1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/proc/base.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * proc base directory handling functions 8 * 9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 10 * Instead of using magical inumbers to determine the kind of object 11 * we allocate and fill in-core inodes upon lookup. They don't even 12 * go into icache. We cache the reference to task_struct upon lookup too. 13 * Eventually it should become a filesystem in its own. We don't use the 14 * rest of procfs anymore. 15 * 16 * 17 * Changelog: 18 * 17-Jan-2005 19 * Allan Bezerra 20 * Bruna Moreira <bruna.moreira@indt.org.br> 21 * Edjard Mota <edjard.mota@indt.org.br> 22 * Ilias Biris <ilias.biris@indt.org.br> 23 * Mauricio Lin <mauricio.lin@indt.org.br> 24 * 25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 26 * 27 * A new process specific entry (smaps) included in /proc. It shows the 28 * size of rss for each memory area. The maps entry lacks information 29 * about physical memory size (rss) for each mapped file, i.e., 30 * rss information for executables and library files. 31 * This additional information is useful for any tools that need to know 32 * about physical memory consumption for a process specific library. 33 * 34 * Changelog: 35 * 21-Feb-2005 36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 37 * Pud inclusion in the page table walking. 38 * 39 * ChangeLog: 40 * 10-Mar-2005 41 * 10LE Instituto Nokia de Tecnologia - INdT: 42 * A better way to walks through the page table as suggested by Hugh Dickins. 43 * 44 * Simo Piiroinen <simo.piiroinen@nokia.com>: 45 * Smaps information related to shared, private, clean and dirty pages. 46 * 47 * Paul Mundt <paul.mundt@nokia.com>: 48 * Overall revision about smaps. 49 */ 50 51 #include <linux/uaccess.h> 52 53 #include <linux/errno.h> 54 #include <linux/time.h> 55 #include <linux/proc_fs.h> 56 #include <linux/stat.h> 57 #include <linux/task_io_accounting_ops.h> 58 #include <linux/init.h> 59 #include <linux/capability.h> 60 #include <linux/file.h> 61 #include <linux/fdtable.h> 62 #include <linux/generic-radix-tree.h> 63 #include <linux/string.h> 64 #include <linux/seq_file.h> 65 #include <linux/namei.h> 66 #include <linux/mnt_namespace.h> 67 #include <linux/mm.h> 68 #include <linux/swap.h> 69 #include <linux/rcupdate.h> 70 #include <linux/kallsyms.h> 71 #include <linux/stacktrace.h> 72 #include <linux/resource.h> 73 #include <linux/module.h> 74 #include <linux/mount.h> 75 #include <linux/security.h> 76 #include <linux/ptrace.h> 77 #include <linux/tracehook.h> 78 #include <linux/printk.h> 79 #include <linux/cache.h> 80 #include <linux/cgroup.h> 81 #include <linux/cpuset.h> 82 #include <linux/audit.h> 83 #include <linux/poll.h> 84 #include <linux/nsproxy.h> 85 #include <linux/oom.h> 86 #include <linux/elf.h> 87 #include <linux/pid_namespace.h> 88 #include <linux/user_namespace.h> 89 #include <linux/fs_struct.h> 90 #include <linux/slab.h> 91 #include <linux/sched/autogroup.h> 92 #include <linux/sched/mm.h> 93 #include <linux/sched/coredump.h> 94 #include <linux/sched/debug.h> 95 #include <linux/sched/stat.h> 96 #include <linux/posix-timers.h> 97 #include <linux/time_namespace.h> 98 #include <linux/resctrl.h> 99 #include <trace/events/oom.h> 100 #include "internal.h" 101 #include "fd.h" 102 103 #include "../../lib/kstrtox.h" 104 105 /* NOTE: 106 * Implementing inode permission operations in /proc is almost 107 * certainly an error. Permission checks need to happen during 108 * each system call not at open time. The reason is that most of 109 * what we wish to check for permissions in /proc varies at runtime. 110 * 111 * The classic example of a problem is opening file descriptors 112 * in /proc for a task before it execs a suid executable. 113 */ 114 115 static u8 nlink_tid __ro_after_init; 116 static u8 nlink_tgid __ro_after_init; 117 118 struct pid_entry { 119 const char *name; 120 unsigned int len; 121 umode_t mode; 122 const struct inode_operations *iop; 123 const struct file_operations *fop; 124 union proc_op op; 125 }; 126 127 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 128 .name = (NAME), \ 129 .len = sizeof(NAME) - 1, \ 130 .mode = MODE, \ 131 .iop = IOP, \ 132 .fop = FOP, \ 133 .op = OP, \ 134 } 135 136 #define DIR(NAME, MODE, iops, fops) \ 137 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 138 #define LNK(NAME, get_link) \ 139 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 140 &proc_pid_link_inode_operations, NULL, \ 141 { .proc_get_link = get_link } ) 142 #define REG(NAME, MODE, fops) \ 143 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 144 #define ONE(NAME, MODE, show) \ 145 NOD(NAME, (S_IFREG|(MODE)), \ 146 NULL, &proc_single_file_operations, \ 147 { .proc_show = show } ) 148 #define ATTR(LSM, NAME, MODE) \ 149 NOD(NAME, (S_IFREG|(MODE)), \ 150 NULL, &proc_pid_attr_operations, \ 151 { .lsm = LSM }) 152 153 /* 154 * Count the number of hardlinks for the pid_entry table, excluding the . 155 * and .. links. 156 */ 157 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries, 158 unsigned int n) 159 { 160 unsigned int i; 161 unsigned int count; 162 163 count = 2; 164 for (i = 0; i < n; ++i) { 165 if (S_ISDIR(entries[i].mode)) 166 ++count; 167 } 168 169 return count; 170 } 171 172 static int get_task_root(struct task_struct *task, struct path *root) 173 { 174 int result = -ENOENT; 175 176 task_lock(task); 177 if (task->fs) { 178 get_fs_root(task->fs, root); 179 result = 0; 180 } 181 task_unlock(task); 182 return result; 183 } 184 185 static int proc_cwd_link(struct dentry *dentry, struct path *path) 186 { 187 struct task_struct *task = get_proc_task(d_inode(dentry)); 188 int result = -ENOENT; 189 190 if (task) { 191 task_lock(task); 192 if (task->fs) { 193 get_fs_pwd(task->fs, path); 194 result = 0; 195 } 196 task_unlock(task); 197 put_task_struct(task); 198 } 199 return result; 200 } 201 202 static int proc_root_link(struct dentry *dentry, struct path *path) 203 { 204 struct task_struct *task = get_proc_task(d_inode(dentry)); 205 int result = -ENOENT; 206 207 if (task) { 208 result = get_task_root(task, path); 209 put_task_struct(task); 210 } 211 return result; 212 } 213 214 /* 215 * If the user used setproctitle(), we just get the string from 216 * user space at arg_start, and limit it to a maximum of one page. 217 */ 218 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf, 219 size_t count, unsigned long pos, 220 unsigned long arg_start) 221 { 222 char *page; 223 int ret, got; 224 225 if (pos >= PAGE_SIZE) 226 return 0; 227 228 page = (char *)__get_free_page(GFP_KERNEL); 229 if (!page) 230 return -ENOMEM; 231 232 ret = 0; 233 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON); 234 if (got > 0) { 235 int len = strnlen(page, got); 236 237 /* Include the NUL character if it was found */ 238 if (len < got) 239 len++; 240 241 if (len > pos) { 242 len -= pos; 243 if (len > count) 244 len = count; 245 len -= copy_to_user(buf, page+pos, len); 246 if (!len) 247 len = -EFAULT; 248 ret = len; 249 } 250 } 251 free_page((unsigned long)page); 252 return ret; 253 } 254 255 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf, 256 size_t count, loff_t *ppos) 257 { 258 unsigned long arg_start, arg_end, env_start, env_end; 259 unsigned long pos, len; 260 char *page, c; 261 262 /* Check if process spawned far enough to have cmdline. */ 263 if (!mm->env_end) 264 return 0; 265 266 spin_lock(&mm->arg_lock); 267 arg_start = mm->arg_start; 268 arg_end = mm->arg_end; 269 env_start = mm->env_start; 270 env_end = mm->env_end; 271 spin_unlock(&mm->arg_lock); 272 273 if (arg_start >= arg_end) 274 return 0; 275 276 /* 277 * We allow setproctitle() to overwrite the argument 278 * strings, and overflow past the original end. But 279 * only when it overflows into the environment area. 280 */ 281 if (env_start != arg_end || env_end < env_start) 282 env_start = env_end = arg_end; 283 len = env_end - arg_start; 284 285 /* We're not going to care if "*ppos" has high bits set */ 286 pos = *ppos; 287 if (pos >= len) 288 return 0; 289 if (count > len - pos) 290 count = len - pos; 291 if (!count) 292 return 0; 293 294 /* 295 * Magical special case: if the argv[] end byte is not 296 * zero, the user has overwritten it with setproctitle(3). 297 * 298 * Possible future enhancement: do this only once when 299 * pos is 0, and set a flag in the 'struct file'. 300 */ 301 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c) 302 return get_mm_proctitle(mm, buf, count, pos, arg_start); 303 304 /* 305 * For the non-setproctitle() case we limit things strictly 306 * to the [arg_start, arg_end[ range. 307 */ 308 pos += arg_start; 309 if (pos < arg_start || pos >= arg_end) 310 return 0; 311 if (count > arg_end - pos) 312 count = arg_end - pos; 313 314 page = (char *)__get_free_page(GFP_KERNEL); 315 if (!page) 316 return -ENOMEM; 317 318 len = 0; 319 while (count) { 320 int got; 321 size_t size = min_t(size_t, PAGE_SIZE, count); 322 323 got = access_remote_vm(mm, pos, page, size, FOLL_ANON); 324 if (got <= 0) 325 break; 326 got -= copy_to_user(buf, page, got); 327 if (unlikely(!got)) { 328 if (!len) 329 len = -EFAULT; 330 break; 331 } 332 pos += got; 333 buf += got; 334 len += got; 335 count -= got; 336 } 337 338 free_page((unsigned long)page); 339 return len; 340 } 341 342 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf, 343 size_t count, loff_t *pos) 344 { 345 struct mm_struct *mm; 346 ssize_t ret; 347 348 mm = get_task_mm(tsk); 349 if (!mm) 350 return 0; 351 352 ret = get_mm_cmdline(mm, buf, count, pos); 353 mmput(mm); 354 return ret; 355 } 356 357 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf, 358 size_t count, loff_t *pos) 359 { 360 struct task_struct *tsk; 361 ssize_t ret; 362 363 BUG_ON(*pos < 0); 364 365 tsk = get_proc_task(file_inode(file)); 366 if (!tsk) 367 return -ESRCH; 368 ret = get_task_cmdline(tsk, buf, count, pos); 369 put_task_struct(tsk); 370 if (ret > 0) 371 *pos += ret; 372 return ret; 373 } 374 375 static const struct file_operations proc_pid_cmdline_ops = { 376 .read = proc_pid_cmdline_read, 377 .llseek = generic_file_llseek, 378 }; 379 380 #ifdef CONFIG_KALLSYMS 381 /* 382 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 383 * Returns the resolved symbol. If that fails, simply return the address. 384 */ 385 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns, 386 struct pid *pid, struct task_struct *task) 387 { 388 unsigned long wchan; 389 char symname[KSYM_NAME_LEN]; 390 391 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 392 goto print0; 393 394 wchan = get_wchan(task); 395 if (wchan && !lookup_symbol_name(wchan, symname)) { 396 seq_puts(m, symname); 397 return 0; 398 } 399 400 print0: 401 seq_putc(m, '0'); 402 return 0; 403 } 404 #endif /* CONFIG_KALLSYMS */ 405 406 static int lock_trace(struct task_struct *task) 407 { 408 int err = mutex_lock_killable(&task->signal->exec_update_mutex); 409 if (err) 410 return err; 411 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) { 412 mutex_unlock(&task->signal->exec_update_mutex); 413 return -EPERM; 414 } 415 return 0; 416 } 417 418 static void unlock_trace(struct task_struct *task) 419 { 420 mutex_unlock(&task->signal->exec_update_mutex); 421 } 422 423 #ifdef CONFIG_STACKTRACE 424 425 #define MAX_STACK_TRACE_DEPTH 64 426 427 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 428 struct pid *pid, struct task_struct *task) 429 { 430 unsigned long *entries; 431 int err; 432 433 /* 434 * The ability to racily run the kernel stack unwinder on a running task 435 * and then observe the unwinder output is scary; while it is useful for 436 * debugging kernel issues, it can also allow an attacker to leak kernel 437 * stack contents. 438 * Doing this in a manner that is at least safe from races would require 439 * some work to ensure that the remote task can not be scheduled; and 440 * even then, this would still expose the unwinder as local attack 441 * surface. 442 * Therefore, this interface is restricted to root. 443 */ 444 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 445 return -EACCES; 446 447 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries), 448 GFP_KERNEL); 449 if (!entries) 450 return -ENOMEM; 451 452 err = lock_trace(task); 453 if (!err) { 454 unsigned int i, nr_entries; 455 456 nr_entries = stack_trace_save_tsk(task, entries, 457 MAX_STACK_TRACE_DEPTH, 0); 458 459 for (i = 0; i < nr_entries; i++) { 460 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]); 461 } 462 463 unlock_trace(task); 464 } 465 kfree(entries); 466 467 return err; 468 } 469 #endif 470 471 #ifdef CONFIG_SCHED_INFO 472 /* 473 * Provides /proc/PID/schedstat 474 */ 475 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns, 476 struct pid *pid, struct task_struct *task) 477 { 478 if (unlikely(!sched_info_on())) 479 seq_puts(m, "0 0 0\n"); 480 else 481 seq_printf(m, "%llu %llu %lu\n", 482 (unsigned long long)task->se.sum_exec_runtime, 483 (unsigned long long)task->sched_info.run_delay, 484 task->sched_info.pcount); 485 486 return 0; 487 } 488 #endif 489 490 #ifdef CONFIG_LATENCYTOP 491 static int lstats_show_proc(struct seq_file *m, void *v) 492 { 493 int i; 494 struct inode *inode = m->private; 495 struct task_struct *task = get_proc_task(inode); 496 497 if (!task) 498 return -ESRCH; 499 seq_puts(m, "Latency Top version : v0.1\n"); 500 for (i = 0; i < LT_SAVECOUNT; i++) { 501 struct latency_record *lr = &task->latency_record[i]; 502 if (lr->backtrace[0]) { 503 int q; 504 seq_printf(m, "%i %li %li", 505 lr->count, lr->time, lr->max); 506 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 507 unsigned long bt = lr->backtrace[q]; 508 509 if (!bt) 510 break; 511 seq_printf(m, " %ps", (void *)bt); 512 } 513 seq_putc(m, '\n'); 514 } 515 516 } 517 put_task_struct(task); 518 return 0; 519 } 520 521 static int lstats_open(struct inode *inode, struct file *file) 522 { 523 return single_open(file, lstats_show_proc, inode); 524 } 525 526 static ssize_t lstats_write(struct file *file, const char __user *buf, 527 size_t count, loff_t *offs) 528 { 529 struct task_struct *task = get_proc_task(file_inode(file)); 530 531 if (!task) 532 return -ESRCH; 533 clear_tsk_latency_tracing(task); 534 put_task_struct(task); 535 536 return count; 537 } 538 539 static const struct file_operations proc_lstats_operations = { 540 .open = lstats_open, 541 .read = seq_read, 542 .write = lstats_write, 543 .llseek = seq_lseek, 544 .release = single_release, 545 }; 546 547 #endif 548 549 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns, 550 struct pid *pid, struct task_struct *task) 551 { 552 unsigned long totalpages = totalram_pages() + total_swap_pages; 553 unsigned long points = 0; 554 long badness; 555 556 badness = oom_badness(task, totalpages); 557 /* 558 * Special case OOM_SCORE_ADJ_MIN for all others scale the 559 * badness value into [0, 2000] range which we have been 560 * exporting for a long time so userspace might depend on it. 561 */ 562 if (badness != LONG_MIN) 563 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3; 564 565 seq_printf(m, "%lu\n", points); 566 567 return 0; 568 } 569 570 struct limit_names { 571 const char *name; 572 const char *unit; 573 }; 574 575 static const struct limit_names lnames[RLIM_NLIMITS] = { 576 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 577 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 578 [RLIMIT_DATA] = {"Max data size", "bytes"}, 579 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 580 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 581 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 582 [RLIMIT_NPROC] = {"Max processes", "processes"}, 583 [RLIMIT_NOFILE] = {"Max open files", "files"}, 584 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 585 [RLIMIT_AS] = {"Max address space", "bytes"}, 586 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 587 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 588 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 589 [RLIMIT_NICE] = {"Max nice priority", NULL}, 590 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 591 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 592 }; 593 594 /* Display limits for a process */ 595 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns, 596 struct pid *pid, struct task_struct *task) 597 { 598 unsigned int i; 599 unsigned long flags; 600 601 struct rlimit rlim[RLIM_NLIMITS]; 602 603 if (!lock_task_sighand(task, &flags)) 604 return 0; 605 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 606 unlock_task_sighand(task, &flags); 607 608 /* 609 * print the file header 610 */ 611 seq_puts(m, "Limit " 612 "Soft Limit " 613 "Hard Limit " 614 "Units \n"); 615 616 for (i = 0; i < RLIM_NLIMITS; i++) { 617 if (rlim[i].rlim_cur == RLIM_INFINITY) 618 seq_printf(m, "%-25s %-20s ", 619 lnames[i].name, "unlimited"); 620 else 621 seq_printf(m, "%-25s %-20lu ", 622 lnames[i].name, rlim[i].rlim_cur); 623 624 if (rlim[i].rlim_max == RLIM_INFINITY) 625 seq_printf(m, "%-20s ", "unlimited"); 626 else 627 seq_printf(m, "%-20lu ", rlim[i].rlim_max); 628 629 if (lnames[i].unit) 630 seq_printf(m, "%-10s\n", lnames[i].unit); 631 else 632 seq_putc(m, '\n'); 633 } 634 635 return 0; 636 } 637 638 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 639 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns, 640 struct pid *pid, struct task_struct *task) 641 { 642 struct syscall_info info; 643 u64 *args = &info.data.args[0]; 644 int res; 645 646 res = lock_trace(task); 647 if (res) 648 return res; 649 650 if (task_current_syscall(task, &info)) 651 seq_puts(m, "running\n"); 652 else if (info.data.nr < 0) 653 seq_printf(m, "%d 0x%llx 0x%llx\n", 654 info.data.nr, info.sp, info.data.instruction_pointer); 655 else 656 seq_printf(m, 657 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n", 658 info.data.nr, 659 args[0], args[1], args[2], args[3], args[4], args[5], 660 info.sp, info.data.instruction_pointer); 661 unlock_trace(task); 662 663 return 0; 664 } 665 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 666 667 /************************************************************************/ 668 /* Here the fs part begins */ 669 /************************************************************************/ 670 671 /* permission checks */ 672 static int proc_fd_access_allowed(struct inode *inode) 673 { 674 struct task_struct *task; 675 int allowed = 0; 676 /* Allow access to a task's file descriptors if it is us or we 677 * may use ptrace attach to the process and find out that 678 * information. 679 */ 680 task = get_proc_task(inode); 681 if (task) { 682 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 683 put_task_struct(task); 684 } 685 return allowed; 686 } 687 688 int proc_setattr(struct dentry *dentry, struct iattr *attr) 689 { 690 int error; 691 struct inode *inode = d_inode(dentry); 692 693 if (attr->ia_valid & ATTR_MODE) 694 return -EPERM; 695 696 error = setattr_prepare(dentry, attr); 697 if (error) 698 return error; 699 700 setattr_copy(inode, attr); 701 mark_inode_dirty(inode); 702 return 0; 703 } 704 705 /* 706 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 707 * or euid/egid (for hide_pid_min=2)? 708 */ 709 static bool has_pid_permissions(struct proc_fs_info *fs_info, 710 struct task_struct *task, 711 enum proc_hidepid hide_pid_min) 712 { 713 /* 714 * If 'hidpid' mount option is set force a ptrace check, 715 * we indicate that we are using a filesystem syscall 716 * by passing PTRACE_MODE_READ_FSCREDS 717 */ 718 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) 719 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 720 721 if (fs_info->hide_pid < hide_pid_min) 722 return true; 723 if (in_group_p(fs_info->pid_gid)) 724 return true; 725 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 726 } 727 728 729 static int proc_pid_permission(struct inode *inode, int mask) 730 { 731 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 732 struct task_struct *task; 733 bool has_perms; 734 735 task = get_proc_task(inode); 736 if (!task) 737 return -ESRCH; 738 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS); 739 put_task_struct(task); 740 741 if (!has_perms) { 742 if (fs_info->hide_pid == HIDEPID_INVISIBLE) { 743 /* 744 * Let's make getdents(), stat(), and open() 745 * consistent with each other. If a process 746 * may not stat() a file, it shouldn't be seen 747 * in procfs at all. 748 */ 749 return -ENOENT; 750 } 751 752 return -EPERM; 753 } 754 return generic_permission(inode, mask); 755 } 756 757 758 759 static const struct inode_operations proc_def_inode_operations = { 760 .setattr = proc_setattr, 761 }; 762 763 static int proc_single_show(struct seq_file *m, void *v) 764 { 765 struct inode *inode = m->private; 766 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 767 struct pid *pid = proc_pid(inode); 768 struct task_struct *task; 769 int ret; 770 771 task = get_pid_task(pid, PIDTYPE_PID); 772 if (!task) 773 return -ESRCH; 774 775 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 776 777 put_task_struct(task); 778 return ret; 779 } 780 781 static int proc_single_open(struct inode *inode, struct file *filp) 782 { 783 return single_open(filp, proc_single_show, inode); 784 } 785 786 static const struct file_operations proc_single_file_operations = { 787 .open = proc_single_open, 788 .read = seq_read, 789 .llseek = seq_lseek, 790 .release = single_release, 791 }; 792 793 794 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode) 795 { 796 struct task_struct *task = get_proc_task(inode); 797 struct mm_struct *mm = ERR_PTR(-ESRCH); 798 799 if (task) { 800 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS); 801 put_task_struct(task); 802 803 if (!IS_ERR_OR_NULL(mm)) { 804 /* ensure this mm_struct can't be freed */ 805 mmgrab(mm); 806 /* but do not pin its memory */ 807 mmput(mm); 808 } 809 } 810 811 return mm; 812 } 813 814 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) 815 { 816 struct mm_struct *mm = proc_mem_open(inode, mode); 817 818 if (IS_ERR(mm)) 819 return PTR_ERR(mm); 820 821 file->private_data = mm; 822 return 0; 823 } 824 825 static int mem_open(struct inode *inode, struct file *file) 826 { 827 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH); 828 829 /* OK to pass negative loff_t, we can catch out-of-range */ 830 file->f_mode |= FMODE_UNSIGNED_OFFSET; 831 832 return ret; 833 } 834 835 static ssize_t mem_rw(struct file *file, char __user *buf, 836 size_t count, loff_t *ppos, int write) 837 { 838 struct mm_struct *mm = file->private_data; 839 unsigned long addr = *ppos; 840 ssize_t copied; 841 char *page; 842 unsigned int flags; 843 844 if (!mm) 845 return 0; 846 847 page = (char *)__get_free_page(GFP_KERNEL); 848 if (!page) 849 return -ENOMEM; 850 851 copied = 0; 852 if (!mmget_not_zero(mm)) 853 goto free; 854 855 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0); 856 857 while (count > 0) { 858 int this_len = min_t(int, count, PAGE_SIZE); 859 860 if (write && copy_from_user(page, buf, this_len)) { 861 copied = -EFAULT; 862 break; 863 } 864 865 this_len = access_remote_vm(mm, addr, page, this_len, flags); 866 if (!this_len) { 867 if (!copied) 868 copied = -EIO; 869 break; 870 } 871 872 if (!write && copy_to_user(buf, page, this_len)) { 873 copied = -EFAULT; 874 break; 875 } 876 877 buf += this_len; 878 addr += this_len; 879 copied += this_len; 880 count -= this_len; 881 } 882 *ppos = addr; 883 884 mmput(mm); 885 free: 886 free_page((unsigned long) page); 887 return copied; 888 } 889 890 static ssize_t mem_read(struct file *file, char __user *buf, 891 size_t count, loff_t *ppos) 892 { 893 return mem_rw(file, buf, count, ppos, 0); 894 } 895 896 static ssize_t mem_write(struct file *file, const char __user *buf, 897 size_t count, loff_t *ppos) 898 { 899 return mem_rw(file, (char __user*)buf, count, ppos, 1); 900 } 901 902 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 903 { 904 switch (orig) { 905 case 0: 906 file->f_pos = offset; 907 break; 908 case 1: 909 file->f_pos += offset; 910 break; 911 default: 912 return -EINVAL; 913 } 914 force_successful_syscall_return(); 915 return file->f_pos; 916 } 917 918 static int mem_release(struct inode *inode, struct file *file) 919 { 920 struct mm_struct *mm = file->private_data; 921 if (mm) 922 mmdrop(mm); 923 return 0; 924 } 925 926 static const struct file_operations proc_mem_operations = { 927 .llseek = mem_lseek, 928 .read = mem_read, 929 .write = mem_write, 930 .open = mem_open, 931 .release = mem_release, 932 }; 933 934 static int environ_open(struct inode *inode, struct file *file) 935 { 936 return __mem_open(inode, file, PTRACE_MODE_READ); 937 } 938 939 static ssize_t environ_read(struct file *file, char __user *buf, 940 size_t count, loff_t *ppos) 941 { 942 char *page; 943 unsigned long src = *ppos; 944 int ret = 0; 945 struct mm_struct *mm = file->private_data; 946 unsigned long env_start, env_end; 947 948 /* Ensure the process spawned far enough to have an environment. */ 949 if (!mm || !mm->env_end) 950 return 0; 951 952 page = (char *)__get_free_page(GFP_KERNEL); 953 if (!page) 954 return -ENOMEM; 955 956 ret = 0; 957 if (!mmget_not_zero(mm)) 958 goto free; 959 960 spin_lock(&mm->arg_lock); 961 env_start = mm->env_start; 962 env_end = mm->env_end; 963 spin_unlock(&mm->arg_lock); 964 965 while (count > 0) { 966 size_t this_len, max_len; 967 int retval; 968 969 if (src >= (env_end - env_start)) 970 break; 971 972 this_len = env_end - (env_start + src); 973 974 max_len = min_t(size_t, PAGE_SIZE, count); 975 this_len = min(max_len, this_len); 976 977 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON); 978 979 if (retval <= 0) { 980 ret = retval; 981 break; 982 } 983 984 if (copy_to_user(buf, page, retval)) { 985 ret = -EFAULT; 986 break; 987 } 988 989 ret += retval; 990 src += retval; 991 buf += retval; 992 count -= retval; 993 } 994 *ppos = src; 995 mmput(mm); 996 997 free: 998 free_page((unsigned long) page); 999 return ret; 1000 } 1001 1002 static const struct file_operations proc_environ_operations = { 1003 .open = environ_open, 1004 .read = environ_read, 1005 .llseek = generic_file_llseek, 1006 .release = mem_release, 1007 }; 1008 1009 static int auxv_open(struct inode *inode, struct file *file) 1010 { 1011 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 1012 } 1013 1014 static ssize_t auxv_read(struct file *file, char __user *buf, 1015 size_t count, loff_t *ppos) 1016 { 1017 struct mm_struct *mm = file->private_data; 1018 unsigned int nwords = 0; 1019 1020 if (!mm) 1021 return 0; 1022 do { 1023 nwords += 2; 1024 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 1025 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv, 1026 nwords * sizeof(mm->saved_auxv[0])); 1027 } 1028 1029 static const struct file_operations proc_auxv_operations = { 1030 .open = auxv_open, 1031 .read = auxv_read, 1032 .llseek = generic_file_llseek, 1033 .release = mem_release, 1034 }; 1035 1036 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count, 1037 loff_t *ppos) 1038 { 1039 struct task_struct *task = get_proc_task(file_inode(file)); 1040 char buffer[PROC_NUMBUF]; 1041 int oom_adj = OOM_ADJUST_MIN; 1042 size_t len; 1043 1044 if (!task) 1045 return -ESRCH; 1046 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX) 1047 oom_adj = OOM_ADJUST_MAX; 1048 else 1049 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) / 1050 OOM_SCORE_ADJ_MAX; 1051 put_task_struct(task); 1052 if (oom_adj > OOM_ADJUST_MAX) 1053 oom_adj = OOM_ADJUST_MAX; 1054 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj); 1055 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1056 } 1057 1058 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy) 1059 { 1060 struct mm_struct *mm = NULL; 1061 struct task_struct *task; 1062 int err = 0; 1063 1064 task = get_proc_task(file_inode(file)); 1065 if (!task) 1066 return -ESRCH; 1067 1068 mutex_lock(&oom_adj_mutex); 1069 if (legacy) { 1070 if (oom_adj < task->signal->oom_score_adj && 1071 !capable(CAP_SYS_RESOURCE)) { 1072 err = -EACCES; 1073 goto err_unlock; 1074 } 1075 /* 1076 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use 1077 * /proc/pid/oom_score_adj instead. 1078 */ 1079 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 1080 current->comm, task_pid_nr(current), task_pid_nr(task), 1081 task_pid_nr(task)); 1082 } else { 1083 if ((short)oom_adj < task->signal->oom_score_adj_min && 1084 !capable(CAP_SYS_RESOURCE)) { 1085 err = -EACCES; 1086 goto err_unlock; 1087 } 1088 } 1089 1090 /* 1091 * Make sure we will check other processes sharing the mm if this is 1092 * not vfrok which wants its own oom_score_adj. 1093 * pin the mm so it doesn't go away and get reused after task_unlock 1094 */ 1095 if (!task->vfork_done) { 1096 struct task_struct *p = find_lock_task_mm(task); 1097 1098 if (p) { 1099 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) { 1100 mm = p->mm; 1101 mmgrab(mm); 1102 } 1103 task_unlock(p); 1104 } 1105 } 1106 1107 task->signal->oom_score_adj = oom_adj; 1108 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1109 task->signal->oom_score_adj_min = (short)oom_adj; 1110 trace_oom_score_adj_update(task); 1111 1112 if (mm) { 1113 struct task_struct *p; 1114 1115 rcu_read_lock(); 1116 for_each_process(p) { 1117 if (same_thread_group(task, p)) 1118 continue; 1119 1120 /* do not touch kernel threads or the global init */ 1121 if (p->flags & PF_KTHREAD || is_global_init(p)) 1122 continue; 1123 1124 task_lock(p); 1125 if (!p->vfork_done && process_shares_mm(p, mm)) { 1126 p->signal->oom_score_adj = oom_adj; 1127 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1128 p->signal->oom_score_adj_min = (short)oom_adj; 1129 } 1130 task_unlock(p); 1131 } 1132 rcu_read_unlock(); 1133 mmdrop(mm); 1134 } 1135 err_unlock: 1136 mutex_unlock(&oom_adj_mutex); 1137 put_task_struct(task); 1138 return err; 1139 } 1140 1141 /* 1142 * /proc/pid/oom_adj exists solely for backwards compatibility with previous 1143 * kernels. The effective policy is defined by oom_score_adj, which has a 1144 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly. 1145 * Values written to oom_adj are simply mapped linearly to oom_score_adj. 1146 * Processes that become oom disabled via oom_adj will still be oom disabled 1147 * with this implementation. 1148 * 1149 * oom_adj cannot be removed since existing userspace binaries use it. 1150 */ 1151 static ssize_t oom_adj_write(struct file *file, const char __user *buf, 1152 size_t count, loff_t *ppos) 1153 { 1154 char buffer[PROC_NUMBUF]; 1155 int oom_adj; 1156 int err; 1157 1158 memset(buffer, 0, sizeof(buffer)); 1159 if (count > sizeof(buffer) - 1) 1160 count = sizeof(buffer) - 1; 1161 if (copy_from_user(buffer, buf, count)) { 1162 err = -EFAULT; 1163 goto out; 1164 } 1165 1166 err = kstrtoint(strstrip(buffer), 0, &oom_adj); 1167 if (err) 1168 goto out; 1169 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) && 1170 oom_adj != OOM_DISABLE) { 1171 err = -EINVAL; 1172 goto out; 1173 } 1174 1175 /* 1176 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 1177 * value is always attainable. 1178 */ 1179 if (oom_adj == OOM_ADJUST_MAX) 1180 oom_adj = OOM_SCORE_ADJ_MAX; 1181 else 1182 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE; 1183 1184 err = __set_oom_adj(file, oom_adj, true); 1185 out: 1186 return err < 0 ? err : count; 1187 } 1188 1189 static const struct file_operations proc_oom_adj_operations = { 1190 .read = oom_adj_read, 1191 .write = oom_adj_write, 1192 .llseek = generic_file_llseek, 1193 }; 1194 1195 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 1196 size_t count, loff_t *ppos) 1197 { 1198 struct task_struct *task = get_proc_task(file_inode(file)); 1199 char buffer[PROC_NUMBUF]; 1200 short oom_score_adj = OOM_SCORE_ADJ_MIN; 1201 size_t len; 1202 1203 if (!task) 1204 return -ESRCH; 1205 oom_score_adj = task->signal->oom_score_adj; 1206 put_task_struct(task); 1207 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj); 1208 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1209 } 1210 1211 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 1212 size_t count, loff_t *ppos) 1213 { 1214 char buffer[PROC_NUMBUF]; 1215 int oom_score_adj; 1216 int err; 1217 1218 memset(buffer, 0, sizeof(buffer)); 1219 if (count > sizeof(buffer) - 1) 1220 count = sizeof(buffer) - 1; 1221 if (copy_from_user(buffer, buf, count)) { 1222 err = -EFAULT; 1223 goto out; 1224 } 1225 1226 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1227 if (err) 1228 goto out; 1229 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1230 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1231 err = -EINVAL; 1232 goto out; 1233 } 1234 1235 err = __set_oom_adj(file, oom_score_adj, false); 1236 out: 1237 return err < 0 ? err : count; 1238 } 1239 1240 static const struct file_operations proc_oom_score_adj_operations = { 1241 .read = oom_score_adj_read, 1242 .write = oom_score_adj_write, 1243 .llseek = default_llseek, 1244 }; 1245 1246 #ifdef CONFIG_AUDIT 1247 #define TMPBUFLEN 11 1248 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1249 size_t count, loff_t *ppos) 1250 { 1251 struct inode * inode = file_inode(file); 1252 struct task_struct *task = get_proc_task(inode); 1253 ssize_t length; 1254 char tmpbuf[TMPBUFLEN]; 1255 1256 if (!task) 1257 return -ESRCH; 1258 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1259 from_kuid(file->f_cred->user_ns, 1260 audit_get_loginuid(task))); 1261 put_task_struct(task); 1262 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1263 } 1264 1265 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1266 size_t count, loff_t *ppos) 1267 { 1268 struct inode * inode = file_inode(file); 1269 uid_t loginuid; 1270 kuid_t kloginuid; 1271 int rv; 1272 1273 /* Don't let kthreads write their own loginuid */ 1274 if (current->flags & PF_KTHREAD) 1275 return -EPERM; 1276 1277 rcu_read_lock(); 1278 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1279 rcu_read_unlock(); 1280 return -EPERM; 1281 } 1282 rcu_read_unlock(); 1283 1284 if (*ppos != 0) { 1285 /* No partial writes. */ 1286 return -EINVAL; 1287 } 1288 1289 rv = kstrtou32_from_user(buf, count, 10, &loginuid); 1290 if (rv < 0) 1291 return rv; 1292 1293 /* is userspace tring to explicitly UNSET the loginuid? */ 1294 if (loginuid == AUDIT_UID_UNSET) { 1295 kloginuid = INVALID_UID; 1296 } else { 1297 kloginuid = make_kuid(file->f_cred->user_ns, loginuid); 1298 if (!uid_valid(kloginuid)) 1299 return -EINVAL; 1300 } 1301 1302 rv = audit_set_loginuid(kloginuid); 1303 if (rv < 0) 1304 return rv; 1305 return count; 1306 } 1307 1308 static const struct file_operations proc_loginuid_operations = { 1309 .read = proc_loginuid_read, 1310 .write = proc_loginuid_write, 1311 .llseek = generic_file_llseek, 1312 }; 1313 1314 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1315 size_t count, loff_t *ppos) 1316 { 1317 struct inode * inode = file_inode(file); 1318 struct task_struct *task = get_proc_task(inode); 1319 ssize_t length; 1320 char tmpbuf[TMPBUFLEN]; 1321 1322 if (!task) 1323 return -ESRCH; 1324 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1325 audit_get_sessionid(task)); 1326 put_task_struct(task); 1327 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1328 } 1329 1330 static const struct file_operations proc_sessionid_operations = { 1331 .read = proc_sessionid_read, 1332 .llseek = generic_file_llseek, 1333 }; 1334 #endif 1335 1336 #ifdef CONFIG_FAULT_INJECTION 1337 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1338 size_t count, loff_t *ppos) 1339 { 1340 struct task_struct *task = get_proc_task(file_inode(file)); 1341 char buffer[PROC_NUMBUF]; 1342 size_t len; 1343 int make_it_fail; 1344 1345 if (!task) 1346 return -ESRCH; 1347 make_it_fail = task->make_it_fail; 1348 put_task_struct(task); 1349 1350 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1351 1352 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1353 } 1354 1355 static ssize_t proc_fault_inject_write(struct file * file, 1356 const char __user * buf, size_t count, loff_t *ppos) 1357 { 1358 struct task_struct *task; 1359 char buffer[PROC_NUMBUF]; 1360 int make_it_fail; 1361 int rv; 1362 1363 if (!capable(CAP_SYS_RESOURCE)) 1364 return -EPERM; 1365 memset(buffer, 0, sizeof(buffer)); 1366 if (count > sizeof(buffer) - 1) 1367 count = sizeof(buffer) - 1; 1368 if (copy_from_user(buffer, buf, count)) 1369 return -EFAULT; 1370 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail); 1371 if (rv < 0) 1372 return rv; 1373 if (make_it_fail < 0 || make_it_fail > 1) 1374 return -EINVAL; 1375 1376 task = get_proc_task(file_inode(file)); 1377 if (!task) 1378 return -ESRCH; 1379 task->make_it_fail = make_it_fail; 1380 put_task_struct(task); 1381 1382 return count; 1383 } 1384 1385 static const struct file_operations proc_fault_inject_operations = { 1386 .read = proc_fault_inject_read, 1387 .write = proc_fault_inject_write, 1388 .llseek = generic_file_llseek, 1389 }; 1390 1391 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf, 1392 size_t count, loff_t *ppos) 1393 { 1394 struct task_struct *task; 1395 int err; 1396 unsigned int n; 1397 1398 err = kstrtouint_from_user(buf, count, 0, &n); 1399 if (err) 1400 return err; 1401 1402 task = get_proc_task(file_inode(file)); 1403 if (!task) 1404 return -ESRCH; 1405 task->fail_nth = n; 1406 put_task_struct(task); 1407 1408 return count; 1409 } 1410 1411 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf, 1412 size_t count, loff_t *ppos) 1413 { 1414 struct task_struct *task; 1415 char numbuf[PROC_NUMBUF]; 1416 ssize_t len; 1417 1418 task = get_proc_task(file_inode(file)); 1419 if (!task) 1420 return -ESRCH; 1421 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth); 1422 put_task_struct(task); 1423 return simple_read_from_buffer(buf, count, ppos, numbuf, len); 1424 } 1425 1426 static const struct file_operations proc_fail_nth_operations = { 1427 .read = proc_fail_nth_read, 1428 .write = proc_fail_nth_write, 1429 }; 1430 #endif 1431 1432 1433 #ifdef CONFIG_SCHED_DEBUG 1434 /* 1435 * Print out various scheduling related per-task fields: 1436 */ 1437 static int sched_show(struct seq_file *m, void *v) 1438 { 1439 struct inode *inode = m->private; 1440 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 1441 struct task_struct *p; 1442 1443 p = get_proc_task(inode); 1444 if (!p) 1445 return -ESRCH; 1446 proc_sched_show_task(p, ns, m); 1447 1448 put_task_struct(p); 1449 1450 return 0; 1451 } 1452 1453 static ssize_t 1454 sched_write(struct file *file, const char __user *buf, 1455 size_t count, loff_t *offset) 1456 { 1457 struct inode *inode = file_inode(file); 1458 struct task_struct *p; 1459 1460 p = get_proc_task(inode); 1461 if (!p) 1462 return -ESRCH; 1463 proc_sched_set_task(p); 1464 1465 put_task_struct(p); 1466 1467 return count; 1468 } 1469 1470 static int sched_open(struct inode *inode, struct file *filp) 1471 { 1472 return single_open(filp, sched_show, inode); 1473 } 1474 1475 static const struct file_operations proc_pid_sched_operations = { 1476 .open = sched_open, 1477 .read = seq_read, 1478 .write = sched_write, 1479 .llseek = seq_lseek, 1480 .release = single_release, 1481 }; 1482 1483 #endif 1484 1485 #ifdef CONFIG_SCHED_AUTOGROUP 1486 /* 1487 * Print out autogroup related information: 1488 */ 1489 static int sched_autogroup_show(struct seq_file *m, void *v) 1490 { 1491 struct inode *inode = m->private; 1492 struct task_struct *p; 1493 1494 p = get_proc_task(inode); 1495 if (!p) 1496 return -ESRCH; 1497 proc_sched_autogroup_show_task(p, m); 1498 1499 put_task_struct(p); 1500 1501 return 0; 1502 } 1503 1504 static ssize_t 1505 sched_autogroup_write(struct file *file, const char __user *buf, 1506 size_t count, loff_t *offset) 1507 { 1508 struct inode *inode = file_inode(file); 1509 struct task_struct *p; 1510 char buffer[PROC_NUMBUF]; 1511 int nice; 1512 int err; 1513 1514 memset(buffer, 0, sizeof(buffer)); 1515 if (count > sizeof(buffer) - 1) 1516 count = sizeof(buffer) - 1; 1517 if (copy_from_user(buffer, buf, count)) 1518 return -EFAULT; 1519 1520 err = kstrtoint(strstrip(buffer), 0, &nice); 1521 if (err < 0) 1522 return err; 1523 1524 p = get_proc_task(inode); 1525 if (!p) 1526 return -ESRCH; 1527 1528 err = proc_sched_autogroup_set_nice(p, nice); 1529 if (err) 1530 count = err; 1531 1532 put_task_struct(p); 1533 1534 return count; 1535 } 1536 1537 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1538 { 1539 int ret; 1540 1541 ret = single_open(filp, sched_autogroup_show, NULL); 1542 if (!ret) { 1543 struct seq_file *m = filp->private_data; 1544 1545 m->private = inode; 1546 } 1547 return ret; 1548 } 1549 1550 static const struct file_operations proc_pid_sched_autogroup_operations = { 1551 .open = sched_autogroup_open, 1552 .read = seq_read, 1553 .write = sched_autogroup_write, 1554 .llseek = seq_lseek, 1555 .release = single_release, 1556 }; 1557 1558 #endif /* CONFIG_SCHED_AUTOGROUP */ 1559 1560 #ifdef CONFIG_TIME_NS 1561 static int timens_offsets_show(struct seq_file *m, void *v) 1562 { 1563 struct task_struct *p; 1564 1565 p = get_proc_task(file_inode(m->file)); 1566 if (!p) 1567 return -ESRCH; 1568 proc_timens_show_offsets(p, m); 1569 1570 put_task_struct(p); 1571 1572 return 0; 1573 } 1574 1575 static ssize_t timens_offsets_write(struct file *file, const char __user *buf, 1576 size_t count, loff_t *ppos) 1577 { 1578 struct inode *inode = file_inode(file); 1579 struct proc_timens_offset offsets[2]; 1580 char *kbuf = NULL, *pos, *next_line; 1581 struct task_struct *p; 1582 int ret, noffsets; 1583 1584 /* Only allow < page size writes at the beginning of the file */ 1585 if ((*ppos != 0) || (count >= PAGE_SIZE)) 1586 return -EINVAL; 1587 1588 /* Slurp in the user data */ 1589 kbuf = memdup_user_nul(buf, count); 1590 if (IS_ERR(kbuf)) 1591 return PTR_ERR(kbuf); 1592 1593 /* Parse the user data */ 1594 ret = -EINVAL; 1595 noffsets = 0; 1596 for (pos = kbuf; pos; pos = next_line) { 1597 struct proc_timens_offset *off = &offsets[noffsets]; 1598 char clock[10]; 1599 int err; 1600 1601 /* Find the end of line and ensure we don't look past it */ 1602 next_line = strchr(pos, '\n'); 1603 if (next_line) { 1604 *next_line = '\0'; 1605 next_line++; 1606 if (*next_line == '\0') 1607 next_line = NULL; 1608 } 1609 1610 err = sscanf(pos, "%9s %lld %lu", clock, 1611 &off->val.tv_sec, &off->val.tv_nsec); 1612 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC) 1613 goto out; 1614 1615 clock[sizeof(clock) - 1] = 0; 1616 if (strcmp(clock, "monotonic") == 0 || 1617 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0) 1618 off->clockid = CLOCK_MONOTONIC; 1619 else if (strcmp(clock, "boottime") == 0 || 1620 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0) 1621 off->clockid = CLOCK_BOOTTIME; 1622 else 1623 goto out; 1624 1625 noffsets++; 1626 if (noffsets == ARRAY_SIZE(offsets)) { 1627 if (next_line) 1628 count = next_line - kbuf; 1629 break; 1630 } 1631 } 1632 1633 ret = -ESRCH; 1634 p = get_proc_task(inode); 1635 if (!p) 1636 goto out; 1637 ret = proc_timens_set_offset(file, p, offsets, noffsets); 1638 put_task_struct(p); 1639 if (ret) 1640 goto out; 1641 1642 ret = count; 1643 out: 1644 kfree(kbuf); 1645 return ret; 1646 } 1647 1648 static int timens_offsets_open(struct inode *inode, struct file *filp) 1649 { 1650 return single_open(filp, timens_offsets_show, inode); 1651 } 1652 1653 static const struct file_operations proc_timens_offsets_operations = { 1654 .open = timens_offsets_open, 1655 .read = seq_read, 1656 .write = timens_offsets_write, 1657 .llseek = seq_lseek, 1658 .release = single_release, 1659 }; 1660 #endif /* CONFIG_TIME_NS */ 1661 1662 static ssize_t comm_write(struct file *file, const char __user *buf, 1663 size_t count, loff_t *offset) 1664 { 1665 struct inode *inode = file_inode(file); 1666 struct task_struct *p; 1667 char buffer[TASK_COMM_LEN]; 1668 const size_t maxlen = sizeof(buffer) - 1; 1669 1670 memset(buffer, 0, sizeof(buffer)); 1671 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count)) 1672 return -EFAULT; 1673 1674 p = get_proc_task(inode); 1675 if (!p) 1676 return -ESRCH; 1677 1678 if (same_thread_group(current, p)) 1679 set_task_comm(p, buffer); 1680 else 1681 count = -EINVAL; 1682 1683 put_task_struct(p); 1684 1685 return count; 1686 } 1687 1688 static int comm_show(struct seq_file *m, void *v) 1689 { 1690 struct inode *inode = m->private; 1691 struct task_struct *p; 1692 1693 p = get_proc_task(inode); 1694 if (!p) 1695 return -ESRCH; 1696 1697 proc_task_name(m, p, false); 1698 seq_putc(m, '\n'); 1699 1700 put_task_struct(p); 1701 1702 return 0; 1703 } 1704 1705 static int comm_open(struct inode *inode, struct file *filp) 1706 { 1707 return single_open(filp, comm_show, inode); 1708 } 1709 1710 static const struct file_operations proc_pid_set_comm_operations = { 1711 .open = comm_open, 1712 .read = seq_read, 1713 .write = comm_write, 1714 .llseek = seq_lseek, 1715 .release = single_release, 1716 }; 1717 1718 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1719 { 1720 struct task_struct *task; 1721 struct file *exe_file; 1722 1723 task = get_proc_task(d_inode(dentry)); 1724 if (!task) 1725 return -ENOENT; 1726 exe_file = get_task_exe_file(task); 1727 put_task_struct(task); 1728 if (exe_file) { 1729 *exe_path = exe_file->f_path; 1730 path_get(&exe_file->f_path); 1731 fput(exe_file); 1732 return 0; 1733 } else 1734 return -ENOENT; 1735 } 1736 1737 static const char *proc_pid_get_link(struct dentry *dentry, 1738 struct inode *inode, 1739 struct delayed_call *done) 1740 { 1741 struct path path; 1742 int error = -EACCES; 1743 1744 if (!dentry) 1745 return ERR_PTR(-ECHILD); 1746 1747 /* Are we allowed to snoop on the tasks file descriptors? */ 1748 if (!proc_fd_access_allowed(inode)) 1749 goto out; 1750 1751 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1752 if (error) 1753 goto out; 1754 1755 error = nd_jump_link(&path); 1756 out: 1757 return ERR_PTR(error); 1758 } 1759 1760 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1761 { 1762 char *tmp = (char *)__get_free_page(GFP_KERNEL); 1763 char *pathname; 1764 int len; 1765 1766 if (!tmp) 1767 return -ENOMEM; 1768 1769 pathname = d_path(path, tmp, PAGE_SIZE); 1770 len = PTR_ERR(pathname); 1771 if (IS_ERR(pathname)) 1772 goto out; 1773 len = tmp + PAGE_SIZE - 1 - pathname; 1774 1775 if (len > buflen) 1776 len = buflen; 1777 if (copy_to_user(buffer, pathname, len)) 1778 len = -EFAULT; 1779 out: 1780 free_page((unsigned long)tmp); 1781 return len; 1782 } 1783 1784 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1785 { 1786 int error = -EACCES; 1787 struct inode *inode = d_inode(dentry); 1788 struct path path; 1789 1790 /* Are we allowed to snoop on the tasks file descriptors? */ 1791 if (!proc_fd_access_allowed(inode)) 1792 goto out; 1793 1794 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1795 if (error) 1796 goto out; 1797 1798 error = do_proc_readlink(&path, buffer, buflen); 1799 path_put(&path); 1800 out: 1801 return error; 1802 } 1803 1804 const struct inode_operations proc_pid_link_inode_operations = { 1805 .readlink = proc_pid_readlink, 1806 .get_link = proc_pid_get_link, 1807 .setattr = proc_setattr, 1808 }; 1809 1810 1811 /* building an inode */ 1812 1813 void task_dump_owner(struct task_struct *task, umode_t mode, 1814 kuid_t *ruid, kgid_t *rgid) 1815 { 1816 /* Depending on the state of dumpable compute who should own a 1817 * proc file for a task. 1818 */ 1819 const struct cred *cred; 1820 kuid_t uid; 1821 kgid_t gid; 1822 1823 if (unlikely(task->flags & PF_KTHREAD)) { 1824 *ruid = GLOBAL_ROOT_UID; 1825 *rgid = GLOBAL_ROOT_GID; 1826 return; 1827 } 1828 1829 /* Default to the tasks effective ownership */ 1830 rcu_read_lock(); 1831 cred = __task_cred(task); 1832 uid = cred->euid; 1833 gid = cred->egid; 1834 rcu_read_unlock(); 1835 1836 /* 1837 * Before the /proc/pid/status file was created the only way to read 1838 * the effective uid of a /process was to stat /proc/pid. Reading 1839 * /proc/pid/status is slow enough that procps and other packages 1840 * kept stating /proc/pid. To keep the rules in /proc simple I have 1841 * made this apply to all per process world readable and executable 1842 * directories. 1843 */ 1844 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) { 1845 struct mm_struct *mm; 1846 task_lock(task); 1847 mm = task->mm; 1848 /* Make non-dumpable tasks owned by some root */ 1849 if (mm) { 1850 if (get_dumpable(mm) != SUID_DUMP_USER) { 1851 struct user_namespace *user_ns = mm->user_ns; 1852 1853 uid = make_kuid(user_ns, 0); 1854 if (!uid_valid(uid)) 1855 uid = GLOBAL_ROOT_UID; 1856 1857 gid = make_kgid(user_ns, 0); 1858 if (!gid_valid(gid)) 1859 gid = GLOBAL_ROOT_GID; 1860 } 1861 } else { 1862 uid = GLOBAL_ROOT_UID; 1863 gid = GLOBAL_ROOT_GID; 1864 } 1865 task_unlock(task); 1866 } 1867 *ruid = uid; 1868 *rgid = gid; 1869 } 1870 1871 void proc_pid_evict_inode(struct proc_inode *ei) 1872 { 1873 struct pid *pid = ei->pid; 1874 1875 if (S_ISDIR(ei->vfs_inode.i_mode)) { 1876 spin_lock(&pid->lock); 1877 hlist_del_init_rcu(&ei->sibling_inodes); 1878 spin_unlock(&pid->lock); 1879 } 1880 1881 put_pid(pid); 1882 } 1883 1884 struct inode *proc_pid_make_inode(struct super_block * sb, 1885 struct task_struct *task, umode_t mode) 1886 { 1887 struct inode * inode; 1888 struct proc_inode *ei; 1889 struct pid *pid; 1890 1891 /* We need a new inode */ 1892 1893 inode = new_inode(sb); 1894 if (!inode) 1895 goto out; 1896 1897 /* Common stuff */ 1898 ei = PROC_I(inode); 1899 inode->i_mode = mode; 1900 inode->i_ino = get_next_ino(); 1901 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1902 inode->i_op = &proc_def_inode_operations; 1903 1904 /* 1905 * grab the reference to task. 1906 */ 1907 pid = get_task_pid(task, PIDTYPE_PID); 1908 if (!pid) 1909 goto out_unlock; 1910 1911 /* Let the pid remember us for quick removal */ 1912 ei->pid = pid; 1913 if (S_ISDIR(mode)) { 1914 spin_lock(&pid->lock); 1915 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes); 1916 spin_unlock(&pid->lock); 1917 } 1918 1919 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1920 security_task_to_inode(task, inode); 1921 1922 out: 1923 return inode; 1924 1925 out_unlock: 1926 iput(inode); 1927 return NULL; 1928 } 1929 1930 int pid_getattr(const struct path *path, struct kstat *stat, 1931 u32 request_mask, unsigned int query_flags) 1932 { 1933 struct inode *inode = d_inode(path->dentry); 1934 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 1935 struct task_struct *task; 1936 1937 generic_fillattr(inode, stat); 1938 1939 stat->uid = GLOBAL_ROOT_UID; 1940 stat->gid = GLOBAL_ROOT_GID; 1941 rcu_read_lock(); 1942 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1943 if (task) { 1944 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) { 1945 rcu_read_unlock(); 1946 /* 1947 * This doesn't prevent learning whether PID exists, 1948 * it only makes getattr() consistent with readdir(). 1949 */ 1950 return -ENOENT; 1951 } 1952 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid); 1953 } 1954 rcu_read_unlock(); 1955 return 0; 1956 } 1957 1958 /* dentry stuff */ 1959 1960 /* 1961 * Set <pid>/... inode ownership (can change due to setuid(), etc.) 1962 */ 1963 void pid_update_inode(struct task_struct *task, struct inode *inode) 1964 { 1965 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid); 1966 1967 inode->i_mode &= ~(S_ISUID | S_ISGID); 1968 security_task_to_inode(task, inode); 1969 } 1970 1971 /* 1972 * Rewrite the inode's ownerships here because the owning task may have 1973 * performed a setuid(), etc. 1974 * 1975 */ 1976 static int pid_revalidate(struct dentry *dentry, unsigned int flags) 1977 { 1978 struct inode *inode; 1979 struct task_struct *task; 1980 1981 if (flags & LOOKUP_RCU) 1982 return -ECHILD; 1983 1984 inode = d_inode(dentry); 1985 task = get_proc_task(inode); 1986 1987 if (task) { 1988 pid_update_inode(task, inode); 1989 put_task_struct(task); 1990 return 1; 1991 } 1992 return 0; 1993 } 1994 1995 static inline bool proc_inode_is_dead(struct inode *inode) 1996 { 1997 return !proc_pid(inode)->tasks[PIDTYPE_PID].first; 1998 } 1999 2000 int pid_delete_dentry(const struct dentry *dentry) 2001 { 2002 /* Is the task we represent dead? 2003 * If so, then don't put the dentry on the lru list, 2004 * kill it immediately. 2005 */ 2006 return proc_inode_is_dead(d_inode(dentry)); 2007 } 2008 2009 const struct dentry_operations pid_dentry_operations = 2010 { 2011 .d_revalidate = pid_revalidate, 2012 .d_delete = pid_delete_dentry, 2013 }; 2014 2015 /* Lookups */ 2016 2017 /* 2018 * Fill a directory entry. 2019 * 2020 * If possible create the dcache entry and derive our inode number and 2021 * file type from dcache entry. 2022 * 2023 * Since all of the proc inode numbers are dynamically generated, the inode 2024 * numbers do not exist until the inode is cache. This means creating the 2025 * the dcache entry in readdir is necessary to keep the inode numbers 2026 * reported by readdir in sync with the inode numbers reported 2027 * by stat. 2028 */ 2029 bool proc_fill_cache(struct file *file, struct dir_context *ctx, 2030 const char *name, unsigned int len, 2031 instantiate_t instantiate, struct task_struct *task, const void *ptr) 2032 { 2033 struct dentry *child, *dir = file->f_path.dentry; 2034 struct qstr qname = QSTR_INIT(name, len); 2035 struct inode *inode; 2036 unsigned type = DT_UNKNOWN; 2037 ino_t ino = 1; 2038 2039 child = d_hash_and_lookup(dir, &qname); 2040 if (!child) { 2041 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2042 child = d_alloc_parallel(dir, &qname, &wq); 2043 if (IS_ERR(child)) 2044 goto end_instantiate; 2045 if (d_in_lookup(child)) { 2046 struct dentry *res; 2047 res = instantiate(child, task, ptr); 2048 d_lookup_done(child); 2049 if (unlikely(res)) { 2050 dput(child); 2051 child = res; 2052 if (IS_ERR(child)) 2053 goto end_instantiate; 2054 } 2055 } 2056 } 2057 inode = d_inode(child); 2058 ino = inode->i_ino; 2059 type = inode->i_mode >> 12; 2060 dput(child); 2061 end_instantiate: 2062 return dir_emit(ctx, name, len, ino, type); 2063 } 2064 2065 /* 2066 * dname_to_vma_addr - maps a dentry name into two unsigned longs 2067 * which represent vma start and end addresses. 2068 */ 2069 static int dname_to_vma_addr(struct dentry *dentry, 2070 unsigned long *start, unsigned long *end) 2071 { 2072 const char *str = dentry->d_name.name; 2073 unsigned long long sval, eval; 2074 unsigned int len; 2075 2076 if (str[0] == '0' && str[1] != '-') 2077 return -EINVAL; 2078 len = _parse_integer(str, 16, &sval); 2079 if (len & KSTRTOX_OVERFLOW) 2080 return -EINVAL; 2081 if (sval != (unsigned long)sval) 2082 return -EINVAL; 2083 str += len; 2084 2085 if (*str != '-') 2086 return -EINVAL; 2087 str++; 2088 2089 if (str[0] == '0' && str[1]) 2090 return -EINVAL; 2091 len = _parse_integer(str, 16, &eval); 2092 if (len & KSTRTOX_OVERFLOW) 2093 return -EINVAL; 2094 if (eval != (unsigned long)eval) 2095 return -EINVAL; 2096 str += len; 2097 2098 if (*str != '\0') 2099 return -EINVAL; 2100 2101 *start = sval; 2102 *end = eval; 2103 2104 return 0; 2105 } 2106 2107 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags) 2108 { 2109 unsigned long vm_start, vm_end; 2110 bool exact_vma_exists = false; 2111 struct mm_struct *mm = NULL; 2112 struct task_struct *task; 2113 struct inode *inode; 2114 int status = 0; 2115 2116 if (flags & LOOKUP_RCU) 2117 return -ECHILD; 2118 2119 inode = d_inode(dentry); 2120 task = get_proc_task(inode); 2121 if (!task) 2122 goto out_notask; 2123 2124 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 2125 if (IS_ERR_OR_NULL(mm)) 2126 goto out; 2127 2128 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 2129 status = mmap_read_lock_killable(mm); 2130 if (!status) { 2131 exact_vma_exists = !!find_exact_vma(mm, vm_start, 2132 vm_end); 2133 mmap_read_unlock(mm); 2134 } 2135 } 2136 2137 mmput(mm); 2138 2139 if (exact_vma_exists) { 2140 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 2141 2142 security_task_to_inode(task, inode); 2143 status = 1; 2144 } 2145 2146 out: 2147 put_task_struct(task); 2148 2149 out_notask: 2150 return status; 2151 } 2152 2153 static const struct dentry_operations tid_map_files_dentry_operations = { 2154 .d_revalidate = map_files_d_revalidate, 2155 .d_delete = pid_delete_dentry, 2156 }; 2157 2158 static int map_files_get_link(struct dentry *dentry, struct path *path) 2159 { 2160 unsigned long vm_start, vm_end; 2161 struct vm_area_struct *vma; 2162 struct task_struct *task; 2163 struct mm_struct *mm; 2164 int rc; 2165 2166 rc = -ENOENT; 2167 task = get_proc_task(d_inode(dentry)); 2168 if (!task) 2169 goto out; 2170 2171 mm = get_task_mm(task); 2172 put_task_struct(task); 2173 if (!mm) 2174 goto out; 2175 2176 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 2177 if (rc) 2178 goto out_mmput; 2179 2180 rc = mmap_read_lock_killable(mm); 2181 if (rc) 2182 goto out_mmput; 2183 2184 rc = -ENOENT; 2185 vma = find_exact_vma(mm, vm_start, vm_end); 2186 if (vma && vma->vm_file) { 2187 *path = vma->vm_file->f_path; 2188 path_get(path); 2189 rc = 0; 2190 } 2191 mmap_read_unlock(mm); 2192 2193 out_mmput: 2194 mmput(mm); 2195 out: 2196 return rc; 2197 } 2198 2199 struct map_files_info { 2200 unsigned long start; 2201 unsigned long end; 2202 fmode_t mode; 2203 }; 2204 2205 /* 2206 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due 2207 * to concerns about how the symlinks may be used to bypass permissions on 2208 * ancestor directories in the path to the file in question. 2209 */ 2210 static const char * 2211 proc_map_files_get_link(struct dentry *dentry, 2212 struct inode *inode, 2213 struct delayed_call *done) 2214 { 2215 if (!checkpoint_restore_ns_capable(&init_user_ns)) 2216 return ERR_PTR(-EPERM); 2217 2218 return proc_pid_get_link(dentry, inode, done); 2219 } 2220 2221 /* 2222 * Identical to proc_pid_link_inode_operations except for get_link() 2223 */ 2224 static const struct inode_operations proc_map_files_link_inode_operations = { 2225 .readlink = proc_pid_readlink, 2226 .get_link = proc_map_files_get_link, 2227 .setattr = proc_setattr, 2228 }; 2229 2230 static struct dentry * 2231 proc_map_files_instantiate(struct dentry *dentry, 2232 struct task_struct *task, const void *ptr) 2233 { 2234 fmode_t mode = (fmode_t)(unsigned long)ptr; 2235 struct proc_inode *ei; 2236 struct inode *inode; 2237 2238 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK | 2239 ((mode & FMODE_READ ) ? S_IRUSR : 0) | 2240 ((mode & FMODE_WRITE) ? S_IWUSR : 0)); 2241 if (!inode) 2242 return ERR_PTR(-ENOENT); 2243 2244 ei = PROC_I(inode); 2245 ei->op.proc_get_link = map_files_get_link; 2246 2247 inode->i_op = &proc_map_files_link_inode_operations; 2248 inode->i_size = 64; 2249 2250 d_set_d_op(dentry, &tid_map_files_dentry_operations); 2251 return d_splice_alias(inode, dentry); 2252 } 2253 2254 static struct dentry *proc_map_files_lookup(struct inode *dir, 2255 struct dentry *dentry, unsigned int flags) 2256 { 2257 unsigned long vm_start, vm_end; 2258 struct vm_area_struct *vma; 2259 struct task_struct *task; 2260 struct dentry *result; 2261 struct mm_struct *mm; 2262 2263 result = ERR_PTR(-ENOENT); 2264 task = get_proc_task(dir); 2265 if (!task) 2266 goto out; 2267 2268 result = ERR_PTR(-EACCES); 2269 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2270 goto out_put_task; 2271 2272 result = ERR_PTR(-ENOENT); 2273 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2274 goto out_put_task; 2275 2276 mm = get_task_mm(task); 2277 if (!mm) 2278 goto out_put_task; 2279 2280 result = ERR_PTR(-EINTR); 2281 if (mmap_read_lock_killable(mm)) 2282 goto out_put_mm; 2283 2284 result = ERR_PTR(-ENOENT); 2285 vma = find_exact_vma(mm, vm_start, vm_end); 2286 if (!vma) 2287 goto out_no_vma; 2288 2289 if (vma->vm_file) 2290 result = proc_map_files_instantiate(dentry, task, 2291 (void *)(unsigned long)vma->vm_file->f_mode); 2292 2293 out_no_vma: 2294 mmap_read_unlock(mm); 2295 out_put_mm: 2296 mmput(mm); 2297 out_put_task: 2298 put_task_struct(task); 2299 out: 2300 return result; 2301 } 2302 2303 static const struct inode_operations proc_map_files_inode_operations = { 2304 .lookup = proc_map_files_lookup, 2305 .permission = proc_fd_permission, 2306 .setattr = proc_setattr, 2307 }; 2308 2309 static int 2310 proc_map_files_readdir(struct file *file, struct dir_context *ctx) 2311 { 2312 struct vm_area_struct *vma; 2313 struct task_struct *task; 2314 struct mm_struct *mm; 2315 unsigned long nr_files, pos, i; 2316 GENRADIX(struct map_files_info) fa; 2317 struct map_files_info *p; 2318 int ret; 2319 2320 genradix_init(&fa); 2321 2322 ret = -ENOENT; 2323 task = get_proc_task(file_inode(file)); 2324 if (!task) 2325 goto out; 2326 2327 ret = -EACCES; 2328 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2329 goto out_put_task; 2330 2331 ret = 0; 2332 if (!dir_emit_dots(file, ctx)) 2333 goto out_put_task; 2334 2335 mm = get_task_mm(task); 2336 if (!mm) 2337 goto out_put_task; 2338 2339 ret = mmap_read_lock_killable(mm); 2340 if (ret) { 2341 mmput(mm); 2342 goto out_put_task; 2343 } 2344 2345 nr_files = 0; 2346 2347 /* 2348 * We need two passes here: 2349 * 2350 * 1) Collect vmas of mapped files with mmap_lock taken 2351 * 2) Release mmap_lock and instantiate entries 2352 * 2353 * otherwise we get lockdep complained, since filldir() 2354 * routine might require mmap_lock taken in might_fault(). 2355 */ 2356 2357 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) { 2358 if (!vma->vm_file) 2359 continue; 2360 if (++pos <= ctx->pos) 2361 continue; 2362 2363 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL); 2364 if (!p) { 2365 ret = -ENOMEM; 2366 mmap_read_unlock(mm); 2367 mmput(mm); 2368 goto out_put_task; 2369 } 2370 2371 p->start = vma->vm_start; 2372 p->end = vma->vm_end; 2373 p->mode = vma->vm_file->f_mode; 2374 } 2375 mmap_read_unlock(mm); 2376 mmput(mm); 2377 2378 for (i = 0; i < nr_files; i++) { 2379 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */ 2380 unsigned int len; 2381 2382 p = genradix_ptr(&fa, i); 2383 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end); 2384 if (!proc_fill_cache(file, ctx, 2385 buf, len, 2386 proc_map_files_instantiate, 2387 task, 2388 (void *)(unsigned long)p->mode)) 2389 break; 2390 ctx->pos++; 2391 } 2392 2393 out_put_task: 2394 put_task_struct(task); 2395 out: 2396 genradix_free(&fa); 2397 return ret; 2398 } 2399 2400 static const struct file_operations proc_map_files_operations = { 2401 .read = generic_read_dir, 2402 .iterate_shared = proc_map_files_readdir, 2403 .llseek = generic_file_llseek, 2404 }; 2405 2406 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 2407 struct timers_private { 2408 struct pid *pid; 2409 struct task_struct *task; 2410 struct sighand_struct *sighand; 2411 struct pid_namespace *ns; 2412 unsigned long flags; 2413 }; 2414 2415 static void *timers_start(struct seq_file *m, loff_t *pos) 2416 { 2417 struct timers_private *tp = m->private; 2418 2419 tp->task = get_pid_task(tp->pid, PIDTYPE_PID); 2420 if (!tp->task) 2421 return ERR_PTR(-ESRCH); 2422 2423 tp->sighand = lock_task_sighand(tp->task, &tp->flags); 2424 if (!tp->sighand) 2425 return ERR_PTR(-ESRCH); 2426 2427 return seq_list_start(&tp->task->signal->posix_timers, *pos); 2428 } 2429 2430 static void *timers_next(struct seq_file *m, void *v, loff_t *pos) 2431 { 2432 struct timers_private *tp = m->private; 2433 return seq_list_next(v, &tp->task->signal->posix_timers, pos); 2434 } 2435 2436 static void timers_stop(struct seq_file *m, void *v) 2437 { 2438 struct timers_private *tp = m->private; 2439 2440 if (tp->sighand) { 2441 unlock_task_sighand(tp->task, &tp->flags); 2442 tp->sighand = NULL; 2443 } 2444 2445 if (tp->task) { 2446 put_task_struct(tp->task); 2447 tp->task = NULL; 2448 } 2449 } 2450 2451 static int show_timer(struct seq_file *m, void *v) 2452 { 2453 struct k_itimer *timer; 2454 struct timers_private *tp = m->private; 2455 int notify; 2456 static const char * const nstr[] = { 2457 [SIGEV_SIGNAL] = "signal", 2458 [SIGEV_NONE] = "none", 2459 [SIGEV_THREAD] = "thread", 2460 }; 2461 2462 timer = list_entry((struct list_head *)v, struct k_itimer, list); 2463 notify = timer->it_sigev_notify; 2464 2465 seq_printf(m, "ID: %d\n", timer->it_id); 2466 seq_printf(m, "signal: %d/%px\n", 2467 timer->sigq->info.si_signo, 2468 timer->sigq->info.si_value.sival_ptr); 2469 seq_printf(m, "notify: %s/%s.%d\n", 2470 nstr[notify & ~SIGEV_THREAD_ID], 2471 (notify & SIGEV_THREAD_ID) ? "tid" : "pid", 2472 pid_nr_ns(timer->it_pid, tp->ns)); 2473 seq_printf(m, "ClockID: %d\n", timer->it_clock); 2474 2475 return 0; 2476 } 2477 2478 static const struct seq_operations proc_timers_seq_ops = { 2479 .start = timers_start, 2480 .next = timers_next, 2481 .stop = timers_stop, 2482 .show = show_timer, 2483 }; 2484 2485 static int proc_timers_open(struct inode *inode, struct file *file) 2486 { 2487 struct timers_private *tp; 2488 2489 tp = __seq_open_private(file, &proc_timers_seq_ops, 2490 sizeof(struct timers_private)); 2491 if (!tp) 2492 return -ENOMEM; 2493 2494 tp->pid = proc_pid(inode); 2495 tp->ns = proc_pid_ns(inode->i_sb); 2496 return 0; 2497 } 2498 2499 static const struct file_operations proc_timers_operations = { 2500 .open = proc_timers_open, 2501 .read = seq_read, 2502 .llseek = seq_lseek, 2503 .release = seq_release_private, 2504 }; 2505 #endif 2506 2507 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf, 2508 size_t count, loff_t *offset) 2509 { 2510 struct inode *inode = file_inode(file); 2511 struct task_struct *p; 2512 u64 slack_ns; 2513 int err; 2514 2515 err = kstrtoull_from_user(buf, count, 10, &slack_ns); 2516 if (err < 0) 2517 return err; 2518 2519 p = get_proc_task(inode); 2520 if (!p) 2521 return -ESRCH; 2522 2523 if (p != current) { 2524 rcu_read_lock(); 2525 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2526 rcu_read_unlock(); 2527 count = -EPERM; 2528 goto out; 2529 } 2530 rcu_read_unlock(); 2531 2532 err = security_task_setscheduler(p); 2533 if (err) { 2534 count = err; 2535 goto out; 2536 } 2537 } 2538 2539 task_lock(p); 2540 if (slack_ns == 0) 2541 p->timer_slack_ns = p->default_timer_slack_ns; 2542 else 2543 p->timer_slack_ns = slack_ns; 2544 task_unlock(p); 2545 2546 out: 2547 put_task_struct(p); 2548 2549 return count; 2550 } 2551 2552 static int timerslack_ns_show(struct seq_file *m, void *v) 2553 { 2554 struct inode *inode = m->private; 2555 struct task_struct *p; 2556 int err = 0; 2557 2558 p = get_proc_task(inode); 2559 if (!p) 2560 return -ESRCH; 2561 2562 if (p != current) { 2563 rcu_read_lock(); 2564 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2565 rcu_read_unlock(); 2566 err = -EPERM; 2567 goto out; 2568 } 2569 rcu_read_unlock(); 2570 2571 err = security_task_getscheduler(p); 2572 if (err) 2573 goto out; 2574 } 2575 2576 task_lock(p); 2577 seq_printf(m, "%llu\n", p->timer_slack_ns); 2578 task_unlock(p); 2579 2580 out: 2581 put_task_struct(p); 2582 2583 return err; 2584 } 2585 2586 static int timerslack_ns_open(struct inode *inode, struct file *filp) 2587 { 2588 return single_open(filp, timerslack_ns_show, inode); 2589 } 2590 2591 static const struct file_operations proc_pid_set_timerslack_ns_operations = { 2592 .open = timerslack_ns_open, 2593 .read = seq_read, 2594 .write = timerslack_ns_write, 2595 .llseek = seq_lseek, 2596 .release = single_release, 2597 }; 2598 2599 static struct dentry *proc_pident_instantiate(struct dentry *dentry, 2600 struct task_struct *task, const void *ptr) 2601 { 2602 const struct pid_entry *p = ptr; 2603 struct inode *inode; 2604 struct proc_inode *ei; 2605 2606 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode); 2607 if (!inode) 2608 return ERR_PTR(-ENOENT); 2609 2610 ei = PROC_I(inode); 2611 if (S_ISDIR(inode->i_mode)) 2612 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2613 if (p->iop) 2614 inode->i_op = p->iop; 2615 if (p->fop) 2616 inode->i_fop = p->fop; 2617 ei->op = p->op; 2618 pid_update_inode(task, inode); 2619 d_set_d_op(dentry, &pid_dentry_operations); 2620 return d_splice_alias(inode, dentry); 2621 } 2622 2623 static struct dentry *proc_pident_lookup(struct inode *dir, 2624 struct dentry *dentry, 2625 const struct pid_entry *p, 2626 const struct pid_entry *end) 2627 { 2628 struct task_struct *task = get_proc_task(dir); 2629 struct dentry *res = ERR_PTR(-ENOENT); 2630 2631 if (!task) 2632 goto out_no_task; 2633 2634 /* 2635 * Yes, it does not scale. And it should not. Don't add 2636 * new entries into /proc/<tgid>/ without very good reasons. 2637 */ 2638 for (; p < end; p++) { 2639 if (p->len != dentry->d_name.len) 2640 continue; 2641 if (!memcmp(dentry->d_name.name, p->name, p->len)) { 2642 res = proc_pident_instantiate(dentry, task, p); 2643 break; 2644 } 2645 } 2646 put_task_struct(task); 2647 out_no_task: 2648 return res; 2649 } 2650 2651 static int proc_pident_readdir(struct file *file, struct dir_context *ctx, 2652 const struct pid_entry *ents, unsigned int nents) 2653 { 2654 struct task_struct *task = get_proc_task(file_inode(file)); 2655 const struct pid_entry *p; 2656 2657 if (!task) 2658 return -ENOENT; 2659 2660 if (!dir_emit_dots(file, ctx)) 2661 goto out; 2662 2663 if (ctx->pos >= nents + 2) 2664 goto out; 2665 2666 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) { 2667 if (!proc_fill_cache(file, ctx, p->name, p->len, 2668 proc_pident_instantiate, task, p)) 2669 break; 2670 ctx->pos++; 2671 } 2672 out: 2673 put_task_struct(task); 2674 return 0; 2675 } 2676 2677 #ifdef CONFIG_SECURITY 2678 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2679 size_t count, loff_t *ppos) 2680 { 2681 struct inode * inode = file_inode(file); 2682 char *p = NULL; 2683 ssize_t length; 2684 struct task_struct *task = get_proc_task(inode); 2685 2686 if (!task) 2687 return -ESRCH; 2688 2689 length = security_getprocattr(task, PROC_I(inode)->op.lsm, 2690 (char*)file->f_path.dentry->d_name.name, 2691 &p); 2692 put_task_struct(task); 2693 if (length > 0) 2694 length = simple_read_from_buffer(buf, count, ppos, p, length); 2695 kfree(p); 2696 return length; 2697 } 2698 2699 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2700 size_t count, loff_t *ppos) 2701 { 2702 struct inode * inode = file_inode(file); 2703 struct task_struct *task; 2704 void *page; 2705 int rv; 2706 2707 rcu_read_lock(); 2708 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2709 if (!task) { 2710 rcu_read_unlock(); 2711 return -ESRCH; 2712 } 2713 /* A task may only write its own attributes. */ 2714 if (current != task) { 2715 rcu_read_unlock(); 2716 return -EACCES; 2717 } 2718 /* Prevent changes to overridden credentials. */ 2719 if (current_cred() != current_real_cred()) { 2720 rcu_read_unlock(); 2721 return -EBUSY; 2722 } 2723 rcu_read_unlock(); 2724 2725 if (count > PAGE_SIZE) 2726 count = PAGE_SIZE; 2727 2728 /* No partial writes. */ 2729 if (*ppos != 0) 2730 return -EINVAL; 2731 2732 page = memdup_user(buf, count); 2733 if (IS_ERR(page)) { 2734 rv = PTR_ERR(page); 2735 goto out; 2736 } 2737 2738 /* Guard against adverse ptrace interaction */ 2739 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex); 2740 if (rv < 0) 2741 goto out_free; 2742 2743 rv = security_setprocattr(PROC_I(inode)->op.lsm, 2744 file->f_path.dentry->d_name.name, page, 2745 count); 2746 mutex_unlock(¤t->signal->cred_guard_mutex); 2747 out_free: 2748 kfree(page); 2749 out: 2750 return rv; 2751 } 2752 2753 static const struct file_operations proc_pid_attr_operations = { 2754 .read = proc_pid_attr_read, 2755 .write = proc_pid_attr_write, 2756 .llseek = generic_file_llseek, 2757 }; 2758 2759 #define LSM_DIR_OPS(LSM) \ 2760 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \ 2761 struct dir_context *ctx) \ 2762 { \ 2763 return proc_pident_readdir(filp, ctx, \ 2764 LSM##_attr_dir_stuff, \ 2765 ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2766 } \ 2767 \ 2768 static const struct file_operations proc_##LSM##_attr_dir_ops = { \ 2769 .read = generic_read_dir, \ 2770 .iterate = proc_##LSM##_attr_dir_iterate, \ 2771 .llseek = default_llseek, \ 2772 }; \ 2773 \ 2774 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \ 2775 struct dentry *dentry, unsigned int flags) \ 2776 { \ 2777 return proc_pident_lookup(dir, dentry, \ 2778 LSM##_attr_dir_stuff, \ 2779 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2780 } \ 2781 \ 2782 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \ 2783 .lookup = proc_##LSM##_attr_dir_lookup, \ 2784 .getattr = pid_getattr, \ 2785 .setattr = proc_setattr, \ 2786 } 2787 2788 #ifdef CONFIG_SECURITY_SMACK 2789 static const struct pid_entry smack_attr_dir_stuff[] = { 2790 ATTR("smack", "current", 0666), 2791 }; 2792 LSM_DIR_OPS(smack); 2793 #endif 2794 2795 #ifdef CONFIG_SECURITY_APPARMOR 2796 static const struct pid_entry apparmor_attr_dir_stuff[] = { 2797 ATTR("apparmor", "current", 0666), 2798 ATTR("apparmor", "prev", 0444), 2799 ATTR("apparmor", "exec", 0666), 2800 }; 2801 LSM_DIR_OPS(apparmor); 2802 #endif 2803 2804 static const struct pid_entry attr_dir_stuff[] = { 2805 ATTR(NULL, "current", 0666), 2806 ATTR(NULL, "prev", 0444), 2807 ATTR(NULL, "exec", 0666), 2808 ATTR(NULL, "fscreate", 0666), 2809 ATTR(NULL, "keycreate", 0666), 2810 ATTR(NULL, "sockcreate", 0666), 2811 #ifdef CONFIG_SECURITY_SMACK 2812 DIR("smack", 0555, 2813 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops), 2814 #endif 2815 #ifdef CONFIG_SECURITY_APPARMOR 2816 DIR("apparmor", 0555, 2817 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops), 2818 #endif 2819 }; 2820 2821 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx) 2822 { 2823 return proc_pident_readdir(file, ctx, 2824 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2825 } 2826 2827 static const struct file_operations proc_attr_dir_operations = { 2828 .read = generic_read_dir, 2829 .iterate_shared = proc_attr_dir_readdir, 2830 .llseek = generic_file_llseek, 2831 }; 2832 2833 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2834 struct dentry *dentry, unsigned int flags) 2835 { 2836 return proc_pident_lookup(dir, dentry, 2837 attr_dir_stuff, 2838 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff)); 2839 } 2840 2841 static const struct inode_operations proc_attr_dir_inode_operations = { 2842 .lookup = proc_attr_dir_lookup, 2843 .getattr = pid_getattr, 2844 .setattr = proc_setattr, 2845 }; 2846 2847 #endif 2848 2849 #ifdef CONFIG_ELF_CORE 2850 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2851 size_t count, loff_t *ppos) 2852 { 2853 struct task_struct *task = get_proc_task(file_inode(file)); 2854 struct mm_struct *mm; 2855 char buffer[PROC_NUMBUF]; 2856 size_t len; 2857 int ret; 2858 2859 if (!task) 2860 return -ESRCH; 2861 2862 ret = 0; 2863 mm = get_task_mm(task); 2864 if (mm) { 2865 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2866 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2867 MMF_DUMP_FILTER_SHIFT)); 2868 mmput(mm); 2869 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2870 } 2871 2872 put_task_struct(task); 2873 2874 return ret; 2875 } 2876 2877 static ssize_t proc_coredump_filter_write(struct file *file, 2878 const char __user *buf, 2879 size_t count, 2880 loff_t *ppos) 2881 { 2882 struct task_struct *task; 2883 struct mm_struct *mm; 2884 unsigned int val; 2885 int ret; 2886 int i; 2887 unsigned long mask; 2888 2889 ret = kstrtouint_from_user(buf, count, 0, &val); 2890 if (ret < 0) 2891 return ret; 2892 2893 ret = -ESRCH; 2894 task = get_proc_task(file_inode(file)); 2895 if (!task) 2896 goto out_no_task; 2897 2898 mm = get_task_mm(task); 2899 if (!mm) 2900 goto out_no_mm; 2901 ret = 0; 2902 2903 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2904 if (val & mask) 2905 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2906 else 2907 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2908 } 2909 2910 mmput(mm); 2911 out_no_mm: 2912 put_task_struct(task); 2913 out_no_task: 2914 if (ret < 0) 2915 return ret; 2916 return count; 2917 } 2918 2919 static const struct file_operations proc_coredump_filter_operations = { 2920 .read = proc_coredump_filter_read, 2921 .write = proc_coredump_filter_write, 2922 .llseek = generic_file_llseek, 2923 }; 2924 #endif 2925 2926 #ifdef CONFIG_TASK_IO_ACCOUNTING 2927 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole) 2928 { 2929 struct task_io_accounting acct = task->ioac; 2930 unsigned long flags; 2931 int result; 2932 2933 result = mutex_lock_killable(&task->signal->exec_update_mutex); 2934 if (result) 2935 return result; 2936 2937 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) { 2938 result = -EACCES; 2939 goto out_unlock; 2940 } 2941 2942 if (whole && lock_task_sighand(task, &flags)) { 2943 struct task_struct *t = task; 2944 2945 task_io_accounting_add(&acct, &task->signal->ioac); 2946 while_each_thread(task, t) 2947 task_io_accounting_add(&acct, &t->ioac); 2948 2949 unlock_task_sighand(task, &flags); 2950 } 2951 seq_printf(m, 2952 "rchar: %llu\n" 2953 "wchar: %llu\n" 2954 "syscr: %llu\n" 2955 "syscw: %llu\n" 2956 "read_bytes: %llu\n" 2957 "write_bytes: %llu\n" 2958 "cancelled_write_bytes: %llu\n", 2959 (unsigned long long)acct.rchar, 2960 (unsigned long long)acct.wchar, 2961 (unsigned long long)acct.syscr, 2962 (unsigned long long)acct.syscw, 2963 (unsigned long long)acct.read_bytes, 2964 (unsigned long long)acct.write_bytes, 2965 (unsigned long long)acct.cancelled_write_bytes); 2966 result = 0; 2967 2968 out_unlock: 2969 mutex_unlock(&task->signal->exec_update_mutex); 2970 return result; 2971 } 2972 2973 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2974 struct pid *pid, struct task_struct *task) 2975 { 2976 return do_io_accounting(task, m, 0); 2977 } 2978 2979 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2980 struct pid *pid, struct task_struct *task) 2981 { 2982 return do_io_accounting(task, m, 1); 2983 } 2984 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 2985 2986 #ifdef CONFIG_USER_NS 2987 static int proc_id_map_open(struct inode *inode, struct file *file, 2988 const struct seq_operations *seq_ops) 2989 { 2990 struct user_namespace *ns = NULL; 2991 struct task_struct *task; 2992 struct seq_file *seq; 2993 int ret = -EINVAL; 2994 2995 task = get_proc_task(inode); 2996 if (task) { 2997 rcu_read_lock(); 2998 ns = get_user_ns(task_cred_xxx(task, user_ns)); 2999 rcu_read_unlock(); 3000 put_task_struct(task); 3001 } 3002 if (!ns) 3003 goto err; 3004 3005 ret = seq_open(file, seq_ops); 3006 if (ret) 3007 goto err_put_ns; 3008 3009 seq = file->private_data; 3010 seq->private = ns; 3011 3012 return 0; 3013 err_put_ns: 3014 put_user_ns(ns); 3015 err: 3016 return ret; 3017 } 3018 3019 static int proc_id_map_release(struct inode *inode, struct file *file) 3020 { 3021 struct seq_file *seq = file->private_data; 3022 struct user_namespace *ns = seq->private; 3023 put_user_ns(ns); 3024 return seq_release(inode, file); 3025 } 3026 3027 static int proc_uid_map_open(struct inode *inode, struct file *file) 3028 { 3029 return proc_id_map_open(inode, file, &proc_uid_seq_operations); 3030 } 3031 3032 static int proc_gid_map_open(struct inode *inode, struct file *file) 3033 { 3034 return proc_id_map_open(inode, file, &proc_gid_seq_operations); 3035 } 3036 3037 static int proc_projid_map_open(struct inode *inode, struct file *file) 3038 { 3039 return proc_id_map_open(inode, file, &proc_projid_seq_operations); 3040 } 3041 3042 static const struct file_operations proc_uid_map_operations = { 3043 .open = proc_uid_map_open, 3044 .write = proc_uid_map_write, 3045 .read = seq_read, 3046 .llseek = seq_lseek, 3047 .release = proc_id_map_release, 3048 }; 3049 3050 static const struct file_operations proc_gid_map_operations = { 3051 .open = proc_gid_map_open, 3052 .write = proc_gid_map_write, 3053 .read = seq_read, 3054 .llseek = seq_lseek, 3055 .release = proc_id_map_release, 3056 }; 3057 3058 static const struct file_operations proc_projid_map_operations = { 3059 .open = proc_projid_map_open, 3060 .write = proc_projid_map_write, 3061 .read = seq_read, 3062 .llseek = seq_lseek, 3063 .release = proc_id_map_release, 3064 }; 3065 3066 static int proc_setgroups_open(struct inode *inode, struct file *file) 3067 { 3068 struct user_namespace *ns = NULL; 3069 struct task_struct *task; 3070 int ret; 3071 3072 ret = -ESRCH; 3073 task = get_proc_task(inode); 3074 if (task) { 3075 rcu_read_lock(); 3076 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3077 rcu_read_unlock(); 3078 put_task_struct(task); 3079 } 3080 if (!ns) 3081 goto err; 3082 3083 if (file->f_mode & FMODE_WRITE) { 3084 ret = -EACCES; 3085 if (!ns_capable(ns, CAP_SYS_ADMIN)) 3086 goto err_put_ns; 3087 } 3088 3089 ret = single_open(file, &proc_setgroups_show, ns); 3090 if (ret) 3091 goto err_put_ns; 3092 3093 return 0; 3094 err_put_ns: 3095 put_user_ns(ns); 3096 err: 3097 return ret; 3098 } 3099 3100 static int proc_setgroups_release(struct inode *inode, struct file *file) 3101 { 3102 struct seq_file *seq = file->private_data; 3103 struct user_namespace *ns = seq->private; 3104 int ret = single_release(inode, file); 3105 put_user_ns(ns); 3106 return ret; 3107 } 3108 3109 static const struct file_operations proc_setgroups_operations = { 3110 .open = proc_setgroups_open, 3111 .write = proc_setgroups_write, 3112 .read = seq_read, 3113 .llseek = seq_lseek, 3114 .release = proc_setgroups_release, 3115 }; 3116 #endif /* CONFIG_USER_NS */ 3117 3118 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 3119 struct pid *pid, struct task_struct *task) 3120 { 3121 int err = lock_trace(task); 3122 if (!err) { 3123 seq_printf(m, "%08x\n", task->personality); 3124 unlock_trace(task); 3125 } 3126 return err; 3127 } 3128 3129 #ifdef CONFIG_LIVEPATCH 3130 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns, 3131 struct pid *pid, struct task_struct *task) 3132 { 3133 seq_printf(m, "%d\n", task->patch_state); 3134 return 0; 3135 } 3136 #endif /* CONFIG_LIVEPATCH */ 3137 3138 #ifdef CONFIG_STACKLEAK_METRICS 3139 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns, 3140 struct pid *pid, struct task_struct *task) 3141 { 3142 unsigned long prev_depth = THREAD_SIZE - 3143 (task->prev_lowest_stack & (THREAD_SIZE - 1)); 3144 unsigned long depth = THREAD_SIZE - 3145 (task->lowest_stack & (THREAD_SIZE - 1)); 3146 3147 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n", 3148 prev_depth, depth); 3149 return 0; 3150 } 3151 #endif /* CONFIG_STACKLEAK_METRICS */ 3152 3153 /* 3154 * Thread groups 3155 */ 3156 static const struct file_operations proc_task_operations; 3157 static const struct inode_operations proc_task_inode_operations; 3158 3159 static const struct pid_entry tgid_base_stuff[] = { 3160 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 3161 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3162 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 3163 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3164 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3165 #ifdef CONFIG_NET 3166 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3167 #endif 3168 REG("environ", S_IRUSR, proc_environ_operations), 3169 REG("auxv", S_IRUSR, proc_auxv_operations), 3170 ONE("status", S_IRUGO, proc_pid_status), 3171 ONE("personality", S_IRUSR, proc_pid_personality), 3172 ONE("limits", S_IRUGO, proc_pid_limits), 3173 #ifdef CONFIG_SCHED_DEBUG 3174 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3175 #endif 3176 #ifdef CONFIG_SCHED_AUTOGROUP 3177 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 3178 #endif 3179 #ifdef CONFIG_TIME_NS 3180 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations), 3181 #endif 3182 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 3183 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3184 ONE("syscall", S_IRUSR, proc_pid_syscall), 3185 #endif 3186 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3187 ONE("stat", S_IRUGO, proc_tgid_stat), 3188 ONE("statm", S_IRUGO, proc_pid_statm), 3189 REG("maps", S_IRUGO, proc_pid_maps_operations), 3190 #ifdef CONFIG_NUMA 3191 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3192 #endif 3193 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3194 LNK("cwd", proc_cwd_link), 3195 LNK("root", proc_root_link), 3196 LNK("exe", proc_exe_link), 3197 REG("mounts", S_IRUGO, proc_mounts_operations), 3198 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3199 REG("mountstats", S_IRUSR, proc_mountstats_operations), 3200 #ifdef CONFIG_PROC_PAGE_MONITOR 3201 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3202 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3203 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3204 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3205 #endif 3206 #ifdef CONFIG_SECURITY 3207 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3208 #endif 3209 #ifdef CONFIG_KALLSYMS 3210 ONE("wchan", S_IRUGO, proc_pid_wchan), 3211 #endif 3212 #ifdef CONFIG_STACKTRACE 3213 ONE("stack", S_IRUSR, proc_pid_stack), 3214 #endif 3215 #ifdef CONFIG_SCHED_INFO 3216 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3217 #endif 3218 #ifdef CONFIG_LATENCYTOP 3219 REG("latency", S_IRUGO, proc_lstats_operations), 3220 #endif 3221 #ifdef CONFIG_PROC_PID_CPUSET 3222 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3223 #endif 3224 #ifdef CONFIG_CGROUPS 3225 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3226 #endif 3227 #ifdef CONFIG_PROC_CPU_RESCTRL 3228 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3229 #endif 3230 ONE("oom_score", S_IRUGO, proc_oom_score), 3231 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3232 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3233 #ifdef CONFIG_AUDIT 3234 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3235 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3236 #endif 3237 #ifdef CONFIG_FAULT_INJECTION 3238 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3239 REG("fail-nth", 0644, proc_fail_nth_operations), 3240 #endif 3241 #ifdef CONFIG_ELF_CORE 3242 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 3243 #endif 3244 #ifdef CONFIG_TASK_IO_ACCOUNTING 3245 ONE("io", S_IRUSR, proc_tgid_io_accounting), 3246 #endif 3247 #ifdef CONFIG_USER_NS 3248 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3249 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3250 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3251 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3252 #endif 3253 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 3254 REG("timers", S_IRUGO, proc_timers_operations), 3255 #endif 3256 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations), 3257 #ifdef CONFIG_LIVEPATCH 3258 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3259 #endif 3260 #ifdef CONFIG_STACKLEAK_METRICS 3261 ONE("stack_depth", S_IRUGO, proc_stack_depth), 3262 #endif 3263 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3264 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3265 #endif 3266 }; 3267 3268 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx) 3269 { 3270 return proc_pident_readdir(file, ctx, 3271 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3272 } 3273 3274 static const struct file_operations proc_tgid_base_operations = { 3275 .read = generic_read_dir, 3276 .iterate_shared = proc_tgid_base_readdir, 3277 .llseek = generic_file_llseek, 3278 }; 3279 3280 struct pid *tgid_pidfd_to_pid(const struct file *file) 3281 { 3282 if (file->f_op != &proc_tgid_base_operations) 3283 return ERR_PTR(-EBADF); 3284 3285 return proc_pid(file_inode(file)); 3286 } 3287 3288 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3289 { 3290 return proc_pident_lookup(dir, dentry, 3291 tgid_base_stuff, 3292 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff)); 3293 } 3294 3295 static const struct inode_operations proc_tgid_base_inode_operations = { 3296 .lookup = proc_tgid_base_lookup, 3297 .getattr = pid_getattr, 3298 .setattr = proc_setattr, 3299 .permission = proc_pid_permission, 3300 }; 3301 3302 /** 3303 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache. 3304 * @pid: pid that should be flushed. 3305 * 3306 * This function walks a list of inodes (that belong to any proc 3307 * filesystem) that are attached to the pid and flushes them from 3308 * the dentry cache. 3309 * 3310 * It is safe and reasonable to cache /proc entries for a task until 3311 * that task exits. After that they just clog up the dcache with 3312 * useless entries, possibly causing useful dcache entries to be 3313 * flushed instead. This routine is provided to flush those useless 3314 * dcache entries when a process is reaped. 3315 * 3316 * NOTE: This routine is just an optimization so it does not guarantee 3317 * that no dcache entries will exist after a process is reaped 3318 * it just makes it very unlikely that any will persist. 3319 */ 3320 3321 void proc_flush_pid(struct pid *pid) 3322 { 3323 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock); 3324 } 3325 3326 static struct dentry *proc_pid_instantiate(struct dentry * dentry, 3327 struct task_struct *task, const void *ptr) 3328 { 3329 struct inode *inode; 3330 3331 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3332 if (!inode) 3333 return ERR_PTR(-ENOENT); 3334 3335 inode->i_op = &proc_tgid_base_inode_operations; 3336 inode->i_fop = &proc_tgid_base_operations; 3337 inode->i_flags|=S_IMMUTABLE; 3338 3339 set_nlink(inode, nlink_tgid); 3340 pid_update_inode(task, inode); 3341 3342 d_set_d_op(dentry, &pid_dentry_operations); 3343 return d_splice_alias(inode, dentry); 3344 } 3345 3346 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags) 3347 { 3348 struct task_struct *task; 3349 unsigned tgid; 3350 struct proc_fs_info *fs_info; 3351 struct pid_namespace *ns; 3352 struct dentry *result = ERR_PTR(-ENOENT); 3353 3354 tgid = name_to_int(&dentry->d_name); 3355 if (tgid == ~0U) 3356 goto out; 3357 3358 fs_info = proc_sb_info(dentry->d_sb); 3359 ns = fs_info->pid_ns; 3360 rcu_read_lock(); 3361 task = find_task_by_pid_ns(tgid, ns); 3362 if (task) 3363 get_task_struct(task); 3364 rcu_read_unlock(); 3365 if (!task) 3366 goto out; 3367 3368 /* Limit procfs to only ptraceable tasks */ 3369 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) { 3370 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS)) 3371 goto out_put_task; 3372 } 3373 3374 result = proc_pid_instantiate(dentry, task, NULL); 3375 out_put_task: 3376 put_task_struct(task); 3377 out: 3378 return result; 3379 } 3380 3381 /* 3382 * Find the first task with tgid >= tgid 3383 * 3384 */ 3385 struct tgid_iter { 3386 unsigned int tgid; 3387 struct task_struct *task; 3388 }; 3389 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3390 { 3391 struct pid *pid; 3392 3393 if (iter.task) 3394 put_task_struct(iter.task); 3395 rcu_read_lock(); 3396 retry: 3397 iter.task = NULL; 3398 pid = find_ge_pid(iter.tgid, ns); 3399 if (pid) { 3400 iter.tgid = pid_nr_ns(pid, ns); 3401 iter.task = pid_task(pid, PIDTYPE_TGID); 3402 if (!iter.task) { 3403 iter.tgid += 1; 3404 goto retry; 3405 } 3406 get_task_struct(iter.task); 3407 } 3408 rcu_read_unlock(); 3409 return iter; 3410 } 3411 3412 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2) 3413 3414 /* for the /proc/ directory itself, after non-process stuff has been done */ 3415 int proc_pid_readdir(struct file *file, struct dir_context *ctx) 3416 { 3417 struct tgid_iter iter; 3418 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb); 3419 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb); 3420 loff_t pos = ctx->pos; 3421 3422 if (pos >= PID_MAX_LIMIT + TGID_OFFSET) 3423 return 0; 3424 3425 if (pos == TGID_OFFSET - 2) { 3426 struct inode *inode = d_inode(fs_info->proc_self); 3427 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK)) 3428 return 0; 3429 ctx->pos = pos = pos + 1; 3430 } 3431 if (pos == TGID_OFFSET - 1) { 3432 struct inode *inode = d_inode(fs_info->proc_thread_self); 3433 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK)) 3434 return 0; 3435 ctx->pos = pos = pos + 1; 3436 } 3437 iter.tgid = pos - TGID_OFFSET; 3438 iter.task = NULL; 3439 for (iter = next_tgid(ns, iter); 3440 iter.task; 3441 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3442 char name[10 + 1]; 3443 unsigned int len; 3444 3445 cond_resched(); 3446 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE)) 3447 continue; 3448 3449 len = snprintf(name, sizeof(name), "%u", iter.tgid); 3450 ctx->pos = iter.tgid + TGID_OFFSET; 3451 if (!proc_fill_cache(file, ctx, name, len, 3452 proc_pid_instantiate, iter.task, NULL)) { 3453 put_task_struct(iter.task); 3454 return 0; 3455 } 3456 } 3457 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET; 3458 return 0; 3459 } 3460 3461 /* 3462 * proc_tid_comm_permission is a special permission function exclusively 3463 * used for the node /proc/<pid>/task/<tid>/comm. 3464 * It bypasses generic permission checks in the case where a task of the same 3465 * task group attempts to access the node. 3466 * The rationale behind this is that glibc and bionic access this node for 3467 * cross thread naming (pthread_set/getname_np(!self)). However, if 3468 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0, 3469 * which locks out the cross thread naming implementation. 3470 * This function makes sure that the node is always accessible for members of 3471 * same thread group. 3472 */ 3473 static int proc_tid_comm_permission(struct inode *inode, int mask) 3474 { 3475 bool is_same_tgroup; 3476 struct task_struct *task; 3477 3478 task = get_proc_task(inode); 3479 if (!task) 3480 return -ESRCH; 3481 is_same_tgroup = same_thread_group(current, task); 3482 put_task_struct(task); 3483 3484 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) { 3485 /* This file (/proc/<pid>/task/<tid>/comm) can always be 3486 * read or written by the members of the corresponding 3487 * thread group. 3488 */ 3489 return 0; 3490 } 3491 3492 return generic_permission(inode, mask); 3493 } 3494 3495 static const struct inode_operations proc_tid_comm_inode_operations = { 3496 .permission = proc_tid_comm_permission, 3497 }; 3498 3499 /* 3500 * Tasks 3501 */ 3502 static const struct pid_entry tid_base_stuff[] = { 3503 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3504 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3505 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3506 #ifdef CONFIG_NET 3507 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3508 #endif 3509 REG("environ", S_IRUSR, proc_environ_operations), 3510 REG("auxv", S_IRUSR, proc_auxv_operations), 3511 ONE("status", S_IRUGO, proc_pid_status), 3512 ONE("personality", S_IRUSR, proc_pid_personality), 3513 ONE("limits", S_IRUGO, proc_pid_limits), 3514 #ifdef CONFIG_SCHED_DEBUG 3515 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3516 #endif 3517 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR, 3518 &proc_tid_comm_inode_operations, 3519 &proc_pid_set_comm_operations, {}), 3520 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3521 ONE("syscall", S_IRUSR, proc_pid_syscall), 3522 #endif 3523 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3524 ONE("stat", S_IRUGO, proc_tid_stat), 3525 ONE("statm", S_IRUGO, proc_pid_statm), 3526 REG("maps", S_IRUGO, proc_pid_maps_operations), 3527 #ifdef CONFIG_PROC_CHILDREN 3528 REG("children", S_IRUGO, proc_tid_children_operations), 3529 #endif 3530 #ifdef CONFIG_NUMA 3531 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3532 #endif 3533 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3534 LNK("cwd", proc_cwd_link), 3535 LNK("root", proc_root_link), 3536 LNK("exe", proc_exe_link), 3537 REG("mounts", S_IRUGO, proc_mounts_operations), 3538 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3539 #ifdef CONFIG_PROC_PAGE_MONITOR 3540 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3541 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3542 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3543 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3544 #endif 3545 #ifdef CONFIG_SECURITY 3546 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3547 #endif 3548 #ifdef CONFIG_KALLSYMS 3549 ONE("wchan", S_IRUGO, proc_pid_wchan), 3550 #endif 3551 #ifdef CONFIG_STACKTRACE 3552 ONE("stack", S_IRUSR, proc_pid_stack), 3553 #endif 3554 #ifdef CONFIG_SCHED_INFO 3555 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3556 #endif 3557 #ifdef CONFIG_LATENCYTOP 3558 REG("latency", S_IRUGO, proc_lstats_operations), 3559 #endif 3560 #ifdef CONFIG_PROC_PID_CPUSET 3561 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3562 #endif 3563 #ifdef CONFIG_CGROUPS 3564 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3565 #endif 3566 #ifdef CONFIG_PROC_CPU_RESCTRL 3567 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3568 #endif 3569 ONE("oom_score", S_IRUGO, proc_oom_score), 3570 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3571 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3572 #ifdef CONFIG_AUDIT 3573 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3574 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3575 #endif 3576 #ifdef CONFIG_FAULT_INJECTION 3577 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3578 REG("fail-nth", 0644, proc_fail_nth_operations), 3579 #endif 3580 #ifdef CONFIG_TASK_IO_ACCOUNTING 3581 ONE("io", S_IRUSR, proc_tid_io_accounting), 3582 #endif 3583 #ifdef CONFIG_USER_NS 3584 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3585 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3586 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3587 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3588 #endif 3589 #ifdef CONFIG_LIVEPATCH 3590 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3591 #endif 3592 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3593 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3594 #endif 3595 }; 3596 3597 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx) 3598 { 3599 return proc_pident_readdir(file, ctx, 3600 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3601 } 3602 3603 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3604 { 3605 return proc_pident_lookup(dir, dentry, 3606 tid_base_stuff, 3607 tid_base_stuff + ARRAY_SIZE(tid_base_stuff)); 3608 } 3609 3610 static const struct file_operations proc_tid_base_operations = { 3611 .read = generic_read_dir, 3612 .iterate_shared = proc_tid_base_readdir, 3613 .llseek = generic_file_llseek, 3614 }; 3615 3616 static const struct inode_operations proc_tid_base_inode_operations = { 3617 .lookup = proc_tid_base_lookup, 3618 .getattr = pid_getattr, 3619 .setattr = proc_setattr, 3620 }; 3621 3622 static struct dentry *proc_task_instantiate(struct dentry *dentry, 3623 struct task_struct *task, const void *ptr) 3624 { 3625 struct inode *inode; 3626 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3627 if (!inode) 3628 return ERR_PTR(-ENOENT); 3629 3630 inode->i_op = &proc_tid_base_inode_operations; 3631 inode->i_fop = &proc_tid_base_operations; 3632 inode->i_flags |= S_IMMUTABLE; 3633 3634 set_nlink(inode, nlink_tid); 3635 pid_update_inode(task, inode); 3636 3637 d_set_d_op(dentry, &pid_dentry_operations); 3638 return d_splice_alias(inode, dentry); 3639 } 3640 3641 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3642 { 3643 struct task_struct *task; 3644 struct task_struct *leader = get_proc_task(dir); 3645 unsigned tid; 3646 struct proc_fs_info *fs_info; 3647 struct pid_namespace *ns; 3648 struct dentry *result = ERR_PTR(-ENOENT); 3649 3650 if (!leader) 3651 goto out_no_task; 3652 3653 tid = name_to_int(&dentry->d_name); 3654 if (tid == ~0U) 3655 goto out; 3656 3657 fs_info = proc_sb_info(dentry->d_sb); 3658 ns = fs_info->pid_ns; 3659 rcu_read_lock(); 3660 task = find_task_by_pid_ns(tid, ns); 3661 if (task) 3662 get_task_struct(task); 3663 rcu_read_unlock(); 3664 if (!task) 3665 goto out; 3666 if (!same_thread_group(leader, task)) 3667 goto out_drop_task; 3668 3669 result = proc_task_instantiate(dentry, task, NULL); 3670 out_drop_task: 3671 put_task_struct(task); 3672 out: 3673 put_task_struct(leader); 3674 out_no_task: 3675 return result; 3676 } 3677 3678 /* 3679 * Find the first tid of a thread group to return to user space. 3680 * 3681 * Usually this is just the thread group leader, but if the users 3682 * buffer was too small or there was a seek into the middle of the 3683 * directory we have more work todo. 3684 * 3685 * In the case of a short read we start with find_task_by_pid. 3686 * 3687 * In the case of a seek we start with the leader and walk nr 3688 * threads past it. 3689 */ 3690 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos, 3691 struct pid_namespace *ns) 3692 { 3693 struct task_struct *pos, *task; 3694 unsigned long nr = f_pos; 3695 3696 if (nr != f_pos) /* 32bit overflow? */ 3697 return NULL; 3698 3699 rcu_read_lock(); 3700 task = pid_task(pid, PIDTYPE_PID); 3701 if (!task) 3702 goto fail; 3703 3704 /* Attempt to start with the tid of a thread */ 3705 if (tid && nr) { 3706 pos = find_task_by_pid_ns(tid, ns); 3707 if (pos && same_thread_group(pos, task)) 3708 goto found; 3709 } 3710 3711 /* If nr exceeds the number of threads there is nothing todo */ 3712 if (nr >= get_nr_threads(task)) 3713 goto fail; 3714 3715 /* If we haven't found our starting place yet start 3716 * with the leader and walk nr threads forward. 3717 */ 3718 pos = task = task->group_leader; 3719 do { 3720 if (!nr--) 3721 goto found; 3722 } while_each_thread(task, pos); 3723 fail: 3724 pos = NULL; 3725 goto out; 3726 found: 3727 get_task_struct(pos); 3728 out: 3729 rcu_read_unlock(); 3730 return pos; 3731 } 3732 3733 /* 3734 * Find the next thread in the thread list. 3735 * Return NULL if there is an error or no next thread. 3736 * 3737 * The reference to the input task_struct is released. 3738 */ 3739 static struct task_struct *next_tid(struct task_struct *start) 3740 { 3741 struct task_struct *pos = NULL; 3742 rcu_read_lock(); 3743 if (pid_alive(start)) { 3744 pos = next_thread(start); 3745 if (thread_group_leader(pos)) 3746 pos = NULL; 3747 else 3748 get_task_struct(pos); 3749 } 3750 rcu_read_unlock(); 3751 put_task_struct(start); 3752 return pos; 3753 } 3754 3755 /* for the /proc/TGID/task/ directories */ 3756 static int proc_task_readdir(struct file *file, struct dir_context *ctx) 3757 { 3758 struct inode *inode = file_inode(file); 3759 struct task_struct *task; 3760 struct pid_namespace *ns; 3761 int tid; 3762 3763 if (proc_inode_is_dead(inode)) 3764 return -ENOENT; 3765 3766 if (!dir_emit_dots(file, ctx)) 3767 return 0; 3768 3769 /* f_version caches the tgid value that the last readdir call couldn't 3770 * return. lseek aka telldir automagically resets f_version to 0. 3771 */ 3772 ns = proc_pid_ns(inode->i_sb); 3773 tid = (int)file->f_version; 3774 file->f_version = 0; 3775 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns); 3776 task; 3777 task = next_tid(task), ctx->pos++) { 3778 char name[10 + 1]; 3779 unsigned int len; 3780 tid = task_pid_nr_ns(task, ns); 3781 len = snprintf(name, sizeof(name), "%u", tid); 3782 if (!proc_fill_cache(file, ctx, name, len, 3783 proc_task_instantiate, task, NULL)) { 3784 /* returning this tgid failed, save it as the first 3785 * pid for the next readir call */ 3786 file->f_version = (u64)tid; 3787 put_task_struct(task); 3788 break; 3789 } 3790 } 3791 3792 return 0; 3793 } 3794 3795 static int proc_task_getattr(const struct path *path, struct kstat *stat, 3796 u32 request_mask, unsigned int query_flags) 3797 { 3798 struct inode *inode = d_inode(path->dentry); 3799 struct task_struct *p = get_proc_task(inode); 3800 generic_fillattr(inode, stat); 3801 3802 if (p) { 3803 stat->nlink += get_nr_threads(p); 3804 put_task_struct(p); 3805 } 3806 3807 return 0; 3808 } 3809 3810 static const struct inode_operations proc_task_inode_operations = { 3811 .lookup = proc_task_lookup, 3812 .getattr = proc_task_getattr, 3813 .setattr = proc_setattr, 3814 .permission = proc_pid_permission, 3815 }; 3816 3817 static const struct file_operations proc_task_operations = { 3818 .read = generic_read_dir, 3819 .iterate_shared = proc_task_readdir, 3820 .llseek = generic_file_llseek, 3821 }; 3822 3823 void __init set_proc_pid_nlink(void) 3824 { 3825 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3826 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3827 } 3828