1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/proc/base.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * proc base directory handling functions 8 * 9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 10 * Instead of using magical inumbers to determine the kind of object 11 * we allocate and fill in-core inodes upon lookup. They don't even 12 * go into icache. We cache the reference to task_struct upon lookup too. 13 * Eventually it should become a filesystem in its own. We don't use the 14 * rest of procfs anymore. 15 * 16 * 17 * Changelog: 18 * 17-Jan-2005 19 * Allan Bezerra 20 * Bruna Moreira <bruna.moreira@indt.org.br> 21 * Edjard Mota <edjard.mota@indt.org.br> 22 * Ilias Biris <ilias.biris@indt.org.br> 23 * Mauricio Lin <mauricio.lin@indt.org.br> 24 * 25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 26 * 27 * A new process specific entry (smaps) included in /proc. It shows the 28 * size of rss for each memory area. The maps entry lacks information 29 * about physical memory size (rss) for each mapped file, i.e., 30 * rss information for executables and library files. 31 * This additional information is useful for any tools that need to know 32 * about physical memory consumption for a process specific library. 33 * 34 * Changelog: 35 * 21-Feb-2005 36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 37 * Pud inclusion in the page table walking. 38 * 39 * ChangeLog: 40 * 10-Mar-2005 41 * 10LE Instituto Nokia de Tecnologia - INdT: 42 * A better way to walks through the page table as suggested by Hugh Dickins. 43 * 44 * Simo Piiroinen <simo.piiroinen@nokia.com>: 45 * Smaps information related to shared, private, clean and dirty pages. 46 * 47 * Paul Mundt <paul.mundt@nokia.com>: 48 * Overall revision about smaps. 49 */ 50 51 #include <linux/uaccess.h> 52 53 #include <linux/errno.h> 54 #include <linux/time.h> 55 #include <linux/proc_fs.h> 56 #include <linux/stat.h> 57 #include <linux/task_io_accounting_ops.h> 58 #include <linux/init.h> 59 #include <linux/capability.h> 60 #include <linux/file.h> 61 #include <linux/fdtable.h> 62 #include <linux/string.h> 63 #include <linux/seq_file.h> 64 #include <linux/namei.h> 65 #include <linux/mnt_namespace.h> 66 #include <linux/mm.h> 67 #include <linux/swap.h> 68 #include <linux/rcupdate.h> 69 #include <linux/kallsyms.h> 70 #include <linux/stacktrace.h> 71 #include <linux/resource.h> 72 #include <linux/module.h> 73 #include <linux/mount.h> 74 #include <linux/security.h> 75 #include <linux/ptrace.h> 76 #include <linux/tracehook.h> 77 #include <linux/printk.h> 78 #include <linux/cache.h> 79 #include <linux/cgroup.h> 80 #include <linux/cpuset.h> 81 #include <linux/audit.h> 82 #include <linux/poll.h> 83 #include <linux/nsproxy.h> 84 #include <linux/oom.h> 85 #include <linux/elf.h> 86 #include <linux/pid_namespace.h> 87 #include <linux/user_namespace.h> 88 #include <linux/fs_struct.h> 89 #include <linux/slab.h> 90 #include <linux/sched/autogroup.h> 91 #include <linux/sched/mm.h> 92 #include <linux/sched/coredump.h> 93 #include <linux/sched/debug.h> 94 #include <linux/sched/stat.h> 95 #include <linux/flex_array.h> 96 #include <linux/posix-timers.h> 97 #include <trace/events/oom.h> 98 #include "internal.h" 99 #include "fd.h" 100 101 #include "../../lib/kstrtox.h" 102 103 /* NOTE: 104 * Implementing inode permission operations in /proc is almost 105 * certainly an error. Permission checks need to happen during 106 * each system call not at open time. The reason is that most of 107 * what we wish to check for permissions in /proc varies at runtime. 108 * 109 * The classic example of a problem is opening file descriptors 110 * in /proc for a task before it execs a suid executable. 111 */ 112 113 static u8 nlink_tid __ro_after_init; 114 static u8 nlink_tgid __ro_after_init; 115 116 struct pid_entry { 117 const char *name; 118 unsigned int len; 119 umode_t mode; 120 const struct inode_operations *iop; 121 const struct file_operations *fop; 122 union proc_op op; 123 }; 124 125 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 126 .name = (NAME), \ 127 .len = sizeof(NAME) - 1, \ 128 .mode = MODE, \ 129 .iop = IOP, \ 130 .fop = FOP, \ 131 .op = OP, \ 132 } 133 134 #define DIR(NAME, MODE, iops, fops) \ 135 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 136 #define LNK(NAME, get_link) \ 137 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 138 &proc_pid_link_inode_operations, NULL, \ 139 { .proc_get_link = get_link } ) 140 #define REG(NAME, MODE, fops) \ 141 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 142 #define ONE(NAME, MODE, show) \ 143 NOD(NAME, (S_IFREG|(MODE)), \ 144 NULL, &proc_single_file_operations, \ 145 { .proc_show = show } ) 146 147 /* 148 * Count the number of hardlinks for the pid_entry table, excluding the . 149 * and .. links. 150 */ 151 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries, 152 unsigned int n) 153 { 154 unsigned int i; 155 unsigned int count; 156 157 count = 2; 158 for (i = 0; i < n; ++i) { 159 if (S_ISDIR(entries[i].mode)) 160 ++count; 161 } 162 163 return count; 164 } 165 166 static int get_task_root(struct task_struct *task, struct path *root) 167 { 168 int result = -ENOENT; 169 170 task_lock(task); 171 if (task->fs) { 172 get_fs_root(task->fs, root); 173 result = 0; 174 } 175 task_unlock(task); 176 return result; 177 } 178 179 static int proc_cwd_link(struct dentry *dentry, struct path *path) 180 { 181 struct task_struct *task = get_proc_task(d_inode(dentry)); 182 int result = -ENOENT; 183 184 if (task) { 185 task_lock(task); 186 if (task->fs) { 187 get_fs_pwd(task->fs, path); 188 result = 0; 189 } 190 task_unlock(task); 191 put_task_struct(task); 192 } 193 return result; 194 } 195 196 static int proc_root_link(struct dentry *dentry, struct path *path) 197 { 198 struct task_struct *task = get_proc_task(d_inode(dentry)); 199 int result = -ENOENT; 200 201 if (task) { 202 result = get_task_root(task, path); 203 put_task_struct(task); 204 } 205 return result; 206 } 207 208 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf, 209 size_t _count, loff_t *pos) 210 { 211 struct task_struct *tsk; 212 struct mm_struct *mm; 213 char *page; 214 unsigned long count = _count; 215 unsigned long arg_start, arg_end, env_start, env_end; 216 unsigned long len1, len2, len; 217 unsigned long p; 218 char c; 219 ssize_t rv; 220 221 BUG_ON(*pos < 0); 222 223 tsk = get_proc_task(file_inode(file)); 224 if (!tsk) 225 return -ESRCH; 226 mm = get_task_mm(tsk); 227 put_task_struct(tsk); 228 if (!mm) 229 return 0; 230 /* Check if process spawned far enough to have cmdline. */ 231 if (!mm->env_end) { 232 rv = 0; 233 goto out_mmput; 234 } 235 236 page = (char *)__get_free_page(GFP_KERNEL); 237 if (!page) { 238 rv = -ENOMEM; 239 goto out_mmput; 240 } 241 242 down_read(&mm->mmap_sem); 243 arg_start = mm->arg_start; 244 arg_end = mm->arg_end; 245 env_start = mm->env_start; 246 env_end = mm->env_end; 247 up_read(&mm->mmap_sem); 248 249 BUG_ON(arg_start > arg_end); 250 BUG_ON(env_start > env_end); 251 252 len1 = arg_end - arg_start; 253 len2 = env_end - env_start; 254 255 /* Empty ARGV. */ 256 if (len1 == 0) { 257 rv = 0; 258 goto out_free_page; 259 } 260 /* 261 * Inherently racy -- command line shares address space 262 * with code and data. 263 */ 264 rv = access_remote_vm(mm, arg_end - 1, &c, 1, FOLL_ANON); 265 if (rv <= 0) 266 goto out_free_page; 267 268 rv = 0; 269 270 if (c == '\0') { 271 /* Command line (set of strings) occupies whole ARGV. */ 272 if (len1 <= *pos) 273 goto out_free_page; 274 275 p = arg_start + *pos; 276 len = len1 - *pos; 277 while (count > 0 && len > 0) { 278 unsigned int _count; 279 int nr_read; 280 281 _count = min3(count, len, PAGE_SIZE); 282 nr_read = access_remote_vm(mm, p, page, _count, FOLL_ANON); 283 if (nr_read < 0) 284 rv = nr_read; 285 if (nr_read <= 0) 286 goto out_free_page; 287 288 if (copy_to_user(buf, page, nr_read)) { 289 rv = -EFAULT; 290 goto out_free_page; 291 } 292 293 p += nr_read; 294 len -= nr_read; 295 buf += nr_read; 296 count -= nr_read; 297 rv += nr_read; 298 } 299 } else { 300 /* 301 * Command line (1 string) occupies ARGV and 302 * extends into ENVP. 303 */ 304 struct { 305 unsigned long p; 306 unsigned long len; 307 } cmdline[2] = { 308 { .p = arg_start, .len = len1 }, 309 { .p = env_start, .len = len2 }, 310 }; 311 loff_t pos1 = *pos; 312 unsigned int i; 313 314 i = 0; 315 while (i < 2 && pos1 >= cmdline[i].len) { 316 pos1 -= cmdline[i].len; 317 i++; 318 } 319 while (i < 2) { 320 p = cmdline[i].p + pos1; 321 len = cmdline[i].len - pos1; 322 while (count > 0 && len > 0) { 323 unsigned int _count, l; 324 int nr_read; 325 bool final; 326 327 _count = min3(count, len, PAGE_SIZE); 328 nr_read = access_remote_vm(mm, p, page, _count, FOLL_ANON); 329 if (nr_read < 0) 330 rv = nr_read; 331 if (nr_read <= 0) 332 goto out_free_page; 333 334 /* 335 * Command line can be shorter than whole ARGV 336 * even if last "marker" byte says it is not. 337 */ 338 final = false; 339 l = strnlen(page, nr_read); 340 if (l < nr_read) { 341 nr_read = l; 342 final = true; 343 } 344 345 if (copy_to_user(buf, page, nr_read)) { 346 rv = -EFAULT; 347 goto out_free_page; 348 } 349 350 p += nr_read; 351 len -= nr_read; 352 buf += nr_read; 353 count -= nr_read; 354 rv += nr_read; 355 356 if (final) 357 goto out_free_page; 358 } 359 360 /* Only first chunk can be read partially. */ 361 pos1 = 0; 362 i++; 363 } 364 } 365 366 out_free_page: 367 free_page((unsigned long)page); 368 out_mmput: 369 mmput(mm); 370 if (rv > 0) 371 *pos += rv; 372 return rv; 373 } 374 375 static const struct file_operations proc_pid_cmdline_ops = { 376 .read = proc_pid_cmdline_read, 377 .llseek = generic_file_llseek, 378 }; 379 380 #ifdef CONFIG_KALLSYMS 381 /* 382 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 383 * Returns the resolved symbol. If that fails, simply return the address. 384 */ 385 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns, 386 struct pid *pid, struct task_struct *task) 387 { 388 unsigned long wchan; 389 char symname[KSYM_NAME_LEN]; 390 391 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 392 goto print0; 393 394 wchan = get_wchan(task); 395 if (wchan && !lookup_symbol_name(wchan, symname)) { 396 seq_puts(m, symname); 397 return 0; 398 } 399 400 print0: 401 seq_putc(m, '0'); 402 return 0; 403 } 404 #endif /* CONFIG_KALLSYMS */ 405 406 static int lock_trace(struct task_struct *task) 407 { 408 int err = mutex_lock_killable(&task->signal->cred_guard_mutex); 409 if (err) 410 return err; 411 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) { 412 mutex_unlock(&task->signal->cred_guard_mutex); 413 return -EPERM; 414 } 415 return 0; 416 } 417 418 static void unlock_trace(struct task_struct *task) 419 { 420 mutex_unlock(&task->signal->cred_guard_mutex); 421 } 422 423 #ifdef CONFIG_STACKTRACE 424 425 #define MAX_STACK_TRACE_DEPTH 64 426 427 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 428 struct pid *pid, struct task_struct *task) 429 { 430 struct stack_trace trace; 431 unsigned long *entries; 432 int err; 433 int i; 434 435 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL); 436 if (!entries) 437 return -ENOMEM; 438 439 trace.nr_entries = 0; 440 trace.max_entries = MAX_STACK_TRACE_DEPTH; 441 trace.entries = entries; 442 trace.skip = 0; 443 444 err = lock_trace(task); 445 if (!err) { 446 save_stack_trace_tsk(task, &trace); 447 448 for (i = 0; i < trace.nr_entries; i++) { 449 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]); 450 } 451 unlock_trace(task); 452 } 453 kfree(entries); 454 455 return err; 456 } 457 #endif 458 459 #ifdef CONFIG_SCHED_INFO 460 /* 461 * Provides /proc/PID/schedstat 462 */ 463 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns, 464 struct pid *pid, struct task_struct *task) 465 { 466 if (unlikely(!sched_info_on())) 467 seq_printf(m, "0 0 0\n"); 468 else 469 seq_printf(m, "%llu %llu %lu\n", 470 (unsigned long long)task->se.sum_exec_runtime, 471 (unsigned long long)task->sched_info.run_delay, 472 task->sched_info.pcount); 473 474 return 0; 475 } 476 #endif 477 478 #ifdef CONFIG_LATENCYTOP 479 static int lstats_show_proc(struct seq_file *m, void *v) 480 { 481 int i; 482 struct inode *inode = m->private; 483 struct task_struct *task = get_proc_task(inode); 484 485 if (!task) 486 return -ESRCH; 487 seq_puts(m, "Latency Top version : v0.1\n"); 488 for (i = 0; i < 32; i++) { 489 struct latency_record *lr = &task->latency_record[i]; 490 if (lr->backtrace[0]) { 491 int q; 492 seq_printf(m, "%i %li %li", 493 lr->count, lr->time, lr->max); 494 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 495 unsigned long bt = lr->backtrace[q]; 496 if (!bt) 497 break; 498 if (bt == ULONG_MAX) 499 break; 500 seq_printf(m, " %ps", (void *)bt); 501 } 502 seq_putc(m, '\n'); 503 } 504 505 } 506 put_task_struct(task); 507 return 0; 508 } 509 510 static int lstats_open(struct inode *inode, struct file *file) 511 { 512 return single_open(file, lstats_show_proc, inode); 513 } 514 515 static ssize_t lstats_write(struct file *file, const char __user *buf, 516 size_t count, loff_t *offs) 517 { 518 struct task_struct *task = get_proc_task(file_inode(file)); 519 520 if (!task) 521 return -ESRCH; 522 clear_all_latency_tracing(task); 523 put_task_struct(task); 524 525 return count; 526 } 527 528 static const struct file_operations proc_lstats_operations = { 529 .open = lstats_open, 530 .read = seq_read, 531 .write = lstats_write, 532 .llseek = seq_lseek, 533 .release = single_release, 534 }; 535 536 #endif 537 538 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns, 539 struct pid *pid, struct task_struct *task) 540 { 541 unsigned long totalpages = totalram_pages + total_swap_pages; 542 unsigned long points = 0; 543 544 points = oom_badness(task, NULL, NULL, totalpages) * 545 1000 / totalpages; 546 seq_printf(m, "%lu\n", points); 547 548 return 0; 549 } 550 551 struct limit_names { 552 const char *name; 553 const char *unit; 554 }; 555 556 static const struct limit_names lnames[RLIM_NLIMITS] = { 557 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 558 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 559 [RLIMIT_DATA] = {"Max data size", "bytes"}, 560 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 561 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 562 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 563 [RLIMIT_NPROC] = {"Max processes", "processes"}, 564 [RLIMIT_NOFILE] = {"Max open files", "files"}, 565 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 566 [RLIMIT_AS] = {"Max address space", "bytes"}, 567 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 568 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 569 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 570 [RLIMIT_NICE] = {"Max nice priority", NULL}, 571 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 572 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 573 }; 574 575 /* Display limits for a process */ 576 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns, 577 struct pid *pid, struct task_struct *task) 578 { 579 unsigned int i; 580 unsigned long flags; 581 582 struct rlimit rlim[RLIM_NLIMITS]; 583 584 if (!lock_task_sighand(task, &flags)) 585 return 0; 586 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 587 unlock_task_sighand(task, &flags); 588 589 /* 590 * print the file header 591 */ 592 seq_printf(m, "%-25s %-20s %-20s %-10s\n", 593 "Limit", "Soft Limit", "Hard Limit", "Units"); 594 595 for (i = 0; i < RLIM_NLIMITS; i++) { 596 if (rlim[i].rlim_cur == RLIM_INFINITY) 597 seq_printf(m, "%-25s %-20s ", 598 lnames[i].name, "unlimited"); 599 else 600 seq_printf(m, "%-25s %-20lu ", 601 lnames[i].name, rlim[i].rlim_cur); 602 603 if (rlim[i].rlim_max == RLIM_INFINITY) 604 seq_printf(m, "%-20s ", "unlimited"); 605 else 606 seq_printf(m, "%-20lu ", rlim[i].rlim_max); 607 608 if (lnames[i].unit) 609 seq_printf(m, "%-10s\n", lnames[i].unit); 610 else 611 seq_putc(m, '\n'); 612 } 613 614 return 0; 615 } 616 617 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 618 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns, 619 struct pid *pid, struct task_struct *task) 620 { 621 long nr; 622 unsigned long args[6], sp, pc; 623 int res; 624 625 res = lock_trace(task); 626 if (res) 627 return res; 628 629 if (task_current_syscall(task, &nr, args, 6, &sp, &pc)) 630 seq_puts(m, "running\n"); 631 else if (nr < 0) 632 seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc); 633 else 634 seq_printf(m, 635 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n", 636 nr, 637 args[0], args[1], args[2], args[3], args[4], args[5], 638 sp, pc); 639 unlock_trace(task); 640 641 return 0; 642 } 643 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 644 645 /************************************************************************/ 646 /* Here the fs part begins */ 647 /************************************************************************/ 648 649 /* permission checks */ 650 static int proc_fd_access_allowed(struct inode *inode) 651 { 652 struct task_struct *task; 653 int allowed = 0; 654 /* Allow access to a task's file descriptors if it is us or we 655 * may use ptrace attach to the process and find out that 656 * information. 657 */ 658 task = get_proc_task(inode); 659 if (task) { 660 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 661 put_task_struct(task); 662 } 663 return allowed; 664 } 665 666 int proc_setattr(struct dentry *dentry, struct iattr *attr) 667 { 668 int error; 669 struct inode *inode = d_inode(dentry); 670 671 if (attr->ia_valid & ATTR_MODE) 672 return -EPERM; 673 674 error = setattr_prepare(dentry, attr); 675 if (error) 676 return error; 677 678 setattr_copy(inode, attr); 679 mark_inode_dirty(inode); 680 return 0; 681 } 682 683 /* 684 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 685 * or euid/egid (for hide_pid_min=2)? 686 */ 687 static bool has_pid_permissions(struct pid_namespace *pid, 688 struct task_struct *task, 689 int hide_pid_min) 690 { 691 if (pid->hide_pid < hide_pid_min) 692 return true; 693 if (in_group_p(pid->pid_gid)) 694 return true; 695 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 696 } 697 698 699 static int proc_pid_permission(struct inode *inode, int mask) 700 { 701 struct pid_namespace *pid = inode->i_sb->s_fs_info; 702 struct task_struct *task; 703 bool has_perms; 704 705 task = get_proc_task(inode); 706 if (!task) 707 return -ESRCH; 708 has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS); 709 put_task_struct(task); 710 711 if (!has_perms) { 712 if (pid->hide_pid == HIDEPID_INVISIBLE) { 713 /* 714 * Let's make getdents(), stat(), and open() 715 * consistent with each other. If a process 716 * may not stat() a file, it shouldn't be seen 717 * in procfs at all. 718 */ 719 return -ENOENT; 720 } 721 722 return -EPERM; 723 } 724 return generic_permission(inode, mask); 725 } 726 727 728 729 static const struct inode_operations proc_def_inode_operations = { 730 .setattr = proc_setattr, 731 }; 732 733 static int proc_single_show(struct seq_file *m, void *v) 734 { 735 struct inode *inode = m->private; 736 struct pid_namespace *ns; 737 struct pid *pid; 738 struct task_struct *task; 739 int ret; 740 741 ns = inode->i_sb->s_fs_info; 742 pid = proc_pid(inode); 743 task = get_pid_task(pid, PIDTYPE_PID); 744 if (!task) 745 return -ESRCH; 746 747 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 748 749 put_task_struct(task); 750 return ret; 751 } 752 753 static int proc_single_open(struct inode *inode, struct file *filp) 754 { 755 return single_open(filp, proc_single_show, inode); 756 } 757 758 static const struct file_operations proc_single_file_operations = { 759 .open = proc_single_open, 760 .read = seq_read, 761 .llseek = seq_lseek, 762 .release = single_release, 763 }; 764 765 766 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode) 767 { 768 struct task_struct *task = get_proc_task(inode); 769 struct mm_struct *mm = ERR_PTR(-ESRCH); 770 771 if (task) { 772 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS); 773 put_task_struct(task); 774 775 if (!IS_ERR_OR_NULL(mm)) { 776 /* ensure this mm_struct can't be freed */ 777 mmgrab(mm); 778 /* but do not pin its memory */ 779 mmput(mm); 780 } 781 } 782 783 return mm; 784 } 785 786 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) 787 { 788 struct mm_struct *mm = proc_mem_open(inode, mode); 789 790 if (IS_ERR(mm)) 791 return PTR_ERR(mm); 792 793 file->private_data = mm; 794 return 0; 795 } 796 797 static int mem_open(struct inode *inode, struct file *file) 798 { 799 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH); 800 801 /* OK to pass negative loff_t, we can catch out-of-range */ 802 file->f_mode |= FMODE_UNSIGNED_OFFSET; 803 804 return ret; 805 } 806 807 static ssize_t mem_rw(struct file *file, char __user *buf, 808 size_t count, loff_t *ppos, int write) 809 { 810 struct mm_struct *mm = file->private_data; 811 unsigned long addr = *ppos; 812 ssize_t copied; 813 char *page; 814 unsigned int flags; 815 816 if (!mm) 817 return 0; 818 819 page = (char *)__get_free_page(GFP_KERNEL); 820 if (!page) 821 return -ENOMEM; 822 823 copied = 0; 824 if (!mmget_not_zero(mm)) 825 goto free; 826 827 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0); 828 829 while (count > 0) { 830 int this_len = min_t(int, count, PAGE_SIZE); 831 832 if (write && copy_from_user(page, buf, this_len)) { 833 copied = -EFAULT; 834 break; 835 } 836 837 this_len = access_remote_vm(mm, addr, page, this_len, flags); 838 if (!this_len) { 839 if (!copied) 840 copied = -EIO; 841 break; 842 } 843 844 if (!write && copy_to_user(buf, page, this_len)) { 845 copied = -EFAULT; 846 break; 847 } 848 849 buf += this_len; 850 addr += this_len; 851 copied += this_len; 852 count -= this_len; 853 } 854 *ppos = addr; 855 856 mmput(mm); 857 free: 858 free_page((unsigned long) page); 859 return copied; 860 } 861 862 static ssize_t mem_read(struct file *file, char __user *buf, 863 size_t count, loff_t *ppos) 864 { 865 return mem_rw(file, buf, count, ppos, 0); 866 } 867 868 static ssize_t mem_write(struct file *file, const char __user *buf, 869 size_t count, loff_t *ppos) 870 { 871 return mem_rw(file, (char __user*)buf, count, ppos, 1); 872 } 873 874 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 875 { 876 switch (orig) { 877 case 0: 878 file->f_pos = offset; 879 break; 880 case 1: 881 file->f_pos += offset; 882 break; 883 default: 884 return -EINVAL; 885 } 886 force_successful_syscall_return(); 887 return file->f_pos; 888 } 889 890 static int mem_release(struct inode *inode, struct file *file) 891 { 892 struct mm_struct *mm = file->private_data; 893 if (mm) 894 mmdrop(mm); 895 return 0; 896 } 897 898 static const struct file_operations proc_mem_operations = { 899 .llseek = mem_lseek, 900 .read = mem_read, 901 .write = mem_write, 902 .open = mem_open, 903 .release = mem_release, 904 }; 905 906 static int environ_open(struct inode *inode, struct file *file) 907 { 908 return __mem_open(inode, file, PTRACE_MODE_READ); 909 } 910 911 static ssize_t environ_read(struct file *file, char __user *buf, 912 size_t count, loff_t *ppos) 913 { 914 char *page; 915 unsigned long src = *ppos; 916 int ret = 0; 917 struct mm_struct *mm = file->private_data; 918 unsigned long env_start, env_end; 919 920 /* Ensure the process spawned far enough to have an environment. */ 921 if (!mm || !mm->env_end) 922 return 0; 923 924 page = (char *)__get_free_page(GFP_KERNEL); 925 if (!page) 926 return -ENOMEM; 927 928 ret = 0; 929 if (!mmget_not_zero(mm)) 930 goto free; 931 932 down_read(&mm->mmap_sem); 933 env_start = mm->env_start; 934 env_end = mm->env_end; 935 up_read(&mm->mmap_sem); 936 937 while (count > 0) { 938 size_t this_len, max_len; 939 int retval; 940 941 if (src >= (env_end - env_start)) 942 break; 943 944 this_len = env_end - (env_start + src); 945 946 max_len = min_t(size_t, PAGE_SIZE, count); 947 this_len = min(max_len, this_len); 948 949 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON); 950 951 if (retval <= 0) { 952 ret = retval; 953 break; 954 } 955 956 if (copy_to_user(buf, page, retval)) { 957 ret = -EFAULT; 958 break; 959 } 960 961 ret += retval; 962 src += retval; 963 buf += retval; 964 count -= retval; 965 } 966 *ppos = src; 967 mmput(mm); 968 969 free: 970 free_page((unsigned long) page); 971 return ret; 972 } 973 974 static const struct file_operations proc_environ_operations = { 975 .open = environ_open, 976 .read = environ_read, 977 .llseek = generic_file_llseek, 978 .release = mem_release, 979 }; 980 981 static int auxv_open(struct inode *inode, struct file *file) 982 { 983 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 984 } 985 986 static ssize_t auxv_read(struct file *file, char __user *buf, 987 size_t count, loff_t *ppos) 988 { 989 struct mm_struct *mm = file->private_data; 990 unsigned int nwords = 0; 991 992 if (!mm) 993 return 0; 994 do { 995 nwords += 2; 996 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 997 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv, 998 nwords * sizeof(mm->saved_auxv[0])); 999 } 1000 1001 static const struct file_operations proc_auxv_operations = { 1002 .open = auxv_open, 1003 .read = auxv_read, 1004 .llseek = generic_file_llseek, 1005 .release = mem_release, 1006 }; 1007 1008 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count, 1009 loff_t *ppos) 1010 { 1011 struct task_struct *task = get_proc_task(file_inode(file)); 1012 char buffer[PROC_NUMBUF]; 1013 int oom_adj = OOM_ADJUST_MIN; 1014 size_t len; 1015 1016 if (!task) 1017 return -ESRCH; 1018 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX) 1019 oom_adj = OOM_ADJUST_MAX; 1020 else 1021 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) / 1022 OOM_SCORE_ADJ_MAX; 1023 put_task_struct(task); 1024 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj); 1025 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1026 } 1027 1028 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy) 1029 { 1030 static DEFINE_MUTEX(oom_adj_mutex); 1031 struct mm_struct *mm = NULL; 1032 struct task_struct *task; 1033 int err = 0; 1034 1035 task = get_proc_task(file_inode(file)); 1036 if (!task) 1037 return -ESRCH; 1038 1039 mutex_lock(&oom_adj_mutex); 1040 if (legacy) { 1041 if (oom_adj < task->signal->oom_score_adj && 1042 !capable(CAP_SYS_RESOURCE)) { 1043 err = -EACCES; 1044 goto err_unlock; 1045 } 1046 /* 1047 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use 1048 * /proc/pid/oom_score_adj instead. 1049 */ 1050 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 1051 current->comm, task_pid_nr(current), task_pid_nr(task), 1052 task_pid_nr(task)); 1053 } else { 1054 if ((short)oom_adj < task->signal->oom_score_adj_min && 1055 !capable(CAP_SYS_RESOURCE)) { 1056 err = -EACCES; 1057 goto err_unlock; 1058 } 1059 } 1060 1061 /* 1062 * Make sure we will check other processes sharing the mm if this is 1063 * not vfrok which wants its own oom_score_adj. 1064 * pin the mm so it doesn't go away and get reused after task_unlock 1065 */ 1066 if (!task->vfork_done) { 1067 struct task_struct *p = find_lock_task_mm(task); 1068 1069 if (p) { 1070 if (atomic_read(&p->mm->mm_users) > 1) { 1071 mm = p->mm; 1072 mmgrab(mm); 1073 } 1074 task_unlock(p); 1075 } 1076 } 1077 1078 task->signal->oom_score_adj = oom_adj; 1079 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1080 task->signal->oom_score_adj_min = (short)oom_adj; 1081 trace_oom_score_adj_update(task); 1082 1083 if (mm) { 1084 struct task_struct *p; 1085 1086 rcu_read_lock(); 1087 for_each_process(p) { 1088 if (same_thread_group(task, p)) 1089 continue; 1090 1091 /* do not touch kernel threads or the global init */ 1092 if (p->flags & PF_KTHREAD || is_global_init(p)) 1093 continue; 1094 1095 task_lock(p); 1096 if (!p->vfork_done && process_shares_mm(p, mm)) { 1097 pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n", 1098 task_pid_nr(p), p->comm, 1099 p->signal->oom_score_adj, oom_adj, 1100 task_pid_nr(task), task->comm); 1101 p->signal->oom_score_adj = oom_adj; 1102 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1103 p->signal->oom_score_adj_min = (short)oom_adj; 1104 } 1105 task_unlock(p); 1106 } 1107 rcu_read_unlock(); 1108 mmdrop(mm); 1109 } 1110 err_unlock: 1111 mutex_unlock(&oom_adj_mutex); 1112 put_task_struct(task); 1113 return err; 1114 } 1115 1116 /* 1117 * /proc/pid/oom_adj exists solely for backwards compatibility with previous 1118 * kernels. The effective policy is defined by oom_score_adj, which has a 1119 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly. 1120 * Values written to oom_adj are simply mapped linearly to oom_score_adj. 1121 * Processes that become oom disabled via oom_adj will still be oom disabled 1122 * with this implementation. 1123 * 1124 * oom_adj cannot be removed since existing userspace binaries use it. 1125 */ 1126 static ssize_t oom_adj_write(struct file *file, const char __user *buf, 1127 size_t count, loff_t *ppos) 1128 { 1129 char buffer[PROC_NUMBUF]; 1130 int oom_adj; 1131 int err; 1132 1133 memset(buffer, 0, sizeof(buffer)); 1134 if (count > sizeof(buffer) - 1) 1135 count = sizeof(buffer) - 1; 1136 if (copy_from_user(buffer, buf, count)) { 1137 err = -EFAULT; 1138 goto out; 1139 } 1140 1141 err = kstrtoint(strstrip(buffer), 0, &oom_adj); 1142 if (err) 1143 goto out; 1144 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) && 1145 oom_adj != OOM_DISABLE) { 1146 err = -EINVAL; 1147 goto out; 1148 } 1149 1150 /* 1151 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 1152 * value is always attainable. 1153 */ 1154 if (oom_adj == OOM_ADJUST_MAX) 1155 oom_adj = OOM_SCORE_ADJ_MAX; 1156 else 1157 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE; 1158 1159 err = __set_oom_adj(file, oom_adj, true); 1160 out: 1161 return err < 0 ? err : count; 1162 } 1163 1164 static const struct file_operations proc_oom_adj_operations = { 1165 .read = oom_adj_read, 1166 .write = oom_adj_write, 1167 .llseek = generic_file_llseek, 1168 }; 1169 1170 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 1171 size_t count, loff_t *ppos) 1172 { 1173 struct task_struct *task = get_proc_task(file_inode(file)); 1174 char buffer[PROC_NUMBUF]; 1175 short oom_score_adj = OOM_SCORE_ADJ_MIN; 1176 size_t len; 1177 1178 if (!task) 1179 return -ESRCH; 1180 oom_score_adj = task->signal->oom_score_adj; 1181 put_task_struct(task); 1182 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj); 1183 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1184 } 1185 1186 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 1187 size_t count, loff_t *ppos) 1188 { 1189 char buffer[PROC_NUMBUF]; 1190 int oom_score_adj; 1191 int err; 1192 1193 memset(buffer, 0, sizeof(buffer)); 1194 if (count > sizeof(buffer) - 1) 1195 count = sizeof(buffer) - 1; 1196 if (copy_from_user(buffer, buf, count)) { 1197 err = -EFAULT; 1198 goto out; 1199 } 1200 1201 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1202 if (err) 1203 goto out; 1204 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1205 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1206 err = -EINVAL; 1207 goto out; 1208 } 1209 1210 err = __set_oom_adj(file, oom_score_adj, false); 1211 out: 1212 return err < 0 ? err : count; 1213 } 1214 1215 static const struct file_operations proc_oom_score_adj_operations = { 1216 .read = oom_score_adj_read, 1217 .write = oom_score_adj_write, 1218 .llseek = default_llseek, 1219 }; 1220 1221 #ifdef CONFIG_AUDITSYSCALL 1222 #define TMPBUFLEN 11 1223 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1224 size_t count, loff_t *ppos) 1225 { 1226 struct inode * inode = file_inode(file); 1227 struct task_struct *task = get_proc_task(inode); 1228 ssize_t length; 1229 char tmpbuf[TMPBUFLEN]; 1230 1231 if (!task) 1232 return -ESRCH; 1233 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1234 from_kuid(file->f_cred->user_ns, 1235 audit_get_loginuid(task))); 1236 put_task_struct(task); 1237 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1238 } 1239 1240 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1241 size_t count, loff_t *ppos) 1242 { 1243 struct inode * inode = file_inode(file); 1244 uid_t loginuid; 1245 kuid_t kloginuid; 1246 int rv; 1247 1248 rcu_read_lock(); 1249 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1250 rcu_read_unlock(); 1251 return -EPERM; 1252 } 1253 rcu_read_unlock(); 1254 1255 if (*ppos != 0) { 1256 /* No partial writes. */ 1257 return -EINVAL; 1258 } 1259 1260 rv = kstrtou32_from_user(buf, count, 10, &loginuid); 1261 if (rv < 0) 1262 return rv; 1263 1264 /* is userspace tring to explicitly UNSET the loginuid? */ 1265 if (loginuid == AUDIT_UID_UNSET) { 1266 kloginuid = INVALID_UID; 1267 } else { 1268 kloginuid = make_kuid(file->f_cred->user_ns, loginuid); 1269 if (!uid_valid(kloginuid)) 1270 return -EINVAL; 1271 } 1272 1273 rv = audit_set_loginuid(kloginuid); 1274 if (rv < 0) 1275 return rv; 1276 return count; 1277 } 1278 1279 static const struct file_operations proc_loginuid_operations = { 1280 .read = proc_loginuid_read, 1281 .write = proc_loginuid_write, 1282 .llseek = generic_file_llseek, 1283 }; 1284 1285 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1286 size_t count, loff_t *ppos) 1287 { 1288 struct inode * inode = file_inode(file); 1289 struct task_struct *task = get_proc_task(inode); 1290 ssize_t length; 1291 char tmpbuf[TMPBUFLEN]; 1292 1293 if (!task) 1294 return -ESRCH; 1295 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1296 audit_get_sessionid(task)); 1297 put_task_struct(task); 1298 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1299 } 1300 1301 static const struct file_operations proc_sessionid_operations = { 1302 .read = proc_sessionid_read, 1303 .llseek = generic_file_llseek, 1304 }; 1305 #endif 1306 1307 #ifdef CONFIG_FAULT_INJECTION 1308 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1309 size_t count, loff_t *ppos) 1310 { 1311 struct task_struct *task = get_proc_task(file_inode(file)); 1312 char buffer[PROC_NUMBUF]; 1313 size_t len; 1314 int make_it_fail; 1315 1316 if (!task) 1317 return -ESRCH; 1318 make_it_fail = task->make_it_fail; 1319 put_task_struct(task); 1320 1321 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1322 1323 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1324 } 1325 1326 static ssize_t proc_fault_inject_write(struct file * file, 1327 const char __user * buf, size_t count, loff_t *ppos) 1328 { 1329 struct task_struct *task; 1330 char buffer[PROC_NUMBUF]; 1331 int make_it_fail; 1332 int rv; 1333 1334 if (!capable(CAP_SYS_RESOURCE)) 1335 return -EPERM; 1336 memset(buffer, 0, sizeof(buffer)); 1337 if (count > sizeof(buffer) - 1) 1338 count = sizeof(buffer) - 1; 1339 if (copy_from_user(buffer, buf, count)) 1340 return -EFAULT; 1341 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail); 1342 if (rv < 0) 1343 return rv; 1344 if (make_it_fail < 0 || make_it_fail > 1) 1345 return -EINVAL; 1346 1347 task = get_proc_task(file_inode(file)); 1348 if (!task) 1349 return -ESRCH; 1350 task->make_it_fail = make_it_fail; 1351 put_task_struct(task); 1352 1353 return count; 1354 } 1355 1356 static const struct file_operations proc_fault_inject_operations = { 1357 .read = proc_fault_inject_read, 1358 .write = proc_fault_inject_write, 1359 .llseek = generic_file_llseek, 1360 }; 1361 1362 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf, 1363 size_t count, loff_t *ppos) 1364 { 1365 struct task_struct *task; 1366 int err; 1367 unsigned int n; 1368 1369 err = kstrtouint_from_user(buf, count, 0, &n); 1370 if (err) 1371 return err; 1372 1373 task = get_proc_task(file_inode(file)); 1374 if (!task) 1375 return -ESRCH; 1376 task->fail_nth = n; 1377 put_task_struct(task); 1378 1379 return count; 1380 } 1381 1382 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf, 1383 size_t count, loff_t *ppos) 1384 { 1385 struct task_struct *task; 1386 char numbuf[PROC_NUMBUF]; 1387 ssize_t len; 1388 1389 task = get_proc_task(file_inode(file)); 1390 if (!task) 1391 return -ESRCH; 1392 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth); 1393 len = simple_read_from_buffer(buf, count, ppos, numbuf, len); 1394 put_task_struct(task); 1395 1396 return len; 1397 } 1398 1399 static const struct file_operations proc_fail_nth_operations = { 1400 .read = proc_fail_nth_read, 1401 .write = proc_fail_nth_write, 1402 }; 1403 #endif 1404 1405 1406 #ifdef CONFIG_SCHED_DEBUG 1407 /* 1408 * Print out various scheduling related per-task fields: 1409 */ 1410 static int sched_show(struct seq_file *m, void *v) 1411 { 1412 struct inode *inode = m->private; 1413 struct pid_namespace *ns = inode->i_sb->s_fs_info; 1414 struct task_struct *p; 1415 1416 p = get_proc_task(inode); 1417 if (!p) 1418 return -ESRCH; 1419 proc_sched_show_task(p, ns, m); 1420 1421 put_task_struct(p); 1422 1423 return 0; 1424 } 1425 1426 static ssize_t 1427 sched_write(struct file *file, const char __user *buf, 1428 size_t count, loff_t *offset) 1429 { 1430 struct inode *inode = file_inode(file); 1431 struct task_struct *p; 1432 1433 p = get_proc_task(inode); 1434 if (!p) 1435 return -ESRCH; 1436 proc_sched_set_task(p); 1437 1438 put_task_struct(p); 1439 1440 return count; 1441 } 1442 1443 static int sched_open(struct inode *inode, struct file *filp) 1444 { 1445 return single_open(filp, sched_show, inode); 1446 } 1447 1448 static const struct file_operations proc_pid_sched_operations = { 1449 .open = sched_open, 1450 .read = seq_read, 1451 .write = sched_write, 1452 .llseek = seq_lseek, 1453 .release = single_release, 1454 }; 1455 1456 #endif 1457 1458 #ifdef CONFIG_SCHED_AUTOGROUP 1459 /* 1460 * Print out autogroup related information: 1461 */ 1462 static int sched_autogroup_show(struct seq_file *m, void *v) 1463 { 1464 struct inode *inode = m->private; 1465 struct task_struct *p; 1466 1467 p = get_proc_task(inode); 1468 if (!p) 1469 return -ESRCH; 1470 proc_sched_autogroup_show_task(p, m); 1471 1472 put_task_struct(p); 1473 1474 return 0; 1475 } 1476 1477 static ssize_t 1478 sched_autogroup_write(struct file *file, const char __user *buf, 1479 size_t count, loff_t *offset) 1480 { 1481 struct inode *inode = file_inode(file); 1482 struct task_struct *p; 1483 char buffer[PROC_NUMBUF]; 1484 int nice; 1485 int err; 1486 1487 memset(buffer, 0, sizeof(buffer)); 1488 if (count > sizeof(buffer) - 1) 1489 count = sizeof(buffer) - 1; 1490 if (copy_from_user(buffer, buf, count)) 1491 return -EFAULT; 1492 1493 err = kstrtoint(strstrip(buffer), 0, &nice); 1494 if (err < 0) 1495 return err; 1496 1497 p = get_proc_task(inode); 1498 if (!p) 1499 return -ESRCH; 1500 1501 err = proc_sched_autogroup_set_nice(p, nice); 1502 if (err) 1503 count = err; 1504 1505 put_task_struct(p); 1506 1507 return count; 1508 } 1509 1510 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1511 { 1512 int ret; 1513 1514 ret = single_open(filp, sched_autogroup_show, NULL); 1515 if (!ret) { 1516 struct seq_file *m = filp->private_data; 1517 1518 m->private = inode; 1519 } 1520 return ret; 1521 } 1522 1523 static const struct file_operations proc_pid_sched_autogroup_operations = { 1524 .open = sched_autogroup_open, 1525 .read = seq_read, 1526 .write = sched_autogroup_write, 1527 .llseek = seq_lseek, 1528 .release = single_release, 1529 }; 1530 1531 #endif /* CONFIG_SCHED_AUTOGROUP */ 1532 1533 static ssize_t comm_write(struct file *file, const char __user *buf, 1534 size_t count, loff_t *offset) 1535 { 1536 struct inode *inode = file_inode(file); 1537 struct task_struct *p; 1538 char buffer[TASK_COMM_LEN]; 1539 const size_t maxlen = sizeof(buffer) - 1; 1540 1541 memset(buffer, 0, sizeof(buffer)); 1542 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count)) 1543 return -EFAULT; 1544 1545 p = get_proc_task(inode); 1546 if (!p) 1547 return -ESRCH; 1548 1549 if (same_thread_group(current, p)) 1550 set_task_comm(p, buffer); 1551 else 1552 count = -EINVAL; 1553 1554 put_task_struct(p); 1555 1556 return count; 1557 } 1558 1559 static int comm_show(struct seq_file *m, void *v) 1560 { 1561 struct inode *inode = m->private; 1562 struct task_struct *p; 1563 1564 p = get_proc_task(inode); 1565 if (!p) 1566 return -ESRCH; 1567 1568 task_lock(p); 1569 seq_printf(m, "%s\n", p->comm); 1570 task_unlock(p); 1571 1572 put_task_struct(p); 1573 1574 return 0; 1575 } 1576 1577 static int comm_open(struct inode *inode, struct file *filp) 1578 { 1579 return single_open(filp, comm_show, inode); 1580 } 1581 1582 static const struct file_operations proc_pid_set_comm_operations = { 1583 .open = comm_open, 1584 .read = seq_read, 1585 .write = comm_write, 1586 .llseek = seq_lseek, 1587 .release = single_release, 1588 }; 1589 1590 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1591 { 1592 struct task_struct *task; 1593 struct file *exe_file; 1594 1595 task = get_proc_task(d_inode(dentry)); 1596 if (!task) 1597 return -ENOENT; 1598 exe_file = get_task_exe_file(task); 1599 put_task_struct(task); 1600 if (exe_file) { 1601 *exe_path = exe_file->f_path; 1602 path_get(&exe_file->f_path); 1603 fput(exe_file); 1604 return 0; 1605 } else 1606 return -ENOENT; 1607 } 1608 1609 static const char *proc_pid_get_link(struct dentry *dentry, 1610 struct inode *inode, 1611 struct delayed_call *done) 1612 { 1613 struct path path; 1614 int error = -EACCES; 1615 1616 if (!dentry) 1617 return ERR_PTR(-ECHILD); 1618 1619 /* Are we allowed to snoop on the tasks file descriptors? */ 1620 if (!proc_fd_access_allowed(inode)) 1621 goto out; 1622 1623 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1624 if (error) 1625 goto out; 1626 1627 nd_jump_link(&path); 1628 return NULL; 1629 out: 1630 return ERR_PTR(error); 1631 } 1632 1633 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1634 { 1635 char *tmp = (char *)__get_free_page(GFP_KERNEL); 1636 char *pathname; 1637 int len; 1638 1639 if (!tmp) 1640 return -ENOMEM; 1641 1642 pathname = d_path(path, tmp, PAGE_SIZE); 1643 len = PTR_ERR(pathname); 1644 if (IS_ERR(pathname)) 1645 goto out; 1646 len = tmp + PAGE_SIZE - 1 - pathname; 1647 1648 if (len > buflen) 1649 len = buflen; 1650 if (copy_to_user(buffer, pathname, len)) 1651 len = -EFAULT; 1652 out: 1653 free_page((unsigned long)tmp); 1654 return len; 1655 } 1656 1657 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1658 { 1659 int error = -EACCES; 1660 struct inode *inode = d_inode(dentry); 1661 struct path path; 1662 1663 /* Are we allowed to snoop on the tasks file descriptors? */ 1664 if (!proc_fd_access_allowed(inode)) 1665 goto out; 1666 1667 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1668 if (error) 1669 goto out; 1670 1671 error = do_proc_readlink(&path, buffer, buflen); 1672 path_put(&path); 1673 out: 1674 return error; 1675 } 1676 1677 const struct inode_operations proc_pid_link_inode_operations = { 1678 .readlink = proc_pid_readlink, 1679 .get_link = proc_pid_get_link, 1680 .setattr = proc_setattr, 1681 }; 1682 1683 1684 /* building an inode */ 1685 1686 void task_dump_owner(struct task_struct *task, umode_t mode, 1687 kuid_t *ruid, kgid_t *rgid) 1688 { 1689 /* Depending on the state of dumpable compute who should own a 1690 * proc file for a task. 1691 */ 1692 const struct cred *cred; 1693 kuid_t uid; 1694 kgid_t gid; 1695 1696 if (unlikely(task->flags & PF_KTHREAD)) { 1697 *ruid = GLOBAL_ROOT_UID; 1698 *rgid = GLOBAL_ROOT_GID; 1699 return; 1700 } 1701 1702 /* Default to the tasks effective ownership */ 1703 rcu_read_lock(); 1704 cred = __task_cred(task); 1705 uid = cred->euid; 1706 gid = cred->egid; 1707 rcu_read_unlock(); 1708 1709 /* 1710 * Before the /proc/pid/status file was created the only way to read 1711 * the effective uid of a /process was to stat /proc/pid. Reading 1712 * /proc/pid/status is slow enough that procps and other packages 1713 * kept stating /proc/pid. To keep the rules in /proc simple I have 1714 * made this apply to all per process world readable and executable 1715 * directories. 1716 */ 1717 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) { 1718 struct mm_struct *mm; 1719 task_lock(task); 1720 mm = task->mm; 1721 /* Make non-dumpable tasks owned by some root */ 1722 if (mm) { 1723 if (get_dumpable(mm) != SUID_DUMP_USER) { 1724 struct user_namespace *user_ns = mm->user_ns; 1725 1726 uid = make_kuid(user_ns, 0); 1727 if (!uid_valid(uid)) 1728 uid = GLOBAL_ROOT_UID; 1729 1730 gid = make_kgid(user_ns, 0); 1731 if (!gid_valid(gid)) 1732 gid = GLOBAL_ROOT_GID; 1733 } 1734 } else { 1735 uid = GLOBAL_ROOT_UID; 1736 gid = GLOBAL_ROOT_GID; 1737 } 1738 task_unlock(task); 1739 } 1740 *ruid = uid; 1741 *rgid = gid; 1742 } 1743 1744 struct inode *proc_pid_make_inode(struct super_block * sb, 1745 struct task_struct *task, umode_t mode) 1746 { 1747 struct inode * inode; 1748 struct proc_inode *ei; 1749 1750 /* We need a new inode */ 1751 1752 inode = new_inode(sb); 1753 if (!inode) 1754 goto out; 1755 1756 /* Common stuff */ 1757 ei = PROC_I(inode); 1758 inode->i_mode = mode; 1759 inode->i_ino = get_next_ino(); 1760 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1761 inode->i_op = &proc_def_inode_operations; 1762 1763 /* 1764 * grab the reference to task. 1765 */ 1766 ei->pid = get_task_pid(task, PIDTYPE_PID); 1767 if (!ei->pid) 1768 goto out_unlock; 1769 1770 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1771 security_task_to_inode(task, inode); 1772 1773 out: 1774 return inode; 1775 1776 out_unlock: 1777 iput(inode); 1778 return NULL; 1779 } 1780 1781 int pid_getattr(const struct path *path, struct kstat *stat, 1782 u32 request_mask, unsigned int query_flags) 1783 { 1784 struct inode *inode = d_inode(path->dentry); 1785 struct task_struct *task; 1786 struct pid_namespace *pid = path->dentry->d_sb->s_fs_info; 1787 1788 generic_fillattr(inode, stat); 1789 1790 rcu_read_lock(); 1791 stat->uid = GLOBAL_ROOT_UID; 1792 stat->gid = GLOBAL_ROOT_GID; 1793 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1794 if (task) { 1795 if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) { 1796 rcu_read_unlock(); 1797 /* 1798 * This doesn't prevent learning whether PID exists, 1799 * it only makes getattr() consistent with readdir(). 1800 */ 1801 return -ENOENT; 1802 } 1803 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid); 1804 } 1805 rcu_read_unlock(); 1806 return 0; 1807 } 1808 1809 /* dentry stuff */ 1810 1811 /* 1812 * Exceptional case: normally we are not allowed to unhash a busy 1813 * directory. In this case, however, we can do it - no aliasing problems 1814 * due to the way we treat inodes. 1815 * 1816 * Rewrite the inode's ownerships here because the owning task may have 1817 * performed a setuid(), etc. 1818 * 1819 */ 1820 int pid_revalidate(struct dentry *dentry, unsigned int flags) 1821 { 1822 struct inode *inode; 1823 struct task_struct *task; 1824 1825 if (flags & LOOKUP_RCU) 1826 return -ECHILD; 1827 1828 inode = d_inode(dentry); 1829 task = get_proc_task(inode); 1830 1831 if (task) { 1832 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid); 1833 1834 inode->i_mode &= ~(S_ISUID | S_ISGID); 1835 security_task_to_inode(task, inode); 1836 put_task_struct(task); 1837 return 1; 1838 } 1839 return 0; 1840 } 1841 1842 static inline bool proc_inode_is_dead(struct inode *inode) 1843 { 1844 return !proc_pid(inode)->tasks[PIDTYPE_PID].first; 1845 } 1846 1847 int pid_delete_dentry(const struct dentry *dentry) 1848 { 1849 /* Is the task we represent dead? 1850 * If so, then don't put the dentry on the lru list, 1851 * kill it immediately. 1852 */ 1853 return proc_inode_is_dead(d_inode(dentry)); 1854 } 1855 1856 const struct dentry_operations pid_dentry_operations = 1857 { 1858 .d_revalidate = pid_revalidate, 1859 .d_delete = pid_delete_dentry, 1860 }; 1861 1862 /* Lookups */ 1863 1864 /* 1865 * Fill a directory entry. 1866 * 1867 * If possible create the dcache entry and derive our inode number and 1868 * file type from dcache entry. 1869 * 1870 * Since all of the proc inode numbers are dynamically generated, the inode 1871 * numbers do not exist until the inode is cache. This means creating the 1872 * the dcache entry in readdir is necessary to keep the inode numbers 1873 * reported by readdir in sync with the inode numbers reported 1874 * by stat. 1875 */ 1876 bool proc_fill_cache(struct file *file, struct dir_context *ctx, 1877 const char *name, int len, 1878 instantiate_t instantiate, struct task_struct *task, const void *ptr) 1879 { 1880 struct dentry *child, *dir = file->f_path.dentry; 1881 struct qstr qname = QSTR_INIT(name, len); 1882 struct inode *inode; 1883 unsigned type; 1884 ino_t ino; 1885 1886 child = d_hash_and_lookup(dir, &qname); 1887 if (!child) { 1888 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1889 child = d_alloc_parallel(dir, &qname, &wq); 1890 if (IS_ERR(child)) 1891 goto end_instantiate; 1892 if (d_in_lookup(child)) { 1893 int err = instantiate(d_inode(dir), child, task, ptr); 1894 d_lookup_done(child); 1895 if (err < 0) { 1896 dput(child); 1897 goto end_instantiate; 1898 } 1899 } 1900 } 1901 inode = d_inode(child); 1902 ino = inode->i_ino; 1903 type = inode->i_mode >> 12; 1904 dput(child); 1905 return dir_emit(ctx, name, len, ino, type); 1906 1907 end_instantiate: 1908 return dir_emit(ctx, name, len, 1, DT_UNKNOWN); 1909 } 1910 1911 /* 1912 * dname_to_vma_addr - maps a dentry name into two unsigned longs 1913 * which represent vma start and end addresses. 1914 */ 1915 static int dname_to_vma_addr(struct dentry *dentry, 1916 unsigned long *start, unsigned long *end) 1917 { 1918 const char *str = dentry->d_name.name; 1919 unsigned long long sval, eval; 1920 unsigned int len; 1921 1922 if (str[0] == '0' && str[1] != '-') 1923 return -EINVAL; 1924 len = _parse_integer(str, 16, &sval); 1925 if (len & KSTRTOX_OVERFLOW) 1926 return -EINVAL; 1927 if (sval != (unsigned long)sval) 1928 return -EINVAL; 1929 str += len; 1930 1931 if (*str != '-') 1932 return -EINVAL; 1933 str++; 1934 1935 if (str[0] == '0' && str[1]) 1936 return -EINVAL; 1937 len = _parse_integer(str, 16, &eval); 1938 if (len & KSTRTOX_OVERFLOW) 1939 return -EINVAL; 1940 if (eval != (unsigned long)eval) 1941 return -EINVAL; 1942 str += len; 1943 1944 if (*str != '\0') 1945 return -EINVAL; 1946 1947 *start = sval; 1948 *end = eval; 1949 1950 return 0; 1951 } 1952 1953 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags) 1954 { 1955 unsigned long vm_start, vm_end; 1956 bool exact_vma_exists = false; 1957 struct mm_struct *mm = NULL; 1958 struct task_struct *task; 1959 struct inode *inode; 1960 int status = 0; 1961 1962 if (flags & LOOKUP_RCU) 1963 return -ECHILD; 1964 1965 inode = d_inode(dentry); 1966 task = get_proc_task(inode); 1967 if (!task) 1968 goto out_notask; 1969 1970 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 1971 if (IS_ERR_OR_NULL(mm)) 1972 goto out; 1973 1974 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 1975 down_read(&mm->mmap_sem); 1976 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end); 1977 up_read(&mm->mmap_sem); 1978 } 1979 1980 mmput(mm); 1981 1982 if (exact_vma_exists) { 1983 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1984 1985 security_task_to_inode(task, inode); 1986 status = 1; 1987 } 1988 1989 out: 1990 put_task_struct(task); 1991 1992 out_notask: 1993 return status; 1994 } 1995 1996 static const struct dentry_operations tid_map_files_dentry_operations = { 1997 .d_revalidate = map_files_d_revalidate, 1998 .d_delete = pid_delete_dentry, 1999 }; 2000 2001 static int map_files_get_link(struct dentry *dentry, struct path *path) 2002 { 2003 unsigned long vm_start, vm_end; 2004 struct vm_area_struct *vma; 2005 struct task_struct *task; 2006 struct mm_struct *mm; 2007 int rc; 2008 2009 rc = -ENOENT; 2010 task = get_proc_task(d_inode(dentry)); 2011 if (!task) 2012 goto out; 2013 2014 mm = get_task_mm(task); 2015 put_task_struct(task); 2016 if (!mm) 2017 goto out; 2018 2019 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 2020 if (rc) 2021 goto out_mmput; 2022 2023 rc = -ENOENT; 2024 down_read(&mm->mmap_sem); 2025 vma = find_exact_vma(mm, vm_start, vm_end); 2026 if (vma && vma->vm_file) { 2027 *path = vma->vm_file->f_path; 2028 path_get(path); 2029 rc = 0; 2030 } 2031 up_read(&mm->mmap_sem); 2032 2033 out_mmput: 2034 mmput(mm); 2035 out: 2036 return rc; 2037 } 2038 2039 struct map_files_info { 2040 unsigned long start; 2041 unsigned long end; 2042 fmode_t mode; 2043 }; 2044 2045 /* 2046 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the 2047 * symlinks may be used to bypass permissions on ancestor directories in the 2048 * path to the file in question. 2049 */ 2050 static const char * 2051 proc_map_files_get_link(struct dentry *dentry, 2052 struct inode *inode, 2053 struct delayed_call *done) 2054 { 2055 if (!capable(CAP_SYS_ADMIN)) 2056 return ERR_PTR(-EPERM); 2057 2058 return proc_pid_get_link(dentry, inode, done); 2059 } 2060 2061 /* 2062 * Identical to proc_pid_link_inode_operations except for get_link() 2063 */ 2064 static const struct inode_operations proc_map_files_link_inode_operations = { 2065 .readlink = proc_pid_readlink, 2066 .get_link = proc_map_files_get_link, 2067 .setattr = proc_setattr, 2068 }; 2069 2070 static int 2071 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry, 2072 struct task_struct *task, const void *ptr) 2073 { 2074 fmode_t mode = (fmode_t)(unsigned long)ptr; 2075 struct proc_inode *ei; 2076 struct inode *inode; 2077 2078 inode = proc_pid_make_inode(dir->i_sb, task, S_IFLNK | 2079 ((mode & FMODE_READ ) ? S_IRUSR : 0) | 2080 ((mode & FMODE_WRITE) ? S_IWUSR : 0)); 2081 if (!inode) 2082 return -ENOENT; 2083 2084 ei = PROC_I(inode); 2085 ei->op.proc_get_link = map_files_get_link; 2086 2087 inode->i_op = &proc_map_files_link_inode_operations; 2088 inode->i_size = 64; 2089 2090 d_set_d_op(dentry, &tid_map_files_dentry_operations); 2091 d_add(dentry, inode); 2092 2093 return 0; 2094 } 2095 2096 static struct dentry *proc_map_files_lookup(struct inode *dir, 2097 struct dentry *dentry, unsigned int flags) 2098 { 2099 unsigned long vm_start, vm_end; 2100 struct vm_area_struct *vma; 2101 struct task_struct *task; 2102 int result; 2103 struct mm_struct *mm; 2104 2105 result = -ENOENT; 2106 task = get_proc_task(dir); 2107 if (!task) 2108 goto out; 2109 2110 result = -EACCES; 2111 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2112 goto out_put_task; 2113 2114 result = -ENOENT; 2115 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2116 goto out_put_task; 2117 2118 mm = get_task_mm(task); 2119 if (!mm) 2120 goto out_put_task; 2121 2122 down_read(&mm->mmap_sem); 2123 vma = find_exact_vma(mm, vm_start, vm_end); 2124 if (!vma) 2125 goto out_no_vma; 2126 2127 if (vma->vm_file) 2128 result = proc_map_files_instantiate(dir, dentry, task, 2129 (void *)(unsigned long)vma->vm_file->f_mode); 2130 2131 out_no_vma: 2132 up_read(&mm->mmap_sem); 2133 mmput(mm); 2134 out_put_task: 2135 put_task_struct(task); 2136 out: 2137 return ERR_PTR(result); 2138 } 2139 2140 static const struct inode_operations proc_map_files_inode_operations = { 2141 .lookup = proc_map_files_lookup, 2142 .permission = proc_fd_permission, 2143 .setattr = proc_setattr, 2144 }; 2145 2146 static int 2147 proc_map_files_readdir(struct file *file, struct dir_context *ctx) 2148 { 2149 struct vm_area_struct *vma; 2150 struct task_struct *task; 2151 struct mm_struct *mm; 2152 unsigned long nr_files, pos, i; 2153 struct flex_array *fa = NULL; 2154 struct map_files_info info; 2155 struct map_files_info *p; 2156 int ret; 2157 2158 ret = -ENOENT; 2159 task = get_proc_task(file_inode(file)); 2160 if (!task) 2161 goto out; 2162 2163 ret = -EACCES; 2164 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2165 goto out_put_task; 2166 2167 ret = 0; 2168 if (!dir_emit_dots(file, ctx)) 2169 goto out_put_task; 2170 2171 mm = get_task_mm(task); 2172 if (!mm) 2173 goto out_put_task; 2174 down_read(&mm->mmap_sem); 2175 2176 nr_files = 0; 2177 2178 /* 2179 * We need two passes here: 2180 * 2181 * 1) Collect vmas of mapped files with mmap_sem taken 2182 * 2) Release mmap_sem and instantiate entries 2183 * 2184 * otherwise we get lockdep complained, since filldir() 2185 * routine might require mmap_sem taken in might_fault(). 2186 */ 2187 2188 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) { 2189 if (vma->vm_file && ++pos > ctx->pos) 2190 nr_files++; 2191 } 2192 2193 if (nr_files) { 2194 fa = flex_array_alloc(sizeof(info), nr_files, 2195 GFP_KERNEL); 2196 if (!fa || flex_array_prealloc(fa, 0, nr_files, 2197 GFP_KERNEL)) { 2198 ret = -ENOMEM; 2199 if (fa) 2200 flex_array_free(fa); 2201 up_read(&mm->mmap_sem); 2202 mmput(mm); 2203 goto out_put_task; 2204 } 2205 for (i = 0, vma = mm->mmap, pos = 2; vma; 2206 vma = vma->vm_next) { 2207 if (!vma->vm_file) 2208 continue; 2209 if (++pos <= ctx->pos) 2210 continue; 2211 2212 info.start = vma->vm_start; 2213 info.end = vma->vm_end; 2214 info.mode = vma->vm_file->f_mode; 2215 if (flex_array_put(fa, i++, &info, GFP_KERNEL)) 2216 BUG(); 2217 } 2218 } 2219 up_read(&mm->mmap_sem); 2220 mmput(mm); 2221 2222 for (i = 0; i < nr_files; i++) { 2223 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */ 2224 unsigned int len; 2225 2226 p = flex_array_get(fa, i); 2227 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end); 2228 if (!proc_fill_cache(file, ctx, 2229 buf, len, 2230 proc_map_files_instantiate, 2231 task, 2232 (void *)(unsigned long)p->mode)) 2233 break; 2234 ctx->pos++; 2235 } 2236 if (fa) 2237 flex_array_free(fa); 2238 2239 out_put_task: 2240 put_task_struct(task); 2241 out: 2242 return ret; 2243 } 2244 2245 static const struct file_operations proc_map_files_operations = { 2246 .read = generic_read_dir, 2247 .iterate_shared = proc_map_files_readdir, 2248 .llseek = generic_file_llseek, 2249 }; 2250 2251 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 2252 struct timers_private { 2253 struct pid *pid; 2254 struct task_struct *task; 2255 struct sighand_struct *sighand; 2256 struct pid_namespace *ns; 2257 unsigned long flags; 2258 }; 2259 2260 static void *timers_start(struct seq_file *m, loff_t *pos) 2261 { 2262 struct timers_private *tp = m->private; 2263 2264 tp->task = get_pid_task(tp->pid, PIDTYPE_PID); 2265 if (!tp->task) 2266 return ERR_PTR(-ESRCH); 2267 2268 tp->sighand = lock_task_sighand(tp->task, &tp->flags); 2269 if (!tp->sighand) 2270 return ERR_PTR(-ESRCH); 2271 2272 return seq_list_start(&tp->task->signal->posix_timers, *pos); 2273 } 2274 2275 static void *timers_next(struct seq_file *m, void *v, loff_t *pos) 2276 { 2277 struct timers_private *tp = m->private; 2278 return seq_list_next(v, &tp->task->signal->posix_timers, pos); 2279 } 2280 2281 static void timers_stop(struct seq_file *m, void *v) 2282 { 2283 struct timers_private *tp = m->private; 2284 2285 if (tp->sighand) { 2286 unlock_task_sighand(tp->task, &tp->flags); 2287 tp->sighand = NULL; 2288 } 2289 2290 if (tp->task) { 2291 put_task_struct(tp->task); 2292 tp->task = NULL; 2293 } 2294 } 2295 2296 static int show_timer(struct seq_file *m, void *v) 2297 { 2298 struct k_itimer *timer; 2299 struct timers_private *tp = m->private; 2300 int notify; 2301 static const char * const nstr[] = { 2302 [SIGEV_SIGNAL] = "signal", 2303 [SIGEV_NONE] = "none", 2304 [SIGEV_THREAD] = "thread", 2305 }; 2306 2307 timer = list_entry((struct list_head *)v, struct k_itimer, list); 2308 notify = timer->it_sigev_notify; 2309 2310 seq_printf(m, "ID: %d\n", timer->it_id); 2311 seq_printf(m, "signal: %d/%px\n", 2312 timer->sigq->info.si_signo, 2313 timer->sigq->info.si_value.sival_ptr); 2314 seq_printf(m, "notify: %s/%s.%d\n", 2315 nstr[notify & ~SIGEV_THREAD_ID], 2316 (notify & SIGEV_THREAD_ID) ? "tid" : "pid", 2317 pid_nr_ns(timer->it_pid, tp->ns)); 2318 seq_printf(m, "ClockID: %d\n", timer->it_clock); 2319 2320 return 0; 2321 } 2322 2323 static const struct seq_operations proc_timers_seq_ops = { 2324 .start = timers_start, 2325 .next = timers_next, 2326 .stop = timers_stop, 2327 .show = show_timer, 2328 }; 2329 2330 static int proc_timers_open(struct inode *inode, struct file *file) 2331 { 2332 struct timers_private *tp; 2333 2334 tp = __seq_open_private(file, &proc_timers_seq_ops, 2335 sizeof(struct timers_private)); 2336 if (!tp) 2337 return -ENOMEM; 2338 2339 tp->pid = proc_pid(inode); 2340 tp->ns = inode->i_sb->s_fs_info; 2341 return 0; 2342 } 2343 2344 static const struct file_operations proc_timers_operations = { 2345 .open = proc_timers_open, 2346 .read = seq_read, 2347 .llseek = seq_lseek, 2348 .release = seq_release_private, 2349 }; 2350 #endif 2351 2352 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf, 2353 size_t count, loff_t *offset) 2354 { 2355 struct inode *inode = file_inode(file); 2356 struct task_struct *p; 2357 u64 slack_ns; 2358 int err; 2359 2360 err = kstrtoull_from_user(buf, count, 10, &slack_ns); 2361 if (err < 0) 2362 return err; 2363 2364 p = get_proc_task(inode); 2365 if (!p) 2366 return -ESRCH; 2367 2368 if (p != current) { 2369 if (!capable(CAP_SYS_NICE)) { 2370 count = -EPERM; 2371 goto out; 2372 } 2373 2374 err = security_task_setscheduler(p); 2375 if (err) { 2376 count = err; 2377 goto out; 2378 } 2379 } 2380 2381 task_lock(p); 2382 if (slack_ns == 0) 2383 p->timer_slack_ns = p->default_timer_slack_ns; 2384 else 2385 p->timer_slack_ns = slack_ns; 2386 task_unlock(p); 2387 2388 out: 2389 put_task_struct(p); 2390 2391 return count; 2392 } 2393 2394 static int timerslack_ns_show(struct seq_file *m, void *v) 2395 { 2396 struct inode *inode = m->private; 2397 struct task_struct *p; 2398 int err = 0; 2399 2400 p = get_proc_task(inode); 2401 if (!p) 2402 return -ESRCH; 2403 2404 if (p != current) { 2405 2406 if (!capable(CAP_SYS_NICE)) { 2407 err = -EPERM; 2408 goto out; 2409 } 2410 err = security_task_getscheduler(p); 2411 if (err) 2412 goto out; 2413 } 2414 2415 task_lock(p); 2416 seq_printf(m, "%llu\n", p->timer_slack_ns); 2417 task_unlock(p); 2418 2419 out: 2420 put_task_struct(p); 2421 2422 return err; 2423 } 2424 2425 static int timerslack_ns_open(struct inode *inode, struct file *filp) 2426 { 2427 return single_open(filp, timerslack_ns_show, inode); 2428 } 2429 2430 static const struct file_operations proc_pid_set_timerslack_ns_operations = { 2431 .open = timerslack_ns_open, 2432 .read = seq_read, 2433 .write = timerslack_ns_write, 2434 .llseek = seq_lseek, 2435 .release = single_release, 2436 }; 2437 2438 static int proc_pident_instantiate(struct inode *dir, 2439 struct dentry *dentry, struct task_struct *task, const void *ptr) 2440 { 2441 const struct pid_entry *p = ptr; 2442 struct inode *inode; 2443 struct proc_inode *ei; 2444 2445 inode = proc_pid_make_inode(dir->i_sb, task, p->mode); 2446 if (!inode) 2447 goto out; 2448 2449 ei = PROC_I(inode); 2450 if (S_ISDIR(inode->i_mode)) 2451 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2452 if (p->iop) 2453 inode->i_op = p->iop; 2454 if (p->fop) 2455 inode->i_fop = p->fop; 2456 ei->op = p->op; 2457 d_set_d_op(dentry, &pid_dentry_operations); 2458 d_add(dentry, inode); 2459 /* Close the race of the process dying before we return the dentry */ 2460 if (pid_revalidate(dentry, 0)) 2461 return 0; 2462 out: 2463 return -ENOENT; 2464 } 2465 2466 static struct dentry *proc_pident_lookup(struct inode *dir, 2467 struct dentry *dentry, 2468 const struct pid_entry *ents, 2469 unsigned int nents) 2470 { 2471 int error; 2472 struct task_struct *task = get_proc_task(dir); 2473 const struct pid_entry *p, *last; 2474 2475 error = -ENOENT; 2476 2477 if (!task) 2478 goto out_no_task; 2479 2480 /* 2481 * Yes, it does not scale. And it should not. Don't add 2482 * new entries into /proc/<tgid>/ without very good reasons. 2483 */ 2484 last = &ents[nents]; 2485 for (p = ents; p < last; p++) { 2486 if (p->len != dentry->d_name.len) 2487 continue; 2488 if (!memcmp(dentry->d_name.name, p->name, p->len)) 2489 break; 2490 } 2491 if (p >= last) 2492 goto out; 2493 2494 error = proc_pident_instantiate(dir, dentry, task, p); 2495 out: 2496 put_task_struct(task); 2497 out_no_task: 2498 return ERR_PTR(error); 2499 } 2500 2501 static int proc_pident_readdir(struct file *file, struct dir_context *ctx, 2502 const struct pid_entry *ents, unsigned int nents) 2503 { 2504 struct task_struct *task = get_proc_task(file_inode(file)); 2505 const struct pid_entry *p; 2506 2507 if (!task) 2508 return -ENOENT; 2509 2510 if (!dir_emit_dots(file, ctx)) 2511 goto out; 2512 2513 if (ctx->pos >= nents + 2) 2514 goto out; 2515 2516 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) { 2517 if (!proc_fill_cache(file, ctx, p->name, p->len, 2518 proc_pident_instantiate, task, p)) 2519 break; 2520 ctx->pos++; 2521 } 2522 out: 2523 put_task_struct(task); 2524 return 0; 2525 } 2526 2527 #ifdef CONFIG_SECURITY 2528 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2529 size_t count, loff_t *ppos) 2530 { 2531 struct inode * inode = file_inode(file); 2532 char *p = NULL; 2533 ssize_t length; 2534 struct task_struct *task = get_proc_task(inode); 2535 2536 if (!task) 2537 return -ESRCH; 2538 2539 length = security_getprocattr(task, 2540 (char*)file->f_path.dentry->d_name.name, 2541 &p); 2542 put_task_struct(task); 2543 if (length > 0) 2544 length = simple_read_from_buffer(buf, count, ppos, p, length); 2545 kfree(p); 2546 return length; 2547 } 2548 2549 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2550 size_t count, loff_t *ppos) 2551 { 2552 struct inode * inode = file_inode(file); 2553 void *page; 2554 ssize_t length; 2555 struct task_struct *task = get_proc_task(inode); 2556 2557 length = -ESRCH; 2558 if (!task) 2559 goto out_no_task; 2560 2561 /* A task may only write its own attributes. */ 2562 length = -EACCES; 2563 if (current != task) 2564 goto out; 2565 2566 if (count > PAGE_SIZE) 2567 count = PAGE_SIZE; 2568 2569 /* No partial writes. */ 2570 length = -EINVAL; 2571 if (*ppos != 0) 2572 goto out; 2573 2574 page = memdup_user(buf, count); 2575 if (IS_ERR(page)) { 2576 length = PTR_ERR(page); 2577 goto out; 2578 } 2579 2580 /* Guard against adverse ptrace interaction */ 2581 length = mutex_lock_interruptible(¤t->signal->cred_guard_mutex); 2582 if (length < 0) 2583 goto out_free; 2584 2585 length = security_setprocattr(file->f_path.dentry->d_name.name, 2586 page, count); 2587 mutex_unlock(¤t->signal->cred_guard_mutex); 2588 out_free: 2589 kfree(page); 2590 out: 2591 put_task_struct(task); 2592 out_no_task: 2593 return length; 2594 } 2595 2596 static const struct file_operations proc_pid_attr_operations = { 2597 .read = proc_pid_attr_read, 2598 .write = proc_pid_attr_write, 2599 .llseek = generic_file_llseek, 2600 }; 2601 2602 static const struct pid_entry attr_dir_stuff[] = { 2603 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2604 REG("prev", S_IRUGO, proc_pid_attr_operations), 2605 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2606 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2607 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2608 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2609 }; 2610 2611 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx) 2612 { 2613 return proc_pident_readdir(file, ctx, 2614 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2615 } 2616 2617 static const struct file_operations proc_attr_dir_operations = { 2618 .read = generic_read_dir, 2619 .iterate_shared = proc_attr_dir_readdir, 2620 .llseek = generic_file_llseek, 2621 }; 2622 2623 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2624 struct dentry *dentry, unsigned int flags) 2625 { 2626 return proc_pident_lookup(dir, dentry, 2627 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2628 } 2629 2630 static const struct inode_operations proc_attr_dir_inode_operations = { 2631 .lookup = proc_attr_dir_lookup, 2632 .getattr = pid_getattr, 2633 .setattr = proc_setattr, 2634 }; 2635 2636 #endif 2637 2638 #ifdef CONFIG_ELF_CORE 2639 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2640 size_t count, loff_t *ppos) 2641 { 2642 struct task_struct *task = get_proc_task(file_inode(file)); 2643 struct mm_struct *mm; 2644 char buffer[PROC_NUMBUF]; 2645 size_t len; 2646 int ret; 2647 2648 if (!task) 2649 return -ESRCH; 2650 2651 ret = 0; 2652 mm = get_task_mm(task); 2653 if (mm) { 2654 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2655 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2656 MMF_DUMP_FILTER_SHIFT)); 2657 mmput(mm); 2658 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2659 } 2660 2661 put_task_struct(task); 2662 2663 return ret; 2664 } 2665 2666 static ssize_t proc_coredump_filter_write(struct file *file, 2667 const char __user *buf, 2668 size_t count, 2669 loff_t *ppos) 2670 { 2671 struct task_struct *task; 2672 struct mm_struct *mm; 2673 unsigned int val; 2674 int ret; 2675 int i; 2676 unsigned long mask; 2677 2678 ret = kstrtouint_from_user(buf, count, 0, &val); 2679 if (ret < 0) 2680 return ret; 2681 2682 ret = -ESRCH; 2683 task = get_proc_task(file_inode(file)); 2684 if (!task) 2685 goto out_no_task; 2686 2687 mm = get_task_mm(task); 2688 if (!mm) 2689 goto out_no_mm; 2690 ret = 0; 2691 2692 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2693 if (val & mask) 2694 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2695 else 2696 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2697 } 2698 2699 mmput(mm); 2700 out_no_mm: 2701 put_task_struct(task); 2702 out_no_task: 2703 if (ret < 0) 2704 return ret; 2705 return count; 2706 } 2707 2708 static const struct file_operations proc_coredump_filter_operations = { 2709 .read = proc_coredump_filter_read, 2710 .write = proc_coredump_filter_write, 2711 .llseek = generic_file_llseek, 2712 }; 2713 #endif 2714 2715 #ifdef CONFIG_TASK_IO_ACCOUNTING 2716 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole) 2717 { 2718 struct task_io_accounting acct = task->ioac; 2719 unsigned long flags; 2720 int result; 2721 2722 result = mutex_lock_killable(&task->signal->cred_guard_mutex); 2723 if (result) 2724 return result; 2725 2726 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) { 2727 result = -EACCES; 2728 goto out_unlock; 2729 } 2730 2731 if (whole && lock_task_sighand(task, &flags)) { 2732 struct task_struct *t = task; 2733 2734 task_io_accounting_add(&acct, &task->signal->ioac); 2735 while_each_thread(task, t) 2736 task_io_accounting_add(&acct, &t->ioac); 2737 2738 unlock_task_sighand(task, &flags); 2739 } 2740 seq_printf(m, 2741 "rchar: %llu\n" 2742 "wchar: %llu\n" 2743 "syscr: %llu\n" 2744 "syscw: %llu\n" 2745 "read_bytes: %llu\n" 2746 "write_bytes: %llu\n" 2747 "cancelled_write_bytes: %llu\n", 2748 (unsigned long long)acct.rchar, 2749 (unsigned long long)acct.wchar, 2750 (unsigned long long)acct.syscr, 2751 (unsigned long long)acct.syscw, 2752 (unsigned long long)acct.read_bytes, 2753 (unsigned long long)acct.write_bytes, 2754 (unsigned long long)acct.cancelled_write_bytes); 2755 result = 0; 2756 2757 out_unlock: 2758 mutex_unlock(&task->signal->cred_guard_mutex); 2759 return result; 2760 } 2761 2762 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2763 struct pid *pid, struct task_struct *task) 2764 { 2765 return do_io_accounting(task, m, 0); 2766 } 2767 2768 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2769 struct pid *pid, struct task_struct *task) 2770 { 2771 return do_io_accounting(task, m, 1); 2772 } 2773 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 2774 2775 #ifdef CONFIG_USER_NS 2776 static int proc_id_map_open(struct inode *inode, struct file *file, 2777 const struct seq_operations *seq_ops) 2778 { 2779 struct user_namespace *ns = NULL; 2780 struct task_struct *task; 2781 struct seq_file *seq; 2782 int ret = -EINVAL; 2783 2784 task = get_proc_task(inode); 2785 if (task) { 2786 rcu_read_lock(); 2787 ns = get_user_ns(task_cred_xxx(task, user_ns)); 2788 rcu_read_unlock(); 2789 put_task_struct(task); 2790 } 2791 if (!ns) 2792 goto err; 2793 2794 ret = seq_open(file, seq_ops); 2795 if (ret) 2796 goto err_put_ns; 2797 2798 seq = file->private_data; 2799 seq->private = ns; 2800 2801 return 0; 2802 err_put_ns: 2803 put_user_ns(ns); 2804 err: 2805 return ret; 2806 } 2807 2808 static int proc_id_map_release(struct inode *inode, struct file *file) 2809 { 2810 struct seq_file *seq = file->private_data; 2811 struct user_namespace *ns = seq->private; 2812 put_user_ns(ns); 2813 return seq_release(inode, file); 2814 } 2815 2816 static int proc_uid_map_open(struct inode *inode, struct file *file) 2817 { 2818 return proc_id_map_open(inode, file, &proc_uid_seq_operations); 2819 } 2820 2821 static int proc_gid_map_open(struct inode *inode, struct file *file) 2822 { 2823 return proc_id_map_open(inode, file, &proc_gid_seq_operations); 2824 } 2825 2826 static int proc_projid_map_open(struct inode *inode, struct file *file) 2827 { 2828 return proc_id_map_open(inode, file, &proc_projid_seq_operations); 2829 } 2830 2831 static const struct file_operations proc_uid_map_operations = { 2832 .open = proc_uid_map_open, 2833 .write = proc_uid_map_write, 2834 .read = seq_read, 2835 .llseek = seq_lseek, 2836 .release = proc_id_map_release, 2837 }; 2838 2839 static const struct file_operations proc_gid_map_operations = { 2840 .open = proc_gid_map_open, 2841 .write = proc_gid_map_write, 2842 .read = seq_read, 2843 .llseek = seq_lseek, 2844 .release = proc_id_map_release, 2845 }; 2846 2847 static const struct file_operations proc_projid_map_operations = { 2848 .open = proc_projid_map_open, 2849 .write = proc_projid_map_write, 2850 .read = seq_read, 2851 .llseek = seq_lseek, 2852 .release = proc_id_map_release, 2853 }; 2854 2855 static int proc_setgroups_open(struct inode *inode, struct file *file) 2856 { 2857 struct user_namespace *ns = NULL; 2858 struct task_struct *task; 2859 int ret; 2860 2861 ret = -ESRCH; 2862 task = get_proc_task(inode); 2863 if (task) { 2864 rcu_read_lock(); 2865 ns = get_user_ns(task_cred_xxx(task, user_ns)); 2866 rcu_read_unlock(); 2867 put_task_struct(task); 2868 } 2869 if (!ns) 2870 goto err; 2871 2872 if (file->f_mode & FMODE_WRITE) { 2873 ret = -EACCES; 2874 if (!ns_capable(ns, CAP_SYS_ADMIN)) 2875 goto err_put_ns; 2876 } 2877 2878 ret = single_open(file, &proc_setgroups_show, ns); 2879 if (ret) 2880 goto err_put_ns; 2881 2882 return 0; 2883 err_put_ns: 2884 put_user_ns(ns); 2885 err: 2886 return ret; 2887 } 2888 2889 static int proc_setgroups_release(struct inode *inode, struct file *file) 2890 { 2891 struct seq_file *seq = file->private_data; 2892 struct user_namespace *ns = seq->private; 2893 int ret = single_release(inode, file); 2894 put_user_ns(ns); 2895 return ret; 2896 } 2897 2898 static const struct file_operations proc_setgroups_operations = { 2899 .open = proc_setgroups_open, 2900 .write = proc_setgroups_write, 2901 .read = seq_read, 2902 .llseek = seq_lseek, 2903 .release = proc_setgroups_release, 2904 }; 2905 #endif /* CONFIG_USER_NS */ 2906 2907 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 2908 struct pid *pid, struct task_struct *task) 2909 { 2910 int err = lock_trace(task); 2911 if (!err) { 2912 seq_printf(m, "%08x\n", task->personality); 2913 unlock_trace(task); 2914 } 2915 return err; 2916 } 2917 2918 #ifdef CONFIG_LIVEPATCH 2919 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns, 2920 struct pid *pid, struct task_struct *task) 2921 { 2922 seq_printf(m, "%d\n", task->patch_state); 2923 return 0; 2924 } 2925 #endif /* CONFIG_LIVEPATCH */ 2926 2927 /* 2928 * Thread groups 2929 */ 2930 static const struct file_operations proc_task_operations; 2931 static const struct inode_operations proc_task_inode_operations; 2932 2933 static const struct pid_entry tgid_base_stuff[] = { 2934 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 2935 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 2936 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 2937 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 2938 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 2939 #ifdef CONFIG_NET 2940 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 2941 #endif 2942 REG("environ", S_IRUSR, proc_environ_operations), 2943 REG("auxv", S_IRUSR, proc_auxv_operations), 2944 ONE("status", S_IRUGO, proc_pid_status), 2945 ONE("personality", S_IRUSR, proc_pid_personality), 2946 ONE("limits", S_IRUGO, proc_pid_limits), 2947 #ifdef CONFIG_SCHED_DEBUG 2948 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 2949 #endif 2950 #ifdef CONFIG_SCHED_AUTOGROUP 2951 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 2952 #endif 2953 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 2954 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 2955 ONE("syscall", S_IRUSR, proc_pid_syscall), 2956 #endif 2957 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 2958 ONE("stat", S_IRUGO, proc_tgid_stat), 2959 ONE("statm", S_IRUGO, proc_pid_statm), 2960 REG("maps", S_IRUGO, proc_pid_maps_operations), 2961 #ifdef CONFIG_NUMA 2962 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 2963 #endif 2964 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 2965 LNK("cwd", proc_cwd_link), 2966 LNK("root", proc_root_link), 2967 LNK("exe", proc_exe_link), 2968 REG("mounts", S_IRUGO, proc_mounts_operations), 2969 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 2970 REG("mountstats", S_IRUSR, proc_mountstats_operations), 2971 #ifdef CONFIG_PROC_PAGE_MONITOR 2972 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 2973 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 2974 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 2975 REG("pagemap", S_IRUSR, proc_pagemap_operations), 2976 #endif 2977 #ifdef CONFIG_SECURITY 2978 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 2979 #endif 2980 #ifdef CONFIG_KALLSYMS 2981 ONE("wchan", S_IRUGO, proc_pid_wchan), 2982 #endif 2983 #ifdef CONFIG_STACKTRACE 2984 ONE("stack", S_IRUSR, proc_pid_stack), 2985 #endif 2986 #ifdef CONFIG_SCHED_INFO 2987 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 2988 #endif 2989 #ifdef CONFIG_LATENCYTOP 2990 REG("latency", S_IRUGO, proc_lstats_operations), 2991 #endif 2992 #ifdef CONFIG_PROC_PID_CPUSET 2993 ONE("cpuset", S_IRUGO, proc_cpuset_show), 2994 #endif 2995 #ifdef CONFIG_CGROUPS 2996 ONE("cgroup", S_IRUGO, proc_cgroup_show), 2997 #endif 2998 ONE("oom_score", S_IRUGO, proc_oom_score), 2999 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3000 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3001 #ifdef CONFIG_AUDITSYSCALL 3002 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3003 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3004 #endif 3005 #ifdef CONFIG_FAULT_INJECTION 3006 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3007 REG("fail-nth", 0644, proc_fail_nth_operations), 3008 #endif 3009 #ifdef CONFIG_ELF_CORE 3010 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 3011 #endif 3012 #ifdef CONFIG_TASK_IO_ACCOUNTING 3013 ONE("io", S_IRUSR, proc_tgid_io_accounting), 3014 #endif 3015 #ifdef CONFIG_USER_NS 3016 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3017 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3018 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3019 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3020 #endif 3021 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 3022 REG("timers", S_IRUGO, proc_timers_operations), 3023 #endif 3024 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations), 3025 #ifdef CONFIG_LIVEPATCH 3026 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3027 #endif 3028 }; 3029 3030 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx) 3031 { 3032 return proc_pident_readdir(file, ctx, 3033 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3034 } 3035 3036 static const struct file_operations proc_tgid_base_operations = { 3037 .read = generic_read_dir, 3038 .iterate_shared = proc_tgid_base_readdir, 3039 .llseek = generic_file_llseek, 3040 }; 3041 3042 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3043 { 3044 return proc_pident_lookup(dir, dentry, 3045 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3046 } 3047 3048 static const struct inode_operations proc_tgid_base_inode_operations = { 3049 .lookup = proc_tgid_base_lookup, 3050 .getattr = pid_getattr, 3051 .setattr = proc_setattr, 3052 .permission = proc_pid_permission, 3053 }; 3054 3055 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid) 3056 { 3057 struct dentry *dentry, *leader, *dir; 3058 char buf[10 + 1]; 3059 struct qstr name; 3060 3061 name.name = buf; 3062 name.len = snprintf(buf, sizeof(buf), "%u", pid); 3063 /* no ->d_hash() rejects on procfs */ 3064 dentry = d_hash_and_lookup(mnt->mnt_root, &name); 3065 if (dentry) { 3066 d_invalidate(dentry); 3067 dput(dentry); 3068 } 3069 3070 if (pid == tgid) 3071 return; 3072 3073 name.name = buf; 3074 name.len = snprintf(buf, sizeof(buf), "%u", tgid); 3075 leader = d_hash_and_lookup(mnt->mnt_root, &name); 3076 if (!leader) 3077 goto out; 3078 3079 name.name = "task"; 3080 name.len = strlen(name.name); 3081 dir = d_hash_and_lookup(leader, &name); 3082 if (!dir) 3083 goto out_put_leader; 3084 3085 name.name = buf; 3086 name.len = snprintf(buf, sizeof(buf), "%u", pid); 3087 dentry = d_hash_and_lookup(dir, &name); 3088 if (dentry) { 3089 d_invalidate(dentry); 3090 dput(dentry); 3091 } 3092 3093 dput(dir); 3094 out_put_leader: 3095 dput(leader); 3096 out: 3097 return; 3098 } 3099 3100 /** 3101 * proc_flush_task - Remove dcache entries for @task from the /proc dcache. 3102 * @task: task that should be flushed. 3103 * 3104 * When flushing dentries from proc, one needs to flush them from global 3105 * proc (proc_mnt) and from all the namespaces' procs this task was seen 3106 * in. This call is supposed to do all of this job. 3107 * 3108 * Looks in the dcache for 3109 * /proc/@pid 3110 * /proc/@tgid/task/@pid 3111 * if either directory is present flushes it and all of it'ts children 3112 * from the dcache. 3113 * 3114 * It is safe and reasonable to cache /proc entries for a task until 3115 * that task exits. After that they just clog up the dcache with 3116 * useless entries, possibly causing useful dcache entries to be 3117 * flushed instead. This routine is proved to flush those useless 3118 * dcache entries at process exit time. 3119 * 3120 * NOTE: This routine is just an optimization so it does not guarantee 3121 * that no dcache entries will exist at process exit time it 3122 * just makes it very unlikely that any will persist. 3123 */ 3124 3125 void proc_flush_task(struct task_struct *task) 3126 { 3127 int i; 3128 struct pid *pid, *tgid; 3129 struct upid *upid; 3130 3131 pid = task_pid(task); 3132 tgid = task_tgid(task); 3133 3134 for (i = 0; i <= pid->level; i++) { 3135 upid = &pid->numbers[i]; 3136 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr, 3137 tgid->numbers[i].nr); 3138 } 3139 } 3140 3141 static int proc_pid_instantiate(struct inode *dir, 3142 struct dentry * dentry, 3143 struct task_struct *task, const void *ptr) 3144 { 3145 struct inode *inode; 3146 3147 inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3148 if (!inode) 3149 goto out; 3150 3151 inode->i_op = &proc_tgid_base_inode_operations; 3152 inode->i_fop = &proc_tgid_base_operations; 3153 inode->i_flags|=S_IMMUTABLE; 3154 3155 set_nlink(inode, nlink_tgid); 3156 3157 d_set_d_op(dentry, &pid_dentry_operations); 3158 3159 d_add(dentry, inode); 3160 /* Close the race of the process dying before we return the dentry */ 3161 if (pid_revalidate(dentry, 0)) 3162 return 0; 3163 out: 3164 return -ENOENT; 3165 } 3166 3167 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3168 { 3169 int result = -ENOENT; 3170 struct task_struct *task; 3171 unsigned tgid; 3172 struct pid_namespace *ns; 3173 3174 tgid = name_to_int(&dentry->d_name); 3175 if (tgid == ~0U) 3176 goto out; 3177 3178 ns = dentry->d_sb->s_fs_info; 3179 rcu_read_lock(); 3180 task = find_task_by_pid_ns(tgid, ns); 3181 if (task) 3182 get_task_struct(task); 3183 rcu_read_unlock(); 3184 if (!task) 3185 goto out; 3186 3187 result = proc_pid_instantiate(dir, dentry, task, NULL); 3188 put_task_struct(task); 3189 out: 3190 return ERR_PTR(result); 3191 } 3192 3193 /* 3194 * Find the first task with tgid >= tgid 3195 * 3196 */ 3197 struct tgid_iter { 3198 unsigned int tgid; 3199 struct task_struct *task; 3200 }; 3201 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3202 { 3203 struct pid *pid; 3204 3205 if (iter.task) 3206 put_task_struct(iter.task); 3207 rcu_read_lock(); 3208 retry: 3209 iter.task = NULL; 3210 pid = find_ge_pid(iter.tgid, ns); 3211 if (pid) { 3212 iter.tgid = pid_nr_ns(pid, ns); 3213 iter.task = pid_task(pid, PIDTYPE_PID); 3214 /* What we to know is if the pid we have find is the 3215 * pid of a thread_group_leader. Testing for task 3216 * being a thread_group_leader is the obvious thing 3217 * todo but there is a window when it fails, due to 3218 * the pid transfer logic in de_thread. 3219 * 3220 * So we perform the straight forward test of seeing 3221 * if the pid we have found is the pid of a thread 3222 * group leader, and don't worry if the task we have 3223 * found doesn't happen to be a thread group leader. 3224 * As we don't care in the case of readdir. 3225 */ 3226 if (!iter.task || !has_group_leader_pid(iter.task)) { 3227 iter.tgid += 1; 3228 goto retry; 3229 } 3230 get_task_struct(iter.task); 3231 } 3232 rcu_read_unlock(); 3233 return iter; 3234 } 3235 3236 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2) 3237 3238 /* for the /proc/ directory itself, after non-process stuff has been done */ 3239 int proc_pid_readdir(struct file *file, struct dir_context *ctx) 3240 { 3241 struct tgid_iter iter; 3242 struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info; 3243 loff_t pos = ctx->pos; 3244 3245 if (pos >= PID_MAX_LIMIT + TGID_OFFSET) 3246 return 0; 3247 3248 if (pos == TGID_OFFSET - 2) { 3249 struct inode *inode = d_inode(ns->proc_self); 3250 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK)) 3251 return 0; 3252 ctx->pos = pos = pos + 1; 3253 } 3254 if (pos == TGID_OFFSET - 1) { 3255 struct inode *inode = d_inode(ns->proc_thread_self); 3256 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK)) 3257 return 0; 3258 ctx->pos = pos = pos + 1; 3259 } 3260 iter.tgid = pos - TGID_OFFSET; 3261 iter.task = NULL; 3262 for (iter = next_tgid(ns, iter); 3263 iter.task; 3264 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3265 char name[10 + 1]; 3266 int len; 3267 3268 cond_resched(); 3269 if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE)) 3270 continue; 3271 3272 len = snprintf(name, sizeof(name), "%u", iter.tgid); 3273 ctx->pos = iter.tgid + TGID_OFFSET; 3274 if (!proc_fill_cache(file, ctx, name, len, 3275 proc_pid_instantiate, iter.task, NULL)) { 3276 put_task_struct(iter.task); 3277 return 0; 3278 } 3279 } 3280 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET; 3281 return 0; 3282 } 3283 3284 /* 3285 * proc_tid_comm_permission is a special permission function exclusively 3286 * used for the node /proc/<pid>/task/<tid>/comm. 3287 * It bypasses generic permission checks in the case where a task of the same 3288 * task group attempts to access the node. 3289 * The rationale behind this is that glibc and bionic access this node for 3290 * cross thread naming (pthread_set/getname_np(!self)). However, if 3291 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0, 3292 * which locks out the cross thread naming implementation. 3293 * This function makes sure that the node is always accessible for members of 3294 * same thread group. 3295 */ 3296 static int proc_tid_comm_permission(struct inode *inode, int mask) 3297 { 3298 bool is_same_tgroup; 3299 struct task_struct *task; 3300 3301 task = get_proc_task(inode); 3302 if (!task) 3303 return -ESRCH; 3304 is_same_tgroup = same_thread_group(current, task); 3305 put_task_struct(task); 3306 3307 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) { 3308 /* This file (/proc/<pid>/task/<tid>/comm) can always be 3309 * read or written by the members of the corresponding 3310 * thread group. 3311 */ 3312 return 0; 3313 } 3314 3315 return generic_permission(inode, mask); 3316 } 3317 3318 static const struct inode_operations proc_tid_comm_inode_operations = { 3319 .permission = proc_tid_comm_permission, 3320 }; 3321 3322 /* 3323 * Tasks 3324 */ 3325 static const struct pid_entry tid_base_stuff[] = { 3326 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3327 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3328 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3329 #ifdef CONFIG_NET 3330 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3331 #endif 3332 REG("environ", S_IRUSR, proc_environ_operations), 3333 REG("auxv", S_IRUSR, proc_auxv_operations), 3334 ONE("status", S_IRUGO, proc_pid_status), 3335 ONE("personality", S_IRUSR, proc_pid_personality), 3336 ONE("limits", S_IRUGO, proc_pid_limits), 3337 #ifdef CONFIG_SCHED_DEBUG 3338 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3339 #endif 3340 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR, 3341 &proc_tid_comm_inode_operations, 3342 &proc_pid_set_comm_operations, {}), 3343 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3344 ONE("syscall", S_IRUSR, proc_pid_syscall), 3345 #endif 3346 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3347 ONE("stat", S_IRUGO, proc_tid_stat), 3348 ONE("statm", S_IRUGO, proc_pid_statm), 3349 REG("maps", S_IRUGO, proc_tid_maps_operations), 3350 #ifdef CONFIG_PROC_CHILDREN 3351 REG("children", S_IRUGO, proc_tid_children_operations), 3352 #endif 3353 #ifdef CONFIG_NUMA 3354 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations), 3355 #endif 3356 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3357 LNK("cwd", proc_cwd_link), 3358 LNK("root", proc_root_link), 3359 LNK("exe", proc_exe_link), 3360 REG("mounts", S_IRUGO, proc_mounts_operations), 3361 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3362 #ifdef CONFIG_PROC_PAGE_MONITOR 3363 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3364 REG("smaps", S_IRUGO, proc_tid_smaps_operations), 3365 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3366 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3367 #endif 3368 #ifdef CONFIG_SECURITY 3369 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3370 #endif 3371 #ifdef CONFIG_KALLSYMS 3372 ONE("wchan", S_IRUGO, proc_pid_wchan), 3373 #endif 3374 #ifdef CONFIG_STACKTRACE 3375 ONE("stack", S_IRUSR, proc_pid_stack), 3376 #endif 3377 #ifdef CONFIG_SCHED_INFO 3378 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3379 #endif 3380 #ifdef CONFIG_LATENCYTOP 3381 REG("latency", S_IRUGO, proc_lstats_operations), 3382 #endif 3383 #ifdef CONFIG_PROC_PID_CPUSET 3384 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3385 #endif 3386 #ifdef CONFIG_CGROUPS 3387 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3388 #endif 3389 ONE("oom_score", S_IRUGO, proc_oom_score), 3390 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3391 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3392 #ifdef CONFIG_AUDITSYSCALL 3393 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3394 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3395 #endif 3396 #ifdef CONFIG_FAULT_INJECTION 3397 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3398 REG("fail-nth", 0644, proc_fail_nth_operations), 3399 #endif 3400 #ifdef CONFIG_TASK_IO_ACCOUNTING 3401 ONE("io", S_IRUSR, proc_tid_io_accounting), 3402 #endif 3403 #ifdef CONFIG_USER_NS 3404 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3405 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3406 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3407 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3408 #endif 3409 #ifdef CONFIG_LIVEPATCH 3410 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3411 #endif 3412 }; 3413 3414 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx) 3415 { 3416 return proc_pident_readdir(file, ctx, 3417 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3418 } 3419 3420 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3421 { 3422 return proc_pident_lookup(dir, dentry, 3423 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3424 } 3425 3426 static const struct file_operations proc_tid_base_operations = { 3427 .read = generic_read_dir, 3428 .iterate_shared = proc_tid_base_readdir, 3429 .llseek = generic_file_llseek, 3430 }; 3431 3432 static const struct inode_operations proc_tid_base_inode_operations = { 3433 .lookup = proc_tid_base_lookup, 3434 .getattr = pid_getattr, 3435 .setattr = proc_setattr, 3436 }; 3437 3438 static int proc_task_instantiate(struct inode *dir, 3439 struct dentry *dentry, struct task_struct *task, const void *ptr) 3440 { 3441 struct inode *inode; 3442 inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3443 3444 if (!inode) 3445 goto out; 3446 inode->i_op = &proc_tid_base_inode_operations; 3447 inode->i_fop = &proc_tid_base_operations; 3448 inode->i_flags|=S_IMMUTABLE; 3449 3450 set_nlink(inode, nlink_tid); 3451 3452 d_set_d_op(dentry, &pid_dentry_operations); 3453 3454 d_add(dentry, inode); 3455 /* Close the race of the process dying before we return the dentry */ 3456 if (pid_revalidate(dentry, 0)) 3457 return 0; 3458 out: 3459 return -ENOENT; 3460 } 3461 3462 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3463 { 3464 int result = -ENOENT; 3465 struct task_struct *task; 3466 struct task_struct *leader = get_proc_task(dir); 3467 unsigned tid; 3468 struct pid_namespace *ns; 3469 3470 if (!leader) 3471 goto out_no_task; 3472 3473 tid = name_to_int(&dentry->d_name); 3474 if (tid == ~0U) 3475 goto out; 3476 3477 ns = dentry->d_sb->s_fs_info; 3478 rcu_read_lock(); 3479 task = find_task_by_pid_ns(tid, ns); 3480 if (task) 3481 get_task_struct(task); 3482 rcu_read_unlock(); 3483 if (!task) 3484 goto out; 3485 if (!same_thread_group(leader, task)) 3486 goto out_drop_task; 3487 3488 result = proc_task_instantiate(dir, dentry, task, NULL); 3489 out_drop_task: 3490 put_task_struct(task); 3491 out: 3492 put_task_struct(leader); 3493 out_no_task: 3494 return ERR_PTR(result); 3495 } 3496 3497 /* 3498 * Find the first tid of a thread group to return to user space. 3499 * 3500 * Usually this is just the thread group leader, but if the users 3501 * buffer was too small or there was a seek into the middle of the 3502 * directory we have more work todo. 3503 * 3504 * In the case of a short read we start with find_task_by_pid. 3505 * 3506 * In the case of a seek we start with the leader and walk nr 3507 * threads past it. 3508 */ 3509 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos, 3510 struct pid_namespace *ns) 3511 { 3512 struct task_struct *pos, *task; 3513 unsigned long nr = f_pos; 3514 3515 if (nr != f_pos) /* 32bit overflow? */ 3516 return NULL; 3517 3518 rcu_read_lock(); 3519 task = pid_task(pid, PIDTYPE_PID); 3520 if (!task) 3521 goto fail; 3522 3523 /* Attempt to start with the tid of a thread */ 3524 if (tid && nr) { 3525 pos = find_task_by_pid_ns(tid, ns); 3526 if (pos && same_thread_group(pos, task)) 3527 goto found; 3528 } 3529 3530 /* If nr exceeds the number of threads there is nothing todo */ 3531 if (nr >= get_nr_threads(task)) 3532 goto fail; 3533 3534 /* If we haven't found our starting place yet start 3535 * with the leader and walk nr threads forward. 3536 */ 3537 pos = task = task->group_leader; 3538 do { 3539 if (!nr--) 3540 goto found; 3541 } while_each_thread(task, pos); 3542 fail: 3543 pos = NULL; 3544 goto out; 3545 found: 3546 get_task_struct(pos); 3547 out: 3548 rcu_read_unlock(); 3549 return pos; 3550 } 3551 3552 /* 3553 * Find the next thread in the thread list. 3554 * Return NULL if there is an error or no next thread. 3555 * 3556 * The reference to the input task_struct is released. 3557 */ 3558 static struct task_struct *next_tid(struct task_struct *start) 3559 { 3560 struct task_struct *pos = NULL; 3561 rcu_read_lock(); 3562 if (pid_alive(start)) { 3563 pos = next_thread(start); 3564 if (thread_group_leader(pos)) 3565 pos = NULL; 3566 else 3567 get_task_struct(pos); 3568 } 3569 rcu_read_unlock(); 3570 put_task_struct(start); 3571 return pos; 3572 } 3573 3574 /* for the /proc/TGID/task/ directories */ 3575 static int proc_task_readdir(struct file *file, struct dir_context *ctx) 3576 { 3577 struct inode *inode = file_inode(file); 3578 struct task_struct *task; 3579 struct pid_namespace *ns; 3580 int tid; 3581 3582 if (proc_inode_is_dead(inode)) 3583 return -ENOENT; 3584 3585 if (!dir_emit_dots(file, ctx)) 3586 return 0; 3587 3588 /* f_version caches the tgid value that the last readdir call couldn't 3589 * return. lseek aka telldir automagically resets f_version to 0. 3590 */ 3591 ns = inode->i_sb->s_fs_info; 3592 tid = (int)file->f_version; 3593 file->f_version = 0; 3594 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns); 3595 task; 3596 task = next_tid(task), ctx->pos++) { 3597 char name[10 + 1]; 3598 int len; 3599 tid = task_pid_nr_ns(task, ns); 3600 len = snprintf(name, sizeof(name), "%u", tid); 3601 if (!proc_fill_cache(file, ctx, name, len, 3602 proc_task_instantiate, task, NULL)) { 3603 /* returning this tgid failed, save it as the first 3604 * pid for the next readir call */ 3605 file->f_version = (u64)tid; 3606 put_task_struct(task); 3607 break; 3608 } 3609 } 3610 3611 return 0; 3612 } 3613 3614 static int proc_task_getattr(const struct path *path, struct kstat *stat, 3615 u32 request_mask, unsigned int query_flags) 3616 { 3617 struct inode *inode = d_inode(path->dentry); 3618 struct task_struct *p = get_proc_task(inode); 3619 generic_fillattr(inode, stat); 3620 3621 if (p) { 3622 stat->nlink += get_nr_threads(p); 3623 put_task_struct(p); 3624 } 3625 3626 return 0; 3627 } 3628 3629 static const struct inode_operations proc_task_inode_operations = { 3630 .lookup = proc_task_lookup, 3631 .getattr = proc_task_getattr, 3632 .setattr = proc_setattr, 3633 .permission = proc_pid_permission, 3634 }; 3635 3636 static const struct file_operations proc_task_operations = { 3637 .read = generic_read_dir, 3638 .iterate_shared = proc_task_readdir, 3639 .llseek = generic_file_llseek, 3640 }; 3641 3642 void __init set_proc_pid_nlink(void) 3643 { 3644 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3645 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3646 } 3647