xref: /openbmc/linux/fs/proc/base.c (revision ca79522c)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/flex_array.h>
89 #include <linux/posix-timers.h>
90 #ifdef CONFIG_HARDWALL
91 #include <asm/hardwall.h>
92 #endif
93 #include <trace/events/oom.h>
94 #include "internal.h"
95 #include "fd.h"
96 
97 /* NOTE:
98  *	Implementing inode permission operations in /proc is almost
99  *	certainly an error.  Permission checks need to happen during
100  *	each system call not at open time.  The reason is that most of
101  *	what we wish to check for permissions in /proc varies at runtime.
102  *
103  *	The classic example of a problem is opening file descriptors
104  *	in /proc for a task before it execs a suid executable.
105  */
106 
107 struct pid_entry {
108 	char *name;
109 	int len;
110 	umode_t mode;
111 	const struct inode_operations *iop;
112 	const struct file_operations *fop;
113 	union proc_op op;
114 };
115 
116 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
117 	.name = (NAME),					\
118 	.len  = sizeof(NAME) - 1,			\
119 	.mode = MODE,					\
120 	.iop  = IOP,					\
121 	.fop  = FOP,					\
122 	.op   = OP,					\
123 }
124 
125 #define DIR(NAME, MODE, iops, fops)	\
126 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
127 #define LNK(NAME, get_link)					\
128 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
129 		&proc_pid_link_inode_operations, NULL,		\
130 		{ .proc_get_link = get_link } )
131 #define REG(NAME, MODE, fops)				\
132 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
133 #define INF(NAME, MODE, read)				\
134 	NOD(NAME, (S_IFREG|(MODE)), 			\
135 		NULL, &proc_info_file_operations,	\
136 		{ .proc_read = read } )
137 #define ONE(NAME, MODE, show)				\
138 	NOD(NAME, (S_IFREG|(MODE)), 			\
139 		NULL, &proc_single_file_operations,	\
140 		{ .proc_show = show } )
141 
142 /*
143  * Count the number of hardlinks for the pid_entry table, excluding the .
144  * and .. links.
145  */
146 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
147 	unsigned int n)
148 {
149 	unsigned int i;
150 	unsigned int count;
151 
152 	count = 0;
153 	for (i = 0; i < n; ++i) {
154 		if (S_ISDIR(entries[i].mode))
155 			++count;
156 	}
157 
158 	return count;
159 }
160 
161 static int get_task_root(struct task_struct *task, struct path *root)
162 {
163 	int result = -ENOENT;
164 
165 	task_lock(task);
166 	if (task->fs) {
167 		get_fs_root(task->fs, root);
168 		result = 0;
169 	}
170 	task_unlock(task);
171 	return result;
172 }
173 
174 static int proc_cwd_link(struct dentry *dentry, struct path *path)
175 {
176 	struct task_struct *task = get_proc_task(dentry->d_inode);
177 	int result = -ENOENT;
178 
179 	if (task) {
180 		task_lock(task);
181 		if (task->fs) {
182 			get_fs_pwd(task->fs, path);
183 			result = 0;
184 		}
185 		task_unlock(task);
186 		put_task_struct(task);
187 	}
188 	return result;
189 }
190 
191 static int proc_root_link(struct dentry *dentry, struct path *path)
192 {
193 	struct task_struct *task = get_proc_task(dentry->d_inode);
194 	int result = -ENOENT;
195 
196 	if (task) {
197 		result = get_task_root(task, path);
198 		put_task_struct(task);
199 	}
200 	return result;
201 }
202 
203 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
204 {
205 	int res = 0;
206 	unsigned int len;
207 	struct mm_struct *mm = get_task_mm(task);
208 	if (!mm)
209 		goto out;
210 	if (!mm->arg_end)
211 		goto out_mm;	/* Shh! No looking before we're done */
212 
213  	len = mm->arg_end - mm->arg_start;
214 
215 	if (len > PAGE_SIZE)
216 		len = PAGE_SIZE;
217 
218 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
219 
220 	// If the nul at the end of args has been overwritten, then
221 	// assume application is using setproctitle(3).
222 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
223 		len = strnlen(buffer, res);
224 		if (len < res) {
225 		    res = len;
226 		} else {
227 			len = mm->env_end - mm->env_start;
228 			if (len > PAGE_SIZE - res)
229 				len = PAGE_SIZE - res;
230 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
231 			res = strnlen(buffer, res);
232 		}
233 	}
234 out_mm:
235 	mmput(mm);
236 out:
237 	return res;
238 }
239 
240 static int proc_pid_auxv(struct task_struct *task, char *buffer)
241 {
242 	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
243 	int res = PTR_ERR(mm);
244 	if (mm && !IS_ERR(mm)) {
245 		unsigned int nwords = 0;
246 		do {
247 			nwords += 2;
248 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
249 		res = nwords * sizeof(mm->saved_auxv[0]);
250 		if (res > PAGE_SIZE)
251 			res = PAGE_SIZE;
252 		memcpy(buffer, mm->saved_auxv, res);
253 		mmput(mm);
254 	}
255 	return res;
256 }
257 
258 
259 #ifdef CONFIG_KALLSYMS
260 /*
261  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
262  * Returns the resolved symbol.  If that fails, simply return the address.
263  */
264 static int proc_pid_wchan(struct task_struct *task, char *buffer)
265 {
266 	unsigned long wchan;
267 	char symname[KSYM_NAME_LEN];
268 
269 	wchan = get_wchan(task);
270 
271 	if (lookup_symbol_name(wchan, symname) < 0)
272 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
273 			return 0;
274 		else
275 			return sprintf(buffer, "%lu", wchan);
276 	else
277 		return sprintf(buffer, "%s", symname);
278 }
279 #endif /* CONFIG_KALLSYMS */
280 
281 static int lock_trace(struct task_struct *task)
282 {
283 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
284 	if (err)
285 		return err;
286 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
287 		mutex_unlock(&task->signal->cred_guard_mutex);
288 		return -EPERM;
289 	}
290 	return 0;
291 }
292 
293 static void unlock_trace(struct task_struct *task)
294 {
295 	mutex_unlock(&task->signal->cred_guard_mutex);
296 }
297 
298 #ifdef CONFIG_STACKTRACE
299 
300 #define MAX_STACK_TRACE_DEPTH	64
301 
302 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
303 			  struct pid *pid, struct task_struct *task)
304 {
305 	struct stack_trace trace;
306 	unsigned long *entries;
307 	int err;
308 	int i;
309 
310 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
311 	if (!entries)
312 		return -ENOMEM;
313 
314 	trace.nr_entries	= 0;
315 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
316 	trace.entries		= entries;
317 	trace.skip		= 0;
318 
319 	err = lock_trace(task);
320 	if (!err) {
321 		save_stack_trace_tsk(task, &trace);
322 
323 		for (i = 0; i < trace.nr_entries; i++) {
324 			seq_printf(m, "[<%pK>] %pS\n",
325 				   (void *)entries[i], (void *)entries[i]);
326 		}
327 		unlock_trace(task);
328 	}
329 	kfree(entries);
330 
331 	return err;
332 }
333 #endif
334 
335 #ifdef CONFIG_SCHEDSTATS
336 /*
337  * Provides /proc/PID/schedstat
338  */
339 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
340 {
341 	return sprintf(buffer, "%llu %llu %lu\n",
342 			(unsigned long long)task->se.sum_exec_runtime,
343 			(unsigned long long)task->sched_info.run_delay,
344 			task->sched_info.pcount);
345 }
346 #endif
347 
348 #ifdef CONFIG_LATENCYTOP
349 static int lstats_show_proc(struct seq_file *m, void *v)
350 {
351 	int i;
352 	struct inode *inode = m->private;
353 	struct task_struct *task = get_proc_task(inode);
354 
355 	if (!task)
356 		return -ESRCH;
357 	seq_puts(m, "Latency Top version : v0.1\n");
358 	for (i = 0; i < 32; i++) {
359 		struct latency_record *lr = &task->latency_record[i];
360 		if (lr->backtrace[0]) {
361 			int q;
362 			seq_printf(m, "%i %li %li",
363 				   lr->count, lr->time, lr->max);
364 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
365 				unsigned long bt = lr->backtrace[q];
366 				if (!bt)
367 					break;
368 				if (bt == ULONG_MAX)
369 					break;
370 				seq_printf(m, " %ps", (void *)bt);
371 			}
372 			seq_putc(m, '\n');
373 		}
374 
375 	}
376 	put_task_struct(task);
377 	return 0;
378 }
379 
380 static int lstats_open(struct inode *inode, struct file *file)
381 {
382 	return single_open(file, lstats_show_proc, inode);
383 }
384 
385 static ssize_t lstats_write(struct file *file, const char __user *buf,
386 			    size_t count, loff_t *offs)
387 {
388 	struct task_struct *task = get_proc_task(file_inode(file));
389 
390 	if (!task)
391 		return -ESRCH;
392 	clear_all_latency_tracing(task);
393 	put_task_struct(task);
394 
395 	return count;
396 }
397 
398 static const struct file_operations proc_lstats_operations = {
399 	.open		= lstats_open,
400 	.read		= seq_read,
401 	.write		= lstats_write,
402 	.llseek		= seq_lseek,
403 	.release	= single_release,
404 };
405 
406 #endif
407 
408 #ifdef CONFIG_CGROUPS
409 static int cgroup_open(struct inode *inode, struct file *file)
410 {
411 	struct pid *pid = PROC_I(inode)->pid;
412 	return single_open(file, proc_cgroup_show, pid);
413 }
414 
415 static const struct file_operations proc_cgroup_operations = {
416 	.open		= cgroup_open,
417 	.read		= seq_read,
418 	.llseek		= seq_lseek,
419 	.release	= single_release,
420 };
421 #endif
422 
423 #ifdef CONFIG_PROC_PID_CPUSET
424 
425 static int cpuset_open(struct inode *inode, struct file *file)
426 {
427 	struct pid *pid = PROC_I(inode)->pid;
428 	return single_open(file, proc_cpuset_show, pid);
429 }
430 
431 static const struct file_operations proc_cpuset_operations = {
432 	.open		= cpuset_open,
433 	.read		= seq_read,
434 	.llseek		= seq_lseek,
435 	.release	= single_release,
436 };
437 #endif
438 
439 static int proc_oom_score(struct task_struct *task, char *buffer)
440 {
441 	unsigned long totalpages = totalram_pages + total_swap_pages;
442 	unsigned long points = 0;
443 
444 	read_lock(&tasklist_lock);
445 	if (pid_alive(task))
446 		points = oom_badness(task, NULL, NULL, totalpages) *
447 						1000 / totalpages;
448 	read_unlock(&tasklist_lock);
449 	return sprintf(buffer, "%lu\n", points);
450 }
451 
452 struct limit_names {
453 	char *name;
454 	char *unit;
455 };
456 
457 static const struct limit_names lnames[RLIM_NLIMITS] = {
458 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
459 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
460 	[RLIMIT_DATA] = {"Max data size", "bytes"},
461 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
462 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
463 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
464 	[RLIMIT_NPROC] = {"Max processes", "processes"},
465 	[RLIMIT_NOFILE] = {"Max open files", "files"},
466 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
467 	[RLIMIT_AS] = {"Max address space", "bytes"},
468 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
469 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
470 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
471 	[RLIMIT_NICE] = {"Max nice priority", NULL},
472 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
473 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
474 };
475 
476 /* Display limits for a process */
477 static int proc_pid_limits(struct task_struct *task, char *buffer)
478 {
479 	unsigned int i;
480 	int count = 0;
481 	unsigned long flags;
482 	char *bufptr = buffer;
483 
484 	struct rlimit rlim[RLIM_NLIMITS];
485 
486 	if (!lock_task_sighand(task, &flags))
487 		return 0;
488 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
489 	unlock_task_sighand(task, &flags);
490 
491 	/*
492 	 * print the file header
493 	 */
494 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
495 			"Limit", "Soft Limit", "Hard Limit", "Units");
496 
497 	for (i = 0; i < RLIM_NLIMITS; i++) {
498 		if (rlim[i].rlim_cur == RLIM_INFINITY)
499 			count += sprintf(&bufptr[count], "%-25s %-20s ",
500 					 lnames[i].name, "unlimited");
501 		else
502 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
503 					 lnames[i].name, rlim[i].rlim_cur);
504 
505 		if (rlim[i].rlim_max == RLIM_INFINITY)
506 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
507 		else
508 			count += sprintf(&bufptr[count], "%-20lu ",
509 					 rlim[i].rlim_max);
510 
511 		if (lnames[i].unit)
512 			count += sprintf(&bufptr[count], "%-10s\n",
513 					 lnames[i].unit);
514 		else
515 			count += sprintf(&bufptr[count], "\n");
516 	}
517 
518 	return count;
519 }
520 
521 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
522 static int proc_pid_syscall(struct task_struct *task, char *buffer)
523 {
524 	long nr;
525 	unsigned long args[6], sp, pc;
526 	int res = lock_trace(task);
527 	if (res)
528 		return res;
529 
530 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
531 		res = sprintf(buffer, "running\n");
532 	else if (nr < 0)
533 		res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
534 	else
535 		res = sprintf(buffer,
536 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
537 		       nr,
538 		       args[0], args[1], args[2], args[3], args[4], args[5],
539 		       sp, pc);
540 	unlock_trace(task);
541 	return res;
542 }
543 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
544 
545 /************************************************************************/
546 /*                       Here the fs part begins                        */
547 /************************************************************************/
548 
549 /* permission checks */
550 static int proc_fd_access_allowed(struct inode *inode)
551 {
552 	struct task_struct *task;
553 	int allowed = 0;
554 	/* Allow access to a task's file descriptors if it is us or we
555 	 * may use ptrace attach to the process and find out that
556 	 * information.
557 	 */
558 	task = get_proc_task(inode);
559 	if (task) {
560 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
561 		put_task_struct(task);
562 	}
563 	return allowed;
564 }
565 
566 int proc_setattr(struct dentry *dentry, struct iattr *attr)
567 {
568 	int error;
569 	struct inode *inode = dentry->d_inode;
570 
571 	if (attr->ia_valid & ATTR_MODE)
572 		return -EPERM;
573 
574 	error = inode_change_ok(inode, attr);
575 	if (error)
576 		return error;
577 
578 	setattr_copy(inode, attr);
579 	mark_inode_dirty(inode);
580 	return 0;
581 }
582 
583 /*
584  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
585  * or euid/egid (for hide_pid_min=2)?
586  */
587 static bool has_pid_permissions(struct pid_namespace *pid,
588 				 struct task_struct *task,
589 				 int hide_pid_min)
590 {
591 	if (pid->hide_pid < hide_pid_min)
592 		return true;
593 	if (in_group_p(pid->pid_gid))
594 		return true;
595 	return ptrace_may_access(task, PTRACE_MODE_READ);
596 }
597 
598 
599 static int proc_pid_permission(struct inode *inode, int mask)
600 {
601 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
602 	struct task_struct *task;
603 	bool has_perms;
604 
605 	task = get_proc_task(inode);
606 	if (!task)
607 		return -ESRCH;
608 	has_perms = has_pid_permissions(pid, task, 1);
609 	put_task_struct(task);
610 
611 	if (!has_perms) {
612 		if (pid->hide_pid == 2) {
613 			/*
614 			 * Let's make getdents(), stat(), and open()
615 			 * consistent with each other.  If a process
616 			 * may not stat() a file, it shouldn't be seen
617 			 * in procfs at all.
618 			 */
619 			return -ENOENT;
620 		}
621 
622 		return -EPERM;
623 	}
624 	return generic_permission(inode, mask);
625 }
626 
627 
628 
629 static const struct inode_operations proc_def_inode_operations = {
630 	.setattr	= proc_setattr,
631 };
632 
633 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
634 
635 static ssize_t proc_info_read(struct file * file, char __user * buf,
636 			  size_t count, loff_t *ppos)
637 {
638 	struct inode * inode = file_inode(file);
639 	unsigned long page;
640 	ssize_t length;
641 	struct task_struct *task = get_proc_task(inode);
642 
643 	length = -ESRCH;
644 	if (!task)
645 		goto out_no_task;
646 
647 	if (count > PROC_BLOCK_SIZE)
648 		count = PROC_BLOCK_SIZE;
649 
650 	length = -ENOMEM;
651 	if (!(page = __get_free_page(GFP_TEMPORARY)))
652 		goto out;
653 
654 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
655 
656 	if (length >= 0)
657 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
658 	free_page(page);
659 out:
660 	put_task_struct(task);
661 out_no_task:
662 	return length;
663 }
664 
665 static const struct file_operations proc_info_file_operations = {
666 	.read		= proc_info_read,
667 	.llseek		= generic_file_llseek,
668 };
669 
670 static int proc_single_show(struct seq_file *m, void *v)
671 {
672 	struct inode *inode = m->private;
673 	struct pid_namespace *ns;
674 	struct pid *pid;
675 	struct task_struct *task;
676 	int ret;
677 
678 	ns = inode->i_sb->s_fs_info;
679 	pid = proc_pid(inode);
680 	task = get_pid_task(pid, PIDTYPE_PID);
681 	if (!task)
682 		return -ESRCH;
683 
684 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
685 
686 	put_task_struct(task);
687 	return ret;
688 }
689 
690 static int proc_single_open(struct inode *inode, struct file *filp)
691 {
692 	return single_open(filp, proc_single_show, inode);
693 }
694 
695 static const struct file_operations proc_single_file_operations = {
696 	.open		= proc_single_open,
697 	.read		= seq_read,
698 	.llseek		= seq_lseek,
699 	.release	= single_release,
700 };
701 
702 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
703 {
704 	struct task_struct *task = get_proc_task(file_inode(file));
705 	struct mm_struct *mm;
706 
707 	if (!task)
708 		return -ESRCH;
709 
710 	mm = mm_access(task, mode);
711 	put_task_struct(task);
712 
713 	if (IS_ERR(mm))
714 		return PTR_ERR(mm);
715 
716 	if (mm) {
717 		/* ensure this mm_struct can't be freed */
718 		atomic_inc(&mm->mm_count);
719 		/* but do not pin its memory */
720 		mmput(mm);
721 	}
722 
723 	file->private_data = mm;
724 
725 	return 0;
726 }
727 
728 static int mem_open(struct inode *inode, struct file *file)
729 {
730 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
731 
732 	/* OK to pass negative loff_t, we can catch out-of-range */
733 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
734 
735 	return ret;
736 }
737 
738 static ssize_t mem_rw(struct file *file, char __user *buf,
739 			size_t count, loff_t *ppos, int write)
740 {
741 	struct mm_struct *mm = file->private_data;
742 	unsigned long addr = *ppos;
743 	ssize_t copied;
744 	char *page;
745 
746 	if (!mm)
747 		return 0;
748 
749 	page = (char *)__get_free_page(GFP_TEMPORARY);
750 	if (!page)
751 		return -ENOMEM;
752 
753 	copied = 0;
754 	if (!atomic_inc_not_zero(&mm->mm_users))
755 		goto free;
756 
757 	while (count > 0) {
758 		int this_len = min_t(int, count, PAGE_SIZE);
759 
760 		if (write && copy_from_user(page, buf, this_len)) {
761 			copied = -EFAULT;
762 			break;
763 		}
764 
765 		this_len = access_remote_vm(mm, addr, page, this_len, write);
766 		if (!this_len) {
767 			if (!copied)
768 				copied = -EIO;
769 			break;
770 		}
771 
772 		if (!write && copy_to_user(buf, page, this_len)) {
773 			copied = -EFAULT;
774 			break;
775 		}
776 
777 		buf += this_len;
778 		addr += this_len;
779 		copied += this_len;
780 		count -= this_len;
781 	}
782 	*ppos = addr;
783 
784 	mmput(mm);
785 free:
786 	free_page((unsigned long) page);
787 	return copied;
788 }
789 
790 static ssize_t mem_read(struct file *file, char __user *buf,
791 			size_t count, loff_t *ppos)
792 {
793 	return mem_rw(file, buf, count, ppos, 0);
794 }
795 
796 static ssize_t mem_write(struct file *file, const char __user *buf,
797 			 size_t count, loff_t *ppos)
798 {
799 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
800 }
801 
802 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
803 {
804 	switch (orig) {
805 	case 0:
806 		file->f_pos = offset;
807 		break;
808 	case 1:
809 		file->f_pos += offset;
810 		break;
811 	default:
812 		return -EINVAL;
813 	}
814 	force_successful_syscall_return();
815 	return file->f_pos;
816 }
817 
818 static int mem_release(struct inode *inode, struct file *file)
819 {
820 	struct mm_struct *mm = file->private_data;
821 	if (mm)
822 		mmdrop(mm);
823 	return 0;
824 }
825 
826 static const struct file_operations proc_mem_operations = {
827 	.llseek		= mem_lseek,
828 	.read		= mem_read,
829 	.write		= mem_write,
830 	.open		= mem_open,
831 	.release	= mem_release,
832 };
833 
834 static int environ_open(struct inode *inode, struct file *file)
835 {
836 	return __mem_open(inode, file, PTRACE_MODE_READ);
837 }
838 
839 static ssize_t environ_read(struct file *file, char __user *buf,
840 			size_t count, loff_t *ppos)
841 {
842 	char *page;
843 	unsigned long src = *ppos;
844 	int ret = 0;
845 	struct mm_struct *mm = file->private_data;
846 
847 	if (!mm)
848 		return 0;
849 
850 	page = (char *)__get_free_page(GFP_TEMPORARY);
851 	if (!page)
852 		return -ENOMEM;
853 
854 	ret = 0;
855 	if (!atomic_inc_not_zero(&mm->mm_users))
856 		goto free;
857 	while (count > 0) {
858 		size_t this_len, max_len;
859 		int retval;
860 
861 		if (src >= (mm->env_end - mm->env_start))
862 			break;
863 
864 		this_len = mm->env_end - (mm->env_start + src);
865 
866 		max_len = min_t(size_t, PAGE_SIZE, count);
867 		this_len = min(max_len, this_len);
868 
869 		retval = access_remote_vm(mm, (mm->env_start + src),
870 			page, this_len, 0);
871 
872 		if (retval <= 0) {
873 			ret = retval;
874 			break;
875 		}
876 
877 		if (copy_to_user(buf, page, retval)) {
878 			ret = -EFAULT;
879 			break;
880 		}
881 
882 		ret += retval;
883 		src += retval;
884 		buf += retval;
885 		count -= retval;
886 	}
887 	*ppos = src;
888 	mmput(mm);
889 
890 free:
891 	free_page((unsigned long) page);
892 	return ret;
893 }
894 
895 static const struct file_operations proc_environ_operations = {
896 	.open		= environ_open,
897 	.read		= environ_read,
898 	.llseek		= generic_file_llseek,
899 	.release	= mem_release,
900 };
901 
902 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
903 			    loff_t *ppos)
904 {
905 	struct task_struct *task = get_proc_task(file_inode(file));
906 	char buffer[PROC_NUMBUF];
907 	int oom_adj = OOM_ADJUST_MIN;
908 	size_t len;
909 	unsigned long flags;
910 
911 	if (!task)
912 		return -ESRCH;
913 	if (lock_task_sighand(task, &flags)) {
914 		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
915 			oom_adj = OOM_ADJUST_MAX;
916 		else
917 			oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
918 				  OOM_SCORE_ADJ_MAX;
919 		unlock_task_sighand(task, &flags);
920 	}
921 	put_task_struct(task);
922 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
923 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
924 }
925 
926 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
927 			     size_t count, loff_t *ppos)
928 {
929 	struct task_struct *task;
930 	char buffer[PROC_NUMBUF];
931 	int oom_adj;
932 	unsigned long flags;
933 	int err;
934 
935 	memset(buffer, 0, sizeof(buffer));
936 	if (count > sizeof(buffer) - 1)
937 		count = sizeof(buffer) - 1;
938 	if (copy_from_user(buffer, buf, count)) {
939 		err = -EFAULT;
940 		goto out;
941 	}
942 
943 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
944 	if (err)
945 		goto out;
946 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
947 	     oom_adj != OOM_DISABLE) {
948 		err = -EINVAL;
949 		goto out;
950 	}
951 
952 	task = get_proc_task(file_inode(file));
953 	if (!task) {
954 		err = -ESRCH;
955 		goto out;
956 	}
957 
958 	task_lock(task);
959 	if (!task->mm) {
960 		err = -EINVAL;
961 		goto err_task_lock;
962 	}
963 
964 	if (!lock_task_sighand(task, &flags)) {
965 		err = -ESRCH;
966 		goto err_task_lock;
967 	}
968 
969 	/*
970 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
971 	 * value is always attainable.
972 	 */
973 	if (oom_adj == OOM_ADJUST_MAX)
974 		oom_adj = OOM_SCORE_ADJ_MAX;
975 	else
976 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
977 
978 	if (oom_adj < task->signal->oom_score_adj &&
979 	    !capable(CAP_SYS_RESOURCE)) {
980 		err = -EACCES;
981 		goto err_sighand;
982 	}
983 
984 	/*
985 	 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
986 	 * /proc/pid/oom_score_adj instead.
987 	 */
988 	pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
989 		  current->comm, task_pid_nr(current), task_pid_nr(task),
990 		  task_pid_nr(task));
991 
992 	task->signal->oom_score_adj = oom_adj;
993 	trace_oom_score_adj_update(task);
994 err_sighand:
995 	unlock_task_sighand(task, &flags);
996 err_task_lock:
997 	task_unlock(task);
998 	put_task_struct(task);
999 out:
1000 	return err < 0 ? err : count;
1001 }
1002 
1003 static const struct file_operations proc_oom_adj_operations = {
1004 	.read		= oom_adj_read,
1005 	.write		= oom_adj_write,
1006 	.llseek		= generic_file_llseek,
1007 };
1008 
1009 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1010 					size_t count, loff_t *ppos)
1011 {
1012 	struct task_struct *task = get_proc_task(file_inode(file));
1013 	char buffer[PROC_NUMBUF];
1014 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1015 	unsigned long flags;
1016 	size_t len;
1017 
1018 	if (!task)
1019 		return -ESRCH;
1020 	if (lock_task_sighand(task, &flags)) {
1021 		oom_score_adj = task->signal->oom_score_adj;
1022 		unlock_task_sighand(task, &flags);
1023 	}
1024 	put_task_struct(task);
1025 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1026 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1027 }
1028 
1029 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1030 					size_t count, loff_t *ppos)
1031 {
1032 	struct task_struct *task;
1033 	char buffer[PROC_NUMBUF];
1034 	unsigned long flags;
1035 	int oom_score_adj;
1036 	int err;
1037 
1038 	memset(buffer, 0, sizeof(buffer));
1039 	if (count > sizeof(buffer) - 1)
1040 		count = sizeof(buffer) - 1;
1041 	if (copy_from_user(buffer, buf, count)) {
1042 		err = -EFAULT;
1043 		goto out;
1044 	}
1045 
1046 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1047 	if (err)
1048 		goto out;
1049 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1050 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1051 		err = -EINVAL;
1052 		goto out;
1053 	}
1054 
1055 	task = get_proc_task(file_inode(file));
1056 	if (!task) {
1057 		err = -ESRCH;
1058 		goto out;
1059 	}
1060 
1061 	task_lock(task);
1062 	if (!task->mm) {
1063 		err = -EINVAL;
1064 		goto err_task_lock;
1065 	}
1066 
1067 	if (!lock_task_sighand(task, &flags)) {
1068 		err = -ESRCH;
1069 		goto err_task_lock;
1070 	}
1071 
1072 	if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1073 			!capable(CAP_SYS_RESOURCE)) {
1074 		err = -EACCES;
1075 		goto err_sighand;
1076 	}
1077 
1078 	task->signal->oom_score_adj = (short)oom_score_adj;
1079 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1080 		task->signal->oom_score_adj_min = (short)oom_score_adj;
1081 	trace_oom_score_adj_update(task);
1082 
1083 err_sighand:
1084 	unlock_task_sighand(task, &flags);
1085 err_task_lock:
1086 	task_unlock(task);
1087 	put_task_struct(task);
1088 out:
1089 	return err < 0 ? err : count;
1090 }
1091 
1092 static const struct file_operations proc_oom_score_adj_operations = {
1093 	.read		= oom_score_adj_read,
1094 	.write		= oom_score_adj_write,
1095 	.llseek		= default_llseek,
1096 };
1097 
1098 #ifdef CONFIG_AUDITSYSCALL
1099 #define TMPBUFLEN 21
1100 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1101 				  size_t count, loff_t *ppos)
1102 {
1103 	struct inode * inode = file_inode(file);
1104 	struct task_struct *task = get_proc_task(inode);
1105 	ssize_t length;
1106 	char tmpbuf[TMPBUFLEN];
1107 
1108 	if (!task)
1109 		return -ESRCH;
1110 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1111 			   from_kuid(file->f_cred->user_ns,
1112 				     audit_get_loginuid(task)));
1113 	put_task_struct(task);
1114 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1115 }
1116 
1117 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1118 				   size_t count, loff_t *ppos)
1119 {
1120 	struct inode * inode = file_inode(file);
1121 	char *page, *tmp;
1122 	ssize_t length;
1123 	uid_t loginuid;
1124 	kuid_t kloginuid;
1125 
1126 	rcu_read_lock();
1127 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1128 		rcu_read_unlock();
1129 		return -EPERM;
1130 	}
1131 	rcu_read_unlock();
1132 
1133 	if (count >= PAGE_SIZE)
1134 		count = PAGE_SIZE - 1;
1135 
1136 	if (*ppos != 0) {
1137 		/* No partial writes. */
1138 		return -EINVAL;
1139 	}
1140 	page = (char*)__get_free_page(GFP_TEMPORARY);
1141 	if (!page)
1142 		return -ENOMEM;
1143 	length = -EFAULT;
1144 	if (copy_from_user(page, buf, count))
1145 		goto out_free_page;
1146 
1147 	page[count] = '\0';
1148 	loginuid = simple_strtoul(page, &tmp, 10);
1149 	if (tmp == page) {
1150 		length = -EINVAL;
1151 		goto out_free_page;
1152 
1153 	}
1154 	kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1155 	if (!uid_valid(kloginuid)) {
1156 		length = -EINVAL;
1157 		goto out_free_page;
1158 	}
1159 
1160 	length = audit_set_loginuid(kloginuid);
1161 	if (likely(length == 0))
1162 		length = count;
1163 
1164 out_free_page:
1165 	free_page((unsigned long) page);
1166 	return length;
1167 }
1168 
1169 static const struct file_operations proc_loginuid_operations = {
1170 	.read		= proc_loginuid_read,
1171 	.write		= proc_loginuid_write,
1172 	.llseek		= generic_file_llseek,
1173 };
1174 
1175 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1176 				  size_t count, loff_t *ppos)
1177 {
1178 	struct inode * inode = file_inode(file);
1179 	struct task_struct *task = get_proc_task(inode);
1180 	ssize_t length;
1181 	char tmpbuf[TMPBUFLEN];
1182 
1183 	if (!task)
1184 		return -ESRCH;
1185 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1186 				audit_get_sessionid(task));
1187 	put_task_struct(task);
1188 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1189 }
1190 
1191 static const struct file_operations proc_sessionid_operations = {
1192 	.read		= proc_sessionid_read,
1193 	.llseek		= generic_file_llseek,
1194 };
1195 #endif
1196 
1197 #ifdef CONFIG_FAULT_INJECTION
1198 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1199 				      size_t count, loff_t *ppos)
1200 {
1201 	struct task_struct *task = get_proc_task(file_inode(file));
1202 	char buffer[PROC_NUMBUF];
1203 	size_t len;
1204 	int make_it_fail;
1205 
1206 	if (!task)
1207 		return -ESRCH;
1208 	make_it_fail = task->make_it_fail;
1209 	put_task_struct(task);
1210 
1211 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1212 
1213 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1214 }
1215 
1216 static ssize_t proc_fault_inject_write(struct file * file,
1217 			const char __user * buf, size_t count, loff_t *ppos)
1218 {
1219 	struct task_struct *task;
1220 	char buffer[PROC_NUMBUF], *end;
1221 	int make_it_fail;
1222 
1223 	if (!capable(CAP_SYS_RESOURCE))
1224 		return -EPERM;
1225 	memset(buffer, 0, sizeof(buffer));
1226 	if (count > sizeof(buffer) - 1)
1227 		count = sizeof(buffer) - 1;
1228 	if (copy_from_user(buffer, buf, count))
1229 		return -EFAULT;
1230 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1231 	if (*end)
1232 		return -EINVAL;
1233 	task = get_proc_task(file_inode(file));
1234 	if (!task)
1235 		return -ESRCH;
1236 	task->make_it_fail = make_it_fail;
1237 	put_task_struct(task);
1238 
1239 	return count;
1240 }
1241 
1242 static const struct file_operations proc_fault_inject_operations = {
1243 	.read		= proc_fault_inject_read,
1244 	.write		= proc_fault_inject_write,
1245 	.llseek		= generic_file_llseek,
1246 };
1247 #endif
1248 
1249 
1250 #ifdef CONFIG_SCHED_DEBUG
1251 /*
1252  * Print out various scheduling related per-task fields:
1253  */
1254 static int sched_show(struct seq_file *m, void *v)
1255 {
1256 	struct inode *inode = m->private;
1257 	struct task_struct *p;
1258 
1259 	p = get_proc_task(inode);
1260 	if (!p)
1261 		return -ESRCH;
1262 	proc_sched_show_task(p, m);
1263 
1264 	put_task_struct(p);
1265 
1266 	return 0;
1267 }
1268 
1269 static ssize_t
1270 sched_write(struct file *file, const char __user *buf,
1271 	    size_t count, loff_t *offset)
1272 {
1273 	struct inode *inode = file_inode(file);
1274 	struct task_struct *p;
1275 
1276 	p = get_proc_task(inode);
1277 	if (!p)
1278 		return -ESRCH;
1279 	proc_sched_set_task(p);
1280 
1281 	put_task_struct(p);
1282 
1283 	return count;
1284 }
1285 
1286 static int sched_open(struct inode *inode, struct file *filp)
1287 {
1288 	return single_open(filp, sched_show, inode);
1289 }
1290 
1291 static const struct file_operations proc_pid_sched_operations = {
1292 	.open		= sched_open,
1293 	.read		= seq_read,
1294 	.write		= sched_write,
1295 	.llseek		= seq_lseek,
1296 	.release	= single_release,
1297 };
1298 
1299 #endif
1300 
1301 #ifdef CONFIG_SCHED_AUTOGROUP
1302 /*
1303  * Print out autogroup related information:
1304  */
1305 static int sched_autogroup_show(struct seq_file *m, void *v)
1306 {
1307 	struct inode *inode = m->private;
1308 	struct task_struct *p;
1309 
1310 	p = get_proc_task(inode);
1311 	if (!p)
1312 		return -ESRCH;
1313 	proc_sched_autogroup_show_task(p, m);
1314 
1315 	put_task_struct(p);
1316 
1317 	return 0;
1318 }
1319 
1320 static ssize_t
1321 sched_autogroup_write(struct file *file, const char __user *buf,
1322 	    size_t count, loff_t *offset)
1323 {
1324 	struct inode *inode = file_inode(file);
1325 	struct task_struct *p;
1326 	char buffer[PROC_NUMBUF];
1327 	int nice;
1328 	int err;
1329 
1330 	memset(buffer, 0, sizeof(buffer));
1331 	if (count > sizeof(buffer) - 1)
1332 		count = sizeof(buffer) - 1;
1333 	if (copy_from_user(buffer, buf, count))
1334 		return -EFAULT;
1335 
1336 	err = kstrtoint(strstrip(buffer), 0, &nice);
1337 	if (err < 0)
1338 		return err;
1339 
1340 	p = get_proc_task(inode);
1341 	if (!p)
1342 		return -ESRCH;
1343 
1344 	err = proc_sched_autogroup_set_nice(p, nice);
1345 	if (err)
1346 		count = err;
1347 
1348 	put_task_struct(p);
1349 
1350 	return count;
1351 }
1352 
1353 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1354 {
1355 	int ret;
1356 
1357 	ret = single_open(filp, sched_autogroup_show, NULL);
1358 	if (!ret) {
1359 		struct seq_file *m = filp->private_data;
1360 
1361 		m->private = inode;
1362 	}
1363 	return ret;
1364 }
1365 
1366 static const struct file_operations proc_pid_sched_autogroup_operations = {
1367 	.open		= sched_autogroup_open,
1368 	.read		= seq_read,
1369 	.write		= sched_autogroup_write,
1370 	.llseek		= seq_lseek,
1371 	.release	= single_release,
1372 };
1373 
1374 #endif /* CONFIG_SCHED_AUTOGROUP */
1375 
1376 static ssize_t comm_write(struct file *file, const char __user *buf,
1377 				size_t count, loff_t *offset)
1378 {
1379 	struct inode *inode = file_inode(file);
1380 	struct task_struct *p;
1381 	char buffer[TASK_COMM_LEN];
1382 	const size_t maxlen = sizeof(buffer) - 1;
1383 
1384 	memset(buffer, 0, sizeof(buffer));
1385 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1386 		return -EFAULT;
1387 
1388 	p = get_proc_task(inode);
1389 	if (!p)
1390 		return -ESRCH;
1391 
1392 	if (same_thread_group(current, p))
1393 		set_task_comm(p, buffer);
1394 	else
1395 		count = -EINVAL;
1396 
1397 	put_task_struct(p);
1398 
1399 	return count;
1400 }
1401 
1402 static int comm_show(struct seq_file *m, void *v)
1403 {
1404 	struct inode *inode = m->private;
1405 	struct task_struct *p;
1406 
1407 	p = get_proc_task(inode);
1408 	if (!p)
1409 		return -ESRCH;
1410 
1411 	task_lock(p);
1412 	seq_printf(m, "%s\n", p->comm);
1413 	task_unlock(p);
1414 
1415 	put_task_struct(p);
1416 
1417 	return 0;
1418 }
1419 
1420 static int comm_open(struct inode *inode, struct file *filp)
1421 {
1422 	return single_open(filp, comm_show, inode);
1423 }
1424 
1425 static const struct file_operations proc_pid_set_comm_operations = {
1426 	.open		= comm_open,
1427 	.read		= seq_read,
1428 	.write		= comm_write,
1429 	.llseek		= seq_lseek,
1430 	.release	= single_release,
1431 };
1432 
1433 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1434 {
1435 	struct task_struct *task;
1436 	struct mm_struct *mm;
1437 	struct file *exe_file;
1438 
1439 	task = get_proc_task(dentry->d_inode);
1440 	if (!task)
1441 		return -ENOENT;
1442 	mm = get_task_mm(task);
1443 	put_task_struct(task);
1444 	if (!mm)
1445 		return -ENOENT;
1446 	exe_file = get_mm_exe_file(mm);
1447 	mmput(mm);
1448 	if (exe_file) {
1449 		*exe_path = exe_file->f_path;
1450 		path_get(&exe_file->f_path);
1451 		fput(exe_file);
1452 		return 0;
1453 	} else
1454 		return -ENOENT;
1455 }
1456 
1457 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1458 {
1459 	struct inode *inode = dentry->d_inode;
1460 	struct path path;
1461 	int error = -EACCES;
1462 
1463 	/* Are we allowed to snoop on the tasks file descriptors? */
1464 	if (!proc_fd_access_allowed(inode))
1465 		goto out;
1466 
1467 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1468 	if (error)
1469 		goto out;
1470 
1471 	nd_jump_link(nd, &path);
1472 	return NULL;
1473 out:
1474 	return ERR_PTR(error);
1475 }
1476 
1477 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1478 {
1479 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1480 	char *pathname;
1481 	int len;
1482 
1483 	if (!tmp)
1484 		return -ENOMEM;
1485 
1486 	pathname = d_path(path, tmp, PAGE_SIZE);
1487 	len = PTR_ERR(pathname);
1488 	if (IS_ERR(pathname))
1489 		goto out;
1490 	len = tmp + PAGE_SIZE - 1 - pathname;
1491 
1492 	if (len > buflen)
1493 		len = buflen;
1494 	if (copy_to_user(buffer, pathname, len))
1495 		len = -EFAULT;
1496  out:
1497 	free_page((unsigned long)tmp);
1498 	return len;
1499 }
1500 
1501 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1502 {
1503 	int error = -EACCES;
1504 	struct inode *inode = dentry->d_inode;
1505 	struct path path;
1506 
1507 	/* Are we allowed to snoop on the tasks file descriptors? */
1508 	if (!proc_fd_access_allowed(inode))
1509 		goto out;
1510 
1511 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1512 	if (error)
1513 		goto out;
1514 
1515 	error = do_proc_readlink(&path, buffer, buflen);
1516 	path_put(&path);
1517 out:
1518 	return error;
1519 }
1520 
1521 const struct inode_operations proc_pid_link_inode_operations = {
1522 	.readlink	= proc_pid_readlink,
1523 	.follow_link	= proc_pid_follow_link,
1524 	.setattr	= proc_setattr,
1525 };
1526 
1527 
1528 /* building an inode */
1529 
1530 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1531 {
1532 	struct inode * inode;
1533 	struct proc_inode *ei;
1534 	const struct cred *cred;
1535 
1536 	/* We need a new inode */
1537 
1538 	inode = new_inode(sb);
1539 	if (!inode)
1540 		goto out;
1541 
1542 	/* Common stuff */
1543 	ei = PROC_I(inode);
1544 	inode->i_ino = get_next_ino();
1545 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1546 	inode->i_op = &proc_def_inode_operations;
1547 
1548 	/*
1549 	 * grab the reference to task.
1550 	 */
1551 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1552 	if (!ei->pid)
1553 		goto out_unlock;
1554 
1555 	if (task_dumpable(task)) {
1556 		rcu_read_lock();
1557 		cred = __task_cred(task);
1558 		inode->i_uid = cred->euid;
1559 		inode->i_gid = cred->egid;
1560 		rcu_read_unlock();
1561 	}
1562 	security_task_to_inode(task, inode);
1563 
1564 out:
1565 	return inode;
1566 
1567 out_unlock:
1568 	iput(inode);
1569 	return NULL;
1570 }
1571 
1572 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1573 {
1574 	struct inode *inode = dentry->d_inode;
1575 	struct task_struct *task;
1576 	const struct cred *cred;
1577 	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1578 
1579 	generic_fillattr(inode, stat);
1580 
1581 	rcu_read_lock();
1582 	stat->uid = GLOBAL_ROOT_UID;
1583 	stat->gid = GLOBAL_ROOT_GID;
1584 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1585 	if (task) {
1586 		if (!has_pid_permissions(pid, task, 2)) {
1587 			rcu_read_unlock();
1588 			/*
1589 			 * This doesn't prevent learning whether PID exists,
1590 			 * it only makes getattr() consistent with readdir().
1591 			 */
1592 			return -ENOENT;
1593 		}
1594 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1595 		    task_dumpable(task)) {
1596 			cred = __task_cred(task);
1597 			stat->uid = cred->euid;
1598 			stat->gid = cred->egid;
1599 		}
1600 	}
1601 	rcu_read_unlock();
1602 	return 0;
1603 }
1604 
1605 /* dentry stuff */
1606 
1607 /*
1608  *	Exceptional case: normally we are not allowed to unhash a busy
1609  * directory. In this case, however, we can do it - no aliasing problems
1610  * due to the way we treat inodes.
1611  *
1612  * Rewrite the inode's ownerships here because the owning task may have
1613  * performed a setuid(), etc.
1614  *
1615  * Before the /proc/pid/status file was created the only way to read
1616  * the effective uid of a /process was to stat /proc/pid.  Reading
1617  * /proc/pid/status is slow enough that procps and other packages
1618  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1619  * made this apply to all per process world readable and executable
1620  * directories.
1621  */
1622 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1623 {
1624 	struct inode *inode;
1625 	struct task_struct *task;
1626 	const struct cred *cred;
1627 
1628 	if (flags & LOOKUP_RCU)
1629 		return -ECHILD;
1630 
1631 	inode = dentry->d_inode;
1632 	task = get_proc_task(inode);
1633 
1634 	if (task) {
1635 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1636 		    task_dumpable(task)) {
1637 			rcu_read_lock();
1638 			cred = __task_cred(task);
1639 			inode->i_uid = cred->euid;
1640 			inode->i_gid = cred->egid;
1641 			rcu_read_unlock();
1642 		} else {
1643 			inode->i_uid = GLOBAL_ROOT_UID;
1644 			inode->i_gid = GLOBAL_ROOT_GID;
1645 		}
1646 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1647 		security_task_to_inode(task, inode);
1648 		put_task_struct(task);
1649 		return 1;
1650 	}
1651 	d_drop(dentry);
1652 	return 0;
1653 }
1654 
1655 int pid_delete_dentry(const struct dentry *dentry)
1656 {
1657 	/* Is the task we represent dead?
1658 	 * If so, then don't put the dentry on the lru list,
1659 	 * kill it immediately.
1660 	 */
1661 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1662 }
1663 
1664 const struct dentry_operations pid_dentry_operations =
1665 {
1666 	.d_revalidate	= pid_revalidate,
1667 	.d_delete	= pid_delete_dentry,
1668 };
1669 
1670 /* Lookups */
1671 
1672 /*
1673  * Fill a directory entry.
1674  *
1675  * If possible create the dcache entry and derive our inode number and
1676  * file type from dcache entry.
1677  *
1678  * Since all of the proc inode numbers are dynamically generated, the inode
1679  * numbers do not exist until the inode is cache.  This means creating the
1680  * the dcache entry in readdir is necessary to keep the inode numbers
1681  * reported by readdir in sync with the inode numbers reported
1682  * by stat.
1683  */
1684 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1685 	const char *name, int len,
1686 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1687 {
1688 	struct dentry *child, *dir = filp->f_path.dentry;
1689 	struct inode *inode;
1690 	struct qstr qname;
1691 	ino_t ino = 0;
1692 	unsigned type = DT_UNKNOWN;
1693 
1694 	qname.name = name;
1695 	qname.len  = len;
1696 	qname.hash = full_name_hash(name, len);
1697 
1698 	child = d_lookup(dir, &qname);
1699 	if (!child) {
1700 		struct dentry *new;
1701 		new = d_alloc(dir, &qname);
1702 		if (new) {
1703 			child = instantiate(dir->d_inode, new, task, ptr);
1704 			if (child)
1705 				dput(new);
1706 			else
1707 				child = new;
1708 		}
1709 	}
1710 	if (!child || IS_ERR(child) || !child->d_inode)
1711 		goto end_instantiate;
1712 	inode = child->d_inode;
1713 	if (inode) {
1714 		ino = inode->i_ino;
1715 		type = inode->i_mode >> 12;
1716 	}
1717 	dput(child);
1718 end_instantiate:
1719 	if (!ino)
1720 		ino = find_inode_number(dir, &qname);
1721 	if (!ino)
1722 		ino = 1;
1723 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1724 }
1725 
1726 #ifdef CONFIG_CHECKPOINT_RESTORE
1727 
1728 /*
1729  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1730  * which represent vma start and end addresses.
1731  */
1732 static int dname_to_vma_addr(struct dentry *dentry,
1733 			     unsigned long *start, unsigned long *end)
1734 {
1735 	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1736 		return -EINVAL;
1737 
1738 	return 0;
1739 }
1740 
1741 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1742 {
1743 	unsigned long vm_start, vm_end;
1744 	bool exact_vma_exists = false;
1745 	struct mm_struct *mm = NULL;
1746 	struct task_struct *task;
1747 	const struct cred *cred;
1748 	struct inode *inode;
1749 	int status = 0;
1750 
1751 	if (flags & LOOKUP_RCU)
1752 		return -ECHILD;
1753 
1754 	if (!capable(CAP_SYS_ADMIN)) {
1755 		status = -EPERM;
1756 		goto out_notask;
1757 	}
1758 
1759 	inode = dentry->d_inode;
1760 	task = get_proc_task(inode);
1761 	if (!task)
1762 		goto out_notask;
1763 
1764 	mm = mm_access(task, PTRACE_MODE_READ);
1765 	if (IS_ERR_OR_NULL(mm))
1766 		goto out;
1767 
1768 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1769 		down_read(&mm->mmap_sem);
1770 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1771 		up_read(&mm->mmap_sem);
1772 	}
1773 
1774 	mmput(mm);
1775 
1776 	if (exact_vma_exists) {
1777 		if (task_dumpable(task)) {
1778 			rcu_read_lock();
1779 			cred = __task_cred(task);
1780 			inode->i_uid = cred->euid;
1781 			inode->i_gid = cred->egid;
1782 			rcu_read_unlock();
1783 		} else {
1784 			inode->i_uid = GLOBAL_ROOT_UID;
1785 			inode->i_gid = GLOBAL_ROOT_GID;
1786 		}
1787 		security_task_to_inode(task, inode);
1788 		status = 1;
1789 	}
1790 
1791 out:
1792 	put_task_struct(task);
1793 
1794 out_notask:
1795 	if (status <= 0)
1796 		d_drop(dentry);
1797 
1798 	return status;
1799 }
1800 
1801 static const struct dentry_operations tid_map_files_dentry_operations = {
1802 	.d_revalidate	= map_files_d_revalidate,
1803 	.d_delete	= pid_delete_dentry,
1804 };
1805 
1806 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1807 {
1808 	unsigned long vm_start, vm_end;
1809 	struct vm_area_struct *vma;
1810 	struct task_struct *task;
1811 	struct mm_struct *mm;
1812 	int rc;
1813 
1814 	rc = -ENOENT;
1815 	task = get_proc_task(dentry->d_inode);
1816 	if (!task)
1817 		goto out;
1818 
1819 	mm = get_task_mm(task);
1820 	put_task_struct(task);
1821 	if (!mm)
1822 		goto out;
1823 
1824 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1825 	if (rc)
1826 		goto out_mmput;
1827 
1828 	down_read(&mm->mmap_sem);
1829 	vma = find_exact_vma(mm, vm_start, vm_end);
1830 	if (vma && vma->vm_file) {
1831 		*path = vma->vm_file->f_path;
1832 		path_get(path);
1833 		rc = 0;
1834 	}
1835 	up_read(&mm->mmap_sem);
1836 
1837 out_mmput:
1838 	mmput(mm);
1839 out:
1840 	return rc;
1841 }
1842 
1843 struct map_files_info {
1844 	fmode_t		mode;
1845 	unsigned long	len;
1846 	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1847 };
1848 
1849 static struct dentry *
1850 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1851 			   struct task_struct *task, const void *ptr)
1852 {
1853 	fmode_t mode = (fmode_t)(unsigned long)ptr;
1854 	struct proc_inode *ei;
1855 	struct inode *inode;
1856 
1857 	inode = proc_pid_make_inode(dir->i_sb, task);
1858 	if (!inode)
1859 		return ERR_PTR(-ENOENT);
1860 
1861 	ei = PROC_I(inode);
1862 	ei->op.proc_get_link = proc_map_files_get_link;
1863 
1864 	inode->i_op = &proc_pid_link_inode_operations;
1865 	inode->i_size = 64;
1866 	inode->i_mode = S_IFLNK;
1867 
1868 	if (mode & FMODE_READ)
1869 		inode->i_mode |= S_IRUSR;
1870 	if (mode & FMODE_WRITE)
1871 		inode->i_mode |= S_IWUSR;
1872 
1873 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
1874 	d_add(dentry, inode);
1875 
1876 	return NULL;
1877 }
1878 
1879 static struct dentry *proc_map_files_lookup(struct inode *dir,
1880 		struct dentry *dentry, unsigned int flags)
1881 {
1882 	unsigned long vm_start, vm_end;
1883 	struct vm_area_struct *vma;
1884 	struct task_struct *task;
1885 	struct dentry *result;
1886 	struct mm_struct *mm;
1887 
1888 	result = ERR_PTR(-EPERM);
1889 	if (!capable(CAP_SYS_ADMIN))
1890 		goto out;
1891 
1892 	result = ERR_PTR(-ENOENT);
1893 	task = get_proc_task(dir);
1894 	if (!task)
1895 		goto out;
1896 
1897 	result = ERR_PTR(-EACCES);
1898 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
1899 		goto out_put_task;
1900 
1901 	result = ERR_PTR(-ENOENT);
1902 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
1903 		goto out_put_task;
1904 
1905 	mm = get_task_mm(task);
1906 	if (!mm)
1907 		goto out_put_task;
1908 
1909 	down_read(&mm->mmap_sem);
1910 	vma = find_exact_vma(mm, vm_start, vm_end);
1911 	if (!vma)
1912 		goto out_no_vma;
1913 
1914 	if (vma->vm_file)
1915 		result = proc_map_files_instantiate(dir, dentry, task,
1916 				(void *)(unsigned long)vma->vm_file->f_mode);
1917 
1918 out_no_vma:
1919 	up_read(&mm->mmap_sem);
1920 	mmput(mm);
1921 out_put_task:
1922 	put_task_struct(task);
1923 out:
1924 	return result;
1925 }
1926 
1927 static const struct inode_operations proc_map_files_inode_operations = {
1928 	.lookup		= proc_map_files_lookup,
1929 	.permission	= proc_fd_permission,
1930 	.setattr	= proc_setattr,
1931 };
1932 
1933 static int
1934 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir)
1935 {
1936 	struct dentry *dentry = filp->f_path.dentry;
1937 	struct inode *inode = dentry->d_inode;
1938 	struct vm_area_struct *vma;
1939 	struct task_struct *task;
1940 	struct mm_struct *mm;
1941 	ino_t ino;
1942 	int ret;
1943 
1944 	ret = -EPERM;
1945 	if (!capable(CAP_SYS_ADMIN))
1946 		goto out;
1947 
1948 	ret = -ENOENT;
1949 	task = get_proc_task(inode);
1950 	if (!task)
1951 		goto out;
1952 
1953 	ret = -EACCES;
1954 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
1955 		goto out_put_task;
1956 
1957 	ret = 0;
1958 	switch (filp->f_pos) {
1959 	case 0:
1960 		ino = inode->i_ino;
1961 		if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0)
1962 			goto out_put_task;
1963 		filp->f_pos++;
1964 	case 1:
1965 		ino = parent_ino(dentry);
1966 		if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1967 			goto out_put_task;
1968 		filp->f_pos++;
1969 	default:
1970 	{
1971 		unsigned long nr_files, pos, i;
1972 		struct flex_array *fa = NULL;
1973 		struct map_files_info info;
1974 		struct map_files_info *p;
1975 
1976 		mm = get_task_mm(task);
1977 		if (!mm)
1978 			goto out_put_task;
1979 		down_read(&mm->mmap_sem);
1980 
1981 		nr_files = 0;
1982 
1983 		/*
1984 		 * We need two passes here:
1985 		 *
1986 		 *  1) Collect vmas of mapped files with mmap_sem taken
1987 		 *  2) Release mmap_sem and instantiate entries
1988 		 *
1989 		 * otherwise we get lockdep complained, since filldir()
1990 		 * routine might require mmap_sem taken in might_fault().
1991 		 */
1992 
1993 		for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
1994 			if (vma->vm_file && ++pos > filp->f_pos)
1995 				nr_files++;
1996 		}
1997 
1998 		if (nr_files) {
1999 			fa = flex_array_alloc(sizeof(info), nr_files,
2000 						GFP_KERNEL);
2001 			if (!fa || flex_array_prealloc(fa, 0, nr_files,
2002 							GFP_KERNEL)) {
2003 				ret = -ENOMEM;
2004 				if (fa)
2005 					flex_array_free(fa);
2006 				up_read(&mm->mmap_sem);
2007 				mmput(mm);
2008 				goto out_put_task;
2009 			}
2010 			for (i = 0, vma = mm->mmap, pos = 2; vma;
2011 					vma = vma->vm_next) {
2012 				if (!vma->vm_file)
2013 					continue;
2014 				if (++pos <= filp->f_pos)
2015 					continue;
2016 
2017 				info.mode = vma->vm_file->f_mode;
2018 				info.len = snprintf(info.name,
2019 						sizeof(info.name), "%lx-%lx",
2020 						vma->vm_start, vma->vm_end);
2021 				if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2022 					BUG();
2023 			}
2024 		}
2025 		up_read(&mm->mmap_sem);
2026 
2027 		for (i = 0; i < nr_files; i++) {
2028 			p = flex_array_get(fa, i);
2029 			ret = proc_fill_cache(filp, dirent, filldir,
2030 					      p->name, p->len,
2031 					      proc_map_files_instantiate,
2032 					      task,
2033 					      (void *)(unsigned long)p->mode);
2034 			if (ret)
2035 				break;
2036 			filp->f_pos++;
2037 		}
2038 		if (fa)
2039 			flex_array_free(fa);
2040 		mmput(mm);
2041 	}
2042 	}
2043 
2044 out_put_task:
2045 	put_task_struct(task);
2046 out:
2047 	return ret;
2048 }
2049 
2050 static const struct file_operations proc_map_files_operations = {
2051 	.read		= generic_read_dir,
2052 	.readdir	= proc_map_files_readdir,
2053 	.llseek		= default_llseek,
2054 };
2055 
2056 struct timers_private {
2057 	struct pid *pid;
2058 	struct task_struct *task;
2059 	struct sighand_struct *sighand;
2060 	struct pid_namespace *ns;
2061 	unsigned long flags;
2062 };
2063 
2064 static void *timers_start(struct seq_file *m, loff_t *pos)
2065 {
2066 	struct timers_private *tp = m->private;
2067 
2068 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2069 	if (!tp->task)
2070 		return ERR_PTR(-ESRCH);
2071 
2072 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2073 	if (!tp->sighand)
2074 		return ERR_PTR(-ESRCH);
2075 
2076 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2077 }
2078 
2079 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2080 {
2081 	struct timers_private *tp = m->private;
2082 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2083 }
2084 
2085 static void timers_stop(struct seq_file *m, void *v)
2086 {
2087 	struct timers_private *tp = m->private;
2088 
2089 	if (tp->sighand) {
2090 		unlock_task_sighand(tp->task, &tp->flags);
2091 		tp->sighand = NULL;
2092 	}
2093 
2094 	if (tp->task) {
2095 		put_task_struct(tp->task);
2096 		tp->task = NULL;
2097 	}
2098 }
2099 
2100 static int show_timer(struct seq_file *m, void *v)
2101 {
2102 	struct k_itimer *timer;
2103 	struct timers_private *tp = m->private;
2104 	int notify;
2105 	static char *nstr[] = {
2106 		[SIGEV_SIGNAL] = "signal",
2107 		[SIGEV_NONE] = "none",
2108 		[SIGEV_THREAD] = "thread",
2109 	};
2110 
2111 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2112 	notify = timer->it_sigev_notify;
2113 
2114 	seq_printf(m, "ID: %d\n", timer->it_id);
2115 	seq_printf(m, "signal: %d/%p\n", timer->sigq->info.si_signo,
2116 			timer->sigq->info.si_value.sival_ptr);
2117 	seq_printf(m, "notify: %s/%s.%d\n",
2118 		nstr[notify & ~SIGEV_THREAD_ID],
2119 		(notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2120 		pid_nr_ns(timer->it_pid, tp->ns));
2121 
2122 	return 0;
2123 }
2124 
2125 static const struct seq_operations proc_timers_seq_ops = {
2126 	.start	= timers_start,
2127 	.next	= timers_next,
2128 	.stop	= timers_stop,
2129 	.show	= show_timer,
2130 };
2131 
2132 static int proc_timers_open(struct inode *inode, struct file *file)
2133 {
2134 	struct timers_private *tp;
2135 
2136 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2137 			sizeof(struct timers_private));
2138 	if (!tp)
2139 		return -ENOMEM;
2140 
2141 	tp->pid = proc_pid(inode);
2142 	tp->ns = inode->i_sb->s_fs_info;
2143 	return 0;
2144 }
2145 
2146 static const struct file_operations proc_timers_operations = {
2147 	.open		= proc_timers_open,
2148 	.read		= seq_read,
2149 	.llseek		= seq_lseek,
2150 	.release	= seq_release_private,
2151 };
2152 #endif /* CONFIG_CHECKPOINT_RESTORE */
2153 
2154 static struct dentry *proc_pident_instantiate(struct inode *dir,
2155 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2156 {
2157 	const struct pid_entry *p = ptr;
2158 	struct inode *inode;
2159 	struct proc_inode *ei;
2160 	struct dentry *error = ERR_PTR(-ENOENT);
2161 
2162 	inode = proc_pid_make_inode(dir->i_sb, task);
2163 	if (!inode)
2164 		goto out;
2165 
2166 	ei = PROC_I(inode);
2167 	inode->i_mode = p->mode;
2168 	if (S_ISDIR(inode->i_mode))
2169 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2170 	if (p->iop)
2171 		inode->i_op = p->iop;
2172 	if (p->fop)
2173 		inode->i_fop = p->fop;
2174 	ei->op = p->op;
2175 	d_set_d_op(dentry, &pid_dentry_operations);
2176 	d_add(dentry, inode);
2177 	/* Close the race of the process dying before we return the dentry */
2178 	if (pid_revalidate(dentry, 0))
2179 		error = NULL;
2180 out:
2181 	return error;
2182 }
2183 
2184 static struct dentry *proc_pident_lookup(struct inode *dir,
2185 					 struct dentry *dentry,
2186 					 const struct pid_entry *ents,
2187 					 unsigned int nents)
2188 {
2189 	struct dentry *error;
2190 	struct task_struct *task = get_proc_task(dir);
2191 	const struct pid_entry *p, *last;
2192 
2193 	error = ERR_PTR(-ENOENT);
2194 
2195 	if (!task)
2196 		goto out_no_task;
2197 
2198 	/*
2199 	 * Yes, it does not scale. And it should not. Don't add
2200 	 * new entries into /proc/<tgid>/ without very good reasons.
2201 	 */
2202 	last = &ents[nents - 1];
2203 	for (p = ents; p <= last; p++) {
2204 		if (p->len != dentry->d_name.len)
2205 			continue;
2206 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2207 			break;
2208 	}
2209 	if (p > last)
2210 		goto out;
2211 
2212 	error = proc_pident_instantiate(dir, dentry, task, p);
2213 out:
2214 	put_task_struct(task);
2215 out_no_task:
2216 	return error;
2217 }
2218 
2219 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2220 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2221 {
2222 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2223 				proc_pident_instantiate, task, p);
2224 }
2225 
2226 static int proc_pident_readdir(struct file *filp,
2227 		void *dirent, filldir_t filldir,
2228 		const struct pid_entry *ents, unsigned int nents)
2229 {
2230 	int i;
2231 	struct dentry *dentry = filp->f_path.dentry;
2232 	struct inode *inode = dentry->d_inode;
2233 	struct task_struct *task = get_proc_task(inode);
2234 	const struct pid_entry *p, *last;
2235 	ino_t ino;
2236 	int ret;
2237 
2238 	ret = -ENOENT;
2239 	if (!task)
2240 		goto out_no_task;
2241 
2242 	ret = 0;
2243 	i = filp->f_pos;
2244 	switch (i) {
2245 	case 0:
2246 		ino = inode->i_ino;
2247 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2248 			goto out;
2249 		i++;
2250 		filp->f_pos++;
2251 		/* fall through */
2252 	case 1:
2253 		ino = parent_ino(dentry);
2254 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2255 			goto out;
2256 		i++;
2257 		filp->f_pos++;
2258 		/* fall through */
2259 	default:
2260 		i -= 2;
2261 		if (i >= nents) {
2262 			ret = 1;
2263 			goto out;
2264 		}
2265 		p = ents + i;
2266 		last = &ents[nents - 1];
2267 		while (p <= last) {
2268 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2269 				goto out;
2270 			filp->f_pos++;
2271 			p++;
2272 		}
2273 	}
2274 
2275 	ret = 1;
2276 out:
2277 	put_task_struct(task);
2278 out_no_task:
2279 	return ret;
2280 }
2281 
2282 #ifdef CONFIG_SECURITY
2283 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2284 				  size_t count, loff_t *ppos)
2285 {
2286 	struct inode * inode = file_inode(file);
2287 	char *p = NULL;
2288 	ssize_t length;
2289 	struct task_struct *task = get_proc_task(inode);
2290 
2291 	if (!task)
2292 		return -ESRCH;
2293 
2294 	length = security_getprocattr(task,
2295 				      (char*)file->f_path.dentry->d_name.name,
2296 				      &p);
2297 	put_task_struct(task);
2298 	if (length > 0)
2299 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2300 	kfree(p);
2301 	return length;
2302 }
2303 
2304 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2305 				   size_t count, loff_t *ppos)
2306 {
2307 	struct inode * inode = file_inode(file);
2308 	char *page;
2309 	ssize_t length;
2310 	struct task_struct *task = get_proc_task(inode);
2311 
2312 	length = -ESRCH;
2313 	if (!task)
2314 		goto out_no_task;
2315 	if (count > PAGE_SIZE)
2316 		count = PAGE_SIZE;
2317 
2318 	/* No partial writes. */
2319 	length = -EINVAL;
2320 	if (*ppos != 0)
2321 		goto out;
2322 
2323 	length = -ENOMEM;
2324 	page = (char*)__get_free_page(GFP_TEMPORARY);
2325 	if (!page)
2326 		goto out;
2327 
2328 	length = -EFAULT;
2329 	if (copy_from_user(page, buf, count))
2330 		goto out_free;
2331 
2332 	/* Guard against adverse ptrace interaction */
2333 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2334 	if (length < 0)
2335 		goto out_free;
2336 
2337 	length = security_setprocattr(task,
2338 				      (char*)file->f_path.dentry->d_name.name,
2339 				      (void*)page, count);
2340 	mutex_unlock(&task->signal->cred_guard_mutex);
2341 out_free:
2342 	free_page((unsigned long) page);
2343 out:
2344 	put_task_struct(task);
2345 out_no_task:
2346 	return length;
2347 }
2348 
2349 static const struct file_operations proc_pid_attr_operations = {
2350 	.read		= proc_pid_attr_read,
2351 	.write		= proc_pid_attr_write,
2352 	.llseek		= generic_file_llseek,
2353 };
2354 
2355 static const struct pid_entry attr_dir_stuff[] = {
2356 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2357 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2358 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2359 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2360 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2361 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2362 };
2363 
2364 static int proc_attr_dir_readdir(struct file * filp,
2365 			     void * dirent, filldir_t filldir)
2366 {
2367 	return proc_pident_readdir(filp,dirent,filldir,
2368 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2369 }
2370 
2371 static const struct file_operations proc_attr_dir_operations = {
2372 	.read		= generic_read_dir,
2373 	.readdir	= proc_attr_dir_readdir,
2374 	.llseek		= default_llseek,
2375 };
2376 
2377 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2378 				struct dentry *dentry, unsigned int flags)
2379 {
2380 	return proc_pident_lookup(dir, dentry,
2381 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2382 }
2383 
2384 static const struct inode_operations proc_attr_dir_inode_operations = {
2385 	.lookup		= proc_attr_dir_lookup,
2386 	.getattr	= pid_getattr,
2387 	.setattr	= proc_setattr,
2388 };
2389 
2390 #endif
2391 
2392 #ifdef CONFIG_ELF_CORE
2393 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2394 					 size_t count, loff_t *ppos)
2395 {
2396 	struct task_struct *task = get_proc_task(file_inode(file));
2397 	struct mm_struct *mm;
2398 	char buffer[PROC_NUMBUF];
2399 	size_t len;
2400 	int ret;
2401 
2402 	if (!task)
2403 		return -ESRCH;
2404 
2405 	ret = 0;
2406 	mm = get_task_mm(task);
2407 	if (mm) {
2408 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2409 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2410 				MMF_DUMP_FILTER_SHIFT));
2411 		mmput(mm);
2412 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2413 	}
2414 
2415 	put_task_struct(task);
2416 
2417 	return ret;
2418 }
2419 
2420 static ssize_t proc_coredump_filter_write(struct file *file,
2421 					  const char __user *buf,
2422 					  size_t count,
2423 					  loff_t *ppos)
2424 {
2425 	struct task_struct *task;
2426 	struct mm_struct *mm;
2427 	char buffer[PROC_NUMBUF], *end;
2428 	unsigned int val;
2429 	int ret;
2430 	int i;
2431 	unsigned long mask;
2432 
2433 	ret = -EFAULT;
2434 	memset(buffer, 0, sizeof(buffer));
2435 	if (count > sizeof(buffer) - 1)
2436 		count = sizeof(buffer) - 1;
2437 	if (copy_from_user(buffer, buf, count))
2438 		goto out_no_task;
2439 
2440 	ret = -EINVAL;
2441 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2442 	if (*end == '\n')
2443 		end++;
2444 	if (end - buffer == 0)
2445 		goto out_no_task;
2446 
2447 	ret = -ESRCH;
2448 	task = get_proc_task(file_inode(file));
2449 	if (!task)
2450 		goto out_no_task;
2451 
2452 	ret = end - buffer;
2453 	mm = get_task_mm(task);
2454 	if (!mm)
2455 		goto out_no_mm;
2456 
2457 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2458 		if (val & mask)
2459 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2460 		else
2461 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2462 	}
2463 
2464 	mmput(mm);
2465  out_no_mm:
2466 	put_task_struct(task);
2467  out_no_task:
2468 	return ret;
2469 }
2470 
2471 static const struct file_operations proc_coredump_filter_operations = {
2472 	.read		= proc_coredump_filter_read,
2473 	.write		= proc_coredump_filter_write,
2474 	.llseek		= generic_file_llseek,
2475 };
2476 #endif
2477 
2478 #ifdef CONFIG_TASK_IO_ACCOUNTING
2479 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2480 {
2481 	struct task_io_accounting acct = task->ioac;
2482 	unsigned long flags;
2483 	int result;
2484 
2485 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2486 	if (result)
2487 		return result;
2488 
2489 	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2490 		result = -EACCES;
2491 		goto out_unlock;
2492 	}
2493 
2494 	if (whole && lock_task_sighand(task, &flags)) {
2495 		struct task_struct *t = task;
2496 
2497 		task_io_accounting_add(&acct, &task->signal->ioac);
2498 		while_each_thread(task, t)
2499 			task_io_accounting_add(&acct, &t->ioac);
2500 
2501 		unlock_task_sighand(task, &flags);
2502 	}
2503 	result = sprintf(buffer,
2504 			"rchar: %llu\n"
2505 			"wchar: %llu\n"
2506 			"syscr: %llu\n"
2507 			"syscw: %llu\n"
2508 			"read_bytes: %llu\n"
2509 			"write_bytes: %llu\n"
2510 			"cancelled_write_bytes: %llu\n",
2511 			(unsigned long long)acct.rchar,
2512 			(unsigned long long)acct.wchar,
2513 			(unsigned long long)acct.syscr,
2514 			(unsigned long long)acct.syscw,
2515 			(unsigned long long)acct.read_bytes,
2516 			(unsigned long long)acct.write_bytes,
2517 			(unsigned long long)acct.cancelled_write_bytes);
2518 out_unlock:
2519 	mutex_unlock(&task->signal->cred_guard_mutex);
2520 	return result;
2521 }
2522 
2523 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2524 {
2525 	return do_io_accounting(task, buffer, 0);
2526 }
2527 
2528 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2529 {
2530 	return do_io_accounting(task, buffer, 1);
2531 }
2532 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2533 
2534 #ifdef CONFIG_USER_NS
2535 static int proc_id_map_open(struct inode *inode, struct file *file,
2536 	struct seq_operations *seq_ops)
2537 {
2538 	struct user_namespace *ns = NULL;
2539 	struct task_struct *task;
2540 	struct seq_file *seq;
2541 	int ret = -EINVAL;
2542 
2543 	task = get_proc_task(inode);
2544 	if (task) {
2545 		rcu_read_lock();
2546 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2547 		rcu_read_unlock();
2548 		put_task_struct(task);
2549 	}
2550 	if (!ns)
2551 		goto err;
2552 
2553 	ret = seq_open(file, seq_ops);
2554 	if (ret)
2555 		goto err_put_ns;
2556 
2557 	seq = file->private_data;
2558 	seq->private = ns;
2559 
2560 	return 0;
2561 err_put_ns:
2562 	put_user_ns(ns);
2563 err:
2564 	return ret;
2565 }
2566 
2567 static int proc_id_map_release(struct inode *inode, struct file *file)
2568 {
2569 	struct seq_file *seq = file->private_data;
2570 	struct user_namespace *ns = seq->private;
2571 	put_user_ns(ns);
2572 	return seq_release(inode, file);
2573 }
2574 
2575 static int proc_uid_map_open(struct inode *inode, struct file *file)
2576 {
2577 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2578 }
2579 
2580 static int proc_gid_map_open(struct inode *inode, struct file *file)
2581 {
2582 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2583 }
2584 
2585 static int proc_projid_map_open(struct inode *inode, struct file *file)
2586 {
2587 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2588 }
2589 
2590 static const struct file_operations proc_uid_map_operations = {
2591 	.open		= proc_uid_map_open,
2592 	.write		= proc_uid_map_write,
2593 	.read		= seq_read,
2594 	.llseek		= seq_lseek,
2595 	.release	= proc_id_map_release,
2596 };
2597 
2598 static const struct file_operations proc_gid_map_operations = {
2599 	.open		= proc_gid_map_open,
2600 	.write		= proc_gid_map_write,
2601 	.read		= seq_read,
2602 	.llseek		= seq_lseek,
2603 	.release	= proc_id_map_release,
2604 };
2605 
2606 static const struct file_operations proc_projid_map_operations = {
2607 	.open		= proc_projid_map_open,
2608 	.write		= proc_projid_map_write,
2609 	.read		= seq_read,
2610 	.llseek		= seq_lseek,
2611 	.release	= proc_id_map_release,
2612 };
2613 #endif /* CONFIG_USER_NS */
2614 
2615 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2616 				struct pid *pid, struct task_struct *task)
2617 {
2618 	int err = lock_trace(task);
2619 	if (!err) {
2620 		seq_printf(m, "%08x\n", task->personality);
2621 		unlock_trace(task);
2622 	}
2623 	return err;
2624 }
2625 
2626 /*
2627  * Thread groups
2628  */
2629 static const struct file_operations proc_task_operations;
2630 static const struct inode_operations proc_task_inode_operations;
2631 
2632 static const struct pid_entry tgid_base_stuff[] = {
2633 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2634 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2635 #ifdef CONFIG_CHECKPOINT_RESTORE
2636 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2637 #endif
2638 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2639 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2640 #ifdef CONFIG_NET
2641 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2642 #endif
2643 	REG("environ",    S_IRUSR, proc_environ_operations),
2644 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2645 	ONE("status",     S_IRUGO, proc_pid_status),
2646 	ONE("personality", S_IRUGO, proc_pid_personality),
2647 	INF("limits",	  S_IRUGO, proc_pid_limits),
2648 #ifdef CONFIG_SCHED_DEBUG
2649 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2650 #endif
2651 #ifdef CONFIG_SCHED_AUTOGROUP
2652 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2653 #endif
2654 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2655 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2656 	INF("syscall",    S_IRUGO, proc_pid_syscall),
2657 #endif
2658 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2659 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2660 	ONE("statm",      S_IRUGO, proc_pid_statm),
2661 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2662 #ifdef CONFIG_NUMA
2663 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2664 #endif
2665 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2666 	LNK("cwd",        proc_cwd_link),
2667 	LNK("root",       proc_root_link),
2668 	LNK("exe",        proc_exe_link),
2669 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2670 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2671 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2672 #ifdef CONFIG_PROC_PAGE_MONITOR
2673 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2674 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2675 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
2676 #endif
2677 #ifdef CONFIG_SECURITY
2678 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2679 #endif
2680 #ifdef CONFIG_KALLSYMS
2681 	INF("wchan",      S_IRUGO, proc_pid_wchan),
2682 #endif
2683 #ifdef CONFIG_STACKTRACE
2684 	ONE("stack",      S_IRUGO, proc_pid_stack),
2685 #endif
2686 #ifdef CONFIG_SCHEDSTATS
2687 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2688 #endif
2689 #ifdef CONFIG_LATENCYTOP
2690 	REG("latency",  S_IRUGO, proc_lstats_operations),
2691 #endif
2692 #ifdef CONFIG_PROC_PID_CPUSET
2693 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2694 #endif
2695 #ifdef CONFIG_CGROUPS
2696 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2697 #endif
2698 	INF("oom_score",  S_IRUGO, proc_oom_score),
2699 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2700 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2701 #ifdef CONFIG_AUDITSYSCALL
2702 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2703 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2704 #endif
2705 #ifdef CONFIG_FAULT_INJECTION
2706 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2707 #endif
2708 #ifdef CONFIG_ELF_CORE
2709 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2710 #endif
2711 #ifdef CONFIG_TASK_IO_ACCOUNTING
2712 	INF("io",	S_IRUSR, proc_tgid_io_accounting),
2713 #endif
2714 #ifdef CONFIG_HARDWALL
2715 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
2716 #endif
2717 #ifdef CONFIG_USER_NS
2718 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2719 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2720 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2721 #endif
2722 #ifdef CONFIG_CHECKPOINT_RESTORE
2723 	REG("timers",	  S_IRUGO, proc_timers_operations),
2724 #endif
2725 };
2726 
2727 static int proc_tgid_base_readdir(struct file * filp,
2728 			     void * dirent, filldir_t filldir)
2729 {
2730 	return proc_pident_readdir(filp,dirent,filldir,
2731 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2732 }
2733 
2734 static const struct file_operations proc_tgid_base_operations = {
2735 	.read		= generic_read_dir,
2736 	.readdir	= proc_tgid_base_readdir,
2737 	.llseek		= default_llseek,
2738 };
2739 
2740 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2741 {
2742 	return proc_pident_lookup(dir, dentry,
2743 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2744 }
2745 
2746 static const struct inode_operations proc_tgid_base_inode_operations = {
2747 	.lookup		= proc_tgid_base_lookup,
2748 	.getattr	= pid_getattr,
2749 	.setattr	= proc_setattr,
2750 	.permission	= proc_pid_permission,
2751 };
2752 
2753 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2754 {
2755 	struct dentry *dentry, *leader, *dir;
2756 	char buf[PROC_NUMBUF];
2757 	struct qstr name;
2758 
2759 	name.name = buf;
2760 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2761 	/* no ->d_hash() rejects on procfs */
2762 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2763 	if (dentry) {
2764 		shrink_dcache_parent(dentry);
2765 		d_drop(dentry);
2766 		dput(dentry);
2767 	}
2768 
2769 	name.name = buf;
2770 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2771 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2772 	if (!leader)
2773 		goto out;
2774 
2775 	name.name = "task";
2776 	name.len = strlen(name.name);
2777 	dir = d_hash_and_lookup(leader, &name);
2778 	if (!dir)
2779 		goto out_put_leader;
2780 
2781 	name.name = buf;
2782 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2783 	dentry = d_hash_and_lookup(dir, &name);
2784 	if (dentry) {
2785 		shrink_dcache_parent(dentry);
2786 		d_drop(dentry);
2787 		dput(dentry);
2788 	}
2789 
2790 	dput(dir);
2791 out_put_leader:
2792 	dput(leader);
2793 out:
2794 	return;
2795 }
2796 
2797 /**
2798  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2799  * @task: task that should be flushed.
2800  *
2801  * When flushing dentries from proc, one needs to flush them from global
2802  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2803  * in. This call is supposed to do all of this job.
2804  *
2805  * Looks in the dcache for
2806  * /proc/@pid
2807  * /proc/@tgid/task/@pid
2808  * if either directory is present flushes it and all of it'ts children
2809  * from the dcache.
2810  *
2811  * It is safe and reasonable to cache /proc entries for a task until
2812  * that task exits.  After that they just clog up the dcache with
2813  * useless entries, possibly causing useful dcache entries to be
2814  * flushed instead.  This routine is proved to flush those useless
2815  * dcache entries at process exit time.
2816  *
2817  * NOTE: This routine is just an optimization so it does not guarantee
2818  *       that no dcache entries will exist at process exit time it
2819  *       just makes it very unlikely that any will persist.
2820  */
2821 
2822 void proc_flush_task(struct task_struct *task)
2823 {
2824 	int i;
2825 	struct pid *pid, *tgid;
2826 	struct upid *upid;
2827 
2828 	pid = task_pid(task);
2829 	tgid = task_tgid(task);
2830 
2831 	for (i = 0; i <= pid->level; i++) {
2832 		upid = &pid->numbers[i];
2833 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2834 					tgid->numbers[i].nr);
2835 	}
2836 }
2837 
2838 static struct dentry *proc_pid_instantiate(struct inode *dir,
2839 					   struct dentry * dentry,
2840 					   struct task_struct *task, const void *ptr)
2841 {
2842 	struct dentry *error = ERR_PTR(-ENOENT);
2843 	struct inode *inode;
2844 
2845 	inode = proc_pid_make_inode(dir->i_sb, task);
2846 	if (!inode)
2847 		goto out;
2848 
2849 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2850 	inode->i_op = &proc_tgid_base_inode_operations;
2851 	inode->i_fop = &proc_tgid_base_operations;
2852 	inode->i_flags|=S_IMMUTABLE;
2853 
2854 	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2855 						  ARRAY_SIZE(tgid_base_stuff)));
2856 
2857 	d_set_d_op(dentry, &pid_dentry_operations);
2858 
2859 	d_add(dentry, inode);
2860 	/* Close the race of the process dying before we return the dentry */
2861 	if (pid_revalidate(dentry, 0))
2862 		error = NULL;
2863 out:
2864 	return error;
2865 }
2866 
2867 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2868 {
2869 	struct dentry *result = NULL;
2870 	struct task_struct *task;
2871 	unsigned tgid;
2872 	struct pid_namespace *ns;
2873 
2874 	tgid = name_to_int(dentry);
2875 	if (tgid == ~0U)
2876 		goto out;
2877 
2878 	ns = dentry->d_sb->s_fs_info;
2879 	rcu_read_lock();
2880 	task = find_task_by_pid_ns(tgid, ns);
2881 	if (task)
2882 		get_task_struct(task);
2883 	rcu_read_unlock();
2884 	if (!task)
2885 		goto out;
2886 
2887 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2888 	put_task_struct(task);
2889 out:
2890 	return result;
2891 }
2892 
2893 /*
2894  * Find the first task with tgid >= tgid
2895  *
2896  */
2897 struct tgid_iter {
2898 	unsigned int tgid;
2899 	struct task_struct *task;
2900 };
2901 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2902 {
2903 	struct pid *pid;
2904 
2905 	if (iter.task)
2906 		put_task_struct(iter.task);
2907 	rcu_read_lock();
2908 retry:
2909 	iter.task = NULL;
2910 	pid = find_ge_pid(iter.tgid, ns);
2911 	if (pid) {
2912 		iter.tgid = pid_nr_ns(pid, ns);
2913 		iter.task = pid_task(pid, PIDTYPE_PID);
2914 		/* What we to know is if the pid we have find is the
2915 		 * pid of a thread_group_leader.  Testing for task
2916 		 * being a thread_group_leader is the obvious thing
2917 		 * todo but there is a window when it fails, due to
2918 		 * the pid transfer logic in de_thread.
2919 		 *
2920 		 * So we perform the straight forward test of seeing
2921 		 * if the pid we have found is the pid of a thread
2922 		 * group leader, and don't worry if the task we have
2923 		 * found doesn't happen to be a thread group leader.
2924 		 * As we don't care in the case of readdir.
2925 		 */
2926 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2927 			iter.tgid += 1;
2928 			goto retry;
2929 		}
2930 		get_task_struct(iter.task);
2931 	}
2932 	rcu_read_unlock();
2933 	return iter;
2934 }
2935 
2936 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 1)
2937 
2938 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2939 	struct tgid_iter iter)
2940 {
2941 	char name[PROC_NUMBUF];
2942 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2943 	return proc_fill_cache(filp, dirent, filldir, name, len,
2944 				proc_pid_instantiate, iter.task, NULL);
2945 }
2946 
2947 static int fake_filldir(void *buf, const char *name, int namelen,
2948 			loff_t offset, u64 ino, unsigned d_type)
2949 {
2950 	return 0;
2951 }
2952 
2953 /* for the /proc/ directory itself, after non-process stuff has been done */
2954 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2955 {
2956 	struct tgid_iter iter;
2957 	struct pid_namespace *ns;
2958 	filldir_t __filldir;
2959 	loff_t pos = filp->f_pos;
2960 
2961 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
2962 		goto out;
2963 
2964 	if (pos == TGID_OFFSET - 1) {
2965 		if (proc_fill_cache(filp, dirent, filldir, "self", 4,
2966 					NULL, NULL, NULL) < 0)
2967 			goto out;
2968 		iter.tgid = 0;
2969 	} else {
2970 		iter.tgid = pos - TGID_OFFSET;
2971 	}
2972 	iter.task = NULL;
2973 	ns = filp->f_dentry->d_sb->s_fs_info;
2974 	for (iter = next_tgid(ns, iter);
2975 	     iter.task;
2976 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2977 		if (has_pid_permissions(ns, iter.task, 2))
2978 			__filldir = filldir;
2979 		else
2980 			__filldir = fake_filldir;
2981 
2982 		filp->f_pos = iter.tgid + TGID_OFFSET;
2983 		if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) {
2984 			put_task_struct(iter.task);
2985 			goto out;
2986 		}
2987 	}
2988 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2989 out:
2990 	return 0;
2991 }
2992 
2993 /*
2994  * Tasks
2995  */
2996 static const struct pid_entry tid_base_stuff[] = {
2997 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2998 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2999 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3000 	REG("environ",   S_IRUSR, proc_environ_operations),
3001 	INF("auxv",      S_IRUSR, proc_pid_auxv),
3002 	ONE("status",    S_IRUGO, proc_pid_status),
3003 	ONE("personality", S_IRUGO, proc_pid_personality),
3004 	INF("limits",	 S_IRUGO, proc_pid_limits),
3005 #ifdef CONFIG_SCHED_DEBUG
3006 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3007 #endif
3008 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3009 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3010 	INF("syscall",   S_IRUGO, proc_pid_syscall),
3011 #endif
3012 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
3013 	ONE("stat",      S_IRUGO, proc_tid_stat),
3014 	ONE("statm",     S_IRUGO, proc_pid_statm),
3015 	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3016 #ifdef CONFIG_CHECKPOINT_RESTORE
3017 	REG("children",  S_IRUGO, proc_tid_children_operations),
3018 #endif
3019 #ifdef CONFIG_NUMA
3020 	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3021 #endif
3022 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3023 	LNK("cwd",       proc_cwd_link),
3024 	LNK("root",      proc_root_link),
3025 	LNK("exe",       proc_exe_link),
3026 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3027 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3028 #ifdef CONFIG_PROC_PAGE_MONITOR
3029 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3030 	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3031 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
3032 #endif
3033 #ifdef CONFIG_SECURITY
3034 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3035 #endif
3036 #ifdef CONFIG_KALLSYMS
3037 	INF("wchan",     S_IRUGO, proc_pid_wchan),
3038 #endif
3039 #ifdef CONFIG_STACKTRACE
3040 	ONE("stack",      S_IRUGO, proc_pid_stack),
3041 #endif
3042 #ifdef CONFIG_SCHEDSTATS
3043 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
3044 #endif
3045 #ifdef CONFIG_LATENCYTOP
3046 	REG("latency",  S_IRUGO, proc_lstats_operations),
3047 #endif
3048 #ifdef CONFIG_PROC_PID_CPUSET
3049 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
3050 #endif
3051 #ifdef CONFIG_CGROUPS
3052 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3053 #endif
3054 	INF("oom_score", S_IRUGO, proc_oom_score),
3055 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3056 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3057 #ifdef CONFIG_AUDITSYSCALL
3058 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3059 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3060 #endif
3061 #ifdef CONFIG_FAULT_INJECTION
3062 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3063 #endif
3064 #ifdef CONFIG_TASK_IO_ACCOUNTING
3065 	INF("io",	S_IRUSR, proc_tid_io_accounting),
3066 #endif
3067 #ifdef CONFIG_HARDWALL
3068 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
3069 #endif
3070 #ifdef CONFIG_USER_NS
3071 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3072 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3073 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3074 #endif
3075 };
3076 
3077 static int proc_tid_base_readdir(struct file * filp,
3078 			     void * dirent, filldir_t filldir)
3079 {
3080 	return proc_pident_readdir(filp,dirent,filldir,
3081 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3082 }
3083 
3084 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3085 {
3086 	return proc_pident_lookup(dir, dentry,
3087 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3088 }
3089 
3090 static const struct file_operations proc_tid_base_operations = {
3091 	.read		= generic_read_dir,
3092 	.readdir	= proc_tid_base_readdir,
3093 	.llseek		= default_llseek,
3094 };
3095 
3096 static const struct inode_operations proc_tid_base_inode_operations = {
3097 	.lookup		= proc_tid_base_lookup,
3098 	.getattr	= pid_getattr,
3099 	.setattr	= proc_setattr,
3100 };
3101 
3102 static struct dentry *proc_task_instantiate(struct inode *dir,
3103 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3104 {
3105 	struct dentry *error = ERR_PTR(-ENOENT);
3106 	struct inode *inode;
3107 	inode = proc_pid_make_inode(dir->i_sb, task);
3108 
3109 	if (!inode)
3110 		goto out;
3111 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3112 	inode->i_op = &proc_tid_base_inode_operations;
3113 	inode->i_fop = &proc_tid_base_operations;
3114 	inode->i_flags|=S_IMMUTABLE;
3115 
3116 	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3117 						  ARRAY_SIZE(tid_base_stuff)));
3118 
3119 	d_set_d_op(dentry, &pid_dentry_operations);
3120 
3121 	d_add(dentry, inode);
3122 	/* Close the race of the process dying before we return the dentry */
3123 	if (pid_revalidate(dentry, 0))
3124 		error = NULL;
3125 out:
3126 	return error;
3127 }
3128 
3129 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3130 {
3131 	struct dentry *result = ERR_PTR(-ENOENT);
3132 	struct task_struct *task;
3133 	struct task_struct *leader = get_proc_task(dir);
3134 	unsigned tid;
3135 	struct pid_namespace *ns;
3136 
3137 	if (!leader)
3138 		goto out_no_task;
3139 
3140 	tid = name_to_int(dentry);
3141 	if (tid == ~0U)
3142 		goto out;
3143 
3144 	ns = dentry->d_sb->s_fs_info;
3145 	rcu_read_lock();
3146 	task = find_task_by_pid_ns(tid, ns);
3147 	if (task)
3148 		get_task_struct(task);
3149 	rcu_read_unlock();
3150 	if (!task)
3151 		goto out;
3152 	if (!same_thread_group(leader, task))
3153 		goto out_drop_task;
3154 
3155 	result = proc_task_instantiate(dir, dentry, task, NULL);
3156 out_drop_task:
3157 	put_task_struct(task);
3158 out:
3159 	put_task_struct(leader);
3160 out_no_task:
3161 	return result;
3162 }
3163 
3164 /*
3165  * Find the first tid of a thread group to return to user space.
3166  *
3167  * Usually this is just the thread group leader, but if the users
3168  * buffer was too small or there was a seek into the middle of the
3169  * directory we have more work todo.
3170  *
3171  * In the case of a short read we start with find_task_by_pid.
3172  *
3173  * In the case of a seek we start with the leader and walk nr
3174  * threads past it.
3175  */
3176 static struct task_struct *first_tid(struct task_struct *leader,
3177 		int tid, int nr, struct pid_namespace *ns)
3178 {
3179 	struct task_struct *pos;
3180 
3181 	rcu_read_lock();
3182 	/* Attempt to start with the pid of a thread */
3183 	if (tid && (nr > 0)) {
3184 		pos = find_task_by_pid_ns(tid, ns);
3185 		if (pos && (pos->group_leader == leader))
3186 			goto found;
3187 	}
3188 
3189 	/* If nr exceeds the number of threads there is nothing todo */
3190 	pos = NULL;
3191 	if (nr && nr >= get_nr_threads(leader))
3192 		goto out;
3193 
3194 	/* If we haven't found our starting place yet start
3195 	 * with the leader and walk nr threads forward.
3196 	 */
3197 	for (pos = leader; nr > 0; --nr) {
3198 		pos = next_thread(pos);
3199 		if (pos == leader) {
3200 			pos = NULL;
3201 			goto out;
3202 		}
3203 	}
3204 found:
3205 	get_task_struct(pos);
3206 out:
3207 	rcu_read_unlock();
3208 	return pos;
3209 }
3210 
3211 /*
3212  * Find the next thread in the thread list.
3213  * Return NULL if there is an error or no next thread.
3214  *
3215  * The reference to the input task_struct is released.
3216  */
3217 static struct task_struct *next_tid(struct task_struct *start)
3218 {
3219 	struct task_struct *pos = NULL;
3220 	rcu_read_lock();
3221 	if (pid_alive(start)) {
3222 		pos = next_thread(start);
3223 		if (thread_group_leader(pos))
3224 			pos = NULL;
3225 		else
3226 			get_task_struct(pos);
3227 	}
3228 	rcu_read_unlock();
3229 	put_task_struct(start);
3230 	return pos;
3231 }
3232 
3233 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3234 	struct task_struct *task, int tid)
3235 {
3236 	char name[PROC_NUMBUF];
3237 	int len = snprintf(name, sizeof(name), "%d", tid);
3238 	return proc_fill_cache(filp, dirent, filldir, name, len,
3239 				proc_task_instantiate, task, NULL);
3240 }
3241 
3242 /* for the /proc/TGID/task/ directories */
3243 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3244 {
3245 	struct dentry *dentry = filp->f_path.dentry;
3246 	struct inode *inode = dentry->d_inode;
3247 	struct task_struct *leader = NULL;
3248 	struct task_struct *task;
3249 	int retval = -ENOENT;
3250 	ino_t ino;
3251 	int tid;
3252 	struct pid_namespace *ns;
3253 
3254 	task = get_proc_task(inode);
3255 	if (!task)
3256 		goto out_no_task;
3257 	rcu_read_lock();
3258 	if (pid_alive(task)) {
3259 		leader = task->group_leader;
3260 		get_task_struct(leader);
3261 	}
3262 	rcu_read_unlock();
3263 	put_task_struct(task);
3264 	if (!leader)
3265 		goto out_no_task;
3266 	retval = 0;
3267 
3268 	switch ((unsigned long)filp->f_pos) {
3269 	case 0:
3270 		ino = inode->i_ino;
3271 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3272 			goto out;
3273 		filp->f_pos++;
3274 		/* fall through */
3275 	case 1:
3276 		ino = parent_ino(dentry);
3277 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3278 			goto out;
3279 		filp->f_pos++;
3280 		/* fall through */
3281 	}
3282 
3283 	/* f_version caches the tgid value that the last readdir call couldn't
3284 	 * return. lseek aka telldir automagically resets f_version to 0.
3285 	 */
3286 	ns = filp->f_dentry->d_sb->s_fs_info;
3287 	tid = (int)filp->f_version;
3288 	filp->f_version = 0;
3289 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3290 	     task;
3291 	     task = next_tid(task), filp->f_pos++) {
3292 		tid = task_pid_nr_ns(task, ns);
3293 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3294 			/* returning this tgid failed, save it as the first
3295 			 * pid for the next readir call */
3296 			filp->f_version = (u64)tid;
3297 			put_task_struct(task);
3298 			break;
3299 		}
3300 	}
3301 out:
3302 	put_task_struct(leader);
3303 out_no_task:
3304 	return retval;
3305 }
3306 
3307 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3308 {
3309 	struct inode *inode = dentry->d_inode;
3310 	struct task_struct *p = get_proc_task(inode);
3311 	generic_fillattr(inode, stat);
3312 
3313 	if (p) {
3314 		stat->nlink += get_nr_threads(p);
3315 		put_task_struct(p);
3316 	}
3317 
3318 	return 0;
3319 }
3320 
3321 static const struct inode_operations proc_task_inode_operations = {
3322 	.lookup		= proc_task_lookup,
3323 	.getattr	= proc_task_getattr,
3324 	.setattr	= proc_setattr,
3325 	.permission	= proc_pid_permission,
3326 };
3327 
3328 static const struct file_operations proc_task_operations = {
3329 	.read		= generic_read_dir,
3330 	.readdir	= proc_task_readdir,
3331 	.llseek		= default_llseek,
3332 };
3333