xref: /openbmc/linux/fs/proc/base.c (revision e4b4e441)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/proc/base.c
4  *
5  *  Copyright (C) 1991, 1992 Linus Torvalds
6  *
7  *  proc base directory handling functions
8  *
9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10  *  Instead of using magical inumbers to determine the kind of object
11  *  we allocate and fill in-core inodes upon lookup. They don't even
12  *  go into icache. We cache the reference to task_struct upon lookup too.
13  *  Eventually it should become a filesystem in its own. We don't use the
14  *  rest of procfs anymore.
15  *
16  *
17  *  Changelog:
18  *  17-Jan-2005
19  *  Allan Bezerra
20  *  Bruna Moreira <bruna.moreira@indt.org.br>
21  *  Edjard Mota <edjard.mota@indt.org.br>
22  *  Ilias Biris <ilias.biris@indt.org.br>
23  *  Mauricio Lin <mauricio.lin@indt.org.br>
24  *
25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26  *
27  *  A new process specific entry (smaps) included in /proc. It shows the
28  *  size of rss for each memory area. The maps entry lacks information
29  *  about physical memory size (rss) for each mapped file, i.e.,
30  *  rss information for executables and library files.
31  *  This additional information is useful for any tools that need to know
32  *  about physical memory consumption for a process specific library.
33  *
34  *  Changelog:
35  *  21-Feb-2005
36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37  *  Pud inclusion in the page table walking.
38  *
39  *  ChangeLog:
40  *  10-Mar-2005
41  *  10LE Instituto Nokia de Tecnologia - INdT:
42  *  A better way to walks through the page table as suggested by Hugh Dickins.
43  *
44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45  *  Smaps information related to shared, private, clean and dirty pages.
46  *
47  *  Paul Mundt <paul.mundt@nokia.com>:
48  *  Overall revision about smaps.
49  */
50 
51 #include <linux/uaccess.h>
52 
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/string.h>
63 #include <linux/seq_file.h>
64 #include <linux/namei.h>
65 #include <linux/mnt_namespace.h>
66 #include <linux/mm.h>
67 #include <linux/swap.h>
68 #include <linux/rcupdate.h>
69 #include <linux/kallsyms.h>
70 #include <linux/stacktrace.h>
71 #include <linux/resource.h>
72 #include <linux/module.h>
73 #include <linux/mount.h>
74 #include <linux/security.h>
75 #include <linux/ptrace.h>
76 #include <linux/tracehook.h>
77 #include <linux/printk.h>
78 #include <linux/cache.h>
79 #include <linux/cgroup.h>
80 #include <linux/cpuset.h>
81 #include <linux/audit.h>
82 #include <linux/poll.h>
83 #include <linux/nsproxy.h>
84 #include <linux/oom.h>
85 #include <linux/elf.h>
86 #include <linux/pid_namespace.h>
87 #include <linux/user_namespace.h>
88 #include <linux/fs_struct.h>
89 #include <linux/slab.h>
90 #include <linux/sched/autogroup.h>
91 #include <linux/sched/mm.h>
92 #include <linux/sched/coredump.h>
93 #include <linux/sched/debug.h>
94 #include <linux/sched/stat.h>
95 #include <linux/flex_array.h>
96 #include <linux/posix-timers.h>
97 #include <trace/events/oom.h>
98 #include "internal.h"
99 #include "fd.h"
100 
101 #include "../../lib/kstrtox.h"
102 
103 /* NOTE:
104  *	Implementing inode permission operations in /proc is almost
105  *	certainly an error.  Permission checks need to happen during
106  *	each system call not at open time.  The reason is that most of
107  *	what we wish to check for permissions in /proc varies at runtime.
108  *
109  *	The classic example of a problem is opening file descriptors
110  *	in /proc for a task before it execs a suid executable.
111  */
112 
113 static u8 nlink_tid __ro_after_init;
114 static u8 nlink_tgid __ro_after_init;
115 
116 struct pid_entry {
117 	const char *name;
118 	unsigned int len;
119 	umode_t mode;
120 	const struct inode_operations *iop;
121 	const struct file_operations *fop;
122 	union proc_op op;
123 };
124 
125 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
126 	.name = (NAME),					\
127 	.len  = sizeof(NAME) - 1,			\
128 	.mode = MODE,					\
129 	.iop  = IOP,					\
130 	.fop  = FOP,					\
131 	.op   = OP,					\
132 }
133 
134 #define DIR(NAME, MODE, iops, fops)	\
135 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
136 #define LNK(NAME, get_link)					\
137 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
138 		&proc_pid_link_inode_operations, NULL,		\
139 		{ .proc_get_link = get_link } )
140 #define REG(NAME, MODE, fops)				\
141 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
142 #define ONE(NAME, MODE, show)				\
143 	NOD(NAME, (S_IFREG|(MODE)), 			\
144 		NULL, &proc_single_file_operations,	\
145 		{ .proc_show = show } )
146 
147 /*
148  * Count the number of hardlinks for the pid_entry table, excluding the .
149  * and .. links.
150  */
151 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
152 	unsigned int n)
153 {
154 	unsigned int i;
155 	unsigned int count;
156 
157 	count = 2;
158 	for (i = 0; i < n; ++i) {
159 		if (S_ISDIR(entries[i].mode))
160 			++count;
161 	}
162 
163 	return count;
164 }
165 
166 static int get_task_root(struct task_struct *task, struct path *root)
167 {
168 	int result = -ENOENT;
169 
170 	task_lock(task);
171 	if (task->fs) {
172 		get_fs_root(task->fs, root);
173 		result = 0;
174 	}
175 	task_unlock(task);
176 	return result;
177 }
178 
179 static int proc_cwd_link(struct dentry *dentry, struct path *path)
180 {
181 	struct task_struct *task = get_proc_task(d_inode(dentry));
182 	int result = -ENOENT;
183 
184 	if (task) {
185 		task_lock(task);
186 		if (task->fs) {
187 			get_fs_pwd(task->fs, path);
188 			result = 0;
189 		}
190 		task_unlock(task);
191 		put_task_struct(task);
192 	}
193 	return result;
194 }
195 
196 static int proc_root_link(struct dentry *dentry, struct path *path)
197 {
198 	struct task_struct *task = get_proc_task(d_inode(dentry));
199 	int result = -ENOENT;
200 
201 	if (task) {
202 		result = get_task_root(task, path);
203 		put_task_struct(task);
204 	}
205 	return result;
206 }
207 
208 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
209 			      size_t _count, loff_t *pos)
210 {
211 	char *page;
212 	unsigned long count = _count;
213 	unsigned long arg_start, arg_end, env_start, env_end;
214 	unsigned long len1, len2, len;
215 	unsigned long p;
216 	char c;
217 	ssize_t rv;
218 
219 	/* Check if process spawned far enough to have cmdline. */
220 	if (!mm->env_end)
221 		return 0;
222 
223 	page = (char *)__get_free_page(GFP_KERNEL);
224 	if (!page)
225 		return -ENOMEM;
226 
227 	down_read(&mm->mmap_sem);
228 	arg_start = mm->arg_start;
229 	arg_end = mm->arg_end;
230 	env_start = mm->env_start;
231 	env_end = mm->env_end;
232 	up_read(&mm->mmap_sem);
233 
234 	BUG_ON(arg_start > arg_end);
235 	BUG_ON(env_start > env_end);
236 
237 	len1 = arg_end - arg_start;
238 	len2 = env_end - env_start;
239 
240 	/* Empty ARGV. */
241 	if (len1 == 0) {
242 		rv = 0;
243 		goto out_free_page;
244 	}
245 	/*
246 	 * Inherently racy -- command line shares address space
247 	 * with code and data.
248 	 */
249 	rv = access_remote_vm(mm, arg_end - 1, &c, 1, FOLL_ANON);
250 	if (rv <= 0)
251 		goto out_free_page;
252 
253 	rv = 0;
254 
255 	if (c == '\0') {
256 		/* Command line (set of strings) occupies whole ARGV. */
257 		if (len1 <= *pos)
258 			goto out_free_page;
259 
260 		p = arg_start + *pos;
261 		len = len1 - *pos;
262 		while (count > 0 && len > 0) {
263 			unsigned int _count;
264 			int nr_read;
265 
266 			_count = min3(count, len, PAGE_SIZE);
267 			nr_read = access_remote_vm(mm, p, page, _count, FOLL_ANON);
268 			if (nr_read < 0)
269 				rv = nr_read;
270 			if (nr_read <= 0)
271 				goto out_free_page;
272 
273 			if (copy_to_user(buf, page, nr_read)) {
274 				rv = -EFAULT;
275 				goto out_free_page;
276 			}
277 
278 			p	+= nr_read;
279 			len	-= nr_read;
280 			buf	+= nr_read;
281 			count	-= nr_read;
282 			rv	+= nr_read;
283 		}
284 	} else {
285 		/*
286 		 * Command line (1 string) occupies ARGV and
287 		 * extends into ENVP.
288 		 */
289 		struct {
290 			unsigned long p;
291 			unsigned long len;
292 		} cmdline[2] = {
293 			{ .p = arg_start, .len = len1 },
294 			{ .p = env_start, .len = len2 },
295 		};
296 		loff_t pos1 = *pos;
297 		unsigned int i;
298 
299 		i = 0;
300 		while (i < 2 && pos1 >= cmdline[i].len) {
301 			pos1 -= cmdline[i].len;
302 			i++;
303 		}
304 		while (i < 2) {
305 			p = cmdline[i].p + pos1;
306 			len = cmdline[i].len - pos1;
307 			while (count > 0 && len > 0) {
308 				unsigned int _count, l;
309 				int nr_read;
310 				bool final;
311 
312 				_count = min3(count, len, PAGE_SIZE);
313 				nr_read = access_remote_vm(mm, p, page, _count, FOLL_ANON);
314 				if (nr_read < 0)
315 					rv = nr_read;
316 				if (nr_read <= 0)
317 					goto out_free_page;
318 
319 				/*
320 				 * Command line can be shorter than whole ARGV
321 				 * even if last "marker" byte says it is not.
322 				 */
323 				final = false;
324 				l = strnlen(page, nr_read);
325 				if (l < nr_read) {
326 					nr_read = l;
327 					final = true;
328 				}
329 
330 				if (copy_to_user(buf, page, nr_read)) {
331 					rv = -EFAULT;
332 					goto out_free_page;
333 				}
334 
335 				p	+= nr_read;
336 				len	-= nr_read;
337 				buf	+= nr_read;
338 				count	-= nr_read;
339 				rv	+= nr_read;
340 
341 				if (final)
342 					goto out_free_page;
343 			}
344 
345 			/* Only first chunk can be read partially. */
346 			pos1 = 0;
347 			i++;
348 		}
349 	}
350 
351 out_free_page:
352 	free_page((unsigned long)page);
353 	return rv;
354 }
355 
356 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
357 				size_t count, loff_t *pos)
358 {
359 	struct mm_struct *mm;
360 	ssize_t ret;
361 
362 	mm = get_task_mm(tsk);
363 	if (!mm)
364 		return 0;
365 
366 	ret = get_mm_cmdline(mm, buf, count, pos);
367 	mmput(mm);
368 	return ret;
369 }
370 
371 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
372 				     size_t count, loff_t *pos)
373 {
374 	struct task_struct *tsk;
375 	ssize_t ret;
376 
377 	BUG_ON(*pos < 0);
378 
379 	tsk = get_proc_task(file_inode(file));
380 	if (!tsk)
381 		return -ESRCH;
382 	ret = get_task_cmdline(tsk, buf, count, pos);
383 	put_task_struct(tsk);
384 	if (ret > 0)
385 		*pos += ret;
386 	return ret;
387 }
388 
389 static const struct file_operations proc_pid_cmdline_ops = {
390 	.read	= proc_pid_cmdline_read,
391 	.llseek	= generic_file_llseek,
392 };
393 
394 #ifdef CONFIG_KALLSYMS
395 /*
396  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
397  * Returns the resolved symbol.  If that fails, simply return the address.
398  */
399 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
400 			  struct pid *pid, struct task_struct *task)
401 {
402 	unsigned long wchan;
403 	char symname[KSYM_NAME_LEN];
404 
405 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
406 		goto print0;
407 
408 	wchan = get_wchan(task);
409 	if (wchan && !lookup_symbol_name(wchan, symname)) {
410 		seq_puts(m, symname);
411 		return 0;
412 	}
413 
414 print0:
415 	seq_putc(m, '0');
416 	return 0;
417 }
418 #endif /* CONFIG_KALLSYMS */
419 
420 static int lock_trace(struct task_struct *task)
421 {
422 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
423 	if (err)
424 		return err;
425 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
426 		mutex_unlock(&task->signal->cred_guard_mutex);
427 		return -EPERM;
428 	}
429 	return 0;
430 }
431 
432 static void unlock_trace(struct task_struct *task)
433 {
434 	mutex_unlock(&task->signal->cred_guard_mutex);
435 }
436 
437 #ifdef CONFIG_STACKTRACE
438 
439 #define MAX_STACK_TRACE_DEPTH	64
440 
441 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
442 			  struct pid *pid, struct task_struct *task)
443 {
444 	struct stack_trace trace;
445 	unsigned long *entries;
446 	int err;
447 	int i;
448 
449 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
450 	if (!entries)
451 		return -ENOMEM;
452 
453 	trace.nr_entries	= 0;
454 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
455 	trace.entries		= entries;
456 	trace.skip		= 0;
457 
458 	err = lock_trace(task);
459 	if (!err) {
460 		save_stack_trace_tsk(task, &trace);
461 
462 		for (i = 0; i < trace.nr_entries; i++) {
463 			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
464 		}
465 		unlock_trace(task);
466 	}
467 	kfree(entries);
468 
469 	return err;
470 }
471 #endif
472 
473 #ifdef CONFIG_SCHED_INFO
474 /*
475  * Provides /proc/PID/schedstat
476  */
477 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
478 			      struct pid *pid, struct task_struct *task)
479 {
480 	if (unlikely(!sched_info_on()))
481 		seq_printf(m, "0 0 0\n");
482 	else
483 		seq_printf(m, "%llu %llu %lu\n",
484 		   (unsigned long long)task->se.sum_exec_runtime,
485 		   (unsigned long long)task->sched_info.run_delay,
486 		   task->sched_info.pcount);
487 
488 	return 0;
489 }
490 #endif
491 
492 #ifdef CONFIG_LATENCYTOP
493 static int lstats_show_proc(struct seq_file *m, void *v)
494 {
495 	int i;
496 	struct inode *inode = m->private;
497 	struct task_struct *task = get_proc_task(inode);
498 
499 	if (!task)
500 		return -ESRCH;
501 	seq_puts(m, "Latency Top version : v0.1\n");
502 	for (i = 0; i < 32; i++) {
503 		struct latency_record *lr = &task->latency_record[i];
504 		if (lr->backtrace[0]) {
505 			int q;
506 			seq_printf(m, "%i %li %li",
507 				   lr->count, lr->time, lr->max);
508 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
509 				unsigned long bt = lr->backtrace[q];
510 				if (!bt)
511 					break;
512 				if (bt == ULONG_MAX)
513 					break;
514 				seq_printf(m, " %ps", (void *)bt);
515 			}
516 			seq_putc(m, '\n');
517 		}
518 
519 	}
520 	put_task_struct(task);
521 	return 0;
522 }
523 
524 static int lstats_open(struct inode *inode, struct file *file)
525 {
526 	return single_open(file, lstats_show_proc, inode);
527 }
528 
529 static ssize_t lstats_write(struct file *file, const char __user *buf,
530 			    size_t count, loff_t *offs)
531 {
532 	struct task_struct *task = get_proc_task(file_inode(file));
533 
534 	if (!task)
535 		return -ESRCH;
536 	clear_all_latency_tracing(task);
537 	put_task_struct(task);
538 
539 	return count;
540 }
541 
542 static const struct file_operations proc_lstats_operations = {
543 	.open		= lstats_open,
544 	.read		= seq_read,
545 	.write		= lstats_write,
546 	.llseek		= seq_lseek,
547 	.release	= single_release,
548 };
549 
550 #endif
551 
552 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
553 			  struct pid *pid, struct task_struct *task)
554 {
555 	unsigned long totalpages = totalram_pages + total_swap_pages;
556 	unsigned long points = 0;
557 
558 	points = oom_badness(task, NULL, NULL, totalpages) *
559 					1000 / totalpages;
560 	seq_printf(m, "%lu\n", points);
561 
562 	return 0;
563 }
564 
565 struct limit_names {
566 	const char *name;
567 	const char *unit;
568 };
569 
570 static const struct limit_names lnames[RLIM_NLIMITS] = {
571 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
572 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
573 	[RLIMIT_DATA] = {"Max data size", "bytes"},
574 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
575 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
576 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
577 	[RLIMIT_NPROC] = {"Max processes", "processes"},
578 	[RLIMIT_NOFILE] = {"Max open files", "files"},
579 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
580 	[RLIMIT_AS] = {"Max address space", "bytes"},
581 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
582 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
583 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
584 	[RLIMIT_NICE] = {"Max nice priority", NULL},
585 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
586 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
587 };
588 
589 /* Display limits for a process */
590 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
591 			   struct pid *pid, struct task_struct *task)
592 {
593 	unsigned int i;
594 	unsigned long flags;
595 
596 	struct rlimit rlim[RLIM_NLIMITS];
597 
598 	if (!lock_task_sighand(task, &flags))
599 		return 0;
600 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
601 	unlock_task_sighand(task, &flags);
602 
603 	/*
604 	 * print the file header
605 	 */
606        seq_printf(m, "%-25s %-20s %-20s %-10s\n",
607 		  "Limit", "Soft Limit", "Hard Limit", "Units");
608 
609 	for (i = 0; i < RLIM_NLIMITS; i++) {
610 		if (rlim[i].rlim_cur == RLIM_INFINITY)
611 			seq_printf(m, "%-25s %-20s ",
612 				   lnames[i].name, "unlimited");
613 		else
614 			seq_printf(m, "%-25s %-20lu ",
615 				   lnames[i].name, rlim[i].rlim_cur);
616 
617 		if (rlim[i].rlim_max == RLIM_INFINITY)
618 			seq_printf(m, "%-20s ", "unlimited");
619 		else
620 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
621 
622 		if (lnames[i].unit)
623 			seq_printf(m, "%-10s\n", lnames[i].unit);
624 		else
625 			seq_putc(m, '\n');
626 	}
627 
628 	return 0;
629 }
630 
631 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
632 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
633 			    struct pid *pid, struct task_struct *task)
634 {
635 	long nr;
636 	unsigned long args[6], sp, pc;
637 	int res;
638 
639 	res = lock_trace(task);
640 	if (res)
641 		return res;
642 
643 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
644 		seq_puts(m, "running\n");
645 	else if (nr < 0)
646 		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
647 	else
648 		seq_printf(m,
649 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
650 		       nr,
651 		       args[0], args[1], args[2], args[3], args[4], args[5],
652 		       sp, pc);
653 	unlock_trace(task);
654 
655 	return 0;
656 }
657 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
658 
659 /************************************************************************/
660 /*                       Here the fs part begins                        */
661 /************************************************************************/
662 
663 /* permission checks */
664 static int proc_fd_access_allowed(struct inode *inode)
665 {
666 	struct task_struct *task;
667 	int allowed = 0;
668 	/* Allow access to a task's file descriptors if it is us or we
669 	 * may use ptrace attach to the process and find out that
670 	 * information.
671 	 */
672 	task = get_proc_task(inode);
673 	if (task) {
674 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
675 		put_task_struct(task);
676 	}
677 	return allowed;
678 }
679 
680 int proc_setattr(struct dentry *dentry, struct iattr *attr)
681 {
682 	int error;
683 	struct inode *inode = d_inode(dentry);
684 
685 	if (attr->ia_valid & ATTR_MODE)
686 		return -EPERM;
687 
688 	error = setattr_prepare(dentry, attr);
689 	if (error)
690 		return error;
691 
692 	setattr_copy(inode, attr);
693 	mark_inode_dirty(inode);
694 	return 0;
695 }
696 
697 /*
698  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
699  * or euid/egid (for hide_pid_min=2)?
700  */
701 static bool has_pid_permissions(struct pid_namespace *pid,
702 				 struct task_struct *task,
703 				 int hide_pid_min)
704 {
705 	if (pid->hide_pid < hide_pid_min)
706 		return true;
707 	if (in_group_p(pid->pid_gid))
708 		return true;
709 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
710 }
711 
712 
713 static int proc_pid_permission(struct inode *inode, int mask)
714 {
715 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
716 	struct task_struct *task;
717 	bool has_perms;
718 
719 	task = get_proc_task(inode);
720 	if (!task)
721 		return -ESRCH;
722 	has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
723 	put_task_struct(task);
724 
725 	if (!has_perms) {
726 		if (pid->hide_pid == HIDEPID_INVISIBLE) {
727 			/*
728 			 * Let's make getdents(), stat(), and open()
729 			 * consistent with each other.  If a process
730 			 * may not stat() a file, it shouldn't be seen
731 			 * in procfs at all.
732 			 */
733 			return -ENOENT;
734 		}
735 
736 		return -EPERM;
737 	}
738 	return generic_permission(inode, mask);
739 }
740 
741 
742 
743 static const struct inode_operations proc_def_inode_operations = {
744 	.setattr	= proc_setattr,
745 };
746 
747 static int proc_single_show(struct seq_file *m, void *v)
748 {
749 	struct inode *inode = m->private;
750 	struct pid_namespace *ns;
751 	struct pid *pid;
752 	struct task_struct *task;
753 	int ret;
754 
755 	ns = inode->i_sb->s_fs_info;
756 	pid = proc_pid(inode);
757 	task = get_pid_task(pid, PIDTYPE_PID);
758 	if (!task)
759 		return -ESRCH;
760 
761 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
762 
763 	put_task_struct(task);
764 	return ret;
765 }
766 
767 static int proc_single_open(struct inode *inode, struct file *filp)
768 {
769 	return single_open(filp, proc_single_show, inode);
770 }
771 
772 static const struct file_operations proc_single_file_operations = {
773 	.open		= proc_single_open,
774 	.read		= seq_read,
775 	.llseek		= seq_lseek,
776 	.release	= single_release,
777 };
778 
779 
780 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
781 {
782 	struct task_struct *task = get_proc_task(inode);
783 	struct mm_struct *mm = ERR_PTR(-ESRCH);
784 
785 	if (task) {
786 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
787 		put_task_struct(task);
788 
789 		if (!IS_ERR_OR_NULL(mm)) {
790 			/* ensure this mm_struct can't be freed */
791 			mmgrab(mm);
792 			/* but do not pin its memory */
793 			mmput(mm);
794 		}
795 	}
796 
797 	return mm;
798 }
799 
800 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
801 {
802 	struct mm_struct *mm = proc_mem_open(inode, mode);
803 
804 	if (IS_ERR(mm))
805 		return PTR_ERR(mm);
806 
807 	file->private_data = mm;
808 	return 0;
809 }
810 
811 static int mem_open(struct inode *inode, struct file *file)
812 {
813 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
814 
815 	/* OK to pass negative loff_t, we can catch out-of-range */
816 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
817 
818 	return ret;
819 }
820 
821 static ssize_t mem_rw(struct file *file, char __user *buf,
822 			size_t count, loff_t *ppos, int write)
823 {
824 	struct mm_struct *mm = file->private_data;
825 	unsigned long addr = *ppos;
826 	ssize_t copied;
827 	char *page;
828 	unsigned int flags;
829 
830 	if (!mm)
831 		return 0;
832 
833 	page = (char *)__get_free_page(GFP_KERNEL);
834 	if (!page)
835 		return -ENOMEM;
836 
837 	copied = 0;
838 	if (!mmget_not_zero(mm))
839 		goto free;
840 
841 	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
842 
843 	while (count > 0) {
844 		int this_len = min_t(int, count, PAGE_SIZE);
845 
846 		if (write && copy_from_user(page, buf, this_len)) {
847 			copied = -EFAULT;
848 			break;
849 		}
850 
851 		this_len = access_remote_vm(mm, addr, page, this_len, flags);
852 		if (!this_len) {
853 			if (!copied)
854 				copied = -EIO;
855 			break;
856 		}
857 
858 		if (!write && copy_to_user(buf, page, this_len)) {
859 			copied = -EFAULT;
860 			break;
861 		}
862 
863 		buf += this_len;
864 		addr += this_len;
865 		copied += this_len;
866 		count -= this_len;
867 	}
868 	*ppos = addr;
869 
870 	mmput(mm);
871 free:
872 	free_page((unsigned long) page);
873 	return copied;
874 }
875 
876 static ssize_t mem_read(struct file *file, char __user *buf,
877 			size_t count, loff_t *ppos)
878 {
879 	return mem_rw(file, buf, count, ppos, 0);
880 }
881 
882 static ssize_t mem_write(struct file *file, const char __user *buf,
883 			 size_t count, loff_t *ppos)
884 {
885 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
886 }
887 
888 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
889 {
890 	switch (orig) {
891 	case 0:
892 		file->f_pos = offset;
893 		break;
894 	case 1:
895 		file->f_pos += offset;
896 		break;
897 	default:
898 		return -EINVAL;
899 	}
900 	force_successful_syscall_return();
901 	return file->f_pos;
902 }
903 
904 static int mem_release(struct inode *inode, struct file *file)
905 {
906 	struct mm_struct *mm = file->private_data;
907 	if (mm)
908 		mmdrop(mm);
909 	return 0;
910 }
911 
912 static const struct file_operations proc_mem_operations = {
913 	.llseek		= mem_lseek,
914 	.read		= mem_read,
915 	.write		= mem_write,
916 	.open		= mem_open,
917 	.release	= mem_release,
918 };
919 
920 static int environ_open(struct inode *inode, struct file *file)
921 {
922 	return __mem_open(inode, file, PTRACE_MODE_READ);
923 }
924 
925 static ssize_t environ_read(struct file *file, char __user *buf,
926 			size_t count, loff_t *ppos)
927 {
928 	char *page;
929 	unsigned long src = *ppos;
930 	int ret = 0;
931 	struct mm_struct *mm = file->private_data;
932 	unsigned long env_start, env_end;
933 
934 	/* Ensure the process spawned far enough to have an environment. */
935 	if (!mm || !mm->env_end)
936 		return 0;
937 
938 	page = (char *)__get_free_page(GFP_KERNEL);
939 	if (!page)
940 		return -ENOMEM;
941 
942 	ret = 0;
943 	if (!mmget_not_zero(mm))
944 		goto free;
945 
946 	down_read(&mm->mmap_sem);
947 	env_start = mm->env_start;
948 	env_end = mm->env_end;
949 	up_read(&mm->mmap_sem);
950 
951 	while (count > 0) {
952 		size_t this_len, max_len;
953 		int retval;
954 
955 		if (src >= (env_end - env_start))
956 			break;
957 
958 		this_len = env_end - (env_start + src);
959 
960 		max_len = min_t(size_t, PAGE_SIZE, count);
961 		this_len = min(max_len, this_len);
962 
963 		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
964 
965 		if (retval <= 0) {
966 			ret = retval;
967 			break;
968 		}
969 
970 		if (copy_to_user(buf, page, retval)) {
971 			ret = -EFAULT;
972 			break;
973 		}
974 
975 		ret += retval;
976 		src += retval;
977 		buf += retval;
978 		count -= retval;
979 	}
980 	*ppos = src;
981 	mmput(mm);
982 
983 free:
984 	free_page((unsigned long) page);
985 	return ret;
986 }
987 
988 static const struct file_operations proc_environ_operations = {
989 	.open		= environ_open,
990 	.read		= environ_read,
991 	.llseek		= generic_file_llseek,
992 	.release	= mem_release,
993 };
994 
995 static int auxv_open(struct inode *inode, struct file *file)
996 {
997 	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
998 }
999 
1000 static ssize_t auxv_read(struct file *file, char __user *buf,
1001 			size_t count, loff_t *ppos)
1002 {
1003 	struct mm_struct *mm = file->private_data;
1004 	unsigned int nwords = 0;
1005 
1006 	if (!mm)
1007 		return 0;
1008 	do {
1009 		nwords += 2;
1010 	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1011 	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1012 				       nwords * sizeof(mm->saved_auxv[0]));
1013 }
1014 
1015 static const struct file_operations proc_auxv_operations = {
1016 	.open		= auxv_open,
1017 	.read		= auxv_read,
1018 	.llseek		= generic_file_llseek,
1019 	.release	= mem_release,
1020 };
1021 
1022 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1023 			    loff_t *ppos)
1024 {
1025 	struct task_struct *task = get_proc_task(file_inode(file));
1026 	char buffer[PROC_NUMBUF];
1027 	int oom_adj = OOM_ADJUST_MIN;
1028 	size_t len;
1029 
1030 	if (!task)
1031 		return -ESRCH;
1032 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1033 		oom_adj = OOM_ADJUST_MAX;
1034 	else
1035 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1036 			  OOM_SCORE_ADJ_MAX;
1037 	put_task_struct(task);
1038 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1039 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1040 }
1041 
1042 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1043 {
1044 	static DEFINE_MUTEX(oom_adj_mutex);
1045 	struct mm_struct *mm = NULL;
1046 	struct task_struct *task;
1047 	int err = 0;
1048 
1049 	task = get_proc_task(file_inode(file));
1050 	if (!task)
1051 		return -ESRCH;
1052 
1053 	mutex_lock(&oom_adj_mutex);
1054 	if (legacy) {
1055 		if (oom_adj < task->signal->oom_score_adj &&
1056 				!capable(CAP_SYS_RESOURCE)) {
1057 			err = -EACCES;
1058 			goto err_unlock;
1059 		}
1060 		/*
1061 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1062 		 * /proc/pid/oom_score_adj instead.
1063 		 */
1064 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1065 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1066 			  task_pid_nr(task));
1067 	} else {
1068 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1069 				!capable(CAP_SYS_RESOURCE)) {
1070 			err = -EACCES;
1071 			goto err_unlock;
1072 		}
1073 	}
1074 
1075 	/*
1076 	 * Make sure we will check other processes sharing the mm if this is
1077 	 * not vfrok which wants its own oom_score_adj.
1078 	 * pin the mm so it doesn't go away and get reused after task_unlock
1079 	 */
1080 	if (!task->vfork_done) {
1081 		struct task_struct *p = find_lock_task_mm(task);
1082 
1083 		if (p) {
1084 			if (atomic_read(&p->mm->mm_users) > 1) {
1085 				mm = p->mm;
1086 				mmgrab(mm);
1087 			}
1088 			task_unlock(p);
1089 		}
1090 	}
1091 
1092 	task->signal->oom_score_adj = oom_adj;
1093 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1094 		task->signal->oom_score_adj_min = (short)oom_adj;
1095 	trace_oom_score_adj_update(task);
1096 
1097 	if (mm) {
1098 		struct task_struct *p;
1099 
1100 		rcu_read_lock();
1101 		for_each_process(p) {
1102 			if (same_thread_group(task, p))
1103 				continue;
1104 
1105 			/* do not touch kernel threads or the global init */
1106 			if (p->flags & PF_KTHREAD || is_global_init(p))
1107 				continue;
1108 
1109 			task_lock(p);
1110 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1111 				pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1112 						task_pid_nr(p), p->comm,
1113 						p->signal->oom_score_adj, oom_adj,
1114 						task_pid_nr(task), task->comm);
1115 				p->signal->oom_score_adj = oom_adj;
1116 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1117 					p->signal->oom_score_adj_min = (short)oom_adj;
1118 			}
1119 			task_unlock(p);
1120 		}
1121 		rcu_read_unlock();
1122 		mmdrop(mm);
1123 	}
1124 err_unlock:
1125 	mutex_unlock(&oom_adj_mutex);
1126 	put_task_struct(task);
1127 	return err;
1128 }
1129 
1130 /*
1131  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1132  * kernels.  The effective policy is defined by oom_score_adj, which has a
1133  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1134  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1135  * Processes that become oom disabled via oom_adj will still be oom disabled
1136  * with this implementation.
1137  *
1138  * oom_adj cannot be removed since existing userspace binaries use it.
1139  */
1140 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1141 			     size_t count, loff_t *ppos)
1142 {
1143 	char buffer[PROC_NUMBUF];
1144 	int oom_adj;
1145 	int err;
1146 
1147 	memset(buffer, 0, sizeof(buffer));
1148 	if (count > sizeof(buffer) - 1)
1149 		count = sizeof(buffer) - 1;
1150 	if (copy_from_user(buffer, buf, count)) {
1151 		err = -EFAULT;
1152 		goto out;
1153 	}
1154 
1155 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1156 	if (err)
1157 		goto out;
1158 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1159 	     oom_adj != OOM_DISABLE) {
1160 		err = -EINVAL;
1161 		goto out;
1162 	}
1163 
1164 	/*
1165 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1166 	 * value is always attainable.
1167 	 */
1168 	if (oom_adj == OOM_ADJUST_MAX)
1169 		oom_adj = OOM_SCORE_ADJ_MAX;
1170 	else
1171 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1172 
1173 	err = __set_oom_adj(file, oom_adj, true);
1174 out:
1175 	return err < 0 ? err : count;
1176 }
1177 
1178 static const struct file_operations proc_oom_adj_operations = {
1179 	.read		= oom_adj_read,
1180 	.write		= oom_adj_write,
1181 	.llseek		= generic_file_llseek,
1182 };
1183 
1184 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1185 					size_t count, loff_t *ppos)
1186 {
1187 	struct task_struct *task = get_proc_task(file_inode(file));
1188 	char buffer[PROC_NUMBUF];
1189 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1190 	size_t len;
1191 
1192 	if (!task)
1193 		return -ESRCH;
1194 	oom_score_adj = task->signal->oom_score_adj;
1195 	put_task_struct(task);
1196 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1197 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1198 }
1199 
1200 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1201 					size_t count, loff_t *ppos)
1202 {
1203 	char buffer[PROC_NUMBUF];
1204 	int oom_score_adj;
1205 	int err;
1206 
1207 	memset(buffer, 0, sizeof(buffer));
1208 	if (count > sizeof(buffer) - 1)
1209 		count = sizeof(buffer) - 1;
1210 	if (copy_from_user(buffer, buf, count)) {
1211 		err = -EFAULT;
1212 		goto out;
1213 	}
1214 
1215 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1216 	if (err)
1217 		goto out;
1218 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1219 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1220 		err = -EINVAL;
1221 		goto out;
1222 	}
1223 
1224 	err = __set_oom_adj(file, oom_score_adj, false);
1225 out:
1226 	return err < 0 ? err : count;
1227 }
1228 
1229 static const struct file_operations proc_oom_score_adj_operations = {
1230 	.read		= oom_score_adj_read,
1231 	.write		= oom_score_adj_write,
1232 	.llseek		= default_llseek,
1233 };
1234 
1235 #ifdef CONFIG_AUDITSYSCALL
1236 #define TMPBUFLEN 11
1237 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1238 				  size_t count, loff_t *ppos)
1239 {
1240 	struct inode * inode = file_inode(file);
1241 	struct task_struct *task = get_proc_task(inode);
1242 	ssize_t length;
1243 	char tmpbuf[TMPBUFLEN];
1244 
1245 	if (!task)
1246 		return -ESRCH;
1247 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1248 			   from_kuid(file->f_cred->user_ns,
1249 				     audit_get_loginuid(task)));
1250 	put_task_struct(task);
1251 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1252 }
1253 
1254 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1255 				   size_t count, loff_t *ppos)
1256 {
1257 	struct inode * inode = file_inode(file);
1258 	uid_t loginuid;
1259 	kuid_t kloginuid;
1260 	int rv;
1261 
1262 	rcu_read_lock();
1263 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1264 		rcu_read_unlock();
1265 		return -EPERM;
1266 	}
1267 	rcu_read_unlock();
1268 
1269 	if (*ppos != 0) {
1270 		/* No partial writes. */
1271 		return -EINVAL;
1272 	}
1273 
1274 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1275 	if (rv < 0)
1276 		return rv;
1277 
1278 	/* is userspace tring to explicitly UNSET the loginuid? */
1279 	if (loginuid == AUDIT_UID_UNSET) {
1280 		kloginuid = INVALID_UID;
1281 	} else {
1282 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1283 		if (!uid_valid(kloginuid))
1284 			return -EINVAL;
1285 	}
1286 
1287 	rv = audit_set_loginuid(kloginuid);
1288 	if (rv < 0)
1289 		return rv;
1290 	return count;
1291 }
1292 
1293 static const struct file_operations proc_loginuid_operations = {
1294 	.read		= proc_loginuid_read,
1295 	.write		= proc_loginuid_write,
1296 	.llseek		= generic_file_llseek,
1297 };
1298 
1299 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1300 				  size_t count, loff_t *ppos)
1301 {
1302 	struct inode * inode = file_inode(file);
1303 	struct task_struct *task = get_proc_task(inode);
1304 	ssize_t length;
1305 	char tmpbuf[TMPBUFLEN];
1306 
1307 	if (!task)
1308 		return -ESRCH;
1309 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1310 				audit_get_sessionid(task));
1311 	put_task_struct(task);
1312 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1313 }
1314 
1315 static const struct file_operations proc_sessionid_operations = {
1316 	.read		= proc_sessionid_read,
1317 	.llseek		= generic_file_llseek,
1318 };
1319 #endif
1320 
1321 #ifdef CONFIG_FAULT_INJECTION
1322 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1323 				      size_t count, loff_t *ppos)
1324 {
1325 	struct task_struct *task = get_proc_task(file_inode(file));
1326 	char buffer[PROC_NUMBUF];
1327 	size_t len;
1328 	int make_it_fail;
1329 
1330 	if (!task)
1331 		return -ESRCH;
1332 	make_it_fail = task->make_it_fail;
1333 	put_task_struct(task);
1334 
1335 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1336 
1337 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1338 }
1339 
1340 static ssize_t proc_fault_inject_write(struct file * file,
1341 			const char __user * buf, size_t count, loff_t *ppos)
1342 {
1343 	struct task_struct *task;
1344 	char buffer[PROC_NUMBUF];
1345 	int make_it_fail;
1346 	int rv;
1347 
1348 	if (!capable(CAP_SYS_RESOURCE))
1349 		return -EPERM;
1350 	memset(buffer, 0, sizeof(buffer));
1351 	if (count > sizeof(buffer) - 1)
1352 		count = sizeof(buffer) - 1;
1353 	if (copy_from_user(buffer, buf, count))
1354 		return -EFAULT;
1355 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1356 	if (rv < 0)
1357 		return rv;
1358 	if (make_it_fail < 0 || make_it_fail > 1)
1359 		return -EINVAL;
1360 
1361 	task = get_proc_task(file_inode(file));
1362 	if (!task)
1363 		return -ESRCH;
1364 	task->make_it_fail = make_it_fail;
1365 	put_task_struct(task);
1366 
1367 	return count;
1368 }
1369 
1370 static const struct file_operations proc_fault_inject_operations = {
1371 	.read		= proc_fault_inject_read,
1372 	.write		= proc_fault_inject_write,
1373 	.llseek		= generic_file_llseek,
1374 };
1375 
1376 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1377 				   size_t count, loff_t *ppos)
1378 {
1379 	struct task_struct *task;
1380 	int err;
1381 	unsigned int n;
1382 
1383 	err = kstrtouint_from_user(buf, count, 0, &n);
1384 	if (err)
1385 		return err;
1386 
1387 	task = get_proc_task(file_inode(file));
1388 	if (!task)
1389 		return -ESRCH;
1390 	task->fail_nth = n;
1391 	put_task_struct(task);
1392 
1393 	return count;
1394 }
1395 
1396 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1397 				  size_t count, loff_t *ppos)
1398 {
1399 	struct task_struct *task;
1400 	char numbuf[PROC_NUMBUF];
1401 	ssize_t len;
1402 
1403 	task = get_proc_task(file_inode(file));
1404 	if (!task)
1405 		return -ESRCH;
1406 	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1407 	len = simple_read_from_buffer(buf, count, ppos, numbuf, len);
1408 	put_task_struct(task);
1409 
1410 	return len;
1411 }
1412 
1413 static const struct file_operations proc_fail_nth_operations = {
1414 	.read		= proc_fail_nth_read,
1415 	.write		= proc_fail_nth_write,
1416 };
1417 #endif
1418 
1419 
1420 #ifdef CONFIG_SCHED_DEBUG
1421 /*
1422  * Print out various scheduling related per-task fields:
1423  */
1424 static int sched_show(struct seq_file *m, void *v)
1425 {
1426 	struct inode *inode = m->private;
1427 	struct pid_namespace *ns = inode->i_sb->s_fs_info;
1428 	struct task_struct *p;
1429 
1430 	p = get_proc_task(inode);
1431 	if (!p)
1432 		return -ESRCH;
1433 	proc_sched_show_task(p, ns, m);
1434 
1435 	put_task_struct(p);
1436 
1437 	return 0;
1438 }
1439 
1440 static ssize_t
1441 sched_write(struct file *file, const char __user *buf,
1442 	    size_t count, loff_t *offset)
1443 {
1444 	struct inode *inode = file_inode(file);
1445 	struct task_struct *p;
1446 
1447 	p = get_proc_task(inode);
1448 	if (!p)
1449 		return -ESRCH;
1450 	proc_sched_set_task(p);
1451 
1452 	put_task_struct(p);
1453 
1454 	return count;
1455 }
1456 
1457 static int sched_open(struct inode *inode, struct file *filp)
1458 {
1459 	return single_open(filp, sched_show, inode);
1460 }
1461 
1462 static const struct file_operations proc_pid_sched_operations = {
1463 	.open		= sched_open,
1464 	.read		= seq_read,
1465 	.write		= sched_write,
1466 	.llseek		= seq_lseek,
1467 	.release	= single_release,
1468 };
1469 
1470 #endif
1471 
1472 #ifdef CONFIG_SCHED_AUTOGROUP
1473 /*
1474  * Print out autogroup related information:
1475  */
1476 static int sched_autogroup_show(struct seq_file *m, void *v)
1477 {
1478 	struct inode *inode = m->private;
1479 	struct task_struct *p;
1480 
1481 	p = get_proc_task(inode);
1482 	if (!p)
1483 		return -ESRCH;
1484 	proc_sched_autogroup_show_task(p, m);
1485 
1486 	put_task_struct(p);
1487 
1488 	return 0;
1489 }
1490 
1491 static ssize_t
1492 sched_autogroup_write(struct file *file, const char __user *buf,
1493 	    size_t count, loff_t *offset)
1494 {
1495 	struct inode *inode = file_inode(file);
1496 	struct task_struct *p;
1497 	char buffer[PROC_NUMBUF];
1498 	int nice;
1499 	int err;
1500 
1501 	memset(buffer, 0, sizeof(buffer));
1502 	if (count > sizeof(buffer) - 1)
1503 		count = sizeof(buffer) - 1;
1504 	if (copy_from_user(buffer, buf, count))
1505 		return -EFAULT;
1506 
1507 	err = kstrtoint(strstrip(buffer), 0, &nice);
1508 	if (err < 0)
1509 		return err;
1510 
1511 	p = get_proc_task(inode);
1512 	if (!p)
1513 		return -ESRCH;
1514 
1515 	err = proc_sched_autogroup_set_nice(p, nice);
1516 	if (err)
1517 		count = err;
1518 
1519 	put_task_struct(p);
1520 
1521 	return count;
1522 }
1523 
1524 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1525 {
1526 	int ret;
1527 
1528 	ret = single_open(filp, sched_autogroup_show, NULL);
1529 	if (!ret) {
1530 		struct seq_file *m = filp->private_data;
1531 
1532 		m->private = inode;
1533 	}
1534 	return ret;
1535 }
1536 
1537 static const struct file_operations proc_pid_sched_autogroup_operations = {
1538 	.open		= sched_autogroup_open,
1539 	.read		= seq_read,
1540 	.write		= sched_autogroup_write,
1541 	.llseek		= seq_lseek,
1542 	.release	= single_release,
1543 };
1544 
1545 #endif /* CONFIG_SCHED_AUTOGROUP */
1546 
1547 static ssize_t comm_write(struct file *file, const char __user *buf,
1548 				size_t count, loff_t *offset)
1549 {
1550 	struct inode *inode = file_inode(file);
1551 	struct task_struct *p;
1552 	char buffer[TASK_COMM_LEN];
1553 	const size_t maxlen = sizeof(buffer) - 1;
1554 
1555 	memset(buffer, 0, sizeof(buffer));
1556 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1557 		return -EFAULT;
1558 
1559 	p = get_proc_task(inode);
1560 	if (!p)
1561 		return -ESRCH;
1562 
1563 	if (same_thread_group(current, p))
1564 		set_task_comm(p, buffer);
1565 	else
1566 		count = -EINVAL;
1567 
1568 	put_task_struct(p);
1569 
1570 	return count;
1571 }
1572 
1573 static int comm_show(struct seq_file *m, void *v)
1574 {
1575 	struct inode *inode = m->private;
1576 	struct task_struct *p;
1577 
1578 	p = get_proc_task(inode);
1579 	if (!p)
1580 		return -ESRCH;
1581 
1582 	task_lock(p);
1583 	seq_printf(m, "%s\n", p->comm);
1584 	task_unlock(p);
1585 
1586 	put_task_struct(p);
1587 
1588 	return 0;
1589 }
1590 
1591 static int comm_open(struct inode *inode, struct file *filp)
1592 {
1593 	return single_open(filp, comm_show, inode);
1594 }
1595 
1596 static const struct file_operations proc_pid_set_comm_operations = {
1597 	.open		= comm_open,
1598 	.read		= seq_read,
1599 	.write		= comm_write,
1600 	.llseek		= seq_lseek,
1601 	.release	= single_release,
1602 };
1603 
1604 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1605 {
1606 	struct task_struct *task;
1607 	struct file *exe_file;
1608 
1609 	task = get_proc_task(d_inode(dentry));
1610 	if (!task)
1611 		return -ENOENT;
1612 	exe_file = get_task_exe_file(task);
1613 	put_task_struct(task);
1614 	if (exe_file) {
1615 		*exe_path = exe_file->f_path;
1616 		path_get(&exe_file->f_path);
1617 		fput(exe_file);
1618 		return 0;
1619 	} else
1620 		return -ENOENT;
1621 }
1622 
1623 static const char *proc_pid_get_link(struct dentry *dentry,
1624 				     struct inode *inode,
1625 				     struct delayed_call *done)
1626 {
1627 	struct path path;
1628 	int error = -EACCES;
1629 
1630 	if (!dentry)
1631 		return ERR_PTR(-ECHILD);
1632 
1633 	/* Are we allowed to snoop on the tasks file descriptors? */
1634 	if (!proc_fd_access_allowed(inode))
1635 		goto out;
1636 
1637 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1638 	if (error)
1639 		goto out;
1640 
1641 	nd_jump_link(&path);
1642 	return NULL;
1643 out:
1644 	return ERR_PTR(error);
1645 }
1646 
1647 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1648 {
1649 	char *tmp = (char *)__get_free_page(GFP_KERNEL);
1650 	char *pathname;
1651 	int len;
1652 
1653 	if (!tmp)
1654 		return -ENOMEM;
1655 
1656 	pathname = d_path(path, tmp, PAGE_SIZE);
1657 	len = PTR_ERR(pathname);
1658 	if (IS_ERR(pathname))
1659 		goto out;
1660 	len = tmp + PAGE_SIZE - 1 - pathname;
1661 
1662 	if (len > buflen)
1663 		len = buflen;
1664 	if (copy_to_user(buffer, pathname, len))
1665 		len = -EFAULT;
1666  out:
1667 	free_page((unsigned long)tmp);
1668 	return len;
1669 }
1670 
1671 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1672 {
1673 	int error = -EACCES;
1674 	struct inode *inode = d_inode(dentry);
1675 	struct path path;
1676 
1677 	/* Are we allowed to snoop on the tasks file descriptors? */
1678 	if (!proc_fd_access_allowed(inode))
1679 		goto out;
1680 
1681 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1682 	if (error)
1683 		goto out;
1684 
1685 	error = do_proc_readlink(&path, buffer, buflen);
1686 	path_put(&path);
1687 out:
1688 	return error;
1689 }
1690 
1691 const struct inode_operations proc_pid_link_inode_operations = {
1692 	.readlink	= proc_pid_readlink,
1693 	.get_link	= proc_pid_get_link,
1694 	.setattr	= proc_setattr,
1695 };
1696 
1697 
1698 /* building an inode */
1699 
1700 void task_dump_owner(struct task_struct *task, umode_t mode,
1701 		     kuid_t *ruid, kgid_t *rgid)
1702 {
1703 	/* Depending on the state of dumpable compute who should own a
1704 	 * proc file for a task.
1705 	 */
1706 	const struct cred *cred;
1707 	kuid_t uid;
1708 	kgid_t gid;
1709 
1710 	if (unlikely(task->flags & PF_KTHREAD)) {
1711 		*ruid = GLOBAL_ROOT_UID;
1712 		*rgid = GLOBAL_ROOT_GID;
1713 		return;
1714 	}
1715 
1716 	/* Default to the tasks effective ownership */
1717 	rcu_read_lock();
1718 	cred = __task_cred(task);
1719 	uid = cred->euid;
1720 	gid = cred->egid;
1721 	rcu_read_unlock();
1722 
1723 	/*
1724 	 * Before the /proc/pid/status file was created the only way to read
1725 	 * the effective uid of a /process was to stat /proc/pid.  Reading
1726 	 * /proc/pid/status is slow enough that procps and other packages
1727 	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1728 	 * made this apply to all per process world readable and executable
1729 	 * directories.
1730 	 */
1731 	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1732 		struct mm_struct *mm;
1733 		task_lock(task);
1734 		mm = task->mm;
1735 		/* Make non-dumpable tasks owned by some root */
1736 		if (mm) {
1737 			if (get_dumpable(mm) != SUID_DUMP_USER) {
1738 				struct user_namespace *user_ns = mm->user_ns;
1739 
1740 				uid = make_kuid(user_ns, 0);
1741 				if (!uid_valid(uid))
1742 					uid = GLOBAL_ROOT_UID;
1743 
1744 				gid = make_kgid(user_ns, 0);
1745 				if (!gid_valid(gid))
1746 					gid = GLOBAL_ROOT_GID;
1747 			}
1748 		} else {
1749 			uid = GLOBAL_ROOT_UID;
1750 			gid = GLOBAL_ROOT_GID;
1751 		}
1752 		task_unlock(task);
1753 	}
1754 	*ruid = uid;
1755 	*rgid = gid;
1756 }
1757 
1758 struct inode *proc_pid_make_inode(struct super_block * sb,
1759 				  struct task_struct *task, umode_t mode)
1760 {
1761 	struct inode * inode;
1762 	struct proc_inode *ei;
1763 
1764 	/* We need a new inode */
1765 
1766 	inode = new_inode(sb);
1767 	if (!inode)
1768 		goto out;
1769 
1770 	/* Common stuff */
1771 	ei = PROC_I(inode);
1772 	inode->i_mode = mode;
1773 	inode->i_ino = get_next_ino();
1774 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1775 	inode->i_op = &proc_def_inode_operations;
1776 
1777 	/*
1778 	 * grab the reference to task.
1779 	 */
1780 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1781 	if (!ei->pid)
1782 		goto out_unlock;
1783 
1784 	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1785 	security_task_to_inode(task, inode);
1786 
1787 out:
1788 	return inode;
1789 
1790 out_unlock:
1791 	iput(inode);
1792 	return NULL;
1793 }
1794 
1795 int pid_getattr(const struct path *path, struct kstat *stat,
1796 		u32 request_mask, unsigned int query_flags)
1797 {
1798 	struct inode *inode = d_inode(path->dentry);
1799 	struct task_struct *task;
1800 	struct pid_namespace *pid = path->dentry->d_sb->s_fs_info;
1801 
1802 	generic_fillattr(inode, stat);
1803 
1804 	rcu_read_lock();
1805 	stat->uid = GLOBAL_ROOT_UID;
1806 	stat->gid = GLOBAL_ROOT_GID;
1807 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1808 	if (task) {
1809 		if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1810 			rcu_read_unlock();
1811 			/*
1812 			 * This doesn't prevent learning whether PID exists,
1813 			 * it only makes getattr() consistent with readdir().
1814 			 */
1815 			return -ENOENT;
1816 		}
1817 		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1818 	}
1819 	rcu_read_unlock();
1820 	return 0;
1821 }
1822 
1823 /* dentry stuff */
1824 
1825 /*
1826  *	Exceptional case: normally we are not allowed to unhash a busy
1827  * directory. In this case, however, we can do it - no aliasing problems
1828  * due to the way we treat inodes.
1829  *
1830  * Rewrite the inode's ownerships here because the owning task may have
1831  * performed a setuid(), etc.
1832  *
1833  */
1834 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1835 {
1836 	struct inode *inode;
1837 	struct task_struct *task;
1838 
1839 	if (flags & LOOKUP_RCU)
1840 		return -ECHILD;
1841 
1842 	inode = d_inode(dentry);
1843 	task = get_proc_task(inode);
1844 
1845 	if (task) {
1846 		task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1847 
1848 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1849 		security_task_to_inode(task, inode);
1850 		put_task_struct(task);
1851 		return 1;
1852 	}
1853 	return 0;
1854 }
1855 
1856 static inline bool proc_inode_is_dead(struct inode *inode)
1857 {
1858 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1859 }
1860 
1861 int pid_delete_dentry(const struct dentry *dentry)
1862 {
1863 	/* Is the task we represent dead?
1864 	 * If so, then don't put the dentry on the lru list,
1865 	 * kill it immediately.
1866 	 */
1867 	return proc_inode_is_dead(d_inode(dentry));
1868 }
1869 
1870 const struct dentry_operations pid_dentry_operations =
1871 {
1872 	.d_revalidate	= pid_revalidate,
1873 	.d_delete	= pid_delete_dentry,
1874 };
1875 
1876 /* Lookups */
1877 
1878 /*
1879  * Fill a directory entry.
1880  *
1881  * If possible create the dcache entry and derive our inode number and
1882  * file type from dcache entry.
1883  *
1884  * Since all of the proc inode numbers are dynamically generated, the inode
1885  * numbers do not exist until the inode is cache.  This means creating the
1886  * the dcache entry in readdir is necessary to keep the inode numbers
1887  * reported by readdir in sync with the inode numbers reported
1888  * by stat.
1889  */
1890 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1891 	const char *name, int len,
1892 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1893 {
1894 	struct dentry *child, *dir = file->f_path.dentry;
1895 	struct qstr qname = QSTR_INIT(name, len);
1896 	struct inode *inode;
1897 	unsigned type;
1898 	ino_t ino;
1899 
1900 	child = d_hash_and_lookup(dir, &qname);
1901 	if (!child) {
1902 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1903 		child = d_alloc_parallel(dir, &qname, &wq);
1904 		if (IS_ERR(child))
1905 			goto end_instantiate;
1906 		if (d_in_lookup(child)) {
1907 			int err = instantiate(d_inode(dir), child, task, ptr);
1908 			d_lookup_done(child);
1909 			if (err < 0) {
1910 				dput(child);
1911 				goto end_instantiate;
1912 			}
1913 		}
1914 	}
1915 	inode = d_inode(child);
1916 	ino = inode->i_ino;
1917 	type = inode->i_mode >> 12;
1918 	dput(child);
1919 	return dir_emit(ctx, name, len, ino, type);
1920 
1921 end_instantiate:
1922 	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1923 }
1924 
1925 /*
1926  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1927  * which represent vma start and end addresses.
1928  */
1929 static int dname_to_vma_addr(struct dentry *dentry,
1930 			     unsigned long *start, unsigned long *end)
1931 {
1932 	const char *str = dentry->d_name.name;
1933 	unsigned long long sval, eval;
1934 	unsigned int len;
1935 
1936 	if (str[0] == '0' && str[1] != '-')
1937 		return -EINVAL;
1938 	len = _parse_integer(str, 16, &sval);
1939 	if (len & KSTRTOX_OVERFLOW)
1940 		return -EINVAL;
1941 	if (sval != (unsigned long)sval)
1942 		return -EINVAL;
1943 	str += len;
1944 
1945 	if (*str != '-')
1946 		return -EINVAL;
1947 	str++;
1948 
1949 	if (str[0] == '0' && str[1])
1950 		return -EINVAL;
1951 	len = _parse_integer(str, 16, &eval);
1952 	if (len & KSTRTOX_OVERFLOW)
1953 		return -EINVAL;
1954 	if (eval != (unsigned long)eval)
1955 		return -EINVAL;
1956 	str += len;
1957 
1958 	if (*str != '\0')
1959 		return -EINVAL;
1960 
1961 	*start = sval;
1962 	*end = eval;
1963 
1964 	return 0;
1965 }
1966 
1967 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1968 {
1969 	unsigned long vm_start, vm_end;
1970 	bool exact_vma_exists = false;
1971 	struct mm_struct *mm = NULL;
1972 	struct task_struct *task;
1973 	struct inode *inode;
1974 	int status = 0;
1975 
1976 	if (flags & LOOKUP_RCU)
1977 		return -ECHILD;
1978 
1979 	inode = d_inode(dentry);
1980 	task = get_proc_task(inode);
1981 	if (!task)
1982 		goto out_notask;
1983 
1984 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1985 	if (IS_ERR_OR_NULL(mm))
1986 		goto out;
1987 
1988 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1989 		down_read(&mm->mmap_sem);
1990 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1991 		up_read(&mm->mmap_sem);
1992 	}
1993 
1994 	mmput(mm);
1995 
1996 	if (exact_vma_exists) {
1997 		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1998 
1999 		security_task_to_inode(task, inode);
2000 		status = 1;
2001 	}
2002 
2003 out:
2004 	put_task_struct(task);
2005 
2006 out_notask:
2007 	return status;
2008 }
2009 
2010 static const struct dentry_operations tid_map_files_dentry_operations = {
2011 	.d_revalidate	= map_files_d_revalidate,
2012 	.d_delete	= pid_delete_dentry,
2013 };
2014 
2015 static int map_files_get_link(struct dentry *dentry, struct path *path)
2016 {
2017 	unsigned long vm_start, vm_end;
2018 	struct vm_area_struct *vma;
2019 	struct task_struct *task;
2020 	struct mm_struct *mm;
2021 	int rc;
2022 
2023 	rc = -ENOENT;
2024 	task = get_proc_task(d_inode(dentry));
2025 	if (!task)
2026 		goto out;
2027 
2028 	mm = get_task_mm(task);
2029 	put_task_struct(task);
2030 	if (!mm)
2031 		goto out;
2032 
2033 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2034 	if (rc)
2035 		goto out_mmput;
2036 
2037 	rc = -ENOENT;
2038 	down_read(&mm->mmap_sem);
2039 	vma = find_exact_vma(mm, vm_start, vm_end);
2040 	if (vma && vma->vm_file) {
2041 		*path = vma->vm_file->f_path;
2042 		path_get(path);
2043 		rc = 0;
2044 	}
2045 	up_read(&mm->mmap_sem);
2046 
2047 out_mmput:
2048 	mmput(mm);
2049 out:
2050 	return rc;
2051 }
2052 
2053 struct map_files_info {
2054 	unsigned long	start;
2055 	unsigned long	end;
2056 	fmode_t		mode;
2057 };
2058 
2059 /*
2060  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2061  * symlinks may be used to bypass permissions on ancestor directories in the
2062  * path to the file in question.
2063  */
2064 static const char *
2065 proc_map_files_get_link(struct dentry *dentry,
2066 			struct inode *inode,
2067 		        struct delayed_call *done)
2068 {
2069 	if (!capable(CAP_SYS_ADMIN))
2070 		return ERR_PTR(-EPERM);
2071 
2072 	return proc_pid_get_link(dentry, inode, done);
2073 }
2074 
2075 /*
2076  * Identical to proc_pid_link_inode_operations except for get_link()
2077  */
2078 static const struct inode_operations proc_map_files_link_inode_operations = {
2079 	.readlink	= proc_pid_readlink,
2080 	.get_link	= proc_map_files_get_link,
2081 	.setattr	= proc_setattr,
2082 };
2083 
2084 static int
2085 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2086 			   struct task_struct *task, const void *ptr)
2087 {
2088 	fmode_t mode = (fmode_t)(unsigned long)ptr;
2089 	struct proc_inode *ei;
2090 	struct inode *inode;
2091 
2092 	inode = proc_pid_make_inode(dir->i_sb, task, S_IFLNK |
2093 				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2094 				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2095 	if (!inode)
2096 		return -ENOENT;
2097 
2098 	ei = PROC_I(inode);
2099 	ei->op.proc_get_link = map_files_get_link;
2100 
2101 	inode->i_op = &proc_map_files_link_inode_operations;
2102 	inode->i_size = 64;
2103 
2104 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2105 	d_add(dentry, inode);
2106 
2107 	return 0;
2108 }
2109 
2110 static struct dentry *proc_map_files_lookup(struct inode *dir,
2111 		struct dentry *dentry, unsigned int flags)
2112 {
2113 	unsigned long vm_start, vm_end;
2114 	struct vm_area_struct *vma;
2115 	struct task_struct *task;
2116 	int result;
2117 	struct mm_struct *mm;
2118 
2119 	result = -ENOENT;
2120 	task = get_proc_task(dir);
2121 	if (!task)
2122 		goto out;
2123 
2124 	result = -EACCES;
2125 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2126 		goto out_put_task;
2127 
2128 	result = -ENOENT;
2129 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2130 		goto out_put_task;
2131 
2132 	mm = get_task_mm(task);
2133 	if (!mm)
2134 		goto out_put_task;
2135 
2136 	down_read(&mm->mmap_sem);
2137 	vma = find_exact_vma(mm, vm_start, vm_end);
2138 	if (!vma)
2139 		goto out_no_vma;
2140 
2141 	if (vma->vm_file)
2142 		result = proc_map_files_instantiate(dir, dentry, task,
2143 				(void *)(unsigned long)vma->vm_file->f_mode);
2144 
2145 out_no_vma:
2146 	up_read(&mm->mmap_sem);
2147 	mmput(mm);
2148 out_put_task:
2149 	put_task_struct(task);
2150 out:
2151 	return ERR_PTR(result);
2152 }
2153 
2154 static const struct inode_operations proc_map_files_inode_operations = {
2155 	.lookup		= proc_map_files_lookup,
2156 	.permission	= proc_fd_permission,
2157 	.setattr	= proc_setattr,
2158 };
2159 
2160 static int
2161 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2162 {
2163 	struct vm_area_struct *vma;
2164 	struct task_struct *task;
2165 	struct mm_struct *mm;
2166 	unsigned long nr_files, pos, i;
2167 	struct flex_array *fa = NULL;
2168 	struct map_files_info info;
2169 	struct map_files_info *p;
2170 	int ret;
2171 
2172 	ret = -ENOENT;
2173 	task = get_proc_task(file_inode(file));
2174 	if (!task)
2175 		goto out;
2176 
2177 	ret = -EACCES;
2178 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2179 		goto out_put_task;
2180 
2181 	ret = 0;
2182 	if (!dir_emit_dots(file, ctx))
2183 		goto out_put_task;
2184 
2185 	mm = get_task_mm(task);
2186 	if (!mm)
2187 		goto out_put_task;
2188 	down_read(&mm->mmap_sem);
2189 
2190 	nr_files = 0;
2191 
2192 	/*
2193 	 * We need two passes here:
2194 	 *
2195 	 *  1) Collect vmas of mapped files with mmap_sem taken
2196 	 *  2) Release mmap_sem and instantiate entries
2197 	 *
2198 	 * otherwise we get lockdep complained, since filldir()
2199 	 * routine might require mmap_sem taken in might_fault().
2200 	 */
2201 
2202 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2203 		if (vma->vm_file && ++pos > ctx->pos)
2204 			nr_files++;
2205 	}
2206 
2207 	if (nr_files) {
2208 		fa = flex_array_alloc(sizeof(info), nr_files,
2209 					GFP_KERNEL);
2210 		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2211 						GFP_KERNEL)) {
2212 			ret = -ENOMEM;
2213 			if (fa)
2214 				flex_array_free(fa);
2215 			up_read(&mm->mmap_sem);
2216 			mmput(mm);
2217 			goto out_put_task;
2218 		}
2219 		for (i = 0, vma = mm->mmap, pos = 2; vma;
2220 				vma = vma->vm_next) {
2221 			if (!vma->vm_file)
2222 				continue;
2223 			if (++pos <= ctx->pos)
2224 				continue;
2225 
2226 			info.start = vma->vm_start;
2227 			info.end = vma->vm_end;
2228 			info.mode = vma->vm_file->f_mode;
2229 			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2230 				BUG();
2231 		}
2232 	}
2233 	up_read(&mm->mmap_sem);
2234 	mmput(mm);
2235 
2236 	for (i = 0; i < nr_files; i++) {
2237 		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2238 		unsigned int len;
2239 
2240 		p = flex_array_get(fa, i);
2241 		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2242 		if (!proc_fill_cache(file, ctx,
2243 				      buf, len,
2244 				      proc_map_files_instantiate,
2245 				      task,
2246 				      (void *)(unsigned long)p->mode))
2247 			break;
2248 		ctx->pos++;
2249 	}
2250 	if (fa)
2251 		flex_array_free(fa);
2252 
2253 out_put_task:
2254 	put_task_struct(task);
2255 out:
2256 	return ret;
2257 }
2258 
2259 static const struct file_operations proc_map_files_operations = {
2260 	.read		= generic_read_dir,
2261 	.iterate_shared	= proc_map_files_readdir,
2262 	.llseek		= generic_file_llseek,
2263 };
2264 
2265 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2266 struct timers_private {
2267 	struct pid *pid;
2268 	struct task_struct *task;
2269 	struct sighand_struct *sighand;
2270 	struct pid_namespace *ns;
2271 	unsigned long flags;
2272 };
2273 
2274 static void *timers_start(struct seq_file *m, loff_t *pos)
2275 {
2276 	struct timers_private *tp = m->private;
2277 
2278 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2279 	if (!tp->task)
2280 		return ERR_PTR(-ESRCH);
2281 
2282 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2283 	if (!tp->sighand)
2284 		return ERR_PTR(-ESRCH);
2285 
2286 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2287 }
2288 
2289 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2290 {
2291 	struct timers_private *tp = m->private;
2292 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2293 }
2294 
2295 static void timers_stop(struct seq_file *m, void *v)
2296 {
2297 	struct timers_private *tp = m->private;
2298 
2299 	if (tp->sighand) {
2300 		unlock_task_sighand(tp->task, &tp->flags);
2301 		tp->sighand = NULL;
2302 	}
2303 
2304 	if (tp->task) {
2305 		put_task_struct(tp->task);
2306 		tp->task = NULL;
2307 	}
2308 }
2309 
2310 static int show_timer(struct seq_file *m, void *v)
2311 {
2312 	struct k_itimer *timer;
2313 	struct timers_private *tp = m->private;
2314 	int notify;
2315 	static const char * const nstr[] = {
2316 		[SIGEV_SIGNAL] = "signal",
2317 		[SIGEV_NONE] = "none",
2318 		[SIGEV_THREAD] = "thread",
2319 	};
2320 
2321 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2322 	notify = timer->it_sigev_notify;
2323 
2324 	seq_printf(m, "ID: %d\n", timer->it_id);
2325 	seq_printf(m, "signal: %d/%px\n",
2326 		   timer->sigq->info.si_signo,
2327 		   timer->sigq->info.si_value.sival_ptr);
2328 	seq_printf(m, "notify: %s/%s.%d\n",
2329 		   nstr[notify & ~SIGEV_THREAD_ID],
2330 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2331 		   pid_nr_ns(timer->it_pid, tp->ns));
2332 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2333 
2334 	return 0;
2335 }
2336 
2337 static const struct seq_operations proc_timers_seq_ops = {
2338 	.start	= timers_start,
2339 	.next	= timers_next,
2340 	.stop	= timers_stop,
2341 	.show	= show_timer,
2342 };
2343 
2344 static int proc_timers_open(struct inode *inode, struct file *file)
2345 {
2346 	struct timers_private *tp;
2347 
2348 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2349 			sizeof(struct timers_private));
2350 	if (!tp)
2351 		return -ENOMEM;
2352 
2353 	tp->pid = proc_pid(inode);
2354 	tp->ns = inode->i_sb->s_fs_info;
2355 	return 0;
2356 }
2357 
2358 static const struct file_operations proc_timers_operations = {
2359 	.open		= proc_timers_open,
2360 	.read		= seq_read,
2361 	.llseek		= seq_lseek,
2362 	.release	= seq_release_private,
2363 };
2364 #endif
2365 
2366 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2367 					size_t count, loff_t *offset)
2368 {
2369 	struct inode *inode = file_inode(file);
2370 	struct task_struct *p;
2371 	u64 slack_ns;
2372 	int err;
2373 
2374 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2375 	if (err < 0)
2376 		return err;
2377 
2378 	p = get_proc_task(inode);
2379 	if (!p)
2380 		return -ESRCH;
2381 
2382 	if (p != current) {
2383 		if (!capable(CAP_SYS_NICE)) {
2384 			count = -EPERM;
2385 			goto out;
2386 		}
2387 
2388 		err = security_task_setscheduler(p);
2389 		if (err) {
2390 			count = err;
2391 			goto out;
2392 		}
2393 	}
2394 
2395 	task_lock(p);
2396 	if (slack_ns == 0)
2397 		p->timer_slack_ns = p->default_timer_slack_ns;
2398 	else
2399 		p->timer_slack_ns = slack_ns;
2400 	task_unlock(p);
2401 
2402 out:
2403 	put_task_struct(p);
2404 
2405 	return count;
2406 }
2407 
2408 static int timerslack_ns_show(struct seq_file *m, void *v)
2409 {
2410 	struct inode *inode = m->private;
2411 	struct task_struct *p;
2412 	int err = 0;
2413 
2414 	p = get_proc_task(inode);
2415 	if (!p)
2416 		return -ESRCH;
2417 
2418 	if (p != current) {
2419 
2420 		if (!capable(CAP_SYS_NICE)) {
2421 			err = -EPERM;
2422 			goto out;
2423 		}
2424 		err = security_task_getscheduler(p);
2425 		if (err)
2426 			goto out;
2427 	}
2428 
2429 	task_lock(p);
2430 	seq_printf(m, "%llu\n", p->timer_slack_ns);
2431 	task_unlock(p);
2432 
2433 out:
2434 	put_task_struct(p);
2435 
2436 	return err;
2437 }
2438 
2439 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2440 {
2441 	return single_open(filp, timerslack_ns_show, inode);
2442 }
2443 
2444 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2445 	.open		= timerslack_ns_open,
2446 	.read		= seq_read,
2447 	.write		= timerslack_ns_write,
2448 	.llseek		= seq_lseek,
2449 	.release	= single_release,
2450 };
2451 
2452 static int proc_pident_instantiate(struct inode *dir,
2453 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2454 {
2455 	const struct pid_entry *p = ptr;
2456 	struct inode *inode;
2457 	struct proc_inode *ei;
2458 
2459 	inode = proc_pid_make_inode(dir->i_sb, task, p->mode);
2460 	if (!inode)
2461 		goto out;
2462 
2463 	ei = PROC_I(inode);
2464 	if (S_ISDIR(inode->i_mode))
2465 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2466 	if (p->iop)
2467 		inode->i_op = p->iop;
2468 	if (p->fop)
2469 		inode->i_fop = p->fop;
2470 	ei->op = p->op;
2471 	d_set_d_op(dentry, &pid_dentry_operations);
2472 	d_add(dentry, inode);
2473 	/* Close the race of the process dying before we return the dentry */
2474 	if (pid_revalidate(dentry, 0))
2475 		return 0;
2476 out:
2477 	return -ENOENT;
2478 }
2479 
2480 static struct dentry *proc_pident_lookup(struct inode *dir,
2481 					 struct dentry *dentry,
2482 					 const struct pid_entry *ents,
2483 					 unsigned int nents)
2484 {
2485 	int error;
2486 	struct task_struct *task = get_proc_task(dir);
2487 	const struct pid_entry *p, *last;
2488 
2489 	error = -ENOENT;
2490 
2491 	if (!task)
2492 		goto out_no_task;
2493 
2494 	/*
2495 	 * Yes, it does not scale. And it should not. Don't add
2496 	 * new entries into /proc/<tgid>/ without very good reasons.
2497 	 */
2498 	last = &ents[nents];
2499 	for (p = ents; p < last; p++) {
2500 		if (p->len != dentry->d_name.len)
2501 			continue;
2502 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2503 			break;
2504 	}
2505 	if (p >= last)
2506 		goto out;
2507 
2508 	error = proc_pident_instantiate(dir, dentry, task, p);
2509 out:
2510 	put_task_struct(task);
2511 out_no_task:
2512 	return ERR_PTR(error);
2513 }
2514 
2515 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2516 		const struct pid_entry *ents, unsigned int nents)
2517 {
2518 	struct task_struct *task = get_proc_task(file_inode(file));
2519 	const struct pid_entry *p;
2520 
2521 	if (!task)
2522 		return -ENOENT;
2523 
2524 	if (!dir_emit_dots(file, ctx))
2525 		goto out;
2526 
2527 	if (ctx->pos >= nents + 2)
2528 		goto out;
2529 
2530 	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2531 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2532 				proc_pident_instantiate, task, p))
2533 			break;
2534 		ctx->pos++;
2535 	}
2536 out:
2537 	put_task_struct(task);
2538 	return 0;
2539 }
2540 
2541 #ifdef CONFIG_SECURITY
2542 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2543 				  size_t count, loff_t *ppos)
2544 {
2545 	struct inode * inode = file_inode(file);
2546 	char *p = NULL;
2547 	ssize_t length;
2548 	struct task_struct *task = get_proc_task(inode);
2549 
2550 	if (!task)
2551 		return -ESRCH;
2552 
2553 	length = security_getprocattr(task,
2554 				      (char*)file->f_path.dentry->d_name.name,
2555 				      &p);
2556 	put_task_struct(task);
2557 	if (length > 0)
2558 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2559 	kfree(p);
2560 	return length;
2561 }
2562 
2563 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2564 				   size_t count, loff_t *ppos)
2565 {
2566 	struct inode * inode = file_inode(file);
2567 	void *page;
2568 	ssize_t length;
2569 	struct task_struct *task = get_proc_task(inode);
2570 
2571 	length = -ESRCH;
2572 	if (!task)
2573 		goto out_no_task;
2574 
2575 	/* A task may only write its own attributes. */
2576 	length = -EACCES;
2577 	if (current != task)
2578 		goto out;
2579 
2580 	if (count > PAGE_SIZE)
2581 		count = PAGE_SIZE;
2582 
2583 	/* No partial writes. */
2584 	length = -EINVAL;
2585 	if (*ppos != 0)
2586 		goto out;
2587 
2588 	page = memdup_user(buf, count);
2589 	if (IS_ERR(page)) {
2590 		length = PTR_ERR(page);
2591 		goto out;
2592 	}
2593 
2594 	/* Guard against adverse ptrace interaction */
2595 	length = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2596 	if (length < 0)
2597 		goto out_free;
2598 
2599 	length = security_setprocattr(file->f_path.dentry->d_name.name,
2600 				      page, count);
2601 	mutex_unlock(&current->signal->cred_guard_mutex);
2602 out_free:
2603 	kfree(page);
2604 out:
2605 	put_task_struct(task);
2606 out_no_task:
2607 	return length;
2608 }
2609 
2610 static const struct file_operations proc_pid_attr_operations = {
2611 	.read		= proc_pid_attr_read,
2612 	.write		= proc_pid_attr_write,
2613 	.llseek		= generic_file_llseek,
2614 };
2615 
2616 static const struct pid_entry attr_dir_stuff[] = {
2617 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2618 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2619 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2620 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2621 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2622 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2623 };
2624 
2625 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2626 {
2627 	return proc_pident_readdir(file, ctx,
2628 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2629 }
2630 
2631 static const struct file_operations proc_attr_dir_operations = {
2632 	.read		= generic_read_dir,
2633 	.iterate_shared	= proc_attr_dir_readdir,
2634 	.llseek		= generic_file_llseek,
2635 };
2636 
2637 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2638 				struct dentry *dentry, unsigned int flags)
2639 {
2640 	return proc_pident_lookup(dir, dentry,
2641 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2642 }
2643 
2644 static const struct inode_operations proc_attr_dir_inode_operations = {
2645 	.lookup		= proc_attr_dir_lookup,
2646 	.getattr	= pid_getattr,
2647 	.setattr	= proc_setattr,
2648 };
2649 
2650 #endif
2651 
2652 #ifdef CONFIG_ELF_CORE
2653 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2654 					 size_t count, loff_t *ppos)
2655 {
2656 	struct task_struct *task = get_proc_task(file_inode(file));
2657 	struct mm_struct *mm;
2658 	char buffer[PROC_NUMBUF];
2659 	size_t len;
2660 	int ret;
2661 
2662 	if (!task)
2663 		return -ESRCH;
2664 
2665 	ret = 0;
2666 	mm = get_task_mm(task);
2667 	if (mm) {
2668 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2669 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2670 				MMF_DUMP_FILTER_SHIFT));
2671 		mmput(mm);
2672 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2673 	}
2674 
2675 	put_task_struct(task);
2676 
2677 	return ret;
2678 }
2679 
2680 static ssize_t proc_coredump_filter_write(struct file *file,
2681 					  const char __user *buf,
2682 					  size_t count,
2683 					  loff_t *ppos)
2684 {
2685 	struct task_struct *task;
2686 	struct mm_struct *mm;
2687 	unsigned int val;
2688 	int ret;
2689 	int i;
2690 	unsigned long mask;
2691 
2692 	ret = kstrtouint_from_user(buf, count, 0, &val);
2693 	if (ret < 0)
2694 		return ret;
2695 
2696 	ret = -ESRCH;
2697 	task = get_proc_task(file_inode(file));
2698 	if (!task)
2699 		goto out_no_task;
2700 
2701 	mm = get_task_mm(task);
2702 	if (!mm)
2703 		goto out_no_mm;
2704 	ret = 0;
2705 
2706 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2707 		if (val & mask)
2708 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2709 		else
2710 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2711 	}
2712 
2713 	mmput(mm);
2714  out_no_mm:
2715 	put_task_struct(task);
2716  out_no_task:
2717 	if (ret < 0)
2718 		return ret;
2719 	return count;
2720 }
2721 
2722 static const struct file_operations proc_coredump_filter_operations = {
2723 	.read		= proc_coredump_filter_read,
2724 	.write		= proc_coredump_filter_write,
2725 	.llseek		= generic_file_llseek,
2726 };
2727 #endif
2728 
2729 #ifdef CONFIG_TASK_IO_ACCOUNTING
2730 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2731 {
2732 	struct task_io_accounting acct = task->ioac;
2733 	unsigned long flags;
2734 	int result;
2735 
2736 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2737 	if (result)
2738 		return result;
2739 
2740 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2741 		result = -EACCES;
2742 		goto out_unlock;
2743 	}
2744 
2745 	if (whole && lock_task_sighand(task, &flags)) {
2746 		struct task_struct *t = task;
2747 
2748 		task_io_accounting_add(&acct, &task->signal->ioac);
2749 		while_each_thread(task, t)
2750 			task_io_accounting_add(&acct, &t->ioac);
2751 
2752 		unlock_task_sighand(task, &flags);
2753 	}
2754 	seq_printf(m,
2755 		   "rchar: %llu\n"
2756 		   "wchar: %llu\n"
2757 		   "syscr: %llu\n"
2758 		   "syscw: %llu\n"
2759 		   "read_bytes: %llu\n"
2760 		   "write_bytes: %llu\n"
2761 		   "cancelled_write_bytes: %llu\n",
2762 		   (unsigned long long)acct.rchar,
2763 		   (unsigned long long)acct.wchar,
2764 		   (unsigned long long)acct.syscr,
2765 		   (unsigned long long)acct.syscw,
2766 		   (unsigned long long)acct.read_bytes,
2767 		   (unsigned long long)acct.write_bytes,
2768 		   (unsigned long long)acct.cancelled_write_bytes);
2769 	result = 0;
2770 
2771 out_unlock:
2772 	mutex_unlock(&task->signal->cred_guard_mutex);
2773 	return result;
2774 }
2775 
2776 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2777 				  struct pid *pid, struct task_struct *task)
2778 {
2779 	return do_io_accounting(task, m, 0);
2780 }
2781 
2782 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2783 				   struct pid *pid, struct task_struct *task)
2784 {
2785 	return do_io_accounting(task, m, 1);
2786 }
2787 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2788 
2789 #ifdef CONFIG_USER_NS
2790 static int proc_id_map_open(struct inode *inode, struct file *file,
2791 	const struct seq_operations *seq_ops)
2792 {
2793 	struct user_namespace *ns = NULL;
2794 	struct task_struct *task;
2795 	struct seq_file *seq;
2796 	int ret = -EINVAL;
2797 
2798 	task = get_proc_task(inode);
2799 	if (task) {
2800 		rcu_read_lock();
2801 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2802 		rcu_read_unlock();
2803 		put_task_struct(task);
2804 	}
2805 	if (!ns)
2806 		goto err;
2807 
2808 	ret = seq_open(file, seq_ops);
2809 	if (ret)
2810 		goto err_put_ns;
2811 
2812 	seq = file->private_data;
2813 	seq->private = ns;
2814 
2815 	return 0;
2816 err_put_ns:
2817 	put_user_ns(ns);
2818 err:
2819 	return ret;
2820 }
2821 
2822 static int proc_id_map_release(struct inode *inode, struct file *file)
2823 {
2824 	struct seq_file *seq = file->private_data;
2825 	struct user_namespace *ns = seq->private;
2826 	put_user_ns(ns);
2827 	return seq_release(inode, file);
2828 }
2829 
2830 static int proc_uid_map_open(struct inode *inode, struct file *file)
2831 {
2832 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2833 }
2834 
2835 static int proc_gid_map_open(struct inode *inode, struct file *file)
2836 {
2837 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2838 }
2839 
2840 static int proc_projid_map_open(struct inode *inode, struct file *file)
2841 {
2842 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2843 }
2844 
2845 static const struct file_operations proc_uid_map_operations = {
2846 	.open		= proc_uid_map_open,
2847 	.write		= proc_uid_map_write,
2848 	.read		= seq_read,
2849 	.llseek		= seq_lseek,
2850 	.release	= proc_id_map_release,
2851 };
2852 
2853 static const struct file_operations proc_gid_map_operations = {
2854 	.open		= proc_gid_map_open,
2855 	.write		= proc_gid_map_write,
2856 	.read		= seq_read,
2857 	.llseek		= seq_lseek,
2858 	.release	= proc_id_map_release,
2859 };
2860 
2861 static const struct file_operations proc_projid_map_operations = {
2862 	.open		= proc_projid_map_open,
2863 	.write		= proc_projid_map_write,
2864 	.read		= seq_read,
2865 	.llseek		= seq_lseek,
2866 	.release	= proc_id_map_release,
2867 };
2868 
2869 static int proc_setgroups_open(struct inode *inode, struct file *file)
2870 {
2871 	struct user_namespace *ns = NULL;
2872 	struct task_struct *task;
2873 	int ret;
2874 
2875 	ret = -ESRCH;
2876 	task = get_proc_task(inode);
2877 	if (task) {
2878 		rcu_read_lock();
2879 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2880 		rcu_read_unlock();
2881 		put_task_struct(task);
2882 	}
2883 	if (!ns)
2884 		goto err;
2885 
2886 	if (file->f_mode & FMODE_WRITE) {
2887 		ret = -EACCES;
2888 		if (!ns_capable(ns, CAP_SYS_ADMIN))
2889 			goto err_put_ns;
2890 	}
2891 
2892 	ret = single_open(file, &proc_setgroups_show, ns);
2893 	if (ret)
2894 		goto err_put_ns;
2895 
2896 	return 0;
2897 err_put_ns:
2898 	put_user_ns(ns);
2899 err:
2900 	return ret;
2901 }
2902 
2903 static int proc_setgroups_release(struct inode *inode, struct file *file)
2904 {
2905 	struct seq_file *seq = file->private_data;
2906 	struct user_namespace *ns = seq->private;
2907 	int ret = single_release(inode, file);
2908 	put_user_ns(ns);
2909 	return ret;
2910 }
2911 
2912 static const struct file_operations proc_setgroups_operations = {
2913 	.open		= proc_setgroups_open,
2914 	.write		= proc_setgroups_write,
2915 	.read		= seq_read,
2916 	.llseek		= seq_lseek,
2917 	.release	= proc_setgroups_release,
2918 };
2919 #endif /* CONFIG_USER_NS */
2920 
2921 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2922 				struct pid *pid, struct task_struct *task)
2923 {
2924 	int err = lock_trace(task);
2925 	if (!err) {
2926 		seq_printf(m, "%08x\n", task->personality);
2927 		unlock_trace(task);
2928 	}
2929 	return err;
2930 }
2931 
2932 #ifdef CONFIG_LIVEPATCH
2933 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2934 				struct pid *pid, struct task_struct *task)
2935 {
2936 	seq_printf(m, "%d\n", task->patch_state);
2937 	return 0;
2938 }
2939 #endif /* CONFIG_LIVEPATCH */
2940 
2941 /*
2942  * Thread groups
2943  */
2944 static const struct file_operations proc_task_operations;
2945 static const struct inode_operations proc_task_inode_operations;
2946 
2947 static const struct pid_entry tgid_base_stuff[] = {
2948 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2949 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2950 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2951 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2952 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2953 #ifdef CONFIG_NET
2954 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2955 #endif
2956 	REG("environ",    S_IRUSR, proc_environ_operations),
2957 	REG("auxv",       S_IRUSR, proc_auxv_operations),
2958 	ONE("status",     S_IRUGO, proc_pid_status),
2959 	ONE("personality", S_IRUSR, proc_pid_personality),
2960 	ONE("limits",	  S_IRUGO, proc_pid_limits),
2961 #ifdef CONFIG_SCHED_DEBUG
2962 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2963 #endif
2964 #ifdef CONFIG_SCHED_AUTOGROUP
2965 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2966 #endif
2967 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2968 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2969 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2970 #endif
2971 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2972 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2973 	ONE("statm",      S_IRUGO, proc_pid_statm),
2974 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2975 #ifdef CONFIG_NUMA
2976 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2977 #endif
2978 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2979 	LNK("cwd",        proc_cwd_link),
2980 	LNK("root",       proc_root_link),
2981 	LNK("exe",        proc_exe_link),
2982 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2983 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2984 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2985 #ifdef CONFIG_PROC_PAGE_MONITOR
2986 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2987 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2988 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
2989 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2990 #endif
2991 #ifdef CONFIG_SECURITY
2992 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2993 #endif
2994 #ifdef CONFIG_KALLSYMS
2995 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2996 #endif
2997 #ifdef CONFIG_STACKTRACE
2998 	ONE("stack",      S_IRUSR, proc_pid_stack),
2999 #endif
3000 #ifdef CONFIG_SCHED_INFO
3001 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3002 #endif
3003 #ifdef CONFIG_LATENCYTOP
3004 	REG("latency",  S_IRUGO, proc_lstats_operations),
3005 #endif
3006 #ifdef CONFIG_PROC_PID_CPUSET
3007 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3008 #endif
3009 #ifdef CONFIG_CGROUPS
3010 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3011 #endif
3012 	ONE("oom_score",  S_IRUGO, proc_oom_score),
3013 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3014 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3015 #ifdef CONFIG_AUDITSYSCALL
3016 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3017 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3018 #endif
3019 #ifdef CONFIG_FAULT_INJECTION
3020 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3021 	REG("fail-nth", 0644, proc_fail_nth_operations),
3022 #endif
3023 #ifdef CONFIG_ELF_CORE
3024 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3025 #endif
3026 #ifdef CONFIG_TASK_IO_ACCOUNTING
3027 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3028 #endif
3029 #ifdef CONFIG_USER_NS
3030 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3031 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3032 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3033 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3034 #endif
3035 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3036 	REG("timers",	  S_IRUGO, proc_timers_operations),
3037 #endif
3038 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3039 #ifdef CONFIG_LIVEPATCH
3040 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3041 #endif
3042 };
3043 
3044 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3045 {
3046 	return proc_pident_readdir(file, ctx,
3047 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3048 }
3049 
3050 static const struct file_operations proc_tgid_base_operations = {
3051 	.read		= generic_read_dir,
3052 	.iterate_shared	= proc_tgid_base_readdir,
3053 	.llseek		= generic_file_llseek,
3054 };
3055 
3056 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3057 {
3058 	return proc_pident_lookup(dir, dentry,
3059 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3060 }
3061 
3062 static const struct inode_operations proc_tgid_base_inode_operations = {
3063 	.lookup		= proc_tgid_base_lookup,
3064 	.getattr	= pid_getattr,
3065 	.setattr	= proc_setattr,
3066 	.permission	= proc_pid_permission,
3067 };
3068 
3069 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3070 {
3071 	struct dentry *dentry, *leader, *dir;
3072 	char buf[10 + 1];
3073 	struct qstr name;
3074 
3075 	name.name = buf;
3076 	name.len = snprintf(buf, sizeof(buf), "%u", pid);
3077 	/* no ->d_hash() rejects on procfs */
3078 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3079 	if (dentry) {
3080 		d_invalidate(dentry);
3081 		dput(dentry);
3082 	}
3083 
3084 	if (pid == tgid)
3085 		return;
3086 
3087 	name.name = buf;
3088 	name.len = snprintf(buf, sizeof(buf), "%u", tgid);
3089 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
3090 	if (!leader)
3091 		goto out;
3092 
3093 	name.name = "task";
3094 	name.len = strlen(name.name);
3095 	dir = d_hash_and_lookup(leader, &name);
3096 	if (!dir)
3097 		goto out_put_leader;
3098 
3099 	name.name = buf;
3100 	name.len = snprintf(buf, sizeof(buf), "%u", pid);
3101 	dentry = d_hash_and_lookup(dir, &name);
3102 	if (dentry) {
3103 		d_invalidate(dentry);
3104 		dput(dentry);
3105 	}
3106 
3107 	dput(dir);
3108 out_put_leader:
3109 	dput(leader);
3110 out:
3111 	return;
3112 }
3113 
3114 /**
3115  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3116  * @task: task that should be flushed.
3117  *
3118  * When flushing dentries from proc, one needs to flush them from global
3119  * proc (proc_mnt) and from all the namespaces' procs this task was seen
3120  * in. This call is supposed to do all of this job.
3121  *
3122  * Looks in the dcache for
3123  * /proc/@pid
3124  * /proc/@tgid/task/@pid
3125  * if either directory is present flushes it and all of it'ts children
3126  * from the dcache.
3127  *
3128  * It is safe and reasonable to cache /proc entries for a task until
3129  * that task exits.  After that they just clog up the dcache with
3130  * useless entries, possibly causing useful dcache entries to be
3131  * flushed instead.  This routine is proved to flush those useless
3132  * dcache entries at process exit time.
3133  *
3134  * NOTE: This routine is just an optimization so it does not guarantee
3135  *       that no dcache entries will exist at process exit time it
3136  *       just makes it very unlikely that any will persist.
3137  */
3138 
3139 void proc_flush_task(struct task_struct *task)
3140 {
3141 	int i;
3142 	struct pid *pid, *tgid;
3143 	struct upid *upid;
3144 
3145 	pid = task_pid(task);
3146 	tgid = task_tgid(task);
3147 
3148 	for (i = 0; i <= pid->level; i++) {
3149 		upid = &pid->numbers[i];
3150 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3151 					tgid->numbers[i].nr);
3152 	}
3153 }
3154 
3155 static int proc_pid_instantiate(struct inode *dir,
3156 				   struct dentry * dentry,
3157 				   struct task_struct *task, const void *ptr)
3158 {
3159 	struct inode *inode;
3160 
3161 	inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3162 	if (!inode)
3163 		goto out;
3164 
3165 	inode->i_op = &proc_tgid_base_inode_operations;
3166 	inode->i_fop = &proc_tgid_base_operations;
3167 	inode->i_flags|=S_IMMUTABLE;
3168 
3169 	set_nlink(inode, nlink_tgid);
3170 
3171 	d_set_d_op(dentry, &pid_dentry_operations);
3172 
3173 	d_add(dentry, inode);
3174 	/* Close the race of the process dying before we return the dentry */
3175 	if (pid_revalidate(dentry, 0))
3176 		return 0;
3177 out:
3178 	return -ENOENT;
3179 }
3180 
3181 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3182 {
3183 	int result = -ENOENT;
3184 	struct task_struct *task;
3185 	unsigned tgid;
3186 	struct pid_namespace *ns;
3187 
3188 	tgid = name_to_int(&dentry->d_name);
3189 	if (tgid == ~0U)
3190 		goto out;
3191 
3192 	ns = dentry->d_sb->s_fs_info;
3193 	rcu_read_lock();
3194 	task = find_task_by_pid_ns(tgid, ns);
3195 	if (task)
3196 		get_task_struct(task);
3197 	rcu_read_unlock();
3198 	if (!task)
3199 		goto out;
3200 
3201 	result = proc_pid_instantiate(dir, dentry, task, NULL);
3202 	put_task_struct(task);
3203 out:
3204 	return ERR_PTR(result);
3205 }
3206 
3207 /*
3208  * Find the first task with tgid >= tgid
3209  *
3210  */
3211 struct tgid_iter {
3212 	unsigned int tgid;
3213 	struct task_struct *task;
3214 };
3215 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3216 {
3217 	struct pid *pid;
3218 
3219 	if (iter.task)
3220 		put_task_struct(iter.task);
3221 	rcu_read_lock();
3222 retry:
3223 	iter.task = NULL;
3224 	pid = find_ge_pid(iter.tgid, ns);
3225 	if (pid) {
3226 		iter.tgid = pid_nr_ns(pid, ns);
3227 		iter.task = pid_task(pid, PIDTYPE_PID);
3228 		/* What we to know is if the pid we have find is the
3229 		 * pid of a thread_group_leader.  Testing for task
3230 		 * being a thread_group_leader is the obvious thing
3231 		 * todo but there is a window when it fails, due to
3232 		 * the pid transfer logic in de_thread.
3233 		 *
3234 		 * So we perform the straight forward test of seeing
3235 		 * if the pid we have found is the pid of a thread
3236 		 * group leader, and don't worry if the task we have
3237 		 * found doesn't happen to be a thread group leader.
3238 		 * As we don't care in the case of readdir.
3239 		 */
3240 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3241 			iter.tgid += 1;
3242 			goto retry;
3243 		}
3244 		get_task_struct(iter.task);
3245 	}
3246 	rcu_read_unlock();
3247 	return iter;
3248 }
3249 
3250 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3251 
3252 /* for the /proc/ directory itself, after non-process stuff has been done */
3253 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3254 {
3255 	struct tgid_iter iter;
3256 	struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3257 	loff_t pos = ctx->pos;
3258 
3259 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3260 		return 0;
3261 
3262 	if (pos == TGID_OFFSET - 2) {
3263 		struct inode *inode = d_inode(ns->proc_self);
3264 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3265 			return 0;
3266 		ctx->pos = pos = pos + 1;
3267 	}
3268 	if (pos == TGID_OFFSET - 1) {
3269 		struct inode *inode = d_inode(ns->proc_thread_self);
3270 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3271 			return 0;
3272 		ctx->pos = pos = pos + 1;
3273 	}
3274 	iter.tgid = pos - TGID_OFFSET;
3275 	iter.task = NULL;
3276 	for (iter = next_tgid(ns, iter);
3277 	     iter.task;
3278 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3279 		char name[10 + 1];
3280 		int len;
3281 
3282 		cond_resched();
3283 		if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3284 			continue;
3285 
3286 		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3287 		ctx->pos = iter.tgid + TGID_OFFSET;
3288 		if (!proc_fill_cache(file, ctx, name, len,
3289 				     proc_pid_instantiate, iter.task, NULL)) {
3290 			put_task_struct(iter.task);
3291 			return 0;
3292 		}
3293 	}
3294 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3295 	return 0;
3296 }
3297 
3298 /*
3299  * proc_tid_comm_permission is a special permission function exclusively
3300  * used for the node /proc/<pid>/task/<tid>/comm.
3301  * It bypasses generic permission checks in the case where a task of the same
3302  * task group attempts to access the node.
3303  * The rationale behind this is that glibc and bionic access this node for
3304  * cross thread naming (pthread_set/getname_np(!self)). However, if
3305  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3306  * which locks out the cross thread naming implementation.
3307  * This function makes sure that the node is always accessible for members of
3308  * same thread group.
3309  */
3310 static int proc_tid_comm_permission(struct inode *inode, int mask)
3311 {
3312 	bool is_same_tgroup;
3313 	struct task_struct *task;
3314 
3315 	task = get_proc_task(inode);
3316 	if (!task)
3317 		return -ESRCH;
3318 	is_same_tgroup = same_thread_group(current, task);
3319 	put_task_struct(task);
3320 
3321 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3322 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3323 		 * read or written by the members of the corresponding
3324 		 * thread group.
3325 		 */
3326 		return 0;
3327 	}
3328 
3329 	return generic_permission(inode, mask);
3330 }
3331 
3332 static const struct inode_operations proc_tid_comm_inode_operations = {
3333 		.permission = proc_tid_comm_permission,
3334 };
3335 
3336 /*
3337  * Tasks
3338  */
3339 static const struct pid_entry tid_base_stuff[] = {
3340 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3341 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3342 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3343 #ifdef CONFIG_NET
3344 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3345 #endif
3346 	REG("environ",   S_IRUSR, proc_environ_operations),
3347 	REG("auxv",      S_IRUSR, proc_auxv_operations),
3348 	ONE("status",    S_IRUGO, proc_pid_status),
3349 	ONE("personality", S_IRUSR, proc_pid_personality),
3350 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3351 #ifdef CONFIG_SCHED_DEBUG
3352 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3353 #endif
3354 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3355 			 &proc_tid_comm_inode_operations,
3356 			 &proc_pid_set_comm_operations, {}),
3357 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3358 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3359 #endif
3360 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3361 	ONE("stat",      S_IRUGO, proc_tid_stat),
3362 	ONE("statm",     S_IRUGO, proc_pid_statm),
3363 	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3364 #ifdef CONFIG_PROC_CHILDREN
3365 	REG("children",  S_IRUGO, proc_tid_children_operations),
3366 #endif
3367 #ifdef CONFIG_NUMA
3368 	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3369 #endif
3370 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3371 	LNK("cwd",       proc_cwd_link),
3372 	LNK("root",      proc_root_link),
3373 	LNK("exe",       proc_exe_link),
3374 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3375 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3376 #ifdef CONFIG_PROC_PAGE_MONITOR
3377 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3378 	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3379 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3380 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3381 #endif
3382 #ifdef CONFIG_SECURITY
3383 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3384 #endif
3385 #ifdef CONFIG_KALLSYMS
3386 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3387 #endif
3388 #ifdef CONFIG_STACKTRACE
3389 	ONE("stack",      S_IRUSR, proc_pid_stack),
3390 #endif
3391 #ifdef CONFIG_SCHED_INFO
3392 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3393 #endif
3394 #ifdef CONFIG_LATENCYTOP
3395 	REG("latency",  S_IRUGO, proc_lstats_operations),
3396 #endif
3397 #ifdef CONFIG_PROC_PID_CPUSET
3398 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3399 #endif
3400 #ifdef CONFIG_CGROUPS
3401 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3402 #endif
3403 	ONE("oom_score", S_IRUGO, proc_oom_score),
3404 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3405 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3406 #ifdef CONFIG_AUDITSYSCALL
3407 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3408 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3409 #endif
3410 #ifdef CONFIG_FAULT_INJECTION
3411 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3412 	REG("fail-nth", 0644, proc_fail_nth_operations),
3413 #endif
3414 #ifdef CONFIG_TASK_IO_ACCOUNTING
3415 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3416 #endif
3417 #ifdef CONFIG_USER_NS
3418 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3419 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3420 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3421 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3422 #endif
3423 #ifdef CONFIG_LIVEPATCH
3424 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3425 #endif
3426 };
3427 
3428 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3429 {
3430 	return proc_pident_readdir(file, ctx,
3431 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3432 }
3433 
3434 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3435 {
3436 	return proc_pident_lookup(dir, dentry,
3437 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3438 }
3439 
3440 static const struct file_operations proc_tid_base_operations = {
3441 	.read		= generic_read_dir,
3442 	.iterate_shared	= proc_tid_base_readdir,
3443 	.llseek		= generic_file_llseek,
3444 };
3445 
3446 static const struct inode_operations proc_tid_base_inode_operations = {
3447 	.lookup		= proc_tid_base_lookup,
3448 	.getattr	= pid_getattr,
3449 	.setattr	= proc_setattr,
3450 };
3451 
3452 static int proc_task_instantiate(struct inode *dir,
3453 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3454 {
3455 	struct inode *inode;
3456 	inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3457 
3458 	if (!inode)
3459 		goto out;
3460 	inode->i_op = &proc_tid_base_inode_operations;
3461 	inode->i_fop = &proc_tid_base_operations;
3462 	inode->i_flags|=S_IMMUTABLE;
3463 
3464 	set_nlink(inode, nlink_tid);
3465 
3466 	d_set_d_op(dentry, &pid_dentry_operations);
3467 
3468 	d_add(dentry, inode);
3469 	/* Close the race of the process dying before we return the dentry */
3470 	if (pid_revalidate(dentry, 0))
3471 		return 0;
3472 out:
3473 	return -ENOENT;
3474 }
3475 
3476 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3477 {
3478 	int result = -ENOENT;
3479 	struct task_struct *task;
3480 	struct task_struct *leader = get_proc_task(dir);
3481 	unsigned tid;
3482 	struct pid_namespace *ns;
3483 
3484 	if (!leader)
3485 		goto out_no_task;
3486 
3487 	tid = name_to_int(&dentry->d_name);
3488 	if (tid == ~0U)
3489 		goto out;
3490 
3491 	ns = dentry->d_sb->s_fs_info;
3492 	rcu_read_lock();
3493 	task = find_task_by_pid_ns(tid, ns);
3494 	if (task)
3495 		get_task_struct(task);
3496 	rcu_read_unlock();
3497 	if (!task)
3498 		goto out;
3499 	if (!same_thread_group(leader, task))
3500 		goto out_drop_task;
3501 
3502 	result = proc_task_instantiate(dir, dentry, task, NULL);
3503 out_drop_task:
3504 	put_task_struct(task);
3505 out:
3506 	put_task_struct(leader);
3507 out_no_task:
3508 	return ERR_PTR(result);
3509 }
3510 
3511 /*
3512  * Find the first tid of a thread group to return to user space.
3513  *
3514  * Usually this is just the thread group leader, but if the users
3515  * buffer was too small or there was a seek into the middle of the
3516  * directory we have more work todo.
3517  *
3518  * In the case of a short read we start with find_task_by_pid.
3519  *
3520  * In the case of a seek we start with the leader and walk nr
3521  * threads past it.
3522  */
3523 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3524 					struct pid_namespace *ns)
3525 {
3526 	struct task_struct *pos, *task;
3527 	unsigned long nr = f_pos;
3528 
3529 	if (nr != f_pos)	/* 32bit overflow? */
3530 		return NULL;
3531 
3532 	rcu_read_lock();
3533 	task = pid_task(pid, PIDTYPE_PID);
3534 	if (!task)
3535 		goto fail;
3536 
3537 	/* Attempt to start with the tid of a thread */
3538 	if (tid && nr) {
3539 		pos = find_task_by_pid_ns(tid, ns);
3540 		if (pos && same_thread_group(pos, task))
3541 			goto found;
3542 	}
3543 
3544 	/* If nr exceeds the number of threads there is nothing todo */
3545 	if (nr >= get_nr_threads(task))
3546 		goto fail;
3547 
3548 	/* If we haven't found our starting place yet start
3549 	 * with the leader and walk nr threads forward.
3550 	 */
3551 	pos = task = task->group_leader;
3552 	do {
3553 		if (!nr--)
3554 			goto found;
3555 	} while_each_thread(task, pos);
3556 fail:
3557 	pos = NULL;
3558 	goto out;
3559 found:
3560 	get_task_struct(pos);
3561 out:
3562 	rcu_read_unlock();
3563 	return pos;
3564 }
3565 
3566 /*
3567  * Find the next thread in the thread list.
3568  * Return NULL if there is an error or no next thread.
3569  *
3570  * The reference to the input task_struct is released.
3571  */
3572 static struct task_struct *next_tid(struct task_struct *start)
3573 {
3574 	struct task_struct *pos = NULL;
3575 	rcu_read_lock();
3576 	if (pid_alive(start)) {
3577 		pos = next_thread(start);
3578 		if (thread_group_leader(pos))
3579 			pos = NULL;
3580 		else
3581 			get_task_struct(pos);
3582 	}
3583 	rcu_read_unlock();
3584 	put_task_struct(start);
3585 	return pos;
3586 }
3587 
3588 /* for the /proc/TGID/task/ directories */
3589 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3590 {
3591 	struct inode *inode = file_inode(file);
3592 	struct task_struct *task;
3593 	struct pid_namespace *ns;
3594 	int tid;
3595 
3596 	if (proc_inode_is_dead(inode))
3597 		return -ENOENT;
3598 
3599 	if (!dir_emit_dots(file, ctx))
3600 		return 0;
3601 
3602 	/* f_version caches the tgid value that the last readdir call couldn't
3603 	 * return. lseek aka telldir automagically resets f_version to 0.
3604 	 */
3605 	ns = inode->i_sb->s_fs_info;
3606 	tid = (int)file->f_version;
3607 	file->f_version = 0;
3608 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3609 	     task;
3610 	     task = next_tid(task), ctx->pos++) {
3611 		char name[10 + 1];
3612 		int len;
3613 		tid = task_pid_nr_ns(task, ns);
3614 		len = snprintf(name, sizeof(name), "%u", tid);
3615 		if (!proc_fill_cache(file, ctx, name, len,
3616 				proc_task_instantiate, task, NULL)) {
3617 			/* returning this tgid failed, save it as the first
3618 			 * pid for the next readir call */
3619 			file->f_version = (u64)tid;
3620 			put_task_struct(task);
3621 			break;
3622 		}
3623 	}
3624 
3625 	return 0;
3626 }
3627 
3628 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3629 			     u32 request_mask, unsigned int query_flags)
3630 {
3631 	struct inode *inode = d_inode(path->dentry);
3632 	struct task_struct *p = get_proc_task(inode);
3633 	generic_fillattr(inode, stat);
3634 
3635 	if (p) {
3636 		stat->nlink += get_nr_threads(p);
3637 		put_task_struct(p);
3638 	}
3639 
3640 	return 0;
3641 }
3642 
3643 static const struct inode_operations proc_task_inode_operations = {
3644 	.lookup		= proc_task_lookup,
3645 	.getattr	= proc_task_getattr,
3646 	.setattr	= proc_setattr,
3647 	.permission	= proc_pid_permission,
3648 };
3649 
3650 static const struct file_operations proc_task_operations = {
3651 	.read		= generic_read_dir,
3652 	.iterate_shared	= proc_task_readdir,
3653 	.llseek		= generic_file_llseek,
3654 };
3655 
3656 void __init set_proc_pid_nlink(void)
3657 {
3658 	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3659 	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3660 }
3661