735 	}
1736 	return -ENOENT;
1737 }
1738 
1739 static int proc_fd_link(struct inode *inode, struct path *path)
1740 {
1741 	return proc_fd_info(inode, path, NULL);
1742 }
1743 
1744 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1745 {
1746 	struct inode *inode = dentry->d_inode;
1747 	struct task_struct *task = get_proc_task(inode);
1748 	int fd = proc_fd(inode);
1749 	struct files_struct *files;
1750 	const struct cred *cred;
1751 
1752 	if (task) {
1753 		files = get_files_struct(task);
1754 		if (files) {
1755 			rcu_read_lock();
1756 			if (fcheck_files(files, fd)) {
1757 				rcu_read_unlock();
1758 				put_files_struct(files);
1759 				if (task_dumpable(task)) {
1760 					rcu_read_lock();
1761 					cred = __task_cred(task);
1762 					inode->i_uid = cred->euid;
1763 					inode->i_gid = cred->egid;
1764 					rcu_read_unlock();
1765 				} else {
1766 					inode->i_uid = 0;
1767 					inode->i_gid = 0;
1768 				}
1769 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1770 				security_task_to_inode(task, inode);
1771 				put_task_struct(task);
1772 				return 1;
1773 			}
1774 			rcu_read_unlock();
1775 			put_files_struct(files);
1776 		}
1777 		put_task_struct(task);
1778 	}
1779 	d_drop(dentry);
1780 	return 0;
1781 }
1782 
1783 static const struct dentry_operations tid_fd_dentry_operations =
1784 {
1785 	.d_revalidate	= tid_fd_revalidate,
1786 	.d_delete	= pid_delete_dentry,
1787 };
1788 
1789 static struct dentry *proc_fd_instantiate(struct inode *dir,
1790 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1791 {
1792 	unsigned fd = *(const unsigned *)ptr;
1793 	struct file *file;
1794 	struct files_struct *files;
1795  	struct inode *inode;
1796  	struct proc_inode *ei;
1797 	struct dentry *error = ERR_PTR(-ENOENT);
1798 
1799 	inode = proc_pid_make_inode(dir->i_sb, task);
1800 	if (!inode)
1801 		goto out;
1802 	ei = PROC_I(inode);
1803 	ei->fd = fd;
1804 	files = get_files_struct(task);
1805 	if (!files)
1806 		goto out_iput;
1807 	inode->i_mode = S_IFLNK;
1808 
1809 	/*
1810 	 * We are not taking a ref to the file structure, so we must
1811 	 * hold ->file_lock.
1812 	 */
1813 	spin_lock(&files->file_lock);
1814 	file = fcheck_files(files, fd);
1815 	if (!file)
1816 		goto out_unlock;
1817 	if (file->f_mode & FMODE_READ)
1818 		inode->i_mode |= S_IRUSR | S_IXUSR;
1819 	if (file->f_mode & FMODE_WRITE)
1820 		inode->i_mode |= S_IWUSR | S_IXUSR;
1821 	spin_unlock(&files->file_lock);
1822 	put_files_struct(files);
1823 
1824 	inode->i_op = &proc_pid_link_inode_operations;
1825 	inode->i_size = 64;
1826 	ei->op.proc_get_link = proc_fd_link;
1827 	dentry->d_op = &tid_fd_dentry_operations;
1828 	d_add(dentry, inode);
1829 	/* Close the race of the process dying before we return the dentry */
1830 	if (tid_fd_revalidate(dentry, NULL))
1831 		error = NULL;
1832 
1833  out:
1834 	return error;
1835 out_unlock:
1836 	spin_unlock(&files->file_lock);
1837 	put_files_struct(files);
1838 out_iput:
1839 	iput(inode);
1840 	goto out;
1841 }
1842 
1843 static struct dentry *proc_lookupfd_common(struct inode *dir,
1844 					   struct dentry *dentry,
1845 					   instantiate_t instantiate)
1846 {
1847 	struct task_struct *task = get_proc_task(dir);
1848 	unsigned fd = name_to_int(dentry);
1849 	struct dentry *result = ERR_PTR(-ENOENT);
1850 
1851 	if (!task)
1852 		goto out_no_task;
1853 	if (fd == ~0U)
1854 		goto out;
1855 
1856 	result = instantiate(dir, dentry, task, &fd);
1857 out:
1858 	put_task_struct(task);
1859 out_no_task:
1860 	return result;
1861 }
1862 
1863 static int proc_readfd_common(struct file * filp, void * dirent,
1864 			      filldir_t filldir, instantiate_t instantiate)
1865 {
1866 	struct dentry *dentry = filp->f_path.dentry;
1867 	struct inode *inode = dentry->d_inode;
1868 	struct task_struct *p = get_proc_task(inode);
1869 	unsigned int fd, ino;
1870 	int retval;
1871 	struct files_struct * files;
1872 
1873 	retval = -ENOENT;
1874 	if (!p)
1875 		goto out_no_task;
1876 	retval = 0;
1877 
1878 	fd = filp->f_pos;
1879 	switch (fd) {
1880 		case 0:
1881 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1882 				goto out;
1883 			filp->f_pos++;
1884 		case 1:
1885 			ino = parent_ino(dentry);
1886 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1887 				goto out;
1888 			filp->f_pos++;
1889 		default:
1890 			files = get_files_struct(p);
1891 			if (!files)
1892 				goto out;
1893 			rcu_read_lock();
1894 			for (fd = filp->f_pos-2;
1895 			     fd < files_fdtable(files)->max_fds;
1896 			     fd++, filp->f_pos++) {
1897 				char name[PROC_NUMBUF];
1898 				int len;
1899 
1900 				if (!fcheck_files(files, fd))
1901 					continue;
1902 				rcu_read_unlock();
1903 
1904 				len = snprintf(name, sizeof(name), "%d", fd);
1905 				if (proc_fill_cache(filp, dirent, filldir,
1906 						    name, len, instantiate,
1907 						    p, &fd) < 0) {
1908 					rcu_read_lock();
1909 					break;
1910 				}
1911 				rcu_read_lock();
1912 			}
1913 			rcu_read_unlock();
1914 			put_files_struct(files);
1915 	}
1916 out:
1917 	put_task_struct(p);
1918 out_no_task:
1919 	return retval;
1920 }
1921 
1922 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1923 				    struct nameidata *nd)
1924 {
1925 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1926 }
1927 
1928 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1929 {
1930 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1931 }
1932 
1933 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1934 				      size_t len, loff_t *ppos)
1935 {
1936 	char tmp[PROC_FDINFO_MAX];
1937 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1938 	if (!err)
1939 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1940 	return err;
1941 }
1942 
1943 static const struct file_operations proc_fdinfo_file_operations = {
1944 	.open		= nonseekable_open,
1945 	.read		= proc_fdinfo_read,
1946 };
1947 
1948 static const struct file_operations proc_fd_operations = {
1949 	.read		= generic_read_dir,
1950 	.readdir	= proc_readfd,
1951 };
1952 
1953 /*
1954  * /proc/pid/fd needs a special permission handler so that a process can still
1955  * access /proc/self/fd after it has executed a setuid().
1956  */
1957 static int proc_fd_permission(struct inode *inode, int mask)
1958 {
1959 	int rv;
1960 
1961 	rv = generic_permission(inode, mask, NULL);
1962 	if (rv == 0)
1963 		return 0;
1964 	if (task_pid(current) == proc_pid(inode))
1965 		rv = 0;
1966 	return rv;
1967 }
1968 
1969 /*
1970  * proc directories can do almost nothing..
1971  */
1972 static const struct inode_operations proc_fd_inode_operations = {
1973 	.lookup		= proc_lookupfd,
1974 	.permission	= proc_fd_permission,
1975 	.setattr	= proc_setattr,
1976 };
1977 
1978 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1979 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1980 {
1981 	unsigned fd = *(unsigned *)ptr;
1982  	struct inode *inode;
1983  	struct proc_inode *ei;
1984 	struct dentry *error = ERR_PTR(-ENOENT);
1985 
1986 	inode = proc_pid_make_inode(dir->i_sb, task);
1987 	if (!inode)
1988 		goto out;
1989 	ei = PROC_I(inode);
1990 	ei->fd = fd;
1991 	inode->i_mode = S_IFREG | S_IRUSR;
1992 	inode->i_fop = &proc_fdinfo_file_operations;
1993 	dentry->d_op = &tid_fd_dentry_operations;
1994 	d_add(dentry, inode);
1995 	/* Close the race of the process dying before we return the dentry */
1996 	if (tid_fd_revalidate(dentry, NULL))
1997 		error = NULL;
1998 
1999  out:
2000 	return error;
2001 }
2002 
2003 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2004 					struct dentry *dentry,
2005 					struct nameidata *nd)
2006 {
2007 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2008 }
2009 
2010 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2011 {
2012 	return proc_readfd_common(filp, dirent, filldir,
2013 				  proc_fdinfo_instantiate);
2014 }
2015 
2016 static const struct file_operations proc_fdinfo_operations = {
2017 	.read		= generic_read_dir,
2018 	.readdir	= proc_readfdinfo,
2019 };
2020 
2021 /*
2022  * proc directories can do almost nothing..
2023  */
2024 static const struct inode_operations proc_fdinfo_inode_operations = {
2025 	.lookup		= proc_lookupfdinfo,
2026 	.setattr	= proc_setattr,
2027 };
2028 
2029 
2030 static struct dentry *proc_pident_instantiate(struct inode *dir,
2031 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2032 {
2033 	const struct pid_entry *p = ptr;
2034 	struct inode *inode;
2035 	struct proc_inode *ei;
2036 	struct dentry *error = ERR_PTR(-ENOENT);
2037 
2038 	inode = proc_pid_make_inode(dir->i_sb, task);
2039 	if (!inode)
2040 		goto out;
2041 
2042 	ei = PROC_I(inode);
2043 	inode->i_mode = p->mode;
2044 	if (S_ISDIR(inode->i_mode))
2045 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
2046 	if (p->iop)
2047 		inode->i_op = p->iop;
2048 	if (p->fop)
2049 		inode->i_fop = p->fop;
2050 	ei->op = p->op;
2051 	dentry->d_op = &pid_dentry_operations;
2052 	d_add(dentry, inode);
2053 	/* Close the race of the process dying before we return the dentry */
2054 	if (pid_revalidate(dentry, NULL))
2055 		error = NULL;
2056 out:
2057 	return error;
2058 }
2059 
2060 static struct dentry *proc_pident_lookup(struct inode *dir,
2061 					 struct dentry *dentry,
2062 					 const struct pid_entry *ents,
2063 					 unsigned int nents)
2064 {
2065 	struct dentry *error;
2066 	struct task_struct *task = get_proc_task(dir);
2067 	const struct pid_entry *p, *last;
2068 
2069 	error = ERR_PTR(-ENOENT);
2070 
2071 	if (!task)
2072 		goto out_no_task;
2073 
2074 	/*
2075 	 * Yes, it does not scale. And it should not. Don't add
2076 	 * new entries into /proc/<tgid>/ without very good reasons.
2077 	 */
2078 	last = &ents[nents - 1];
2079 	for (p = ents; p <= last; p++) {
2080 		if (p->len != dentry->d_name.len)
2081 			continue;
2082 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2083 			break;
2084 	}
2085 	if (p > last)
2086 		goto out;
2087 
2088 	error = proc_pident_instantiate(dir, dentry, task, p);
2089 out:
2090 	put_task_struct(task);
2091 out_no_task:
2092 	return error;
2093 }
2094 
2095 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2096 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2097 {
2098 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2099 				proc_pident_instantiate, task, p);
2100 }
2101 
2102 static int proc_pident_readdir(struct file *filp,
2103 		void *dirent, filldir_t filldir,
2104 		const struct pid_entry *ents, unsigned int nents)
2105 {
2106 	int i;
2107 	struct dentry *dentry = filp->f_path.dentry;
2108 	struct inode *inode = dentry->d_inode;
2109 	struct task_struct *task = get_proc_task(inode);
2110 	const struct pid_entry *p, *last;
2111 	ino_t ino;
2112 	int ret;
2113 
2114 	ret = -ENOENT;
2115 	if (!task)
2116 		goto out_no_task;
2117 
2118 	ret = 0;
2119 	i = filp->f_pos;
2120 	switch (i) {
2121 	case 0:
2122 		ino = inode->i_ino;
2123 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2124 			goto out;
2125 		i++;
2126 		filp->f_pos++;
2127 		/* fall through */
2128 	case 1:
2129 		ino = parent_ino(dentry);
2130 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2131 			goto out;
2132 		i++;
2133 		filp->f_pos++;
2134 		/* fall through */
2135 	default:
2136 		i -= 2;
2137 		if (i >= nents) {
2138 			ret = 1;
2139 			goto out;
2140 		}
2141 		p = ents + i;
2142 		last = &ents[nents - 1];
2143 		while (p <= last) {
2144 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2145 				goto out;
2146 			filp->f_pos++;
2147 			p++;
2148 		}
2149 	}
2150 
2151 	ret = 1;
2152 out:
2153 	put_task_struct(task);
2154 out_no_task:
2155 	return ret;
2156 }
2157 
2158 #ifdef CONFIG_SECURITY
2159 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2160 				  size_t count, loff_t *ppos)
2161 {
2162 	struct inode * inode = file->f_path.dentry->d_inode;
2163 	char *p = NULL;
2164 	ssize_t length;
2165 	struct task_struct *task = get_proc_task(inode);
2166 
2167 	if (!task)
2168 		return -ESRCH;
2169 
2170 	length = security_getprocattr(task,
2171 				      (char*)file->f_path.dentry->d_name.name,
2172 				      &p);
2173 	put_task_struct(task);
2174 	if (length > 0)
2175 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2176 	kfree(p);
2177 	return length;
2178 }
2179 
2180 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2181 				   size_t count, loff_t *ppos)
2182 {
2183 	struct inode * inode = file->f_path.dentry->d_inode;
2184 	char *page;
2185 	ssize_t length;
2186 	struct task_struct *task = get_proc_task(inode);
2187 
2188 	length = -ESRCH;
2189 	if (!task)
2190 		goto out_no_task;
2191 	if (count > PAGE_SIZE)
2192 		count = PAGE_SIZE;
2193 
2194 	/* No partial writes. */
2195 	length = -EINVAL;
2196 	if (*ppos != 0)
2197 		goto out;
2198 
2199 	length = -ENOMEM;
2200 	page = (char*)__get_free_page(GFP_TEMPORARY);
2201 	if (!page)
2202 		goto out;
2203 
2204 	length = -EFAULT;
2205 	if (copy_from_user(page, buf, count))
2206 		goto out_free;
2207 
2208 	/* Guard against adverse ptrace interaction */
2209 	length = mutex_lock_interruptible(&task->cred_guard_mutex);
2210 	if (length < 0)
2211 		goto out_free;
2212 
2213 	length = security_setprocattr(task,
2214 				      (char*)file->f_path.dentry->d_name.name,
2215 				      (void*)page, count);
2216 	mutex_unlock(&task->cred_guard_mutex);
2217 out_free:
2218 	free_page((unsigned long) page);
2219 out:
2220 	put_task_struct(task);
2221 out_no_task:
2222 	return length;
2223 }
2224 
2225 static const struct file_operations proc_pid_attr_operations = {
2226 	.read		= proc_pid_attr_read,
2227 	.write		= proc_pid_attr_write,
2228 };
2229 
2230 static const struct pid_entry attr_dir_stuff[] = {
2231 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2232 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2233 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2234 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2235 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2236 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2237 };
2238 
2239 static int proc_attr_dir_readdir(struct file * filp,
2240 			     void * dirent, filldir_t filldir)
2241 {
2242 	return proc_pident_readdir(filp,dirent,filldir,
2243 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2244 }
2245 
2246 static const struct file_operations proc_attr_dir_operations = {
2247 	.read		= generic_read_dir,
2248 	.readdir	= proc_attr_dir_readdir,
2249 };
2250 
2251 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2252 				struct dentry *dentry, struct nameidata *nd)
2253 {
2254 	return proc_pident_lookup(dir, dentry,
2255 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2256 }
2257 
2258 static const struct inode_operations proc_attr_dir_inode_operations = {
2259 	.lookup		= proc_attr_dir_lookup,
2260 	.getattr	= pid_getattr,
2261 	.setattr	= proc_setattr,
2262 };
2263 
2264 #endif
2265 
2266 #ifdef CONFIG_ELF_CORE
2267 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2268 					 size_t count, loff_t *ppos)
2269 {
2270 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2271 	struct mm_struct *mm;
2272 	char buffer[PROC_NUMBUF];
2273 	size_t len;
2274 	int ret;
2275 
2276 	if (!task)
2277 		return -ESRCH;
2278 
2279 	ret = 0;
2280 	mm = get_task_mm(task);
2281 	if (mm) {
2282 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2283 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2284 				MMF_DUMP_FILTER_SHIFT));
2285 		mmput(mm);
2286 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2287 	}
2288 
2289 	put_task_struct(task);
2290 
2291 	return ret;
2292 }
2293 
2294 static ssize_t proc_coredump_filter_write(struct file *file,
2295 					  const char __user *buf,
2296 					  size_t count,
2297 					  loff_t *ppos)
2298 {
2299 	struct task_struct *task;
2300 	struct mm_struct *mm;
2301 	char buffer[PROC_NUMBUF], *end;
2302 	unsigned int val;
2303 	int ret;
2304 	int i;
2305 	unsigned long mask;
2306 
2307 	ret = -EFAULT;
2308 	memset(buffer, 0, sizeof(buffer));
2309 	if (count > sizeof(buffer) - 1)
2310 		count = sizeof(buffer) - 1;
2311 	if (copy_from_user(buffer, buf, count))
2312 		goto out_no_task;
2313 
2314 	ret = -EINVAL;
2315 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2316 	if (*end == '\n')
2317 		end++;
2318 	if (end - buffer == 0)
2319 		goto out_no_task;
2320 
2321 	ret = -ESRCH;
2322 	task = get_proc_task(file->f_dentry->d_inode);
2323 	if (!task)
2324 		goto out_no_task;
2325 
2326 	ret = end - buffer;
2327 	mm = get_task_mm(task);
2328 	if (!mm)
2329 		goto out_no_mm;
2330 
2331 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2332 		if (val & mask)
2333 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2334 		else
2335 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2336 	}
2337 
2338 	mmput(mm);
2339  out_no_mm:
2340 	put_task_struct(task);
2341  out_no_task:
2342 	return ret;
2343 }
2344 
2345 static const struct file_operations proc_coredump_filter_operations = {
2346 	.read		= proc_coredump_filter_read,
2347 	.write		= proc_coredump_filter_write,
2348 };
2349 #endif
2350 
2351 /*
2352  * /proc/self:
2353  */
2354 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2355 			      int buflen)
2356 {
2357 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2358 	pid_t tgid = task_tgid_nr_ns(current, ns);
2359 	char tmp[PROC_NUMBUF];
2360 	if (!tgid)
2361 		return -ENOENT;
2362 	sprintf(tmp, "%d", tgid);
2363 	return vfs_readlink(dentry,buffer,buflen,tmp);
2364 }
2365 
2366 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2367 {
2368 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2369 	pid_t tgid = task_tgid_nr_ns(current, ns);
2370 	char *name = ERR_PTR(-ENOENT);
2371 	if (tgid) {
2372 		name = __getname();
2373 		if (!name)
2374 			name = ERR_PTR(-ENOMEM);
2375 		else
2376 			sprintf(name, "%d", tgid);
2377 	}
2378 	nd_set_link(nd, name);
2379 	return NULL;
2380 }
2381 
2382 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2383 				void *cookie)
2384 {
2385 	char *s = nd_get_link(nd);
2386 	if (!IS_ERR(s))
2387 		__putname(s);
2388 }
2389 
2390 static const struct inode_operations proc_self_inode_operations = {
2391 	.readlink	= proc_self_readlink,
2392 	.follow_link	= proc_self_follow_link,
2393 	.put_link	= proc_self_put_link,
2394 };
2395 
2396 /*
2397  * proc base
2398  *
2399  * These are the directory entries in the root directory of /proc
2400  * that properly belong to the /proc filesystem, as they describe
2401  * describe something that is process related.
2402  */
2403 static const struct pid_entry proc_base_stuff[] = {
2404 	NOD("self", S_IFLNK|S_IRWXUGO,
2405 		&proc_self_inode_operations, NULL, {}),
2406 };
2407 
2408 /*
2409  *	Exceptional case: normally we are not allowed to unhash a busy
2410  * directory. In this case, however, we can do it - no aliasing problems
2411  * due to the way we treat inodes.
2412  */
2413 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2414 {
2415 	struct inode *inode = dentry->d_inode;
2416 	struct task_struct *task = get_proc_task(inode);
2417 	if (task) {
2418 		put_task_struct(task);
2419 		return 1;
2420 	}
2421 	d_drop(dentry);
2422 	return 0;
2423 }
2424 
2425 static const struct dentry_operations proc_base_dentry_operations =
2426 {
2427 	.d_revalidate	= proc_base_revalidate,
2428 	.d_delete	= pid_delete_dentry,
2429 };
2430 
2431 static struct dentry *proc_base_instantiate(struct inode *dir,
2432 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2433 {
2434 	const struct pid_entry *p = ptr;
2435 	struct inode *inode;
2436 	struct proc_inode *ei;
2437 	struct dentry *error = ERR_PTR(-EINVAL);
2438 
2439 	/* Allocate the inode */
2440 	error = ERR_PTR(-ENOMEM);
2441 	inode = new_inode(dir->i_sb);
2442 	if (!inode)
2443 		goto out;
2444 
2445 	/* Initialize the inode */
2446 	ei = PROC_I(inode);
2447 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2448 
2449 	/*
2450 	 * grab the reference to the task.
2451 	 */
2452 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2453 	if (!ei->pid)
2454 		goto out_iput;
2455 
2456 	inode->i_mode = p->mode;
2457 	if (S_ISDIR(inode->i_mode))
2458 		inode->i_nlink = 2;
2459 	if (S_ISLNK(inode->i_mode))
2460 		inode->i_size = 64;
2461 	if (p->iop)
2462 		inode->i_op = p->iop;
2463 	if (p->fop)
2464 		inode->i_fop = p->fop;
2465 	ei->op = p->op;
2466 	dentry->d_op = &proc_base_dentry_operations;
2467 	d_add(dentry, inode);
2468 	error = NULL;
2469 out:
2470 	return error;
2471 out_iput:
2472 	iput(inode);
2473 	goto out;
2474 }
2475 
2476 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2477 {
2478 	struct dentry *error;
2479 	struct task_struct *task = get_proc_task(dir);
2480 	const struct pid_entry *p, *last;
2481 
2482 	error = ERR_PTR(-ENOENT);
2483 
2484 	if (!task)
2485 		goto out_no_task;
2486 
2487 	/* Lookup the directory entry */
2488 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2489 	for (p = proc_base_stuff; p <= last; p++) {
2490 		if (p->len != dentry->d_name.len)
2491 			continue;
2492 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2493 			break;
2494 	}
2495 	if (p > last)
2496 		goto out;
2497 
2498 	error = proc_base_instantiate(dir, dentry, task, p);
2499 
2500 out:
2501 	put_task_struct(task);
2502 out_no_task:
2503 	return error;
2504 }
2505 
2506 static int proc_base_fill_cache(struct file *filp, void *dirent,
2507 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2508 {
2509 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2510 				proc_base_instantiate, task, p);
2511 }
2512 
2513 #ifdef CONFIG_TASK_IO_ACCOUNTING
2514 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2515 {
2516 	struct task_io_accounting acct = task->ioac;
2517 	unsigned long flags;
2518 
2519 	if (whole && lock_task_sighand(task, &flags)) {
2520 		struct task_struct *t = task;
2521 
2522 		task_io_accounting_add(&acct, &task->signal->ioac);
2523 		while_each_thread(task, t)
2524 			task_io_accounting_add(&acct, &t->ioac);
2525 
2526 		unlock_task_sighand(task, &flags);
2527 	}
2528 	return sprintf(buffer,
2529 			"rchar: %llu\n"
2530 			"wchar: %llu\n"
2531 			"syscr: %llu\n"
2532 			"syscw: %llu\n"
2533 			"read_bytes: %llu\n"
2534 			"write_bytes: %llu\n"
2535 			"cancelled_write_bytes: %llu\n",
2536 			(unsigned long long)acct.rchar,
2537 			(unsigned long long)acct.wchar,
2538 			(unsigned long long)acct.syscr,
2539 			(unsigned long long)acct.syscw,
2540 			(unsigned long long)acct.read_bytes,
2541 			(unsigned long long)acct.write_bytes,
2542 			(unsigned long long)acct.cancelled_write_bytes);
2543 }
2544 
2545 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2546 {
2547 	return do_io_accounting(task, buffer, 0);
2548 }
2549 
2550 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2551 {
2552 	return do_io_accounting(task, buffer, 1);
2553 }
2554 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2555 
2556 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2557 				struct pid *pid, struct task_struct *task)
2558 {
2559 	seq_printf(m, "%08x\n", task->personality);
2560 	return 0;
2561 }
2562 
2563 /*
2564  * Thread groups
2565  */
2566 static const struct file_operations proc_task_operations;
2567 static const struct inode_operations proc_task_inode_operations;
2568 
2569 static const struct pid_entry tgid_base_stuff[] = {
2570 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2571 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2572 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2573 #ifdef CONFIG_NET
2574 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2575 #endif
2576 	REG("environ",    S_IRUSR, proc_environ_operations),
2577 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2578 	ONE("status",     S_IRUGO, proc_pid_status),
2579 	ONE("personality", S_IRUSR, proc_pid_personality),
2580 	INF("limits",	  S_IRUSR, proc_pid_limits),
2581 #ifdef CONFIG_SCHED_DEBUG
2582 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2583 #endif
2584 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2585 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2586 	INF("syscall",    S_IRUSR, proc_pid_syscall),
2587 #endif
2588 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2589 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2590 	ONE("statm",      S_IRUGO, proc_pid_statm),
2591 	REG("maps",       S_IRUGO, proc_maps_operations),
2592 #ifdef CONFIG_NUMA
2593 	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2594 #endif
2595 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2596 	LNK("cwd",        proc_cwd_link),
2597 	LNK("root",       proc_root_link),
2598 	LNK("exe",        proc_exe_link),
2599 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2600 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2601 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2602 #ifdef CONFIG_PROC_PAGE_MONITOR
2603 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2604 	REG("smaps",      S_IRUGO, proc_smaps_operations),
2605 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2606 #endif
2607 #ifdef CONFIG_SECURITY
2608 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2609 #endif
2610 #ifdef CONFIG_KALLSYMS
2611 	INF("wchan",      S_IRUGO, proc_pid_wchan),
2612 #endif
2613 #ifdef CONFIG_STACKTRACE
2614 	ONE("stack",      S_IRUSR, proc_pid_stack),
2615 #endif
2616 #ifdef CONFIG_SCHEDSTATS
2617 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2618 #endif
2619 #ifdef CONFIG_LATENCYTOP
2620 	REG("latency",  S_IRUGO, proc_lstats_operations),
2621 #endif
2622 #ifdef CONFIG_PROC_PID_CPUSET
2623 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2624 #endif
2625 #ifdef CONFIG_CGROUPS
2626 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2627 #endif
2628 	INF("oom_score",  S_IRUGO, proc_oom_score),
2629 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2630 #ifdef CONFIG_AUDITSYSCALL
2631 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2632 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2633 #endif
2634 #ifdef CONFIG_FAULT_INJECTION
2635 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2636 #endif
2637 #ifdef CONFIG_ELF_CORE
2638 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2639 #endif
2640 #ifdef CONFIG_TASK_IO_ACCOUNTING
2641 	INF("io",	S_IRUGO, proc_tgid_io_accounting),
2642 #endif
2643 };
2644 
2645 static int proc_tgid_base_readdir(struct file * filp,
2646 			     void * dirent, filldir_t filldir)
2647 {
2648 	return proc_pident_readdir(filp,dirent,filldir,
2649 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2650 }
2651 
2652 static const struct file_operations proc_tgid_base_operations = {
2653 	.read		= generic_read_dir,
2654 	.readdir	= proc_tgid_base_readdir,
2655 };
2656 
2657 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2658 	return proc_pident_lookup(dir, dentry,
2659 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2660 }
2661 
2662 static const struct inode_operations proc_tgid_base_inode_operations = {
2663 	.lookup		= proc_tgid_base_lookup,
2664 	.getattr	= pid_getattr,
2665 	.setattr	= proc_setattr,
2666 };
2667 
2668 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2669 {
2670 	struct dentry *dentry, *leader, *dir;
2671 	char buf[PROC_NUMBUF];
2672 	struct qstr name;
2673 
2674 	name.name = buf;
2675 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2676 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2677 	if (dentry) {
2678 		shrink_dcache_parent(dentry);
2679 		d_drop(dentry);
2680 		dput(dentry);
2681 	}
2682 
2683 	name.name = buf;
2684 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2685 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2686 	if (!leader)
2687 		goto out;
2688 
2689 	name.name = "task";
2690 	name.len = strlen(name.name);
2691 	dir = d_hash_and_lookup(leader, &name);
2692 	if (!dir)
2693 		goto out_put_leader;
2694 
2695 	name.name = buf;
2696 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2697 	dentry = d_hash_and_lookup(dir, &name);
2698 	if (dentry) {
2699 		shrink_dcache_parent(dentry);
2700 		d_drop(dentry);
2701 		dput(dentry);
2702 	}
2703 
2704 	dput(dir);
2705 out_put_leader:
2706 	dput(leader);
2707 out:
2708 	return;
2709 }
2710 
2711 /**
2712  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2713  * @task: task that should be flushed.
2714  *
2715  * When flushing dentries from proc, one needs to flush them from global
2716  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2717  * in. This call is supposed to do all of this job.
2718  *
2719  * Looks in the dcache for
2720  * /proc/@pid
2721  * /proc/@tgid/task/@pid
2722  * if either directory is present flushes it and all of it'ts children
2723  * from the dcache.
2724  *
2725  * It is safe and reasonable to cache /proc entries for a task until
2726  * that task exits.  After that they just clog up the dcache with
2727  * useless entries, possibly causing useful dcache entries to be
2728  * flushed instead.  This routine is proved to flush those useless
2729  * dcache entries at process exit time.
2730  *
2731  * NOTE: This routine is just an optimization so it does not guarantee
2732  *       that no dcache entries will exist at process exit time it
2733  *       just makes it very unlikely that any will persist.
2734  */
2735 
2736 void proc_flush_task(struct task_struct *task)
2737 {
2738 	int i;
2739 	struct pid *pid, *tgid;
2740 	struct upid *upid;
2741 
2742 	pid = task_pid(task);
2743 	tgid = task_tgid(task);
2744 
2745 	for (i = 0; i <= pid->level; i++) {
2746 		upid = &pid->numbers[i];
2747 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2748 					tgid->numbers[i].nr);
2749 	}
2750 
2751 	upid = &pid->numbers[pid->level];
2752 	if (upid->nr == 1)
2753 		pid_ns_release_proc(upid->ns);
2754 }
2755 
2756 static struct dentry *proc_pid_instantiate(struct inode *dir,
2757 					   struct dentry * dentry,
2758 					   struct task_struct *task, const void *ptr)
2759 {
2760 	struct dentry *error = ERR_PTR(-ENOENT);
2761 	struct inode *inode;
2762 
2763 	inode = proc_pid_make_inode(dir->i_sb, task);
2764 	if (!inode)
2765 		goto out;
2766 
2767 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2768 	inode->i_op = &proc_tgid_base_inode_operations;
2769 	inode->i_fop = &proc_tgid_base_operations;
2770 	inode->i_flags|=S_IMMUTABLE;
2771 
2772 	inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2773 		ARRAY_SIZE(tgid_base_stuff));
2774 
2775 	dentry->d_op = &pid_dentry_operations;
2776 
2777 	d_add(dentry, inode);
2778 	/* Close the race of the process dying before we return the dentry */
2779 	if (pid_revalidate(dentry, NULL))
2780 		error = NULL;
2781 out:
2782 	return error;
2783 }
2784 
2785 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2786 {
2787 	struct dentry *result = ERR_PTR(-ENOENT);
2788 	struct task_struct *task;
2789 	unsigned tgid;
2790 	struct pid_namespace *ns;
2791 
2792 	result = proc_base_lookup(dir, dentry);
2793 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2794 		goto out;
2795 
2796 	tgid = name_to_int(dentry);
2797 	if (tgid == ~0U)
2798 		goto out;
2799 
2800 	ns = dentry->d_sb->s_fs_info;
2801 	rcu_read_lock();
2802 	task = find_task_by_pid_ns(tgid, ns);
2803 	if (task)
2804 		get_task_struct(task);
2805 	rcu_read_unlock();
2806 	if (!task)
2807 		goto out;
2808 
2809 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2810 	put_task_struct(task);
2811 out:
2812 	return result;
2813 }
2814 
2815 /*
2816  * Find the first task with tgid >= tgid
2817  *
2818  */
2819 struct tgid_iter {
2820 	unsigned int tgid;
2821 	struct task_struct *task;
2822 };
2823 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2824 {
2825 	struct pid *pid;
2826 
2827 	if (iter.task)
2828 		put_task_struct(iter.task);
2829 	rcu_read_lock();
2830 retry:
2831 	iter.task = NULL;
2832 	pid = find_ge_pid(iter.tgid, ns);
2833 	if (pid) {
2834 		iter.tgid = pid_nr_ns(pid, ns);
2835 		iter.task = pid_task(pid, PIDTYPE_PID);
2836 		/* What we to know is if the pid we have find is the
2837 		 * pid of a thread_group_leader.  Testing for task
2838 		 * being a thread_group_leader is the obvious thing
2839 		 * todo but there is a window when it fails, due to
2840 		 * the pid transfer logic in de_thread.
2841 		 *
2842 		 * So we perform the straight forward test of seeing
2843 		 * if the pid we have found is the pid of a thread
2844 		 * group leader, and don't worry if the task we have
2845 		 * found doesn't happen to be a thread group leader.
2846 		 * As we don't care in the case of readdir.
2847 		 */
2848 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2849 			iter.tgid += 1;
2850 			goto retry;
2851 		}
2852 		get_task_struct(iter.task);
2853 	}
2854 	rcu_read_unlock();
2855 	return iter;
2856 }
2857 
2858 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2859 
2860 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2861 	struct tgid_iter iter)
2862 {
2863 	char name[PROC_NUMBUF];
2864 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2865 	return proc_fill_cache(filp, dirent, filldir, name, len,
2866 				proc_pid_instantiate, iter.task, NULL);
2867 }
2868 
2869 /* for the /proc/ directory itself, after non-process stuff has been done */
2870 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2871 {
2872 	unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2873 	struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2874 	struct tgid_iter iter;
2875 	struct pid_namespace *ns;
2876 
2877 	if (!reaper)
2878 		goto out_no_task;
2879 
2880 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2881 		const struct pid_entry *p = &proc_base_stuff[nr];
2882 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2883 			goto out;
2884 	}
2885 
2886 	ns = filp->f_dentry->d_sb->s_fs_info;
2887 	iter.task = NULL;
2888 	iter.tgid = filp->f_pos - TGID_OFFSET;
2889 	for (iter = next_tgid(ns, iter);
2890 	     iter.task;
2891 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2892 		filp->f_pos = iter.tgid + TGID_OFFSET;
2893 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2894 			put_task_struct(iter.task);
2895 			goto out;
2896 		}
2897 	}
2898 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2899 out:
2900 	put_task_struct(reaper);
2901 out_no_task:
2902 	return 0;
2903 }
2904 
2905 /*
2906  * Tasks
2907  */
2908 static const struct pid_entry tid_base_stuff[] = {
2909 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2910 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fd_operations),
2911 	REG("environ",   S_IRUSR, proc_environ_operations),
2912 	INF("auxv",      S_IRUSR, proc_pid_auxv),
2913 	ONE("status",    S_IRUGO, proc_pid_status),
2914 	ONE("personality", S_IRUSR, proc_pid_personality),
2915 	INF("limits",	 S_IRUSR, proc_pid_limits),
2916 #ifdef CONFIG_SCHED_DEBUG
2917 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2918 #endif
2919 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2920 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2921 	INF("syscall",   S_IRUSR, proc_pid_syscall),
2922 #endif
2923 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
2924 	ONE("stat",      S_IRUGO, proc_tid_stat),
2925 	ONE("statm",     S_IRUGO, proc_pid_statm),
2926 	REG("maps",      S_IRUGO, proc_maps_operations),
2927 #ifdef CONFIG_NUMA
2928 	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2929 #endif
2930 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
2931 	LNK("cwd",       proc_cwd_link),
2932 	LNK("root",      proc_root_link),
2933 	LNK("exe",       proc_exe_link),
2934 	REG("mounts",    S_IRUGO, proc_mounts_operations),
2935 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2936 #ifdef CONFIG_PROC_PAGE_MONITOR
2937 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2938 	REG("smaps",     S_IRUGO, proc_smaps_operations),
2939 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2940 #endif
2941 #ifdef CONFIG_SECURITY
2942 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2943 #endif
2944 #ifdef CONFIG_KALLSYMS
2945 	INF("wchan",     S_IRUGO, proc_pid_wchan),
2946 #endif
2947 #ifdef CONFIG_STACKTRACE
2948 	ONE("stack",      S_IRUSR, proc_pid_stack),
2949 #endif
2950 #ifdef CONFIG_SCHEDSTATS
2951 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
2952 #endif
2953 #ifdef CONFIG_LATENCYTOP
2954 	REG("latency",  S_IRUGO, proc_lstats_operations),
2955 #endif
2956 #ifdef CONFIG_PROC_PID_CPUSET
2957 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
2958 #endif
2959 #ifdef CONFIG_CGROUPS
2960 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2961 #endif
2962 	INF("oom_score", S_IRUGO, proc_oom_score),
2963 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2964 #ifdef CONFIG_AUDITSYSCALL
2965 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
2966 	REG("sessionid",  S_IRUSR, proc_sessionid_operations),
2967 #endif
2968 #ifdef CONFIG_FAULT_INJECTION
2969 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2970 #endif
2971 #ifdef CONFIG_TASK_IO_ACCOUNTING
2972 	INF("io",	S_IRUGO, proc_tid_io_accounting),
2973 #endif
2974 };
2975 
2976 static int proc_tid_base_readdir(struct file * filp,
2977 			     void * dirent, filldir_t filldir)
2978 {
2979 	return proc_pident_readdir(filp,dirent,filldir,
2980 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2981 }
2982 
2983 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2984 	return proc_pident_lookup(dir, dentry,
2985 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2986 }
2987 
2988 static const struct file_operations proc_tid_base_operations = {
2989 	.read		= generic_read_dir,
2990 	.readdir	= proc_tid_base_readdir,
2991 };
2992 
2993 static const struct inode_operations proc_tid_base_inode_operations = {
2994 	.lookup		= proc_tid_base_lookup,
2995 	.getattr	= pid_getattr,
2996 	.setattr	= proc_setattr,
2997 };
2998 
2999 static struct dentry *proc_task_instantiate(struct inode *dir,
3000 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3001 {
3002 	struct dentry *error = ERR_PTR(-ENOENT);
3003 	struct inode *inode;
3004 	inode = proc_pid_make_inode(dir->i_sb, task);
3005 
3006 	if (!inode)
3007 		goto out;
3008 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3009 	inode->i_op = &proc_tid_base_inode_operations;
3010 	inode->i_fop = &proc_tid_base_operations;
3011 	inode->i_flags|=S_IMMUTABLE;
3012 
3013 	inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3014 		ARRAY_SIZE(tid_base_stuff));
3015 
3016 	dentry->d_op = &pid_dentry_operations;
3017 
3018 	d_add(dentry, inode);
3019 	/* Close the race of the process dying before we return the dentry */
3020 	if (pid_revalidate(dentry, NULL))
3021 		error = NULL;
3022 out:
3023 	return error;
3024 }
3025 
3026 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3027 {
3028 	struct dentry *result = ERR_PTR(-ENOENT);
3029 	struct task_struct *task;
3030 	struct task_struct *leader = get_proc_task(dir);
3031 	unsigned tid;
3032 	struct pid_namespace *ns;
3033 
3034 	if (!leader)
3035 		goto out_no_task;
3036 
3037 	tid = name_to_int(dentry);
3038 	if (tid == ~0U)
3039 		goto out;
3040 
3041 	ns = dentry->d_sb->s_fs_info;
3042 	rcu_read_lock();
3043 	task = find_task_by_pid_ns(tid, ns);
3044 	if (task)
3045 		get_task_struct(task);
3046 	rcu_read_unlock();
3047 	if (!task)
3048 		goto out;
3049 	if (!same_thread_group(leader, task))
3050 		goto out_drop_task;
3051 
3052 	result = proc_task_instantiate(dir, dentry, task, NULL);
3053 out_drop_task:
3054 	put_task_struct(task);
3055 out:
3056 	put_task_struct(leader);
3057 out_no_task:
3058 	return result;
3059 }
3060 
3061 /*
3062  * Find the first tid of a thread group to return to user space.
3063  *
3064  * Usually this is just the thread group leader, but if the users
3065  * buffer was too small or there was a seek into the middle of the
3066  * directory we have more work todo.
3067  *
3068  * In the case of a short read we start with find_task_by_pid.
3069  *
3070  * In the case of a seek we start with the leader and walk nr
3071  * threads past it.
3072  */
3073 static struct task_struct *first_tid(struct task_struct *leader,
3074 		int tid, int nr, struct pid_namespace *ns)
3075 {
3076 	struct task_struct *pos;
3077 
3078 	rcu_read_lock();
3079 	/* Attempt to start with the pid of a thread */
3080 	if (tid && (nr > 0)) {
3081 		pos = find_task_by_pid_ns(tid, ns);
3082 		if (pos && (pos->group_leader == leader))
3083 			goto found;
3084 	}
3085 
3086 	/* If nr exceeds the number of threads there is nothing todo */
3087 	pos = NULL;
3088 	if (nr && nr >= get_nr_threads(leader))
3089 		goto out;
3090 
3091 	/* If we haven't found our starting place yet start
3092 	 * with the leader and walk nr threads forward.
3093 	 */
3094 	for (pos = leader; nr > 0; --nr) {
3095 		pos = next_thread(pos);
3096 		if (pos == leader) {
3097 			pos = NULL;
3098 			goto out;
3099 		}
3100 	}
3101 found:
3102 	get_task_struct(pos);
3103 out:
3104 	rcu_read_unlock();
3105 	return pos;
3106 }
3107 
3108 /*
3109  * Find the next thread in the thread list.
3110  * Return NULL if there is an error or no next thread.
3111  *
3112  * The reference to the input task_struct is released.
3113  */
3114 static struct task_struct *next_tid(struct task_struct *start)
3115 {
3116 	struct task_struct *pos = NULL;
3117 	rcu_read_lock();
3118 	if (pid_alive(start)) {
3119 		pos = next_thread(start);
3120 		if (thread_group_leader(pos))
3121 			pos = NULL;
3122 		else
3123 			get_task_struct(pos);
3124 	}
3125 	rcu_read_unlock();
3126 	put_task_struct(start);
3127 	return pos;
3128 }
3129 
3130 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3131 	struct task_struct *task, int tid)
3132 {
3133 	char name[PROC_NUMBUF];
3134 	int len = snprintf(name, sizeof(name), "%d", tid);
3135 	return proc_fill_cache(filp, dirent, filldir, name, len,
3136 				proc_task_instantiate, task, NULL);
3137 }
3138 
3139 /* for the /proc/TGID/task/ directories */
3140 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3141 {
3142 	struct dentry *dentry = filp->f_path.dentry;
3143 	struct inode *inode = dentry->d_inode;
3144 	struct task_struct *leader = NULL;
3145 	struct task_struct *task;
3146 	int retval = -ENOENT;
3147 	ino_t ino;
3148 	int tid;
3149 	struct pid_namespace *ns;
3150 
3151 	task = get_proc_task(inode);
3152 	if (!task)
3153 		goto out_no_task;
3154 	rcu_read_lock();
3155 	if (pid_alive(task)) {
3156 		leader = task->group_leader;
3157 		get_task_struct(leader);
3158 	}
3159 	rcu_read_unlock();
3160 	put_task_struct(task);
3161 	if (!leader)
3162 		goto out_no_task;
3163 	retval = 0;
3164 
3165 	switch ((unsigned long)filp->f_pos) {
3166 	case 0:
3167 		ino = inode->i_ino;
3168 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3169 			goto out;
3170 		filp->f_pos++;
3171 		/* fall through */
3172 	case 1:
3173 		ino = parent_ino(dentry);
3174 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3175 			goto out;
3176 		filp->f_pos++;
3177 		/* fall through */
3178 	}
3179 
3180 	/* f_version caches the tgid value that the last readdir call couldn't
3181 	 * return. lseek aka telldir automagically resets f_version to 0.
3182 	 */
3183 	ns = filp->f_dentry->d_sb->s_fs_info;
3184 	tid = (int)filp->f_version;
3185 	filp->f_version = 0;
3186 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3187 	     task;
3188 	     task = next_tid(task), filp->f_pos++) {
3189 		tid = task_pid_nr_ns(task, ns);
3190 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3191 			/* returning this tgid failed, save it as the first
3192 			 * pid for the next readir call */
3193 			filp->f_version = (u64)tid;
3194 			put_task_struct(task);
3195 			break;
3196 		}
3197 	}
3198 out:
3199 	put_task_struct(leader);
3200 out_no_task:
3201 	return retval;
3202 }
3203 
3204 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3205 {
3206 	struct inode *inode = dentry->d_inode;
3207 	struct task_struct *p = get_proc_task(inode);
3208 	generic_fillattr(inode, stat);
3209 
3210 	if (p) {
3211 		stat->nlink += get_nr_threads(p);
3212 		put_task_struct(p);
3213 	}
3214 
3215 	return 0;
3216 }
3217 
3218 static const struct inode_operations proc_task_inode_operations = {
3219 	.lookup		= proc_task_lookup,
3220 	.getattr	= proc_task_getattr,
3221 	.setattr	= proc_setattr,
3222 };
3223 
3224 static const struct file_operations proc_task_operations = {
3225 	.read		= generic_read_dir,
3226 	.readdir	= proc_task_readdir,
3227 };
3228