xref: /openbmc/linux/fs/proc/base.c (revision f5b06569)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/flex_array.h>
89 #include <linux/posix-timers.h>
90 #ifdef CONFIG_HARDWALL
91 #include <asm/hardwall.h>
92 #endif
93 #include <trace/events/oom.h>
94 #include "internal.h"
95 #include "fd.h"
96 
97 /* NOTE:
98  *	Implementing inode permission operations in /proc is almost
99  *	certainly an error.  Permission checks need to happen during
100  *	each system call not at open time.  The reason is that most of
101  *	what we wish to check for permissions in /proc varies at runtime.
102  *
103  *	The classic example of a problem is opening file descriptors
104  *	in /proc for a task before it execs a suid executable.
105  */
106 
107 struct pid_entry {
108 	const char *name;
109 	int len;
110 	umode_t mode;
111 	const struct inode_operations *iop;
112 	const struct file_operations *fop;
113 	union proc_op op;
114 };
115 
116 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
117 	.name = (NAME),					\
118 	.len  = sizeof(NAME) - 1,			\
119 	.mode = MODE,					\
120 	.iop  = IOP,					\
121 	.fop  = FOP,					\
122 	.op   = OP,					\
123 }
124 
125 #define DIR(NAME, MODE, iops, fops)	\
126 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
127 #define LNK(NAME, get_link)					\
128 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
129 		&proc_pid_link_inode_operations, NULL,		\
130 		{ .proc_get_link = get_link } )
131 #define REG(NAME, MODE, fops)				\
132 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
133 #define ONE(NAME, MODE, show)				\
134 	NOD(NAME, (S_IFREG|(MODE)), 			\
135 		NULL, &proc_single_file_operations,	\
136 		{ .proc_show = show } )
137 
138 /*
139  * Count the number of hardlinks for the pid_entry table, excluding the .
140  * and .. links.
141  */
142 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
143 	unsigned int n)
144 {
145 	unsigned int i;
146 	unsigned int count;
147 
148 	count = 0;
149 	for (i = 0; i < n; ++i) {
150 		if (S_ISDIR(entries[i].mode))
151 			++count;
152 	}
153 
154 	return count;
155 }
156 
157 static int get_task_root(struct task_struct *task, struct path *root)
158 {
159 	int result = -ENOENT;
160 
161 	task_lock(task);
162 	if (task->fs) {
163 		get_fs_root(task->fs, root);
164 		result = 0;
165 	}
166 	task_unlock(task);
167 	return result;
168 }
169 
170 static int proc_cwd_link(struct dentry *dentry, struct path *path)
171 {
172 	struct task_struct *task = get_proc_task(d_inode(dentry));
173 	int result = -ENOENT;
174 
175 	if (task) {
176 		task_lock(task);
177 		if (task->fs) {
178 			get_fs_pwd(task->fs, path);
179 			result = 0;
180 		}
181 		task_unlock(task);
182 		put_task_struct(task);
183 	}
184 	return result;
185 }
186 
187 static int proc_root_link(struct dentry *dentry, struct path *path)
188 {
189 	struct task_struct *task = get_proc_task(d_inode(dentry));
190 	int result = -ENOENT;
191 
192 	if (task) {
193 		result = get_task_root(task, path);
194 		put_task_struct(task);
195 	}
196 	return result;
197 }
198 
199 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
200 				     size_t _count, loff_t *pos)
201 {
202 	struct task_struct *tsk;
203 	struct mm_struct *mm;
204 	char *page;
205 	unsigned long count = _count;
206 	unsigned long arg_start, arg_end, env_start, env_end;
207 	unsigned long len1, len2, len;
208 	unsigned long p;
209 	char c;
210 	ssize_t rv;
211 
212 	BUG_ON(*pos < 0);
213 
214 	tsk = get_proc_task(file_inode(file));
215 	if (!tsk)
216 		return -ESRCH;
217 	mm = get_task_mm(tsk);
218 	put_task_struct(tsk);
219 	if (!mm)
220 		return 0;
221 	/* Check if process spawned far enough to have cmdline. */
222 	if (!mm->env_end) {
223 		rv = 0;
224 		goto out_mmput;
225 	}
226 
227 	page = (char *)__get_free_page(GFP_TEMPORARY);
228 	if (!page) {
229 		rv = -ENOMEM;
230 		goto out_mmput;
231 	}
232 
233 	down_read(&mm->mmap_sem);
234 	arg_start = mm->arg_start;
235 	arg_end = mm->arg_end;
236 	env_start = mm->env_start;
237 	env_end = mm->env_end;
238 	up_read(&mm->mmap_sem);
239 
240 	BUG_ON(arg_start > arg_end);
241 	BUG_ON(env_start > env_end);
242 
243 	len1 = arg_end - arg_start;
244 	len2 = env_end - env_start;
245 
246 	/* Empty ARGV. */
247 	if (len1 == 0) {
248 		rv = 0;
249 		goto out_free_page;
250 	}
251 	/*
252 	 * Inherently racy -- command line shares address space
253 	 * with code and data.
254 	 */
255 	rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
256 	if (rv <= 0)
257 		goto out_free_page;
258 
259 	rv = 0;
260 
261 	if (c == '\0') {
262 		/* Command line (set of strings) occupies whole ARGV. */
263 		if (len1 <= *pos)
264 			goto out_free_page;
265 
266 		p = arg_start + *pos;
267 		len = len1 - *pos;
268 		while (count > 0 && len > 0) {
269 			unsigned int _count;
270 			int nr_read;
271 
272 			_count = min3(count, len, PAGE_SIZE);
273 			nr_read = access_remote_vm(mm, p, page, _count, 0);
274 			if (nr_read < 0)
275 				rv = nr_read;
276 			if (nr_read <= 0)
277 				goto out_free_page;
278 
279 			if (copy_to_user(buf, page, nr_read)) {
280 				rv = -EFAULT;
281 				goto out_free_page;
282 			}
283 
284 			p	+= nr_read;
285 			len	-= nr_read;
286 			buf	+= nr_read;
287 			count	-= nr_read;
288 			rv	+= nr_read;
289 		}
290 	} else {
291 		/*
292 		 * Command line (1 string) occupies ARGV and maybe
293 		 * extends into ENVP.
294 		 */
295 		if (len1 + len2 <= *pos)
296 			goto skip_argv_envp;
297 		if (len1 <= *pos)
298 			goto skip_argv;
299 
300 		p = arg_start + *pos;
301 		len = len1 - *pos;
302 		while (count > 0 && len > 0) {
303 			unsigned int _count, l;
304 			int nr_read;
305 			bool final;
306 
307 			_count = min3(count, len, PAGE_SIZE);
308 			nr_read = access_remote_vm(mm, p, page, _count, 0);
309 			if (nr_read < 0)
310 				rv = nr_read;
311 			if (nr_read <= 0)
312 				goto out_free_page;
313 
314 			/*
315 			 * Command line can be shorter than whole ARGV
316 			 * even if last "marker" byte says it is not.
317 			 */
318 			final = false;
319 			l = strnlen(page, nr_read);
320 			if (l < nr_read) {
321 				nr_read = l;
322 				final = true;
323 			}
324 
325 			if (copy_to_user(buf, page, nr_read)) {
326 				rv = -EFAULT;
327 				goto out_free_page;
328 			}
329 
330 			p	+= nr_read;
331 			len	-= nr_read;
332 			buf	+= nr_read;
333 			count	-= nr_read;
334 			rv	+= nr_read;
335 
336 			if (final)
337 				goto out_free_page;
338 		}
339 skip_argv:
340 		/*
341 		 * Command line (1 string) occupies ARGV and
342 		 * extends into ENVP.
343 		 */
344 		if (len1 <= *pos) {
345 			p = env_start + *pos - len1;
346 			len = len1 + len2 - *pos;
347 		} else {
348 			p = env_start;
349 			len = len2;
350 		}
351 		while (count > 0 && len > 0) {
352 			unsigned int _count, l;
353 			int nr_read;
354 			bool final;
355 
356 			_count = min3(count, len, PAGE_SIZE);
357 			nr_read = access_remote_vm(mm, p, page, _count, 0);
358 			if (nr_read < 0)
359 				rv = nr_read;
360 			if (nr_read <= 0)
361 				goto out_free_page;
362 
363 			/* Find EOS. */
364 			final = false;
365 			l = strnlen(page, nr_read);
366 			if (l < nr_read) {
367 				nr_read = l;
368 				final = true;
369 			}
370 
371 			if (copy_to_user(buf, page, nr_read)) {
372 				rv = -EFAULT;
373 				goto out_free_page;
374 			}
375 
376 			p	+= nr_read;
377 			len	-= nr_read;
378 			buf	+= nr_read;
379 			count	-= nr_read;
380 			rv	+= nr_read;
381 
382 			if (final)
383 				goto out_free_page;
384 		}
385 skip_argv_envp:
386 		;
387 	}
388 
389 out_free_page:
390 	free_page((unsigned long)page);
391 out_mmput:
392 	mmput(mm);
393 	if (rv > 0)
394 		*pos += rv;
395 	return rv;
396 }
397 
398 static const struct file_operations proc_pid_cmdline_ops = {
399 	.read	= proc_pid_cmdline_read,
400 	.llseek	= generic_file_llseek,
401 };
402 
403 static int proc_pid_auxv(struct seq_file *m, struct pid_namespace *ns,
404 			 struct pid *pid, struct task_struct *task)
405 {
406 	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
407 	if (mm && !IS_ERR(mm)) {
408 		unsigned int nwords = 0;
409 		do {
410 			nwords += 2;
411 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
412 		seq_write(m, mm->saved_auxv, nwords * sizeof(mm->saved_auxv[0]));
413 		mmput(mm);
414 		return 0;
415 	} else
416 		return PTR_ERR(mm);
417 }
418 
419 
420 #ifdef CONFIG_KALLSYMS
421 /*
422  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
423  * Returns the resolved symbol.  If that fails, simply return the address.
424  */
425 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
426 			  struct pid *pid, struct task_struct *task)
427 {
428 	unsigned long wchan;
429 	char symname[KSYM_NAME_LEN];
430 
431 	wchan = get_wchan(task);
432 
433 	if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
434 			&& !lookup_symbol_name(wchan, symname))
435 		seq_printf(m, "%s", symname);
436 	else
437 		seq_putc(m, '0');
438 
439 	return 0;
440 }
441 #endif /* CONFIG_KALLSYMS */
442 
443 static int lock_trace(struct task_struct *task)
444 {
445 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
446 	if (err)
447 		return err;
448 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
449 		mutex_unlock(&task->signal->cred_guard_mutex);
450 		return -EPERM;
451 	}
452 	return 0;
453 }
454 
455 static void unlock_trace(struct task_struct *task)
456 {
457 	mutex_unlock(&task->signal->cred_guard_mutex);
458 }
459 
460 #ifdef CONFIG_STACKTRACE
461 
462 #define MAX_STACK_TRACE_DEPTH	64
463 
464 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
465 			  struct pid *pid, struct task_struct *task)
466 {
467 	struct stack_trace trace;
468 	unsigned long *entries;
469 	int err;
470 	int i;
471 
472 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
473 	if (!entries)
474 		return -ENOMEM;
475 
476 	trace.nr_entries	= 0;
477 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
478 	trace.entries		= entries;
479 	trace.skip		= 0;
480 
481 	err = lock_trace(task);
482 	if (!err) {
483 		save_stack_trace_tsk(task, &trace);
484 
485 		for (i = 0; i < trace.nr_entries; i++) {
486 			seq_printf(m, "[<%pK>] %pS\n",
487 				   (void *)entries[i], (void *)entries[i]);
488 		}
489 		unlock_trace(task);
490 	}
491 	kfree(entries);
492 
493 	return err;
494 }
495 #endif
496 
497 #ifdef CONFIG_SCHED_INFO
498 /*
499  * Provides /proc/PID/schedstat
500  */
501 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
502 			      struct pid *pid, struct task_struct *task)
503 {
504 	if (unlikely(!sched_info_on()))
505 		seq_printf(m, "0 0 0\n");
506 	else
507 		seq_printf(m, "%llu %llu %lu\n",
508 		   (unsigned long long)task->se.sum_exec_runtime,
509 		   (unsigned long long)task->sched_info.run_delay,
510 		   task->sched_info.pcount);
511 
512 	return 0;
513 }
514 #endif
515 
516 #ifdef CONFIG_LATENCYTOP
517 static int lstats_show_proc(struct seq_file *m, void *v)
518 {
519 	int i;
520 	struct inode *inode = m->private;
521 	struct task_struct *task = get_proc_task(inode);
522 
523 	if (!task)
524 		return -ESRCH;
525 	seq_puts(m, "Latency Top version : v0.1\n");
526 	for (i = 0; i < 32; i++) {
527 		struct latency_record *lr = &task->latency_record[i];
528 		if (lr->backtrace[0]) {
529 			int q;
530 			seq_printf(m, "%i %li %li",
531 				   lr->count, lr->time, lr->max);
532 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
533 				unsigned long bt = lr->backtrace[q];
534 				if (!bt)
535 					break;
536 				if (bt == ULONG_MAX)
537 					break;
538 				seq_printf(m, " %ps", (void *)bt);
539 			}
540 			seq_putc(m, '\n');
541 		}
542 
543 	}
544 	put_task_struct(task);
545 	return 0;
546 }
547 
548 static int lstats_open(struct inode *inode, struct file *file)
549 {
550 	return single_open(file, lstats_show_proc, inode);
551 }
552 
553 static ssize_t lstats_write(struct file *file, const char __user *buf,
554 			    size_t count, loff_t *offs)
555 {
556 	struct task_struct *task = get_proc_task(file_inode(file));
557 
558 	if (!task)
559 		return -ESRCH;
560 	clear_all_latency_tracing(task);
561 	put_task_struct(task);
562 
563 	return count;
564 }
565 
566 static const struct file_operations proc_lstats_operations = {
567 	.open		= lstats_open,
568 	.read		= seq_read,
569 	.write		= lstats_write,
570 	.llseek		= seq_lseek,
571 	.release	= single_release,
572 };
573 
574 #endif
575 
576 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
577 			  struct pid *pid, struct task_struct *task)
578 {
579 	unsigned long totalpages = totalram_pages + total_swap_pages;
580 	unsigned long points = 0;
581 
582 	points = oom_badness(task, NULL, NULL, totalpages) *
583 					1000 / totalpages;
584 	seq_printf(m, "%lu\n", points);
585 
586 	return 0;
587 }
588 
589 struct limit_names {
590 	const char *name;
591 	const char *unit;
592 };
593 
594 static const struct limit_names lnames[RLIM_NLIMITS] = {
595 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
596 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
597 	[RLIMIT_DATA] = {"Max data size", "bytes"},
598 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
599 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
600 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
601 	[RLIMIT_NPROC] = {"Max processes", "processes"},
602 	[RLIMIT_NOFILE] = {"Max open files", "files"},
603 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
604 	[RLIMIT_AS] = {"Max address space", "bytes"},
605 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
606 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
607 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
608 	[RLIMIT_NICE] = {"Max nice priority", NULL},
609 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
610 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
611 };
612 
613 /* Display limits for a process */
614 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
615 			   struct pid *pid, struct task_struct *task)
616 {
617 	unsigned int i;
618 	unsigned long flags;
619 
620 	struct rlimit rlim[RLIM_NLIMITS];
621 
622 	if (!lock_task_sighand(task, &flags))
623 		return 0;
624 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
625 	unlock_task_sighand(task, &flags);
626 
627 	/*
628 	 * print the file header
629 	 */
630        seq_printf(m, "%-25s %-20s %-20s %-10s\n",
631 		  "Limit", "Soft Limit", "Hard Limit", "Units");
632 
633 	for (i = 0; i < RLIM_NLIMITS; i++) {
634 		if (rlim[i].rlim_cur == RLIM_INFINITY)
635 			seq_printf(m, "%-25s %-20s ",
636 				   lnames[i].name, "unlimited");
637 		else
638 			seq_printf(m, "%-25s %-20lu ",
639 				   lnames[i].name, rlim[i].rlim_cur);
640 
641 		if (rlim[i].rlim_max == RLIM_INFINITY)
642 			seq_printf(m, "%-20s ", "unlimited");
643 		else
644 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
645 
646 		if (lnames[i].unit)
647 			seq_printf(m, "%-10s\n", lnames[i].unit);
648 		else
649 			seq_putc(m, '\n');
650 	}
651 
652 	return 0;
653 }
654 
655 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
656 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
657 			    struct pid *pid, struct task_struct *task)
658 {
659 	long nr;
660 	unsigned long args[6], sp, pc;
661 	int res;
662 
663 	res = lock_trace(task);
664 	if (res)
665 		return res;
666 
667 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
668 		seq_puts(m, "running\n");
669 	else if (nr < 0)
670 		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
671 	else
672 		seq_printf(m,
673 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
674 		       nr,
675 		       args[0], args[1], args[2], args[3], args[4], args[5],
676 		       sp, pc);
677 	unlock_trace(task);
678 
679 	return 0;
680 }
681 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
682 
683 /************************************************************************/
684 /*                       Here the fs part begins                        */
685 /************************************************************************/
686 
687 /* permission checks */
688 static int proc_fd_access_allowed(struct inode *inode)
689 {
690 	struct task_struct *task;
691 	int allowed = 0;
692 	/* Allow access to a task's file descriptors if it is us or we
693 	 * may use ptrace attach to the process and find out that
694 	 * information.
695 	 */
696 	task = get_proc_task(inode);
697 	if (task) {
698 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
699 		put_task_struct(task);
700 	}
701 	return allowed;
702 }
703 
704 int proc_setattr(struct dentry *dentry, struct iattr *attr)
705 {
706 	int error;
707 	struct inode *inode = d_inode(dentry);
708 
709 	if (attr->ia_valid & ATTR_MODE)
710 		return -EPERM;
711 
712 	error = inode_change_ok(inode, attr);
713 	if (error)
714 		return error;
715 
716 	setattr_copy(inode, attr);
717 	mark_inode_dirty(inode);
718 	return 0;
719 }
720 
721 /*
722  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
723  * or euid/egid (for hide_pid_min=2)?
724  */
725 static bool has_pid_permissions(struct pid_namespace *pid,
726 				 struct task_struct *task,
727 				 int hide_pid_min)
728 {
729 	if (pid->hide_pid < hide_pid_min)
730 		return true;
731 	if (in_group_p(pid->pid_gid))
732 		return true;
733 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
734 }
735 
736 
737 static int proc_pid_permission(struct inode *inode, int mask)
738 {
739 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
740 	struct task_struct *task;
741 	bool has_perms;
742 
743 	task = get_proc_task(inode);
744 	if (!task)
745 		return -ESRCH;
746 	has_perms = has_pid_permissions(pid, task, 1);
747 	put_task_struct(task);
748 
749 	if (!has_perms) {
750 		if (pid->hide_pid == 2) {
751 			/*
752 			 * Let's make getdents(), stat(), and open()
753 			 * consistent with each other.  If a process
754 			 * may not stat() a file, it shouldn't be seen
755 			 * in procfs at all.
756 			 */
757 			return -ENOENT;
758 		}
759 
760 		return -EPERM;
761 	}
762 	return generic_permission(inode, mask);
763 }
764 
765 
766 
767 static const struct inode_operations proc_def_inode_operations = {
768 	.setattr	= proc_setattr,
769 };
770 
771 static int proc_single_show(struct seq_file *m, void *v)
772 {
773 	struct inode *inode = m->private;
774 	struct pid_namespace *ns;
775 	struct pid *pid;
776 	struct task_struct *task;
777 	int ret;
778 
779 	ns = inode->i_sb->s_fs_info;
780 	pid = proc_pid(inode);
781 	task = get_pid_task(pid, PIDTYPE_PID);
782 	if (!task)
783 		return -ESRCH;
784 
785 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
786 
787 	put_task_struct(task);
788 	return ret;
789 }
790 
791 static int proc_single_open(struct inode *inode, struct file *filp)
792 {
793 	return single_open(filp, proc_single_show, inode);
794 }
795 
796 static const struct file_operations proc_single_file_operations = {
797 	.open		= proc_single_open,
798 	.read		= seq_read,
799 	.llseek		= seq_lseek,
800 	.release	= single_release,
801 };
802 
803 
804 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
805 {
806 	struct task_struct *task = get_proc_task(inode);
807 	struct mm_struct *mm = ERR_PTR(-ESRCH);
808 
809 	if (task) {
810 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
811 		put_task_struct(task);
812 
813 		if (!IS_ERR_OR_NULL(mm)) {
814 			/* ensure this mm_struct can't be freed */
815 			atomic_inc(&mm->mm_count);
816 			/* but do not pin its memory */
817 			mmput(mm);
818 		}
819 	}
820 
821 	return mm;
822 }
823 
824 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
825 {
826 	struct mm_struct *mm = proc_mem_open(inode, mode);
827 
828 	if (IS_ERR(mm))
829 		return PTR_ERR(mm);
830 
831 	file->private_data = mm;
832 	return 0;
833 }
834 
835 static int mem_open(struct inode *inode, struct file *file)
836 {
837 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
838 
839 	/* OK to pass negative loff_t, we can catch out-of-range */
840 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
841 
842 	return ret;
843 }
844 
845 static ssize_t mem_rw(struct file *file, char __user *buf,
846 			size_t count, loff_t *ppos, int write)
847 {
848 	struct mm_struct *mm = file->private_data;
849 	unsigned long addr = *ppos;
850 	ssize_t copied;
851 	char *page;
852 
853 	if (!mm)
854 		return 0;
855 
856 	page = (char *)__get_free_page(GFP_TEMPORARY);
857 	if (!page)
858 		return -ENOMEM;
859 
860 	copied = 0;
861 	if (!atomic_inc_not_zero(&mm->mm_users))
862 		goto free;
863 
864 	while (count > 0) {
865 		int this_len = min_t(int, count, PAGE_SIZE);
866 
867 		if (write && copy_from_user(page, buf, this_len)) {
868 			copied = -EFAULT;
869 			break;
870 		}
871 
872 		this_len = access_remote_vm(mm, addr, page, this_len, write);
873 		if (!this_len) {
874 			if (!copied)
875 				copied = -EIO;
876 			break;
877 		}
878 
879 		if (!write && copy_to_user(buf, page, this_len)) {
880 			copied = -EFAULT;
881 			break;
882 		}
883 
884 		buf += this_len;
885 		addr += this_len;
886 		copied += this_len;
887 		count -= this_len;
888 	}
889 	*ppos = addr;
890 
891 	mmput(mm);
892 free:
893 	free_page((unsigned long) page);
894 	return copied;
895 }
896 
897 static ssize_t mem_read(struct file *file, char __user *buf,
898 			size_t count, loff_t *ppos)
899 {
900 	return mem_rw(file, buf, count, ppos, 0);
901 }
902 
903 static ssize_t mem_write(struct file *file, const char __user *buf,
904 			 size_t count, loff_t *ppos)
905 {
906 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
907 }
908 
909 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
910 {
911 	switch (orig) {
912 	case 0:
913 		file->f_pos = offset;
914 		break;
915 	case 1:
916 		file->f_pos += offset;
917 		break;
918 	default:
919 		return -EINVAL;
920 	}
921 	force_successful_syscall_return();
922 	return file->f_pos;
923 }
924 
925 static int mem_release(struct inode *inode, struct file *file)
926 {
927 	struct mm_struct *mm = file->private_data;
928 	if (mm)
929 		mmdrop(mm);
930 	return 0;
931 }
932 
933 static const struct file_operations proc_mem_operations = {
934 	.llseek		= mem_lseek,
935 	.read		= mem_read,
936 	.write		= mem_write,
937 	.open		= mem_open,
938 	.release	= mem_release,
939 };
940 
941 static int environ_open(struct inode *inode, struct file *file)
942 {
943 	return __mem_open(inode, file, PTRACE_MODE_READ);
944 }
945 
946 static ssize_t environ_read(struct file *file, char __user *buf,
947 			size_t count, loff_t *ppos)
948 {
949 	char *page;
950 	unsigned long src = *ppos;
951 	int ret = 0;
952 	struct mm_struct *mm = file->private_data;
953 	unsigned long env_start, env_end;
954 
955 	/* Ensure the process spawned far enough to have an environment. */
956 	if (!mm || !mm->env_end)
957 		return 0;
958 
959 	page = (char *)__get_free_page(GFP_TEMPORARY);
960 	if (!page)
961 		return -ENOMEM;
962 
963 	ret = 0;
964 	if (!atomic_inc_not_zero(&mm->mm_users))
965 		goto free;
966 
967 	down_read(&mm->mmap_sem);
968 	env_start = mm->env_start;
969 	env_end = mm->env_end;
970 	up_read(&mm->mmap_sem);
971 
972 	while (count > 0) {
973 		size_t this_len, max_len;
974 		int retval;
975 
976 		if (src >= (env_end - env_start))
977 			break;
978 
979 		this_len = env_end - (env_start + src);
980 
981 		max_len = min_t(size_t, PAGE_SIZE, count);
982 		this_len = min(max_len, this_len);
983 
984 		retval = access_remote_vm(mm, (env_start + src),
985 			page, this_len, 0);
986 
987 		if (retval <= 0) {
988 			ret = retval;
989 			break;
990 		}
991 
992 		if (copy_to_user(buf, page, retval)) {
993 			ret = -EFAULT;
994 			break;
995 		}
996 
997 		ret += retval;
998 		src += retval;
999 		buf += retval;
1000 		count -= retval;
1001 	}
1002 	*ppos = src;
1003 	mmput(mm);
1004 
1005 free:
1006 	free_page((unsigned long) page);
1007 	return ret;
1008 }
1009 
1010 static const struct file_operations proc_environ_operations = {
1011 	.open		= environ_open,
1012 	.read		= environ_read,
1013 	.llseek		= generic_file_llseek,
1014 	.release	= mem_release,
1015 };
1016 
1017 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1018 			    loff_t *ppos)
1019 {
1020 	struct task_struct *task = get_proc_task(file_inode(file));
1021 	char buffer[PROC_NUMBUF];
1022 	int oom_adj = OOM_ADJUST_MIN;
1023 	size_t len;
1024 
1025 	if (!task)
1026 		return -ESRCH;
1027 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1028 		oom_adj = OOM_ADJUST_MAX;
1029 	else
1030 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1031 			  OOM_SCORE_ADJ_MAX;
1032 	put_task_struct(task);
1033 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1034 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1035 }
1036 
1037 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1038 {
1039 	static DEFINE_MUTEX(oom_adj_mutex);
1040 	struct mm_struct *mm = NULL;
1041 	struct task_struct *task;
1042 	int err = 0;
1043 
1044 	task = get_proc_task(file_inode(file));
1045 	if (!task)
1046 		return -ESRCH;
1047 
1048 	mutex_lock(&oom_adj_mutex);
1049 	if (legacy) {
1050 		if (oom_adj < task->signal->oom_score_adj &&
1051 				!capable(CAP_SYS_RESOURCE)) {
1052 			err = -EACCES;
1053 			goto err_unlock;
1054 		}
1055 		/*
1056 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1057 		 * /proc/pid/oom_score_adj instead.
1058 		 */
1059 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1060 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1061 			  task_pid_nr(task));
1062 	} else {
1063 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1064 				!capable(CAP_SYS_RESOURCE)) {
1065 			err = -EACCES;
1066 			goto err_unlock;
1067 		}
1068 	}
1069 
1070 	/*
1071 	 * Make sure we will check other processes sharing the mm if this is
1072 	 * not vfrok which wants its own oom_score_adj.
1073 	 * pin the mm so it doesn't go away and get reused after task_unlock
1074 	 */
1075 	if (!task->vfork_done) {
1076 		struct task_struct *p = find_lock_task_mm(task);
1077 
1078 		if (p) {
1079 			if (atomic_read(&p->mm->mm_users) > 1) {
1080 				mm = p->mm;
1081 				atomic_inc(&mm->mm_count);
1082 			}
1083 			task_unlock(p);
1084 		}
1085 	}
1086 
1087 	task->signal->oom_score_adj = oom_adj;
1088 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1089 		task->signal->oom_score_adj_min = (short)oom_adj;
1090 	trace_oom_score_adj_update(task);
1091 
1092 	if (mm) {
1093 		struct task_struct *p;
1094 
1095 		rcu_read_lock();
1096 		for_each_process(p) {
1097 			if (same_thread_group(task, p))
1098 				continue;
1099 
1100 			/* do not touch kernel threads or the global init */
1101 			if (p->flags & PF_KTHREAD || is_global_init(p))
1102 				continue;
1103 
1104 			task_lock(p);
1105 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1106 				pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1107 						task_pid_nr(p), p->comm,
1108 						p->signal->oom_score_adj, oom_adj,
1109 						task_pid_nr(task), task->comm);
1110 				p->signal->oom_score_adj = oom_adj;
1111 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1112 					p->signal->oom_score_adj_min = (short)oom_adj;
1113 			}
1114 			task_unlock(p);
1115 		}
1116 		rcu_read_unlock();
1117 		mmdrop(mm);
1118 	}
1119 err_unlock:
1120 	mutex_unlock(&oom_adj_mutex);
1121 	put_task_struct(task);
1122 	return err;
1123 }
1124 
1125 /*
1126  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1127  * kernels.  The effective policy is defined by oom_score_adj, which has a
1128  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1129  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1130  * Processes that become oom disabled via oom_adj will still be oom disabled
1131  * with this implementation.
1132  *
1133  * oom_adj cannot be removed since existing userspace binaries use it.
1134  */
1135 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1136 			     size_t count, loff_t *ppos)
1137 {
1138 	char buffer[PROC_NUMBUF];
1139 	int oom_adj;
1140 	int err;
1141 
1142 	memset(buffer, 0, sizeof(buffer));
1143 	if (count > sizeof(buffer) - 1)
1144 		count = sizeof(buffer) - 1;
1145 	if (copy_from_user(buffer, buf, count)) {
1146 		err = -EFAULT;
1147 		goto out;
1148 	}
1149 
1150 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1151 	if (err)
1152 		goto out;
1153 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1154 	     oom_adj != OOM_DISABLE) {
1155 		err = -EINVAL;
1156 		goto out;
1157 	}
1158 
1159 	/*
1160 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1161 	 * value is always attainable.
1162 	 */
1163 	if (oom_adj == OOM_ADJUST_MAX)
1164 		oom_adj = OOM_SCORE_ADJ_MAX;
1165 	else
1166 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1167 
1168 	err = __set_oom_adj(file, oom_adj, true);
1169 out:
1170 	return err < 0 ? err : count;
1171 }
1172 
1173 static const struct file_operations proc_oom_adj_operations = {
1174 	.read		= oom_adj_read,
1175 	.write		= oom_adj_write,
1176 	.llseek		= generic_file_llseek,
1177 };
1178 
1179 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1180 					size_t count, loff_t *ppos)
1181 {
1182 	struct task_struct *task = get_proc_task(file_inode(file));
1183 	char buffer[PROC_NUMBUF];
1184 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1185 	size_t len;
1186 
1187 	if (!task)
1188 		return -ESRCH;
1189 	oom_score_adj = task->signal->oom_score_adj;
1190 	put_task_struct(task);
1191 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1192 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1193 }
1194 
1195 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1196 					size_t count, loff_t *ppos)
1197 {
1198 	char buffer[PROC_NUMBUF];
1199 	int oom_score_adj;
1200 	int err;
1201 
1202 	memset(buffer, 0, sizeof(buffer));
1203 	if (count > sizeof(buffer) - 1)
1204 		count = sizeof(buffer) - 1;
1205 	if (copy_from_user(buffer, buf, count)) {
1206 		err = -EFAULT;
1207 		goto out;
1208 	}
1209 
1210 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1211 	if (err)
1212 		goto out;
1213 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1214 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1215 		err = -EINVAL;
1216 		goto out;
1217 	}
1218 
1219 	err = __set_oom_adj(file, oom_score_adj, false);
1220 out:
1221 	return err < 0 ? err : count;
1222 }
1223 
1224 static const struct file_operations proc_oom_score_adj_operations = {
1225 	.read		= oom_score_adj_read,
1226 	.write		= oom_score_adj_write,
1227 	.llseek		= default_llseek,
1228 };
1229 
1230 #ifdef CONFIG_AUDITSYSCALL
1231 #define TMPBUFLEN 21
1232 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1233 				  size_t count, loff_t *ppos)
1234 {
1235 	struct inode * inode = file_inode(file);
1236 	struct task_struct *task = get_proc_task(inode);
1237 	ssize_t length;
1238 	char tmpbuf[TMPBUFLEN];
1239 
1240 	if (!task)
1241 		return -ESRCH;
1242 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1243 			   from_kuid(file->f_cred->user_ns,
1244 				     audit_get_loginuid(task)));
1245 	put_task_struct(task);
1246 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1247 }
1248 
1249 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1250 				   size_t count, loff_t *ppos)
1251 {
1252 	struct inode * inode = file_inode(file);
1253 	uid_t loginuid;
1254 	kuid_t kloginuid;
1255 	int rv;
1256 
1257 	rcu_read_lock();
1258 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1259 		rcu_read_unlock();
1260 		return -EPERM;
1261 	}
1262 	rcu_read_unlock();
1263 
1264 	if (*ppos != 0) {
1265 		/* No partial writes. */
1266 		return -EINVAL;
1267 	}
1268 
1269 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1270 	if (rv < 0)
1271 		return rv;
1272 
1273 	/* is userspace tring to explicitly UNSET the loginuid? */
1274 	if (loginuid == AUDIT_UID_UNSET) {
1275 		kloginuid = INVALID_UID;
1276 	} else {
1277 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1278 		if (!uid_valid(kloginuid))
1279 			return -EINVAL;
1280 	}
1281 
1282 	rv = audit_set_loginuid(kloginuid);
1283 	if (rv < 0)
1284 		return rv;
1285 	return count;
1286 }
1287 
1288 static const struct file_operations proc_loginuid_operations = {
1289 	.read		= proc_loginuid_read,
1290 	.write		= proc_loginuid_write,
1291 	.llseek		= generic_file_llseek,
1292 };
1293 
1294 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1295 				  size_t count, loff_t *ppos)
1296 {
1297 	struct inode * inode = file_inode(file);
1298 	struct task_struct *task = get_proc_task(inode);
1299 	ssize_t length;
1300 	char tmpbuf[TMPBUFLEN];
1301 
1302 	if (!task)
1303 		return -ESRCH;
1304 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1305 				audit_get_sessionid(task));
1306 	put_task_struct(task);
1307 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1308 }
1309 
1310 static const struct file_operations proc_sessionid_operations = {
1311 	.read		= proc_sessionid_read,
1312 	.llseek		= generic_file_llseek,
1313 };
1314 #endif
1315 
1316 #ifdef CONFIG_FAULT_INJECTION
1317 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1318 				      size_t count, loff_t *ppos)
1319 {
1320 	struct task_struct *task = get_proc_task(file_inode(file));
1321 	char buffer[PROC_NUMBUF];
1322 	size_t len;
1323 	int make_it_fail;
1324 
1325 	if (!task)
1326 		return -ESRCH;
1327 	make_it_fail = task->make_it_fail;
1328 	put_task_struct(task);
1329 
1330 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1331 
1332 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1333 }
1334 
1335 static ssize_t proc_fault_inject_write(struct file * file,
1336 			const char __user * buf, size_t count, loff_t *ppos)
1337 {
1338 	struct task_struct *task;
1339 	char buffer[PROC_NUMBUF];
1340 	int make_it_fail;
1341 	int rv;
1342 
1343 	if (!capable(CAP_SYS_RESOURCE))
1344 		return -EPERM;
1345 	memset(buffer, 0, sizeof(buffer));
1346 	if (count > sizeof(buffer) - 1)
1347 		count = sizeof(buffer) - 1;
1348 	if (copy_from_user(buffer, buf, count))
1349 		return -EFAULT;
1350 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1351 	if (rv < 0)
1352 		return rv;
1353 	if (make_it_fail < 0 || make_it_fail > 1)
1354 		return -EINVAL;
1355 
1356 	task = get_proc_task(file_inode(file));
1357 	if (!task)
1358 		return -ESRCH;
1359 	task->make_it_fail = make_it_fail;
1360 	put_task_struct(task);
1361 
1362 	return count;
1363 }
1364 
1365 static const struct file_operations proc_fault_inject_operations = {
1366 	.read		= proc_fault_inject_read,
1367 	.write		= proc_fault_inject_write,
1368 	.llseek		= generic_file_llseek,
1369 };
1370 #endif
1371 
1372 
1373 #ifdef CONFIG_SCHED_DEBUG
1374 /*
1375  * Print out various scheduling related per-task fields:
1376  */
1377 static int sched_show(struct seq_file *m, void *v)
1378 {
1379 	struct inode *inode = m->private;
1380 	struct task_struct *p;
1381 
1382 	p = get_proc_task(inode);
1383 	if (!p)
1384 		return -ESRCH;
1385 	proc_sched_show_task(p, m);
1386 
1387 	put_task_struct(p);
1388 
1389 	return 0;
1390 }
1391 
1392 static ssize_t
1393 sched_write(struct file *file, const char __user *buf,
1394 	    size_t count, loff_t *offset)
1395 {
1396 	struct inode *inode = file_inode(file);
1397 	struct task_struct *p;
1398 
1399 	p = get_proc_task(inode);
1400 	if (!p)
1401 		return -ESRCH;
1402 	proc_sched_set_task(p);
1403 
1404 	put_task_struct(p);
1405 
1406 	return count;
1407 }
1408 
1409 static int sched_open(struct inode *inode, struct file *filp)
1410 {
1411 	return single_open(filp, sched_show, inode);
1412 }
1413 
1414 static const struct file_operations proc_pid_sched_operations = {
1415 	.open		= sched_open,
1416 	.read		= seq_read,
1417 	.write		= sched_write,
1418 	.llseek		= seq_lseek,
1419 	.release	= single_release,
1420 };
1421 
1422 #endif
1423 
1424 #ifdef CONFIG_SCHED_AUTOGROUP
1425 /*
1426  * Print out autogroup related information:
1427  */
1428 static int sched_autogroup_show(struct seq_file *m, void *v)
1429 {
1430 	struct inode *inode = m->private;
1431 	struct task_struct *p;
1432 
1433 	p = get_proc_task(inode);
1434 	if (!p)
1435 		return -ESRCH;
1436 	proc_sched_autogroup_show_task(p, m);
1437 
1438 	put_task_struct(p);
1439 
1440 	return 0;
1441 }
1442 
1443 static ssize_t
1444 sched_autogroup_write(struct file *file, const char __user *buf,
1445 	    size_t count, loff_t *offset)
1446 {
1447 	struct inode *inode = file_inode(file);
1448 	struct task_struct *p;
1449 	char buffer[PROC_NUMBUF];
1450 	int nice;
1451 	int err;
1452 
1453 	memset(buffer, 0, sizeof(buffer));
1454 	if (count > sizeof(buffer) - 1)
1455 		count = sizeof(buffer) - 1;
1456 	if (copy_from_user(buffer, buf, count))
1457 		return -EFAULT;
1458 
1459 	err = kstrtoint(strstrip(buffer), 0, &nice);
1460 	if (err < 0)
1461 		return err;
1462 
1463 	p = get_proc_task(inode);
1464 	if (!p)
1465 		return -ESRCH;
1466 
1467 	err = proc_sched_autogroup_set_nice(p, nice);
1468 	if (err)
1469 		count = err;
1470 
1471 	put_task_struct(p);
1472 
1473 	return count;
1474 }
1475 
1476 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1477 {
1478 	int ret;
1479 
1480 	ret = single_open(filp, sched_autogroup_show, NULL);
1481 	if (!ret) {
1482 		struct seq_file *m = filp->private_data;
1483 
1484 		m->private = inode;
1485 	}
1486 	return ret;
1487 }
1488 
1489 static const struct file_operations proc_pid_sched_autogroup_operations = {
1490 	.open		= sched_autogroup_open,
1491 	.read		= seq_read,
1492 	.write		= sched_autogroup_write,
1493 	.llseek		= seq_lseek,
1494 	.release	= single_release,
1495 };
1496 
1497 #endif /* CONFIG_SCHED_AUTOGROUP */
1498 
1499 static ssize_t comm_write(struct file *file, const char __user *buf,
1500 				size_t count, loff_t *offset)
1501 {
1502 	struct inode *inode = file_inode(file);
1503 	struct task_struct *p;
1504 	char buffer[TASK_COMM_LEN];
1505 	const size_t maxlen = sizeof(buffer) - 1;
1506 
1507 	memset(buffer, 0, sizeof(buffer));
1508 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1509 		return -EFAULT;
1510 
1511 	p = get_proc_task(inode);
1512 	if (!p)
1513 		return -ESRCH;
1514 
1515 	if (same_thread_group(current, p))
1516 		set_task_comm(p, buffer);
1517 	else
1518 		count = -EINVAL;
1519 
1520 	put_task_struct(p);
1521 
1522 	return count;
1523 }
1524 
1525 static int comm_show(struct seq_file *m, void *v)
1526 {
1527 	struct inode *inode = m->private;
1528 	struct task_struct *p;
1529 
1530 	p = get_proc_task(inode);
1531 	if (!p)
1532 		return -ESRCH;
1533 
1534 	task_lock(p);
1535 	seq_printf(m, "%s\n", p->comm);
1536 	task_unlock(p);
1537 
1538 	put_task_struct(p);
1539 
1540 	return 0;
1541 }
1542 
1543 static int comm_open(struct inode *inode, struct file *filp)
1544 {
1545 	return single_open(filp, comm_show, inode);
1546 }
1547 
1548 static const struct file_operations proc_pid_set_comm_operations = {
1549 	.open		= comm_open,
1550 	.read		= seq_read,
1551 	.write		= comm_write,
1552 	.llseek		= seq_lseek,
1553 	.release	= single_release,
1554 };
1555 
1556 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1557 {
1558 	struct task_struct *task;
1559 	struct mm_struct *mm;
1560 	struct file *exe_file;
1561 
1562 	task = get_proc_task(d_inode(dentry));
1563 	if (!task)
1564 		return -ENOENT;
1565 	mm = get_task_mm(task);
1566 	put_task_struct(task);
1567 	if (!mm)
1568 		return -ENOENT;
1569 	exe_file = get_mm_exe_file(mm);
1570 	mmput(mm);
1571 	if (exe_file) {
1572 		*exe_path = exe_file->f_path;
1573 		path_get(&exe_file->f_path);
1574 		fput(exe_file);
1575 		return 0;
1576 	} else
1577 		return -ENOENT;
1578 }
1579 
1580 static const char *proc_pid_get_link(struct dentry *dentry,
1581 				     struct inode *inode,
1582 				     struct delayed_call *done)
1583 {
1584 	struct path path;
1585 	int error = -EACCES;
1586 
1587 	if (!dentry)
1588 		return ERR_PTR(-ECHILD);
1589 
1590 	/* Are we allowed to snoop on the tasks file descriptors? */
1591 	if (!proc_fd_access_allowed(inode))
1592 		goto out;
1593 
1594 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1595 	if (error)
1596 		goto out;
1597 
1598 	nd_jump_link(&path);
1599 	return NULL;
1600 out:
1601 	return ERR_PTR(error);
1602 }
1603 
1604 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1605 {
1606 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1607 	char *pathname;
1608 	int len;
1609 
1610 	if (!tmp)
1611 		return -ENOMEM;
1612 
1613 	pathname = d_path(path, tmp, PAGE_SIZE);
1614 	len = PTR_ERR(pathname);
1615 	if (IS_ERR(pathname))
1616 		goto out;
1617 	len = tmp + PAGE_SIZE - 1 - pathname;
1618 
1619 	if (len > buflen)
1620 		len = buflen;
1621 	if (copy_to_user(buffer, pathname, len))
1622 		len = -EFAULT;
1623  out:
1624 	free_page((unsigned long)tmp);
1625 	return len;
1626 }
1627 
1628 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1629 {
1630 	int error = -EACCES;
1631 	struct inode *inode = d_inode(dentry);
1632 	struct path path;
1633 
1634 	/* Are we allowed to snoop on the tasks file descriptors? */
1635 	if (!proc_fd_access_allowed(inode))
1636 		goto out;
1637 
1638 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1639 	if (error)
1640 		goto out;
1641 
1642 	error = do_proc_readlink(&path, buffer, buflen);
1643 	path_put(&path);
1644 out:
1645 	return error;
1646 }
1647 
1648 const struct inode_operations proc_pid_link_inode_operations = {
1649 	.readlink	= proc_pid_readlink,
1650 	.get_link	= proc_pid_get_link,
1651 	.setattr	= proc_setattr,
1652 };
1653 
1654 
1655 /* building an inode */
1656 
1657 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1658 {
1659 	struct inode * inode;
1660 	struct proc_inode *ei;
1661 	const struct cred *cred;
1662 
1663 	/* We need a new inode */
1664 
1665 	inode = new_inode(sb);
1666 	if (!inode)
1667 		goto out;
1668 
1669 	/* Common stuff */
1670 	ei = PROC_I(inode);
1671 	inode->i_ino = get_next_ino();
1672 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1673 	inode->i_op = &proc_def_inode_operations;
1674 
1675 	/*
1676 	 * grab the reference to task.
1677 	 */
1678 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1679 	if (!ei->pid)
1680 		goto out_unlock;
1681 
1682 	if (task_dumpable(task)) {
1683 		rcu_read_lock();
1684 		cred = __task_cred(task);
1685 		inode->i_uid = cred->euid;
1686 		inode->i_gid = cred->egid;
1687 		rcu_read_unlock();
1688 	}
1689 	security_task_to_inode(task, inode);
1690 
1691 out:
1692 	return inode;
1693 
1694 out_unlock:
1695 	iput(inode);
1696 	return NULL;
1697 }
1698 
1699 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1700 {
1701 	struct inode *inode = d_inode(dentry);
1702 	struct task_struct *task;
1703 	const struct cred *cred;
1704 	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1705 
1706 	generic_fillattr(inode, stat);
1707 
1708 	rcu_read_lock();
1709 	stat->uid = GLOBAL_ROOT_UID;
1710 	stat->gid = GLOBAL_ROOT_GID;
1711 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1712 	if (task) {
1713 		if (!has_pid_permissions(pid, task, 2)) {
1714 			rcu_read_unlock();
1715 			/*
1716 			 * This doesn't prevent learning whether PID exists,
1717 			 * it only makes getattr() consistent with readdir().
1718 			 */
1719 			return -ENOENT;
1720 		}
1721 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1722 		    task_dumpable(task)) {
1723 			cred = __task_cred(task);
1724 			stat->uid = cred->euid;
1725 			stat->gid = cred->egid;
1726 		}
1727 	}
1728 	rcu_read_unlock();
1729 	return 0;
1730 }
1731 
1732 /* dentry stuff */
1733 
1734 /*
1735  *	Exceptional case: normally we are not allowed to unhash a busy
1736  * directory. In this case, however, we can do it - no aliasing problems
1737  * due to the way we treat inodes.
1738  *
1739  * Rewrite the inode's ownerships here because the owning task may have
1740  * performed a setuid(), etc.
1741  *
1742  * Before the /proc/pid/status file was created the only way to read
1743  * the effective uid of a /process was to stat /proc/pid.  Reading
1744  * /proc/pid/status is slow enough that procps and other packages
1745  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1746  * made this apply to all per process world readable and executable
1747  * directories.
1748  */
1749 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1750 {
1751 	struct inode *inode;
1752 	struct task_struct *task;
1753 	const struct cred *cred;
1754 
1755 	if (flags & LOOKUP_RCU)
1756 		return -ECHILD;
1757 
1758 	inode = d_inode(dentry);
1759 	task = get_proc_task(inode);
1760 
1761 	if (task) {
1762 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1763 		    task_dumpable(task)) {
1764 			rcu_read_lock();
1765 			cred = __task_cred(task);
1766 			inode->i_uid = cred->euid;
1767 			inode->i_gid = cred->egid;
1768 			rcu_read_unlock();
1769 		} else {
1770 			inode->i_uid = GLOBAL_ROOT_UID;
1771 			inode->i_gid = GLOBAL_ROOT_GID;
1772 		}
1773 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1774 		security_task_to_inode(task, inode);
1775 		put_task_struct(task);
1776 		return 1;
1777 	}
1778 	return 0;
1779 }
1780 
1781 static inline bool proc_inode_is_dead(struct inode *inode)
1782 {
1783 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1784 }
1785 
1786 int pid_delete_dentry(const struct dentry *dentry)
1787 {
1788 	/* Is the task we represent dead?
1789 	 * If so, then don't put the dentry on the lru list,
1790 	 * kill it immediately.
1791 	 */
1792 	return proc_inode_is_dead(d_inode(dentry));
1793 }
1794 
1795 const struct dentry_operations pid_dentry_operations =
1796 {
1797 	.d_revalidate	= pid_revalidate,
1798 	.d_delete	= pid_delete_dentry,
1799 };
1800 
1801 /* Lookups */
1802 
1803 /*
1804  * Fill a directory entry.
1805  *
1806  * If possible create the dcache entry and derive our inode number and
1807  * file type from dcache entry.
1808  *
1809  * Since all of the proc inode numbers are dynamically generated, the inode
1810  * numbers do not exist until the inode is cache.  This means creating the
1811  * the dcache entry in readdir is necessary to keep the inode numbers
1812  * reported by readdir in sync with the inode numbers reported
1813  * by stat.
1814  */
1815 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1816 	const char *name, int len,
1817 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1818 {
1819 	struct dentry *child, *dir = file->f_path.dentry;
1820 	struct qstr qname = QSTR_INIT(name, len);
1821 	struct inode *inode;
1822 	unsigned type;
1823 	ino_t ino;
1824 
1825 	child = d_hash_and_lookup(dir, &qname);
1826 	if (!child) {
1827 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1828 		child = d_alloc_parallel(dir, &qname, &wq);
1829 		if (IS_ERR(child))
1830 			goto end_instantiate;
1831 		if (d_in_lookup(child)) {
1832 			int err = instantiate(d_inode(dir), child, task, ptr);
1833 			d_lookup_done(child);
1834 			if (err < 0) {
1835 				dput(child);
1836 				goto end_instantiate;
1837 			}
1838 		}
1839 	}
1840 	inode = d_inode(child);
1841 	ino = inode->i_ino;
1842 	type = inode->i_mode >> 12;
1843 	dput(child);
1844 	return dir_emit(ctx, name, len, ino, type);
1845 
1846 end_instantiate:
1847 	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1848 }
1849 
1850 /*
1851  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1852  * which represent vma start and end addresses.
1853  */
1854 static int dname_to_vma_addr(struct dentry *dentry,
1855 			     unsigned long *start, unsigned long *end)
1856 {
1857 	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1858 		return -EINVAL;
1859 
1860 	return 0;
1861 }
1862 
1863 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1864 {
1865 	unsigned long vm_start, vm_end;
1866 	bool exact_vma_exists = false;
1867 	struct mm_struct *mm = NULL;
1868 	struct task_struct *task;
1869 	const struct cred *cred;
1870 	struct inode *inode;
1871 	int status = 0;
1872 
1873 	if (flags & LOOKUP_RCU)
1874 		return -ECHILD;
1875 
1876 	inode = d_inode(dentry);
1877 	task = get_proc_task(inode);
1878 	if (!task)
1879 		goto out_notask;
1880 
1881 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1882 	if (IS_ERR_OR_NULL(mm))
1883 		goto out;
1884 
1885 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1886 		down_read(&mm->mmap_sem);
1887 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1888 		up_read(&mm->mmap_sem);
1889 	}
1890 
1891 	mmput(mm);
1892 
1893 	if (exact_vma_exists) {
1894 		if (task_dumpable(task)) {
1895 			rcu_read_lock();
1896 			cred = __task_cred(task);
1897 			inode->i_uid = cred->euid;
1898 			inode->i_gid = cred->egid;
1899 			rcu_read_unlock();
1900 		} else {
1901 			inode->i_uid = GLOBAL_ROOT_UID;
1902 			inode->i_gid = GLOBAL_ROOT_GID;
1903 		}
1904 		security_task_to_inode(task, inode);
1905 		status = 1;
1906 	}
1907 
1908 out:
1909 	put_task_struct(task);
1910 
1911 out_notask:
1912 	return status;
1913 }
1914 
1915 static const struct dentry_operations tid_map_files_dentry_operations = {
1916 	.d_revalidate	= map_files_d_revalidate,
1917 	.d_delete	= pid_delete_dentry,
1918 };
1919 
1920 static int map_files_get_link(struct dentry *dentry, struct path *path)
1921 {
1922 	unsigned long vm_start, vm_end;
1923 	struct vm_area_struct *vma;
1924 	struct task_struct *task;
1925 	struct mm_struct *mm;
1926 	int rc;
1927 
1928 	rc = -ENOENT;
1929 	task = get_proc_task(d_inode(dentry));
1930 	if (!task)
1931 		goto out;
1932 
1933 	mm = get_task_mm(task);
1934 	put_task_struct(task);
1935 	if (!mm)
1936 		goto out;
1937 
1938 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1939 	if (rc)
1940 		goto out_mmput;
1941 
1942 	rc = -ENOENT;
1943 	down_read(&mm->mmap_sem);
1944 	vma = find_exact_vma(mm, vm_start, vm_end);
1945 	if (vma && vma->vm_file) {
1946 		*path = vma->vm_file->f_path;
1947 		path_get(path);
1948 		rc = 0;
1949 	}
1950 	up_read(&mm->mmap_sem);
1951 
1952 out_mmput:
1953 	mmput(mm);
1954 out:
1955 	return rc;
1956 }
1957 
1958 struct map_files_info {
1959 	fmode_t		mode;
1960 	unsigned long	len;
1961 	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1962 };
1963 
1964 /*
1965  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1966  * symlinks may be used to bypass permissions on ancestor directories in the
1967  * path to the file in question.
1968  */
1969 static const char *
1970 proc_map_files_get_link(struct dentry *dentry,
1971 			struct inode *inode,
1972 		        struct delayed_call *done)
1973 {
1974 	if (!capable(CAP_SYS_ADMIN))
1975 		return ERR_PTR(-EPERM);
1976 
1977 	return proc_pid_get_link(dentry, inode, done);
1978 }
1979 
1980 /*
1981  * Identical to proc_pid_link_inode_operations except for get_link()
1982  */
1983 static const struct inode_operations proc_map_files_link_inode_operations = {
1984 	.readlink	= proc_pid_readlink,
1985 	.get_link	= proc_map_files_get_link,
1986 	.setattr	= proc_setattr,
1987 };
1988 
1989 static int
1990 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1991 			   struct task_struct *task, const void *ptr)
1992 {
1993 	fmode_t mode = (fmode_t)(unsigned long)ptr;
1994 	struct proc_inode *ei;
1995 	struct inode *inode;
1996 
1997 	inode = proc_pid_make_inode(dir->i_sb, task);
1998 	if (!inode)
1999 		return -ENOENT;
2000 
2001 	ei = PROC_I(inode);
2002 	ei->op.proc_get_link = map_files_get_link;
2003 
2004 	inode->i_op = &proc_map_files_link_inode_operations;
2005 	inode->i_size = 64;
2006 	inode->i_mode = S_IFLNK;
2007 
2008 	if (mode & FMODE_READ)
2009 		inode->i_mode |= S_IRUSR;
2010 	if (mode & FMODE_WRITE)
2011 		inode->i_mode |= S_IWUSR;
2012 
2013 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2014 	d_add(dentry, inode);
2015 
2016 	return 0;
2017 }
2018 
2019 static struct dentry *proc_map_files_lookup(struct inode *dir,
2020 		struct dentry *dentry, unsigned int flags)
2021 {
2022 	unsigned long vm_start, vm_end;
2023 	struct vm_area_struct *vma;
2024 	struct task_struct *task;
2025 	int result;
2026 	struct mm_struct *mm;
2027 
2028 	result = -ENOENT;
2029 	task = get_proc_task(dir);
2030 	if (!task)
2031 		goto out;
2032 
2033 	result = -EACCES;
2034 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2035 		goto out_put_task;
2036 
2037 	result = -ENOENT;
2038 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2039 		goto out_put_task;
2040 
2041 	mm = get_task_mm(task);
2042 	if (!mm)
2043 		goto out_put_task;
2044 
2045 	down_read(&mm->mmap_sem);
2046 	vma = find_exact_vma(mm, vm_start, vm_end);
2047 	if (!vma)
2048 		goto out_no_vma;
2049 
2050 	if (vma->vm_file)
2051 		result = proc_map_files_instantiate(dir, dentry, task,
2052 				(void *)(unsigned long)vma->vm_file->f_mode);
2053 
2054 out_no_vma:
2055 	up_read(&mm->mmap_sem);
2056 	mmput(mm);
2057 out_put_task:
2058 	put_task_struct(task);
2059 out:
2060 	return ERR_PTR(result);
2061 }
2062 
2063 static const struct inode_operations proc_map_files_inode_operations = {
2064 	.lookup		= proc_map_files_lookup,
2065 	.permission	= proc_fd_permission,
2066 	.setattr	= proc_setattr,
2067 };
2068 
2069 static int
2070 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2071 {
2072 	struct vm_area_struct *vma;
2073 	struct task_struct *task;
2074 	struct mm_struct *mm;
2075 	unsigned long nr_files, pos, i;
2076 	struct flex_array *fa = NULL;
2077 	struct map_files_info info;
2078 	struct map_files_info *p;
2079 	int ret;
2080 
2081 	ret = -ENOENT;
2082 	task = get_proc_task(file_inode(file));
2083 	if (!task)
2084 		goto out;
2085 
2086 	ret = -EACCES;
2087 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2088 		goto out_put_task;
2089 
2090 	ret = 0;
2091 	if (!dir_emit_dots(file, ctx))
2092 		goto out_put_task;
2093 
2094 	mm = get_task_mm(task);
2095 	if (!mm)
2096 		goto out_put_task;
2097 	down_read(&mm->mmap_sem);
2098 
2099 	nr_files = 0;
2100 
2101 	/*
2102 	 * We need two passes here:
2103 	 *
2104 	 *  1) Collect vmas of mapped files with mmap_sem taken
2105 	 *  2) Release mmap_sem and instantiate entries
2106 	 *
2107 	 * otherwise we get lockdep complained, since filldir()
2108 	 * routine might require mmap_sem taken in might_fault().
2109 	 */
2110 
2111 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2112 		if (vma->vm_file && ++pos > ctx->pos)
2113 			nr_files++;
2114 	}
2115 
2116 	if (nr_files) {
2117 		fa = flex_array_alloc(sizeof(info), nr_files,
2118 					GFP_KERNEL);
2119 		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2120 						GFP_KERNEL)) {
2121 			ret = -ENOMEM;
2122 			if (fa)
2123 				flex_array_free(fa);
2124 			up_read(&mm->mmap_sem);
2125 			mmput(mm);
2126 			goto out_put_task;
2127 		}
2128 		for (i = 0, vma = mm->mmap, pos = 2; vma;
2129 				vma = vma->vm_next) {
2130 			if (!vma->vm_file)
2131 				continue;
2132 			if (++pos <= ctx->pos)
2133 				continue;
2134 
2135 			info.mode = vma->vm_file->f_mode;
2136 			info.len = snprintf(info.name,
2137 					sizeof(info.name), "%lx-%lx",
2138 					vma->vm_start, vma->vm_end);
2139 			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2140 				BUG();
2141 		}
2142 	}
2143 	up_read(&mm->mmap_sem);
2144 
2145 	for (i = 0; i < nr_files; i++) {
2146 		p = flex_array_get(fa, i);
2147 		if (!proc_fill_cache(file, ctx,
2148 				      p->name, p->len,
2149 				      proc_map_files_instantiate,
2150 				      task,
2151 				      (void *)(unsigned long)p->mode))
2152 			break;
2153 		ctx->pos++;
2154 	}
2155 	if (fa)
2156 		flex_array_free(fa);
2157 	mmput(mm);
2158 
2159 out_put_task:
2160 	put_task_struct(task);
2161 out:
2162 	return ret;
2163 }
2164 
2165 static const struct file_operations proc_map_files_operations = {
2166 	.read		= generic_read_dir,
2167 	.iterate_shared	= proc_map_files_readdir,
2168 	.llseek		= generic_file_llseek,
2169 };
2170 
2171 #ifdef CONFIG_CHECKPOINT_RESTORE
2172 struct timers_private {
2173 	struct pid *pid;
2174 	struct task_struct *task;
2175 	struct sighand_struct *sighand;
2176 	struct pid_namespace *ns;
2177 	unsigned long flags;
2178 };
2179 
2180 static void *timers_start(struct seq_file *m, loff_t *pos)
2181 {
2182 	struct timers_private *tp = m->private;
2183 
2184 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2185 	if (!tp->task)
2186 		return ERR_PTR(-ESRCH);
2187 
2188 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2189 	if (!tp->sighand)
2190 		return ERR_PTR(-ESRCH);
2191 
2192 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2193 }
2194 
2195 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2196 {
2197 	struct timers_private *tp = m->private;
2198 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2199 }
2200 
2201 static void timers_stop(struct seq_file *m, void *v)
2202 {
2203 	struct timers_private *tp = m->private;
2204 
2205 	if (tp->sighand) {
2206 		unlock_task_sighand(tp->task, &tp->flags);
2207 		tp->sighand = NULL;
2208 	}
2209 
2210 	if (tp->task) {
2211 		put_task_struct(tp->task);
2212 		tp->task = NULL;
2213 	}
2214 }
2215 
2216 static int show_timer(struct seq_file *m, void *v)
2217 {
2218 	struct k_itimer *timer;
2219 	struct timers_private *tp = m->private;
2220 	int notify;
2221 	static const char * const nstr[] = {
2222 		[SIGEV_SIGNAL] = "signal",
2223 		[SIGEV_NONE] = "none",
2224 		[SIGEV_THREAD] = "thread",
2225 	};
2226 
2227 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2228 	notify = timer->it_sigev_notify;
2229 
2230 	seq_printf(m, "ID: %d\n", timer->it_id);
2231 	seq_printf(m, "signal: %d/%p\n",
2232 		   timer->sigq->info.si_signo,
2233 		   timer->sigq->info.si_value.sival_ptr);
2234 	seq_printf(m, "notify: %s/%s.%d\n",
2235 		   nstr[notify & ~SIGEV_THREAD_ID],
2236 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2237 		   pid_nr_ns(timer->it_pid, tp->ns));
2238 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2239 
2240 	return 0;
2241 }
2242 
2243 static const struct seq_operations proc_timers_seq_ops = {
2244 	.start	= timers_start,
2245 	.next	= timers_next,
2246 	.stop	= timers_stop,
2247 	.show	= show_timer,
2248 };
2249 
2250 static int proc_timers_open(struct inode *inode, struct file *file)
2251 {
2252 	struct timers_private *tp;
2253 
2254 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2255 			sizeof(struct timers_private));
2256 	if (!tp)
2257 		return -ENOMEM;
2258 
2259 	tp->pid = proc_pid(inode);
2260 	tp->ns = inode->i_sb->s_fs_info;
2261 	return 0;
2262 }
2263 
2264 static const struct file_operations proc_timers_operations = {
2265 	.open		= proc_timers_open,
2266 	.read		= seq_read,
2267 	.llseek		= seq_lseek,
2268 	.release	= seq_release_private,
2269 };
2270 #endif
2271 
2272 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2273 					size_t count, loff_t *offset)
2274 {
2275 	struct inode *inode = file_inode(file);
2276 	struct task_struct *p;
2277 	u64 slack_ns;
2278 	int err;
2279 
2280 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2281 	if (err < 0)
2282 		return err;
2283 
2284 	p = get_proc_task(inode);
2285 	if (!p)
2286 		return -ESRCH;
2287 
2288 	if (ptrace_may_access(p, PTRACE_MODE_ATTACH_FSCREDS)) {
2289 		task_lock(p);
2290 		if (slack_ns == 0)
2291 			p->timer_slack_ns = p->default_timer_slack_ns;
2292 		else
2293 			p->timer_slack_ns = slack_ns;
2294 		task_unlock(p);
2295 	} else
2296 		count = -EPERM;
2297 
2298 	put_task_struct(p);
2299 
2300 	return count;
2301 }
2302 
2303 static int timerslack_ns_show(struct seq_file *m, void *v)
2304 {
2305 	struct inode *inode = m->private;
2306 	struct task_struct *p;
2307 	int err =  0;
2308 
2309 	p = get_proc_task(inode);
2310 	if (!p)
2311 		return -ESRCH;
2312 
2313 	if (ptrace_may_access(p, PTRACE_MODE_ATTACH_FSCREDS)) {
2314 		task_lock(p);
2315 		seq_printf(m, "%llu\n", p->timer_slack_ns);
2316 		task_unlock(p);
2317 	} else
2318 		err = -EPERM;
2319 
2320 	put_task_struct(p);
2321 
2322 	return err;
2323 }
2324 
2325 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2326 {
2327 	return single_open(filp, timerslack_ns_show, inode);
2328 }
2329 
2330 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2331 	.open		= timerslack_ns_open,
2332 	.read		= seq_read,
2333 	.write		= timerslack_ns_write,
2334 	.llseek		= seq_lseek,
2335 	.release	= single_release,
2336 };
2337 
2338 static int proc_pident_instantiate(struct inode *dir,
2339 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2340 {
2341 	const struct pid_entry *p = ptr;
2342 	struct inode *inode;
2343 	struct proc_inode *ei;
2344 
2345 	inode = proc_pid_make_inode(dir->i_sb, task);
2346 	if (!inode)
2347 		goto out;
2348 
2349 	ei = PROC_I(inode);
2350 	inode->i_mode = p->mode;
2351 	if (S_ISDIR(inode->i_mode))
2352 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2353 	if (p->iop)
2354 		inode->i_op = p->iop;
2355 	if (p->fop)
2356 		inode->i_fop = p->fop;
2357 	ei->op = p->op;
2358 	d_set_d_op(dentry, &pid_dentry_operations);
2359 	d_add(dentry, inode);
2360 	/* Close the race of the process dying before we return the dentry */
2361 	if (pid_revalidate(dentry, 0))
2362 		return 0;
2363 out:
2364 	return -ENOENT;
2365 }
2366 
2367 static struct dentry *proc_pident_lookup(struct inode *dir,
2368 					 struct dentry *dentry,
2369 					 const struct pid_entry *ents,
2370 					 unsigned int nents)
2371 {
2372 	int error;
2373 	struct task_struct *task = get_proc_task(dir);
2374 	const struct pid_entry *p, *last;
2375 
2376 	error = -ENOENT;
2377 
2378 	if (!task)
2379 		goto out_no_task;
2380 
2381 	/*
2382 	 * Yes, it does not scale. And it should not. Don't add
2383 	 * new entries into /proc/<tgid>/ without very good reasons.
2384 	 */
2385 	last = &ents[nents - 1];
2386 	for (p = ents; p <= last; p++) {
2387 		if (p->len != dentry->d_name.len)
2388 			continue;
2389 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2390 			break;
2391 	}
2392 	if (p > last)
2393 		goto out;
2394 
2395 	error = proc_pident_instantiate(dir, dentry, task, p);
2396 out:
2397 	put_task_struct(task);
2398 out_no_task:
2399 	return ERR_PTR(error);
2400 }
2401 
2402 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2403 		const struct pid_entry *ents, unsigned int nents)
2404 {
2405 	struct task_struct *task = get_proc_task(file_inode(file));
2406 	const struct pid_entry *p;
2407 
2408 	if (!task)
2409 		return -ENOENT;
2410 
2411 	if (!dir_emit_dots(file, ctx))
2412 		goto out;
2413 
2414 	if (ctx->pos >= nents + 2)
2415 		goto out;
2416 
2417 	for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2418 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2419 				proc_pident_instantiate, task, p))
2420 			break;
2421 		ctx->pos++;
2422 	}
2423 out:
2424 	put_task_struct(task);
2425 	return 0;
2426 }
2427 
2428 #ifdef CONFIG_SECURITY
2429 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2430 				  size_t count, loff_t *ppos)
2431 {
2432 	struct inode * inode = file_inode(file);
2433 	char *p = NULL;
2434 	ssize_t length;
2435 	struct task_struct *task = get_proc_task(inode);
2436 
2437 	if (!task)
2438 		return -ESRCH;
2439 
2440 	length = security_getprocattr(task,
2441 				      (char*)file->f_path.dentry->d_name.name,
2442 				      &p);
2443 	put_task_struct(task);
2444 	if (length > 0)
2445 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2446 	kfree(p);
2447 	return length;
2448 }
2449 
2450 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2451 				   size_t count, loff_t *ppos)
2452 {
2453 	struct inode * inode = file_inode(file);
2454 	void *page;
2455 	ssize_t length;
2456 	struct task_struct *task = get_proc_task(inode);
2457 
2458 	length = -ESRCH;
2459 	if (!task)
2460 		goto out_no_task;
2461 	if (count > PAGE_SIZE)
2462 		count = PAGE_SIZE;
2463 
2464 	/* No partial writes. */
2465 	length = -EINVAL;
2466 	if (*ppos != 0)
2467 		goto out;
2468 
2469 	page = memdup_user(buf, count);
2470 	if (IS_ERR(page)) {
2471 		length = PTR_ERR(page);
2472 		goto out;
2473 	}
2474 
2475 	/* Guard against adverse ptrace interaction */
2476 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2477 	if (length < 0)
2478 		goto out_free;
2479 
2480 	length = security_setprocattr(task,
2481 				      (char*)file->f_path.dentry->d_name.name,
2482 				      page, count);
2483 	mutex_unlock(&task->signal->cred_guard_mutex);
2484 out_free:
2485 	kfree(page);
2486 out:
2487 	put_task_struct(task);
2488 out_no_task:
2489 	return length;
2490 }
2491 
2492 static const struct file_operations proc_pid_attr_operations = {
2493 	.read		= proc_pid_attr_read,
2494 	.write		= proc_pid_attr_write,
2495 	.llseek		= generic_file_llseek,
2496 };
2497 
2498 static const struct pid_entry attr_dir_stuff[] = {
2499 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2500 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2501 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2502 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2503 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2504 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2505 };
2506 
2507 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2508 {
2509 	return proc_pident_readdir(file, ctx,
2510 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2511 }
2512 
2513 static const struct file_operations proc_attr_dir_operations = {
2514 	.read		= generic_read_dir,
2515 	.iterate_shared	= proc_attr_dir_readdir,
2516 	.llseek		= generic_file_llseek,
2517 };
2518 
2519 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2520 				struct dentry *dentry, unsigned int flags)
2521 {
2522 	return proc_pident_lookup(dir, dentry,
2523 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2524 }
2525 
2526 static const struct inode_operations proc_attr_dir_inode_operations = {
2527 	.lookup		= proc_attr_dir_lookup,
2528 	.getattr	= pid_getattr,
2529 	.setattr	= proc_setattr,
2530 };
2531 
2532 #endif
2533 
2534 #ifdef CONFIG_ELF_CORE
2535 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2536 					 size_t count, loff_t *ppos)
2537 {
2538 	struct task_struct *task = get_proc_task(file_inode(file));
2539 	struct mm_struct *mm;
2540 	char buffer[PROC_NUMBUF];
2541 	size_t len;
2542 	int ret;
2543 
2544 	if (!task)
2545 		return -ESRCH;
2546 
2547 	ret = 0;
2548 	mm = get_task_mm(task);
2549 	if (mm) {
2550 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2551 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2552 				MMF_DUMP_FILTER_SHIFT));
2553 		mmput(mm);
2554 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2555 	}
2556 
2557 	put_task_struct(task);
2558 
2559 	return ret;
2560 }
2561 
2562 static ssize_t proc_coredump_filter_write(struct file *file,
2563 					  const char __user *buf,
2564 					  size_t count,
2565 					  loff_t *ppos)
2566 {
2567 	struct task_struct *task;
2568 	struct mm_struct *mm;
2569 	unsigned int val;
2570 	int ret;
2571 	int i;
2572 	unsigned long mask;
2573 
2574 	ret = kstrtouint_from_user(buf, count, 0, &val);
2575 	if (ret < 0)
2576 		return ret;
2577 
2578 	ret = -ESRCH;
2579 	task = get_proc_task(file_inode(file));
2580 	if (!task)
2581 		goto out_no_task;
2582 
2583 	mm = get_task_mm(task);
2584 	if (!mm)
2585 		goto out_no_mm;
2586 	ret = 0;
2587 
2588 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2589 		if (val & mask)
2590 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2591 		else
2592 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2593 	}
2594 
2595 	mmput(mm);
2596  out_no_mm:
2597 	put_task_struct(task);
2598  out_no_task:
2599 	if (ret < 0)
2600 		return ret;
2601 	return count;
2602 }
2603 
2604 static const struct file_operations proc_coredump_filter_operations = {
2605 	.read		= proc_coredump_filter_read,
2606 	.write		= proc_coredump_filter_write,
2607 	.llseek		= generic_file_llseek,
2608 };
2609 #endif
2610 
2611 #ifdef CONFIG_TASK_IO_ACCOUNTING
2612 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2613 {
2614 	struct task_io_accounting acct = task->ioac;
2615 	unsigned long flags;
2616 	int result;
2617 
2618 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2619 	if (result)
2620 		return result;
2621 
2622 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2623 		result = -EACCES;
2624 		goto out_unlock;
2625 	}
2626 
2627 	if (whole && lock_task_sighand(task, &flags)) {
2628 		struct task_struct *t = task;
2629 
2630 		task_io_accounting_add(&acct, &task->signal->ioac);
2631 		while_each_thread(task, t)
2632 			task_io_accounting_add(&acct, &t->ioac);
2633 
2634 		unlock_task_sighand(task, &flags);
2635 	}
2636 	seq_printf(m,
2637 		   "rchar: %llu\n"
2638 		   "wchar: %llu\n"
2639 		   "syscr: %llu\n"
2640 		   "syscw: %llu\n"
2641 		   "read_bytes: %llu\n"
2642 		   "write_bytes: %llu\n"
2643 		   "cancelled_write_bytes: %llu\n",
2644 		   (unsigned long long)acct.rchar,
2645 		   (unsigned long long)acct.wchar,
2646 		   (unsigned long long)acct.syscr,
2647 		   (unsigned long long)acct.syscw,
2648 		   (unsigned long long)acct.read_bytes,
2649 		   (unsigned long long)acct.write_bytes,
2650 		   (unsigned long long)acct.cancelled_write_bytes);
2651 	result = 0;
2652 
2653 out_unlock:
2654 	mutex_unlock(&task->signal->cred_guard_mutex);
2655 	return result;
2656 }
2657 
2658 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2659 				  struct pid *pid, struct task_struct *task)
2660 {
2661 	return do_io_accounting(task, m, 0);
2662 }
2663 
2664 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2665 				   struct pid *pid, struct task_struct *task)
2666 {
2667 	return do_io_accounting(task, m, 1);
2668 }
2669 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2670 
2671 #ifdef CONFIG_USER_NS
2672 static int proc_id_map_open(struct inode *inode, struct file *file,
2673 	const struct seq_operations *seq_ops)
2674 {
2675 	struct user_namespace *ns = NULL;
2676 	struct task_struct *task;
2677 	struct seq_file *seq;
2678 	int ret = -EINVAL;
2679 
2680 	task = get_proc_task(inode);
2681 	if (task) {
2682 		rcu_read_lock();
2683 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2684 		rcu_read_unlock();
2685 		put_task_struct(task);
2686 	}
2687 	if (!ns)
2688 		goto err;
2689 
2690 	ret = seq_open(file, seq_ops);
2691 	if (ret)
2692 		goto err_put_ns;
2693 
2694 	seq = file->private_data;
2695 	seq->private = ns;
2696 
2697 	return 0;
2698 err_put_ns:
2699 	put_user_ns(ns);
2700 err:
2701 	return ret;
2702 }
2703 
2704 static int proc_id_map_release(struct inode *inode, struct file *file)
2705 {
2706 	struct seq_file *seq = file->private_data;
2707 	struct user_namespace *ns = seq->private;
2708 	put_user_ns(ns);
2709 	return seq_release(inode, file);
2710 }
2711 
2712 static int proc_uid_map_open(struct inode *inode, struct file *file)
2713 {
2714 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2715 }
2716 
2717 static int proc_gid_map_open(struct inode *inode, struct file *file)
2718 {
2719 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2720 }
2721 
2722 static int proc_projid_map_open(struct inode *inode, struct file *file)
2723 {
2724 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2725 }
2726 
2727 static const struct file_operations proc_uid_map_operations = {
2728 	.open		= proc_uid_map_open,
2729 	.write		= proc_uid_map_write,
2730 	.read		= seq_read,
2731 	.llseek		= seq_lseek,
2732 	.release	= proc_id_map_release,
2733 };
2734 
2735 static const struct file_operations proc_gid_map_operations = {
2736 	.open		= proc_gid_map_open,
2737 	.write		= proc_gid_map_write,
2738 	.read		= seq_read,
2739 	.llseek		= seq_lseek,
2740 	.release	= proc_id_map_release,
2741 };
2742 
2743 static const struct file_operations proc_projid_map_operations = {
2744 	.open		= proc_projid_map_open,
2745 	.write		= proc_projid_map_write,
2746 	.read		= seq_read,
2747 	.llseek		= seq_lseek,
2748 	.release	= proc_id_map_release,
2749 };
2750 
2751 static int proc_setgroups_open(struct inode *inode, struct file *file)
2752 {
2753 	struct user_namespace *ns = NULL;
2754 	struct task_struct *task;
2755 	int ret;
2756 
2757 	ret = -ESRCH;
2758 	task = get_proc_task(inode);
2759 	if (task) {
2760 		rcu_read_lock();
2761 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2762 		rcu_read_unlock();
2763 		put_task_struct(task);
2764 	}
2765 	if (!ns)
2766 		goto err;
2767 
2768 	if (file->f_mode & FMODE_WRITE) {
2769 		ret = -EACCES;
2770 		if (!ns_capable(ns, CAP_SYS_ADMIN))
2771 			goto err_put_ns;
2772 	}
2773 
2774 	ret = single_open(file, &proc_setgroups_show, ns);
2775 	if (ret)
2776 		goto err_put_ns;
2777 
2778 	return 0;
2779 err_put_ns:
2780 	put_user_ns(ns);
2781 err:
2782 	return ret;
2783 }
2784 
2785 static int proc_setgroups_release(struct inode *inode, struct file *file)
2786 {
2787 	struct seq_file *seq = file->private_data;
2788 	struct user_namespace *ns = seq->private;
2789 	int ret = single_release(inode, file);
2790 	put_user_ns(ns);
2791 	return ret;
2792 }
2793 
2794 static const struct file_operations proc_setgroups_operations = {
2795 	.open		= proc_setgroups_open,
2796 	.write		= proc_setgroups_write,
2797 	.read		= seq_read,
2798 	.llseek		= seq_lseek,
2799 	.release	= proc_setgroups_release,
2800 };
2801 #endif /* CONFIG_USER_NS */
2802 
2803 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2804 				struct pid *pid, struct task_struct *task)
2805 {
2806 	int err = lock_trace(task);
2807 	if (!err) {
2808 		seq_printf(m, "%08x\n", task->personality);
2809 		unlock_trace(task);
2810 	}
2811 	return err;
2812 }
2813 
2814 /*
2815  * Thread groups
2816  */
2817 static const struct file_operations proc_task_operations;
2818 static const struct inode_operations proc_task_inode_operations;
2819 
2820 static const struct pid_entry tgid_base_stuff[] = {
2821 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2822 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2823 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2824 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2825 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2826 #ifdef CONFIG_NET
2827 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2828 #endif
2829 	REG("environ",    S_IRUSR, proc_environ_operations),
2830 	ONE("auxv",       S_IRUSR, proc_pid_auxv),
2831 	ONE("status",     S_IRUGO, proc_pid_status),
2832 	ONE("personality", S_IRUSR, proc_pid_personality),
2833 	ONE("limits",	  S_IRUGO, proc_pid_limits),
2834 #ifdef CONFIG_SCHED_DEBUG
2835 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2836 #endif
2837 #ifdef CONFIG_SCHED_AUTOGROUP
2838 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2839 #endif
2840 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2841 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2842 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2843 #endif
2844 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2845 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2846 	ONE("statm",      S_IRUGO, proc_pid_statm),
2847 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2848 #ifdef CONFIG_NUMA
2849 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2850 #endif
2851 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2852 	LNK("cwd",        proc_cwd_link),
2853 	LNK("root",       proc_root_link),
2854 	LNK("exe",        proc_exe_link),
2855 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2856 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2857 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2858 #ifdef CONFIG_PROC_PAGE_MONITOR
2859 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2860 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2861 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2862 #endif
2863 #ifdef CONFIG_SECURITY
2864 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2865 #endif
2866 #ifdef CONFIG_KALLSYMS
2867 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2868 #endif
2869 #ifdef CONFIG_STACKTRACE
2870 	ONE("stack",      S_IRUSR, proc_pid_stack),
2871 #endif
2872 #ifdef CONFIG_SCHED_INFO
2873 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2874 #endif
2875 #ifdef CONFIG_LATENCYTOP
2876 	REG("latency",  S_IRUGO, proc_lstats_operations),
2877 #endif
2878 #ifdef CONFIG_PROC_PID_CPUSET
2879 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2880 #endif
2881 #ifdef CONFIG_CGROUPS
2882 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2883 #endif
2884 	ONE("oom_score",  S_IRUGO, proc_oom_score),
2885 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2886 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2887 #ifdef CONFIG_AUDITSYSCALL
2888 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2889 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2890 #endif
2891 #ifdef CONFIG_FAULT_INJECTION
2892 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2893 #endif
2894 #ifdef CONFIG_ELF_CORE
2895 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2896 #endif
2897 #ifdef CONFIG_TASK_IO_ACCOUNTING
2898 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2899 #endif
2900 #ifdef CONFIG_HARDWALL
2901 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2902 #endif
2903 #ifdef CONFIG_USER_NS
2904 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2905 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2906 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2907 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2908 #endif
2909 #ifdef CONFIG_CHECKPOINT_RESTORE
2910 	REG("timers",	  S_IRUGO, proc_timers_operations),
2911 #endif
2912 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
2913 };
2914 
2915 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2916 {
2917 	return proc_pident_readdir(file, ctx,
2918 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2919 }
2920 
2921 static const struct file_operations proc_tgid_base_operations = {
2922 	.read		= generic_read_dir,
2923 	.iterate_shared	= proc_tgid_base_readdir,
2924 	.llseek		= generic_file_llseek,
2925 };
2926 
2927 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2928 {
2929 	return proc_pident_lookup(dir, dentry,
2930 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2931 }
2932 
2933 static const struct inode_operations proc_tgid_base_inode_operations = {
2934 	.lookup		= proc_tgid_base_lookup,
2935 	.getattr	= pid_getattr,
2936 	.setattr	= proc_setattr,
2937 	.permission	= proc_pid_permission,
2938 };
2939 
2940 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2941 {
2942 	struct dentry *dentry, *leader, *dir;
2943 	char buf[PROC_NUMBUF];
2944 	struct qstr name;
2945 
2946 	name.name = buf;
2947 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2948 	/* no ->d_hash() rejects on procfs */
2949 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2950 	if (dentry) {
2951 		d_invalidate(dentry);
2952 		dput(dentry);
2953 	}
2954 
2955 	if (pid == tgid)
2956 		return;
2957 
2958 	name.name = buf;
2959 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2960 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2961 	if (!leader)
2962 		goto out;
2963 
2964 	name.name = "task";
2965 	name.len = strlen(name.name);
2966 	dir = d_hash_and_lookup(leader, &name);
2967 	if (!dir)
2968 		goto out_put_leader;
2969 
2970 	name.name = buf;
2971 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2972 	dentry = d_hash_and_lookup(dir, &name);
2973 	if (dentry) {
2974 		d_invalidate(dentry);
2975 		dput(dentry);
2976 	}
2977 
2978 	dput(dir);
2979 out_put_leader:
2980 	dput(leader);
2981 out:
2982 	return;
2983 }
2984 
2985 /**
2986  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2987  * @task: task that should be flushed.
2988  *
2989  * When flushing dentries from proc, one needs to flush them from global
2990  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2991  * in. This call is supposed to do all of this job.
2992  *
2993  * Looks in the dcache for
2994  * /proc/@pid
2995  * /proc/@tgid/task/@pid
2996  * if either directory is present flushes it and all of it'ts children
2997  * from the dcache.
2998  *
2999  * It is safe and reasonable to cache /proc entries for a task until
3000  * that task exits.  After that they just clog up the dcache with
3001  * useless entries, possibly causing useful dcache entries to be
3002  * flushed instead.  This routine is proved to flush those useless
3003  * dcache entries at process exit time.
3004  *
3005  * NOTE: This routine is just an optimization so it does not guarantee
3006  *       that no dcache entries will exist at process exit time it
3007  *       just makes it very unlikely that any will persist.
3008  */
3009 
3010 void proc_flush_task(struct task_struct *task)
3011 {
3012 	int i;
3013 	struct pid *pid, *tgid;
3014 	struct upid *upid;
3015 
3016 	pid = task_pid(task);
3017 	tgid = task_tgid(task);
3018 
3019 	for (i = 0; i <= pid->level; i++) {
3020 		upid = &pid->numbers[i];
3021 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3022 					tgid->numbers[i].nr);
3023 	}
3024 }
3025 
3026 static int proc_pid_instantiate(struct inode *dir,
3027 				   struct dentry * dentry,
3028 				   struct task_struct *task, const void *ptr)
3029 {
3030 	struct inode *inode;
3031 
3032 	inode = proc_pid_make_inode(dir->i_sb, task);
3033 	if (!inode)
3034 		goto out;
3035 
3036 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3037 	inode->i_op = &proc_tgid_base_inode_operations;
3038 	inode->i_fop = &proc_tgid_base_operations;
3039 	inode->i_flags|=S_IMMUTABLE;
3040 
3041 	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
3042 						  ARRAY_SIZE(tgid_base_stuff)));
3043 
3044 	d_set_d_op(dentry, &pid_dentry_operations);
3045 
3046 	d_add(dentry, inode);
3047 	/* Close the race of the process dying before we return the dentry */
3048 	if (pid_revalidate(dentry, 0))
3049 		return 0;
3050 out:
3051 	return -ENOENT;
3052 }
3053 
3054 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3055 {
3056 	int result = -ENOENT;
3057 	struct task_struct *task;
3058 	unsigned tgid;
3059 	struct pid_namespace *ns;
3060 
3061 	tgid = name_to_int(&dentry->d_name);
3062 	if (tgid == ~0U)
3063 		goto out;
3064 
3065 	ns = dentry->d_sb->s_fs_info;
3066 	rcu_read_lock();
3067 	task = find_task_by_pid_ns(tgid, ns);
3068 	if (task)
3069 		get_task_struct(task);
3070 	rcu_read_unlock();
3071 	if (!task)
3072 		goto out;
3073 
3074 	result = proc_pid_instantiate(dir, dentry, task, NULL);
3075 	put_task_struct(task);
3076 out:
3077 	return ERR_PTR(result);
3078 }
3079 
3080 /*
3081  * Find the first task with tgid >= tgid
3082  *
3083  */
3084 struct tgid_iter {
3085 	unsigned int tgid;
3086 	struct task_struct *task;
3087 };
3088 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3089 {
3090 	struct pid *pid;
3091 
3092 	if (iter.task)
3093 		put_task_struct(iter.task);
3094 	rcu_read_lock();
3095 retry:
3096 	iter.task = NULL;
3097 	pid = find_ge_pid(iter.tgid, ns);
3098 	if (pid) {
3099 		iter.tgid = pid_nr_ns(pid, ns);
3100 		iter.task = pid_task(pid, PIDTYPE_PID);
3101 		/* What we to know is if the pid we have find is the
3102 		 * pid of a thread_group_leader.  Testing for task
3103 		 * being a thread_group_leader is the obvious thing
3104 		 * todo but there is a window when it fails, due to
3105 		 * the pid transfer logic in de_thread.
3106 		 *
3107 		 * So we perform the straight forward test of seeing
3108 		 * if the pid we have found is the pid of a thread
3109 		 * group leader, and don't worry if the task we have
3110 		 * found doesn't happen to be a thread group leader.
3111 		 * As we don't care in the case of readdir.
3112 		 */
3113 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3114 			iter.tgid += 1;
3115 			goto retry;
3116 		}
3117 		get_task_struct(iter.task);
3118 	}
3119 	rcu_read_unlock();
3120 	return iter;
3121 }
3122 
3123 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3124 
3125 /* for the /proc/ directory itself, after non-process stuff has been done */
3126 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3127 {
3128 	struct tgid_iter iter;
3129 	struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3130 	loff_t pos = ctx->pos;
3131 
3132 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3133 		return 0;
3134 
3135 	if (pos == TGID_OFFSET - 2) {
3136 		struct inode *inode = d_inode(ns->proc_self);
3137 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3138 			return 0;
3139 		ctx->pos = pos = pos + 1;
3140 	}
3141 	if (pos == TGID_OFFSET - 1) {
3142 		struct inode *inode = d_inode(ns->proc_thread_self);
3143 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3144 			return 0;
3145 		ctx->pos = pos = pos + 1;
3146 	}
3147 	iter.tgid = pos - TGID_OFFSET;
3148 	iter.task = NULL;
3149 	for (iter = next_tgid(ns, iter);
3150 	     iter.task;
3151 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3152 		char name[PROC_NUMBUF];
3153 		int len;
3154 		if (!has_pid_permissions(ns, iter.task, 2))
3155 			continue;
3156 
3157 		len = snprintf(name, sizeof(name), "%d", iter.tgid);
3158 		ctx->pos = iter.tgid + TGID_OFFSET;
3159 		if (!proc_fill_cache(file, ctx, name, len,
3160 				     proc_pid_instantiate, iter.task, NULL)) {
3161 			put_task_struct(iter.task);
3162 			return 0;
3163 		}
3164 	}
3165 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3166 	return 0;
3167 }
3168 
3169 /*
3170  * proc_tid_comm_permission is a special permission function exclusively
3171  * used for the node /proc/<pid>/task/<tid>/comm.
3172  * It bypasses generic permission checks in the case where a task of the same
3173  * task group attempts to access the node.
3174  * The rationale behind this is that glibc and bionic access this node for
3175  * cross thread naming (pthread_set/getname_np(!self)). However, if
3176  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3177  * which locks out the cross thread naming implementation.
3178  * This function makes sure that the node is always accessible for members of
3179  * same thread group.
3180  */
3181 static int proc_tid_comm_permission(struct inode *inode, int mask)
3182 {
3183 	bool is_same_tgroup;
3184 	struct task_struct *task;
3185 
3186 	task = get_proc_task(inode);
3187 	if (!task)
3188 		return -ESRCH;
3189 	is_same_tgroup = same_thread_group(current, task);
3190 	put_task_struct(task);
3191 
3192 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3193 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3194 		 * read or written by the members of the corresponding
3195 		 * thread group.
3196 		 */
3197 		return 0;
3198 	}
3199 
3200 	return generic_permission(inode, mask);
3201 }
3202 
3203 static const struct inode_operations proc_tid_comm_inode_operations = {
3204 		.permission = proc_tid_comm_permission,
3205 };
3206 
3207 /*
3208  * Tasks
3209  */
3210 static const struct pid_entry tid_base_stuff[] = {
3211 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3212 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3213 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3214 #ifdef CONFIG_NET
3215 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3216 #endif
3217 	REG("environ",   S_IRUSR, proc_environ_operations),
3218 	ONE("auxv",      S_IRUSR, proc_pid_auxv),
3219 	ONE("status",    S_IRUGO, proc_pid_status),
3220 	ONE("personality", S_IRUSR, proc_pid_personality),
3221 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3222 #ifdef CONFIG_SCHED_DEBUG
3223 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3224 #endif
3225 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3226 			 &proc_tid_comm_inode_operations,
3227 			 &proc_pid_set_comm_operations, {}),
3228 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3229 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3230 #endif
3231 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3232 	ONE("stat",      S_IRUGO, proc_tid_stat),
3233 	ONE("statm",     S_IRUGO, proc_pid_statm),
3234 	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3235 #ifdef CONFIG_PROC_CHILDREN
3236 	REG("children",  S_IRUGO, proc_tid_children_operations),
3237 #endif
3238 #ifdef CONFIG_NUMA
3239 	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3240 #endif
3241 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3242 	LNK("cwd",       proc_cwd_link),
3243 	LNK("root",      proc_root_link),
3244 	LNK("exe",       proc_exe_link),
3245 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3246 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3247 #ifdef CONFIG_PROC_PAGE_MONITOR
3248 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3249 	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3250 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3251 #endif
3252 #ifdef CONFIG_SECURITY
3253 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3254 #endif
3255 #ifdef CONFIG_KALLSYMS
3256 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3257 #endif
3258 #ifdef CONFIG_STACKTRACE
3259 	ONE("stack",      S_IRUSR, proc_pid_stack),
3260 #endif
3261 #ifdef CONFIG_SCHED_INFO
3262 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3263 #endif
3264 #ifdef CONFIG_LATENCYTOP
3265 	REG("latency",  S_IRUGO, proc_lstats_operations),
3266 #endif
3267 #ifdef CONFIG_PROC_PID_CPUSET
3268 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3269 #endif
3270 #ifdef CONFIG_CGROUPS
3271 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3272 #endif
3273 	ONE("oom_score", S_IRUGO, proc_oom_score),
3274 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3275 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3276 #ifdef CONFIG_AUDITSYSCALL
3277 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3278 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3279 #endif
3280 #ifdef CONFIG_FAULT_INJECTION
3281 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3282 #endif
3283 #ifdef CONFIG_TASK_IO_ACCOUNTING
3284 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3285 #endif
3286 #ifdef CONFIG_HARDWALL
3287 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3288 #endif
3289 #ifdef CONFIG_USER_NS
3290 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3291 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3292 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3293 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3294 #endif
3295 };
3296 
3297 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3298 {
3299 	return proc_pident_readdir(file, ctx,
3300 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3301 }
3302 
3303 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3304 {
3305 	return proc_pident_lookup(dir, dentry,
3306 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3307 }
3308 
3309 static const struct file_operations proc_tid_base_operations = {
3310 	.read		= generic_read_dir,
3311 	.iterate_shared	= proc_tid_base_readdir,
3312 	.llseek		= generic_file_llseek,
3313 };
3314 
3315 static const struct inode_operations proc_tid_base_inode_operations = {
3316 	.lookup		= proc_tid_base_lookup,
3317 	.getattr	= pid_getattr,
3318 	.setattr	= proc_setattr,
3319 };
3320 
3321 static int proc_task_instantiate(struct inode *dir,
3322 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3323 {
3324 	struct inode *inode;
3325 	inode = proc_pid_make_inode(dir->i_sb, task);
3326 
3327 	if (!inode)
3328 		goto out;
3329 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3330 	inode->i_op = &proc_tid_base_inode_operations;
3331 	inode->i_fop = &proc_tid_base_operations;
3332 	inode->i_flags|=S_IMMUTABLE;
3333 
3334 	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3335 						  ARRAY_SIZE(tid_base_stuff)));
3336 
3337 	d_set_d_op(dentry, &pid_dentry_operations);
3338 
3339 	d_add(dentry, inode);
3340 	/* Close the race of the process dying before we return the dentry */
3341 	if (pid_revalidate(dentry, 0))
3342 		return 0;
3343 out:
3344 	return -ENOENT;
3345 }
3346 
3347 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3348 {
3349 	int result = -ENOENT;
3350 	struct task_struct *task;
3351 	struct task_struct *leader = get_proc_task(dir);
3352 	unsigned tid;
3353 	struct pid_namespace *ns;
3354 
3355 	if (!leader)
3356 		goto out_no_task;
3357 
3358 	tid = name_to_int(&dentry->d_name);
3359 	if (tid == ~0U)
3360 		goto out;
3361 
3362 	ns = dentry->d_sb->s_fs_info;
3363 	rcu_read_lock();
3364 	task = find_task_by_pid_ns(tid, ns);
3365 	if (task)
3366 		get_task_struct(task);
3367 	rcu_read_unlock();
3368 	if (!task)
3369 		goto out;
3370 	if (!same_thread_group(leader, task))
3371 		goto out_drop_task;
3372 
3373 	result = proc_task_instantiate(dir, dentry, task, NULL);
3374 out_drop_task:
3375 	put_task_struct(task);
3376 out:
3377 	put_task_struct(leader);
3378 out_no_task:
3379 	return ERR_PTR(result);
3380 }
3381 
3382 /*
3383  * Find the first tid of a thread group to return to user space.
3384  *
3385  * Usually this is just the thread group leader, but if the users
3386  * buffer was too small or there was a seek into the middle of the
3387  * directory we have more work todo.
3388  *
3389  * In the case of a short read we start with find_task_by_pid.
3390  *
3391  * In the case of a seek we start with the leader and walk nr
3392  * threads past it.
3393  */
3394 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3395 					struct pid_namespace *ns)
3396 {
3397 	struct task_struct *pos, *task;
3398 	unsigned long nr = f_pos;
3399 
3400 	if (nr != f_pos)	/* 32bit overflow? */
3401 		return NULL;
3402 
3403 	rcu_read_lock();
3404 	task = pid_task(pid, PIDTYPE_PID);
3405 	if (!task)
3406 		goto fail;
3407 
3408 	/* Attempt to start with the tid of a thread */
3409 	if (tid && nr) {
3410 		pos = find_task_by_pid_ns(tid, ns);
3411 		if (pos && same_thread_group(pos, task))
3412 			goto found;
3413 	}
3414 
3415 	/* If nr exceeds the number of threads there is nothing todo */
3416 	if (nr >= get_nr_threads(task))
3417 		goto fail;
3418 
3419 	/* If we haven't found our starting place yet start
3420 	 * with the leader and walk nr threads forward.
3421 	 */
3422 	pos = task = task->group_leader;
3423 	do {
3424 		if (!nr--)
3425 			goto found;
3426 	} while_each_thread(task, pos);
3427 fail:
3428 	pos = NULL;
3429 	goto out;
3430 found:
3431 	get_task_struct(pos);
3432 out:
3433 	rcu_read_unlock();
3434 	return pos;
3435 }
3436 
3437 /*
3438  * Find the next thread in the thread list.
3439  * Return NULL if there is an error or no next thread.
3440  *
3441  * The reference to the input task_struct is released.
3442  */
3443 static struct task_struct *next_tid(struct task_struct *start)
3444 {
3445 	struct task_struct *pos = NULL;
3446 	rcu_read_lock();
3447 	if (pid_alive(start)) {
3448 		pos = next_thread(start);
3449 		if (thread_group_leader(pos))
3450 			pos = NULL;
3451 		else
3452 			get_task_struct(pos);
3453 	}
3454 	rcu_read_unlock();
3455 	put_task_struct(start);
3456 	return pos;
3457 }
3458 
3459 /* for the /proc/TGID/task/ directories */
3460 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3461 {
3462 	struct inode *inode = file_inode(file);
3463 	struct task_struct *task;
3464 	struct pid_namespace *ns;
3465 	int tid;
3466 
3467 	if (proc_inode_is_dead(inode))
3468 		return -ENOENT;
3469 
3470 	if (!dir_emit_dots(file, ctx))
3471 		return 0;
3472 
3473 	/* f_version caches the tgid value that the last readdir call couldn't
3474 	 * return. lseek aka telldir automagically resets f_version to 0.
3475 	 */
3476 	ns = inode->i_sb->s_fs_info;
3477 	tid = (int)file->f_version;
3478 	file->f_version = 0;
3479 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3480 	     task;
3481 	     task = next_tid(task), ctx->pos++) {
3482 		char name[PROC_NUMBUF];
3483 		int len;
3484 		tid = task_pid_nr_ns(task, ns);
3485 		len = snprintf(name, sizeof(name), "%d", tid);
3486 		if (!proc_fill_cache(file, ctx, name, len,
3487 				proc_task_instantiate, task, NULL)) {
3488 			/* returning this tgid failed, save it as the first
3489 			 * pid for the next readir call */
3490 			file->f_version = (u64)tid;
3491 			put_task_struct(task);
3492 			break;
3493 		}
3494 	}
3495 
3496 	return 0;
3497 }
3498 
3499 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3500 {
3501 	struct inode *inode = d_inode(dentry);
3502 	struct task_struct *p = get_proc_task(inode);
3503 	generic_fillattr(inode, stat);
3504 
3505 	if (p) {
3506 		stat->nlink += get_nr_threads(p);
3507 		put_task_struct(p);
3508 	}
3509 
3510 	return 0;
3511 }
3512 
3513 static const struct inode_operations proc_task_inode_operations = {
3514 	.lookup		= proc_task_lookup,
3515 	.getattr	= proc_task_getattr,
3516 	.setattr	= proc_setattr,
3517 	.permission	= proc_pid_permission,
3518 };
3519 
3520 static const struct file_operations proc_task_operations = {
3521 	.read		= generic_read_dir,
3522 	.iterate_shared	= proc_task_readdir,
3523 	.llseek		= generic_file_llseek,
3524 };
3525