1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/proc/base.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * proc base directory handling functions 8 * 9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 10 * Instead of using magical inumbers to determine the kind of object 11 * we allocate and fill in-core inodes upon lookup. They don't even 12 * go into icache. We cache the reference to task_struct upon lookup too. 13 * Eventually it should become a filesystem in its own. We don't use the 14 * rest of procfs anymore. 15 * 16 * 17 * Changelog: 18 * 17-Jan-2005 19 * Allan Bezerra 20 * Bruna Moreira <bruna.moreira@indt.org.br> 21 * Edjard Mota <edjard.mota@indt.org.br> 22 * Ilias Biris <ilias.biris@indt.org.br> 23 * Mauricio Lin <mauricio.lin@indt.org.br> 24 * 25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 26 * 27 * A new process specific entry (smaps) included in /proc. It shows the 28 * size of rss for each memory area. The maps entry lacks information 29 * about physical memory size (rss) for each mapped file, i.e., 30 * rss information for executables and library files. 31 * This additional information is useful for any tools that need to know 32 * about physical memory consumption for a process specific library. 33 * 34 * Changelog: 35 * 21-Feb-2005 36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 37 * Pud inclusion in the page table walking. 38 * 39 * ChangeLog: 40 * 10-Mar-2005 41 * 10LE Instituto Nokia de Tecnologia - INdT: 42 * A better way to walks through the page table as suggested by Hugh Dickins. 43 * 44 * Simo Piiroinen <simo.piiroinen@nokia.com>: 45 * Smaps information related to shared, private, clean and dirty pages. 46 * 47 * Paul Mundt <paul.mundt@nokia.com>: 48 * Overall revision about smaps. 49 */ 50 51 #include <linux/uaccess.h> 52 53 #include <linux/errno.h> 54 #include <linux/time.h> 55 #include <linux/proc_fs.h> 56 #include <linux/stat.h> 57 #include <linux/task_io_accounting_ops.h> 58 #include <linux/init.h> 59 #include <linux/capability.h> 60 #include <linux/file.h> 61 #include <linux/fdtable.h> 62 #include <linux/generic-radix-tree.h> 63 #include <linux/string.h> 64 #include <linux/seq_file.h> 65 #include <linux/namei.h> 66 #include <linux/mnt_namespace.h> 67 #include <linux/mm.h> 68 #include <linux/swap.h> 69 #include <linux/rcupdate.h> 70 #include <linux/kallsyms.h> 71 #include <linux/stacktrace.h> 72 #include <linux/resource.h> 73 #include <linux/module.h> 74 #include <linux/mount.h> 75 #include <linux/security.h> 76 #include <linux/ptrace.h> 77 #include <linux/tracehook.h> 78 #include <linux/printk.h> 79 #include <linux/cache.h> 80 #include <linux/cgroup.h> 81 #include <linux/cpuset.h> 82 #include <linux/audit.h> 83 #include <linux/poll.h> 84 #include <linux/nsproxy.h> 85 #include <linux/oom.h> 86 #include <linux/elf.h> 87 #include <linux/pid_namespace.h> 88 #include <linux/user_namespace.h> 89 #include <linux/fs_struct.h> 90 #include <linux/slab.h> 91 #include <linux/sched/autogroup.h> 92 #include <linux/sched/mm.h> 93 #include <linux/sched/coredump.h> 94 #include <linux/sched/debug.h> 95 #include <linux/sched/stat.h> 96 #include <linux/posix-timers.h> 97 #include <linux/time_namespace.h> 98 #include <linux/resctrl.h> 99 #include <trace/events/oom.h> 100 #include "internal.h" 101 #include "fd.h" 102 103 #include "../../lib/kstrtox.h" 104 105 /* NOTE: 106 * Implementing inode permission operations in /proc is almost 107 * certainly an error. Permission checks need to happen during 108 * each system call not at open time. The reason is that most of 109 * what we wish to check for permissions in /proc varies at runtime. 110 * 111 * The classic example of a problem is opening file descriptors 112 * in /proc for a task before it execs a suid executable. 113 */ 114 115 static u8 nlink_tid __ro_after_init; 116 static u8 nlink_tgid __ro_after_init; 117 118 struct pid_entry { 119 const char *name; 120 unsigned int len; 121 umode_t mode; 122 const struct inode_operations *iop; 123 const struct file_operations *fop; 124 union proc_op op; 125 }; 126 127 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 128 .name = (NAME), \ 129 .len = sizeof(NAME) - 1, \ 130 .mode = MODE, \ 131 .iop = IOP, \ 132 .fop = FOP, \ 133 .op = OP, \ 134 } 135 136 #define DIR(NAME, MODE, iops, fops) \ 137 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 138 #define LNK(NAME, get_link) \ 139 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 140 &proc_pid_link_inode_operations, NULL, \ 141 { .proc_get_link = get_link } ) 142 #define REG(NAME, MODE, fops) \ 143 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 144 #define ONE(NAME, MODE, show) \ 145 NOD(NAME, (S_IFREG|(MODE)), \ 146 NULL, &proc_single_file_operations, \ 147 { .proc_show = show } ) 148 #define ATTR(LSM, NAME, MODE) \ 149 NOD(NAME, (S_IFREG|(MODE)), \ 150 NULL, &proc_pid_attr_operations, \ 151 { .lsm = LSM }) 152 153 /* 154 * Count the number of hardlinks for the pid_entry table, excluding the . 155 * and .. links. 156 */ 157 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries, 158 unsigned int n) 159 { 160 unsigned int i; 161 unsigned int count; 162 163 count = 2; 164 for (i = 0; i < n; ++i) { 165 if (S_ISDIR(entries[i].mode)) 166 ++count; 167 } 168 169 return count; 170 } 171 172 static int get_task_root(struct task_struct *task, struct path *root) 173 { 174 int result = -ENOENT; 175 176 task_lock(task); 177 if (task->fs) { 178 get_fs_root(task->fs, root); 179 result = 0; 180 } 181 task_unlock(task); 182 return result; 183 } 184 185 static int proc_cwd_link(struct dentry *dentry, struct path *path) 186 { 187 struct task_struct *task = get_proc_task(d_inode(dentry)); 188 int result = -ENOENT; 189 190 if (task) { 191 task_lock(task); 192 if (task->fs) { 193 get_fs_pwd(task->fs, path); 194 result = 0; 195 } 196 task_unlock(task); 197 put_task_struct(task); 198 } 199 return result; 200 } 201 202 static int proc_root_link(struct dentry *dentry, struct path *path) 203 { 204 struct task_struct *task = get_proc_task(d_inode(dentry)); 205 int result = -ENOENT; 206 207 if (task) { 208 result = get_task_root(task, path); 209 put_task_struct(task); 210 } 211 return result; 212 } 213 214 /* 215 * If the user used setproctitle(), we just get the string from 216 * user space at arg_start, and limit it to a maximum of one page. 217 */ 218 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf, 219 size_t count, unsigned long pos, 220 unsigned long arg_start) 221 { 222 char *page; 223 int ret, got; 224 225 if (pos >= PAGE_SIZE) 226 return 0; 227 228 page = (char *)__get_free_page(GFP_KERNEL); 229 if (!page) 230 return -ENOMEM; 231 232 ret = 0; 233 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON); 234 if (got > 0) { 235 int len = strnlen(page, got); 236 237 /* Include the NUL character if it was found */ 238 if (len < got) 239 len++; 240 241 if (len > pos) { 242 len -= pos; 243 if (len > count) 244 len = count; 245 len -= copy_to_user(buf, page+pos, len); 246 if (!len) 247 len = -EFAULT; 248 ret = len; 249 } 250 } 251 free_page((unsigned long)page); 252 return ret; 253 } 254 255 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf, 256 size_t count, loff_t *ppos) 257 { 258 unsigned long arg_start, arg_end, env_start, env_end; 259 unsigned long pos, len; 260 char *page, c; 261 262 /* Check if process spawned far enough to have cmdline. */ 263 if (!mm->env_end) 264 return 0; 265 266 spin_lock(&mm->arg_lock); 267 arg_start = mm->arg_start; 268 arg_end = mm->arg_end; 269 env_start = mm->env_start; 270 env_end = mm->env_end; 271 spin_unlock(&mm->arg_lock); 272 273 if (arg_start >= arg_end) 274 return 0; 275 276 /* 277 * We allow setproctitle() to overwrite the argument 278 * strings, and overflow past the original end. But 279 * only when it overflows into the environment area. 280 */ 281 if (env_start != arg_end || env_end < env_start) 282 env_start = env_end = arg_end; 283 len = env_end - arg_start; 284 285 /* We're not going to care if "*ppos" has high bits set */ 286 pos = *ppos; 287 if (pos >= len) 288 return 0; 289 if (count > len - pos) 290 count = len - pos; 291 if (!count) 292 return 0; 293 294 /* 295 * Magical special case: if the argv[] end byte is not 296 * zero, the user has overwritten it with setproctitle(3). 297 * 298 * Possible future enhancement: do this only once when 299 * pos is 0, and set a flag in the 'struct file'. 300 */ 301 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c) 302 return get_mm_proctitle(mm, buf, count, pos, arg_start); 303 304 /* 305 * For the non-setproctitle() case we limit things strictly 306 * to the [arg_start, arg_end[ range. 307 */ 308 pos += arg_start; 309 if (pos < arg_start || pos >= arg_end) 310 return 0; 311 if (count > arg_end - pos) 312 count = arg_end - pos; 313 314 page = (char *)__get_free_page(GFP_KERNEL); 315 if (!page) 316 return -ENOMEM; 317 318 len = 0; 319 while (count) { 320 int got; 321 size_t size = min_t(size_t, PAGE_SIZE, count); 322 323 got = access_remote_vm(mm, pos, page, size, FOLL_ANON); 324 if (got <= 0) 325 break; 326 got -= copy_to_user(buf, page, got); 327 if (unlikely(!got)) { 328 if (!len) 329 len = -EFAULT; 330 break; 331 } 332 pos += got; 333 buf += got; 334 len += got; 335 count -= got; 336 } 337 338 free_page((unsigned long)page); 339 return len; 340 } 341 342 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf, 343 size_t count, loff_t *pos) 344 { 345 struct mm_struct *mm; 346 ssize_t ret; 347 348 mm = get_task_mm(tsk); 349 if (!mm) 350 return 0; 351 352 ret = get_mm_cmdline(mm, buf, count, pos); 353 mmput(mm); 354 return ret; 355 } 356 357 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf, 358 size_t count, loff_t *pos) 359 { 360 struct task_struct *tsk; 361 ssize_t ret; 362 363 BUG_ON(*pos < 0); 364 365 tsk = get_proc_task(file_inode(file)); 366 if (!tsk) 367 return -ESRCH; 368 ret = get_task_cmdline(tsk, buf, count, pos); 369 put_task_struct(tsk); 370 if (ret > 0) 371 *pos += ret; 372 return ret; 373 } 374 375 static const struct file_operations proc_pid_cmdline_ops = { 376 .read = proc_pid_cmdline_read, 377 .llseek = generic_file_llseek, 378 }; 379 380 #ifdef CONFIG_KALLSYMS 381 /* 382 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 383 * Returns the resolved symbol. If that fails, simply return the address. 384 */ 385 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns, 386 struct pid *pid, struct task_struct *task) 387 { 388 unsigned long wchan; 389 char symname[KSYM_NAME_LEN]; 390 391 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 392 goto print0; 393 394 wchan = get_wchan(task); 395 if (wchan && !lookup_symbol_name(wchan, symname)) { 396 seq_puts(m, symname); 397 return 0; 398 } 399 400 print0: 401 seq_putc(m, '0'); 402 return 0; 403 } 404 #endif /* CONFIG_KALLSYMS */ 405 406 static int lock_trace(struct task_struct *task) 407 { 408 int err = mutex_lock_killable(&task->signal->exec_update_mutex); 409 if (err) 410 return err; 411 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) { 412 mutex_unlock(&task->signal->exec_update_mutex); 413 return -EPERM; 414 } 415 return 0; 416 } 417 418 static void unlock_trace(struct task_struct *task) 419 { 420 mutex_unlock(&task->signal->exec_update_mutex); 421 } 422 423 #ifdef CONFIG_STACKTRACE 424 425 #define MAX_STACK_TRACE_DEPTH 64 426 427 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 428 struct pid *pid, struct task_struct *task) 429 { 430 unsigned long *entries; 431 int err; 432 433 /* 434 * The ability to racily run the kernel stack unwinder on a running task 435 * and then observe the unwinder output is scary; while it is useful for 436 * debugging kernel issues, it can also allow an attacker to leak kernel 437 * stack contents. 438 * Doing this in a manner that is at least safe from races would require 439 * some work to ensure that the remote task can not be scheduled; and 440 * even then, this would still expose the unwinder as local attack 441 * surface. 442 * Therefore, this interface is restricted to root. 443 */ 444 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 445 return -EACCES; 446 447 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries), 448 GFP_KERNEL); 449 if (!entries) 450 return -ENOMEM; 451 452 err = lock_trace(task); 453 if (!err) { 454 unsigned int i, nr_entries; 455 456 nr_entries = stack_trace_save_tsk(task, entries, 457 MAX_STACK_TRACE_DEPTH, 0); 458 459 for (i = 0; i < nr_entries; i++) { 460 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]); 461 } 462 463 unlock_trace(task); 464 } 465 kfree(entries); 466 467 return err; 468 } 469 #endif 470 471 #ifdef CONFIG_SCHED_INFO 472 /* 473 * Provides /proc/PID/schedstat 474 */ 475 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns, 476 struct pid *pid, struct task_struct *task) 477 { 478 if (unlikely(!sched_info_on())) 479 seq_puts(m, "0 0 0\n"); 480 else 481 seq_printf(m, "%llu %llu %lu\n", 482 (unsigned long long)task->se.sum_exec_runtime, 483 (unsigned long long)task->sched_info.run_delay, 484 task->sched_info.pcount); 485 486 return 0; 487 } 488 #endif 489 490 #ifdef CONFIG_LATENCYTOP 491 static int lstats_show_proc(struct seq_file *m, void *v) 492 { 493 int i; 494 struct inode *inode = m->private; 495 struct task_struct *task = get_proc_task(inode); 496 497 if (!task) 498 return -ESRCH; 499 seq_puts(m, "Latency Top version : v0.1\n"); 500 for (i = 0; i < LT_SAVECOUNT; i++) { 501 struct latency_record *lr = &task->latency_record[i]; 502 if (lr->backtrace[0]) { 503 int q; 504 seq_printf(m, "%i %li %li", 505 lr->count, lr->time, lr->max); 506 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 507 unsigned long bt = lr->backtrace[q]; 508 509 if (!bt) 510 break; 511 seq_printf(m, " %ps", (void *)bt); 512 } 513 seq_putc(m, '\n'); 514 } 515 516 } 517 put_task_struct(task); 518 return 0; 519 } 520 521 static int lstats_open(struct inode *inode, struct file *file) 522 { 523 return single_open(file, lstats_show_proc, inode); 524 } 525 526 static ssize_t lstats_write(struct file *file, const char __user *buf, 527 size_t count, loff_t *offs) 528 { 529 struct task_struct *task = get_proc_task(file_inode(file)); 530 531 if (!task) 532 return -ESRCH; 533 clear_tsk_latency_tracing(task); 534 put_task_struct(task); 535 536 return count; 537 } 538 539 static const struct file_operations proc_lstats_operations = { 540 .open = lstats_open, 541 .read = seq_read, 542 .write = lstats_write, 543 .llseek = seq_lseek, 544 .release = single_release, 545 }; 546 547 #endif 548 549 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns, 550 struct pid *pid, struct task_struct *task) 551 { 552 unsigned long totalpages = totalram_pages() + total_swap_pages; 553 unsigned long points = 0; 554 555 points = oom_badness(task, totalpages) * 1000 / totalpages; 556 seq_printf(m, "%lu\n", points); 557 558 return 0; 559 } 560 561 struct limit_names { 562 const char *name; 563 const char *unit; 564 }; 565 566 static const struct limit_names lnames[RLIM_NLIMITS] = { 567 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 568 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 569 [RLIMIT_DATA] = {"Max data size", "bytes"}, 570 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 571 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 572 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 573 [RLIMIT_NPROC] = {"Max processes", "processes"}, 574 [RLIMIT_NOFILE] = {"Max open files", "files"}, 575 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 576 [RLIMIT_AS] = {"Max address space", "bytes"}, 577 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 578 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 579 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 580 [RLIMIT_NICE] = {"Max nice priority", NULL}, 581 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 582 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 583 }; 584 585 /* Display limits for a process */ 586 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns, 587 struct pid *pid, struct task_struct *task) 588 { 589 unsigned int i; 590 unsigned long flags; 591 592 struct rlimit rlim[RLIM_NLIMITS]; 593 594 if (!lock_task_sighand(task, &flags)) 595 return 0; 596 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 597 unlock_task_sighand(task, &flags); 598 599 /* 600 * print the file header 601 */ 602 seq_puts(m, "Limit " 603 "Soft Limit " 604 "Hard Limit " 605 "Units \n"); 606 607 for (i = 0; i < RLIM_NLIMITS; i++) { 608 if (rlim[i].rlim_cur == RLIM_INFINITY) 609 seq_printf(m, "%-25s %-20s ", 610 lnames[i].name, "unlimited"); 611 else 612 seq_printf(m, "%-25s %-20lu ", 613 lnames[i].name, rlim[i].rlim_cur); 614 615 if (rlim[i].rlim_max == RLIM_INFINITY) 616 seq_printf(m, "%-20s ", "unlimited"); 617 else 618 seq_printf(m, "%-20lu ", rlim[i].rlim_max); 619 620 if (lnames[i].unit) 621 seq_printf(m, "%-10s\n", lnames[i].unit); 622 else 623 seq_putc(m, '\n'); 624 } 625 626 return 0; 627 } 628 629 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 630 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns, 631 struct pid *pid, struct task_struct *task) 632 { 633 struct syscall_info info; 634 u64 *args = &info.data.args[0]; 635 int res; 636 637 res = lock_trace(task); 638 if (res) 639 return res; 640 641 if (task_current_syscall(task, &info)) 642 seq_puts(m, "running\n"); 643 else if (info.data.nr < 0) 644 seq_printf(m, "%d 0x%llx 0x%llx\n", 645 info.data.nr, info.sp, info.data.instruction_pointer); 646 else 647 seq_printf(m, 648 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n", 649 info.data.nr, 650 args[0], args[1], args[2], args[3], args[4], args[5], 651 info.sp, info.data.instruction_pointer); 652 unlock_trace(task); 653 654 return 0; 655 } 656 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 657 658 /************************************************************************/ 659 /* Here the fs part begins */ 660 /************************************************************************/ 661 662 /* permission checks */ 663 static int proc_fd_access_allowed(struct inode *inode) 664 { 665 struct task_struct *task; 666 int allowed = 0; 667 /* Allow access to a task's file descriptors if it is us or we 668 * may use ptrace attach to the process and find out that 669 * information. 670 */ 671 task = get_proc_task(inode); 672 if (task) { 673 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 674 put_task_struct(task); 675 } 676 return allowed; 677 } 678 679 int proc_setattr(struct dentry *dentry, struct iattr *attr) 680 { 681 int error; 682 struct inode *inode = d_inode(dentry); 683 684 if (attr->ia_valid & ATTR_MODE) 685 return -EPERM; 686 687 error = setattr_prepare(dentry, attr); 688 if (error) 689 return error; 690 691 setattr_copy(inode, attr); 692 mark_inode_dirty(inode); 693 return 0; 694 } 695 696 /* 697 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 698 * or euid/egid (for hide_pid_min=2)? 699 */ 700 static bool has_pid_permissions(struct proc_fs_info *fs_info, 701 struct task_struct *task, 702 enum proc_hidepid hide_pid_min) 703 { 704 /* 705 * If 'hidpid' mount option is set force a ptrace check, 706 * we indicate that we are using a filesystem syscall 707 * by passing PTRACE_MODE_READ_FSCREDS 708 */ 709 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) 710 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 711 712 if (fs_info->hide_pid < hide_pid_min) 713 return true; 714 if (in_group_p(fs_info->pid_gid)) 715 return true; 716 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 717 } 718 719 720 static int proc_pid_permission(struct inode *inode, int mask) 721 { 722 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 723 struct task_struct *task; 724 bool has_perms; 725 726 task = get_proc_task(inode); 727 if (!task) 728 return -ESRCH; 729 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS); 730 put_task_struct(task); 731 732 if (!has_perms) { 733 if (fs_info->hide_pid == HIDEPID_INVISIBLE) { 734 /* 735 * Let's make getdents(), stat(), and open() 736 * consistent with each other. If a process 737 * may not stat() a file, it shouldn't be seen 738 * in procfs at all. 739 */ 740 return -ENOENT; 741 } 742 743 return -EPERM; 744 } 745 return generic_permission(inode, mask); 746 } 747 748 749 750 static const struct inode_operations proc_def_inode_operations = { 751 .setattr = proc_setattr, 752 }; 753 754 static int proc_single_show(struct seq_file *m, void *v) 755 { 756 struct inode *inode = m->private; 757 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 758 struct pid *pid = proc_pid(inode); 759 struct task_struct *task; 760 int ret; 761 762 task = get_pid_task(pid, PIDTYPE_PID); 763 if (!task) 764 return -ESRCH; 765 766 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 767 768 put_task_struct(task); 769 return ret; 770 } 771 772 static int proc_single_open(struct inode *inode, struct file *filp) 773 { 774 return single_open(filp, proc_single_show, inode); 775 } 776 777 static const struct file_operations proc_single_file_operations = { 778 .open = proc_single_open, 779 .read = seq_read, 780 .llseek = seq_lseek, 781 .release = single_release, 782 }; 783 784 785 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode) 786 { 787 struct task_struct *task = get_proc_task(inode); 788 struct mm_struct *mm = ERR_PTR(-ESRCH); 789 790 if (task) { 791 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS); 792 put_task_struct(task); 793 794 if (!IS_ERR_OR_NULL(mm)) { 795 /* ensure this mm_struct can't be freed */ 796 mmgrab(mm); 797 /* but do not pin its memory */ 798 mmput(mm); 799 } 800 } 801 802 return mm; 803 } 804 805 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) 806 { 807 struct mm_struct *mm = proc_mem_open(inode, mode); 808 809 if (IS_ERR(mm)) 810 return PTR_ERR(mm); 811 812 file->private_data = mm; 813 return 0; 814 } 815 816 static int mem_open(struct inode *inode, struct file *file) 817 { 818 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH); 819 820 /* OK to pass negative loff_t, we can catch out-of-range */ 821 file->f_mode |= FMODE_UNSIGNED_OFFSET; 822 823 return ret; 824 } 825 826 static ssize_t mem_rw(struct file *file, char __user *buf, 827 size_t count, loff_t *ppos, int write) 828 { 829 struct mm_struct *mm = file->private_data; 830 unsigned long addr = *ppos; 831 ssize_t copied; 832 char *page; 833 unsigned int flags; 834 835 if (!mm) 836 return 0; 837 838 page = (char *)__get_free_page(GFP_KERNEL); 839 if (!page) 840 return -ENOMEM; 841 842 copied = 0; 843 if (!mmget_not_zero(mm)) 844 goto free; 845 846 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0); 847 848 while (count > 0) { 849 int this_len = min_t(int, count, PAGE_SIZE); 850 851 if (write && copy_from_user(page, buf, this_len)) { 852 copied = -EFAULT; 853 break; 854 } 855 856 this_len = access_remote_vm(mm, addr, page, this_len, flags); 857 if (!this_len) { 858 if (!copied) 859 copied = -EIO; 860 break; 861 } 862 863 if (!write && copy_to_user(buf, page, this_len)) { 864 copied = -EFAULT; 865 break; 866 } 867 868 buf += this_len; 869 addr += this_len; 870 copied += this_len; 871 count -= this_len; 872 } 873 *ppos = addr; 874 875 mmput(mm); 876 free: 877 free_page((unsigned long) page); 878 return copied; 879 } 880 881 static ssize_t mem_read(struct file *file, char __user *buf, 882 size_t count, loff_t *ppos) 883 { 884 return mem_rw(file, buf, count, ppos, 0); 885 } 886 887 static ssize_t mem_write(struct file *file, const char __user *buf, 888 size_t count, loff_t *ppos) 889 { 890 return mem_rw(file, (char __user*)buf, count, ppos, 1); 891 } 892 893 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 894 { 895 switch (orig) { 896 case 0: 897 file->f_pos = offset; 898 break; 899 case 1: 900 file->f_pos += offset; 901 break; 902 default: 903 return -EINVAL; 904 } 905 force_successful_syscall_return(); 906 return file->f_pos; 907 } 908 909 static int mem_release(struct inode *inode, struct file *file) 910 { 911 struct mm_struct *mm = file->private_data; 912 if (mm) 913 mmdrop(mm); 914 return 0; 915 } 916 917 static const struct file_operations proc_mem_operations = { 918 .llseek = mem_lseek, 919 .read = mem_read, 920 .write = mem_write, 921 .open = mem_open, 922 .release = mem_release, 923 }; 924 925 static int environ_open(struct inode *inode, struct file *file) 926 { 927 return __mem_open(inode, file, PTRACE_MODE_READ); 928 } 929 930 static ssize_t environ_read(struct file *file, char __user *buf, 931 size_t count, loff_t *ppos) 932 { 933 char *page; 934 unsigned long src = *ppos; 935 int ret = 0; 936 struct mm_struct *mm = file->private_data; 937 unsigned long env_start, env_end; 938 939 /* Ensure the process spawned far enough to have an environment. */ 940 if (!mm || !mm->env_end) 941 return 0; 942 943 page = (char *)__get_free_page(GFP_KERNEL); 944 if (!page) 945 return -ENOMEM; 946 947 ret = 0; 948 if (!mmget_not_zero(mm)) 949 goto free; 950 951 spin_lock(&mm->arg_lock); 952 env_start = mm->env_start; 953 env_end = mm->env_end; 954 spin_unlock(&mm->arg_lock); 955 956 while (count > 0) { 957 size_t this_len, max_len; 958 int retval; 959 960 if (src >= (env_end - env_start)) 961 break; 962 963 this_len = env_end - (env_start + src); 964 965 max_len = min_t(size_t, PAGE_SIZE, count); 966 this_len = min(max_len, this_len); 967 968 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON); 969 970 if (retval <= 0) { 971 ret = retval; 972 break; 973 } 974 975 if (copy_to_user(buf, page, retval)) { 976 ret = -EFAULT; 977 break; 978 } 979 980 ret += retval; 981 src += retval; 982 buf += retval; 983 count -= retval; 984 } 985 *ppos = src; 986 mmput(mm); 987 988 free: 989 free_page((unsigned long) page); 990 return ret; 991 } 992 993 static const struct file_operations proc_environ_operations = { 994 .open = environ_open, 995 .read = environ_read, 996 .llseek = generic_file_llseek, 997 .release = mem_release, 998 }; 999 1000 static int auxv_open(struct inode *inode, struct file *file) 1001 { 1002 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 1003 } 1004 1005 static ssize_t auxv_read(struct file *file, char __user *buf, 1006 size_t count, loff_t *ppos) 1007 { 1008 struct mm_struct *mm = file->private_data; 1009 unsigned int nwords = 0; 1010 1011 if (!mm) 1012 return 0; 1013 do { 1014 nwords += 2; 1015 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 1016 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv, 1017 nwords * sizeof(mm->saved_auxv[0])); 1018 } 1019 1020 static const struct file_operations proc_auxv_operations = { 1021 .open = auxv_open, 1022 .read = auxv_read, 1023 .llseek = generic_file_llseek, 1024 .release = mem_release, 1025 }; 1026 1027 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count, 1028 loff_t *ppos) 1029 { 1030 struct task_struct *task = get_proc_task(file_inode(file)); 1031 char buffer[PROC_NUMBUF]; 1032 int oom_adj = OOM_ADJUST_MIN; 1033 size_t len; 1034 1035 if (!task) 1036 return -ESRCH; 1037 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX) 1038 oom_adj = OOM_ADJUST_MAX; 1039 else 1040 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) / 1041 OOM_SCORE_ADJ_MAX; 1042 put_task_struct(task); 1043 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj); 1044 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1045 } 1046 1047 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy) 1048 { 1049 static DEFINE_MUTEX(oom_adj_mutex); 1050 struct mm_struct *mm = NULL; 1051 struct task_struct *task; 1052 int err = 0; 1053 1054 task = get_proc_task(file_inode(file)); 1055 if (!task) 1056 return -ESRCH; 1057 1058 mutex_lock(&oom_adj_mutex); 1059 if (legacy) { 1060 if (oom_adj < task->signal->oom_score_adj && 1061 !capable(CAP_SYS_RESOURCE)) { 1062 err = -EACCES; 1063 goto err_unlock; 1064 } 1065 /* 1066 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use 1067 * /proc/pid/oom_score_adj instead. 1068 */ 1069 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 1070 current->comm, task_pid_nr(current), task_pid_nr(task), 1071 task_pid_nr(task)); 1072 } else { 1073 if ((short)oom_adj < task->signal->oom_score_adj_min && 1074 !capable(CAP_SYS_RESOURCE)) { 1075 err = -EACCES; 1076 goto err_unlock; 1077 } 1078 } 1079 1080 /* 1081 * Make sure we will check other processes sharing the mm if this is 1082 * not vfrok which wants its own oom_score_adj. 1083 * pin the mm so it doesn't go away and get reused after task_unlock 1084 */ 1085 if (!task->vfork_done) { 1086 struct task_struct *p = find_lock_task_mm(task); 1087 1088 if (p) { 1089 if (atomic_read(&p->mm->mm_users) > 1) { 1090 mm = p->mm; 1091 mmgrab(mm); 1092 } 1093 task_unlock(p); 1094 } 1095 } 1096 1097 task->signal->oom_score_adj = oom_adj; 1098 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1099 task->signal->oom_score_adj_min = (short)oom_adj; 1100 trace_oom_score_adj_update(task); 1101 1102 if (mm) { 1103 struct task_struct *p; 1104 1105 rcu_read_lock(); 1106 for_each_process(p) { 1107 if (same_thread_group(task, p)) 1108 continue; 1109 1110 /* do not touch kernel threads or the global init */ 1111 if (p->flags & PF_KTHREAD || is_global_init(p)) 1112 continue; 1113 1114 task_lock(p); 1115 if (!p->vfork_done && process_shares_mm(p, mm)) { 1116 p->signal->oom_score_adj = oom_adj; 1117 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1118 p->signal->oom_score_adj_min = (short)oom_adj; 1119 } 1120 task_unlock(p); 1121 } 1122 rcu_read_unlock(); 1123 mmdrop(mm); 1124 } 1125 err_unlock: 1126 mutex_unlock(&oom_adj_mutex); 1127 put_task_struct(task); 1128 return err; 1129 } 1130 1131 /* 1132 * /proc/pid/oom_adj exists solely for backwards compatibility with previous 1133 * kernels. The effective policy is defined by oom_score_adj, which has a 1134 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly. 1135 * Values written to oom_adj are simply mapped linearly to oom_score_adj. 1136 * Processes that become oom disabled via oom_adj will still be oom disabled 1137 * with this implementation. 1138 * 1139 * oom_adj cannot be removed since existing userspace binaries use it. 1140 */ 1141 static ssize_t oom_adj_write(struct file *file, const char __user *buf, 1142 size_t count, loff_t *ppos) 1143 { 1144 char buffer[PROC_NUMBUF]; 1145 int oom_adj; 1146 int err; 1147 1148 memset(buffer, 0, sizeof(buffer)); 1149 if (count > sizeof(buffer) - 1) 1150 count = sizeof(buffer) - 1; 1151 if (copy_from_user(buffer, buf, count)) { 1152 err = -EFAULT; 1153 goto out; 1154 } 1155 1156 err = kstrtoint(strstrip(buffer), 0, &oom_adj); 1157 if (err) 1158 goto out; 1159 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) && 1160 oom_adj != OOM_DISABLE) { 1161 err = -EINVAL; 1162 goto out; 1163 } 1164 1165 /* 1166 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 1167 * value is always attainable. 1168 */ 1169 if (oom_adj == OOM_ADJUST_MAX) 1170 oom_adj = OOM_SCORE_ADJ_MAX; 1171 else 1172 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE; 1173 1174 err = __set_oom_adj(file, oom_adj, true); 1175 out: 1176 return err < 0 ? err : count; 1177 } 1178 1179 static const struct file_operations proc_oom_adj_operations = { 1180 .read = oom_adj_read, 1181 .write = oom_adj_write, 1182 .llseek = generic_file_llseek, 1183 }; 1184 1185 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 1186 size_t count, loff_t *ppos) 1187 { 1188 struct task_struct *task = get_proc_task(file_inode(file)); 1189 char buffer[PROC_NUMBUF]; 1190 short oom_score_adj = OOM_SCORE_ADJ_MIN; 1191 size_t len; 1192 1193 if (!task) 1194 return -ESRCH; 1195 oom_score_adj = task->signal->oom_score_adj; 1196 put_task_struct(task); 1197 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj); 1198 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1199 } 1200 1201 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 1202 size_t count, loff_t *ppos) 1203 { 1204 char buffer[PROC_NUMBUF]; 1205 int oom_score_adj; 1206 int err; 1207 1208 memset(buffer, 0, sizeof(buffer)); 1209 if (count > sizeof(buffer) - 1) 1210 count = sizeof(buffer) - 1; 1211 if (copy_from_user(buffer, buf, count)) { 1212 err = -EFAULT; 1213 goto out; 1214 } 1215 1216 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1217 if (err) 1218 goto out; 1219 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1220 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1221 err = -EINVAL; 1222 goto out; 1223 } 1224 1225 err = __set_oom_adj(file, oom_score_adj, false); 1226 out: 1227 return err < 0 ? err : count; 1228 } 1229 1230 static const struct file_operations proc_oom_score_adj_operations = { 1231 .read = oom_score_adj_read, 1232 .write = oom_score_adj_write, 1233 .llseek = default_llseek, 1234 }; 1235 1236 #ifdef CONFIG_AUDIT 1237 #define TMPBUFLEN 11 1238 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1239 size_t count, loff_t *ppos) 1240 { 1241 struct inode * inode = file_inode(file); 1242 struct task_struct *task = get_proc_task(inode); 1243 ssize_t length; 1244 char tmpbuf[TMPBUFLEN]; 1245 1246 if (!task) 1247 return -ESRCH; 1248 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1249 from_kuid(file->f_cred->user_ns, 1250 audit_get_loginuid(task))); 1251 put_task_struct(task); 1252 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1253 } 1254 1255 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1256 size_t count, loff_t *ppos) 1257 { 1258 struct inode * inode = file_inode(file); 1259 uid_t loginuid; 1260 kuid_t kloginuid; 1261 int rv; 1262 1263 rcu_read_lock(); 1264 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1265 rcu_read_unlock(); 1266 return -EPERM; 1267 } 1268 rcu_read_unlock(); 1269 1270 if (*ppos != 0) { 1271 /* No partial writes. */ 1272 return -EINVAL; 1273 } 1274 1275 rv = kstrtou32_from_user(buf, count, 10, &loginuid); 1276 if (rv < 0) 1277 return rv; 1278 1279 /* is userspace tring to explicitly UNSET the loginuid? */ 1280 if (loginuid == AUDIT_UID_UNSET) { 1281 kloginuid = INVALID_UID; 1282 } else { 1283 kloginuid = make_kuid(file->f_cred->user_ns, loginuid); 1284 if (!uid_valid(kloginuid)) 1285 return -EINVAL; 1286 } 1287 1288 rv = audit_set_loginuid(kloginuid); 1289 if (rv < 0) 1290 return rv; 1291 return count; 1292 } 1293 1294 static const struct file_operations proc_loginuid_operations = { 1295 .read = proc_loginuid_read, 1296 .write = proc_loginuid_write, 1297 .llseek = generic_file_llseek, 1298 }; 1299 1300 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1301 size_t count, loff_t *ppos) 1302 { 1303 struct inode * inode = file_inode(file); 1304 struct task_struct *task = get_proc_task(inode); 1305 ssize_t length; 1306 char tmpbuf[TMPBUFLEN]; 1307 1308 if (!task) 1309 return -ESRCH; 1310 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1311 audit_get_sessionid(task)); 1312 put_task_struct(task); 1313 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1314 } 1315 1316 static const struct file_operations proc_sessionid_operations = { 1317 .read = proc_sessionid_read, 1318 .llseek = generic_file_llseek, 1319 }; 1320 #endif 1321 1322 #ifdef CONFIG_FAULT_INJECTION 1323 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1324 size_t count, loff_t *ppos) 1325 { 1326 struct task_struct *task = get_proc_task(file_inode(file)); 1327 char buffer[PROC_NUMBUF]; 1328 size_t len; 1329 int make_it_fail; 1330 1331 if (!task) 1332 return -ESRCH; 1333 make_it_fail = task->make_it_fail; 1334 put_task_struct(task); 1335 1336 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1337 1338 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1339 } 1340 1341 static ssize_t proc_fault_inject_write(struct file * file, 1342 const char __user * buf, size_t count, loff_t *ppos) 1343 { 1344 struct task_struct *task; 1345 char buffer[PROC_NUMBUF]; 1346 int make_it_fail; 1347 int rv; 1348 1349 if (!capable(CAP_SYS_RESOURCE)) 1350 return -EPERM; 1351 memset(buffer, 0, sizeof(buffer)); 1352 if (count > sizeof(buffer) - 1) 1353 count = sizeof(buffer) - 1; 1354 if (copy_from_user(buffer, buf, count)) 1355 return -EFAULT; 1356 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail); 1357 if (rv < 0) 1358 return rv; 1359 if (make_it_fail < 0 || make_it_fail > 1) 1360 return -EINVAL; 1361 1362 task = get_proc_task(file_inode(file)); 1363 if (!task) 1364 return -ESRCH; 1365 task->make_it_fail = make_it_fail; 1366 put_task_struct(task); 1367 1368 return count; 1369 } 1370 1371 static const struct file_operations proc_fault_inject_operations = { 1372 .read = proc_fault_inject_read, 1373 .write = proc_fault_inject_write, 1374 .llseek = generic_file_llseek, 1375 }; 1376 1377 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf, 1378 size_t count, loff_t *ppos) 1379 { 1380 struct task_struct *task; 1381 int err; 1382 unsigned int n; 1383 1384 err = kstrtouint_from_user(buf, count, 0, &n); 1385 if (err) 1386 return err; 1387 1388 task = get_proc_task(file_inode(file)); 1389 if (!task) 1390 return -ESRCH; 1391 task->fail_nth = n; 1392 put_task_struct(task); 1393 1394 return count; 1395 } 1396 1397 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf, 1398 size_t count, loff_t *ppos) 1399 { 1400 struct task_struct *task; 1401 char numbuf[PROC_NUMBUF]; 1402 ssize_t len; 1403 1404 task = get_proc_task(file_inode(file)); 1405 if (!task) 1406 return -ESRCH; 1407 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth); 1408 put_task_struct(task); 1409 return simple_read_from_buffer(buf, count, ppos, numbuf, len); 1410 } 1411 1412 static const struct file_operations proc_fail_nth_operations = { 1413 .read = proc_fail_nth_read, 1414 .write = proc_fail_nth_write, 1415 }; 1416 #endif 1417 1418 1419 #ifdef CONFIG_SCHED_DEBUG 1420 /* 1421 * Print out various scheduling related per-task fields: 1422 */ 1423 static int sched_show(struct seq_file *m, void *v) 1424 { 1425 struct inode *inode = m->private; 1426 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 1427 struct task_struct *p; 1428 1429 p = get_proc_task(inode); 1430 if (!p) 1431 return -ESRCH; 1432 proc_sched_show_task(p, ns, m); 1433 1434 put_task_struct(p); 1435 1436 return 0; 1437 } 1438 1439 static ssize_t 1440 sched_write(struct file *file, const char __user *buf, 1441 size_t count, loff_t *offset) 1442 { 1443 struct inode *inode = file_inode(file); 1444 struct task_struct *p; 1445 1446 p = get_proc_task(inode); 1447 if (!p) 1448 return -ESRCH; 1449 proc_sched_set_task(p); 1450 1451 put_task_struct(p); 1452 1453 return count; 1454 } 1455 1456 static int sched_open(struct inode *inode, struct file *filp) 1457 { 1458 return single_open(filp, sched_show, inode); 1459 } 1460 1461 static const struct file_operations proc_pid_sched_operations = { 1462 .open = sched_open, 1463 .read = seq_read, 1464 .write = sched_write, 1465 .llseek = seq_lseek, 1466 .release = single_release, 1467 }; 1468 1469 #endif 1470 1471 #ifdef CONFIG_SCHED_AUTOGROUP 1472 /* 1473 * Print out autogroup related information: 1474 */ 1475 static int sched_autogroup_show(struct seq_file *m, void *v) 1476 { 1477 struct inode *inode = m->private; 1478 struct task_struct *p; 1479 1480 p = get_proc_task(inode); 1481 if (!p) 1482 return -ESRCH; 1483 proc_sched_autogroup_show_task(p, m); 1484 1485 put_task_struct(p); 1486 1487 return 0; 1488 } 1489 1490 static ssize_t 1491 sched_autogroup_write(struct file *file, const char __user *buf, 1492 size_t count, loff_t *offset) 1493 { 1494 struct inode *inode = file_inode(file); 1495 struct task_struct *p; 1496 char buffer[PROC_NUMBUF]; 1497 int nice; 1498 int err; 1499 1500 memset(buffer, 0, sizeof(buffer)); 1501 if (count > sizeof(buffer) - 1) 1502 count = sizeof(buffer) - 1; 1503 if (copy_from_user(buffer, buf, count)) 1504 return -EFAULT; 1505 1506 err = kstrtoint(strstrip(buffer), 0, &nice); 1507 if (err < 0) 1508 return err; 1509 1510 p = get_proc_task(inode); 1511 if (!p) 1512 return -ESRCH; 1513 1514 err = proc_sched_autogroup_set_nice(p, nice); 1515 if (err) 1516 count = err; 1517 1518 put_task_struct(p); 1519 1520 return count; 1521 } 1522 1523 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1524 { 1525 int ret; 1526 1527 ret = single_open(filp, sched_autogroup_show, NULL); 1528 if (!ret) { 1529 struct seq_file *m = filp->private_data; 1530 1531 m->private = inode; 1532 } 1533 return ret; 1534 } 1535 1536 static const struct file_operations proc_pid_sched_autogroup_operations = { 1537 .open = sched_autogroup_open, 1538 .read = seq_read, 1539 .write = sched_autogroup_write, 1540 .llseek = seq_lseek, 1541 .release = single_release, 1542 }; 1543 1544 #endif /* CONFIG_SCHED_AUTOGROUP */ 1545 1546 #ifdef CONFIG_TIME_NS 1547 static int timens_offsets_show(struct seq_file *m, void *v) 1548 { 1549 struct task_struct *p; 1550 1551 p = get_proc_task(file_inode(m->file)); 1552 if (!p) 1553 return -ESRCH; 1554 proc_timens_show_offsets(p, m); 1555 1556 put_task_struct(p); 1557 1558 return 0; 1559 } 1560 1561 static ssize_t timens_offsets_write(struct file *file, const char __user *buf, 1562 size_t count, loff_t *ppos) 1563 { 1564 struct inode *inode = file_inode(file); 1565 struct proc_timens_offset offsets[2]; 1566 char *kbuf = NULL, *pos, *next_line; 1567 struct task_struct *p; 1568 int ret, noffsets; 1569 1570 /* Only allow < page size writes at the beginning of the file */ 1571 if ((*ppos != 0) || (count >= PAGE_SIZE)) 1572 return -EINVAL; 1573 1574 /* Slurp in the user data */ 1575 kbuf = memdup_user_nul(buf, count); 1576 if (IS_ERR(kbuf)) 1577 return PTR_ERR(kbuf); 1578 1579 /* Parse the user data */ 1580 ret = -EINVAL; 1581 noffsets = 0; 1582 for (pos = kbuf; pos; pos = next_line) { 1583 struct proc_timens_offset *off = &offsets[noffsets]; 1584 char clock[10]; 1585 int err; 1586 1587 /* Find the end of line and ensure we don't look past it */ 1588 next_line = strchr(pos, '\n'); 1589 if (next_line) { 1590 *next_line = '\0'; 1591 next_line++; 1592 if (*next_line == '\0') 1593 next_line = NULL; 1594 } 1595 1596 err = sscanf(pos, "%9s %lld %lu", clock, 1597 &off->val.tv_sec, &off->val.tv_nsec); 1598 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC) 1599 goto out; 1600 1601 clock[sizeof(clock) - 1] = 0; 1602 if (strcmp(clock, "monotonic") == 0 || 1603 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0) 1604 off->clockid = CLOCK_MONOTONIC; 1605 else if (strcmp(clock, "boottime") == 0 || 1606 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0) 1607 off->clockid = CLOCK_BOOTTIME; 1608 else 1609 goto out; 1610 1611 noffsets++; 1612 if (noffsets == ARRAY_SIZE(offsets)) { 1613 if (next_line) 1614 count = next_line - kbuf; 1615 break; 1616 } 1617 } 1618 1619 ret = -ESRCH; 1620 p = get_proc_task(inode); 1621 if (!p) 1622 goto out; 1623 ret = proc_timens_set_offset(file, p, offsets, noffsets); 1624 put_task_struct(p); 1625 if (ret) 1626 goto out; 1627 1628 ret = count; 1629 out: 1630 kfree(kbuf); 1631 return ret; 1632 } 1633 1634 static int timens_offsets_open(struct inode *inode, struct file *filp) 1635 { 1636 return single_open(filp, timens_offsets_show, inode); 1637 } 1638 1639 static const struct file_operations proc_timens_offsets_operations = { 1640 .open = timens_offsets_open, 1641 .read = seq_read, 1642 .write = timens_offsets_write, 1643 .llseek = seq_lseek, 1644 .release = single_release, 1645 }; 1646 #endif /* CONFIG_TIME_NS */ 1647 1648 static ssize_t comm_write(struct file *file, const char __user *buf, 1649 size_t count, loff_t *offset) 1650 { 1651 struct inode *inode = file_inode(file); 1652 struct task_struct *p; 1653 char buffer[TASK_COMM_LEN]; 1654 const size_t maxlen = sizeof(buffer) - 1; 1655 1656 memset(buffer, 0, sizeof(buffer)); 1657 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count)) 1658 return -EFAULT; 1659 1660 p = get_proc_task(inode); 1661 if (!p) 1662 return -ESRCH; 1663 1664 if (same_thread_group(current, p)) 1665 set_task_comm(p, buffer); 1666 else 1667 count = -EINVAL; 1668 1669 put_task_struct(p); 1670 1671 return count; 1672 } 1673 1674 static int comm_show(struct seq_file *m, void *v) 1675 { 1676 struct inode *inode = m->private; 1677 struct task_struct *p; 1678 1679 p = get_proc_task(inode); 1680 if (!p) 1681 return -ESRCH; 1682 1683 proc_task_name(m, p, false); 1684 seq_putc(m, '\n'); 1685 1686 put_task_struct(p); 1687 1688 return 0; 1689 } 1690 1691 static int comm_open(struct inode *inode, struct file *filp) 1692 { 1693 return single_open(filp, comm_show, inode); 1694 } 1695 1696 static const struct file_operations proc_pid_set_comm_operations = { 1697 .open = comm_open, 1698 .read = seq_read, 1699 .write = comm_write, 1700 .llseek = seq_lseek, 1701 .release = single_release, 1702 }; 1703 1704 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1705 { 1706 struct task_struct *task; 1707 struct file *exe_file; 1708 1709 task = get_proc_task(d_inode(dentry)); 1710 if (!task) 1711 return -ENOENT; 1712 exe_file = get_task_exe_file(task); 1713 put_task_struct(task); 1714 if (exe_file) { 1715 *exe_path = exe_file->f_path; 1716 path_get(&exe_file->f_path); 1717 fput(exe_file); 1718 return 0; 1719 } else 1720 return -ENOENT; 1721 } 1722 1723 static const char *proc_pid_get_link(struct dentry *dentry, 1724 struct inode *inode, 1725 struct delayed_call *done) 1726 { 1727 struct path path; 1728 int error = -EACCES; 1729 1730 if (!dentry) 1731 return ERR_PTR(-ECHILD); 1732 1733 /* Are we allowed to snoop on the tasks file descriptors? */ 1734 if (!proc_fd_access_allowed(inode)) 1735 goto out; 1736 1737 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1738 if (error) 1739 goto out; 1740 1741 error = nd_jump_link(&path); 1742 out: 1743 return ERR_PTR(error); 1744 } 1745 1746 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1747 { 1748 char *tmp = (char *)__get_free_page(GFP_KERNEL); 1749 char *pathname; 1750 int len; 1751 1752 if (!tmp) 1753 return -ENOMEM; 1754 1755 pathname = d_path(path, tmp, PAGE_SIZE); 1756 len = PTR_ERR(pathname); 1757 if (IS_ERR(pathname)) 1758 goto out; 1759 len = tmp + PAGE_SIZE - 1 - pathname; 1760 1761 if (len > buflen) 1762 len = buflen; 1763 if (copy_to_user(buffer, pathname, len)) 1764 len = -EFAULT; 1765 out: 1766 free_page((unsigned long)tmp); 1767 return len; 1768 } 1769 1770 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1771 { 1772 int error = -EACCES; 1773 struct inode *inode = d_inode(dentry); 1774 struct path path; 1775 1776 /* Are we allowed to snoop on the tasks file descriptors? */ 1777 if (!proc_fd_access_allowed(inode)) 1778 goto out; 1779 1780 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1781 if (error) 1782 goto out; 1783 1784 error = do_proc_readlink(&path, buffer, buflen); 1785 path_put(&path); 1786 out: 1787 return error; 1788 } 1789 1790 const struct inode_operations proc_pid_link_inode_operations = { 1791 .readlink = proc_pid_readlink, 1792 .get_link = proc_pid_get_link, 1793 .setattr = proc_setattr, 1794 }; 1795 1796 1797 /* building an inode */ 1798 1799 void task_dump_owner(struct task_struct *task, umode_t mode, 1800 kuid_t *ruid, kgid_t *rgid) 1801 { 1802 /* Depending on the state of dumpable compute who should own a 1803 * proc file for a task. 1804 */ 1805 const struct cred *cred; 1806 kuid_t uid; 1807 kgid_t gid; 1808 1809 if (unlikely(task->flags & PF_KTHREAD)) { 1810 *ruid = GLOBAL_ROOT_UID; 1811 *rgid = GLOBAL_ROOT_GID; 1812 return; 1813 } 1814 1815 /* Default to the tasks effective ownership */ 1816 rcu_read_lock(); 1817 cred = __task_cred(task); 1818 uid = cred->euid; 1819 gid = cred->egid; 1820 rcu_read_unlock(); 1821 1822 /* 1823 * Before the /proc/pid/status file was created the only way to read 1824 * the effective uid of a /process was to stat /proc/pid. Reading 1825 * /proc/pid/status is slow enough that procps and other packages 1826 * kept stating /proc/pid. To keep the rules in /proc simple I have 1827 * made this apply to all per process world readable and executable 1828 * directories. 1829 */ 1830 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) { 1831 struct mm_struct *mm; 1832 task_lock(task); 1833 mm = task->mm; 1834 /* Make non-dumpable tasks owned by some root */ 1835 if (mm) { 1836 if (get_dumpable(mm) != SUID_DUMP_USER) { 1837 struct user_namespace *user_ns = mm->user_ns; 1838 1839 uid = make_kuid(user_ns, 0); 1840 if (!uid_valid(uid)) 1841 uid = GLOBAL_ROOT_UID; 1842 1843 gid = make_kgid(user_ns, 0); 1844 if (!gid_valid(gid)) 1845 gid = GLOBAL_ROOT_GID; 1846 } 1847 } else { 1848 uid = GLOBAL_ROOT_UID; 1849 gid = GLOBAL_ROOT_GID; 1850 } 1851 task_unlock(task); 1852 } 1853 *ruid = uid; 1854 *rgid = gid; 1855 } 1856 1857 void proc_pid_evict_inode(struct proc_inode *ei) 1858 { 1859 struct pid *pid = ei->pid; 1860 1861 if (S_ISDIR(ei->vfs_inode.i_mode)) { 1862 spin_lock(&pid->lock); 1863 hlist_del_init_rcu(&ei->sibling_inodes); 1864 spin_unlock(&pid->lock); 1865 } 1866 1867 put_pid(pid); 1868 } 1869 1870 struct inode *proc_pid_make_inode(struct super_block * sb, 1871 struct task_struct *task, umode_t mode) 1872 { 1873 struct inode * inode; 1874 struct proc_inode *ei; 1875 struct pid *pid; 1876 1877 /* We need a new inode */ 1878 1879 inode = new_inode(sb); 1880 if (!inode) 1881 goto out; 1882 1883 /* Common stuff */ 1884 ei = PROC_I(inode); 1885 inode->i_mode = mode; 1886 inode->i_ino = get_next_ino(); 1887 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1888 inode->i_op = &proc_def_inode_operations; 1889 1890 /* 1891 * grab the reference to task. 1892 */ 1893 pid = get_task_pid(task, PIDTYPE_PID); 1894 if (!pid) 1895 goto out_unlock; 1896 1897 /* Let the pid remember us for quick removal */ 1898 ei->pid = pid; 1899 if (S_ISDIR(mode)) { 1900 spin_lock(&pid->lock); 1901 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes); 1902 spin_unlock(&pid->lock); 1903 } 1904 1905 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1906 security_task_to_inode(task, inode); 1907 1908 out: 1909 return inode; 1910 1911 out_unlock: 1912 iput(inode); 1913 return NULL; 1914 } 1915 1916 int pid_getattr(const struct path *path, struct kstat *stat, 1917 u32 request_mask, unsigned int query_flags) 1918 { 1919 struct inode *inode = d_inode(path->dentry); 1920 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 1921 struct task_struct *task; 1922 1923 generic_fillattr(inode, stat); 1924 1925 stat->uid = GLOBAL_ROOT_UID; 1926 stat->gid = GLOBAL_ROOT_GID; 1927 rcu_read_lock(); 1928 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1929 if (task) { 1930 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) { 1931 rcu_read_unlock(); 1932 /* 1933 * This doesn't prevent learning whether PID exists, 1934 * it only makes getattr() consistent with readdir(). 1935 */ 1936 return -ENOENT; 1937 } 1938 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid); 1939 } 1940 rcu_read_unlock(); 1941 return 0; 1942 } 1943 1944 /* dentry stuff */ 1945 1946 /* 1947 * Set <pid>/... inode ownership (can change due to setuid(), etc.) 1948 */ 1949 void pid_update_inode(struct task_struct *task, struct inode *inode) 1950 { 1951 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid); 1952 1953 inode->i_mode &= ~(S_ISUID | S_ISGID); 1954 security_task_to_inode(task, inode); 1955 } 1956 1957 /* 1958 * Rewrite the inode's ownerships here because the owning task may have 1959 * performed a setuid(), etc. 1960 * 1961 */ 1962 static int pid_revalidate(struct dentry *dentry, unsigned int flags) 1963 { 1964 struct inode *inode; 1965 struct task_struct *task; 1966 1967 if (flags & LOOKUP_RCU) 1968 return -ECHILD; 1969 1970 inode = d_inode(dentry); 1971 task = get_proc_task(inode); 1972 1973 if (task) { 1974 pid_update_inode(task, inode); 1975 put_task_struct(task); 1976 return 1; 1977 } 1978 return 0; 1979 } 1980 1981 static inline bool proc_inode_is_dead(struct inode *inode) 1982 { 1983 return !proc_pid(inode)->tasks[PIDTYPE_PID].first; 1984 } 1985 1986 int pid_delete_dentry(const struct dentry *dentry) 1987 { 1988 /* Is the task we represent dead? 1989 * If so, then don't put the dentry on the lru list, 1990 * kill it immediately. 1991 */ 1992 return proc_inode_is_dead(d_inode(dentry)); 1993 } 1994 1995 const struct dentry_operations pid_dentry_operations = 1996 { 1997 .d_revalidate = pid_revalidate, 1998 .d_delete = pid_delete_dentry, 1999 }; 2000 2001 /* Lookups */ 2002 2003 /* 2004 * Fill a directory entry. 2005 * 2006 * If possible create the dcache entry and derive our inode number and 2007 * file type from dcache entry. 2008 * 2009 * Since all of the proc inode numbers are dynamically generated, the inode 2010 * numbers do not exist until the inode is cache. This means creating the 2011 * the dcache entry in readdir is necessary to keep the inode numbers 2012 * reported by readdir in sync with the inode numbers reported 2013 * by stat. 2014 */ 2015 bool proc_fill_cache(struct file *file, struct dir_context *ctx, 2016 const char *name, unsigned int len, 2017 instantiate_t instantiate, struct task_struct *task, const void *ptr) 2018 { 2019 struct dentry *child, *dir = file->f_path.dentry; 2020 struct qstr qname = QSTR_INIT(name, len); 2021 struct inode *inode; 2022 unsigned type = DT_UNKNOWN; 2023 ino_t ino = 1; 2024 2025 child = d_hash_and_lookup(dir, &qname); 2026 if (!child) { 2027 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2028 child = d_alloc_parallel(dir, &qname, &wq); 2029 if (IS_ERR(child)) 2030 goto end_instantiate; 2031 if (d_in_lookup(child)) { 2032 struct dentry *res; 2033 res = instantiate(child, task, ptr); 2034 d_lookup_done(child); 2035 if (unlikely(res)) { 2036 dput(child); 2037 child = res; 2038 if (IS_ERR(child)) 2039 goto end_instantiate; 2040 } 2041 } 2042 } 2043 inode = d_inode(child); 2044 ino = inode->i_ino; 2045 type = inode->i_mode >> 12; 2046 dput(child); 2047 end_instantiate: 2048 return dir_emit(ctx, name, len, ino, type); 2049 } 2050 2051 /* 2052 * dname_to_vma_addr - maps a dentry name into two unsigned longs 2053 * which represent vma start and end addresses. 2054 */ 2055 static int dname_to_vma_addr(struct dentry *dentry, 2056 unsigned long *start, unsigned long *end) 2057 { 2058 const char *str = dentry->d_name.name; 2059 unsigned long long sval, eval; 2060 unsigned int len; 2061 2062 if (str[0] == '0' && str[1] != '-') 2063 return -EINVAL; 2064 len = _parse_integer(str, 16, &sval); 2065 if (len & KSTRTOX_OVERFLOW) 2066 return -EINVAL; 2067 if (sval != (unsigned long)sval) 2068 return -EINVAL; 2069 str += len; 2070 2071 if (*str != '-') 2072 return -EINVAL; 2073 str++; 2074 2075 if (str[0] == '0' && str[1]) 2076 return -EINVAL; 2077 len = _parse_integer(str, 16, &eval); 2078 if (len & KSTRTOX_OVERFLOW) 2079 return -EINVAL; 2080 if (eval != (unsigned long)eval) 2081 return -EINVAL; 2082 str += len; 2083 2084 if (*str != '\0') 2085 return -EINVAL; 2086 2087 *start = sval; 2088 *end = eval; 2089 2090 return 0; 2091 } 2092 2093 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags) 2094 { 2095 unsigned long vm_start, vm_end; 2096 bool exact_vma_exists = false; 2097 struct mm_struct *mm = NULL; 2098 struct task_struct *task; 2099 struct inode *inode; 2100 int status = 0; 2101 2102 if (flags & LOOKUP_RCU) 2103 return -ECHILD; 2104 2105 inode = d_inode(dentry); 2106 task = get_proc_task(inode); 2107 if (!task) 2108 goto out_notask; 2109 2110 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 2111 if (IS_ERR_OR_NULL(mm)) 2112 goto out; 2113 2114 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 2115 status = mmap_read_lock_killable(mm); 2116 if (!status) { 2117 exact_vma_exists = !!find_exact_vma(mm, vm_start, 2118 vm_end); 2119 mmap_read_unlock(mm); 2120 } 2121 } 2122 2123 mmput(mm); 2124 2125 if (exact_vma_exists) { 2126 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 2127 2128 security_task_to_inode(task, inode); 2129 status = 1; 2130 } 2131 2132 out: 2133 put_task_struct(task); 2134 2135 out_notask: 2136 return status; 2137 } 2138 2139 static const struct dentry_operations tid_map_files_dentry_operations = { 2140 .d_revalidate = map_files_d_revalidate, 2141 .d_delete = pid_delete_dentry, 2142 }; 2143 2144 static int map_files_get_link(struct dentry *dentry, struct path *path) 2145 { 2146 unsigned long vm_start, vm_end; 2147 struct vm_area_struct *vma; 2148 struct task_struct *task; 2149 struct mm_struct *mm; 2150 int rc; 2151 2152 rc = -ENOENT; 2153 task = get_proc_task(d_inode(dentry)); 2154 if (!task) 2155 goto out; 2156 2157 mm = get_task_mm(task); 2158 put_task_struct(task); 2159 if (!mm) 2160 goto out; 2161 2162 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 2163 if (rc) 2164 goto out_mmput; 2165 2166 rc = mmap_read_lock_killable(mm); 2167 if (rc) 2168 goto out_mmput; 2169 2170 rc = -ENOENT; 2171 vma = find_exact_vma(mm, vm_start, vm_end); 2172 if (vma && vma->vm_file) { 2173 *path = vma->vm_file->f_path; 2174 path_get(path); 2175 rc = 0; 2176 } 2177 mmap_read_unlock(mm); 2178 2179 out_mmput: 2180 mmput(mm); 2181 out: 2182 return rc; 2183 } 2184 2185 struct map_files_info { 2186 unsigned long start; 2187 unsigned long end; 2188 fmode_t mode; 2189 }; 2190 2191 /* 2192 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due 2193 * to concerns about how the symlinks may be used to bypass permissions on 2194 * ancestor directories in the path to the file in question. 2195 */ 2196 static const char * 2197 proc_map_files_get_link(struct dentry *dentry, 2198 struct inode *inode, 2199 struct delayed_call *done) 2200 { 2201 if (!checkpoint_restore_ns_capable(&init_user_ns)) 2202 return ERR_PTR(-EPERM); 2203 2204 return proc_pid_get_link(dentry, inode, done); 2205 } 2206 2207 /* 2208 * Identical to proc_pid_link_inode_operations except for get_link() 2209 */ 2210 static const struct inode_operations proc_map_files_link_inode_operations = { 2211 .readlink = proc_pid_readlink, 2212 .get_link = proc_map_files_get_link, 2213 .setattr = proc_setattr, 2214 }; 2215 2216 static struct dentry * 2217 proc_map_files_instantiate(struct dentry *dentry, 2218 struct task_struct *task, const void *ptr) 2219 { 2220 fmode_t mode = (fmode_t)(unsigned long)ptr; 2221 struct proc_inode *ei; 2222 struct inode *inode; 2223 2224 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK | 2225 ((mode & FMODE_READ ) ? S_IRUSR : 0) | 2226 ((mode & FMODE_WRITE) ? S_IWUSR : 0)); 2227 if (!inode) 2228 return ERR_PTR(-ENOENT); 2229 2230 ei = PROC_I(inode); 2231 ei->op.proc_get_link = map_files_get_link; 2232 2233 inode->i_op = &proc_map_files_link_inode_operations; 2234 inode->i_size = 64; 2235 2236 d_set_d_op(dentry, &tid_map_files_dentry_operations); 2237 return d_splice_alias(inode, dentry); 2238 } 2239 2240 static struct dentry *proc_map_files_lookup(struct inode *dir, 2241 struct dentry *dentry, unsigned int flags) 2242 { 2243 unsigned long vm_start, vm_end; 2244 struct vm_area_struct *vma; 2245 struct task_struct *task; 2246 struct dentry *result; 2247 struct mm_struct *mm; 2248 2249 result = ERR_PTR(-ENOENT); 2250 task = get_proc_task(dir); 2251 if (!task) 2252 goto out; 2253 2254 result = ERR_PTR(-EACCES); 2255 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2256 goto out_put_task; 2257 2258 result = ERR_PTR(-ENOENT); 2259 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2260 goto out_put_task; 2261 2262 mm = get_task_mm(task); 2263 if (!mm) 2264 goto out_put_task; 2265 2266 result = ERR_PTR(-EINTR); 2267 if (mmap_read_lock_killable(mm)) 2268 goto out_put_mm; 2269 2270 result = ERR_PTR(-ENOENT); 2271 vma = find_exact_vma(mm, vm_start, vm_end); 2272 if (!vma) 2273 goto out_no_vma; 2274 2275 if (vma->vm_file) 2276 result = proc_map_files_instantiate(dentry, task, 2277 (void *)(unsigned long)vma->vm_file->f_mode); 2278 2279 out_no_vma: 2280 mmap_read_unlock(mm); 2281 out_put_mm: 2282 mmput(mm); 2283 out_put_task: 2284 put_task_struct(task); 2285 out: 2286 return result; 2287 } 2288 2289 static const struct inode_operations proc_map_files_inode_operations = { 2290 .lookup = proc_map_files_lookup, 2291 .permission = proc_fd_permission, 2292 .setattr = proc_setattr, 2293 }; 2294 2295 static int 2296 proc_map_files_readdir(struct file *file, struct dir_context *ctx) 2297 { 2298 struct vm_area_struct *vma; 2299 struct task_struct *task; 2300 struct mm_struct *mm; 2301 unsigned long nr_files, pos, i; 2302 GENRADIX(struct map_files_info) fa; 2303 struct map_files_info *p; 2304 int ret; 2305 2306 genradix_init(&fa); 2307 2308 ret = -ENOENT; 2309 task = get_proc_task(file_inode(file)); 2310 if (!task) 2311 goto out; 2312 2313 ret = -EACCES; 2314 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2315 goto out_put_task; 2316 2317 ret = 0; 2318 if (!dir_emit_dots(file, ctx)) 2319 goto out_put_task; 2320 2321 mm = get_task_mm(task); 2322 if (!mm) 2323 goto out_put_task; 2324 2325 ret = mmap_read_lock_killable(mm); 2326 if (ret) { 2327 mmput(mm); 2328 goto out_put_task; 2329 } 2330 2331 nr_files = 0; 2332 2333 /* 2334 * We need two passes here: 2335 * 2336 * 1) Collect vmas of mapped files with mmap_lock taken 2337 * 2) Release mmap_lock and instantiate entries 2338 * 2339 * otherwise we get lockdep complained, since filldir() 2340 * routine might require mmap_lock taken in might_fault(). 2341 */ 2342 2343 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) { 2344 if (!vma->vm_file) 2345 continue; 2346 if (++pos <= ctx->pos) 2347 continue; 2348 2349 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL); 2350 if (!p) { 2351 ret = -ENOMEM; 2352 mmap_read_unlock(mm); 2353 mmput(mm); 2354 goto out_put_task; 2355 } 2356 2357 p->start = vma->vm_start; 2358 p->end = vma->vm_end; 2359 p->mode = vma->vm_file->f_mode; 2360 } 2361 mmap_read_unlock(mm); 2362 mmput(mm); 2363 2364 for (i = 0; i < nr_files; i++) { 2365 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */ 2366 unsigned int len; 2367 2368 p = genradix_ptr(&fa, i); 2369 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end); 2370 if (!proc_fill_cache(file, ctx, 2371 buf, len, 2372 proc_map_files_instantiate, 2373 task, 2374 (void *)(unsigned long)p->mode)) 2375 break; 2376 ctx->pos++; 2377 } 2378 2379 out_put_task: 2380 put_task_struct(task); 2381 out: 2382 genradix_free(&fa); 2383 return ret; 2384 } 2385 2386 static const struct file_operations proc_map_files_operations = { 2387 .read = generic_read_dir, 2388 .iterate_shared = proc_map_files_readdir, 2389 .llseek = generic_file_llseek, 2390 }; 2391 2392 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 2393 struct timers_private { 2394 struct pid *pid; 2395 struct task_struct *task; 2396 struct sighand_struct *sighand; 2397 struct pid_namespace *ns; 2398 unsigned long flags; 2399 }; 2400 2401 static void *timers_start(struct seq_file *m, loff_t *pos) 2402 { 2403 struct timers_private *tp = m->private; 2404 2405 tp->task = get_pid_task(tp->pid, PIDTYPE_PID); 2406 if (!tp->task) 2407 return ERR_PTR(-ESRCH); 2408 2409 tp->sighand = lock_task_sighand(tp->task, &tp->flags); 2410 if (!tp->sighand) 2411 return ERR_PTR(-ESRCH); 2412 2413 return seq_list_start(&tp->task->signal->posix_timers, *pos); 2414 } 2415 2416 static void *timers_next(struct seq_file *m, void *v, loff_t *pos) 2417 { 2418 struct timers_private *tp = m->private; 2419 return seq_list_next(v, &tp->task->signal->posix_timers, pos); 2420 } 2421 2422 static void timers_stop(struct seq_file *m, void *v) 2423 { 2424 struct timers_private *tp = m->private; 2425 2426 if (tp->sighand) { 2427 unlock_task_sighand(tp->task, &tp->flags); 2428 tp->sighand = NULL; 2429 } 2430 2431 if (tp->task) { 2432 put_task_struct(tp->task); 2433 tp->task = NULL; 2434 } 2435 } 2436 2437 static int show_timer(struct seq_file *m, void *v) 2438 { 2439 struct k_itimer *timer; 2440 struct timers_private *tp = m->private; 2441 int notify; 2442 static const char * const nstr[] = { 2443 [SIGEV_SIGNAL] = "signal", 2444 [SIGEV_NONE] = "none", 2445 [SIGEV_THREAD] = "thread", 2446 }; 2447 2448 timer = list_entry((struct list_head *)v, struct k_itimer, list); 2449 notify = timer->it_sigev_notify; 2450 2451 seq_printf(m, "ID: %d\n", timer->it_id); 2452 seq_printf(m, "signal: %d/%px\n", 2453 timer->sigq->info.si_signo, 2454 timer->sigq->info.si_value.sival_ptr); 2455 seq_printf(m, "notify: %s/%s.%d\n", 2456 nstr[notify & ~SIGEV_THREAD_ID], 2457 (notify & SIGEV_THREAD_ID) ? "tid" : "pid", 2458 pid_nr_ns(timer->it_pid, tp->ns)); 2459 seq_printf(m, "ClockID: %d\n", timer->it_clock); 2460 2461 return 0; 2462 } 2463 2464 static const struct seq_operations proc_timers_seq_ops = { 2465 .start = timers_start, 2466 .next = timers_next, 2467 .stop = timers_stop, 2468 .show = show_timer, 2469 }; 2470 2471 static int proc_timers_open(struct inode *inode, struct file *file) 2472 { 2473 struct timers_private *tp; 2474 2475 tp = __seq_open_private(file, &proc_timers_seq_ops, 2476 sizeof(struct timers_private)); 2477 if (!tp) 2478 return -ENOMEM; 2479 2480 tp->pid = proc_pid(inode); 2481 tp->ns = proc_pid_ns(inode->i_sb); 2482 return 0; 2483 } 2484 2485 static const struct file_operations proc_timers_operations = { 2486 .open = proc_timers_open, 2487 .read = seq_read, 2488 .llseek = seq_lseek, 2489 .release = seq_release_private, 2490 }; 2491 #endif 2492 2493 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf, 2494 size_t count, loff_t *offset) 2495 { 2496 struct inode *inode = file_inode(file); 2497 struct task_struct *p; 2498 u64 slack_ns; 2499 int err; 2500 2501 err = kstrtoull_from_user(buf, count, 10, &slack_ns); 2502 if (err < 0) 2503 return err; 2504 2505 p = get_proc_task(inode); 2506 if (!p) 2507 return -ESRCH; 2508 2509 if (p != current) { 2510 rcu_read_lock(); 2511 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2512 rcu_read_unlock(); 2513 count = -EPERM; 2514 goto out; 2515 } 2516 rcu_read_unlock(); 2517 2518 err = security_task_setscheduler(p); 2519 if (err) { 2520 count = err; 2521 goto out; 2522 } 2523 } 2524 2525 task_lock(p); 2526 if (slack_ns == 0) 2527 p->timer_slack_ns = p->default_timer_slack_ns; 2528 else 2529 p->timer_slack_ns = slack_ns; 2530 task_unlock(p); 2531 2532 out: 2533 put_task_struct(p); 2534 2535 return count; 2536 } 2537 2538 static int timerslack_ns_show(struct seq_file *m, void *v) 2539 { 2540 struct inode *inode = m->private; 2541 struct task_struct *p; 2542 int err = 0; 2543 2544 p = get_proc_task(inode); 2545 if (!p) 2546 return -ESRCH; 2547 2548 if (p != current) { 2549 rcu_read_lock(); 2550 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2551 rcu_read_unlock(); 2552 err = -EPERM; 2553 goto out; 2554 } 2555 rcu_read_unlock(); 2556 2557 err = security_task_getscheduler(p); 2558 if (err) 2559 goto out; 2560 } 2561 2562 task_lock(p); 2563 seq_printf(m, "%llu\n", p->timer_slack_ns); 2564 task_unlock(p); 2565 2566 out: 2567 put_task_struct(p); 2568 2569 return err; 2570 } 2571 2572 static int timerslack_ns_open(struct inode *inode, struct file *filp) 2573 { 2574 return single_open(filp, timerslack_ns_show, inode); 2575 } 2576 2577 static const struct file_operations proc_pid_set_timerslack_ns_operations = { 2578 .open = timerslack_ns_open, 2579 .read = seq_read, 2580 .write = timerslack_ns_write, 2581 .llseek = seq_lseek, 2582 .release = single_release, 2583 }; 2584 2585 static struct dentry *proc_pident_instantiate(struct dentry *dentry, 2586 struct task_struct *task, const void *ptr) 2587 { 2588 const struct pid_entry *p = ptr; 2589 struct inode *inode; 2590 struct proc_inode *ei; 2591 2592 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode); 2593 if (!inode) 2594 return ERR_PTR(-ENOENT); 2595 2596 ei = PROC_I(inode); 2597 if (S_ISDIR(inode->i_mode)) 2598 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2599 if (p->iop) 2600 inode->i_op = p->iop; 2601 if (p->fop) 2602 inode->i_fop = p->fop; 2603 ei->op = p->op; 2604 pid_update_inode(task, inode); 2605 d_set_d_op(dentry, &pid_dentry_operations); 2606 return d_splice_alias(inode, dentry); 2607 } 2608 2609 static struct dentry *proc_pident_lookup(struct inode *dir, 2610 struct dentry *dentry, 2611 const struct pid_entry *p, 2612 const struct pid_entry *end) 2613 { 2614 struct task_struct *task = get_proc_task(dir); 2615 struct dentry *res = ERR_PTR(-ENOENT); 2616 2617 if (!task) 2618 goto out_no_task; 2619 2620 /* 2621 * Yes, it does not scale. And it should not. Don't add 2622 * new entries into /proc/<tgid>/ without very good reasons. 2623 */ 2624 for (; p < end; p++) { 2625 if (p->len != dentry->d_name.len) 2626 continue; 2627 if (!memcmp(dentry->d_name.name, p->name, p->len)) { 2628 res = proc_pident_instantiate(dentry, task, p); 2629 break; 2630 } 2631 } 2632 put_task_struct(task); 2633 out_no_task: 2634 return res; 2635 } 2636 2637 static int proc_pident_readdir(struct file *file, struct dir_context *ctx, 2638 const struct pid_entry *ents, unsigned int nents) 2639 { 2640 struct task_struct *task = get_proc_task(file_inode(file)); 2641 const struct pid_entry *p; 2642 2643 if (!task) 2644 return -ENOENT; 2645 2646 if (!dir_emit_dots(file, ctx)) 2647 goto out; 2648 2649 if (ctx->pos >= nents + 2) 2650 goto out; 2651 2652 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) { 2653 if (!proc_fill_cache(file, ctx, p->name, p->len, 2654 proc_pident_instantiate, task, p)) 2655 break; 2656 ctx->pos++; 2657 } 2658 out: 2659 put_task_struct(task); 2660 return 0; 2661 } 2662 2663 #ifdef CONFIG_SECURITY 2664 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2665 size_t count, loff_t *ppos) 2666 { 2667 struct inode * inode = file_inode(file); 2668 char *p = NULL; 2669 ssize_t length; 2670 struct task_struct *task = get_proc_task(inode); 2671 2672 if (!task) 2673 return -ESRCH; 2674 2675 length = security_getprocattr(task, PROC_I(inode)->op.lsm, 2676 (char*)file->f_path.dentry->d_name.name, 2677 &p); 2678 put_task_struct(task); 2679 if (length > 0) 2680 length = simple_read_from_buffer(buf, count, ppos, p, length); 2681 kfree(p); 2682 return length; 2683 } 2684 2685 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2686 size_t count, loff_t *ppos) 2687 { 2688 struct inode * inode = file_inode(file); 2689 struct task_struct *task; 2690 void *page; 2691 int rv; 2692 2693 rcu_read_lock(); 2694 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2695 if (!task) { 2696 rcu_read_unlock(); 2697 return -ESRCH; 2698 } 2699 /* A task may only write its own attributes. */ 2700 if (current != task) { 2701 rcu_read_unlock(); 2702 return -EACCES; 2703 } 2704 /* Prevent changes to overridden credentials. */ 2705 if (current_cred() != current_real_cred()) { 2706 rcu_read_unlock(); 2707 return -EBUSY; 2708 } 2709 rcu_read_unlock(); 2710 2711 if (count > PAGE_SIZE) 2712 count = PAGE_SIZE; 2713 2714 /* No partial writes. */ 2715 if (*ppos != 0) 2716 return -EINVAL; 2717 2718 page = memdup_user(buf, count); 2719 if (IS_ERR(page)) { 2720 rv = PTR_ERR(page); 2721 goto out; 2722 } 2723 2724 /* Guard against adverse ptrace interaction */ 2725 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex); 2726 if (rv < 0) 2727 goto out_free; 2728 2729 rv = security_setprocattr(PROC_I(inode)->op.lsm, 2730 file->f_path.dentry->d_name.name, page, 2731 count); 2732 mutex_unlock(¤t->signal->cred_guard_mutex); 2733 out_free: 2734 kfree(page); 2735 out: 2736 return rv; 2737 } 2738 2739 static const struct file_operations proc_pid_attr_operations = { 2740 .read = proc_pid_attr_read, 2741 .write = proc_pid_attr_write, 2742 .llseek = generic_file_llseek, 2743 }; 2744 2745 #define LSM_DIR_OPS(LSM) \ 2746 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \ 2747 struct dir_context *ctx) \ 2748 { \ 2749 return proc_pident_readdir(filp, ctx, \ 2750 LSM##_attr_dir_stuff, \ 2751 ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2752 } \ 2753 \ 2754 static const struct file_operations proc_##LSM##_attr_dir_ops = { \ 2755 .read = generic_read_dir, \ 2756 .iterate = proc_##LSM##_attr_dir_iterate, \ 2757 .llseek = default_llseek, \ 2758 }; \ 2759 \ 2760 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \ 2761 struct dentry *dentry, unsigned int flags) \ 2762 { \ 2763 return proc_pident_lookup(dir, dentry, \ 2764 LSM##_attr_dir_stuff, \ 2765 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2766 } \ 2767 \ 2768 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \ 2769 .lookup = proc_##LSM##_attr_dir_lookup, \ 2770 .getattr = pid_getattr, \ 2771 .setattr = proc_setattr, \ 2772 } 2773 2774 #ifdef CONFIG_SECURITY_SMACK 2775 static const struct pid_entry smack_attr_dir_stuff[] = { 2776 ATTR("smack", "current", 0666), 2777 }; 2778 LSM_DIR_OPS(smack); 2779 #endif 2780 2781 #ifdef CONFIG_SECURITY_APPARMOR 2782 static const struct pid_entry apparmor_attr_dir_stuff[] = { 2783 ATTR("apparmor", "current", 0666), 2784 ATTR("apparmor", "prev", 0444), 2785 ATTR("apparmor", "exec", 0666), 2786 }; 2787 LSM_DIR_OPS(apparmor); 2788 #endif 2789 2790 static const struct pid_entry attr_dir_stuff[] = { 2791 ATTR(NULL, "current", 0666), 2792 ATTR(NULL, "prev", 0444), 2793 ATTR(NULL, "exec", 0666), 2794 ATTR(NULL, "fscreate", 0666), 2795 ATTR(NULL, "keycreate", 0666), 2796 ATTR(NULL, "sockcreate", 0666), 2797 #ifdef CONFIG_SECURITY_SMACK 2798 DIR("smack", 0555, 2799 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops), 2800 #endif 2801 #ifdef CONFIG_SECURITY_APPARMOR 2802 DIR("apparmor", 0555, 2803 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops), 2804 #endif 2805 }; 2806 2807 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx) 2808 { 2809 return proc_pident_readdir(file, ctx, 2810 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2811 } 2812 2813 static const struct file_operations proc_attr_dir_operations = { 2814 .read = generic_read_dir, 2815 .iterate_shared = proc_attr_dir_readdir, 2816 .llseek = generic_file_llseek, 2817 }; 2818 2819 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2820 struct dentry *dentry, unsigned int flags) 2821 { 2822 return proc_pident_lookup(dir, dentry, 2823 attr_dir_stuff, 2824 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff)); 2825 } 2826 2827 static const struct inode_operations proc_attr_dir_inode_operations = { 2828 .lookup = proc_attr_dir_lookup, 2829 .getattr = pid_getattr, 2830 .setattr = proc_setattr, 2831 }; 2832 2833 #endif 2834 2835 #ifdef CONFIG_ELF_CORE 2836 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2837 size_t count, loff_t *ppos) 2838 { 2839 struct task_struct *task = get_proc_task(file_inode(file)); 2840 struct mm_struct *mm; 2841 char buffer[PROC_NUMBUF]; 2842 size_t len; 2843 int ret; 2844 2845 if (!task) 2846 return -ESRCH; 2847 2848 ret = 0; 2849 mm = get_task_mm(task); 2850 if (mm) { 2851 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2852 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2853 MMF_DUMP_FILTER_SHIFT)); 2854 mmput(mm); 2855 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2856 } 2857 2858 put_task_struct(task); 2859 2860 return ret; 2861 } 2862 2863 static ssize_t proc_coredump_filter_write(struct file *file, 2864 const char __user *buf, 2865 size_t count, 2866 loff_t *ppos) 2867 { 2868 struct task_struct *task; 2869 struct mm_struct *mm; 2870 unsigned int val; 2871 int ret; 2872 int i; 2873 unsigned long mask; 2874 2875 ret = kstrtouint_from_user(buf, count, 0, &val); 2876 if (ret < 0) 2877 return ret; 2878 2879 ret = -ESRCH; 2880 task = get_proc_task(file_inode(file)); 2881 if (!task) 2882 goto out_no_task; 2883 2884 mm = get_task_mm(task); 2885 if (!mm) 2886 goto out_no_mm; 2887 ret = 0; 2888 2889 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2890 if (val & mask) 2891 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2892 else 2893 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2894 } 2895 2896 mmput(mm); 2897 out_no_mm: 2898 put_task_struct(task); 2899 out_no_task: 2900 if (ret < 0) 2901 return ret; 2902 return count; 2903 } 2904 2905 static const struct file_operations proc_coredump_filter_operations = { 2906 .read = proc_coredump_filter_read, 2907 .write = proc_coredump_filter_write, 2908 .llseek = generic_file_llseek, 2909 }; 2910 #endif 2911 2912 #ifdef CONFIG_TASK_IO_ACCOUNTING 2913 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole) 2914 { 2915 struct task_io_accounting acct = task->ioac; 2916 unsigned long flags; 2917 int result; 2918 2919 result = mutex_lock_killable(&task->signal->exec_update_mutex); 2920 if (result) 2921 return result; 2922 2923 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) { 2924 result = -EACCES; 2925 goto out_unlock; 2926 } 2927 2928 if (whole && lock_task_sighand(task, &flags)) { 2929 struct task_struct *t = task; 2930 2931 task_io_accounting_add(&acct, &task->signal->ioac); 2932 while_each_thread(task, t) 2933 task_io_accounting_add(&acct, &t->ioac); 2934 2935 unlock_task_sighand(task, &flags); 2936 } 2937 seq_printf(m, 2938 "rchar: %llu\n" 2939 "wchar: %llu\n" 2940 "syscr: %llu\n" 2941 "syscw: %llu\n" 2942 "read_bytes: %llu\n" 2943 "write_bytes: %llu\n" 2944 "cancelled_write_bytes: %llu\n", 2945 (unsigned long long)acct.rchar, 2946 (unsigned long long)acct.wchar, 2947 (unsigned long long)acct.syscr, 2948 (unsigned long long)acct.syscw, 2949 (unsigned long long)acct.read_bytes, 2950 (unsigned long long)acct.write_bytes, 2951 (unsigned long long)acct.cancelled_write_bytes); 2952 result = 0; 2953 2954 out_unlock: 2955 mutex_unlock(&task->signal->exec_update_mutex); 2956 return result; 2957 } 2958 2959 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2960 struct pid *pid, struct task_struct *task) 2961 { 2962 return do_io_accounting(task, m, 0); 2963 } 2964 2965 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2966 struct pid *pid, struct task_struct *task) 2967 { 2968 return do_io_accounting(task, m, 1); 2969 } 2970 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 2971 2972 #ifdef CONFIG_USER_NS 2973 static int proc_id_map_open(struct inode *inode, struct file *file, 2974 const struct seq_operations *seq_ops) 2975 { 2976 struct user_namespace *ns = NULL; 2977 struct task_struct *task; 2978 struct seq_file *seq; 2979 int ret = -EINVAL; 2980 2981 task = get_proc_task(inode); 2982 if (task) { 2983 rcu_read_lock(); 2984 ns = get_user_ns(task_cred_xxx(task, user_ns)); 2985 rcu_read_unlock(); 2986 put_task_struct(task); 2987 } 2988 if (!ns) 2989 goto err; 2990 2991 ret = seq_open(file, seq_ops); 2992 if (ret) 2993 goto err_put_ns; 2994 2995 seq = file->private_data; 2996 seq->private = ns; 2997 2998 return 0; 2999 err_put_ns: 3000 put_user_ns(ns); 3001 err: 3002 return ret; 3003 } 3004 3005 static int proc_id_map_release(struct inode *inode, struct file *file) 3006 { 3007 struct seq_file *seq = file->private_data; 3008 struct user_namespace *ns = seq->private; 3009 put_user_ns(ns); 3010 return seq_release(inode, file); 3011 } 3012 3013 static int proc_uid_map_open(struct inode *inode, struct file *file) 3014 { 3015 return proc_id_map_open(inode, file, &proc_uid_seq_operations); 3016 } 3017 3018 static int proc_gid_map_open(struct inode *inode, struct file *file) 3019 { 3020 return proc_id_map_open(inode, file, &proc_gid_seq_operations); 3021 } 3022 3023 static int proc_projid_map_open(struct inode *inode, struct file *file) 3024 { 3025 return proc_id_map_open(inode, file, &proc_projid_seq_operations); 3026 } 3027 3028 static const struct file_operations proc_uid_map_operations = { 3029 .open = proc_uid_map_open, 3030 .write = proc_uid_map_write, 3031 .read = seq_read, 3032 .llseek = seq_lseek, 3033 .release = proc_id_map_release, 3034 }; 3035 3036 static const struct file_operations proc_gid_map_operations = { 3037 .open = proc_gid_map_open, 3038 .write = proc_gid_map_write, 3039 .read = seq_read, 3040 .llseek = seq_lseek, 3041 .release = proc_id_map_release, 3042 }; 3043 3044 static const struct file_operations proc_projid_map_operations = { 3045 .open = proc_projid_map_open, 3046 .write = proc_projid_map_write, 3047 .read = seq_read, 3048 .llseek = seq_lseek, 3049 .release = proc_id_map_release, 3050 }; 3051 3052 static int proc_setgroups_open(struct inode *inode, struct file *file) 3053 { 3054 struct user_namespace *ns = NULL; 3055 struct task_struct *task; 3056 int ret; 3057 3058 ret = -ESRCH; 3059 task = get_proc_task(inode); 3060 if (task) { 3061 rcu_read_lock(); 3062 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3063 rcu_read_unlock(); 3064 put_task_struct(task); 3065 } 3066 if (!ns) 3067 goto err; 3068 3069 if (file->f_mode & FMODE_WRITE) { 3070 ret = -EACCES; 3071 if (!ns_capable(ns, CAP_SYS_ADMIN)) 3072 goto err_put_ns; 3073 } 3074 3075 ret = single_open(file, &proc_setgroups_show, ns); 3076 if (ret) 3077 goto err_put_ns; 3078 3079 return 0; 3080 err_put_ns: 3081 put_user_ns(ns); 3082 err: 3083 return ret; 3084 } 3085 3086 static int proc_setgroups_release(struct inode *inode, struct file *file) 3087 { 3088 struct seq_file *seq = file->private_data; 3089 struct user_namespace *ns = seq->private; 3090 int ret = single_release(inode, file); 3091 put_user_ns(ns); 3092 return ret; 3093 } 3094 3095 static const struct file_operations proc_setgroups_operations = { 3096 .open = proc_setgroups_open, 3097 .write = proc_setgroups_write, 3098 .read = seq_read, 3099 .llseek = seq_lseek, 3100 .release = proc_setgroups_release, 3101 }; 3102 #endif /* CONFIG_USER_NS */ 3103 3104 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 3105 struct pid *pid, struct task_struct *task) 3106 { 3107 int err = lock_trace(task); 3108 if (!err) { 3109 seq_printf(m, "%08x\n", task->personality); 3110 unlock_trace(task); 3111 } 3112 return err; 3113 } 3114 3115 #ifdef CONFIG_LIVEPATCH 3116 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns, 3117 struct pid *pid, struct task_struct *task) 3118 { 3119 seq_printf(m, "%d\n", task->patch_state); 3120 return 0; 3121 } 3122 #endif /* CONFIG_LIVEPATCH */ 3123 3124 #ifdef CONFIG_STACKLEAK_METRICS 3125 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns, 3126 struct pid *pid, struct task_struct *task) 3127 { 3128 unsigned long prev_depth = THREAD_SIZE - 3129 (task->prev_lowest_stack & (THREAD_SIZE - 1)); 3130 unsigned long depth = THREAD_SIZE - 3131 (task->lowest_stack & (THREAD_SIZE - 1)); 3132 3133 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n", 3134 prev_depth, depth); 3135 return 0; 3136 } 3137 #endif /* CONFIG_STACKLEAK_METRICS */ 3138 3139 /* 3140 * Thread groups 3141 */ 3142 static const struct file_operations proc_task_operations; 3143 static const struct inode_operations proc_task_inode_operations; 3144 3145 static const struct pid_entry tgid_base_stuff[] = { 3146 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 3147 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3148 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 3149 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3150 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3151 #ifdef CONFIG_NET 3152 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3153 #endif 3154 REG("environ", S_IRUSR, proc_environ_operations), 3155 REG("auxv", S_IRUSR, proc_auxv_operations), 3156 ONE("status", S_IRUGO, proc_pid_status), 3157 ONE("personality", S_IRUSR, proc_pid_personality), 3158 ONE("limits", S_IRUGO, proc_pid_limits), 3159 #ifdef CONFIG_SCHED_DEBUG 3160 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3161 #endif 3162 #ifdef CONFIG_SCHED_AUTOGROUP 3163 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 3164 #endif 3165 #ifdef CONFIG_TIME_NS 3166 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations), 3167 #endif 3168 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 3169 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3170 ONE("syscall", S_IRUSR, proc_pid_syscall), 3171 #endif 3172 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3173 ONE("stat", S_IRUGO, proc_tgid_stat), 3174 ONE("statm", S_IRUGO, proc_pid_statm), 3175 REG("maps", S_IRUGO, proc_pid_maps_operations), 3176 #ifdef CONFIG_NUMA 3177 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3178 #endif 3179 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3180 LNK("cwd", proc_cwd_link), 3181 LNK("root", proc_root_link), 3182 LNK("exe", proc_exe_link), 3183 REG("mounts", S_IRUGO, proc_mounts_operations), 3184 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3185 REG("mountstats", S_IRUSR, proc_mountstats_operations), 3186 #ifdef CONFIG_PROC_PAGE_MONITOR 3187 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3188 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3189 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3190 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3191 #endif 3192 #ifdef CONFIG_SECURITY 3193 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3194 #endif 3195 #ifdef CONFIG_KALLSYMS 3196 ONE("wchan", S_IRUGO, proc_pid_wchan), 3197 #endif 3198 #ifdef CONFIG_STACKTRACE 3199 ONE("stack", S_IRUSR, proc_pid_stack), 3200 #endif 3201 #ifdef CONFIG_SCHED_INFO 3202 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3203 #endif 3204 #ifdef CONFIG_LATENCYTOP 3205 REG("latency", S_IRUGO, proc_lstats_operations), 3206 #endif 3207 #ifdef CONFIG_PROC_PID_CPUSET 3208 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3209 #endif 3210 #ifdef CONFIG_CGROUPS 3211 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3212 #endif 3213 #ifdef CONFIG_PROC_CPU_RESCTRL 3214 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3215 #endif 3216 ONE("oom_score", S_IRUGO, proc_oom_score), 3217 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3218 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3219 #ifdef CONFIG_AUDIT 3220 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3221 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3222 #endif 3223 #ifdef CONFIG_FAULT_INJECTION 3224 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3225 REG("fail-nth", 0644, proc_fail_nth_operations), 3226 #endif 3227 #ifdef CONFIG_ELF_CORE 3228 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 3229 #endif 3230 #ifdef CONFIG_TASK_IO_ACCOUNTING 3231 ONE("io", S_IRUSR, proc_tgid_io_accounting), 3232 #endif 3233 #ifdef CONFIG_USER_NS 3234 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3235 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3236 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3237 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3238 #endif 3239 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 3240 REG("timers", S_IRUGO, proc_timers_operations), 3241 #endif 3242 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations), 3243 #ifdef CONFIG_LIVEPATCH 3244 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3245 #endif 3246 #ifdef CONFIG_STACKLEAK_METRICS 3247 ONE("stack_depth", S_IRUGO, proc_stack_depth), 3248 #endif 3249 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3250 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3251 #endif 3252 }; 3253 3254 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx) 3255 { 3256 return proc_pident_readdir(file, ctx, 3257 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3258 } 3259 3260 static const struct file_operations proc_tgid_base_operations = { 3261 .read = generic_read_dir, 3262 .iterate_shared = proc_tgid_base_readdir, 3263 .llseek = generic_file_llseek, 3264 }; 3265 3266 struct pid *tgid_pidfd_to_pid(const struct file *file) 3267 { 3268 if (file->f_op != &proc_tgid_base_operations) 3269 return ERR_PTR(-EBADF); 3270 3271 return proc_pid(file_inode(file)); 3272 } 3273 3274 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3275 { 3276 return proc_pident_lookup(dir, dentry, 3277 tgid_base_stuff, 3278 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff)); 3279 } 3280 3281 static const struct inode_operations proc_tgid_base_inode_operations = { 3282 .lookup = proc_tgid_base_lookup, 3283 .getattr = pid_getattr, 3284 .setattr = proc_setattr, 3285 .permission = proc_pid_permission, 3286 }; 3287 3288 /** 3289 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache. 3290 * @pid: pid that should be flushed. 3291 * 3292 * This function walks a list of inodes (that belong to any proc 3293 * filesystem) that are attached to the pid and flushes them from 3294 * the dentry cache. 3295 * 3296 * It is safe and reasonable to cache /proc entries for a task until 3297 * that task exits. After that they just clog up the dcache with 3298 * useless entries, possibly causing useful dcache entries to be 3299 * flushed instead. This routine is provided to flush those useless 3300 * dcache entries when a process is reaped. 3301 * 3302 * NOTE: This routine is just an optimization so it does not guarantee 3303 * that no dcache entries will exist after a process is reaped 3304 * it just makes it very unlikely that any will persist. 3305 */ 3306 3307 void proc_flush_pid(struct pid *pid) 3308 { 3309 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock); 3310 } 3311 3312 static struct dentry *proc_pid_instantiate(struct dentry * dentry, 3313 struct task_struct *task, const void *ptr) 3314 { 3315 struct inode *inode; 3316 3317 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3318 if (!inode) 3319 return ERR_PTR(-ENOENT); 3320 3321 inode->i_op = &proc_tgid_base_inode_operations; 3322 inode->i_fop = &proc_tgid_base_operations; 3323 inode->i_flags|=S_IMMUTABLE; 3324 3325 set_nlink(inode, nlink_tgid); 3326 pid_update_inode(task, inode); 3327 3328 d_set_d_op(dentry, &pid_dentry_operations); 3329 return d_splice_alias(inode, dentry); 3330 } 3331 3332 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags) 3333 { 3334 struct task_struct *task; 3335 unsigned tgid; 3336 struct proc_fs_info *fs_info; 3337 struct pid_namespace *ns; 3338 struct dentry *result = ERR_PTR(-ENOENT); 3339 3340 tgid = name_to_int(&dentry->d_name); 3341 if (tgid == ~0U) 3342 goto out; 3343 3344 fs_info = proc_sb_info(dentry->d_sb); 3345 ns = fs_info->pid_ns; 3346 rcu_read_lock(); 3347 task = find_task_by_pid_ns(tgid, ns); 3348 if (task) 3349 get_task_struct(task); 3350 rcu_read_unlock(); 3351 if (!task) 3352 goto out; 3353 3354 /* Limit procfs to only ptraceable tasks */ 3355 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) { 3356 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS)) 3357 goto out_put_task; 3358 } 3359 3360 result = proc_pid_instantiate(dentry, task, NULL); 3361 out_put_task: 3362 put_task_struct(task); 3363 out: 3364 return result; 3365 } 3366 3367 /* 3368 * Find the first task with tgid >= tgid 3369 * 3370 */ 3371 struct tgid_iter { 3372 unsigned int tgid; 3373 struct task_struct *task; 3374 }; 3375 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3376 { 3377 struct pid *pid; 3378 3379 if (iter.task) 3380 put_task_struct(iter.task); 3381 rcu_read_lock(); 3382 retry: 3383 iter.task = NULL; 3384 pid = find_ge_pid(iter.tgid, ns); 3385 if (pid) { 3386 iter.tgid = pid_nr_ns(pid, ns); 3387 iter.task = pid_task(pid, PIDTYPE_TGID); 3388 if (!iter.task) { 3389 iter.tgid += 1; 3390 goto retry; 3391 } 3392 get_task_struct(iter.task); 3393 } 3394 rcu_read_unlock(); 3395 return iter; 3396 } 3397 3398 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2) 3399 3400 /* for the /proc/ directory itself, after non-process stuff has been done */ 3401 int proc_pid_readdir(struct file *file, struct dir_context *ctx) 3402 { 3403 struct tgid_iter iter; 3404 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb); 3405 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb); 3406 loff_t pos = ctx->pos; 3407 3408 if (pos >= PID_MAX_LIMIT + TGID_OFFSET) 3409 return 0; 3410 3411 if (pos == TGID_OFFSET - 2) { 3412 struct inode *inode = d_inode(fs_info->proc_self); 3413 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK)) 3414 return 0; 3415 ctx->pos = pos = pos + 1; 3416 } 3417 if (pos == TGID_OFFSET - 1) { 3418 struct inode *inode = d_inode(fs_info->proc_thread_self); 3419 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK)) 3420 return 0; 3421 ctx->pos = pos = pos + 1; 3422 } 3423 iter.tgid = pos - TGID_OFFSET; 3424 iter.task = NULL; 3425 for (iter = next_tgid(ns, iter); 3426 iter.task; 3427 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3428 char name[10 + 1]; 3429 unsigned int len; 3430 3431 cond_resched(); 3432 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE)) 3433 continue; 3434 3435 len = snprintf(name, sizeof(name), "%u", iter.tgid); 3436 ctx->pos = iter.tgid + TGID_OFFSET; 3437 if (!proc_fill_cache(file, ctx, name, len, 3438 proc_pid_instantiate, iter.task, NULL)) { 3439 put_task_struct(iter.task); 3440 return 0; 3441 } 3442 } 3443 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET; 3444 return 0; 3445 } 3446 3447 /* 3448 * proc_tid_comm_permission is a special permission function exclusively 3449 * used for the node /proc/<pid>/task/<tid>/comm. 3450 * It bypasses generic permission checks in the case where a task of the same 3451 * task group attempts to access the node. 3452 * The rationale behind this is that glibc and bionic access this node for 3453 * cross thread naming (pthread_set/getname_np(!self)). However, if 3454 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0, 3455 * which locks out the cross thread naming implementation. 3456 * This function makes sure that the node is always accessible for members of 3457 * same thread group. 3458 */ 3459 static int proc_tid_comm_permission(struct inode *inode, int mask) 3460 { 3461 bool is_same_tgroup; 3462 struct task_struct *task; 3463 3464 task = get_proc_task(inode); 3465 if (!task) 3466 return -ESRCH; 3467 is_same_tgroup = same_thread_group(current, task); 3468 put_task_struct(task); 3469 3470 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) { 3471 /* This file (/proc/<pid>/task/<tid>/comm) can always be 3472 * read or written by the members of the corresponding 3473 * thread group. 3474 */ 3475 return 0; 3476 } 3477 3478 return generic_permission(inode, mask); 3479 } 3480 3481 static const struct inode_operations proc_tid_comm_inode_operations = { 3482 .permission = proc_tid_comm_permission, 3483 }; 3484 3485 /* 3486 * Tasks 3487 */ 3488 static const struct pid_entry tid_base_stuff[] = { 3489 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3490 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3491 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3492 #ifdef CONFIG_NET 3493 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3494 #endif 3495 REG("environ", S_IRUSR, proc_environ_operations), 3496 REG("auxv", S_IRUSR, proc_auxv_operations), 3497 ONE("status", S_IRUGO, proc_pid_status), 3498 ONE("personality", S_IRUSR, proc_pid_personality), 3499 ONE("limits", S_IRUGO, proc_pid_limits), 3500 #ifdef CONFIG_SCHED_DEBUG 3501 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3502 #endif 3503 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR, 3504 &proc_tid_comm_inode_operations, 3505 &proc_pid_set_comm_operations, {}), 3506 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3507 ONE("syscall", S_IRUSR, proc_pid_syscall), 3508 #endif 3509 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3510 ONE("stat", S_IRUGO, proc_tid_stat), 3511 ONE("statm", S_IRUGO, proc_pid_statm), 3512 REG("maps", S_IRUGO, proc_pid_maps_operations), 3513 #ifdef CONFIG_PROC_CHILDREN 3514 REG("children", S_IRUGO, proc_tid_children_operations), 3515 #endif 3516 #ifdef CONFIG_NUMA 3517 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3518 #endif 3519 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3520 LNK("cwd", proc_cwd_link), 3521 LNK("root", proc_root_link), 3522 LNK("exe", proc_exe_link), 3523 REG("mounts", S_IRUGO, proc_mounts_operations), 3524 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3525 #ifdef CONFIG_PROC_PAGE_MONITOR 3526 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3527 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3528 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3529 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3530 #endif 3531 #ifdef CONFIG_SECURITY 3532 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3533 #endif 3534 #ifdef CONFIG_KALLSYMS 3535 ONE("wchan", S_IRUGO, proc_pid_wchan), 3536 #endif 3537 #ifdef CONFIG_STACKTRACE 3538 ONE("stack", S_IRUSR, proc_pid_stack), 3539 #endif 3540 #ifdef CONFIG_SCHED_INFO 3541 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3542 #endif 3543 #ifdef CONFIG_LATENCYTOP 3544 REG("latency", S_IRUGO, proc_lstats_operations), 3545 #endif 3546 #ifdef CONFIG_PROC_PID_CPUSET 3547 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3548 #endif 3549 #ifdef CONFIG_CGROUPS 3550 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3551 #endif 3552 #ifdef CONFIG_PROC_CPU_RESCTRL 3553 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3554 #endif 3555 ONE("oom_score", S_IRUGO, proc_oom_score), 3556 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3557 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3558 #ifdef CONFIG_AUDIT 3559 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3560 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3561 #endif 3562 #ifdef CONFIG_FAULT_INJECTION 3563 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3564 REG("fail-nth", 0644, proc_fail_nth_operations), 3565 #endif 3566 #ifdef CONFIG_TASK_IO_ACCOUNTING 3567 ONE("io", S_IRUSR, proc_tid_io_accounting), 3568 #endif 3569 #ifdef CONFIG_USER_NS 3570 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3571 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3572 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3573 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3574 #endif 3575 #ifdef CONFIG_LIVEPATCH 3576 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3577 #endif 3578 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3579 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3580 #endif 3581 }; 3582 3583 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx) 3584 { 3585 return proc_pident_readdir(file, ctx, 3586 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3587 } 3588 3589 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3590 { 3591 return proc_pident_lookup(dir, dentry, 3592 tid_base_stuff, 3593 tid_base_stuff + ARRAY_SIZE(tid_base_stuff)); 3594 } 3595 3596 static const struct file_operations proc_tid_base_operations = { 3597 .read = generic_read_dir, 3598 .iterate_shared = proc_tid_base_readdir, 3599 .llseek = generic_file_llseek, 3600 }; 3601 3602 static const struct inode_operations proc_tid_base_inode_operations = { 3603 .lookup = proc_tid_base_lookup, 3604 .getattr = pid_getattr, 3605 .setattr = proc_setattr, 3606 }; 3607 3608 static struct dentry *proc_task_instantiate(struct dentry *dentry, 3609 struct task_struct *task, const void *ptr) 3610 { 3611 struct inode *inode; 3612 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3613 if (!inode) 3614 return ERR_PTR(-ENOENT); 3615 3616 inode->i_op = &proc_tid_base_inode_operations; 3617 inode->i_fop = &proc_tid_base_operations; 3618 inode->i_flags |= S_IMMUTABLE; 3619 3620 set_nlink(inode, nlink_tid); 3621 pid_update_inode(task, inode); 3622 3623 d_set_d_op(dentry, &pid_dentry_operations); 3624 return d_splice_alias(inode, dentry); 3625 } 3626 3627 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3628 { 3629 struct task_struct *task; 3630 struct task_struct *leader = get_proc_task(dir); 3631 unsigned tid; 3632 struct proc_fs_info *fs_info; 3633 struct pid_namespace *ns; 3634 struct dentry *result = ERR_PTR(-ENOENT); 3635 3636 if (!leader) 3637 goto out_no_task; 3638 3639 tid = name_to_int(&dentry->d_name); 3640 if (tid == ~0U) 3641 goto out; 3642 3643 fs_info = proc_sb_info(dentry->d_sb); 3644 ns = fs_info->pid_ns; 3645 rcu_read_lock(); 3646 task = find_task_by_pid_ns(tid, ns); 3647 if (task) 3648 get_task_struct(task); 3649 rcu_read_unlock(); 3650 if (!task) 3651 goto out; 3652 if (!same_thread_group(leader, task)) 3653 goto out_drop_task; 3654 3655 result = proc_task_instantiate(dentry, task, NULL); 3656 out_drop_task: 3657 put_task_struct(task); 3658 out: 3659 put_task_struct(leader); 3660 out_no_task: 3661 return result; 3662 } 3663 3664 /* 3665 * Find the first tid of a thread group to return to user space. 3666 * 3667 * Usually this is just the thread group leader, but if the users 3668 * buffer was too small or there was a seek into the middle of the 3669 * directory we have more work todo. 3670 * 3671 * In the case of a short read we start with find_task_by_pid. 3672 * 3673 * In the case of a seek we start with the leader and walk nr 3674 * threads past it. 3675 */ 3676 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos, 3677 struct pid_namespace *ns) 3678 { 3679 struct task_struct *pos, *task; 3680 unsigned long nr = f_pos; 3681 3682 if (nr != f_pos) /* 32bit overflow? */ 3683 return NULL; 3684 3685 rcu_read_lock(); 3686 task = pid_task(pid, PIDTYPE_PID); 3687 if (!task) 3688 goto fail; 3689 3690 /* Attempt to start with the tid of a thread */ 3691 if (tid && nr) { 3692 pos = find_task_by_pid_ns(tid, ns); 3693 if (pos && same_thread_group(pos, task)) 3694 goto found; 3695 } 3696 3697 /* If nr exceeds the number of threads there is nothing todo */ 3698 if (nr >= get_nr_threads(task)) 3699 goto fail; 3700 3701 /* If we haven't found our starting place yet start 3702 * with the leader and walk nr threads forward. 3703 */ 3704 pos = task = task->group_leader; 3705 do { 3706 if (!nr--) 3707 goto found; 3708 } while_each_thread(task, pos); 3709 fail: 3710 pos = NULL; 3711 goto out; 3712 found: 3713 get_task_struct(pos); 3714 out: 3715 rcu_read_unlock(); 3716 return pos; 3717 } 3718 3719 /* 3720 * Find the next thread in the thread list. 3721 * Return NULL if there is an error or no next thread. 3722 * 3723 * The reference to the input task_struct is released. 3724 */ 3725 static struct task_struct *next_tid(struct task_struct *start) 3726 { 3727 struct task_struct *pos = NULL; 3728 rcu_read_lock(); 3729 if (pid_alive(start)) { 3730 pos = next_thread(start); 3731 if (thread_group_leader(pos)) 3732 pos = NULL; 3733 else 3734 get_task_struct(pos); 3735 } 3736 rcu_read_unlock(); 3737 put_task_struct(start); 3738 return pos; 3739 } 3740 3741 /* for the /proc/TGID/task/ directories */ 3742 static int proc_task_readdir(struct file *file, struct dir_context *ctx) 3743 { 3744 struct inode *inode = file_inode(file); 3745 struct task_struct *task; 3746 struct pid_namespace *ns; 3747 int tid; 3748 3749 if (proc_inode_is_dead(inode)) 3750 return -ENOENT; 3751 3752 if (!dir_emit_dots(file, ctx)) 3753 return 0; 3754 3755 /* f_version caches the tgid value that the last readdir call couldn't 3756 * return. lseek aka telldir automagically resets f_version to 0. 3757 */ 3758 ns = proc_pid_ns(inode->i_sb); 3759 tid = (int)file->f_version; 3760 file->f_version = 0; 3761 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns); 3762 task; 3763 task = next_tid(task), ctx->pos++) { 3764 char name[10 + 1]; 3765 unsigned int len; 3766 tid = task_pid_nr_ns(task, ns); 3767 len = snprintf(name, sizeof(name), "%u", tid); 3768 if (!proc_fill_cache(file, ctx, name, len, 3769 proc_task_instantiate, task, NULL)) { 3770 /* returning this tgid failed, save it as the first 3771 * pid for the next readir call */ 3772 file->f_version = (u64)tid; 3773 put_task_struct(task); 3774 break; 3775 } 3776 } 3777 3778 return 0; 3779 } 3780 3781 static int proc_task_getattr(const struct path *path, struct kstat *stat, 3782 u32 request_mask, unsigned int query_flags) 3783 { 3784 struct inode *inode = d_inode(path->dentry); 3785 struct task_struct *p = get_proc_task(inode); 3786 generic_fillattr(inode, stat); 3787 3788 if (p) { 3789 stat->nlink += get_nr_threads(p); 3790 put_task_struct(p); 3791 } 3792 3793 return 0; 3794 } 3795 3796 static const struct inode_operations proc_task_inode_operations = { 3797 .lookup = proc_task_lookup, 3798 .getattr = proc_task_getattr, 3799 .setattr = proc_setattr, 3800 .permission = proc_pid_permission, 3801 }; 3802 3803 static const struct file_operations proc_task_operations = { 3804 .read = generic_read_dir, 3805 .iterate_shared = proc_task_readdir, 3806 .llseek = generic_file_llseek, 3807 }; 3808 3809 void __init set_proc_pid_nlink(void) 3810 { 3811 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3812 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3813 } 3814