xref: /openbmc/linux/fs/proc/base.c (revision f3a8b664)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/flex_array.h>
89 #include <linux/posix-timers.h>
90 #ifdef CONFIG_HARDWALL
91 #include <asm/hardwall.h>
92 #endif
93 #include <trace/events/oom.h>
94 #include "internal.h"
95 #include "fd.h"
96 
97 /* NOTE:
98  *	Implementing inode permission operations in /proc is almost
99  *	certainly an error.  Permission checks need to happen during
100  *	each system call not at open time.  The reason is that most of
101  *	what we wish to check for permissions in /proc varies at runtime.
102  *
103  *	The classic example of a problem is opening file descriptors
104  *	in /proc for a task before it execs a suid executable.
105  */
106 
107 struct pid_entry {
108 	const char *name;
109 	int len;
110 	umode_t mode;
111 	const struct inode_operations *iop;
112 	const struct file_operations *fop;
113 	union proc_op op;
114 };
115 
116 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
117 	.name = (NAME),					\
118 	.len  = sizeof(NAME) - 1,			\
119 	.mode = MODE,					\
120 	.iop  = IOP,					\
121 	.fop  = FOP,					\
122 	.op   = OP,					\
123 }
124 
125 #define DIR(NAME, MODE, iops, fops)	\
126 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
127 #define LNK(NAME, get_link)					\
128 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
129 		&proc_pid_link_inode_operations, NULL,		\
130 		{ .proc_get_link = get_link } )
131 #define REG(NAME, MODE, fops)				\
132 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
133 #define ONE(NAME, MODE, show)				\
134 	NOD(NAME, (S_IFREG|(MODE)), 			\
135 		NULL, &proc_single_file_operations,	\
136 		{ .proc_show = show } )
137 
138 /*
139  * Count the number of hardlinks for the pid_entry table, excluding the .
140  * and .. links.
141  */
142 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
143 	unsigned int n)
144 {
145 	unsigned int i;
146 	unsigned int count;
147 
148 	count = 0;
149 	for (i = 0; i < n; ++i) {
150 		if (S_ISDIR(entries[i].mode))
151 			++count;
152 	}
153 
154 	return count;
155 }
156 
157 static int get_task_root(struct task_struct *task, struct path *root)
158 {
159 	int result = -ENOENT;
160 
161 	task_lock(task);
162 	if (task->fs) {
163 		get_fs_root(task->fs, root);
164 		result = 0;
165 	}
166 	task_unlock(task);
167 	return result;
168 }
169 
170 static int proc_cwd_link(struct dentry *dentry, struct path *path)
171 {
172 	struct task_struct *task = get_proc_task(d_inode(dentry));
173 	int result = -ENOENT;
174 
175 	if (task) {
176 		task_lock(task);
177 		if (task->fs) {
178 			get_fs_pwd(task->fs, path);
179 			result = 0;
180 		}
181 		task_unlock(task);
182 		put_task_struct(task);
183 	}
184 	return result;
185 }
186 
187 static int proc_root_link(struct dentry *dentry, struct path *path)
188 {
189 	struct task_struct *task = get_proc_task(d_inode(dentry));
190 	int result = -ENOENT;
191 
192 	if (task) {
193 		result = get_task_root(task, path);
194 		put_task_struct(task);
195 	}
196 	return result;
197 }
198 
199 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
200 				     size_t _count, loff_t *pos)
201 {
202 	struct task_struct *tsk;
203 	struct mm_struct *mm;
204 	char *page;
205 	unsigned long count = _count;
206 	unsigned long arg_start, arg_end, env_start, env_end;
207 	unsigned long len1, len2, len;
208 	unsigned long p;
209 	char c;
210 	ssize_t rv;
211 
212 	BUG_ON(*pos < 0);
213 
214 	tsk = get_proc_task(file_inode(file));
215 	if (!tsk)
216 		return -ESRCH;
217 	mm = get_task_mm(tsk);
218 	put_task_struct(tsk);
219 	if (!mm)
220 		return 0;
221 	/* Check if process spawned far enough to have cmdline. */
222 	if (!mm->env_end) {
223 		rv = 0;
224 		goto out_mmput;
225 	}
226 
227 	page = (char *)__get_free_page(GFP_TEMPORARY);
228 	if (!page) {
229 		rv = -ENOMEM;
230 		goto out_mmput;
231 	}
232 
233 	down_read(&mm->mmap_sem);
234 	arg_start = mm->arg_start;
235 	arg_end = mm->arg_end;
236 	env_start = mm->env_start;
237 	env_end = mm->env_end;
238 	up_read(&mm->mmap_sem);
239 
240 	BUG_ON(arg_start > arg_end);
241 	BUG_ON(env_start > env_end);
242 
243 	len1 = arg_end - arg_start;
244 	len2 = env_end - env_start;
245 
246 	/* Empty ARGV. */
247 	if (len1 == 0) {
248 		rv = 0;
249 		goto out_free_page;
250 	}
251 	/*
252 	 * Inherently racy -- command line shares address space
253 	 * with code and data.
254 	 */
255 	rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
256 	if (rv <= 0)
257 		goto out_free_page;
258 
259 	rv = 0;
260 
261 	if (c == '\0') {
262 		/* Command line (set of strings) occupies whole ARGV. */
263 		if (len1 <= *pos)
264 			goto out_free_page;
265 
266 		p = arg_start + *pos;
267 		len = len1 - *pos;
268 		while (count > 0 && len > 0) {
269 			unsigned int _count;
270 			int nr_read;
271 
272 			_count = min3(count, len, PAGE_SIZE);
273 			nr_read = access_remote_vm(mm, p, page, _count, 0);
274 			if (nr_read < 0)
275 				rv = nr_read;
276 			if (nr_read <= 0)
277 				goto out_free_page;
278 
279 			if (copy_to_user(buf, page, nr_read)) {
280 				rv = -EFAULT;
281 				goto out_free_page;
282 			}
283 
284 			p	+= nr_read;
285 			len	-= nr_read;
286 			buf	+= nr_read;
287 			count	-= nr_read;
288 			rv	+= nr_read;
289 		}
290 	} else {
291 		/*
292 		 * Command line (1 string) occupies ARGV and maybe
293 		 * extends into ENVP.
294 		 */
295 		if (len1 + len2 <= *pos)
296 			goto skip_argv_envp;
297 		if (len1 <= *pos)
298 			goto skip_argv;
299 
300 		p = arg_start + *pos;
301 		len = len1 - *pos;
302 		while (count > 0 && len > 0) {
303 			unsigned int _count, l;
304 			int nr_read;
305 			bool final;
306 
307 			_count = min3(count, len, PAGE_SIZE);
308 			nr_read = access_remote_vm(mm, p, page, _count, 0);
309 			if (nr_read < 0)
310 				rv = nr_read;
311 			if (nr_read <= 0)
312 				goto out_free_page;
313 
314 			/*
315 			 * Command line can be shorter than whole ARGV
316 			 * even if last "marker" byte says it is not.
317 			 */
318 			final = false;
319 			l = strnlen(page, nr_read);
320 			if (l < nr_read) {
321 				nr_read = l;
322 				final = true;
323 			}
324 
325 			if (copy_to_user(buf, page, nr_read)) {
326 				rv = -EFAULT;
327 				goto out_free_page;
328 			}
329 
330 			p	+= nr_read;
331 			len	-= nr_read;
332 			buf	+= nr_read;
333 			count	-= nr_read;
334 			rv	+= nr_read;
335 
336 			if (final)
337 				goto out_free_page;
338 		}
339 skip_argv:
340 		/*
341 		 * Command line (1 string) occupies ARGV and
342 		 * extends into ENVP.
343 		 */
344 		if (len1 <= *pos) {
345 			p = env_start + *pos - len1;
346 			len = len1 + len2 - *pos;
347 		} else {
348 			p = env_start;
349 			len = len2;
350 		}
351 		while (count > 0 && len > 0) {
352 			unsigned int _count, l;
353 			int nr_read;
354 			bool final;
355 
356 			_count = min3(count, len, PAGE_SIZE);
357 			nr_read = access_remote_vm(mm, p, page, _count, 0);
358 			if (nr_read < 0)
359 				rv = nr_read;
360 			if (nr_read <= 0)
361 				goto out_free_page;
362 
363 			/* Find EOS. */
364 			final = false;
365 			l = strnlen(page, nr_read);
366 			if (l < nr_read) {
367 				nr_read = l;
368 				final = true;
369 			}
370 
371 			if (copy_to_user(buf, page, nr_read)) {
372 				rv = -EFAULT;
373 				goto out_free_page;
374 			}
375 
376 			p	+= nr_read;
377 			len	-= nr_read;
378 			buf	+= nr_read;
379 			count	-= nr_read;
380 			rv	+= nr_read;
381 
382 			if (final)
383 				goto out_free_page;
384 		}
385 skip_argv_envp:
386 		;
387 	}
388 
389 out_free_page:
390 	free_page((unsigned long)page);
391 out_mmput:
392 	mmput(mm);
393 	if (rv > 0)
394 		*pos += rv;
395 	return rv;
396 }
397 
398 static const struct file_operations proc_pid_cmdline_ops = {
399 	.read	= proc_pid_cmdline_read,
400 	.llseek	= generic_file_llseek,
401 };
402 
403 #ifdef CONFIG_KALLSYMS
404 /*
405  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
406  * Returns the resolved symbol.  If that fails, simply return the address.
407  */
408 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
409 			  struct pid *pid, struct task_struct *task)
410 {
411 	unsigned long wchan;
412 	char symname[KSYM_NAME_LEN];
413 
414 	wchan = get_wchan(task);
415 
416 	if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
417 			&& !lookup_symbol_name(wchan, symname))
418 		seq_printf(m, "%s", symname);
419 	else
420 		seq_putc(m, '0');
421 
422 	return 0;
423 }
424 #endif /* CONFIG_KALLSYMS */
425 
426 static int lock_trace(struct task_struct *task)
427 {
428 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
429 	if (err)
430 		return err;
431 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
432 		mutex_unlock(&task->signal->cred_guard_mutex);
433 		return -EPERM;
434 	}
435 	return 0;
436 }
437 
438 static void unlock_trace(struct task_struct *task)
439 {
440 	mutex_unlock(&task->signal->cred_guard_mutex);
441 }
442 
443 #ifdef CONFIG_STACKTRACE
444 
445 #define MAX_STACK_TRACE_DEPTH	64
446 
447 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
448 			  struct pid *pid, struct task_struct *task)
449 {
450 	struct stack_trace trace;
451 	unsigned long *entries;
452 	int err;
453 	int i;
454 
455 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
456 	if (!entries)
457 		return -ENOMEM;
458 
459 	trace.nr_entries	= 0;
460 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
461 	trace.entries		= entries;
462 	trace.skip		= 0;
463 
464 	err = lock_trace(task);
465 	if (!err) {
466 		save_stack_trace_tsk(task, &trace);
467 
468 		for (i = 0; i < trace.nr_entries; i++) {
469 			seq_printf(m, "[<%pK>] %pB\n",
470 				   (void *)entries[i], (void *)entries[i]);
471 		}
472 		unlock_trace(task);
473 	}
474 	kfree(entries);
475 
476 	return err;
477 }
478 #endif
479 
480 #ifdef CONFIG_SCHED_INFO
481 /*
482  * Provides /proc/PID/schedstat
483  */
484 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
485 			      struct pid *pid, struct task_struct *task)
486 {
487 	if (unlikely(!sched_info_on()))
488 		seq_printf(m, "0 0 0\n");
489 	else
490 		seq_printf(m, "%llu %llu %lu\n",
491 		   (unsigned long long)task->se.sum_exec_runtime,
492 		   (unsigned long long)task->sched_info.run_delay,
493 		   task->sched_info.pcount);
494 
495 	return 0;
496 }
497 #endif
498 
499 #ifdef CONFIG_LATENCYTOP
500 static int lstats_show_proc(struct seq_file *m, void *v)
501 {
502 	int i;
503 	struct inode *inode = m->private;
504 	struct task_struct *task = get_proc_task(inode);
505 
506 	if (!task)
507 		return -ESRCH;
508 	seq_puts(m, "Latency Top version : v0.1\n");
509 	for (i = 0; i < 32; i++) {
510 		struct latency_record *lr = &task->latency_record[i];
511 		if (lr->backtrace[0]) {
512 			int q;
513 			seq_printf(m, "%i %li %li",
514 				   lr->count, lr->time, lr->max);
515 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
516 				unsigned long bt = lr->backtrace[q];
517 				if (!bt)
518 					break;
519 				if (bt == ULONG_MAX)
520 					break;
521 				seq_printf(m, " %ps", (void *)bt);
522 			}
523 			seq_putc(m, '\n');
524 		}
525 
526 	}
527 	put_task_struct(task);
528 	return 0;
529 }
530 
531 static int lstats_open(struct inode *inode, struct file *file)
532 {
533 	return single_open(file, lstats_show_proc, inode);
534 }
535 
536 static ssize_t lstats_write(struct file *file, const char __user *buf,
537 			    size_t count, loff_t *offs)
538 {
539 	struct task_struct *task = get_proc_task(file_inode(file));
540 
541 	if (!task)
542 		return -ESRCH;
543 	clear_all_latency_tracing(task);
544 	put_task_struct(task);
545 
546 	return count;
547 }
548 
549 static const struct file_operations proc_lstats_operations = {
550 	.open		= lstats_open,
551 	.read		= seq_read,
552 	.write		= lstats_write,
553 	.llseek		= seq_lseek,
554 	.release	= single_release,
555 };
556 
557 #endif
558 
559 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
560 			  struct pid *pid, struct task_struct *task)
561 {
562 	unsigned long totalpages = totalram_pages + total_swap_pages;
563 	unsigned long points = 0;
564 
565 	points = oom_badness(task, NULL, NULL, totalpages) *
566 					1000 / totalpages;
567 	seq_printf(m, "%lu\n", points);
568 
569 	return 0;
570 }
571 
572 struct limit_names {
573 	const char *name;
574 	const char *unit;
575 };
576 
577 static const struct limit_names lnames[RLIM_NLIMITS] = {
578 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
579 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
580 	[RLIMIT_DATA] = {"Max data size", "bytes"},
581 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
582 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
583 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
584 	[RLIMIT_NPROC] = {"Max processes", "processes"},
585 	[RLIMIT_NOFILE] = {"Max open files", "files"},
586 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
587 	[RLIMIT_AS] = {"Max address space", "bytes"},
588 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
589 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
590 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
591 	[RLIMIT_NICE] = {"Max nice priority", NULL},
592 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
593 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
594 };
595 
596 /* Display limits for a process */
597 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
598 			   struct pid *pid, struct task_struct *task)
599 {
600 	unsigned int i;
601 	unsigned long flags;
602 
603 	struct rlimit rlim[RLIM_NLIMITS];
604 
605 	if (!lock_task_sighand(task, &flags))
606 		return 0;
607 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
608 	unlock_task_sighand(task, &flags);
609 
610 	/*
611 	 * print the file header
612 	 */
613        seq_printf(m, "%-25s %-20s %-20s %-10s\n",
614 		  "Limit", "Soft Limit", "Hard Limit", "Units");
615 
616 	for (i = 0; i < RLIM_NLIMITS; i++) {
617 		if (rlim[i].rlim_cur == RLIM_INFINITY)
618 			seq_printf(m, "%-25s %-20s ",
619 				   lnames[i].name, "unlimited");
620 		else
621 			seq_printf(m, "%-25s %-20lu ",
622 				   lnames[i].name, rlim[i].rlim_cur);
623 
624 		if (rlim[i].rlim_max == RLIM_INFINITY)
625 			seq_printf(m, "%-20s ", "unlimited");
626 		else
627 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
628 
629 		if (lnames[i].unit)
630 			seq_printf(m, "%-10s\n", lnames[i].unit);
631 		else
632 			seq_putc(m, '\n');
633 	}
634 
635 	return 0;
636 }
637 
638 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
639 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
640 			    struct pid *pid, struct task_struct *task)
641 {
642 	long nr;
643 	unsigned long args[6], sp, pc;
644 	int res;
645 
646 	res = lock_trace(task);
647 	if (res)
648 		return res;
649 
650 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
651 		seq_puts(m, "running\n");
652 	else if (nr < 0)
653 		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
654 	else
655 		seq_printf(m,
656 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
657 		       nr,
658 		       args[0], args[1], args[2], args[3], args[4], args[5],
659 		       sp, pc);
660 	unlock_trace(task);
661 
662 	return 0;
663 }
664 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
665 
666 /************************************************************************/
667 /*                       Here the fs part begins                        */
668 /************************************************************************/
669 
670 /* permission checks */
671 static int proc_fd_access_allowed(struct inode *inode)
672 {
673 	struct task_struct *task;
674 	int allowed = 0;
675 	/* Allow access to a task's file descriptors if it is us or we
676 	 * may use ptrace attach to the process and find out that
677 	 * information.
678 	 */
679 	task = get_proc_task(inode);
680 	if (task) {
681 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
682 		put_task_struct(task);
683 	}
684 	return allowed;
685 }
686 
687 int proc_setattr(struct dentry *dentry, struct iattr *attr)
688 {
689 	int error;
690 	struct inode *inode = d_inode(dentry);
691 
692 	if (attr->ia_valid & ATTR_MODE)
693 		return -EPERM;
694 
695 	error = setattr_prepare(dentry, attr);
696 	if (error)
697 		return error;
698 
699 	setattr_copy(inode, attr);
700 	mark_inode_dirty(inode);
701 	return 0;
702 }
703 
704 /*
705  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
706  * or euid/egid (for hide_pid_min=2)?
707  */
708 static bool has_pid_permissions(struct pid_namespace *pid,
709 				 struct task_struct *task,
710 				 int hide_pid_min)
711 {
712 	if (pid->hide_pid < hide_pid_min)
713 		return true;
714 	if (in_group_p(pid->pid_gid))
715 		return true;
716 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
717 }
718 
719 
720 static int proc_pid_permission(struct inode *inode, int mask)
721 {
722 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
723 	struct task_struct *task;
724 	bool has_perms;
725 
726 	task = get_proc_task(inode);
727 	if (!task)
728 		return -ESRCH;
729 	has_perms = has_pid_permissions(pid, task, 1);
730 	put_task_struct(task);
731 
732 	if (!has_perms) {
733 		if (pid->hide_pid == 2) {
734 			/*
735 			 * Let's make getdents(), stat(), and open()
736 			 * consistent with each other.  If a process
737 			 * may not stat() a file, it shouldn't be seen
738 			 * in procfs at all.
739 			 */
740 			return -ENOENT;
741 		}
742 
743 		return -EPERM;
744 	}
745 	return generic_permission(inode, mask);
746 }
747 
748 
749 
750 static const struct inode_operations proc_def_inode_operations = {
751 	.setattr	= proc_setattr,
752 };
753 
754 static int proc_single_show(struct seq_file *m, void *v)
755 {
756 	struct inode *inode = m->private;
757 	struct pid_namespace *ns;
758 	struct pid *pid;
759 	struct task_struct *task;
760 	int ret;
761 
762 	ns = inode->i_sb->s_fs_info;
763 	pid = proc_pid(inode);
764 	task = get_pid_task(pid, PIDTYPE_PID);
765 	if (!task)
766 		return -ESRCH;
767 
768 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
769 
770 	put_task_struct(task);
771 	return ret;
772 }
773 
774 static int proc_single_open(struct inode *inode, struct file *filp)
775 {
776 	return single_open(filp, proc_single_show, inode);
777 }
778 
779 static const struct file_operations proc_single_file_operations = {
780 	.open		= proc_single_open,
781 	.read		= seq_read,
782 	.llseek		= seq_lseek,
783 	.release	= single_release,
784 };
785 
786 
787 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
788 {
789 	struct task_struct *task = get_proc_task(inode);
790 	struct mm_struct *mm = ERR_PTR(-ESRCH);
791 
792 	if (task) {
793 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
794 		put_task_struct(task);
795 
796 		if (!IS_ERR_OR_NULL(mm)) {
797 			/* ensure this mm_struct can't be freed */
798 			atomic_inc(&mm->mm_count);
799 			/* but do not pin its memory */
800 			mmput(mm);
801 		}
802 	}
803 
804 	return mm;
805 }
806 
807 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
808 {
809 	struct mm_struct *mm = proc_mem_open(inode, mode);
810 
811 	if (IS_ERR(mm))
812 		return PTR_ERR(mm);
813 
814 	file->private_data = mm;
815 	return 0;
816 }
817 
818 static int mem_open(struct inode *inode, struct file *file)
819 {
820 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
821 
822 	/* OK to pass negative loff_t, we can catch out-of-range */
823 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
824 
825 	return ret;
826 }
827 
828 static ssize_t mem_rw(struct file *file, char __user *buf,
829 			size_t count, loff_t *ppos, int write)
830 {
831 	struct mm_struct *mm = file->private_data;
832 	unsigned long addr = *ppos;
833 	ssize_t copied;
834 	char *page;
835 	unsigned int flags;
836 
837 	if (!mm)
838 		return 0;
839 
840 	page = (char *)__get_free_page(GFP_TEMPORARY);
841 	if (!page)
842 		return -ENOMEM;
843 
844 	copied = 0;
845 	if (!atomic_inc_not_zero(&mm->mm_users))
846 		goto free;
847 
848 	/* Maybe we should limit FOLL_FORCE to actual ptrace users? */
849 	flags = FOLL_FORCE;
850 	if (write)
851 		flags |= FOLL_WRITE;
852 
853 	while (count > 0) {
854 		int this_len = min_t(int, count, PAGE_SIZE);
855 
856 		if (write && copy_from_user(page, buf, this_len)) {
857 			copied = -EFAULT;
858 			break;
859 		}
860 
861 		this_len = access_remote_vm(mm, addr, page, this_len, flags);
862 		if (!this_len) {
863 			if (!copied)
864 				copied = -EIO;
865 			break;
866 		}
867 
868 		if (!write && copy_to_user(buf, page, this_len)) {
869 			copied = -EFAULT;
870 			break;
871 		}
872 
873 		buf += this_len;
874 		addr += this_len;
875 		copied += this_len;
876 		count -= this_len;
877 	}
878 	*ppos = addr;
879 
880 	mmput(mm);
881 free:
882 	free_page((unsigned long) page);
883 	return copied;
884 }
885 
886 static ssize_t mem_read(struct file *file, char __user *buf,
887 			size_t count, loff_t *ppos)
888 {
889 	return mem_rw(file, buf, count, ppos, 0);
890 }
891 
892 static ssize_t mem_write(struct file *file, const char __user *buf,
893 			 size_t count, loff_t *ppos)
894 {
895 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
896 }
897 
898 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
899 {
900 	switch (orig) {
901 	case 0:
902 		file->f_pos = offset;
903 		break;
904 	case 1:
905 		file->f_pos += offset;
906 		break;
907 	default:
908 		return -EINVAL;
909 	}
910 	force_successful_syscall_return();
911 	return file->f_pos;
912 }
913 
914 static int mem_release(struct inode *inode, struct file *file)
915 {
916 	struct mm_struct *mm = file->private_data;
917 	if (mm)
918 		mmdrop(mm);
919 	return 0;
920 }
921 
922 static const struct file_operations proc_mem_operations = {
923 	.llseek		= mem_lseek,
924 	.read		= mem_read,
925 	.write		= mem_write,
926 	.open		= mem_open,
927 	.release	= mem_release,
928 };
929 
930 static int environ_open(struct inode *inode, struct file *file)
931 {
932 	return __mem_open(inode, file, PTRACE_MODE_READ);
933 }
934 
935 static ssize_t environ_read(struct file *file, char __user *buf,
936 			size_t count, loff_t *ppos)
937 {
938 	char *page;
939 	unsigned long src = *ppos;
940 	int ret = 0;
941 	struct mm_struct *mm = file->private_data;
942 	unsigned long env_start, env_end;
943 
944 	/* Ensure the process spawned far enough to have an environment. */
945 	if (!mm || !mm->env_end)
946 		return 0;
947 
948 	page = (char *)__get_free_page(GFP_TEMPORARY);
949 	if (!page)
950 		return -ENOMEM;
951 
952 	ret = 0;
953 	if (!atomic_inc_not_zero(&mm->mm_users))
954 		goto free;
955 
956 	down_read(&mm->mmap_sem);
957 	env_start = mm->env_start;
958 	env_end = mm->env_end;
959 	up_read(&mm->mmap_sem);
960 
961 	while (count > 0) {
962 		size_t this_len, max_len;
963 		int retval;
964 
965 		if (src >= (env_end - env_start))
966 			break;
967 
968 		this_len = env_end - (env_start + src);
969 
970 		max_len = min_t(size_t, PAGE_SIZE, count);
971 		this_len = min(max_len, this_len);
972 
973 		retval = access_remote_vm(mm, (env_start + src), page, this_len, 0);
974 
975 		if (retval <= 0) {
976 			ret = retval;
977 			break;
978 		}
979 
980 		if (copy_to_user(buf, page, retval)) {
981 			ret = -EFAULT;
982 			break;
983 		}
984 
985 		ret += retval;
986 		src += retval;
987 		buf += retval;
988 		count -= retval;
989 	}
990 	*ppos = src;
991 	mmput(mm);
992 
993 free:
994 	free_page((unsigned long) page);
995 	return ret;
996 }
997 
998 static const struct file_operations proc_environ_operations = {
999 	.open		= environ_open,
1000 	.read		= environ_read,
1001 	.llseek		= generic_file_llseek,
1002 	.release	= mem_release,
1003 };
1004 
1005 static int auxv_open(struct inode *inode, struct file *file)
1006 {
1007 	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1008 }
1009 
1010 static ssize_t auxv_read(struct file *file, char __user *buf,
1011 			size_t count, loff_t *ppos)
1012 {
1013 	struct mm_struct *mm = file->private_data;
1014 	unsigned int nwords = 0;
1015 
1016 	if (!mm)
1017 		return 0;
1018 	do {
1019 		nwords += 2;
1020 	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1021 	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1022 				       nwords * sizeof(mm->saved_auxv[0]));
1023 }
1024 
1025 static const struct file_operations proc_auxv_operations = {
1026 	.open		= auxv_open,
1027 	.read		= auxv_read,
1028 	.llseek		= generic_file_llseek,
1029 	.release	= mem_release,
1030 };
1031 
1032 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1033 			    loff_t *ppos)
1034 {
1035 	struct task_struct *task = get_proc_task(file_inode(file));
1036 	char buffer[PROC_NUMBUF];
1037 	int oom_adj = OOM_ADJUST_MIN;
1038 	size_t len;
1039 
1040 	if (!task)
1041 		return -ESRCH;
1042 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1043 		oom_adj = OOM_ADJUST_MAX;
1044 	else
1045 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1046 			  OOM_SCORE_ADJ_MAX;
1047 	put_task_struct(task);
1048 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1049 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1050 }
1051 
1052 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1053 {
1054 	static DEFINE_MUTEX(oom_adj_mutex);
1055 	struct mm_struct *mm = NULL;
1056 	struct task_struct *task;
1057 	int err = 0;
1058 
1059 	task = get_proc_task(file_inode(file));
1060 	if (!task)
1061 		return -ESRCH;
1062 
1063 	mutex_lock(&oom_adj_mutex);
1064 	if (legacy) {
1065 		if (oom_adj < task->signal->oom_score_adj &&
1066 				!capable(CAP_SYS_RESOURCE)) {
1067 			err = -EACCES;
1068 			goto err_unlock;
1069 		}
1070 		/*
1071 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1072 		 * /proc/pid/oom_score_adj instead.
1073 		 */
1074 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1075 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1076 			  task_pid_nr(task));
1077 	} else {
1078 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1079 				!capable(CAP_SYS_RESOURCE)) {
1080 			err = -EACCES;
1081 			goto err_unlock;
1082 		}
1083 	}
1084 
1085 	/*
1086 	 * Make sure we will check other processes sharing the mm if this is
1087 	 * not vfrok which wants its own oom_score_adj.
1088 	 * pin the mm so it doesn't go away and get reused after task_unlock
1089 	 */
1090 	if (!task->vfork_done) {
1091 		struct task_struct *p = find_lock_task_mm(task);
1092 
1093 		if (p) {
1094 			if (atomic_read(&p->mm->mm_users) > 1) {
1095 				mm = p->mm;
1096 				atomic_inc(&mm->mm_count);
1097 			}
1098 			task_unlock(p);
1099 		}
1100 	}
1101 
1102 	task->signal->oom_score_adj = oom_adj;
1103 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1104 		task->signal->oom_score_adj_min = (short)oom_adj;
1105 	trace_oom_score_adj_update(task);
1106 
1107 	if (mm) {
1108 		struct task_struct *p;
1109 
1110 		rcu_read_lock();
1111 		for_each_process(p) {
1112 			if (same_thread_group(task, p))
1113 				continue;
1114 
1115 			/* do not touch kernel threads or the global init */
1116 			if (p->flags & PF_KTHREAD || is_global_init(p))
1117 				continue;
1118 
1119 			task_lock(p);
1120 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1121 				pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1122 						task_pid_nr(p), p->comm,
1123 						p->signal->oom_score_adj, oom_adj,
1124 						task_pid_nr(task), task->comm);
1125 				p->signal->oom_score_adj = oom_adj;
1126 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1127 					p->signal->oom_score_adj_min = (short)oom_adj;
1128 			}
1129 			task_unlock(p);
1130 		}
1131 		rcu_read_unlock();
1132 		mmdrop(mm);
1133 	}
1134 err_unlock:
1135 	mutex_unlock(&oom_adj_mutex);
1136 	put_task_struct(task);
1137 	return err;
1138 }
1139 
1140 /*
1141  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1142  * kernels.  The effective policy is defined by oom_score_adj, which has a
1143  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1144  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1145  * Processes that become oom disabled via oom_adj will still be oom disabled
1146  * with this implementation.
1147  *
1148  * oom_adj cannot be removed since existing userspace binaries use it.
1149  */
1150 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1151 			     size_t count, loff_t *ppos)
1152 {
1153 	char buffer[PROC_NUMBUF];
1154 	int oom_adj;
1155 	int err;
1156 
1157 	memset(buffer, 0, sizeof(buffer));
1158 	if (count > sizeof(buffer) - 1)
1159 		count = sizeof(buffer) - 1;
1160 	if (copy_from_user(buffer, buf, count)) {
1161 		err = -EFAULT;
1162 		goto out;
1163 	}
1164 
1165 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1166 	if (err)
1167 		goto out;
1168 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1169 	     oom_adj != OOM_DISABLE) {
1170 		err = -EINVAL;
1171 		goto out;
1172 	}
1173 
1174 	/*
1175 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1176 	 * value is always attainable.
1177 	 */
1178 	if (oom_adj == OOM_ADJUST_MAX)
1179 		oom_adj = OOM_SCORE_ADJ_MAX;
1180 	else
1181 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1182 
1183 	err = __set_oom_adj(file, oom_adj, true);
1184 out:
1185 	return err < 0 ? err : count;
1186 }
1187 
1188 static const struct file_operations proc_oom_adj_operations = {
1189 	.read		= oom_adj_read,
1190 	.write		= oom_adj_write,
1191 	.llseek		= generic_file_llseek,
1192 };
1193 
1194 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1195 					size_t count, loff_t *ppos)
1196 {
1197 	struct task_struct *task = get_proc_task(file_inode(file));
1198 	char buffer[PROC_NUMBUF];
1199 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1200 	size_t len;
1201 
1202 	if (!task)
1203 		return -ESRCH;
1204 	oom_score_adj = task->signal->oom_score_adj;
1205 	put_task_struct(task);
1206 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1207 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1208 }
1209 
1210 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1211 					size_t count, loff_t *ppos)
1212 {
1213 	char buffer[PROC_NUMBUF];
1214 	int oom_score_adj;
1215 	int err;
1216 
1217 	memset(buffer, 0, sizeof(buffer));
1218 	if (count > sizeof(buffer) - 1)
1219 		count = sizeof(buffer) - 1;
1220 	if (copy_from_user(buffer, buf, count)) {
1221 		err = -EFAULT;
1222 		goto out;
1223 	}
1224 
1225 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1226 	if (err)
1227 		goto out;
1228 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1229 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1230 		err = -EINVAL;
1231 		goto out;
1232 	}
1233 
1234 	err = __set_oom_adj(file, oom_score_adj, false);
1235 out:
1236 	return err < 0 ? err : count;
1237 }
1238 
1239 static const struct file_operations proc_oom_score_adj_operations = {
1240 	.read		= oom_score_adj_read,
1241 	.write		= oom_score_adj_write,
1242 	.llseek		= default_llseek,
1243 };
1244 
1245 #ifdef CONFIG_AUDITSYSCALL
1246 #define TMPBUFLEN 21
1247 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1248 				  size_t count, loff_t *ppos)
1249 {
1250 	struct inode * inode = file_inode(file);
1251 	struct task_struct *task = get_proc_task(inode);
1252 	ssize_t length;
1253 	char tmpbuf[TMPBUFLEN];
1254 
1255 	if (!task)
1256 		return -ESRCH;
1257 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1258 			   from_kuid(file->f_cred->user_ns,
1259 				     audit_get_loginuid(task)));
1260 	put_task_struct(task);
1261 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1262 }
1263 
1264 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1265 				   size_t count, loff_t *ppos)
1266 {
1267 	struct inode * inode = file_inode(file);
1268 	uid_t loginuid;
1269 	kuid_t kloginuid;
1270 	int rv;
1271 
1272 	rcu_read_lock();
1273 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1274 		rcu_read_unlock();
1275 		return -EPERM;
1276 	}
1277 	rcu_read_unlock();
1278 
1279 	if (*ppos != 0) {
1280 		/* No partial writes. */
1281 		return -EINVAL;
1282 	}
1283 
1284 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1285 	if (rv < 0)
1286 		return rv;
1287 
1288 	/* is userspace tring to explicitly UNSET the loginuid? */
1289 	if (loginuid == AUDIT_UID_UNSET) {
1290 		kloginuid = INVALID_UID;
1291 	} else {
1292 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1293 		if (!uid_valid(kloginuid))
1294 			return -EINVAL;
1295 	}
1296 
1297 	rv = audit_set_loginuid(kloginuid);
1298 	if (rv < 0)
1299 		return rv;
1300 	return count;
1301 }
1302 
1303 static const struct file_operations proc_loginuid_operations = {
1304 	.read		= proc_loginuid_read,
1305 	.write		= proc_loginuid_write,
1306 	.llseek		= generic_file_llseek,
1307 };
1308 
1309 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1310 				  size_t count, loff_t *ppos)
1311 {
1312 	struct inode * inode = file_inode(file);
1313 	struct task_struct *task = get_proc_task(inode);
1314 	ssize_t length;
1315 	char tmpbuf[TMPBUFLEN];
1316 
1317 	if (!task)
1318 		return -ESRCH;
1319 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1320 				audit_get_sessionid(task));
1321 	put_task_struct(task);
1322 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1323 }
1324 
1325 static const struct file_operations proc_sessionid_operations = {
1326 	.read		= proc_sessionid_read,
1327 	.llseek		= generic_file_llseek,
1328 };
1329 #endif
1330 
1331 #ifdef CONFIG_FAULT_INJECTION
1332 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1333 				      size_t count, loff_t *ppos)
1334 {
1335 	struct task_struct *task = get_proc_task(file_inode(file));
1336 	char buffer[PROC_NUMBUF];
1337 	size_t len;
1338 	int make_it_fail;
1339 
1340 	if (!task)
1341 		return -ESRCH;
1342 	make_it_fail = task->make_it_fail;
1343 	put_task_struct(task);
1344 
1345 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1346 
1347 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1348 }
1349 
1350 static ssize_t proc_fault_inject_write(struct file * file,
1351 			const char __user * buf, size_t count, loff_t *ppos)
1352 {
1353 	struct task_struct *task;
1354 	char buffer[PROC_NUMBUF];
1355 	int make_it_fail;
1356 	int rv;
1357 
1358 	if (!capable(CAP_SYS_RESOURCE))
1359 		return -EPERM;
1360 	memset(buffer, 0, sizeof(buffer));
1361 	if (count > sizeof(buffer) - 1)
1362 		count = sizeof(buffer) - 1;
1363 	if (copy_from_user(buffer, buf, count))
1364 		return -EFAULT;
1365 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1366 	if (rv < 0)
1367 		return rv;
1368 	if (make_it_fail < 0 || make_it_fail > 1)
1369 		return -EINVAL;
1370 
1371 	task = get_proc_task(file_inode(file));
1372 	if (!task)
1373 		return -ESRCH;
1374 	task->make_it_fail = make_it_fail;
1375 	put_task_struct(task);
1376 
1377 	return count;
1378 }
1379 
1380 static const struct file_operations proc_fault_inject_operations = {
1381 	.read		= proc_fault_inject_read,
1382 	.write		= proc_fault_inject_write,
1383 	.llseek		= generic_file_llseek,
1384 };
1385 #endif
1386 
1387 
1388 #ifdef CONFIG_SCHED_DEBUG
1389 /*
1390  * Print out various scheduling related per-task fields:
1391  */
1392 static int sched_show(struct seq_file *m, void *v)
1393 {
1394 	struct inode *inode = m->private;
1395 	struct task_struct *p;
1396 
1397 	p = get_proc_task(inode);
1398 	if (!p)
1399 		return -ESRCH;
1400 	proc_sched_show_task(p, m);
1401 
1402 	put_task_struct(p);
1403 
1404 	return 0;
1405 }
1406 
1407 static ssize_t
1408 sched_write(struct file *file, const char __user *buf,
1409 	    size_t count, loff_t *offset)
1410 {
1411 	struct inode *inode = file_inode(file);
1412 	struct task_struct *p;
1413 
1414 	p = get_proc_task(inode);
1415 	if (!p)
1416 		return -ESRCH;
1417 	proc_sched_set_task(p);
1418 
1419 	put_task_struct(p);
1420 
1421 	return count;
1422 }
1423 
1424 static int sched_open(struct inode *inode, struct file *filp)
1425 {
1426 	return single_open(filp, sched_show, inode);
1427 }
1428 
1429 static const struct file_operations proc_pid_sched_operations = {
1430 	.open		= sched_open,
1431 	.read		= seq_read,
1432 	.write		= sched_write,
1433 	.llseek		= seq_lseek,
1434 	.release	= single_release,
1435 };
1436 
1437 #endif
1438 
1439 #ifdef CONFIG_SCHED_AUTOGROUP
1440 /*
1441  * Print out autogroup related information:
1442  */
1443 static int sched_autogroup_show(struct seq_file *m, void *v)
1444 {
1445 	struct inode *inode = m->private;
1446 	struct task_struct *p;
1447 
1448 	p = get_proc_task(inode);
1449 	if (!p)
1450 		return -ESRCH;
1451 	proc_sched_autogroup_show_task(p, m);
1452 
1453 	put_task_struct(p);
1454 
1455 	return 0;
1456 }
1457 
1458 static ssize_t
1459 sched_autogroup_write(struct file *file, const char __user *buf,
1460 	    size_t count, loff_t *offset)
1461 {
1462 	struct inode *inode = file_inode(file);
1463 	struct task_struct *p;
1464 	char buffer[PROC_NUMBUF];
1465 	int nice;
1466 	int err;
1467 
1468 	memset(buffer, 0, sizeof(buffer));
1469 	if (count > sizeof(buffer) - 1)
1470 		count = sizeof(buffer) - 1;
1471 	if (copy_from_user(buffer, buf, count))
1472 		return -EFAULT;
1473 
1474 	err = kstrtoint(strstrip(buffer), 0, &nice);
1475 	if (err < 0)
1476 		return err;
1477 
1478 	p = get_proc_task(inode);
1479 	if (!p)
1480 		return -ESRCH;
1481 
1482 	err = proc_sched_autogroup_set_nice(p, nice);
1483 	if (err)
1484 		count = err;
1485 
1486 	put_task_struct(p);
1487 
1488 	return count;
1489 }
1490 
1491 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1492 {
1493 	int ret;
1494 
1495 	ret = single_open(filp, sched_autogroup_show, NULL);
1496 	if (!ret) {
1497 		struct seq_file *m = filp->private_data;
1498 
1499 		m->private = inode;
1500 	}
1501 	return ret;
1502 }
1503 
1504 static const struct file_operations proc_pid_sched_autogroup_operations = {
1505 	.open		= sched_autogroup_open,
1506 	.read		= seq_read,
1507 	.write		= sched_autogroup_write,
1508 	.llseek		= seq_lseek,
1509 	.release	= single_release,
1510 };
1511 
1512 #endif /* CONFIG_SCHED_AUTOGROUP */
1513 
1514 static ssize_t comm_write(struct file *file, const char __user *buf,
1515 				size_t count, loff_t *offset)
1516 {
1517 	struct inode *inode = file_inode(file);
1518 	struct task_struct *p;
1519 	char buffer[TASK_COMM_LEN];
1520 	const size_t maxlen = sizeof(buffer) - 1;
1521 
1522 	memset(buffer, 0, sizeof(buffer));
1523 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1524 		return -EFAULT;
1525 
1526 	p = get_proc_task(inode);
1527 	if (!p)
1528 		return -ESRCH;
1529 
1530 	if (same_thread_group(current, p))
1531 		set_task_comm(p, buffer);
1532 	else
1533 		count = -EINVAL;
1534 
1535 	put_task_struct(p);
1536 
1537 	return count;
1538 }
1539 
1540 static int comm_show(struct seq_file *m, void *v)
1541 {
1542 	struct inode *inode = m->private;
1543 	struct task_struct *p;
1544 
1545 	p = get_proc_task(inode);
1546 	if (!p)
1547 		return -ESRCH;
1548 
1549 	task_lock(p);
1550 	seq_printf(m, "%s\n", p->comm);
1551 	task_unlock(p);
1552 
1553 	put_task_struct(p);
1554 
1555 	return 0;
1556 }
1557 
1558 static int comm_open(struct inode *inode, struct file *filp)
1559 {
1560 	return single_open(filp, comm_show, inode);
1561 }
1562 
1563 static const struct file_operations proc_pid_set_comm_operations = {
1564 	.open		= comm_open,
1565 	.read		= seq_read,
1566 	.write		= comm_write,
1567 	.llseek		= seq_lseek,
1568 	.release	= single_release,
1569 };
1570 
1571 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1572 {
1573 	struct task_struct *task;
1574 	struct file *exe_file;
1575 
1576 	task = get_proc_task(d_inode(dentry));
1577 	if (!task)
1578 		return -ENOENT;
1579 	exe_file = get_task_exe_file(task);
1580 	put_task_struct(task);
1581 	if (exe_file) {
1582 		*exe_path = exe_file->f_path;
1583 		path_get(&exe_file->f_path);
1584 		fput(exe_file);
1585 		return 0;
1586 	} else
1587 		return -ENOENT;
1588 }
1589 
1590 static const char *proc_pid_get_link(struct dentry *dentry,
1591 				     struct inode *inode,
1592 				     struct delayed_call *done)
1593 {
1594 	struct path path;
1595 	int error = -EACCES;
1596 
1597 	if (!dentry)
1598 		return ERR_PTR(-ECHILD);
1599 
1600 	/* Are we allowed to snoop on the tasks file descriptors? */
1601 	if (!proc_fd_access_allowed(inode))
1602 		goto out;
1603 
1604 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1605 	if (error)
1606 		goto out;
1607 
1608 	nd_jump_link(&path);
1609 	return NULL;
1610 out:
1611 	return ERR_PTR(error);
1612 }
1613 
1614 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1615 {
1616 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1617 	char *pathname;
1618 	int len;
1619 
1620 	if (!tmp)
1621 		return -ENOMEM;
1622 
1623 	pathname = d_path(path, tmp, PAGE_SIZE);
1624 	len = PTR_ERR(pathname);
1625 	if (IS_ERR(pathname))
1626 		goto out;
1627 	len = tmp + PAGE_SIZE - 1 - pathname;
1628 
1629 	if (len > buflen)
1630 		len = buflen;
1631 	if (copy_to_user(buffer, pathname, len))
1632 		len = -EFAULT;
1633  out:
1634 	free_page((unsigned long)tmp);
1635 	return len;
1636 }
1637 
1638 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1639 {
1640 	int error = -EACCES;
1641 	struct inode *inode = d_inode(dentry);
1642 	struct path path;
1643 
1644 	/* Are we allowed to snoop on the tasks file descriptors? */
1645 	if (!proc_fd_access_allowed(inode))
1646 		goto out;
1647 
1648 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1649 	if (error)
1650 		goto out;
1651 
1652 	error = do_proc_readlink(&path, buffer, buflen);
1653 	path_put(&path);
1654 out:
1655 	return error;
1656 }
1657 
1658 const struct inode_operations proc_pid_link_inode_operations = {
1659 	.readlink	= proc_pid_readlink,
1660 	.get_link	= proc_pid_get_link,
1661 	.setattr	= proc_setattr,
1662 };
1663 
1664 
1665 /* building an inode */
1666 
1667 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1668 {
1669 	struct inode * inode;
1670 	struct proc_inode *ei;
1671 	const struct cred *cred;
1672 
1673 	/* We need a new inode */
1674 
1675 	inode = new_inode(sb);
1676 	if (!inode)
1677 		goto out;
1678 
1679 	/* Common stuff */
1680 	ei = PROC_I(inode);
1681 	inode->i_ino = get_next_ino();
1682 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1683 	inode->i_op = &proc_def_inode_operations;
1684 
1685 	/*
1686 	 * grab the reference to task.
1687 	 */
1688 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1689 	if (!ei->pid)
1690 		goto out_unlock;
1691 
1692 	if (task_dumpable(task)) {
1693 		rcu_read_lock();
1694 		cred = __task_cred(task);
1695 		inode->i_uid = cred->euid;
1696 		inode->i_gid = cred->egid;
1697 		rcu_read_unlock();
1698 	}
1699 	security_task_to_inode(task, inode);
1700 
1701 out:
1702 	return inode;
1703 
1704 out_unlock:
1705 	iput(inode);
1706 	return NULL;
1707 }
1708 
1709 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1710 {
1711 	struct inode *inode = d_inode(dentry);
1712 	struct task_struct *task;
1713 	const struct cred *cred;
1714 	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1715 
1716 	generic_fillattr(inode, stat);
1717 
1718 	rcu_read_lock();
1719 	stat->uid = GLOBAL_ROOT_UID;
1720 	stat->gid = GLOBAL_ROOT_GID;
1721 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1722 	if (task) {
1723 		if (!has_pid_permissions(pid, task, 2)) {
1724 			rcu_read_unlock();
1725 			/*
1726 			 * This doesn't prevent learning whether PID exists,
1727 			 * it only makes getattr() consistent with readdir().
1728 			 */
1729 			return -ENOENT;
1730 		}
1731 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1732 		    task_dumpable(task)) {
1733 			cred = __task_cred(task);
1734 			stat->uid = cred->euid;
1735 			stat->gid = cred->egid;
1736 		}
1737 	}
1738 	rcu_read_unlock();
1739 	return 0;
1740 }
1741 
1742 /* dentry stuff */
1743 
1744 /*
1745  *	Exceptional case: normally we are not allowed to unhash a busy
1746  * directory. In this case, however, we can do it - no aliasing problems
1747  * due to the way we treat inodes.
1748  *
1749  * Rewrite the inode's ownerships here because the owning task may have
1750  * performed a setuid(), etc.
1751  *
1752  * Before the /proc/pid/status file was created the only way to read
1753  * the effective uid of a /process was to stat /proc/pid.  Reading
1754  * /proc/pid/status is slow enough that procps and other packages
1755  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1756  * made this apply to all per process world readable and executable
1757  * directories.
1758  */
1759 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1760 {
1761 	struct inode *inode;
1762 	struct task_struct *task;
1763 	const struct cred *cred;
1764 
1765 	if (flags & LOOKUP_RCU)
1766 		return -ECHILD;
1767 
1768 	inode = d_inode(dentry);
1769 	task = get_proc_task(inode);
1770 
1771 	if (task) {
1772 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1773 		    task_dumpable(task)) {
1774 			rcu_read_lock();
1775 			cred = __task_cred(task);
1776 			inode->i_uid = cred->euid;
1777 			inode->i_gid = cred->egid;
1778 			rcu_read_unlock();
1779 		} else {
1780 			inode->i_uid = GLOBAL_ROOT_UID;
1781 			inode->i_gid = GLOBAL_ROOT_GID;
1782 		}
1783 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1784 		security_task_to_inode(task, inode);
1785 		put_task_struct(task);
1786 		return 1;
1787 	}
1788 	return 0;
1789 }
1790 
1791 static inline bool proc_inode_is_dead(struct inode *inode)
1792 {
1793 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1794 }
1795 
1796 int pid_delete_dentry(const struct dentry *dentry)
1797 {
1798 	/* Is the task we represent dead?
1799 	 * If so, then don't put the dentry on the lru list,
1800 	 * kill it immediately.
1801 	 */
1802 	return proc_inode_is_dead(d_inode(dentry));
1803 }
1804 
1805 const struct dentry_operations pid_dentry_operations =
1806 {
1807 	.d_revalidate	= pid_revalidate,
1808 	.d_delete	= pid_delete_dentry,
1809 };
1810 
1811 /* Lookups */
1812 
1813 /*
1814  * Fill a directory entry.
1815  *
1816  * If possible create the dcache entry and derive our inode number and
1817  * file type from dcache entry.
1818  *
1819  * Since all of the proc inode numbers are dynamically generated, the inode
1820  * numbers do not exist until the inode is cache.  This means creating the
1821  * the dcache entry in readdir is necessary to keep the inode numbers
1822  * reported by readdir in sync with the inode numbers reported
1823  * by stat.
1824  */
1825 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1826 	const char *name, int len,
1827 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1828 {
1829 	struct dentry *child, *dir = file->f_path.dentry;
1830 	struct qstr qname = QSTR_INIT(name, len);
1831 	struct inode *inode;
1832 	unsigned type;
1833 	ino_t ino;
1834 
1835 	child = d_hash_and_lookup(dir, &qname);
1836 	if (!child) {
1837 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1838 		child = d_alloc_parallel(dir, &qname, &wq);
1839 		if (IS_ERR(child))
1840 			goto end_instantiate;
1841 		if (d_in_lookup(child)) {
1842 			int err = instantiate(d_inode(dir), child, task, ptr);
1843 			d_lookup_done(child);
1844 			if (err < 0) {
1845 				dput(child);
1846 				goto end_instantiate;
1847 			}
1848 		}
1849 	}
1850 	inode = d_inode(child);
1851 	ino = inode->i_ino;
1852 	type = inode->i_mode >> 12;
1853 	dput(child);
1854 	return dir_emit(ctx, name, len, ino, type);
1855 
1856 end_instantiate:
1857 	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1858 }
1859 
1860 /*
1861  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1862  * which represent vma start and end addresses.
1863  */
1864 static int dname_to_vma_addr(struct dentry *dentry,
1865 			     unsigned long *start, unsigned long *end)
1866 {
1867 	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1868 		return -EINVAL;
1869 
1870 	return 0;
1871 }
1872 
1873 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1874 {
1875 	unsigned long vm_start, vm_end;
1876 	bool exact_vma_exists = false;
1877 	struct mm_struct *mm = NULL;
1878 	struct task_struct *task;
1879 	const struct cred *cred;
1880 	struct inode *inode;
1881 	int status = 0;
1882 
1883 	if (flags & LOOKUP_RCU)
1884 		return -ECHILD;
1885 
1886 	inode = d_inode(dentry);
1887 	task = get_proc_task(inode);
1888 	if (!task)
1889 		goto out_notask;
1890 
1891 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1892 	if (IS_ERR_OR_NULL(mm))
1893 		goto out;
1894 
1895 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1896 		down_read(&mm->mmap_sem);
1897 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1898 		up_read(&mm->mmap_sem);
1899 	}
1900 
1901 	mmput(mm);
1902 
1903 	if (exact_vma_exists) {
1904 		if (task_dumpable(task)) {
1905 			rcu_read_lock();
1906 			cred = __task_cred(task);
1907 			inode->i_uid = cred->euid;
1908 			inode->i_gid = cred->egid;
1909 			rcu_read_unlock();
1910 		} else {
1911 			inode->i_uid = GLOBAL_ROOT_UID;
1912 			inode->i_gid = GLOBAL_ROOT_GID;
1913 		}
1914 		security_task_to_inode(task, inode);
1915 		status = 1;
1916 	}
1917 
1918 out:
1919 	put_task_struct(task);
1920 
1921 out_notask:
1922 	return status;
1923 }
1924 
1925 static const struct dentry_operations tid_map_files_dentry_operations = {
1926 	.d_revalidate	= map_files_d_revalidate,
1927 	.d_delete	= pid_delete_dentry,
1928 };
1929 
1930 static int map_files_get_link(struct dentry *dentry, struct path *path)
1931 {
1932 	unsigned long vm_start, vm_end;
1933 	struct vm_area_struct *vma;
1934 	struct task_struct *task;
1935 	struct mm_struct *mm;
1936 	int rc;
1937 
1938 	rc = -ENOENT;
1939 	task = get_proc_task(d_inode(dentry));
1940 	if (!task)
1941 		goto out;
1942 
1943 	mm = get_task_mm(task);
1944 	put_task_struct(task);
1945 	if (!mm)
1946 		goto out;
1947 
1948 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1949 	if (rc)
1950 		goto out_mmput;
1951 
1952 	rc = -ENOENT;
1953 	down_read(&mm->mmap_sem);
1954 	vma = find_exact_vma(mm, vm_start, vm_end);
1955 	if (vma && vma->vm_file) {
1956 		*path = vma->vm_file->f_path;
1957 		path_get(path);
1958 		rc = 0;
1959 	}
1960 	up_read(&mm->mmap_sem);
1961 
1962 out_mmput:
1963 	mmput(mm);
1964 out:
1965 	return rc;
1966 }
1967 
1968 struct map_files_info {
1969 	fmode_t		mode;
1970 	unsigned long	len;
1971 	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1972 };
1973 
1974 /*
1975  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1976  * symlinks may be used to bypass permissions on ancestor directories in the
1977  * path to the file in question.
1978  */
1979 static const char *
1980 proc_map_files_get_link(struct dentry *dentry,
1981 			struct inode *inode,
1982 		        struct delayed_call *done)
1983 {
1984 	if (!capable(CAP_SYS_ADMIN))
1985 		return ERR_PTR(-EPERM);
1986 
1987 	return proc_pid_get_link(dentry, inode, done);
1988 }
1989 
1990 /*
1991  * Identical to proc_pid_link_inode_operations except for get_link()
1992  */
1993 static const struct inode_operations proc_map_files_link_inode_operations = {
1994 	.readlink	= proc_pid_readlink,
1995 	.get_link	= proc_map_files_get_link,
1996 	.setattr	= proc_setattr,
1997 };
1998 
1999 static int
2000 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2001 			   struct task_struct *task, const void *ptr)
2002 {
2003 	fmode_t mode = (fmode_t)(unsigned long)ptr;
2004 	struct proc_inode *ei;
2005 	struct inode *inode;
2006 
2007 	inode = proc_pid_make_inode(dir->i_sb, task);
2008 	if (!inode)
2009 		return -ENOENT;
2010 
2011 	ei = PROC_I(inode);
2012 	ei->op.proc_get_link = map_files_get_link;
2013 
2014 	inode->i_op = &proc_map_files_link_inode_operations;
2015 	inode->i_size = 64;
2016 	inode->i_mode = S_IFLNK;
2017 
2018 	if (mode & FMODE_READ)
2019 		inode->i_mode |= S_IRUSR;
2020 	if (mode & FMODE_WRITE)
2021 		inode->i_mode |= S_IWUSR;
2022 
2023 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2024 	d_add(dentry, inode);
2025 
2026 	return 0;
2027 }
2028 
2029 static struct dentry *proc_map_files_lookup(struct inode *dir,
2030 		struct dentry *dentry, unsigned int flags)
2031 {
2032 	unsigned long vm_start, vm_end;
2033 	struct vm_area_struct *vma;
2034 	struct task_struct *task;
2035 	int result;
2036 	struct mm_struct *mm;
2037 
2038 	result = -ENOENT;
2039 	task = get_proc_task(dir);
2040 	if (!task)
2041 		goto out;
2042 
2043 	result = -EACCES;
2044 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2045 		goto out_put_task;
2046 
2047 	result = -ENOENT;
2048 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2049 		goto out_put_task;
2050 
2051 	mm = get_task_mm(task);
2052 	if (!mm)
2053 		goto out_put_task;
2054 
2055 	down_read(&mm->mmap_sem);
2056 	vma = find_exact_vma(mm, vm_start, vm_end);
2057 	if (!vma)
2058 		goto out_no_vma;
2059 
2060 	if (vma->vm_file)
2061 		result = proc_map_files_instantiate(dir, dentry, task,
2062 				(void *)(unsigned long)vma->vm_file->f_mode);
2063 
2064 out_no_vma:
2065 	up_read(&mm->mmap_sem);
2066 	mmput(mm);
2067 out_put_task:
2068 	put_task_struct(task);
2069 out:
2070 	return ERR_PTR(result);
2071 }
2072 
2073 static const struct inode_operations proc_map_files_inode_operations = {
2074 	.lookup		= proc_map_files_lookup,
2075 	.permission	= proc_fd_permission,
2076 	.setattr	= proc_setattr,
2077 };
2078 
2079 static int
2080 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2081 {
2082 	struct vm_area_struct *vma;
2083 	struct task_struct *task;
2084 	struct mm_struct *mm;
2085 	unsigned long nr_files, pos, i;
2086 	struct flex_array *fa = NULL;
2087 	struct map_files_info info;
2088 	struct map_files_info *p;
2089 	int ret;
2090 
2091 	ret = -ENOENT;
2092 	task = get_proc_task(file_inode(file));
2093 	if (!task)
2094 		goto out;
2095 
2096 	ret = -EACCES;
2097 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2098 		goto out_put_task;
2099 
2100 	ret = 0;
2101 	if (!dir_emit_dots(file, ctx))
2102 		goto out_put_task;
2103 
2104 	mm = get_task_mm(task);
2105 	if (!mm)
2106 		goto out_put_task;
2107 	down_read(&mm->mmap_sem);
2108 
2109 	nr_files = 0;
2110 
2111 	/*
2112 	 * We need two passes here:
2113 	 *
2114 	 *  1) Collect vmas of mapped files with mmap_sem taken
2115 	 *  2) Release mmap_sem and instantiate entries
2116 	 *
2117 	 * otherwise we get lockdep complained, since filldir()
2118 	 * routine might require mmap_sem taken in might_fault().
2119 	 */
2120 
2121 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2122 		if (vma->vm_file && ++pos > ctx->pos)
2123 			nr_files++;
2124 	}
2125 
2126 	if (nr_files) {
2127 		fa = flex_array_alloc(sizeof(info), nr_files,
2128 					GFP_KERNEL);
2129 		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2130 						GFP_KERNEL)) {
2131 			ret = -ENOMEM;
2132 			if (fa)
2133 				flex_array_free(fa);
2134 			up_read(&mm->mmap_sem);
2135 			mmput(mm);
2136 			goto out_put_task;
2137 		}
2138 		for (i = 0, vma = mm->mmap, pos = 2; vma;
2139 				vma = vma->vm_next) {
2140 			if (!vma->vm_file)
2141 				continue;
2142 			if (++pos <= ctx->pos)
2143 				continue;
2144 
2145 			info.mode = vma->vm_file->f_mode;
2146 			info.len = snprintf(info.name,
2147 					sizeof(info.name), "%lx-%lx",
2148 					vma->vm_start, vma->vm_end);
2149 			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2150 				BUG();
2151 		}
2152 	}
2153 	up_read(&mm->mmap_sem);
2154 
2155 	for (i = 0; i < nr_files; i++) {
2156 		p = flex_array_get(fa, i);
2157 		if (!proc_fill_cache(file, ctx,
2158 				      p->name, p->len,
2159 				      proc_map_files_instantiate,
2160 				      task,
2161 				      (void *)(unsigned long)p->mode))
2162 			break;
2163 		ctx->pos++;
2164 	}
2165 	if (fa)
2166 		flex_array_free(fa);
2167 	mmput(mm);
2168 
2169 out_put_task:
2170 	put_task_struct(task);
2171 out:
2172 	return ret;
2173 }
2174 
2175 static const struct file_operations proc_map_files_operations = {
2176 	.read		= generic_read_dir,
2177 	.iterate_shared	= proc_map_files_readdir,
2178 	.llseek		= generic_file_llseek,
2179 };
2180 
2181 #ifdef CONFIG_CHECKPOINT_RESTORE
2182 struct timers_private {
2183 	struct pid *pid;
2184 	struct task_struct *task;
2185 	struct sighand_struct *sighand;
2186 	struct pid_namespace *ns;
2187 	unsigned long flags;
2188 };
2189 
2190 static void *timers_start(struct seq_file *m, loff_t *pos)
2191 {
2192 	struct timers_private *tp = m->private;
2193 
2194 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2195 	if (!tp->task)
2196 		return ERR_PTR(-ESRCH);
2197 
2198 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2199 	if (!tp->sighand)
2200 		return ERR_PTR(-ESRCH);
2201 
2202 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2203 }
2204 
2205 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2206 {
2207 	struct timers_private *tp = m->private;
2208 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2209 }
2210 
2211 static void timers_stop(struct seq_file *m, void *v)
2212 {
2213 	struct timers_private *tp = m->private;
2214 
2215 	if (tp->sighand) {
2216 		unlock_task_sighand(tp->task, &tp->flags);
2217 		tp->sighand = NULL;
2218 	}
2219 
2220 	if (tp->task) {
2221 		put_task_struct(tp->task);
2222 		tp->task = NULL;
2223 	}
2224 }
2225 
2226 static int show_timer(struct seq_file *m, void *v)
2227 {
2228 	struct k_itimer *timer;
2229 	struct timers_private *tp = m->private;
2230 	int notify;
2231 	static const char * const nstr[] = {
2232 		[SIGEV_SIGNAL] = "signal",
2233 		[SIGEV_NONE] = "none",
2234 		[SIGEV_THREAD] = "thread",
2235 	};
2236 
2237 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2238 	notify = timer->it_sigev_notify;
2239 
2240 	seq_printf(m, "ID: %d\n", timer->it_id);
2241 	seq_printf(m, "signal: %d/%p\n",
2242 		   timer->sigq->info.si_signo,
2243 		   timer->sigq->info.si_value.sival_ptr);
2244 	seq_printf(m, "notify: %s/%s.%d\n",
2245 		   nstr[notify & ~SIGEV_THREAD_ID],
2246 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2247 		   pid_nr_ns(timer->it_pid, tp->ns));
2248 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2249 
2250 	return 0;
2251 }
2252 
2253 static const struct seq_operations proc_timers_seq_ops = {
2254 	.start	= timers_start,
2255 	.next	= timers_next,
2256 	.stop	= timers_stop,
2257 	.show	= show_timer,
2258 };
2259 
2260 static int proc_timers_open(struct inode *inode, struct file *file)
2261 {
2262 	struct timers_private *tp;
2263 
2264 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2265 			sizeof(struct timers_private));
2266 	if (!tp)
2267 		return -ENOMEM;
2268 
2269 	tp->pid = proc_pid(inode);
2270 	tp->ns = inode->i_sb->s_fs_info;
2271 	return 0;
2272 }
2273 
2274 static const struct file_operations proc_timers_operations = {
2275 	.open		= proc_timers_open,
2276 	.read		= seq_read,
2277 	.llseek		= seq_lseek,
2278 	.release	= seq_release_private,
2279 };
2280 #endif
2281 
2282 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2283 					size_t count, loff_t *offset)
2284 {
2285 	struct inode *inode = file_inode(file);
2286 	struct task_struct *p;
2287 	u64 slack_ns;
2288 	int err;
2289 
2290 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2291 	if (err < 0)
2292 		return err;
2293 
2294 	p = get_proc_task(inode);
2295 	if (!p)
2296 		return -ESRCH;
2297 
2298 	if (p != current) {
2299 		if (!capable(CAP_SYS_NICE)) {
2300 			count = -EPERM;
2301 			goto out;
2302 		}
2303 
2304 		err = security_task_setscheduler(p);
2305 		if (err) {
2306 			count = err;
2307 			goto out;
2308 		}
2309 	}
2310 
2311 	task_lock(p);
2312 	if (slack_ns == 0)
2313 		p->timer_slack_ns = p->default_timer_slack_ns;
2314 	else
2315 		p->timer_slack_ns = slack_ns;
2316 	task_unlock(p);
2317 
2318 out:
2319 	put_task_struct(p);
2320 
2321 	return count;
2322 }
2323 
2324 static int timerslack_ns_show(struct seq_file *m, void *v)
2325 {
2326 	struct inode *inode = m->private;
2327 	struct task_struct *p;
2328 	int err = 0;
2329 
2330 	p = get_proc_task(inode);
2331 	if (!p)
2332 		return -ESRCH;
2333 
2334 	if (p != current) {
2335 
2336 		if (!capable(CAP_SYS_NICE)) {
2337 			err = -EPERM;
2338 			goto out;
2339 		}
2340 		err = security_task_getscheduler(p);
2341 		if (err)
2342 			goto out;
2343 	}
2344 
2345 	task_lock(p);
2346 	seq_printf(m, "%llu\n", p->timer_slack_ns);
2347 	task_unlock(p);
2348 
2349 out:
2350 	put_task_struct(p);
2351 
2352 	return err;
2353 }
2354 
2355 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2356 {
2357 	return single_open(filp, timerslack_ns_show, inode);
2358 }
2359 
2360 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2361 	.open		= timerslack_ns_open,
2362 	.read		= seq_read,
2363 	.write		= timerslack_ns_write,
2364 	.llseek		= seq_lseek,
2365 	.release	= single_release,
2366 };
2367 
2368 static int proc_pident_instantiate(struct inode *dir,
2369 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2370 {
2371 	const struct pid_entry *p = ptr;
2372 	struct inode *inode;
2373 	struct proc_inode *ei;
2374 
2375 	inode = proc_pid_make_inode(dir->i_sb, task);
2376 	if (!inode)
2377 		goto out;
2378 
2379 	ei = PROC_I(inode);
2380 	inode->i_mode = p->mode;
2381 	if (S_ISDIR(inode->i_mode))
2382 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2383 	if (p->iop)
2384 		inode->i_op = p->iop;
2385 	if (p->fop)
2386 		inode->i_fop = p->fop;
2387 	ei->op = p->op;
2388 	d_set_d_op(dentry, &pid_dentry_operations);
2389 	d_add(dentry, inode);
2390 	/* Close the race of the process dying before we return the dentry */
2391 	if (pid_revalidate(dentry, 0))
2392 		return 0;
2393 out:
2394 	return -ENOENT;
2395 }
2396 
2397 static struct dentry *proc_pident_lookup(struct inode *dir,
2398 					 struct dentry *dentry,
2399 					 const struct pid_entry *ents,
2400 					 unsigned int nents)
2401 {
2402 	int error;
2403 	struct task_struct *task = get_proc_task(dir);
2404 	const struct pid_entry *p, *last;
2405 
2406 	error = -ENOENT;
2407 
2408 	if (!task)
2409 		goto out_no_task;
2410 
2411 	/*
2412 	 * Yes, it does not scale. And it should not. Don't add
2413 	 * new entries into /proc/<tgid>/ without very good reasons.
2414 	 */
2415 	last = &ents[nents - 1];
2416 	for (p = ents; p <= last; p++) {
2417 		if (p->len != dentry->d_name.len)
2418 			continue;
2419 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2420 			break;
2421 	}
2422 	if (p > last)
2423 		goto out;
2424 
2425 	error = proc_pident_instantiate(dir, dentry, task, p);
2426 out:
2427 	put_task_struct(task);
2428 out_no_task:
2429 	return ERR_PTR(error);
2430 }
2431 
2432 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2433 		const struct pid_entry *ents, unsigned int nents)
2434 {
2435 	struct task_struct *task = get_proc_task(file_inode(file));
2436 	const struct pid_entry *p;
2437 
2438 	if (!task)
2439 		return -ENOENT;
2440 
2441 	if (!dir_emit_dots(file, ctx))
2442 		goto out;
2443 
2444 	if (ctx->pos >= nents + 2)
2445 		goto out;
2446 
2447 	for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2448 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2449 				proc_pident_instantiate, task, p))
2450 			break;
2451 		ctx->pos++;
2452 	}
2453 out:
2454 	put_task_struct(task);
2455 	return 0;
2456 }
2457 
2458 #ifdef CONFIG_SECURITY
2459 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2460 				  size_t count, loff_t *ppos)
2461 {
2462 	struct inode * inode = file_inode(file);
2463 	char *p = NULL;
2464 	ssize_t length;
2465 	struct task_struct *task = get_proc_task(inode);
2466 
2467 	if (!task)
2468 		return -ESRCH;
2469 
2470 	length = security_getprocattr(task,
2471 				      (char*)file->f_path.dentry->d_name.name,
2472 				      &p);
2473 	put_task_struct(task);
2474 	if (length > 0)
2475 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2476 	kfree(p);
2477 	return length;
2478 }
2479 
2480 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2481 				   size_t count, loff_t *ppos)
2482 {
2483 	struct inode * inode = file_inode(file);
2484 	void *page;
2485 	ssize_t length;
2486 	struct task_struct *task = get_proc_task(inode);
2487 
2488 	length = -ESRCH;
2489 	if (!task)
2490 		goto out_no_task;
2491 	if (count > PAGE_SIZE)
2492 		count = PAGE_SIZE;
2493 
2494 	/* No partial writes. */
2495 	length = -EINVAL;
2496 	if (*ppos != 0)
2497 		goto out;
2498 
2499 	page = memdup_user(buf, count);
2500 	if (IS_ERR(page)) {
2501 		length = PTR_ERR(page);
2502 		goto out;
2503 	}
2504 
2505 	/* Guard against adverse ptrace interaction */
2506 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2507 	if (length < 0)
2508 		goto out_free;
2509 
2510 	length = security_setprocattr(task,
2511 				      (char*)file->f_path.dentry->d_name.name,
2512 				      page, count);
2513 	mutex_unlock(&task->signal->cred_guard_mutex);
2514 out_free:
2515 	kfree(page);
2516 out:
2517 	put_task_struct(task);
2518 out_no_task:
2519 	return length;
2520 }
2521 
2522 static const struct file_operations proc_pid_attr_operations = {
2523 	.read		= proc_pid_attr_read,
2524 	.write		= proc_pid_attr_write,
2525 	.llseek		= generic_file_llseek,
2526 };
2527 
2528 static const struct pid_entry attr_dir_stuff[] = {
2529 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2530 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2531 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2532 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2533 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2534 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2535 };
2536 
2537 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2538 {
2539 	return proc_pident_readdir(file, ctx,
2540 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2541 }
2542 
2543 static const struct file_operations proc_attr_dir_operations = {
2544 	.read		= generic_read_dir,
2545 	.iterate_shared	= proc_attr_dir_readdir,
2546 	.llseek		= generic_file_llseek,
2547 };
2548 
2549 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2550 				struct dentry *dentry, unsigned int flags)
2551 {
2552 	return proc_pident_lookup(dir, dentry,
2553 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2554 }
2555 
2556 static const struct inode_operations proc_attr_dir_inode_operations = {
2557 	.lookup		= proc_attr_dir_lookup,
2558 	.getattr	= pid_getattr,
2559 	.setattr	= proc_setattr,
2560 };
2561 
2562 #endif
2563 
2564 #ifdef CONFIG_ELF_CORE
2565 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2566 					 size_t count, loff_t *ppos)
2567 {
2568 	struct task_struct *task = get_proc_task(file_inode(file));
2569 	struct mm_struct *mm;
2570 	char buffer[PROC_NUMBUF];
2571 	size_t len;
2572 	int ret;
2573 
2574 	if (!task)
2575 		return -ESRCH;
2576 
2577 	ret = 0;
2578 	mm = get_task_mm(task);
2579 	if (mm) {
2580 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2581 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2582 				MMF_DUMP_FILTER_SHIFT));
2583 		mmput(mm);
2584 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2585 	}
2586 
2587 	put_task_struct(task);
2588 
2589 	return ret;
2590 }
2591 
2592 static ssize_t proc_coredump_filter_write(struct file *file,
2593 					  const char __user *buf,
2594 					  size_t count,
2595 					  loff_t *ppos)
2596 {
2597 	struct task_struct *task;
2598 	struct mm_struct *mm;
2599 	unsigned int val;
2600 	int ret;
2601 	int i;
2602 	unsigned long mask;
2603 
2604 	ret = kstrtouint_from_user(buf, count, 0, &val);
2605 	if (ret < 0)
2606 		return ret;
2607 
2608 	ret = -ESRCH;
2609 	task = get_proc_task(file_inode(file));
2610 	if (!task)
2611 		goto out_no_task;
2612 
2613 	mm = get_task_mm(task);
2614 	if (!mm)
2615 		goto out_no_mm;
2616 	ret = 0;
2617 
2618 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2619 		if (val & mask)
2620 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2621 		else
2622 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2623 	}
2624 
2625 	mmput(mm);
2626  out_no_mm:
2627 	put_task_struct(task);
2628  out_no_task:
2629 	if (ret < 0)
2630 		return ret;
2631 	return count;
2632 }
2633 
2634 static const struct file_operations proc_coredump_filter_operations = {
2635 	.read		= proc_coredump_filter_read,
2636 	.write		= proc_coredump_filter_write,
2637 	.llseek		= generic_file_llseek,
2638 };
2639 #endif
2640 
2641 #ifdef CONFIG_TASK_IO_ACCOUNTING
2642 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2643 {
2644 	struct task_io_accounting acct = task->ioac;
2645 	unsigned long flags;
2646 	int result;
2647 
2648 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2649 	if (result)
2650 		return result;
2651 
2652 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2653 		result = -EACCES;
2654 		goto out_unlock;
2655 	}
2656 
2657 	if (whole && lock_task_sighand(task, &flags)) {
2658 		struct task_struct *t = task;
2659 
2660 		task_io_accounting_add(&acct, &task->signal->ioac);
2661 		while_each_thread(task, t)
2662 			task_io_accounting_add(&acct, &t->ioac);
2663 
2664 		unlock_task_sighand(task, &flags);
2665 	}
2666 	seq_printf(m,
2667 		   "rchar: %llu\n"
2668 		   "wchar: %llu\n"
2669 		   "syscr: %llu\n"
2670 		   "syscw: %llu\n"
2671 		   "read_bytes: %llu\n"
2672 		   "write_bytes: %llu\n"
2673 		   "cancelled_write_bytes: %llu\n",
2674 		   (unsigned long long)acct.rchar,
2675 		   (unsigned long long)acct.wchar,
2676 		   (unsigned long long)acct.syscr,
2677 		   (unsigned long long)acct.syscw,
2678 		   (unsigned long long)acct.read_bytes,
2679 		   (unsigned long long)acct.write_bytes,
2680 		   (unsigned long long)acct.cancelled_write_bytes);
2681 	result = 0;
2682 
2683 out_unlock:
2684 	mutex_unlock(&task->signal->cred_guard_mutex);
2685 	return result;
2686 }
2687 
2688 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2689 				  struct pid *pid, struct task_struct *task)
2690 {
2691 	return do_io_accounting(task, m, 0);
2692 }
2693 
2694 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2695 				   struct pid *pid, struct task_struct *task)
2696 {
2697 	return do_io_accounting(task, m, 1);
2698 }
2699 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2700 
2701 #ifdef CONFIG_USER_NS
2702 static int proc_id_map_open(struct inode *inode, struct file *file,
2703 	const struct seq_operations *seq_ops)
2704 {
2705 	struct user_namespace *ns = NULL;
2706 	struct task_struct *task;
2707 	struct seq_file *seq;
2708 	int ret = -EINVAL;
2709 
2710 	task = get_proc_task(inode);
2711 	if (task) {
2712 		rcu_read_lock();
2713 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2714 		rcu_read_unlock();
2715 		put_task_struct(task);
2716 	}
2717 	if (!ns)
2718 		goto err;
2719 
2720 	ret = seq_open(file, seq_ops);
2721 	if (ret)
2722 		goto err_put_ns;
2723 
2724 	seq = file->private_data;
2725 	seq->private = ns;
2726 
2727 	return 0;
2728 err_put_ns:
2729 	put_user_ns(ns);
2730 err:
2731 	return ret;
2732 }
2733 
2734 static int proc_id_map_release(struct inode *inode, struct file *file)
2735 {
2736 	struct seq_file *seq = file->private_data;
2737 	struct user_namespace *ns = seq->private;
2738 	put_user_ns(ns);
2739 	return seq_release(inode, file);
2740 }
2741 
2742 static int proc_uid_map_open(struct inode *inode, struct file *file)
2743 {
2744 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2745 }
2746 
2747 static int proc_gid_map_open(struct inode *inode, struct file *file)
2748 {
2749 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2750 }
2751 
2752 static int proc_projid_map_open(struct inode *inode, struct file *file)
2753 {
2754 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2755 }
2756 
2757 static const struct file_operations proc_uid_map_operations = {
2758 	.open		= proc_uid_map_open,
2759 	.write		= proc_uid_map_write,
2760 	.read		= seq_read,
2761 	.llseek		= seq_lseek,
2762 	.release	= proc_id_map_release,
2763 };
2764 
2765 static const struct file_operations proc_gid_map_operations = {
2766 	.open		= proc_gid_map_open,
2767 	.write		= proc_gid_map_write,
2768 	.read		= seq_read,
2769 	.llseek		= seq_lseek,
2770 	.release	= proc_id_map_release,
2771 };
2772 
2773 static const struct file_operations proc_projid_map_operations = {
2774 	.open		= proc_projid_map_open,
2775 	.write		= proc_projid_map_write,
2776 	.read		= seq_read,
2777 	.llseek		= seq_lseek,
2778 	.release	= proc_id_map_release,
2779 };
2780 
2781 static int proc_setgroups_open(struct inode *inode, struct file *file)
2782 {
2783 	struct user_namespace *ns = NULL;
2784 	struct task_struct *task;
2785 	int ret;
2786 
2787 	ret = -ESRCH;
2788 	task = get_proc_task(inode);
2789 	if (task) {
2790 		rcu_read_lock();
2791 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2792 		rcu_read_unlock();
2793 		put_task_struct(task);
2794 	}
2795 	if (!ns)
2796 		goto err;
2797 
2798 	if (file->f_mode & FMODE_WRITE) {
2799 		ret = -EACCES;
2800 		if (!ns_capable(ns, CAP_SYS_ADMIN))
2801 			goto err_put_ns;
2802 	}
2803 
2804 	ret = single_open(file, &proc_setgroups_show, ns);
2805 	if (ret)
2806 		goto err_put_ns;
2807 
2808 	return 0;
2809 err_put_ns:
2810 	put_user_ns(ns);
2811 err:
2812 	return ret;
2813 }
2814 
2815 static int proc_setgroups_release(struct inode *inode, struct file *file)
2816 {
2817 	struct seq_file *seq = file->private_data;
2818 	struct user_namespace *ns = seq->private;
2819 	int ret = single_release(inode, file);
2820 	put_user_ns(ns);
2821 	return ret;
2822 }
2823 
2824 static const struct file_operations proc_setgroups_operations = {
2825 	.open		= proc_setgroups_open,
2826 	.write		= proc_setgroups_write,
2827 	.read		= seq_read,
2828 	.llseek		= seq_lseek,
2829 	.release	= proc_setgroups_release,
2830 };
2831 #endif /* CONFIG_USER_NS */
2832 
2833 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2834 				struct pid *pid, struct task_struct *task)
2835 {
2836 	int err = lock_trace(task);
2837 	if (!err) {
2838 		seq_printf(m, "%08x\n", task->personality);
2839 		unlock_trace(task);
2840 	}
2841 	return err;
2842 }
2843 
2844 /*
2845  * Thread groups
2846  */
2847 static const struct file_operations proc_task_operations;
2848 static const struct inode_operations proc_task_inode_operations;
2849 
2850 static const struct pid_entry tgid_base_stuff[] = {
2851 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2852 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2853 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2854 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2855 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2856 #ifdef CONFIG_NET
2857 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2858 #endif
2859 	REG("environ",    S_IRUSR, proc_environ_operations),
2860 	REG("auxv",       S_IRUSR, proc_auxv_operations),
2861 	ONE("status",     S_IRUGO, proc_pid_status),
2862 	ONE("personality", S_IRUSR, proc_pid_personality),
2863 	ONE("limits",	  S_IRUGO, proc_pid_limits),
2864 #ifdef CONFIG_SCHED_DEBUG
2865 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2866 #endif
2867 #ifdef CONFIG_SCHED_AUTOGROUP
2868 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2869 #endif
2870 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2871 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2872 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2873 #endif
2874 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2875 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2876 	ONE("statm",      S_IRUGO, proc_pid_statm),
2877 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2878 #ifdef CONFIG_NUMA
2879 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2880 #endif
2881 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2882 	LNK("cwd",        proc_cwd_link),
2883 	LNK("root",       proc_root_link),
2884 	LNK("exe",        proc_exe_link),
2885 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2886 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2887 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2888 #ifdef CONFIG_PROC_PAGE_MONITOR
2889 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2890 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2891 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2892 #endif
2893 #ifdef CONFIG_SECURITY
2894 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2895 #endif
2896 #ifdef CONFIG_KALLSYMS
2897 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2898 #endif
2899 #ifdef CONFIG_STACKTRACE
2900 	ONE("stack",      S_IRUSR, proc_pid_stack),
2901 #endif
2902 #ifdef CONFIG_SCHED_INFO
2903 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2904 #endif
2905 #ifdef CONFIG_LATENCYTOP
2906 	REG("latency",  S_IRUGO, proc_lstats_operations),
2907 #endif
2908 #ifdef CONFIG_PROC_PID_CPUSET
2909 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2910 #endif
2911 #ifdef CONFIG_CGROUPS
2912 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2913 #endif
2914 	ONE("oom_score",  S_IRUGO, proc_oom_score),
2915 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2916 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2917 #ifdef CONFIG_AUDITSYSCALL
2918 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2919 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2920 #endif
2921 #ifdef CONFIG_FAULT_INJECTION
2922 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2923 #endif
2924 #ifdef CONFIG_ELF_CORE
2925 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2926 #endif
2927 #ifdef CONFIG_TASK_IO_ACCOUNTING
2928 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2929 #endif
2930 #ifdef CONFIG_HARDWALL
2931 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2932 #endif
2933 #ifdef CONFIG_USER_NS
2934 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2935 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2936 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2937 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2938 #endif
2939 #ifdef CONFIG_CHECKPOINT_RESTORE
2940 	REG("timers",	  S_IRUGO, proc_timers_operations),
2941 #endif
2942 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
2943 };
2944 
2945 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2946 {
2947 	return proc_pident_readdir(file, ctx,
2948 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2949 }
2950 
2951 static const struct file_operations proc_tgid_base_operations = {
2952 	.read		= generic_read_dir,
2953 	.iterate_shared	= proc_tgid_base_readdir,
2954 	.llseek		= generic_file_llseek,
2955 };
2956 
2957 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2958 {
2959 	return proc_pident_lookup(dir, dentry,
2960 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2961 }
2962 
2963 static const struct inode_operations proc_tgid_base_inode_operations = {
2964 	.lookup		= proc_tgid_base_lookup,
2965 	.getattr	= pid_getattr,
2966 	.setattr	= proc_setattr,
2967 	.permission	= proc_pid_permission,
2968 };
2969 
2970 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2971 {
2972 	struct dentry *dentry, *leader, *dir;
2973 	char buf[PROC_NUMBUF];
2974 	struct qstr name;
2975 
2976 	name.name = buf;
2977 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2978 	/* no ->d_hash() rejects on procfs */
2979 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2980 	if (dentry) {
2981 		d_invalidate(dentry);
2982 		dput(dentry);
2983 	}
2984 
2985 	if (pid == tgid)
2986 		return;
2987 
2988 	name.name = buf;
2989 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2990 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2991 	if (!leader)
2992 		goto out;
2993 
2994 	name.name = "task";
2995 	name.len = strlen(name.name);
2996 	dir = d_hash_and_lookup(leader, &name);
2997 	if (!dir)
2998 		goto out_put_leader;
2999 
3000 	name.name = buf;
3001 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
3002 	dentry = d_hash_and_lookup(dir, &name);
3003 	if (dentry) {
3004 		d_invalidate(dentry);
3005 		dput(dentry);
3006 	}
3007 
3008 	dput(dir);
3009 out_put_leader:
3010 	dput(leader);
3011 out:
3012 	return;
3013 }
3014 
3015 /**
3016  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3017  * @task: task that should be flushed.
3018  *
3019  * When flushing dentries from proc, one needs to flush them from global
3020  * proc (proc_mnt) and from all the namespaces' procs this task was seen
3021  * in. This call is supposed to do all of this job.
3022  *
3023  * Looks in the dcache for
3024  * /proc/@pid
3025  * /proc/@tgid/task/@pid
3026  * if either directory is present flushes it and all of it'ts children
3027  * from the dcache.
3028  *
3029  * It is safe and reasonable to cache /proc entries for a task until
3030  * that task exits.  After that they just clog up the dcache with
3031  * useless entries, possibly causing useful dcache entries to be
3032  * flushed instead.  This routine is proved to flush those useless
3033  * dcache entries at process exit time.
3034  *
3035  * NOTE: This routine is just an optimization so it does not guarantee
3036  *       that no dcache entries will exist at process exit time it
3037  *       just makes it very unlikely that any will persist.
3038  */
3039 
3040 void proc_flush_task(struct task_struct *task)
3041 {
3042 	int i;
3043 	struct pid *pid, *tgid;
3044 	struct upid *upid;
3045 
3046 	pid = task_pid(task);
3047 	tgid = task_tgid(task);
3048 
3049 	for (i = 0; i <= pid->level; i++) {
3050 		upid = &pid->numbers[i];
3051 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3052 					tgid->numbers[i].nr);
3053 	}
3054 }
3055 
3056 static int proc_pid_instantiate(struct inode *dir,
3057 				   struct dentry * dentry,
3058 				   struct task_struct *task, const void *ptr)
3059 {
3060 	struct inode *inode;
3061 
3062 	inode = proc_pid_make_inode(dir->i_sb, task);
3063 	if (!inode)
3064 		goto out;
3065 
3066 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3067 	inode->i_op = &proc_tgid_base_inode_operations;
3068 	inode->i_fop = &proc_tgid_base_operations;
3069 	inode->i_flags|=S_IMMUTABLE;
3070 
3071 	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
3072 						  ARRAY_SIZE(tgid_base_stuff)));
3073 
3074 	d_set_d_op(dentry, &pid_dentry_operations);
3075 
3076 	d_add(dentry, inode);
3077 	/* Close the race of the process dying before we return the dentry */
3078 	if (pid_revalidate(dentry, 0))
3079 		return 0;
3080 out:
3081 	return -ENOENT;
3082 }
3083 
3084 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3085 {
3086 	int result = -ENOENT;
3087 	struct task_struct *task;
3088 	unsigned tgid;
3089 	struct pid_namespace *ns;
3090 
3091 	tgid = name_to_int(&dentry->d_name);
3092 	if (tgid == ~0U)
3093 		goto out;
3094 
3095 	ns = dentry->d_sb->s_fs_info;
3096 	rcu_read_lock();
3097 	task = find_task_by_pid_ns(tgid, ns);
3098 	if (task)
3099 		get_task_struct(task);
3100 	rcu_read_unlock();
3101 	if (!task)
3102 		goto out;
3103 
3104 	result = proc_pid_instantiate(dir, dentry, task, NULL);
3105 	put_task_struct(task);
3106 out:
3107 	return ERR_PTR(result);
3108 }
3109 
3110 /*
3111  * Find the first task with tgid >= tgid
3112  *
3113  */
3114 struct tgid_iter {
3115 	unsigned int tgid;
3116 	struct task_struct *task;
3117 };
3118 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3119 {
3120 	struct pid *pid;
3121 
3122 	if (iter.task)
3123 		put_task_struct(iter.task);
3124 	rcu_read_lock();
3125 retry:
3126 	iter.task = NULL;
3127 	pid = find_ge_pid(iter.tgid, ns);
3128 	if (pid) {
3129 		iter.tgid = pid_nr_ns(pid, ns);
3130 		iter.task = pid_task(pid, PIDTYPE_PID);
3131 		/* What we to know is if the pid we have find is the
3132 		 * pid of a thread_group_leader.  Testing for task
3133 		 * being a thread_group_leader is the obvious thing
3134 		 * todo but there is a window when it fails, due to
3135 		 * the pid transfer logic in de_thread.
3136 		 *
3137 		 * So we perform the straight forward test of seeing
3138 		 * if the pid we have found is the pid of a thread
3139 		 * group leader, and don't worry if the task we have
3140 		 * found doesn't happen to be a thread group leader.
3141 		 * As we don't care in the case of readdir.
3142 		 */
3143 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3144 			iter.tgid += 1;
3145 			goto retry;
3146 		}
3147 		get_task_struct(iter.task);
3148 	}
3149 	rcu_read_unlock();
3150 	return iter;
3151 }
3152 
3153 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3154 
3155 /* for the /proc/ directory itself, after non-process stuff has been done */
3156 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3157 {
3158 	struct tgid_iter iter;
3159 	struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3160 	loff_t pos = ctx->pos;
3161 
3162 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3163 		return 0;
3164 
3165 	if (pos == TGID_OFFSET - 2) {
3166 		struct inode *inode = d_inode(ns->proc_self);
3167 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3168 			return 0;
3169 		ctx->pos = pos = pos + 1;
3170 	}
3171 	if (pos == TGID_OFFSET - 1) {
3172 		struct inode *inode = d_inode(ns->proc_thread_self);
3173 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3174 			return 0;
3175 		ctx->pos = pos = pos + 1;
3176 	}
3177 	iter.tgid = pos - TGID_OFFSET;
3178 	iter.task = NULL;
3179 	for (iter = next_tgid(ns, iter);
3180 	     iter.task;
3181 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3182 		char name[PROC_NUMBUF];
3183 		int len;
3184 		if (!has_pid_permissions(ns, iter.task, 2))
3185 			continue;
3186 
3187 		len = snprintf(name, sizeof(name), "%d", iter.tgid);
3188 		ctx->pos = iter.tgid + TGID_OFFSET;
3189 		if (!proc_fill_cache(file, ctx, name, len,
3190 				     proc_pid_instantiate, iter.task, NULL)) {
3191 			put_task_struct(iter.task);
3192 			return 0;
3193 		}
3194 	}
3195 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3196 	return 0;
3197 }
3198 
3199 /*
3200  * proc_tid_comm_permission is a special permission function exclusively
3201  * used for the node /proc/<pid>/task/<tid>/comm.
3202  * It bypasses generic permission checks in the case where a task of the same
3203  * task group attempts to access the node.
3204  * The rationale behind this is that glibc and bionic access this node for
3205  * cross thread naming (pthread_set/getname_np(!self)). However, if
3206  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3207  * which locks out the cross thread naming implementation.
3208  * This function makes sure that the node is always accessible for members of
3209  * same thread group.
3210  */
3211 static int proc_tid_comm_permission(struct inode *inode, int mask)
3212 {
3213 	bool is_same_tgroup;
3214 	struct task_struct *task;
3215 
3216 	task = get_proc_task(inode);
3217 	if (!task)
3218 		return -ESRCH;
3219 	is_same_tgroup = same_thread_group(current, task);
3220 	put_task_struct(task);
3221 
3222 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3223 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3224 		 * read or written by the members of the corresponding
3225 		 * thread group.
3226 		 */
3227 		return 0;
3228 	}
3229 
3230 	return generic_permission(inode, mask);
3231 }
3232 
3233 static const struct inode_operations proc_tid_comm_inode_operations = {
3234 		.permission = proc_tid_comm_permission,
3235 };
3236 
3237 /*
3238  * Tasks
3239  */
3240 static const struct pid_entry tid_base_stuff[] = {
3241 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3242 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3243 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3244 #ifdef CONFIG_NET
3245 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3246 #endif
3247 	REG("environ",   S_IRUSR, proc_environ_operations),
3248 	REG("auxv",      S_IRUSR, proc_auxv_operations),
3249 	ONE("status",    S_IRUGO, proc_pid_status),
3250 	ONE("personality", S_IRUSR, proc_pid_personality),
3251 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3252 #ifdef CONFIG_SCHED_DEBUG
3253 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3254 #endif
3255 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3256 			 &proc_tid_comm_inode_operations,
3257 			 &proc_pid_set_comm_operations, {}),
3258 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3259 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3260 #endif
3261 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3262 	ONE("stat",      S_IRUGO, proc_tid_stat),
3263 	ONE("statm",     S_IRUGO, proc_pid_statm),
3264 	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3265 #ifdef CONFIG_PROC_CHILDREN
3266 	REG("children",  S_IRUGO, proc_tid_children_operations),
3267 #endif
3268 #ifdef CONFIG_NUMA
3269 	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3270 #endif
3271 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3272 	LNK("cwd",       proc_cwd_link),
3273 	LNK("root",      proc_root_link),
3274 	LNK("exe",       proc_exe_link),
3275 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3276 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3277 #ifdef CONFIG_PROC_PAGE_MONITOR
3278 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3279 	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3280 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3281 #endif
3282 #ifdef CONFIG_SECURITY
3283 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3284 #endif
3285 #ifdef CONFIG_KALLSYMS
3286 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3287 #endif
3288 #ifdef CONFIG_STACKTRACE
3289 	ONE("stack",      S_IRUSR, proc_pid_stack),
3290 #endif
3291 #ifdef CONFIG_SCHED_INFO
3292 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3293 #endif
3294 #ifdef CONFIG_LATENCYTOP
3295 	REG("latency",  S_IRUGO, proc_lstats_operations),
3296 #endif
3297 #ifdef CONFIG_PROC_PID_CPUSET
3298 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3299 #endif
3300 #ifdef CONFIG_CGROUPS
3301 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3302 #endif
3303 	ONE("oom_score", S_IRUGO, proc_oom_score),
3304 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3305 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3306 #ifdef CONFIG_AUDITSYSCALL
3307 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3308 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3309 #endif
3310 #ifdef CONFIG_FAULT_INJECTION
3311 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3312 #endif
3313 #ifdef CONFIG_TASK_IO_ACCOUNTING
3314 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3315 #endif
3316 #ifdef CONFIG_HARDWALL
3317 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3318 #endif
3319 #ifdef CONFIG_USER_NS
3320 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3321 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3322 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3323 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3324 #endif
3325 };
3326 
3327 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3328 {
3329 	return proc_pident_readdir(file, ctx,
3330 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3331 }
3332 
3333 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3334 {
3335 	return proc_pident_lookup(dir, dentry,
3336 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3337 }
3338 
3339 static const struct file_operations proc_tid_base_operations = {
3340 	.read		= generic_read_dir,
3341 	.iterate_shared	= proc_tid_base_readdir,
3342 	.llseek		= generic_file_llseek,
3343 };
3344 
3345 static const struct inode_operations proc_tid_base_inode_operations = {
3346 	.lookup		= proc_tid_base_lookup,
3347 	.getattr	= pid_getattr,
3348 	.setattr	= proc_setattr,
3349 };
3350 
3351 static int proc_task_instantiate(struct inode *dir,
3352 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3353 {
3354 	struct inode *inode;
3355 	inode = proc_pid_make_inode(dir->i_sb, task);
3356 
3357 	if (!inode)
3358 		goto out;
3359 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3360 	inode->i_op = &proc_tid_base_inode_operations;
3361 	inode->i_fop = &proc_tid_base_operations;
3362 	inode->i_flags|=S_IMMUTABLE;
3363 
3364 	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3365 						  ARRAY_SIZE(tid_base_stuff)));
3366 
3367 	d_set_d_op(dentry, &pid_dentry_operations);
3368 
3369 	d_add(dentry, inode);
3370 	/* Close the race of the process dying before we return the dentry */
3371 	if (pid_revalidate(dentry, 0))
3372 		return 0;
3373 out:
3374 	return -ENOENT;
3375 }
3376 
3377 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3378 {
3379 	int result = -ENOENT;
3380 	struct task_struct *task;
3381 	struct task_struct *leader = get_proc_task(dir);
3382 	unsigned tid;
3383 	struct pid_namespace *ns;
3384 
3385 	if (!leader)
3386 		goto out_no_task;
3387 
3388 	tid = name_to_int(&dentry->d_name);
3389 	if (tid == ~0U)
3390 		goto out;
3391 
3392 	ns = dentry->d_sb->s_fs_info;
3393 	rcu_read_lock();
3394 	task = find_task_by_pid_ns(tid, ns);
3395 	if (task)
3396 		get_task_struct(task);
3397 	rcu_read_unlock();
3398 	if (!task)
3399 		goto out;
3400 	if (!same_thread_group(leader, task))
3401 		goto out_drop_task;
3402 
3403 	result = proc_task_instantiate(dir, dentry, task, NULL);
3404 out_drop_task:
3405 	put_task_struct(task);
3406 out:
3407 	put_task_struct(leader);
3408 out_no_task:
3409 	return ERR_PTR(result);
3410 }
3411 
3412 /*
3413  * Find the first tid of a thread group to return to user space.
3414  *
3415  * Usually this is just the thread group leader, but if the users
3416  * buffer was too small or there was a seek into the middle of the
3417  * directory we have more work todo.
3418  *
3419  * In the case of a short read we start with find_task_by_pid.
3420  *
3421  * In the case of a seek we start with the leader and walk nr
3422  * threads past it.
3423  */
3424 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3425 					struct pid_namespace *ns)
3426 {
3427 	struct task_struct *pos, *task;
3428 	unsigned long nr = f_pos;
3429 
3430 	if (nr != f_pos)	/* 32bit overflow? */
3431 		return NULL;
3432 
3433 	rcu_read_lock();
3434 	task = pid_task(pid, PIDTYPE_PID);
3435 	if (!task)
3436 		goto fail;
3437 
3438 	/* Attempt to start with the tid of a thread */
3439 	if (tid && nr) {
3440 		pos = find_task_by_pid_ns(tid, ns);
3441 		if (pos && same_thread_group(pos, task))
3442 			goto found;
3443 	}
3444 
3445 	/* If nr exceeds the number of threads there is nothing todo */
3446 	if (nr >= get_nr_threads(task))
3447 		goto fail;
3448 
3449 	/* If we haven't found our starting place yet start
3450 	 * with the leader and walk nr threads forward.
3451 	 */
3452 	pos = task = task->group_leader;
3453 	do {
3454 		if (!nr--)
3455 			goto found;
3456 	} while_each_thread(task, pos);
3457 fail:
3458 	pos = NULL;
3459 	goto out;
3460 found:
3461 	get_task_struct(pos);
3462 out:
3463 	rcu_read_unlock();
3464 	return pos;
3465 }
3466 
3467 /*
3468  * Find the next thread in the thread list.
3469  * Return NULL if there is an error or no next thread.
3470  *
3471  * The reference to the input task_struct is released.
3472  */
3473 static struct task_struct *next_tid(struct task_struct *start)
3474 {
3475 	struct task_struct *pos = NULL;
3476 	rcu_read_lock();
3477 	if (pid_alive(start)) {
3478 		pos = next_thread(start);
3479 		if (thread_group_leader(pos))
3480 			pos = NULL;
3481 		else
3482 			get_task_struct(pos);
3483 	}
3484 	rcu_read_unlock();
3485 	put_task_struct(start);
3486 	return pos;
3487 }
3488 
3489 /* for the /proc/TGID/task/ directories */
3490 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3491 {
3492 	struct inode *inode = file_inode(file);
3493 	struct task_struct *task;
3494 	struct pid_namespace *ns;
3495 	int tid;
3496 
3497 	if (proc_inode_is_dead(inode))
3498 		return -ENOENT;
3499 
3500 	if (!dir_emit_dots(file, ctx))
3501 		return 0;
3502 
3503 	/* f_version caches the tgid value that the last readdir call couldn't
3504 	 * return. lseek aka telldir automagically resets f_version to 0.
3505 	 */
3506 	ns = inode->i_sb->s_fs_info;
3507 	tid = (int)file->f_version;
3508 	file->f_version = 0;
3509 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3510 	     task;
3511 	     task = next_tid(task), ctx->pos++) {
3512 		char name[PROC_NUMBUF];
3513 		int len;
3514 		tid = task_pid_nr_ns(task, ns);
3515 		len = snprintf(name, sizeof(name), "%d", tid);
3516 		if (!proc_fill_cache(file, ctx, name, len,
3517 				proc_task_instantiate, task, NULL)) {
3518 			/* returning this tgid failed, save it as the first
3519 			 * pid for the next readir call */
3520 			file->f_version = (u64)tid;
3521 			put_task_struct(task);
3522 			break;
3523 		}
3524 	}
3525 
3526 	return 0;
3527 }
3528 
3529 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3530 {
3531 	struct inode *inode = d_inode(dentry);
3532 	struct task_struct *p = get_proc_task(inode);
3533 	generic_fillattr(inode, stat);
3534 
3535 	if (p) {
3536 		stat->nlink += get_nr_threads(p);
3537 		put_task_struct(p);
3538 	}
3539 
3540 	return 0;
3541 }
3542 
3543 static const struct inode_operations proc_task_inode_operations = {
3544 	.lookup		= proc_task_lookup,
3545 	.getattr	= proc_task_getattr,
3546 	.setattr	= proc_setattr,
3547 	.permission	= proc_pid_permission,
3548 };
3549 
3550 static const struct file_operations proc_task_operations = {
3551 	.read		= generic_read_dir,
3552 	.iterate_shared	= proc_task_readdir,
3553 	.llseek		= generic_file_llseek,
3554 };
3555