xref: /openbmc/linux/fs/proc/base.c (revision d78c317f)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/fs_struct.h>
85 #include <linux/slab.h>
86 #include <linux/flex_array.h>
87 #ifdef CONFIG_HARDWALL
88 #include <asm/hardwall.h>
89 #endif
90 #include <trace/events/oom.h>
91 #include "internal.h"
92 
93 /* NOTE:
94  *	Implementing inode permission operations in /proc is almost
95  *	certainly an error.  Permission checks need to happen during
96  *	each system call not at open time.  The reason is that most of
97  *	what we wish to check for permissions in /proc varies at runtime.
98  *
99  *	The classic example of a problem is opening file descriptors
100  *	in /proc for a task before it execs a suid executable.
101  */
102 
103 struct pid_entry {
104 	char *name;
105 	int len;
106 	umode_t mode;
107 	const struct inode_operations *iop;
108 	const struct file_operations *fop;
109 	union proc_op op;
110 };
111 
112 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
113 	.name = (NAME),					\
114 	.len  = sizeof(NAME) - 1,			\
115 	.mode = MODE,					\
116 	.iop  = IOP,					\
117 	.fop  = FOP,					\
118 	.op   = OP,					\
119 }
120 
121 #define DIR(NAME, MODE, iops, fops)	\
122 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
123 #define LNK(NAME, get_link)					\
124 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
125 		&proc_pid_link_inode_operations, NULL,		\
126 		{ .proc_get_link = get_link } )
127 #define REG(NAME, MODE, fops)				\
128 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
129 #define INF(NAME, MODE, read)				\
130 	NOD(NAME, (S_IFREG|(MODE)), 			\
131 		NULL, &proc_info_file_operations,	\
132 		{ .proc_read = read } )
133 #define ONE(NAME, MODE, show)				\
134 	NOD(NAME, (S_IFREG|(MODE)), 			\
135 		NULL, &proc_single_file_operations,	\
136 		{ .proc_show = show } )
137 
138 static int proc_fd_permission(struct inode *inode, int mask);
139 
140 /*
141  * Count the number of hardlinks for the pid_entry table, excluding the .
142  * and .. links.
143  */
144 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
145 	unsigned int n)
146 {
147 	unsigned int i;
148 	unsigned int count;
149 
150 	count = 0;
151 	for (i = 0; i < n; ++i) {
152 		if (S_ISDIR(entries[i].mode))
153 			++count;
154 	}
155 
156 	return count;
157 }
158 
159 static int get_task_root(struct task_struct *task, struct path *root)
160 {
161 	int result = -ENOENT;
162 
163 	task_lock(task);
164 	if (task->fs) {
165 		get_fs_root(task->fs, root);
166 		result = 0;
167 	}
168 	task_unlock(task);
169 	return result;
170 }
171 
172 static int proc_cwd_link(struct dentry *dentry, struct path *path)
173 {
174 	struct task_struct *task = get_proc_task(dentry->d_inode);
175 	int result = -ENOENT;
176 
177 	if (task) {
178 		task_lock(task);
179 		if (task->fs) {
180 			get_fs_pwd(task->fs, path);
181 			result = 0;
182 		}
183 		task_unlock(task);
184 		put_task_struct(task);
185 	}
186 	return result;
187 }
188 
189 static int proc_root_link(struct dentry *dentry, struct path *path)
190 {
191 	struct task_struct *task = get_proc_task(dentry->d_inode);
192 	int result = -ENOENT;
193 
194 	if (task) {
195 		result = get_task_root(task, path);
196 		put_task_struct(task);
197 	}
198 	return result;
199 }
200 
201 struct mm_struct *mm_for_maps(struct task_struct *task)
202 {
203 	return mm_access(task, PTRACE_MODE_READ);
204 }
205 
206 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
207 {
208 	int res = 0;
209 	unsigned int len;
210 	struct mm_struct *mm = get_task_mm(task);
211 	if (!mm)
212 		goto out;
213 	if (!mm->arg_end)
214 		goto out_mm;	/* Shh! No looking before we're done */
215 
216  	len = mm->arg_end - mm->arg_start;
217 
218 	if (len > PAGE_SIZE)
219 		len = PAGE_SIZE;
220 
221 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
222 
223 	// If the nul at the end of args has been overwritten, then
224 	// assume application is using setproctitle(3).
225 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
226 		len = strnlen(buffer, res);
227 		if (len < res) {
228 		    res = len;
229 		} else {
230 			len = mm->env_end - mm->env_start;
231 			if (len > PAGE_SIZE - res)
232 				len = PAGE_SIZE - res;
233 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
234 			res = strnlen(buffer, res);
235 		}
236 	}
237 out_mm:
238 	mmput(mm);
239 out:
240 	return res;
241 }
242 
243 static int proc_pid_auxv(struct task_struct *task, char *buffer)
244 {
245 	struct mm_struct *mm = mm_for_maps(task);
246 	int res = PTR_ERR(mm);
247 	if (mm && !IS_ERR(mm)) {
248 		unsigned int nwords = 0;
249 		do {
250 			nwords += 2;
251 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
252 		res = nwords * sizeof(mm->saved_auxv[0]);
253 		if (res > PAGE_SIZE)
254 			res = PAGE_SIZE;
255 		memcpy(buffer, mm->saved_auxv, res);
256 		mmput(mm);
257 	}
258 	return res;
259 }
260 
261 
262 #ifdef CONFIG_KALLSYMS
263 /*
264  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
265  * Returns the resolved symbol.  If that fails, simply return the address.
266  */
267 static int proc_pid_wchan(struct task_struct *task, char *buffer)
268 {
269 	unsigned long wchan;
270 	char symname[KSYM_NAME_LEN];
271 
272 	wchan = get_wchan(task);
273 
274 	if (lookup_symbol_name(wchan, symname) < 0)
275 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
276 			return 0;
277 		else
278 			return sprintf(buffer, "%lu", wchan);
279 	else
280 		return sprintf(buffer, "%s", symname);
281 }
282 #endif /* CONFIG_KALLSYMS */
283 
284 static int lock_trace(struct task_struct *task)
285 {
286 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
287 	if (err)
288 		return err;
289 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
290 		mutex_unlock(&task->signal->cred_guard_mutex);
291 		return -EPERM;
292 	}
293 	return 0;
294 }
295 
296 static void unlock_trace(struct task_struct *task)
297 {
298 	mutex_unlock(&task->signal->cred_guard_mutex);
299 }
300 
301 #ifdef CONFIG_STACKTRACE
302 
303 #define MAX_STACK_TRACE_DEPTH	64
304 
305 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
306 			  struct pid *pid, struct task_struct *task)
307 {
308 	struct stack_trace trace;
309 	unsigned long *entries;
310 	int err;
311 	int i;
312 
313 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
314 	if (!entries)
315 		return -ENOMEM;
316 
317 	trace.nr_entries	= 0;
318 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
319 	trace.entries		= entries;
320 	trace.skip		= 0;
321 
322 	err = lock_trace(task);
323 	if (!err) {
324 		save_stack_trace_tsk(task, &trace);
325 
326 		for (i = 0; i < trace.nr_entries; i++) {
327 			seq_printf(m, "[<%pK>] %pS\n",
328 				   (void *)entries[i], (void *)entries[i]);
329 		}
330 		unlock_trace(task);
331 	}
332 	kfree(entries);
333 
334 	return err;
335 }
336 #endif
337 
338 #ifdef CONFIG_SCHEDSTATS
339 /*
340  * Provides /proc/PID/schedstat
341  */
342 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
343 {
344 	return sprintf(buffer, "%llu %llu %lu\n",
345 			(unsigned long long)task->se.sum_exec_runtime,
346 			(unsigned long long)task->sched_info.run_delay,
347 			task->sched_info.pcount);
348 }
349 #endif
350 
351 #ifdef CONFIG_LATENCYTOP
352 static int lstats_show_proc(struct seq_file *m, void *v)
353 {
354 	int i;
355 	struct inode *inode = m->private;
356 	struct task_struct *task = get_proc_task(inode);
357 
358 	if (!task)
359 		return -ESRCH;
360 	seq_puts(m, "Latency Top version : v0.1\n");
361 	for (i = 0; i < 32; i++) {
362 		struct latency_record *lr = &task->latency_record[i];
363 		if (lr->backtrace[0]) {
364 			int q;
365 			seq_printf(m, "%i %li %li",
366 				   lr->count, lr->time, lr->max);
367 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
368 				unsigned long bt = lr->backtrace[q];
369 				if (!bt)
370 					break;
371 				if (bt == ULONG_MAX)
372 					break;
373 				seq_printf(m, " %ps", (void *)bt);
374 			}
375 			seq_putc(m, '\n');
376 		}
377 
378 	}
379 	put_task_struct(task);
380 	return 0;
381 }
382 
383 static int lstats_open(struct inode *inode, struct file *file)
384 {
385 	return single_open(file, lstats_show_proc, inode);
386 }
387 
388 static ssize_t lstats_write(struct file *file, const char __user *buf,
389 			    size_t count, loff_t *offs)
390 {
391 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
392 
393 	if (!task)
394 		return -ESRCH;
395 	clear_all_latency_tracing(task);
396 	put_task_struct(task);
397 
398 	return count;
399 }
400 
401 static const struct file_operations proc_lstats_operations = {
402 	.open		= lstats_open,
403 	.read		= seq_read,
404 	.write		= lstats_write,
405 	.llseek		= seq_lseek,
406 	.release	= single_release,
407 };
408 
409 #endif
410 
411 static int proc_oom_score(struct task_struct *task, char *buffer)
412 {
413 	unsigned long points = 0;
414 
415 	read_lock(&tasklist_lock);
416 	if (pid_alive(task))
417 		points = oom_badness(task, NULL, NULL,
418 					totalram_pages + total_swap_pages);
419 	read_unlock(&tasklist_lock);
420 	return sprintf(buffer, "%lu\n", points);
421 }
422 
423 struct limit_names {
424 	char *name;
425 	char *unit;
426 };
427 
428 static const struct limit_names lnames[RLIM_NLIMITS] = {
429 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
430 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
431 	[RLIMIT_DATA] = {"Max data size", "bytes"},
432 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
433 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
434 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
435 	[RLIMIT_NPROC] = {"Max processes", "processes"},
436 	[RLIMIT_NOFILE] = {"Max open files", "files"},
437 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
438 	[RLIMIT_AS] = {"Max address space", "bytes"},
439 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
440 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
441 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
442 	[RLIMIT_NICE] = {"Max nice priority", NULL},
443 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
444 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
445 };
446 
447 /* Display limits for a process */
448 static int proc_pid_limits(struct task_struct *task, char *buffer)
449 {
450 	unsigned int i;
451 	int count = 0;
452 	unsigned long flags;
453 	char *bufptr = buffer;
454 
455 	struct rlimit rlim[RLIM_NLIMITS];
456 
457 	if (!lock_task_sighand(task, &flags))
458 		return 0;
459 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
460 	unlock_task_sighand(task, &flags);
461 
462 	/*
463 	 * print the file header
464 	 */
465 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
466 			"Limit", "Soft Limit", "Hard Limit", "Units");
467 
468 	for (i = 0; i < RLIM_NLIMITS; i++) {
469 		if (rlim[i].rlim_cur == RLIM_INFINITY)
470 			count += sprintf(&bufptr[count], "%-25s %-20s ",
471 					 lnames[i].name, "unlimited");
472 		else
473 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
474 					 lnames[i].name, rlim[i].rlim_cur);
475 
476 		if (rlim[i].rlim_max == RLIM_INFINITY)
477 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
478 		else
479 			count += sprintf(&bufptr[count], "%-20lu ",
480 					 rlim[i].rlim_max);
481 
482 		if (lnames[i].unit)
483 			count += sprintf(&bufptr[count], "%-10s\n",
484 					 lnames[i].unit);
485 		else
486 			count += sprintf(&bufptr[count], "\n");
487 	}
488 
489 	return count;
490 }
491 
492 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
493 static int proc_pid_syscall(struct task_struct *task, char *buffer)
494 {
495 	long nr;
496 	unsigned long args[6], sp, pc;
497 	int res = lock_trace(task);
498 	if (res)
499 		return res;
500 
501 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
502 		res = sprintf(buffer, "running\n");
503 	else if (nr < 0)
504 		res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
505 	else
506 		res = sprintf(buffer,
507 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
508 		       nr,
509 		       args[0], args[1], args[2], args[3], args[4], args[5],
510 		       sp, pc);
511 	unlock_trace(task);
512 	return res;
513 }
514 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
515 
516 /************************************************************************/
517 /*                       Here the fs part begins                        */
518 /************************************************************************/
519 
520 /* permission checks */
521 static int proc_fd_access_allowed(struct inode *inode)
522 {
523 	struct task_struct *task;
524 	int allowed = 0;
525 	/* Allow access to a task's file descriptors if it is us or we
526 	 * may use ptrace attach to the process and find out that
527 	 * information.
528 	 */
529 	task = get_proc_task(inode);
530 	if (task) {
531 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
532 		put_task_struct(task);
533 	}
534 	return allowed;
535 }
536 
537 int proc_setattr(struct dentry *dentry, struct iattr *attr)
538 {
539 	int error;
540 	struct inode *inode = dentry->d_inode;
541 
542 	if (attr->ia_valid & ATTR_MODE)
543 		return -EPERM;
544 
545 	error = inode_change_ok(inode, attr);
546 	if (error)
547 		return error;
548 
549 	if ((attr->ia_valid & ATTR_SIZE) &&
550 	    attr->ia_size != i_size_read(inode)) {
551 		error = vmtruncate(inode, attr->ia_size);
552 		if (error)
553 			return error;
554 	}
555 
556 	setattr_copy(inode, attr);
557 	mark_inode_dirty(inode);
558 	return 0;
559 }
560 
561 /*
562  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
563  * or euid/egid (for hide_pid_min=2)?
564  */
565 static bool has_pid_permissions(struct pid_namespace *pid,
566 				 struct task_struct *task,
567 				 int hide_pid_min)
568 {
569 	if (pid->hide_pid < hide_pid_min)
570 		return true;
571 	if (in_group_p(pid->pid_gid))
572 		return true;
573 	return ptrace_may_access(task, PTRACE_MODE_READ);
574 }
575 
576 
577 static int proc_pid_permission(struct inode *inode, int mask)
578 {
579 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
580 	struct task_struct *task;
581 	bool has_perms;
582 
583 	task = get_proc_task(inode);
584 	if (!task)
585 		return -ESRCH;
586 	has_perms = has_pid_permissions(pid, task, 1);
587 	put_task_struct(task);
588 
589 	if (!has_perms) {
590 		if (pid->hide_pid == 2) {
591 			/*
592 			 * Let's make getdents(), stat(), and open()
593 			 * consistent with each other.  If a process
594 			 * may not stat() a file, it shouldn't be seen
595 			 * in procfs at all.
596 			 */
597 			return -ENOENT;
598 		}
599 
600 		return -EPERM;
601 	}
602 	return generic_permission(inode, mask);
603 }
604 
605 
606 
607 static const struct inode_operations proc_def_inode_operations = {
608 	.setattr	= proc_setattr,
609 };
610 
611 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
612 
613 static ssize_t proc_info_read(struct file * file, char __user * buf,
614 			  size_t count, loff_t *ppos)
615 {
616 	struct inode * inode = file->f_path.dentry->d_inode;
617 	unsigned long page;
618 	ssize_t length;
619 	struct task_struct *task = get_proc_task(inode);
620 
621 	length = -ESRCH;
622 	if (!task)
623 		goto out_no_task;
624 
625 	if (count > PROC_BLOCK_SIZE)
626 		count = PROC_BLOCK_SIZE;
627 
628 	length = -ENOMEM;
629 	if (!(page = __get_free_page(GFP_TEMPORARY)))
630 		goto out;
631 
632 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
633 
634 	if (length >= 0)
635 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
636 	free_page(page);
637 out:
638 	put_task_struct(task);
639 out_no_task:
640 	return length;
641 }
642 
643 static const struct file_operations proc_info_file_operations = {
644 	.read		= proc_info_read,
645 	.llseek		= generic_file_llseek,
646 };
647 
648 static int proc_single_show(struct seq_file *m, void *v)
649 {
650 	struct inode *inode = m->private;
651 	struct pid_namespace *ns;
652 	struct pid *pid;
653 	struct task_struct *task;
654 	int ret;
655 
656 	ns = inode->i_sb->s_fs_info;
657 	pid = proc_pid(inode);
658 	task = get_pid_task(pid, PIDTYPE_PID);
659 	if (!task)
660 		return -ESRCH;
661 
662 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
663 
664 	put_task_struct(task);
665 	return ret;
666 }
667 
668 static int proc_single_open(struct inode *inode, struct file *filp)
669 {
670 	return single_open(filp, proc_single_show, inode);
671 }
672 
673 static const struct file_operations proc_single_file_operations = {
674 	.open		= proc_single_open,
675 	.read		= seq_read,
676 	.llseek		= seq_lseek,
677 	.release	= single_release,
678 };
679 
680 static int mem_open(struct inode* inode, struct file* file)
681 {
682 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
683 	struct mm_struct *mm;
684 
685 	if (!task)
686 		return -ESRCH;
687 
688 	mm = mm_access(task, PTRACE_MODE_ATTACH);
689 	put_task_struct(task);
690 
691 	if (IS_ERR(mm))
692 		return PTR_ERR(mm);
693 
694 	if (mm) {
695 		/* ensure this mm_struct can't be freed */
696 		atomic_inc(&mm->mm_count);
697 		/* but do not pin its memory */
698 		mmput(mm);
699 	}
700 
701 	/* OK to pass negative loff_t, we can catch out-of-range */
702 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
703 	file->private_data = mm;
704 
705 	return 0;
706 }
707 
708 static ssize_t mem_rw(struct file *file, char __user *buf,
709 			size_t count, loff_t *ppos, int write)
710 {
711 	struct mm_struct *mm = file->private_data;
712 	unsigned long addr = *ppos;
713 	ssize_t copied;
714 	char *page;
715 
716 	if (!mm)
717 		return 0;
718 
719 	page = (char *)__get_free_page(GFP_TEMPORARY);
720 	if (!page)
721 		return -ENOMEM;
722 
723 	copied = 0;
724 	if (!atomic_inc_not_zero(&mm->mm_users))
725 		goto free;
726 
727 	while (count > 0) {
728 		int this_len = min_t(int, count, PAGE_SIZE);
729 
730 		if (write && copy_from_user(page, buf, this_len)) {
731 			copied = -EFAULT;
732 			break;
733 		}
734 
735 		this_len = access_remote_vm(mm, addr, page, this_len, write);
736 		if (!this_len) {
737 			if (!copied)
738 				copied = -EIO;
739 			break;
740 		}
741 
742 		if (!write && copy_to_user(buf, page, this_len)) {
743 			copied = -EFAULT;
744 			break;
745 		}
746 
747 		buf += this_len;
748 		addr += this_len;
749 		copied += this_len;
750 		count -= this_len;
751 	}
752 	*ppos = addr;
753 
754 	mmput(mm);
755 free:
756 	free_page((unsigned long) page);
757 	return copied;
758 }
759 
760 static ssize_t mem_read(struct file *file, char __user *buf,
761 			size_t count, loff_t *ppos)
762 {
763 	return mem_rw(file, buf, count, ppos, 0);
764 }
765 
766 static ssize_t mem_write(struct file *file, const char __user *buf,
767 			 size_t count, loff_t *ppos)
768 {
769 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
770 }
771 
772 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
773 {
774 	switch (orig) {
775 	case 0:
776 		file->f_pos = offset;
777 		break;
778 	case 1:
779 		file->f_pos += offset;
780 		break;
781 	default:
782 		return -EINVAL;
783 	}
784 	force_successful_syscall_return();
785 	return file->f_pos;
786 }
787 
788 static int mem_release(struct inode *inode, struct file *file)
789 {
790 	struct mm_struct *mm = file->private_data;
791 	if (mm)
792 		mmdrop(mm);
793 	return 0;
794 }
795 
796 static const struct file_operations proc_mem_operations = {
797 	.llseek		= mem_lseek,
798 	.read		= mem_read,
799 	.write		= mem_write,
800 	.open		= mem_open,
801 	.release	= mem_release,
802 };
803 
804 static ssize_t environ_read(struct file *file, char __user *buf,
805 			size_t count, loff_t *ppos)
806 {
807 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
808 	char *page;
809 	unsigned long src = *ppos;
810 	int ret = -ESRCH;
811 	struct mm_struct *mm;
812 
813 	if (!task)
814 		goto out_no_task;
815 
816 	ret = -ENOMEM;
817 	page = (char *)__get_free_page(GFP_TEMPORARY);
818 	if (!page)
819 		goto out;
820 
821 
822 	mm = mm_for_maps(task);
823 	ret = PTR_ERR(mm);
824 	if (!mm || IS_ERR(mm))
825 		goto out_free;
826 
827 	ret = 0;
828 	while (count > 0) {
829 		int this_len, retval, max_len;
830 
831 		this_len = mm->env_end - (mm->env_start + src);
832 
833 		if (this_len <= 0)
834 			break;
835 
836 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
837 		this_len = (this_len > max_len) ? max_len : this_len;
838 
839 		retval = access_process_vm(task, (mm->env_start + src),
840 			page, this_len, 0);
841 
842 		if (retval <= 0) {
843 			ret = retval;
844 			break;
845 		}
846 
847 		if (copy_to_user(buf, page, retval)) {
848 			ret = -EFAULT;
849 			break;
850 		}
851 
852 		ret += retval;
853 		src += retval;
854 		buf += retval;
855 		count -= retval;
856 	}
857 	*ppos = src;
858 
859 	mmput(mm);
860 out_free:
861 	free_page((unsigned long) page);
862 out:
863 	put_task_struct(task);
864 out_no_task:
865 	return ret;
866 }
867 
868 static const struct file_operations proc_environ_operations = {
869 	.read		= environ_read,
870 	.llseek		= generic_file_llseek,
871 };
872 
873 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
874 				size_t count, loff_t *ppos)
875 {
876 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
877 	char buffer[PROC_NUMBUF];
878 	size_t len;
879 	int oom_adjust = OOM_DISABLE;
880 	unsigned long flags;
881 
882 	if (!task)
883 		return -ESRCH;
884 
885 	if (lock_task_sighand(task, &flags)) {
886 		oom_adjust = task->signal->oom_adj;
887 		unlock_task_sighand(task, &flags);
888 	}
889 
890 	put_task_struct(task);
891 
892 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
893 
894 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
895 }
896 
897 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
898 				size_t count, loff_t *ppos)
899 {
900 	struct task_struct *task;
901 	char buffer[PROC_NUMBUF];
902 	int oom_adjust;
903 	unsigned long flags;
904 	int err;
905 
906 	memset(buffer, 0, sizeof(buffer));
907 	if (count > sizeof(buffer) - 1)
908 		count = sizeof(buffer) - 1;
909 	if (copy_from_user(buffer, buf, count)) {
910 		err = -EFAULT;
911 		goto out;
912 	}
913 
914 	err = kstrtoint(strstrip(buffer), 0, &oom_adjust);
915 	if (err)
916 		goto out;
917 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
918 	     oom_adjust != OOM_DISABLE) {
919 		err = -EINVAL;
920 		goto out;
921 	}
922 
923 	task = get_proc_task(file->f_path.dentry->d_inode);
924 	if (!task) {
925 		err = -ESRCH;
926 		goto out;
927 	}
928 
929 	task_lock(task);
930 	if (!task->mm) {
931 		err = -EINVAL;
932 		goto err_task_lock;
933 	}
934 
935 	if (!lock_task_sighand(task, &flags)) {
936 		err = -ESRCH;
937 		goto err_task_lock;
938 	}
939 
940 	if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
941 		err = -EACCES;
942 		goto err_sighand;
943 	}
944 
945 	/*
946 	 * Warn that /proc/pid/oom_adj is deprecated, see
947 	 * Documentation/feature-removal-schedule.txt.
948 	 */
949 	printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
950 		  current->comm, task_pid_nr(current), task_pid_nr(task),
951 		  task_pid_nr(task));
952 	task->signal->oom_adj = oom_adjust;
953 	/*
954 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
955 	 * value is always attainable.
956 	 */
957 	if (task->signal->oom_adj == OOM_ADJUST_MAX)
958 		task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
959 	else
960 		task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
961 								-OOM_DISABLE;
962 	trace_oom_score_adj_update(task);
963 err_sighand:
964 	unlock_task_sighand(task, &flags);
965 err_task_lock:
966 	task_unlock(task);
967 	put_task_struct(task);
968 out:
969 	return err < 0 ? err : count;
970 }
971 
972 static const struct file_operations proc_oom_adjust_operations = {
973 	.read		= oom_adjust_read,
974 	.write		= oom_adjust_write,
975 	.llseek		= generic_file_llseek,
976 };
977 
978 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
979 					size_t count, loff_t *ppos)
980 {
981 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
982 	char buffer[PROC_NUMBUF];
983 	int oom_score_adj = OOM_SCORE_ADJ_MIN;
984 	unsigned long flags;
985 	size_t len;
986 
987 	if (!task)
988 		return -ESRCH;
989 	if (lock_task_sighand(task, &flags)) {
990 		oom_score_adj = task->signal->oom_score_adj;
991 		unlock_task_sighand(task, &flags);
992 	}
993 	put_task_struct(task);
994 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
995 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
996 }
997 
998 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
999 					size_t count, loff_t *ppos)
1000 {
1001 	struct task_struct *task;
1002 	char buffer[PROC_NUMBUF];
1003 	unsigned long flags;
1004 	int oom_score_adj;
1005 	int err;
1006 
1007 	memset(buffer, 0, sizeof(buffer));
1008 	if (count > sizeof(buffer) - 1)
1009 		count = sizeof(buffer) - 1;
1010 	if (copy_from_user(buffer, buf, count)) {
1011 		err = -EFAULT;
1012 		goto out;
1013 	}
1014 
1015 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1016 	if (err)
1017 		goto out;
1018 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1019 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1020 		err = -EINVAL;
1021 		goto out;
1022 	}
1023 
1024 	task = get_proc_task(file->f_path.dentry->d_inode);
1025 	if (!task) {
1026 		err = -ESRCH;
1027 		goto out;
1028 	}
1029 
1030 	task_lock(task);
1031 	if (!task->mm) {
1032 		err = -EINVAL;
1033 		goto err_task_lock;
1034 	}
1035 
1036 	if (!lock_task_sighand(task, &flags)) {
1037 		err = -ESRCH;
1038 		goto err_task_lock;
1039 	}
1040 
1041 	if (oom_score_adj < task->signal->oom_score_adj_min &&
1042 			!capable(CAP_SYS_RESOURCE)) {
1043 		err = -EACCES;
1044 		goto err_sighand;
1045 	}
1046 
1047 	task->signal->oom_score_adj = oom_score_adj;
1048 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1049 		task->signal->oom_score_adj_min = oom_score_adj;
1050 	trace_oom_score_adj_update(task);
1051 	/*
1052 	 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1053 	 * always attainable.
1054 	 */
1055 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1056 		task->signal->oom_adj = OOM_DISABLE;
1057 	else
1058 		task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1059 							OOM_SCORE_ADJ_MAX;
1060 err_sighand:
1061 	unlock_task_sighand(task, &flags);
1062 err_task_lock:
1063 	task_unlock(task);
1064 	put_task_struct(task);
1065 out:
1066 	return err < 0 ? err : count;
1067 }
1068 
1069 static const struct file_operations proc_oom_score_adj_operations = {
1070 	.read		= oom_score_adj_read,
1071 	.write		= oom_score_adj_write,
1072 	.llseek		= default_llseek,
1073 };
1074 
1075 #ifdef CONFIG_AUDITSYSCALL
1076 #define TMPBUFLEN 21
1077 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1078 				  size_t count, loff_t *ppos)
1079 {
1080 	struct inode * inode = file->f_path.dentry->d_inode;
1081 	struct task_struct *task = get_proc_task(inode);
1082 	ssize_t length;
1083 	char tmpbuf[TMPBUFLEN];
1084 
1085 	if (!task)
1086 		return -ESRCH;
1087 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1088 				audit_get_loginuid(task));
1089 	put_task_struct(task);
1090 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1091 }
1092 
1093 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1094 				   size_t count, loff_t *ppos)
1095 {
1096 	struct inode * inode = file->f_path.dentry->d_inode;
1097 	char *page, *tmp;
1098 	ssize_t length;
1099 	uid_t loginuid;
1100 
1101 	rcu_read_lock();
1102 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1103 		rcu_read_unlock();
1104 		return -EPERM;
1105 	}
1106 	rcu_read_unlock();
1107 
1108 	if (count >= PAGE_SIZE)
1109 		count = PAGE_SIZE - 1;
1110 
1111 	if (*ppos != 0) {
1112 		/* No partial writes. */
1113 		return -EINVAL;
1114 	}
1115 	page = (char*)__get_free_page(GFP_TEMPORARY);
1116 	if (!page)
1117 		return -ENOMEM;
1118 	length = -EFAULT;
1119 	if (copy_from_user(page, buf, count))
1120 		goto out_free_page;
1121 
1122 	page[count] = '\0';
1123 	loginuid = simple_strtoul(page, &tmp, 10);
1124 	if (tmp == page) {
1125 		length = -EINVAL;
1126 		goto out_free_page;
1127 
1128 	}
1129 	length = audit_set_loginuid(loginuid);
1130 	if (likely(length == 0))
1131 		length = count;
1132 
1133 out_free_page:
1134 	free_page((unsigned long) page);
1135 	return length;
1136 }
1137 
1138 static const struct file_operations proc_loginuid_operations = {
1139 	.read		= proc_loginuid_read,
1140 	.write		= proc_loginuid_write,
1141 	.llseek		= generic_file_llseek,
1142 };
1143 
1144 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1145 				  size_t count, loff_t *ppos)
1146 {
1147 	struct inode * inode = file->f_path.dentry->d_inode;
1148 	struct task_struct *task = get_proc_task(inode);
1149 	ssize_t length;
1150 	char tmpbuf[TMPBUFLEN];
1151 
1152 	if (!task)
1153 		return -ESRCH;
1154 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1155 				audit_get_sessionid(task));
1156 	put_task_struct(task);
1157 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1158 }
1159 
1160 static const struct file_operations proc_sessionid_operations = {
1161 	.read		= proc_sessionid_read,
1162 	.llseek		= generic_file_llseek,
1163 };
1164 #endif
1165 
1166 #ifdef CONFIG_FAULT_INJECTION
1167 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1168 				      size_t count, loff_t *ppos)
1169 {
1170 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1171 	char buffer[PROC_NUMBUF];
1172 	size_t len;
1173 	int make_it_fail;
1174 
1175 	if (!task)
1176 		return -ESRCH;
1177 	make_it_fail = task->make_it_fail;
1178 	put_task_struct(task);
1179 
1180 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1181 
1182 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1183 }
1184 
1185 static ssize_t proc_fault_inject_write(struct file * file,
1186 			const char __user * buf, size_t count, loff_t *ppos)
1187 {
1188 	struct task_struct *task;
1189 	char buffer[PROC_NUMBUF], *end;
1190 	int make_it_fail;
1191 
1192 	if (!capable(CAP_SYS_RESOURCE))
1193 		return -EPERM;
1194 	memset(buffer, 0, sizeof(buffer));
1195 	if (count > sizeof(buffer) - 1)
1196 		count = sizeof(buffer) - 1;
1197 	if (copy_from_user(buffer, buf, count))
1198 		return -EFAULT;
1199 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1200 	if (*end)
1201 		return -EINVAL;
1202 	task = get_proc_task(file->f_dentry->d_inode);
1203 	if (!task)
1204 		return -ESRCH;
1205 	task->make_it_fail = make_it_fail;
1206 	put_task_struct(task);
1207 
1208 	return count;
1209 }
1210 
1211 static const struct file_operations proc_fault_inject_operations = {
1212 	.read		= proc_fault_inject_read,
1213 	.write		= proc_fault_inject_write,
1214 	.llseek		= generic_file_llseek,
1215 };
1216 #endif
1217 
1218 
1219 #ifdef CONFIG_SCHED_DEBUG
1220 /*
1221  * Print out various scheduling related per-task fields:
1222  */
1223 static int sched_show(struct seq_file *m, void *v)
1224 {
1225 	struct inode *inode = m->private;
1226 	struct task_struct *p;
1227 
1228 	p = get_proc_task(inode);
1229 	if (!p)
1230 		return -ESRCH;
1231 	proc_sched_show_task(p, m);
1232 
1233 	put_task_struct(p);
1234 
1235 	return 0;
1236 }
1237 
1238 static ssize_t
1239 sched_write(struct file *file, const char __user *buf,
1240 	    size_t count, loff_t *offset)
1241 {
1242 	struct inode *inode = file->f_path.dentry->d_inode;
1243 	struct task_struct *p;
1244 
1245 	p = get_proc_task(inode);
1246 	if (!p)
1247 		return -ESRCH;
1248 	proc_sched_set_task(p);
1249 
1250 	put_task_struct(p);
1251 
1252 	return count;
1253 }
1254 
1255 static int sched_open(struct inode *inode, struct file *filp)
1256 {
1257 	return single_open(filp, sched_show, inode);
1258 }
1259 
1260 static const struct file_operations proc_pid_sched_operations = {
1261 	.open		= sched_open,
1262 	.read		= seq_read,
1263 	.write		= sched_write,
1264 	.llseek		= seq_lseek,
1265 	.release	= single_release,
1266 };
1267 
1268 #endif
1269 
1270 #ifdef CONFIG_SCHED_AUTOGROUP
1271 /*
1272  * Print out autogroup related information:
1273  */
1274 static int sched_autogroup_show(struct seq_file *m, void *v)
1275 {
1276 	struct inode *inode = m->private;
1277 	struct task_struct *p;
1278 
1279 	p = get_proc_task(inode);
1280 	if (!p)
1281 		return -ESRCH;
1282 	proc_sched_autogroup_show_task(p, m);
1283 
1284 	put_task_struct(p);
1285 
1286 	return 0;
1287 }
1288 
1289 static ssize_t
1290 sched_autogroup_write(struct file *file, const char __user *buf,
1291 	    size_t count, loff_t *offset)
1292 {
1293 	struct inode *inode = file->f_path.dentry->d_inode;
1294 	struct task_struct *p;
1295 	char buffer[PROC_NUMBUF];
1296 	int nice;
1297 	int err;
1298 
1299 	memset(buffer, 0, sizeof(buffer));
1300 	if (count > sizeof(buffer) - 1)
1301 		count = sizeof(buffer) - 1;
1302 	if (copy_from_user(buffer, buf, count))
1303 		return -EFAULT;
1304 
1305 	err = kstrtoint(strstrip(buffer), 0, &nice);
1306 	if (err < 0)
1307 		return err;
1308 
1309 	p = get_proc_task(inode);
1310 	if (!p)
1311 		return -ESRCH;
1312 
1313 	err = nice;
1314 	err = proc_sched_autogroup_set_nice(p, &err);
1315 	if (err)
1316 		count = err;
1317 
1318 	put_task_struct(p);
1319 
1320 	return count;
1321 }
1322 
1323 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1324 {
1325 	int ret;
1326 
1327 	ret = single_open(filp, sched_autogroup_show, NULL);
1328 	if (!ret) {
1329 		struct seq_file *m = filp->private_data;
1330 
1331 		m->private = inode;
1332 	}
1333 	return ret;
1334 }
1335 
1336 static const struct file_operations proc_pid_sched_autogroup_operations = {
1337 	.open		= sched_autogroup_open,
1338 	.read		= seq_read,
1339 	.write		= sched_autogroup_write,
1340 	.llseek		= seq_lseek,
1341 	.release	= single_release,
1342 };
1343 
1344 #endif /* CONFIG_SCHED_AUTOGROUP */
1345 
1346 static ssize_t comm_write(struct file *file, const char __user *buf,
1347 				size_t count, loff_t *offset)
1348 {
1349 	struct inode *inode = file->f_path.dentry->d_inode;
1350 	struct task_struct *p;
1351 	char buffer[TASK_COMM_LEN];
1352 
1353 	memset(buffer, 0, sizeof(buffer));
1354 	if (count > sizeof(buffer) - 1)
1355 		count = sizeof(buffer) - 1;
1356 	if (copy_from_user(buffer, buf, count))
1357 		return -EFAULT;
1358 
1359 	p = get_proc_task(inode);
1360 	if (!p)
1361 		return -ESRCH;
1362 
1363 	if (same_thread_group(current, p))
1364 		set_task_comm(p, buffer);
1365 	else
1366 		count = -EINVAL;
1367 
1368 	put_task_struct(p);
1369 
1370 	return count;
1371 }
1372 
1373 static int comm_show(struct seq_file *m, void *v)
1374 {
1375 	struct inode *inode = m->private;
1376 	struct task_struct *p;
1377 
1378 	p = get_proc_task(inode);
1379 	if (!p)
1380 		return -ESRCH;
1381 
1382 	task_lock(p);
1383 	seq_printf(m, "%s\n", p->comm);
1384 	task_unlock(p);
1385 
1386 	put_task_struct(p);
1387 
1388 	return 0;
1389 }
1390 
1391 static int comm_open(struct inode *inode, struct file *filp)
1392 {
1393 	return single_open(filp, comm_show, inode);
1394 }
1395 
1396 static const struct file_operations proc_pid_set_comm_operations = {
1397 	.open		= comm_open,
1398 	.read		= seq_read,
1399 	.write		= comm_write,
1400 	.llseek		= seq_lseek,
1401 	.release	= single_release,
1402 };
1403 
1404 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1405 {
1406 	struct task_struct *task;
1407 	struct mm_struct *mm;
1408 	struct file *exe_file;
1409 
1410 	task = get_proc_task(dentry->d_inode);
1411 	if (!task)
1412 		return -ENOENT;
1413 	mm = get_task_mm(task);
1414 	put_task_struct(task);
1415 	if (!mm)
1416 		return -ENOENT;
1417 	exe_file = get_mm_exe_file(mm);
1418 	mmput(mm);
1419 	if (exe_file) {
1420 		*exe_path = exe_file->f_path;
1421 		path_get(&exe_file->f_path);
1422 		fput(exe_file);
1423 		return 0;
1424 	} else
1425 		return -ENOENT;
1426 }
1427 
1428 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1429 {
1430 	struct inode *inode = dentry->d_inode;
1431 	int error = -EACCES;
1432 
1433 	/* We don't need a base pointer in the /proc filesystem */
1434 	path_put(&nd->path);
1435 
1436 	/* Are we allowed to snoop on the tasks file descriptors? */
1437 	if (!proc_fd_access_allowed(inode))
1438 		goto out;
1439 
1440 	error = PROC_I(inode)->op.proc_get_link(dentry, &nd->path);
1441 out:
1442 	return ERR_PTR(error);
1443 }
1444 
1445 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1446 {
1447 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1448 	char *pathname;
1449 	int len;
1450 
1451 	if (!tmp)
1452 		return -ENOMEM;
1453 
1454 	pathname = d_path(path, tmp, PAGE_SIZE);
1455 	len = PTR_ERR(pathname);
1456 	if (IS_ERR(pathname))
1457 		goto out;
1458 	len = tmp + PAGE_SIZE - 1 - pathname;
1459 
1460 	if (len > buflen)
1461 		len = buflen;
1462 	if (copy_to_user(buffer, pathname, len))
1463 		len = -EFAULT;
1464  out:
1465 	free_page((unsigned long)tmp);
1466 	return len;
1467 }
1468 
1469 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1470 {
1471 	int error = -EACCES;
1472 	struct inode *inode = dentry->d_inode;
1473 	struct path path;
1474 
1475 	/* Are we allowed to snoop on the tasks file descriptors? */
1476 	if (!proc_fd_access_allowed(inode))
1477 		goto out;
1478 
1479 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1480 	if (error)
1481 		goto out;
1482 
1483 	error = do_proc_readlink(&path, buffer, buflen);
1484 	path_put(&path);
1485 out:
1486 	return error;
1487 }
1488 
1489 static const struct inode_operations proc_pid_link_inode_operations = {
1490 	.readlink	= proc_pid_readlink,
1491 	.follow_link	= proc_pid_follow_link,
1492 	.setattr	= proc_setattr,
1493 };
1494 
1495 
1496 /* building an inode */
1497 
1498 static int task_dumpable(struct task_struct *task)
1499 {
1500 	int dumpable = 0;
1501 	struct mm_struct *mm;
1502 
1503 	task_lock(task);
1504 	mm = task->mm;
1505 	if (mm)
1506 		dumpable = get_dumpable(mm);
1507 	task_unlock(task);
1508 	if(dumpable == 1)
1509 		return 1;
1510 	return 0;
1511 }
1512 
1513 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1514 {
1515 	struct inode * inode;
1516 	struct proc_inode *ei;
1517 	const struct cred *cred;
1518 
1519 	/* We need a new inode */
1520 
1521 	inode = new_inode(sb);
1522 	if (!inode)
1523 		goto out;
1524 
1525 	/* Common stuff */
1526 	ei = PROC_I(inode);
1527 	inode->i_ino = get_next_ino();
1528 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1529 	inode->i_op = &proc_def_inode_operations;
1530 
1531 	/*
1532 	 * grab the reference to task.
1533 	 */
1534 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1535 	if (!ei->pid)
1536 		goto out_unlock;
1537 
1538 	if (task_dumpable(task)) {
1539 		rcu_read_lock();
1540 		cred = __task_cred(task);
1541 		inode->i_uid = cred->euid;
1542 		inode->i_gid = cred->egid;
1543 		rcu_read_unlock();
1544 	}
1545 	security_task_to_inode(task, inode);
1546 
1547 out:
1548 	return inode;
1549 
1550 out_unlock:
1551 	iput(inode);
1552 	return NULL;
1553 }
1554 
1555 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1556 {
1557 	struct inode *inode = dentry->d_inode;
1558 	struct task_struct *task;
1559 	const struct cred *cred;
1560 	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1561 
1562 	generic_fillattr(inode, stat);
1563 
1564 	rcu_read_lock();
1565 	stat->uid = 0;
1566 	stat->gid = 0;
1567 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1568 	if (task) {
1569 		if (!has_pid_permissions(pid, task, 2)) {
1570 			rcu_read_unlock();
1571 			/*
1572 			 * This doesn't prevent learning whether PID exists,
1573 			 * it only makes getattr() consistent with readdir().
1574 			 */
1575 			return -ENOENT;
1576 		}
1577 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1578 		    task_dumpable(task)) {
1579 			cred = __task_cred(task);
1580 			stat->uid = cred->euid;
1581 			stat->gid = cred->egid;
1582 		}
1583 	}
1584 	rcu_read_unlock();
1585 	return 0;
1586 }
1587 
1588 /* dentry stuff */
1589 
1590 /*
1591  *	Exceptional case: normally we are not allowed to unhash a busy
1592  * directory. In this case, however, we can do it - no aliasing problems
1593  * due to the way we treat inodes.
1594  *
1595  * Rewrite the inode's ownerships here because the owning task may have
1596  * performed a setuid(), etc.
1597  *
1598  * Before the /proc/pid/status file was created the only way to read
1599  * the effective uid of a /process was to stat /proc/pid.  Reading
1600  * /proc/pid/status is slow enough that procps and other packages
1601  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1602  * made this apply to all per process world readable and executable
1603  * directories.
1604  */
1605 int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1606 {
1607 	struct inode *inode;
1608 	struct task_struct *task;
1609 	const struct cred *cred;
1610 
1611 	if (nd && nd->flags & LOOKUP_RCU)
1612 		return -ECHILD;
1613 
1614 	inode = dentry->d_inode;
1615 	task = get_proc_task(inode);
1616 
1617 	if (task) {
1618 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1619 		    task_dumpable(task)) {
1620 			rcu_read_lock();
1621 			cred = __task_cred(task);
1622 			inode->i_uid = cred->euid;
1623 			inode->i_gid = cred->egid;
1624 			rcu_read_unlock();
1625 		} else {
1626 			inode->i_uid = 0;
1627 			inode->i_gid = 0;
1628 		}
1629 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1630 		security_task_to_inode(task, inode);
1631 		put_task_struct(task);
1632 		return 1;
1633 	}
1634 	d_drop(dentry);
1635 	return 0;
1636 }
1637 
1638 static int pid_delete_dentry(const struct dentry * dentry)
1639 {
1640 	/* Is the task we represent dead?
1641 	 * If so, then don't put the dentry on the lru list,
1642 	 * kill it immediately.
1643 	 */
1644 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1645 }
1646 
1647 const struct dentry_operations pid_dentry_operations =
1648 {
1649 	.d_revalidate	= pid_revalidate,
1650 	.d_delete	= pid_delete_dentry,
1651 };
1652 
1653 /* Lookups */
1654 
1655 /*
1656  * Fill a directory entry.
1657  *
1658  * If possible create the dcache entry and derive our inode number and
1659  * file type from dcache entry.
1660  *
1661  * Since all of the proc inode numbers are dynamically generated, the inode
1662  * numbers do not exist until the inode is cache.  This means creating the
1663  * the dcache entry in readdir is necessary to keep the inode numbers
1664  * reported by readdir in sync with the inode numbers reported
1665  * by stat.
1666  */
1667 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1668 	const char *name, int len,
1669 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1670 {
1671 	struct dentry *child, *dir = filp->f_path.dentry;
1672 	struct inode *inode;
1673 	struct qstr qname;
1674 	ino_t ino = 0;
1675 	unsigned type = DT_UNKNOWN;
1676 
1677 	qname.name = name;
1678 	qname.len  = len;
1679 	qname.hash = full_name_hash(name, len);
1680 
1681 	child = d_lookup(dir, &qname);
1682 	if (!child) {
1683 		struct dentry *new;
1684 		new = d_alloc(dir, &qname);
1685 		if (new) {
1686 			child = instantiate(dir->d_inode, new, task, ptr);
1687 			if (child)
1688 				dput(new);
1689 			else
1690 				child = new;
1691 		}
1692 	}
1693 	if (!child || IS_ERR(child) || !child->d_inode)
1694 		goto end_instantiate;
1695 	inode = child->d_inode;
1696 	if (inode) {
1697 		ino = inode->i_ino;
1698 		type = inode->i_mode >> 12;
1699 	}
1700 	dput(child);
1701 end_instantiate:
1702 	if (!ino)
1703 		ino = find_inode_number(dir, &qname);
1704 	if (!ino)
1705 		ino = 1;
1706 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1707 }
1708 
1709 static unsigned name_to_int(struct dentry *dentry)
1710 {
1711 	const char *name = dentry->d_name.name;
1712 	int len = dentry->d_name.len;
1713 	unsigned n = 0;
1714 
1715 	if (len > 1 && *name == '0')
1716 		goto out;
1717 	while (len-- > 0) {
1718 		unsigned c = *name++ - '0';
1719 		if (c > 9)
1720 			goto out;
1721 		if (n >= (~0U-9)/10)
1722 			goto out;
1723 		n *= 10;
1724 		n += c;
1725 	}
1726 	return n;
1727 out:
1728 	return ~0U;
1729 }
1730 
1731 #define PROC_FDINFO_MAX 64
1732 
1733 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1734 {
1735 	struct task_struct *task = get_proc_task(inode);
1736 	struct files_struct *files = NULL;
1737 	struct file *file;
1738 	int fd = proc_fd(inode);
1739 
1740 	if (task) {
1741 		files = get_files_struct(task);
1742 		put_task_struct(task);
1743 	}
1744 	if (files) {
1745 		/*
1746 		 * We are not taking a ref to the file structure, so we must
1747 		 * hold ->file_lock.
1748 		 */
1749 		spin_lock(&files->file_lock);
1750 		file = fcheck_files(files, fd);
1751 		if (file) {
1752 			unsigned int f_flags;
1753 			struct fdtable *fdt;
1754 
1755 			fdt = files_fdtable(files);
1756 			f_flags = file->f_flags & ~O_CLOEXEC;
1757 			if (FD_ISSET(fd, fdt->close_on_exec))
1758 				f_flags |= O_CLOEXEC;
1759 
1760 			if (path) {
1761 				*path = file->f_path;
1762 				path_get(&file->f_path);
1763 			}
1764 			if (info)
1765 				snprintf(info, PROC_FDINFO_MAX,
1766 					 "pos:\t%lli\n"
1767 					 "flags:\t0%o\n",
1768 					 (long long) file->f_pos,
1769 					 f_flags);
1770 			spin_unlock(&files->file_lock);
1771 			put_files_struct(files);
1772 			return 0;
1773 		}
1774 		spin_unlock(&files->file_lock);
1775 		put_files_struct(files);
1776 	}
1777 	return -ENOENT;
1778 }
1779 
1780 static int proc_fd_link(struct dentry *dentry, struct path *path)
1781 {
1782 	return proc_fd_info(dentry->d_inode, path, NULL);
1783 }
1784 
1785 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1786 {
1787 	struct inode *inode;
1788 	struct task_struct *task;
1789 	int fd;
1790 	struct files_struct *files;
1791 	const struct cred *cred;
1792 
1793 	if (nd && nd->flags & LOOKUP_RCU)
1794 		return -ECHILD;
1795 
1796 	inode = dentry->d_inode;
1797 	task = get_proc_task(inode);
1798 	fd = proc_fd(inode);
1799 
1800 	if (task) {
1801 		files = get_files_struct(task);
1802 		if (files) {
1803 			rcu_read_lock();
1804 			if (fcheck_files(files, fd)) {
1805 				rcu_read_unlock();
1806 				put_files_struct(files);
1807 				if (task_dumpable(task)) {
1808 					rcu_read_lock();
1809 					cred = __task_cred(task);
1810 					inode->i_uid = cred->euid;
1811 					inode->i_gid = cred->egid;
1812 					rcu_read_unlock();
1813 				} else {
1814 					inode->i_uid = 0;
1815 					inode->i_gid = 0;
1816 				}
1817 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1818 				security_task_to_inode(task, inode);
1819 				put_task_struct(task);
1820 				return 1;
1821 			}
1822 			rcu_read_unlock();
1823 			put_files_struct(files);
1824 		}
1825 		put_task_struct(task);
1826 	}
1827 	d_drop(dentry);
1828 	return 0;
1829 }
1830 
1831 static const struct dentry_operations tid_fd_dentry_operations =
1832 {
1833 	.d_revalidate	= tid_fd_revalidate,
1834 	.d_delete	= pid_delete_dentry,
1835 };
1836 
1837 static struct dentry *proc_fd_instantiate(struct inode *dir,
1838 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1839 {
1840 	unsigned fd = *(const unsigned *)ptr;
1841 	struct file *file;
1842 	struct files_struct *files;
1843  	struct inode *inode;
1844  	struct proc_inode *ei;
1845 	struct dentry *error = ERR_PTR(-ENOENT);
1846 
1847 	inode = proc_pid_make_inode(dir->i_sb, task);
1848 	if (!inode)
1849 		goto out;
1850 	ei = PROC_I(inode);
1851 	ei->fd = fd;
1852 	files = get_files_struct(task);
1853 	if (!files)
1854 		goto out_iput;
1855 	inode->i_mode = S_IFLNK;
1856 
1857 	/*
1858 	 * We are not taking a ref to the file structure, so we must
1859 	 * hold ->file_lock.
1860 	 */
1861 	spin_lock(&files->file_lock);
1862 	file = fcheck_files(files, fd);
1863 	if (!file)
1864 		goto out_unlock;
1865 	if (file->f_mode & FMODE_READ)
1866 		inode->i_mode |= S_IRUSR | S_IXUSR;
1867 	if (file->f_mode & FMODE_WRITE)
1868 		inode->i_mode |= S_IWUSR | S_IXUSR;
1869 	spin_unlock(&files->file_lock);
1870 	put_files_struct(files);
1871 
1872 	inode->i_op = &proc_pid_link_inode_operations;
1873 	inode->i_size = 64;
1874 	ei->op.proc_get_link = proc_fd_link;
1875 	d_set_d_op(dentry, &tid_fd_dentry_operations);
1876 	d_add(dentry, inode);
1877 	/* Close the race of the process dying before we return the dentry */
1878 	if (tid_fd_revalidate(dentry, NULL))
1879 		error = NULL;
1880 
1881  out:
1882 	return error;
1883 out_unlock:
1884 	spin_unlock(&files->file_lock);
1885 	put_files_struct(files);
1886 out_iput:
1887 	iput(inode);
1888 	goto out;
1889 }
1890 
1891 static struct dentry *proc_lookupfd_common(struct inode *dir,
1892 					   struct dentry *dentry,
1893 					   instantiate_t instantiate)
1894 {
1895 	struct task_struct *task = get_proc_task(dir);
1896 	unsigned fd = name_to_int(dentry);
1897 	struct dentry *result = ERR_PTR(-ENOENT);
1898 
1899 	if (!task)
1900 		goto out_no_task;
1901 	if (fd == ~0U)
1902 		goto out;
1903 
1904 	result = instantiate(dir, dentry, task, &fd);
1905 out:
1906 	put_task_struct(task);
1907 out_no_task:
1908 	return result;
1909 }
1910 
1911 static int proc_readfd_common(struct file * filp, void * dirent,
1912 			      filldir_t filldir, instantiate_t instantiate)
1913 {
1914 	struct dentry *dentry = filp->f_path.dentry;
1915 	struct inode *inode = dentry->d_inode;
1916 	struct task_struct *p = get_proc_task(inode);
1917 	unsigned int fd, ino;
1918 	int retval;
1919 	struct files_struct * files;
1920 
1921 	retval = -ENOENT;
1922 	if (!p)
1923 		goto out_no_task;
1924 	retval = 0;
1925 
1926 	fd = filp->f_pos;
1927 	switch (fd) {
1928 		case 0:
1929 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1930 				goto out;
1931 			filp->f_pos++;
1932 		case 1:
1933 			ino = parent_ino(dentry);
1934 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1935 				goto out;
1936 			filp->f_pos++;
1937 		default:
1938 			files = get_files_struct(p);
1939 			if (!files)
1940 				goto out;
1941 			rcu_read_lock();
1942 			for (fd = filp->f_pos-2;
1943 			     fd < files_fdtable(files)->max_fds;
1944 			     fd++, filp->f_pos++) {
1945 				char name[PROC_NUMBUF];
1946 				int len;
1947 
1948 				if (!fcheck_files(files, fd))
1949 					continue;
1950 				rcu_read_unlock();
1951 
1952 				len = snprintf(name, sizeof(name), "%d", fd);
1953 				if (proc_fill_cache(filp, dirent, filldir,
1954 						    name, len, instantiate,
1955 						    p, &fd) < 0) {
1956 					rcu_read_lock();
1957 					break;
1958 				}
1959 				rcu_read_lock();
1960 			}
1961 			rcu_read_unlock();
1962 			put_files_struct(files);
1963 	}
1964 out:
1965 	put_task_struct(p);
1966 out_no_task:
1967 	return retval;
1968 }
1969 
1970 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1971 				    struct nameidata *nd)
1972 {
1973 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1974 }
1975 
1976 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1977 {
1978 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1979 }
1980 
1981 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1982 				      size_t len, loff_t *ppos)
1983 {
1984 	char tmp[PROC_FDINFO_MAX];
1985 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1986 	if (!err)
1987 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1988 	return err;
1989 }
1990 
1991 static const struct file_operations proc_fdinfo_file_operations = {
1992 	.open           = nonseekable_open,
1993 	.read		= proc_fdinfo_read,
1994 	.llseek		= no_llseek,
1995 };
1996 
1997 static const struct file_operations proc_fd_operations = {
1998 	.read		= generic_read_dir,
1999 	.readdir	= proc_readfd,
2000 	.llseek		= default_llseek,
2001 };
2002 
2003 #ifdef CONFIG_CHECKPOINT_RESTORE
2004 
2005 /*
2006  * dname_to_vma_addr - maps a dentry name into two unsigned longs
2007  * which represent vma start and end addresses.
2008  */
2009 static int dname_to_vma_addr(struct dentry *dentry,
2010 			     unsigned long *start, unsigned long *end)
2011 {
2012 	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
2013 		return -EINVAL;
2014 
2015 	return 0;
2016 }
2017 
2018 static int map_files_d_revalidate(struct dentry *dentry, struct nameidata *nd)
2019 {
2020 	unsigned long vm_start, vm_end;
2021 	bool exact_vma_exists = false;
2022 	struct mm_struct *mm = NULL;
2023 	struct task_struct *task;
2024 	const struct cred *cred;
2025 	struct inode *inode;
2026 	int status = 0;
2027 
2028 	if (nd && nd->flags & LOOKUP_RCU)
2029 		return -ECHILD;
2030 
2031 	if (!capable(CAP_SYS_ADMIN)) {
2032 		status = -EACCES;
2033 		goto out_notask;
2034 	}
2035 
2036 	inode = dentry->d_inode;
2037 	task = get_proc_task(inode);
2038 	if (!task)
2039 		goto out_notask;
2040 
2041 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2042 		goto out;
2043 
2044 	mm = get_task_mm(task);
2045 	if (!mm)
2046 		goto out;
2047 
2048 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2049 		down_read(&mm->mmap_sem);
2050 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
2051 		up_read(&mm->mmap_sem);
2052 	}
2053 
2054 	mmput(mm);
2055 
2056 	if (exact_vma_exists) {
2057 		if (task_dumpable(task)) {
2058 			rcu_read_lock();
2059 			cred = __task_cred(task);
2060 			inode->i_uid = cred->euid;
2061 			inode->i_gid = cred->egid;
2062 			rcu_read_unlock();
2063 		} else {
2064 			inode->i_uid = 0;
2065 			inode->i_gid = 0;
2066 		}
2067 		security_task_to_inode(task, inode);
2068 		status = 1;
2069 	}
2070 
2071 out:
2072 	put_task_struct(task);
2073 
2074 out_notask:
2075 	if (status <= 0)
2076 		d_drop(dentry);
2077 
2078 	return status;
2079 }
2080 
2081 static const struct dentry_operations tid_map_files_dentry_operations = {
2082 	.d_revalidate	= map_files_d_revalidate,
2083 	.d_delete	= pid_delete_dentry,
2084 };
2085 
2086 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
2087 {
2088 	unsigned long vm_start, vm_end;
2089 	struct vm_area_struct *vma;
2090 	struct task_struct *task;
2091 	struct mm_struct *mm;
2092 	int rc;
2093 
2094 	rc = -ENOENT;
2095 	task = get_proc_task(dentry->d_inode);
2096 	if (!task)
2097 		goto out;
2098 
2099 	mm = get_task_mm(task);
2100 	put_task_struct(task);
2101 	if (!mm)
2102 		goto out;
2103 
2104 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2105 	if (rc)
2106 		goto out_mmput;
2107 
2108 	down_read(&mm->mmap_sem);
2109 	vma = find_exact_vma(mm, vm_start, vm_end);
2110 	if (vma && vma->vm_file) {
2111 		*path = vma->vm_file->f_path;
2112 		path_get(path);
2113 		rc = 0;
2114 	}
2115 	up_read(&mm->mmap_sem);
2116 
2117 out_mmput:
2118 	mmput(mm);
2119 out:
2120 	return rc;
2121 }
2122 
2123 struct map_files_info {
2124 	struct file	*file;
2125 	unsigned long	len;
2126 	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
2127 };
2128 
2129 static struct dentry *
2130 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2131 			   struct task_struct *task, const void *ptr)
2132 {
2133 	const struct file *file = ptr;
2134 	struct proc_inode *ei;
2135 	struct inode *inode;
2136 
2137 	if (!file)
2138 		return ERR_PTR(-ENOENT);
2139 
2140 	inode = proc_pid_make_inode(dir->i_sb, task);
2141 	if (!inode)
2142 		return ERR_PTR(-ENOENT);
2143 
2144 	ei = PROC_I(inode);
2145 	ei->op.proc_get_link = proc_map_files_get_link;
2146 
2147 	inode->i_op = &proc_pid_link_inode_operations;
2148 	inode->i_size = 64;
2149 	inode->i_mode = S_IFLNK;
2150 
2151 	if (file->f_mode & FMODE_READ)
2152 		inode->i_mode |= S_IRUSR;
2153 	if (file->f_mode & FMODE_WRITE)
2154 		inode->i_mode |= S_IWUSR;
2155 
2156 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2157 	d_add(dentry, inode);
2158 
2159 	return NULL;
2160 }
2161 
2162 static struct dentry *proc_map_files_lookup(struct inode *dir,
2163 		struct dentry *dentry, struct nameidata *nd)
2164 {
2165 	unsigned long vm_start, vm_end;
2166 	struct vm_area_struct *vma;
2167 	struct task_struct *task;
2168 	struct dentry *result;
2169 	struct mm_struct *mm;
2170 
2171 	result = ERR_PTR(-EACCES);
2172 	if (!capable(CAP_SYS_ADMIN))
2173 		goto out;
2174 
2175 	result = ERR_PTR(-ENOENT);
2176 	task = get_proc_task(dir);
2177 	if (!task)
2178 		goto out;
2179 
2180 	result = ERR_PTR(-EACCES);
2181 	if (lock_trace(task))
2182 		goto out_put_task;
2183 
2184 	result = ERR_PTR(-ENOENT);
2185 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2186 		goto out_unlock;
2187 
2188 	mm = get_task_mm(task);
2189 	if (!mm)
2190 		goto out_unlock;
2191 
2192 	down_read(&mm->mmap_sem);
2193 	vma = find_exact_vma(mm, vm_start, vm_end);
2194 	if (!vma)
2195 		goto out_no_vma;
2196 
2197 	result = proc_map_files_instantiate(dir, dentry, task, vma->vm_file);
2198 
2199 out_no_vma:
2200 	up_read(&mm->mmap_sem);
2201 	mmput(mm);
2202 out_unlock:
2203 	unlock_trace(task);
2204 out_put_task:
2205 	put_task_struct(task);
2206 out:
2207 	return result;
2208 }
2209 
2210 static const struct inode_operations proc_map_files_inode_operations = {
2211 	.lookup		= proc_map_files_lookup,
2212 	.permission	= proc_fd_permission,
2213 	.setattr	= proc_setattr,
2214 };
2215 
2216 static int
2217 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir)
2218 {
2219 	struct dentry *dentry = filp->f_path.dentry;
2220 	struct inode *inode = dentry->d_inode;
2221 	struct vm_area_struct *vma;
2222 	struct task_struct *task;
2223 	struct mm_struct *mm;
2224 	ino_t ino;
2225 	int ret;
2226 
2227 	ret = -EACCES;
2228 	if (!capable(CAP_SYS_ADMIN))
2229 		goto out;
2230 
2231 	ret = -ENOENT;
2232 	task = get_proc_task(inode);
2233 	if (!task)
2234 		goto out;
2235 
2236 	ret = -EACCES;
2237 	if (lock_trace(task))
2238 		goto out_put_task;
2239 
2240 	ret = 0;
2241 	switch (filp->f_pos) {
2242 	case 0:
2243 		ino = inode->i_ino;
2244 		if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0)
2245 			goto out_unlock;
2246 		filp->f_pos++;
2247 	case 1:
2248 		ino = parent_ino(dentry);
2249 		if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2250 			goto out_unlock;
2251 		filp->f_pos++;
2252 	default:
2253 	{
2254 		unsigned long nr_files, pos, i;
2255 		struct flex_array *fa = NULL;
2256 		struct map_files_info info;
2257 		struct map_files_info *p;
2258 
2259 		mm = get_task_mm(task);
2260 		if (!mm)
2261 			goto out_unlock;
2262 		down_read(&mm->mmap_sem);
2263 
2264 		nr_files = 0;
2265 
2266 		/*
2267 		 * We need two passes here:
2268 		 *
2269 		 *  1) Collect vmas of mapped files with mmap_sem taken
2270 		 *  2) Release mmap_sem and instantiate entries
2271 		 *
2272 		 * otherwise we get lockdep complained, since filldir()
2273 		 * routine might require mmap_sem taken in might_fault().
2274 		 */
2275 
2276 		for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2277 			if (vma->vm_file && ++pos > filp->f_pos)
2278 				nr_files++;
2279 		}
2280 
2281 		if (nr_files) {
2282 			fa = flex_array_alloc(sizeof(info), nr_files,
2283 						GFP_KERNEL);
2284 			if (!fa || flex_array_prealloc(fa, 0, nr_files,
2285 							GFP_KERNEL)) {
2286 				ret = -ENOMEM;
2287 				if (fa)
2288 					flex_array_free(fa);
2289 				up_read(&mm->mmap_sem);
2290 				mmput(mm);
2291 				goto out_unlock;
2292 			}
2293 			for (i = 0, vma = mm->mmap, pos = 2; vma;
2294 					vma = vma->vm_next) {
2295 				if (!vma->vm_file)
2296 					continue;
2297 				if (++pos <= filp->f_pos)
2298 					continue;
2299 
2300 				get_file(vma->vm_file);
2301 				info.file = vma->vm_file;
2302 				info.len = snprintf(info.name,
2303 						sizeof(info.name), "%lx-%lx",
2304 						vma->vm_start, vma->vm_end);
2305 				if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2306 					BUG();
2307 			}
2308 		}
2309 		up_read(&mm->mmap_sem);
2310 
2311 		for (i = 0; i < nr_files; i++) {
2312 			p = flex_array_get(fa, i);
2313 			ret = proc_fill_cache(filp, dirent, filldir,
2314 					      p->name, p->len,
2315 					      proc_map_files_instantiate,
2316 					      task, p->file);
2317 			if (ret)
2318 				break;
2319 			filp->f_pos++;
2320 			fput(p->file);
2321 		}
2322 		for (; i < nr_files; i++) {
2323 			/*
2324 			 * In case of error don't forget
2325 			 * to put rest of file refs.
2326 			 */
2327 			p = flex_array_get(fa, i);
2328 			fput(p->file);
2329 		}
2330 		if (fa)
2331 			flex_array_free(fa);
2332 		mmput(mm);
2333 	}
2334 	}
2335 
2336 out_unlock:
2337 	unlock_trace(task);
2338 out_put_task:
2339 	put_task_struct(task);
2340 out:
2341 	return ret;
2342 }
2343 
2344 static const struct file_operations proc_map_files_operations = {
2345 	.read		= generic_read_dir,
2346 	.readdir	= proc_map_files_readdir,
2347 	.llseek		= default_llseek,
2348 };
2349 
2350 #endif /* CONFIG_CHECKPOINT_RESTORE */
2351 
2352 /*
2353  * /proc/pid/fd needs a special permission handler so that a process can still
2354  * access /proc/self/fd after it has executed a setuid().
2355  */
2356 static int proc_fd_permission(struct inode *inode, int mask)
2357 {
2358 	int rv = generic_permission(inode, mask);
2359 	if (rv == 0)
2360 		return 0;
2361 	if (task_pid(current) == proc_pid(inode))
2362 		rv = 0;
2363 	return rv;
2364 }
2365 
2366 /*
2367  * proc directories can do almost nothing..
2368  */
2369 static const struct inode_operations proc_fd_inode_operations = {
2370 	.lookup		= proc_lookupfd,
2371 	.permission	= proc_fd_permission,
2372 	.setattr	= proc_setattr,
2373 };
2374 
2375 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2376 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2377 {
2378 	unsigned fd = *(unsigned *)ptr;
2379  	struct inode *inode;
2380  	struct proc_inode *ei;
2381 	struct dentry *error = ERR_PTR(-ENOENT);
2382 
2383 	inode = proc_pid_make_inode(dir->i_sb, task);
2384 	if (!inode)
2385 		goto out;
2386 	ei = PROC_I(inode);
2387 	ei->fd = fd;
2388 	inode->i_mode = S_IFREG | S_IRUSR;
2389 	inode->i_fop = &proc_fdinfo_file_operations;
2390 	d_set_d_op(dentry, &tid_fd_dentry_operations);
2391 	d_add(dentry, inode);
2392 	/* Close the race of the process dying before we return the dentry */
2393 	if (tid_fd_revalidate(dentry, NULL))
2394 		error = NULL;
2395 
2396  out:
2397 	return error;
2398 }
2399 
2400 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2401 					struct dentry *dentry,
2402 					struct nameidata *nd)
2403 {
2404 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2405 }
2406 
2407 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2408 {
2409 	return proc_readfd_common(filp, dirent, filldir,
2410 				  proc_fdinfo_instantiate);
2411 }
2412 
2413 static const struct file_operations proc_fdinfo_operations = {
2414 	.read		= generic_read_dir,
2415 	.readdir	= proc_readfdinfo,
2416 	.llseek		= default_llseek,
2417 };
2418 
2419 /*
2420  * proc directories can do almost nothing..
2421  */
2422 static const struct inode_operations proc_fdinfo_inode_operations = {
2423 	.lookup		= proc_lookupfdinfo,
2424 	.setattr	= proc_setattr,
2425 };
2426 
2427 
2428 static struct dentry *proc_pident_instantiate(struct inode *dir,
2429 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2430 {
2431 	const struct pid_entry *p = ptr;
2432 	struct inode *inode;
2433 	struct proc_inode *ei;
2434 	struct dentry *error = ERR_PTR(-ENOENT);
2435 
2436 	inode = proc_pid_make_inode(dir->i_sb, task);
2437 	if (!inode)
2438 		goto out;
2439 
2440 	ei = PROC_I(inode);
2441 	inode->i_mode = p->mode;
2442 	if (S_ISDIR(inode->i_mode))
2443 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2444 	if (p->iop)
2445 		inode->i_op = p->iop;
2446 	if (p->fop)
2447 		inode->i_fop = p->fop;
2448 	ei->op = p->op;
2449 	d_set_d_op(dentry, &pid_dentry_operations);
2450 	d_add(dentry, inode);
2451 	/* Close the race of the process dying before we return the dentry */
2452 	if (pid_revalidate(dentry, NULL))
2453 		error = NULL;
2454 out:
2455 	return error;
2456 }
2457 
2458 static struct dentry *proc_pident_lookup(struct inode *dir,
2459 					 struct dentry *dentry,
2460 					 const struct pid_entry *ents,
2461 					 unsigned int nents)
2462 {
2463 	struct dentry *error;
2464 	struct task_struct *task = get_proc_task(dir);
2465 	const struct pid_entry *p, *last;
2466 
2467 	error = ERR_PTR(-ENOENT);
2468 
2469 	if (!task)
2470 		goto out_no_task;
2471 
2472 	/*
2473 	 * Yes, it does not scale. And it should not. Don't add
2474 	 * new entries into /proc/<tgid>/ without very good reasons.
2475 	 */
2476 	last = &ents[nents - 1];
2477 	for (p = ents; p <= last; p++) {
2478 		if (p->len != dentry->d_name.len)
2479 			continue;
2480 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2481 			break;
2482 	}
2483 	if (p > last)
2484 		goto out;
2485 
2486 	error = proc_pident_instantiate(dir, dentry, task, p);
2487 out:
2488 	put_task_struct(task);
2489 out_no_task:
2490 	return error;
2491 }
2492 
2493 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2494 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2495 {
2496 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2497 				proc_pident_instantiate, task, p);
2498 }
2499 
2500 static int proc_pident_readdir(struct file *filp,
2501 		void *dirent, filldir_t filldir,
2502 		const struct pid_entry *ents, unsigned int nents)
2503 {
2504 	int i;
2505 	struct dentry *dentry = filp->f_path.dentry;
2506 	struct inode *inode = dentry->d_inode;
2507 	struct task_struct *task = get_proc_task(inode);
2508 	const struct pid_entry *p, *last;
2509 	ino_t ino;
2510 	int ret;
2511 
2512 	ret = -ENOENT;
2513 	if (!task)
2514 		goto out_no_task;
2515 
2516 	ret = 0;
2517 	i = filp->f_pos;
2518 	switch (i) {
2519 	case 0:
2520 		ino = inode->i_ino;
2521 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2522 			goto out;
2523 		i++;
2524 		filp->f_pos++;
2525 		/* fall through */
2526 	case 1:
2527 		ino = parent_ino(dentry);
2528 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2529 			goto out;
2530 		i++;
2531 		filp->f_pos++;
2532 		/* fall through */
2533 	default:
2534 		i -= 2;
2535 		if (i >= nents) {
2536 			ret = 1;
2537 			goto out;
2538 		}
2539 		p = ents + i;
2540 		last = &ents[nents - 1];
2541 		while (p <= last) {
2542 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2543 				goto out;
2544 			filp->f_pos++;
2545 			p++;
2546 		}
2547 	}
2548 
2549 	ret = 1;
2550 out:
2551 	put_task_struct(task);
2552 out_no_task:
2553 	return ret;
2554 }
2555 
2556 #ifdef CONFIG_SECURITY
2557 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2558 				  size_t count, loff_t *ppos)
2559 {
2560 	struct inode * inode = file->f_path.dentry->d_inode;
2561 	char *p = NULL;
2562 	ssize_t length;
2563 	struct task_struct *task = get_proc_task(inode);
2564 
2565 	if (!task)
2566 		return -ESRCH;
2567 
2568 	length = security_getprocattr(task,
2569 				      (char*)file->f_path.dentry->d_name.name,
2570 				      &p);
2571 	put_task_struct(task);
2572 	if (length > 0)
2573 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2574 	kfree(p);
2575 	return length;
2576 }
2577 
2578 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2579 				   size_t count, loff_t *ppos)
2580 {
2581 	struct inode * inode = file->f_path.dentry->d_inode;
2582 	char *page;
2583 	ssize_t length;
2584 	struct task_struct *task = get_proc_task(inode);
2585 
2586 	length = -ESRCH;
2587 	if (!task)
2588 		goto out_no_task;
2589 	if (count > PAGE_SIZE)
2590 		count = PAGE_SIZE;
2591 
2592 	/* No partial writes. */
2593 	length = -EINVAL;
2594 	if (*ppos != 0)
2595 		goto out;
2596 
2597 	length = -ENOMEM;
2598 	page = (char*)__get_free_page(GFP_TEMPORARY);
2599 	if (!page)
2600 		goto out;
2601 
2602 	length = -EFAULT;
2603 	if (copy_from_user(page, buf, count))
2604 		goto out_free;
2605 
2606 	/* Guard against adverse ptrace interaction */
2607 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2608 	if (length < 0)
2609 		goto out_free;
2610 
2611 	length = security_setprocattr(task,
2612 				      (char*)file->f_path.dentry->d_name.name,
2613 				      (void*)page, count);
2614 	mutex_unlock(&task->signal->cred_guard_mutex);
2615 out_free:
2616 	free_page((unsigned long) page);
2617 out:
2618 	put_task_struct(task);
2619 out_no_task:
2620 	return length;
2621 }
2622 
2623 static const struct file_operations proc_pid_attr_operations = {
2624 	.read		= proc_pid_attr_read,
2625 	.write		= proc_pid_attr_write,
2626 	.llseek		= generic_file_llseek,
2627 };
2628 
2629 static const struct pid_entry attr_dir_stuff[] = {
2630 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2631 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2632 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2633 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2634 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2635 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2636 };
2637 
2638 static int proc_attr_dir_readdir(struct file * filp,
2639 			     void * dirent, filldir_t filldir)
2640 {
2641 	return proc_pident_readdir(filp,dirent,filldir,
2642 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2643 }
2644 
2645 static const struct file_operations proc_attr_dir_operations = {
2646 	.read		= generic_read_dir,
2647 	.readdir	= proc_attr_dir_readdir,
2648 	.llseek		= default_llseek,
2649 };
2650 
2651 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2652 				struct dentry *dentry, struct nameidata *nd)
2653 {
2654 	return proc_pident_lookup(dir, dentry,
2655 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2656 }
2657 
2658 static const struct inode_operations proc_attr_dir_inode_operations = {
2659 	.lookup		= proc_attr_dir_lookup,
2660 	.getattr	= pid_getattr,
2661 	.setattr	= proc_setattr,
2662 };
2663 
2664 #endif
2665 
2666 #ifdef CONFIG_ELF_CORE
2667 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2668 					 size_t count, loff_t *ppos)
2669 {
2670 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2671 	struct mm_struct *mm;
2672 	char buffer[PROC_NUMBUF];
2673 	size_t len;
2674 	int ret;
2675 
2676 	if (!task)
2677 		return -ESRCH;
2678 
2679 	ret = 0;
2680 	mm = get_task_mm(task);
2681 	if (mm) {
2682 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2683 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2684 				MMF_DUMP_FILTER_SHIFT));
2685 		mmput(mm);
2686 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2687 	}
2688 
2689 	put_task_struct(task);
2690 
2691 	return ret;
2692 }
2693 
2694 static ssize_t proc_coredump_filter_write(struct file *file,
2695 					  const char __user *buf,
2696 					  size_t count,
2697 					  loff_t *ppos)
2698 {
2699 	struct task_struct *task;
2700 	struct mm_struct *mm;
2701 	char buffer[PROC_NUMBUF], *end;
2702 	unsigned int val;
2703 	int ret;
2704 	int i;
2705 	unsigned long mask;
2706 
2707 	ret = -EFAULT;
2708 	memset(buffer, 0, sizeof(buffer));
2709 	if (count > sizeof(buffer) - 1)
2710 		count = sizeof(buffer) - 1;
2711 	if (copy_from_user(buffer, buf, count))
2712 		goto out_no_task;
2713 
2714 	ret = -EINVAL;
2715 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2716 	if (*end == '\n')
2717 		end++;
2718 	if (end - buffer == 0)
2719 		goto out_no_task;
2720 
2721 	ret = -ESRCH;
2722 	task = get_proc_task(file->f_dentry->d_inode);
2723 	if (!task)
2724 		goto out_no_task;
2725 
2726 	ret = end - buffer;
2727 	mm = get_task_mm(task);
2728 	if (!mm)
2729 		goto out_no_mm;
2730 
2731 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2732 		if (val & mask)
2733 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2734 		else
2735 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2736 	}
2737 
2738 	mmput(mm);
2739  out_no_mm:
2740 	put_task_struct(task);
2741  out_no_task:
2742 	return ret;
2743 }
2744 
2745 static const struct file_operations proc_coredump_filter_operations = {
2746 	.read		= proc_coredump_filter_read,
2747 	.write		= proc_coredump_filter_write,
2748 	.llseek		= generic_file_llseek,
2749 };
2750 #endif
2751 
2752 /*
2753  * /proc/self:
2754  */
2755 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2756 			      int buflen)
2757 {
2758 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2759 	pid_t tgid = task_tgid_nr_ns(current, ns);
2760 	char tmp[PROC_NUMBUF];
2761 	if (!tgid)
2762 		return -ENOENT;
2763 	sprintf(tmp, "%d", tgid);
2764 	return vfs_readlink(dentry,buffer,buflen,tmp);
2765 }
2766 
2767 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2768 {
2769 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2770 	pid_t tgid = task_tgid_nr_ns(current, ns);
2771 	char *name = ERR_PTR(-ENOENT);
2772 	if (tgid) {
2773 		name = __getname();
2774 		if (!name)
2775 			name = ERR_PTR(-ENOMEM);
2776 		else
2777 			sprintf(name, "%d", tgid);
2778 	}
2779 	nd_set_link(nd, name);
2780 	return NULL;
2781 }
2782 
2783 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2784 				void *cookie)
2785 {
2786 	char *s = nd_get_link(nd);
2787 	if (!IS_ERR(s))
2788 		__putname(s);
2789 }
2790 
2791 static const struct inode_operations proc_self_inode_operations = {
2792 	.readlink	= proc_self_readlink,
2793 	.follow_link	= proc_self_follow_link,
2794 	.put_link	= proc_self_put_link,
2795 };
2796 
2797 /*
2798  * proc base
2799  *
2800  * These are the directory entries in the root directory of /proc
2801  * that properly belong to the /proc filesystem, as they describe
2802  * describe something that is process related.
2803  */
2804 static const struct pid_entry proc_base_stuff[] = {
2805 	NOD("self", S_IFLNK|S_IRWXUGO,
2806 		&proc_self_inode_operations, NULL, {}),
2807 };
2808 
2809 static struct dentry *proc_base_instantiate(struct inode *dir,
2810 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2811 {
2812 	const struct pid_entry *p = ptr;
2813 	struct inode *inode;
2814 	struct proc_inode *ei;
2815 	struct dentry *error;
2816 
2817 	/* Allocate the inode */
2818 	error = ERR_PTR(-ENOMEM);
2819 	inode = new_inode(dir->i_sb);
2820 	if (!inode)
2821 		goto out;
2822 
2823 	/* Initialize the inode */
2824 	ei = PROC_I(inode);
2825 	inode->i_ino = get_next_ino();
2826 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2827 
2828 	/*
2829 	 * grab the reference to the task.
2830 	 */
2831 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2832 	if (!ei->pid)
2833 		goto out_iput;
2834 
2835 	inode->i_mode = p->mode;
2836 	if (S_ISDIR(inode->i_mode))
2837 		set_nlink(inode, 2);
2838 	if (S_ISLNK(inode->i_mode))
2839 		inode->i_size = 64;
2840 	if (p->iop)
2841 		inode->i_op = p->iop;
2842 	if (p->fop)
2843 		inode->i_fop = p->fop;
2844 	ei->op = p->op;
2845 	d_add(dentry, inode);
2846 	error = NULL;
2847 out:
2848 	return error;
2849 out_iput:
2850 	iput(inode);
2851 	goto out;
2852 }
2853 
2854 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2855 {
2856 	struct dentry *error;
2857 	struct task_struct *task = get_proc_task(dir);
2858 	const struct pid_entry *p, *last;
2859 
2860 	error = ERR_PTR(-ENOENT);
2861 
2862 	if (!task)
2863 		goto out_no_task;
2864 
2865 	/* Lookup the directory entry */
2866 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2867 	for (p = proc_base_stuff; p <= last; p++) {
2868 		if (p->len != dentry->d_name.len)
2869 			continue;
2870 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2871 			break;
2872 	}
2873 	if (p > last)
2874 		goto out;
2875 
2876 	error = proc_base_instantiate(dir, dentry, task, p);
2877 
2878 out:
2879 	put_task_struct(task);
2880 out_no_task:
2881 	return error;
2882 }
2883 
2884 static int proc_base_fill_cache(struct file *filp, void *dirent,
2885 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2886 {
2887 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2888 				proc_base_instantiate, task, p);
2889 }
2890 
2891 #ifdef CONFIG_TASK_IO_ACCOUNTING
2892 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2893 {
2894 	struct task_io_accounting acct = task->ioac;
2895 	unsigned long flags;
2896 	int result;
2897 
2898 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2899 	if (result)
2900 		return result;
2901 
2902 	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2903 		result = -EACCES;
2904 		goto out_unlock;
2905 	}
2906 
2907 	if (whole && lock_task_sighand(task, &flags)) {
2908 		struct task_struct *t = task;
2909 
2910 		task_io_accounting_add(&acct, &task->signal->ioac);
2911 		while_each_thread(task, t)
2912 			task_io_accounting_add(&acct, &t->ioac);
2913 
2914 		unlock_task_sighand(task, &flags);
2915 	}
2916 	result = sprintf(buffer,
2917 			"rchar: %llu\n"
2918 			"wchar: %llu\n"
2919 			"syscr: %llu\n"
2920 			"syscw: %llu\n"
2921 			"read_bytes: %llu\n"
2922 			"write_bytes: %llu\n"
2923 			"cancelled_write_bytes: %llu\n",
2924 			(unsigned long long)acct.rchar,
2925 			(unsigned long long)acct.wchar,
2926 			(unsigned long long)acct.syscr,
2927 			(unsigned long long)acct.syscw,
2928 			(unsigned long long)acct.read_bytes,
2929 			(unsigned long long)acct.write_bytes,
2930 			(unsigned long long)acct.cancelled_write_bytes);
2931 out_unlock:
2932 	mutex_unlock(&task->signal->cred_guard_mutex);
2933 	return result;
2934 }
2935 
2936 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2937 {
2938 	return do_io_accounting(task, buffer, 0);
2939 }
2940 
2941 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2942 {
2943 	return do_io_accounting(task, buffer, 1);
2944 }
2945 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2946 
2947 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2948 				struct pid *pid, struct task_struct *task)
2949 {
2950 	int err = lock_trace(task);
2951 	if (!err) {
2952 		seq_printf(m, "%08x\n", task->personality);
2953 		unlock_trace(task);
2954 	}
2955 	return err;
2956 }
2957 
2958 /*
2959  * Thread groups
2960  */
2961 static const struct file_operations proc_task_operations;
2962 static const struct inode_operations proc_task_inode_operations;
2963 
2964 static const struct pid_entry tgid_base_stuff[] = {
2965 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2966 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2967 #ifdef CONFIG_CHECKPOINT_RESTORE
2968 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2969 #endif
2970 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2971 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2972 #ifdef CONFIG_NET
2973 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2974 #endif
2975 	REG("environ",    S_IRUSR, proc_environ_operations),
2976 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2977 	ONE("status",     S_IRUGO, proc_pid_status),
2978 	ONE("personality", S_IRUGO, proc_pid_personality),
2979 	INF("limits",	  S_IRUGO, proc_pid_limits),
2980 #ifdef CONFIG_SCHED_DEBUG
2981 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2982 #endif
2983 #ifdef CONFIG_SCHED_AUTOGROUP
2984 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2985 #endif
2986 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2987 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2988 	INF("syscall",    S_IRUGO, proc_pid_syscall),
2989 #endif
2990 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2991 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2992 	ONE("statm",      S_IRUGO, proc_pid_statm),
2993 	REG("maps",       S_IRUGO, proc_maps_operations),
2994 #ifdef CONFIG_NUMA
2995 	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2996 #endif
2997 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2998 	LNK("cwd",        proc_cwd_link),
2999 	LNK("root",       proc_root_link),
3000 	LNK("exe",        proc_exe_link),
3001 	REG("mounts",     S_IRUGO, proc_mounts_operations),
3002 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3003 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3004 #ifdef CONFIG_PROC_PAGE_MONITOR
3005 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3006 	REG("smaps",      S_IRUGO, proc_smaps_operations),
3007 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
3008 #endif
3009 #ifdef CONFIG_SECURITY
3010 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3011 #endif
3012 #ifdef CONFIG_KALLSYMS
3013 	INF("wchan",      S_IRUGO, proc_pid_wchan),
3014 #endif
3015 #ifdef CONFIG_STACKTRACE
3016 	ONE("stack",      S_IRUGO, proc_pid_stack),
3017 #endif
3018 #ifdef CONFIG_SCHEDSTATS
3019 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
3020 #endif
3021 #ifdef CONFIG_LATENCYTOP
3022 	REG("latency",  S_IRUGO, proc_lstats_operations),
3023 #endif
3024 #ifdef CONFIG_PROC_PID_CPUSET
3025 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
3026 #endif
3027 #ifdef CONFIG_CGROUPS
3028 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3029 #endif
3030 	INF("oom_score",  S_IRUGO, proc_oom_score),
3031 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3032 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3033 #ifdef CONFIG_AUDITSYSCALL
3034 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3035 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3036 #endif
3037 #ifdef CONFIG_FAULT_INJECTION
3038 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3039 #endif
3040 #ifdef CONFIG_ELF_CORE
3041 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3042 #endif
3043 #ifdef CONFIG_TASK_IO_ACCOUNTING
3044 	INF("io",	S_IRUSR, proc_tgid_io_accounting),
3045 #endif
3046 #ifdef CONFIG_HARDWALL
3047 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
3048 #endif
3049 };
3050 
3051 static int proc_tgid_base_readdir(struct file * filp,
3052 			     void * dirent, filldir_t filldir)
3053 {
3054 	return proc_pident_readdir(filp,dirent,filldir,
3055 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
3056 }
3057 
3058 static const struct file_operations proc_tgid_base_operations = {
3059 	.read		= generic_read_dir,
3060 	.readdir	= proc_tgid_base_readdir,
3061 	.llseek		= default_llseek,
3062 };
3063 
3064 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3065 	return proc_pident_lookup(dir, dentry,
3066 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3067 }
3068 
3069 static const struct inode_operations proc_tgid_base_inode_operations = {
3070 	.lookup		= proc_tgid_base_lookup,
3071 	.getattr	= pid_getattr,
3072 	.setattr	= proc_setattr,
3073 	.permission	= proc_pid_permission,
3074 };
3075 
3076 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3077 {
3078 	struct dentry *dentry, *leader, *dir;
3079 	char buf[PROC_NUMBUF];
3080 	struct qstr name;
3081 
3082 	name.name = buf;
3083 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
3084 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3085 	if (dentry) {
3086 		shrink_dcache_parent(dentry);
3087 		d_drop(dentry);
3088 		dput(dentry);
3089 	}
3090 
3091 	name.name = buf;
3092 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
3093 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
3094 	if (!leader)
3095 		goto out;
3096 
3097 	name.name = "task";
3098 	name.len = strlen(name.name);
3099 	dir = d_hash_and_lookup(leader, &name);
3100 	if (!dir)
3101 		goto out_put_leader;
3102 
3103 	name.name = buf;
3104 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
3105 	dentry = d_hash_and_lookup(dir, &name);
3106 	if (dentry) {
3107 		shrink_dcache_parent(dentry);
3108 		d_drop(dentry);
3109 		dput(dentry);
3110 	}
3111 
3112 	dput(dir);
3113 out_put_leader:
3114 	dput(leader);
3115 out:
3116 	return;
3117 }
3118 
3119 /**
3120  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3121  * @task: task that should be flushed.
3122  *
3123  * When flushing dentries from proc, one needs to flush them from global
3124  * proc (proc_mnt) and from all the namespaces' procs this task was seen
3125  * in. This call is supposed to do all of this job.
3126  *
3127  * Looks in the dcache for
3128  * /proc/@pid
3129  * /proc/@tgid/task/@pid
3130  * if either directory is present flushes it and all of it'ts children
3131  * from the dcache.
3132  *
3133  * It is safe and reasonable to cache /proc entries for a task until
3134  * that task exits.  After that they just clog up the dcache with
3135  * useless entries, possibly causing useful dcache entries to be
3136  * flushed instead.  This routine is proved to flush those useless
3137  * dcache entries at process exit time.
3138  *
3139  * NOTE: This routine is just an optimization so it does not guarantee
3140  *       that no dcache entries will exist at process exit time it
3141  *       just makes it very unlikely that any will persist.
3142  */
3143 
3144 void proc_flush_task(struct task_struct *task)
3145 {
3146 	int i;
3147 	struct pid *pid, *tgid;
3148 	struct upid *upid;
3149 
3150 	pid = task_pid(task);
3151 	tgid = task_tgid(task);
3152 
3153 	for (i = 0; i <= pid->level; i++) {
3154 		upid = &pid->numbers[i];
3155 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3156 					tgid->numbers[i].nr);
3157 	}
3158 
3159 	upid = &pid->numbers[pid->level];
3160 	if (upid->nr == 1)
3161 		pid_ns_release_proc(upid->ns);
3162 }
3163 
3164 static struct dentry *proc_pid_instantiate(struct inode *dir,
3165 					   struct dentry * dentry,
3166 					   struct task_struct *task, const void *ptr)
3167 {
3168 	struct dentry *error = ERR_PTR(-ENOENT);
3169 	struct inode *inode;
3170 
3171 	inode = proc_pid_make_inode(dir->i_sb, task);
3172 	if (!inode)
3173 		goto out;
3174 
3175 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3176 	inode->i_op = &proc_tgid_base_inode_operations;
3177 	inode->i_fop = &proc_tgid_base_operations;
3178 	inode->i_flags|=S_IMMUTABLE;
3179 
3180 	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
3181 						  ARRAY_SIZE(tgid_base_stuff)));
3182 
3183 	d_set_d_op(dentry, &pid_dentry_operations);
3184 
3185 	d_add(dentry, inode);
3186 	/* Close the race of the process dying before we return the dentry */
3187 	if (pid_revalidate(dentry, NULL))
3188 		error = NULL;
3189 out:
3190 	return error;
3191 }
3192 
3193 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3194 {
3195 	struct dentry *result;
3196 	struct task_struct *task;
3197 	unsigned tgid;
3198 	struct pid_namespace *ns;
3199 
3200 	result = proc_base_lookup(dir, dentry);
3201 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3202 		goto out;
3203 
3204 	tgid = name_to_int(dentry);
3205 	if (tgid == ~0U)
3206 		goto out;
3207 
3208 	ns = dentry->d_sb->s_fs_info;
3209 	rcu_read_lock();
3210 	task = find_task_by_pid_ns(tgid, ns);
3211 	if (task)
3212 		get_task_struct(task);
3213 	rcu_read_unlock();
3214 	if (!task)
3215 		goto out;
3216 
3217 	result = proc_pid_instantiate(dir, dentry, task, NULL);
3218 	put_task_struct(task);
3219 out:
3220 	return result;
3221 }
3222 
3223 /*
3224  * Find the first task with tgid >= tgid
3225  *
3226  */
3227 struct tgid_iter {
3228 	unsigned int tgid;
3229 	struct task_struct *task;
3230 };
3231 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3232 {
3233 	struct pid *pid;
3234 
3235 	if (iter.task)
3236 		put_task_struct(iter.task);
3237 	rcu_read_lock();
3238 retry:
3239 	iter.task = NULL;
3240 	pid = find_ge_pid(iter.tgid, ns);
3241 	if (pid) {
3242 		iter.tgid = pid_nr_ns(pid, ns);
3243 		iter.task = pid_task(pid, PIDTYPE_PID);
3244 		/* What we to know is if the pid we have find is the
3245 		 * pid of a thread_group_leader.  Testing for task
3246 		 * being a thread_group_leader is the obvious thing
3247 		 * todo but there is a window when it fails, due to
3248 		 * the pid transfer logic in de_thread.
3249 		 *
3250 		 * So we perform the straight forward test of seeing
3251 		 * if the pid we have found is the pid of a thread
3252 		 * group leader, and don't worry if the task we have
3253 		 * found doesn't happen to be a thread group leader.
3254 		 * As we don't care in the case of readdir.
3255 		 */
3256 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3257 			iter.tgid += 1;
3258 			goto retry;
3259 		}
3260 		get_task_struct(iter.task);
3261 	}
3262 	rcu_read_unlock();
3263 	return iter;
3264 }
3265 
3266 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3267 
3268 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3269 	struct tgid_iter iter)
3270 {
3271 	char name[PROC_NUMBUF];
3272 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3273 	return proc_fill_cache(filp, dirent, filldir, name, len,
3274 				proc_pid_instantiate, iter.task, NULL);
3275 }
3276 
3277 static int fake_filldir(void *buf, const char *name, int namelen,
3278 			loff_t offset, u64 ino, unsigned d_type)
3279 {
3280 	return 0;
3281 }
3282 
3283 /* for the /proc/ directory itself, after non-process stuff has been done */
3284 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3285 {
3286 	unsigned int nr;
3287 	struct task_struct *reaper;
3288 	struct tgid_iter iter;
3289 	struct pid_namespace *ns;
3290 	filldir_t __filldir;
3291 
3292 	if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
3293 		goto out_no_task;
3294 	nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3295 
3296 	reaper = get_proc_task(filp->f_path.dentry->d_inode);
3297 	if (!reaper)
3298 		goto out_no_task;
3299 
3300 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3301 		const struct pid_entry *p = &proc_base_stuff[nr];
3302 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3303 			goto out;
3304 	}
3305 
3306 	ns = filp->f_dentry->d_sb->s_fs_info;
3307 	iter.task = NULL;
3308 	iter.tgid = filp->f_pos - TGID_OFFSET;
3309 	for (iter = next_tgid(ns, iter);
3310 	     iter.task;
3311 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3312 		if (has_pid_permissions(ns, iter.task, 2))
3313 			__filldir = filldir;
3314 		else
3315 			__filldir = fake_filldir;
3316 
3317 		filp->f_pos = iter.tgid + TGID_OFFSET;
3318 		if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) {
3319 			put_task_struct(iter.task);
3320 			goto out;
3321 		}
3322 	}
3323 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3324 out:
3325 	put_task_struct(reaper);
3326 out_no_task:
3327 	return 0;
3328 }
3329 
3330 /*
3331  * Tasks
3332  */
3333 static const struct pid_entry tid_base_stuff[] = {
3334 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3335 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3336 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3337 	REG("environ",   S_IRUSR, proc_environ_operations),
3338 	INF("auxv",      S_IRUSR, proc_pid_auxv),
3339 	ONE("status",    S_IRUGO, proc_pid_status),
3340 	ONE("personality", S_IRUGO, proc_pid_personality),
3341 	INF("limits",	 S_IRUGO, proc_pid_limits),
3342 #ifdef CONFIG_SCHED_DEBUG
3343 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3344 #endif
3345 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3346 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3347 	INF("syscall",   S_IRUGO, proc_pid_syscall),
3348 #endif
3349 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
3350 	ONE("stat",      S_IRUGO, proc_tid_stat),
3351 	ONE("statm",     S_IRUGO, proc_pid_statm),
3352 	REG("maps",      S_IRUGO, proc_maps_operations),
3353 #ifdef CONFIG_NUMA
3354 	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3355 #endif
3356 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3357 	LNK("cwd",       proc_cwd_link),
3358 	LNK("root",      proc_root_link),
3359 	LNK("exe",       proc_exe_link),
3360 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3361 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3362 #ifdef CONFIG_PROC_PAGE_MONITOR
3363 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3364 	REG("smaps",     S_IRUGO, proc_smaps_operations),
3365 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
3366 #endif
3367 #ifdef CONFIG_SECURITY
3368 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3369 #endif
3370 #ifdef CONFIG_KALLSYMS
3371 	INF("wchan",     S_IRUGO, proc_pid_wchan),
3372 #endif
3373 #ifdef CONFIG_STACKTRACE
3374 	ONE("stack",      S_IRUGO, proc_pid_stack),
3375 #endif
3376 #ifdef CONFIG_SCHEDSTATS
3377 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
3378 #endif
3379 #ifdef CONFIG_LATENCYTOP
3380 	REG("latency",  S_IRUGO, proc_lstats_operations),
3381 #endif
3382 #ifdef CONFIG_PROC_PID_CPUSET
3383 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
3384 #endif
3385 #ifdef CONFIG_CGROUPS
3386 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3387 #endif
3388 	INF("oom_score", S_IRUGO, proc_oom_score),
3389 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3390 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3391 #ifdef CONFIG_AUDITSYSCALL
3392 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3393 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3394 #endif
3395 #ifdef CONFIG_FAULT_INJECTION
3396 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3397 #endif
3398 #ifdef CONFIG_TASK_IO_ACCOUNTING
3399 	INF("io",	S_IRUSR, proc_tid_io_accounting),
3400 #endif
3401 #ifdef CONFIG_HARDWALL
3402 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
3403 #endif
3404 };
3405 
3406 static int proc_tid_base_readdir(struct file * filp,
3407 			     void * dirent, filldir_t filldir)
3408 {
3409 	return proc_pident_readdir(filp,dirent,filldir,
3410 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3411 }
3412 
3413 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3414 	return proc_pident_lookup(dir, dentry,
3415 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3416 }
3417 
3418 static const struct file_operations proc_tid_base_operations = {
3419 	.read		= generic_read_dir,
3420 	.readdir	= proc_tid_base_readdir,
3421 	.llseek		= default_llseek,
3422 };
3423 
3424 static const struct inode_operations proc_tid_base_inode_operations = {
3425 	.lookup		= proc_tid_base_lookup,
3426 	.getattr	= pid_getattr,
3427 	.setattr	= proc_setattr,
3428 };
3429 
3430 static struct dentry *proc_task_instantiate(struct inode *dir,
3431 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3432 {
3433 	struct dentry *error = ERR_PTR(-ENOENT);
3434 	struct inode *inode;
3435 	inode = proc_pid_make_inode(dir->i_sb, task);
3436 
3437 	if (!inode)
3438 		goto out;
3439 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3440 	inode->i_op = &proc_tid_base_inode_operations;
3441 	inode->i_fop = &proc_tid_base_operations;
3442 	inode->i_flags|=S_IMMUTABLE;
3443 
3444 	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3445 						  ARRAY_SIZE(tid_base_stuff)));
3446 
3447 	d_set_d_op(dentry, &pid_dentry_operations);
3448 
3449 	d_add(dentry, inode);
3450 	/* Close the race of the process dying before we return the dentry */
3451 	if (pid_revalidate(dentry, NULL))
3452 		error = NULL;
3453 out:
3454 	return error;
3455 }
3456 
3457 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3458 {
3459 	struct dentry *result = ERR_PTR(-ENOENT);
3460 	struct task_struct *task;
3461 	struct task_struct *leader = get_proc_task(dir);
3462 	unsigned tid;
3463 	struct pid_namespace *ns;
3464 
3465 	if (!leader)
3466 		goto out_no_task;
3467 
3468 	tid = name_to_int(dentry);
3469 	if (tid == ~0U)
3470 		goto out;
3471 
3472 	ns = dentry->d_sb->s_fs_info;
3473 	rcu_read_lock();
3474 	task = find_task_by_pid_ns(tid, ns);
3475 	if (task)
3476 		get_task_struct(task);
3477 	rcu_read_unlock();
3478 	if (!task)
3479 		goto out;
3480 	if (!same_thread_group(leader, task))
3481 		goto out_drop_task;
3482 
3483 	result = proc_task_instantiate(dir, dentry, task, NULL);
3484 out_drop_task:
3485 	put_task_struct(task);
3486 out:
3487 	put_task_struct(leader);
3488 out_no_task:
3489 	return result;
3490 }
3491 
3492 /*
3493  * Find the first tid of a thread group to return to user space.
3494  *
3495  * Usually this is just the thread group leader, but if the users
3496  * buffer was too small or there was a seek into the middle of the
3497  * directory we have more work todo.
3498  *
3499  * In the case of a short read we start with find_task_by_pid.
3500  *
3501  * In the case of a seek we start with the leader and walk nr
3502  * threads past it.
3503  */
3504 static struct task_struct *first_tid(struct task_struct *leader,
3505 		int tid, int nr, struct pid_namespace *ns)
3506 {
3507 	struct task_struct *pos;
3508 
3509 	rcu_read_lock();
3510 	/* Attempt to start with the pid of a thread */
3511 	if (tid && (nr > 0)) {
3512 		pos = find_task_by_pid_ns(tid, ns);
3513 		if (pos && (pos->group_leader == leader))
3514 			goto found;
3515 	}
3516 
3517 	/* If nr exceeds the number of threads there is nothing todo */
3518 	pos = NULL;
3519 	if (nr && nr >= get_nr_threads(leader))
3520 		goto out;
3521 
3522 	/* If we haven't found our starting place yet start
3523 	 * with the leader and walk nr threads forward.
3524 	 */
3525 	for (pos = leader; nr > 0; --nr) {
3526 		pos = next_thread(pos);
3527 		if (pos == leader) {
3528 			pos = NULL;
3529 			goto out;
3530 		}
3531 	}
3532 found:
3533 	get_task_struct(pos);
3534 out:
3535 	rcu_read_unlock();
3536 	return pos;
3537 }
3538 
3539 /*
3540  * Find the next thread in the thread list.
3541  * Return NULL if there is an error or no next thread.
3542  *
3543  * The reference to the input task_struct is released.
3544  */
3545 static struct task_struct *next_tid(struct task_struct *start)
3546 {
3547 	struct task_struct *pos = NULL;
3548 	rcu_read_lock();
3549 	if (pid_alive(start)) {
3550 		pos = next_thread(start);
3551 		if (thread_group_leader(pos))
3552 			pos = NULL;
3553 		else
3554 			get_task_struct(pos);
3555 	}
3556 	rcu_read_unlock();
3557 	put_task_struct(start);
3558 	return pos;
3559 }
3560 
3561 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3562 	struct task_struct *task, int tid)
3563 {
3564 	char name[PROC_NUMBUF];
3565 	int len = snprintf(name, sizeof(name), "%d", tid);
3566 	return proc_fill_cache(filp, dirent, filldir, name, len,
3567 				proc_task_instantiate, task, NULL);
3568 }
3569 
3570 /* for the /proc/TGID/task/ directories */
3571 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3572 {
3573 	struct dentry *dentry = filp->f_path.dentry;
3574 	struct inode *inode = dentry->d_inode;
3575 	struct task_struct *leader = NULL;
3576 	struct task_struct *task;
3577 	int retval = -ENOENT;
3578 	ino_t ino;
3579 	int tid;
3580 	struct pid_namespace *ns;
3581 
3582 	task = get_proc_task(inode);
3583 	if (!task)
3584 		goto out_no_task;
3585 	rcu_read_lock();
3586 	if (pid_alive(task)) {
3587 		leader = task->group_leader;
3588 		get_task_struct(leader);
3589 	}
3590 	rcu_read_unlock();
3591 	put_task_struct(task);
3592 	if (!leader)
3593 		goto out_no_task;
3594 	retval = 0;
3595 
3596 	switch ((unsigned long)filp->f_pos) {
3597 	case 0:
3598 		ino = inode->i_ino;
3599 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3600 			goto out;
3601 		filp->f_pos++;
3602 		/* fall through */
3603 	case 1:
3604 		ino = parent_ino(dentry);
3605 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3606 			goto out;
3607 		filp->f_pos++;
3608 		/* fall through */
3609 	}
3610 
3611 	/* f_version caches the tgid value that the last readdir call couldn't
3612 	 * return. lseek aka telldir automagically resets f_version to 0.
3613 	 */
3614 	ns = filp->f_dentry->d_sb->s_fs_info;
3615 	tid = (int)filp->f_version;
3616 	filp->f_version = 0;
3617 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3618 	     task;
3619 	     task = next_tid(task), filp->f_pos++) {
3620 		tid = task_pid_nr_ns(task, ns);
3621 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3622 			/* returning this tgid failed, save it as the first
3623 			 * pid for the next readir call */
3624 			filp->f_version = (u64)tid;
3625 			put_task_struct(task);
3626 			break;
3627 		}
3628 	}
3629 out:
3630 	put_task_struct(leader);
3631 out_no_task:
3632 	return retval;
3633 }
3634 
3635 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3636 {
3637 	struct inode *inode = dentry->d_inode;
3638 	struct task_struct *p = get_proc_task(inode);
3639 	generic_fillattr(inode, stat);
3640 
3641 	if (p) {
3642 		stat->nlink += get_nr_threads(p);
3643 		put_task_struct(p);
3644 	}
3645 
3646 	return 0;
3647 }
3648 
3649 static const struct inode_operations proc_task_inode_operations = {
3650 	.lookup		= proc_task_lookup,
3651 	.getattr	= proc_task_getattr,
3652 	.setattr	= proc_setattr,
3653 	.permission	= proc_pid_permission,
3654 };
3655 
3656 static const struct file_operations proc_task_operations = {
3657 	.read		= generic_read_dir,
3658 	.readdir	= proc_task_readdir,
3659 	.llseek		= default_llseek,
3660 };
3661