xref: /openbmc/linux/fs/proc/base.c (revision c94b731d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/proc/base.c
4  *
5  *  Copyright (C) 1991, 1992 Linus Torvalds
6  *
7  *  proc base directory handling functions
8  *
9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10  *  Instead of using magical inumbers to determine the kind of object
11  *  we allocate and fill in-core inodes upon lookup. They don't even
12  *  go into icache. We cache the reference to task_struct upon lookup too.
13  *  Eventually it should become a filesystem in its own. We don't use the
14  *  rest of procfs anymore.
15  *
16  *
17  *  Changelog:
18  *  17-Jan-2005
19  *  Allan Bezerra
20  *  Bruna Moreira <bruna.moreira@indt.org.br>
21  *  Edjard Mota <edjard.mota@indt.org.br>
22  *  Ilias Biris <ilias.biris@indt.org.br>
23  *  Mauricio Lin <mauricio.lin@indt.org.br>
24  *
25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26  *
27  *  A new process specific entry (smaps) included in /proc. It shows the
28  *  size of rss for each memory area. The maps entry lacks information
29  *  about physical memory size (rss) for each mapped file, i.e.,
30  *  rss information for executables and library files.
31  *  This additional information is useful for any tools that need to know
32  *  about physical memory consumption for a process specific library.
33  *
34  *  Changelog:
35  *  21-Feb-2005
36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37  *  Pud inclusion in the page table walking.
38  *
39  *  ChangeLog:
40  *  10-Mar-2005
41  *  10LE Instituto Nokia de Tecnologia - INdT:
42  *  A better way to walks through the page table as suggested by Hugh Dickins.
43  *
44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45  *  Smaps information related to shared, private, clean and dirty pages.
46  *
47  *  Paul Mundt <paul.mundt@nokia.com>:
48  *  Overall revision about smaps.
49  */
50 
51 #include <linux/uaccess.h>
52 
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/generic-radix-tree.h>
63 #include <linux/string.h>
64 #include <linux/seq_file.h>
65 #include <linux/namei.h>
66 #include <linux/mnt_namespace.h>
67 #include <linux/mm.h>
68 #include <linux/swap.h>
69 #include <linux/rcupdate.h>
70 #include <linux/kallsyms.h>
71 #include <linux/stacktrace.h>
72 #include <linux/resource.h>
73 #include <linux/module.h>
74 #include <linux/mount.h>
75 #include <linux/security.h>
76 #include <linux/ptrace.h>
77 #include <linux/tracehook.h>
78 #include <linux/printk.h>
79 #include <linux/cache.h>
80 #include <linux/cgroup.h>
81 #include <linux/cpuset.h>
82 #include <linux/audit.h>
83 #include <linux/poll.h>
84 #include <linux/nsproxy.h>
85 #include <linux/oom.h>
86 #include <linux/elf.h>
87 #include <linux/pid_namespace.h>
88 #include <linux/user_namespace.h>
89 #include <linux/fs_struct.h>
90 #include <linux/slab.h>
91 #include <linux/sched/autogroup.h>
92 #include <linux/sched/mm.h>
93 #include <linux/sched/coredump.h>
94 #include <linux/sched/debug.h>
95 #include <linux/sched/stat.h>
96 #include <linux/posix-timers.h>
97 #include <linux/time_namespace.h>
98 #include <linux/resctrl.h>
99 #include <linux/cn_proc.h>
100 #include <trace/events/oom.h>
101 #include "internal.h"
102 #include "fd.h"
103 
104 #include "../../lib/kstrtox.h"
105 
106 /* NOTE:
107  *	Implementing inode permission operations in /proc is almost
108  *	certainly an error.  Permission checks need to happen during
109  *	each system call not at open time.  The reason is that most of
110  *	what we wish to check for permissions in /proc varies at runtime.
111  *
112  *	The classic example of a problem is opening file descriptors
113  *	in /proc for a task before it execs a suid executable.
114  */
115 
116 static u8 nlink_tid __ro_after_init;
117 static u8 nlink_tgid __ro_after_init;
118 
119 struct pid_entry {
120 	const char *name;
121 	unsigned int len;
122 	umode_t mode;
123 	const struct inode_operations *iop;
124 	const struct file_operations *fop;
125 	union proc_op op;
126 };
127 
128 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
129 	.name = (NAME),					\
130 	.len  = sizeof(NAME) - 1,			\
131 	.mode = MODE,					\
132 	.iop  = IOP,					\
133 	.fop  = FOP,					\
134 	.op   = OP,					\
135 }
136 
137 #define DIR(NAME, MODE, iops, fops)	\
138 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
139 #define LNK(NAME, get_link)					\
140 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
141 		&proc_pid_link_inode_operations, NULL,		\
142 		{ .proc_get_link = get_link } )
143 #define REG(NAME, MODE, fops)				\
144 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
145 #define ONE(NAME, MODE, show)				\
146 	NOD(NAME, (S_IFREG|(MODE)),			\
147 		NULL, &proc_single_file_operations,	\
148 		{ .proc_show = show } )
149 #define ATTR(LSM, NAME, MODE)				\
150 	NOD(NAME, (S_IFREG|(MODE)),			\
151 		NULL, &proc_pid_attr_operations,	\
152 		{ .lsm = LSM })
153 
154 /*
155  * Count the number of hardlinks for the pid_entry table, excluding the .
156  * and .. links.
157  */
158 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
159 	unsigned int n)
160 {
161 	unsigned int i;
162 	unsigned int count;
163 
164 	count = 2;
165 	for (i = 0; i < n; ++i) {
166 		if (S_ISDIR(entries[i].mode))
167 			++count;
168 	}
169 
170 	return count;
171 }
172 
173 static int get_task_root(struct task_struct *task, struct path *root)
174 {
175 	int result = -ENOENT;
176 
177 	task_lock(task);
178 	if (task->fs) {
179 		get_fs_root(task->fs, root);
180 		result = 0;
181 	}
182 	task_unlock(task);
183 	return result;
184 }
185 
186 static int proc_cwd_link(struct dentry *dentry, struct path *path)
187 {
188 	struct task_struct *task = get_proc_task(d_inode(dentry));
189 	int result = -ENOENT;
190 
191 	if (task) {
192 		task_lock(task);
193 		if (task->fs) {
194 			get_fs_pwd(task->fs, path);
195 			result = 0;
196 		}
197 		task_unlock(task);
198 		put_task_struct(task);
199 	}
200 	return result;
201 }
202 
203 static int proc_root_link(struct dentry *dentry, struct path *path)
204 {
205 	struct task_struct *task = get_proc_task(d_inode(dentry));
206 	int result = -ENOENT;
207 
208 	if (task) {
209 		result = get_task_root(task, path);
210 		put_task_struct(task);
211 	}
212 	return result;
213 }
214 
215 /*
216  * If the user used setproctitle(), we just get the string from
217  * user space at arg_start, and limit it to a maximum of one page.
218  */
219 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
220 				size_t count, unsigned long pos,
221 				unsigned long arg_start)
222 {
223 	char *page;
224 	int ret, got;
225 
226 	if (pos >= PAGE_SIZE)
227 		return 0;
228 
229 	page = (char *)__get_free_page(GFP_KERNEL);
230 	if (!page)
231 		return -ENOMEM;
232 
233 	ret = 0;
234 	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
235 	if (got > 0) {
236 		int len = strnlen(page, got);
237 
238 		/* Include the NUL character if it was found */
239 		if (len < got)
240 			len++;
241 
242 		if (len > pos) {
243 			len -= pos;
244 			if (len > count)
245 				len = count;
246 			len -= copy_to_user(buf, page+pos, len);
247 			if (!len)
248 				len = -EFAULT;
249 			ret = len;
250 		}
251 	}
252 	free_page((unsigned long)page);
253 	return ret;
254 }
255 
256 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
257 			      size_t count, loff_t *ppos)
258 {
259 	unsigned long arg_start, arg_end, env_start, env_end;
260 	unsigned long pos, len;
261 	char *page, c;
262 
263 	/* Check if process spawned far enough to have cmdline. */
264 	if (!mm->env_end)
265 		return 0;
266 
267 	spin_lock(&mm->arg_lock);
268 	arg_start = mm->arg_start;
269 	arg_end = mm->arg_end;
270 	env_start = mm->env_start;
271 	env_end = mm->env_end;
272 	spin_unlock(&mm->arg_lock);
273 
274 	if (arg_start >= arg_end)
275 		return 0;
276 
277 	/*
278 	 * We allow setproctitle() to overwrite the argument
279 	 * strings, and overflow past the original end. But
280 	 * only when it overflows into the environment area.
281 	 */
282 	if (env_start != arg_end || env_end < env_start)
283 		env_start = env_end = arg_end;
284 	len = env_end - arg_start;
285 
286 	/* We're not going to care if "*ppos" has high bits set */
287 	pos = *ppos;
288 	if (pos >= len)
289 		return 0;
290 	if (count > len - pos)
291 		count = len - pos;
292 	if (!count)
293 		return 0;
294 
295 	/*
296 	 * Magical special case: if the argv[] end byte is not
297 	 * zero, the user has overwritten it with setproctitle(3).
298 	 *
299 	 * Possible future enhancement: do this only once when
300 	 * pos is 0, and set a flag in the 'struct file'.
301 	 */
302 	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
303 		return get_mm_proctitle(mm, buf, count, pos, arg_start);
304 
305 	/*
306 	 * For the non-setproctitle() case we limit things strictly
307 	 * to the [arg_start, arg_end[ range.
308 	 */
309 	pos += arg_start;
310 	if (pos < arg_start || pos >= arg_end)
311 		return 0;
312 	if (count > arg_end - pos)
313 		count = arg_end - pos;
314 
315 	page = (char *)__get_free_page(GFP_KERNEL);
316 	if (!page)
317 		return -ENOMEM;
318 
319 	len = 0;
320 	while (count) {
321 		int got;
322 		size_t size = min_t(size_t, PAGE_SIZE, count);
323 
324 		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
325 		if (got <= 0)
326 			break;
327 		got -= copy_to_user(buf, page, got);
328 		if (unlikely(!got)) {
329 			if (!len)
330 				len = -EFAULT;
331 			break;
332 		}
333 		pos += got;
334 		buf += got;
335 		len += got;
336 		count -= got;
337 	}
338 
339 	free_page((unsigned long)page);
340 	return len;
341 }
342 
343 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
344 				size_t count, loff_t *pos)
345 {
346 	struct mm_struct *mm;
347 	ssize_t ret;
348 
349 	mm = get_task_mm(tsk);
350 	if (!mm)
351 		return 0;
352 
353 	ret = get_mm_cmdline(mm, buf, count, pos);
354 	mmput(mm);
355 	return ret;
356 }
357 
358 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
359 				     size_t count, loff_t *pos)
360 {
361 	struct task_struct *tsk;
362 	ssize_t ret;
363 
364 	BUG_ON(*pos < 0);
365 
366 	tsk = get_proc_task(file_inode(file));
367 	if (!tsk)
368 		return -ESRCH;
369 	ret = get_task_cmdline(tsk, buf, count, pos);
370 	put_task_struct(tsk);
371 	if (ret > 0)
372 		*pos += ret;
373 	return ret;
374 }
375 
376 static const struct file_operations proc_pid_cmdline_ops = {
377 	.read	= proc_pid_cmdline_read,
378 	.llseek	= generic_file_llseek,
379 };
380 
381 #ifdef CONFIG_KALLSYMS
382 /*
383  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
384  * Returns the resolved symbol.  If that fails, simply return the address.
385  */
386 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
387 			  struct pid *pid, struct task_struct *task)
388 {
389 	unsigned long wchan;
390 	char symname[KSYM_NAME_LEN];
391 
392 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
393 		goto print0;
394 
395 	wchan = get_wchan(task);
396 	if (wchan && !lookup_symbol_name(wchan, symname)) {
397 		seq_puts(m, symname);
398 		return 0;
399 	}
400 
401 print0:
402 	seq_putc(m, '0');
403 	return 0;
404 }
405 #endif /* CONFIG_KALLSYMS */
406 
407 static int lock_trace(struct task_struct *task)
408 {
409 	int err = down_read_killable(&task->signal->exec_update_lock);
410 	if (err)
411 		return err;
412 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
413 		up_read(&task->signal->exec_update_lock);
414 		return -EPERM;
415 	}
416 	return 0;
417 }
418 
419 static void unlock_trace(struct task_struct *task)
420 {
421 	up_read(&task->signal->exec_update_lock);
422 }
423 
424 #ifdef CONFIG_STACKTRACE
425 
426 #define MAX_STACK_TRACE_DEPTH	64
427 
428 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
429 			  struct pid *pid, struct task_struct *task)
430 {
431 	unsigned long *entries;
432 	int err;
433 
434 	/*
435 	 * The ability to racily run the kernel stack unwinder on a running task
436 	 * and then observe the unwinder output is scary; while it is useful for
437 	 * debugging kernel issues, it can also allow an attacker to leak kernel
438 	 * stack contents.
439 	 * Doing this in a manner that is at least safe from races would require
440 	 * some work to ensure that the remote task can not be scheduled; and
441 	 * even then, this would still expose the unwinder as local attack
442 	 * surface.
443 	 * Therefore, this interface is restricted to root.
444 	 */
445 	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
446 		return -EACCES;
447 
448 	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
449 				GFP_KERNEL);
450 	if (!entries)
451 		return -ENOMEM;
452 
453 	err = lock_trace(task);
454 	if (!err) {
455 		unsigned int i, nr_entries;
456 
457 		nr_entries = stack_trace_save_tsk(task, entries,
458 						  MAX_STACK_TRACE_DEPTH, 0);
459 
460 		for (i = 0; i < nr_entries; i++) {
461 			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
462 		}
463 
464 		unlock_trace(task);
465 	}
466 	kfree(entries);
467 
468 	return err;
469 }
470 #endif
471 
472 #ifdef CONFIG_SCHED_INFO
473 /*
474  * Provides /proc/PID/schedstat
475  */
476 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
477 			      struct pid *pid, struct task_struct *task)
478 {
479 	if (unlikely(!sched_info_on()))
480 		seq_puts(m, "0 0 0\n");
481 	else
482 		seq_printf(m, "%llu %llu %lu\n",
483 		   (unsigned long long)task->se.sum_exec_runtime,
484 		   (unsigned long long)task->sched_info.run_delay,
485 		   task->sched_info.pcount);
486 
487 	return 0;
488 }
489 #endif
490 
491 #ifdef CONFIG_LATENCYTOP
492 static int lstats_show_proc(struct seq_file *m, void *v)
493 {
494 	int i;
495 	struct inode *inode = m->private;
496 	struct task_struct *task = get_proc_task(inode);
497 
498 	if (!task)
499 		return -ESRCH;
500 	seq_puts(m, "Latency Top version : v0.1\n");
501 	for (i = 0; i < LT_SAVECOUNT; i++) {
502 		struct latency_record *lr = &task->latency_record[i];
503 		if (lr->backtrace[0]) {
504 			int q;
505 			seq_printf(m, "%i %li %li",
506 				   lr->count, lr->time, lr->max);
507 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
508 				unsigned long bt = lr->backtrace[q];
509 
510 				if (!bt)
511 					break;
512 				seq_printf(m, " %ps", (void *)bt);
513 			}
514 			seq_putc(m, '\n');
515 		}
516 
517 	}
518 	put_task_struct(task);
519 	return 0;
520 }
521 
522 static int lstats_open(struct inode *inode, struct file *file)
523 {
524 	return single_open(file, lstats_show_proc, inode);
525 }
526 
527 static ssize_t lstats_write(struct file *file, const char __user *buf,
528 			    size_t count, loff_t *offs)
529 {
530 	struct task_struct *task = get_proc_task(file_inode(file));
531 
532 	if (!task)
533 		return -ESRCH;
534 	clear_tsk_latency_tracing(task);
535 	put_task_struct(task);
536 
537 	return count;
538 }
539 
540 static const struct file_operations proc_lstats_operations = {
541 	.open		= lstats_open,
542 	.read		= seq_read,
543 	.write		= lstats_write,
544 	.llseek		= seq_lseek,
545 	.release	= single_release,
546 };
547 
548 #endif
549 
550 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
551 			  struct pid *pid, struct task_struct *task)
552 {
553 	unsigned long totalpages = totalram_pages() + total_swap_pages;
554 	unsigned long points = 0;
555 	long badness;
556 
557 	badness = oom_badness(task, totalpages);
558 	/*
559 	 * Special case OOM_SCORE_ADJ_MIN for all others scale the
560 	 * badness value into [0, 2000] range which we have been
561 	 * exporting for a long time so userspace might depend on it.
562 	 */
563 	if (badness != LONG_MIN)
564 		points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
565 
566 	seq_printf(m, "%lu\n", points);
567 
568 	return 0;
569 }
570 
571 struct limit_names {
572 	const char *name;
573 	const char *unit;
574 };
575 
576 static const struct limit_names lnames[RLIM_NLIMITS] = {
577 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
578 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
579 	[RLIMIT_DATA] = {"Max data size", "bytes"},
580 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
581 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
582 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
583 	[RLIMIT_NPROC] = {"Max processes", "processes"},
584 	[RLIMIT_NOFILE] = {"Max open files", "files"},
585 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
586 	[RLIMIT_AS] = {"Max address space", "bytes"},
587 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
588 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
589 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
590 	[RLIMIT_NICE] = {"Max nice priority", NULL},
591 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
592 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
593 };
594 
595 /* Display limits for a process */
596 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
597 			   struct pid *pid, struct task_struct *task)
598 {
599 	unsigned int i;
600 	unsigned long flags;
601 
602 	struct rlimit rlim[RLIM_NLIMITS];
603 
604 	if (!lock_task_sighand(task, &flags))
605 		return 0;
606 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
607 	unlock_task_sighand(task, &flags);
608 
609 	/*
610 	 * print the file header
611 	 */
612 	seq_puts(m, "Limit                     "
613 		"Soft Limit           "
614 		"Hard Limit           "
615 		"Units     \n");
616 
617 	for (i = 0; i < RLIM_NLIMITS; i++) {
618 		if (rlim[i].rlim_cur == RLIM_INFINITY)
619 			seq_printf(m, "%-25s %-20s ",
620 				   lnames[i].name, "unlimited");
621 		else
622 			seq_printf(m, "%-25s %-20lu ",
623 				   lnames[i].name, rlim[i].rlim_cur);
624 
625 		if (rlim[i].rlim_max == RLIM_INFINITY)
626 			seq_printf(m, "%-20s ", "unlimited");
627 		else
628 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
629 
630 		if (lnames[i].unit)
631 			seq_printf(m, "%-10s\n", lnames[i].unit);
632 		else
633 			seq_putc(m, '\n');
634 	}
635 
636 	return 0;
637 }
638 
639 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
640 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
641 			    struct pid *pid, struct task_struct *task)
642 {
643 	struct syscall_info info;
644 	u64 *args = &info.data.args[0];
645 	int res;
646 
647 	res = lock_trace(task);
648 	if (res)
649 		return res;
650 
651 	if (task_current_syscall(task, &info))
652 		seq_puts(m, "running\n");
653 	else if (info.data.nr < 0)
654 		seq_printf(m, "%d 0x%llx 0x%llx\n",
655 			   info.data.nr, info.sp, info.data.instruction_pointer);
656 	else
657 		seq_printf(m,
658 		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
659 		       info.data.nr,
660 		       args[0], args[1], args[2], args[3], args[4], args[5],
661 		       info.sp, info.data.instruction_pointer);
662 	unlock_trace(task);
663 
664 	return 0;
665 }
666 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
667 
668 /************************************************************************/
669 /*                       Here the fs part begins                        */
670 /************************************************************************/
671 
672 /* permission checks */
673 static bool proc_fd_access_allowed(struct inode *inode)
674 {
675 	struct task_struct *task;
676 	bool allowed = false;
677 	/* Allow access to a task's file descriptors if it is us or we
678 	 * may use ptrace attach to the process and find out that
679 	 * information.
680 	 */
681 	task = get_proc_task(inode);
682 	if (task) {
683 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
684 		put_task_struct(task);
685 	}
686 	return allowed;
687 }
688 
689 int proc_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
690 		 struct iattr *attr)
691 {
692 	int error;
693 	struct inode *inode = d_inode(dentry);
694 
695 	if (attr->ia_valid & ATTR_MODE)
696 		return -EPERM;
697 
698 	error = setattr_prepare(&init_user_ns, dentry, attr);
699 	if (error)
700 		return error;
701 
702 	setattr_copy(&init_user_ns, inode, attr);
703 	mark_inode_dirty(inode);
704 	return 0;
705 }
706 
707 /*
708  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
709  * or euid/egid (for hide_pid_min=2)?
710  */
711 static bool has_pid_permissions(struct proc_fs_info *fs_info,
712 				 struct task_struct *task,
713 				 enum proc_hidepid hide_pid_min)
714 {
715 	/*
716 	 * If 'hidpid' mount option is set force a ptrace check,
717 	 * we indicate that we are using a filesystem syscall
718 	 * by passing PTRACE_MODE_READ_FSCREDS
719 	 */
720 	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
721 		return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
722 
723 	if (fs_info->hide_pid < hide_pid_min)
724 		return true;
725 	if (in_group_p(fs_info->pid_gid))
726 		return true;
727 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
728 }
729 
730 
731 static int proc_pid_permission(struct user_namespace *mnt_userns,
732 			       struct inode *inode, int mask)
733 {
734 	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
735 	struct task_struct *task;
736 	bool has_perms;
737 
738 	task = get_proc_task(inode);
739 	if (!task)
740 		return -ESRCH;
741 	has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
742 	put_task_struct(task);
743 
744 	if (!has_perms) {
745 		if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
746 			/*
747 			 * Let's make getdents(), stat(), and open()
748 			 * consistent with each other.  If a process
749 			 * may not stat() a file, it shouldn't be seen
750 			 * in procfs at all.
751 			 */
752 			return -ENOENT;
753 		}
754 
755 		return -EPERM;
756 	}
757 	return generic_permission(&init_user_ns, inode, mask);
758 }
759 
760 
761 
762 static const struct inode_operations proc_def_inode_operations = {
763 	.setattr	= proc_setattr,
764 };
765 
766 static int proc_single_show(struct seq_file *m, void *v)
767 {
768 	struct inode *inode = m->private;
769 	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
770 	struct pid *pid = proc_pid(inode);
771 	struct task_struct *task;
772 	int ret;
773 
774 	task = get_pid_task(pid, PIDTYPE_PID);
775 	if (!task)
776 		return -ESRCH;
777 
778 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
779 
780 	put_task_struct(task);
781 	return ret;
782 }
783 
784 static int proc_single_open(struct inode *inode, struct file *filp)
785 {
786 	return single_open(filp, proc_single_show, inode);
787 }
788 
789 static const struct file_operations proc_single_file_operations = {
790 	.open		= proc_single_open,
791 	.read		= seq_read,
792 	.llseek		= seq_lseek,
793 	.release	= single_release,
794 };
795 
796 
797 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
798 {
799 	struct task_struct *task = get_proc_task(inode);
800 	struct mm_struct *mm = ERR_PTR(-ESRCH);
801 
802 	if (task) {
803 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
804 		put_task_struct(task);
805 
806 		if (!IS_ERR_OR_NULL(mm)) {
807 			/* ensure this mm_struct can't be freed */
808 			mmgrab(mm);
809 			/* but do not pin its memory */
810 			mmput(mm);
811 		}
812 	}
813 
814 	return mm;
815 }
816 
817 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
818 {
819 	struct mm_struct *mm = proc_mem_open(inode, mode);
820 
821 	if (IS_ERR(mm))
822 		return PTR_ERR(mm);
823 
824 	file->private_data = mm;
825 	return 0;
826 }
827 
828 static int mem_open(struct inode *inode, struct file *file)
829 {
830 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
831 
832 	/* OK to pass negative loff_t, we can catch out-of-range */
833 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
834 
835 	return ret;
836 }
837 
838 static ssize_t mem_rw(struct file *file, char __user *buf,
839 			size_t count, loff_t *ppos, int write)
840 {
841 	struct mm_struct *mm = file->private_data;
842 	unsigned long addr = *ppos;
843 	ssize_t copied;
844 	char *page;
845 	unsigned int flags;
846 
847 	if (!mm)
848 		return 0;
849 
850 	page = (char *)__get_free_page(GFP_KERNEL);
851 	if (!page)
852 		return -ENOMEM;
853 
854 	copied = 0;
855 	if (!mmget_not_zero(mm))
856 		goto free;
857 
858 	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
859 
860 	while (count > 0) {
861 		size_t this_len = min_t(size_t, count, PAGE_SIZE);
862 
863 		if (write && copy_from_user(page, buf, this_len)) {
864 			copied = -EFAULT;
865 			break;
866 		}
867 
868 		this_len = access_remote_vm(mm, addr, page, this_len, flags);
869 		if (!this_len) {
870 			if (!copied)
871 				copied = -EIO;
872 			break;
873 		}
874 
875 		if (!write && copy_to_user(buf, page, this_len)) {
876 			copied = -EFAULT;
877 			break;
878 		}
879 
880 		buf += this_len;
881 		addr += this_len;
882 		copied += this_len;
883 		count -= this_len;
884 	}
885 	*ppos = addr;
886 
887 	mmput(mm);
888 free:
889 	free_page((unsigned long) page);
890 	return copied;
891 }
892 
893 static ssize_t mem_read(struct file *file, char __user *buf,
894 			size_t count, loff_t *ppos)
895 {
896 	return mem_rw(file, buf, count, ppos, 0);
897 }
898 
899 static ssize_t mem_write(struct file *file, const char __user *buf,
900 			 size_t count, loff_t *ppos)
901 {
902 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
903 }
904 
905 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
906 {
907 	switch (orig) {
908 	case 0:
909 		file->f_pos = offset;
910 		break;
911 	case 1:
912 		file->f_pos += offset;
913 		break;
914 	default:
915 		return -EINVAL;
916 	}
917 	force_successful_syscall_return();
918 	return file->f_pos;
919 }
920 
921 static int mem_release(struct inode *inode, struct file *file)
922 {
923 	struct mm_struct *mm = file->private_data;
924 	if (mm)
925 		mmdrop(mm);
926 	return 0;
927 }
928 
929 static const struct file_operations proc_mem_operations = {
930 	.llseek		= mem_lseek,
931 	.read		= mem_read,
932 	.write		= mem_write,
933 	.open		= mem_open,
934 	.release	= mem_release,
935 };
936 
937 static int environ_open(struct inode *inode, struct file *file)
938 {
939 	return __mem_open(inode, file, PTRACE_MODE_READ);
940 }
941 
942 static ssize_t environ_read(struct file *file, char __user *buf,
943 			size_t count, loff_t *ppos)
944 {
945 	char *page;
946 	unsigned long src = *ppos;
947 	int ret = 0;
948 	struct mm_struct *mm = file->private_data;
949 	unsigned long env_start, env_end;
950 
951 	/* Ensure the process spawned far enough to have an environment. */
952 	if (!mm || !mm->env_end)
953 		return 0;
954 
955 	page = (char *)__get_free_page(GFP_KERNEL);
956 	if (!page)
957 		return -ENOMEM;
958 
959 	ret = 0;
960 	if (!mmget_not_zero(mm))
961 		goto free;
962 
963 	spin_lock(&mm->arg_lock);
964 	env_start = mm->env_start;
965 	env_end = mm->env_end;
966 	spin_unlock(&mm->arg_lock);
967 
968 	while (count > 0) {
969 		size_t this_len, max_len;
970 		int retval;
971 
972 		if (src >= (env_end - env_start))
973 			break;
974 
975 		this_len = env_end - (env_start + src);
976 
977 		max_len = min_t(size_t, PAGE_SIZE, count);
978 		this_len = min(max_len, this_len);
979 
980 		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
981 
982 		if (retval <= 0) {
983 			ret = retval;
984 			break;
985 		}
986 
987 		if (copy_to_user(buf, page, retval)) {
988 			ret = -EFAULT;
989 			break;
990 		}
991 
992 		ret += retval;
993 		src += retval;
994 		buf += retval;
995 		count -= retval;
996 	}
997 	*ppos = src;
998 	mmput(mm);
999 
1000 free:
1001 	free_page((unsigned long) page);
1002 	return ret;
1003 }
1004 
1005 static const struct file_operations proc_environ_operations = {
1006 	.open		= environ_open,
1007 	.read		= environ_read,
1008 	.llseek		= generic_file_llseek,
1009 	.release	= mem_release,
1010 };
1011 
1012 static int auxv_open(struct inode *inode, struct file *file)
1013 {
1014 	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1015 }
1016 
1017 static ssize_t auxv_read(struct file *file, char __user *buf,
1018 			size_t count, loff_t *ppos)
1019 {
1020 	struct mm_struct *mm = file->private_data;
1021 	unsigned int nwords = 0;
1022 
1023 	if (!mm)
1024 		return 0;
1025 	do {
1026 		nwords += 2;
1027 	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1028 	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1029 				       nwords * sizeof(mm->saved_auxv[0]));
1030 }
1031 
1032 static const struct file_operations proc_auxv_operations = {
1033 	.open		= auxv_open,
1034 	.read		= auxv_read,
1035 	.llseek		= generic_file_llseek,
1036 	.release	= mem_release,
1037 };
1038 
1039 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1040 			    loff_t *ppos)
1041 {
1042 	struct task_struct *task = get_proc_task(file_inode(file));
1043 	char buffer[PROC_NUMBUF];
1044 	int oom_adj = OOM_ADJUST_MIN;
1045 	size_t len;
1046 
1047 	if (!task)
1048 		return -ESRCH;
1049 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1050 		oom_adj = OOM_ADJUST_MAX;
1051 	else
1052 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1053 			  OOM_SCORE_ADJ_MAX;
1054 	put_task_struct(task);
1055 	if (oom_adj > OOM_ADJUST_MAX)
1056 		oom_adj = OOM_ADJUST_MAX;
1057 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1058 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1059 }
1060 
1061 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1062 {
1063 	struct mm_struct *mm = NULL;
1064 	struct task_struct *task;
1065 	int err = 0;
1066 
1067 	task = get_proc_task(file_inode(file));
1068 	if (!task)
1069 		return -ESRCH;
1070 
1071 	mutex_lock(&oom_adj_mutex);
1072 	if (legacy) {
1073 		if (oom_adj < task->signal->oom_score_adj &&
1074 				!capable(CAP_SYS_RESOURCE)) {
1075 			err = -EACCES;
1076 			goto err_unlock;
1077 		}
1078 		/*
1079 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1080 		 * /proc/pid/oom_score_adj instead.
1081 		 */
1082 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1083 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1084 			  task_pid_nr(task));
1085 	} else {
1086 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1087 				!capable(CAP_SYS_RESOURCE)) {
1088 			err = -EACCES;
1089 			goto err_unlock;
1090 		}
1091 	}
1092 
1093 	/*
1094 	 * Make sure we will check other processes sharing the mm if this is
1095 	 * not vfrok which wants its own oom_score_adj.
1096 	 * pin the mm so it doesn't go away and get reused after task_unlock
1097 	 */
1098 	if (!task->vfork_done) {
1099 		struct task_struct *p = find_lock_task_mm(task);
1100 
1101 		if (p) {
1102 			if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1103 				mm = p->mm;
1104 				mmgrab(mm);
1105 			}
1106 			task_unlock(p);
1107 		}
1108 	}
1109 
1110 	task->signal->oom_score_adj = oom_adj;
1111 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1112 		task->signal->oom_score_adj_min = (short)oom_adj;
1113 	trace_oom_score_adj_update(task);
1114 
1115 	if (mm) {
1116 		struct task_struct *p;
1117 
1118 		rcu_read_lock();
1119 		for_each_process(p) {
1120 			if (same_thread_group(task, p))
1121 				continue;
1122 
1123 			/* do not touch kernel threads or the global init */
1124 			if (p->flags & PF_KTHREAD || is_global_init(p))
1125 				continue;
1126 
1127 			task_lock(p);
1128 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1129 				p->signal->oom_score_adj = oom_adj;
1130 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1131 					p->signal->oom_score_adj_min = (short)oom_adj;
1132 			}
1133 			task_unlock(p);
1134 		}
1135 		rcu_read_unlock();
1136 		mmdrop(mm);
1137 	}
1138 err_unlock:
1139 	mutex_unlock(&oom_adj_mutex);
1140 	put_task_struct(task);
1141 	return err;
1142 }
1143 
1144 /*
1145  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1146  * kernels.  The effective policy is defined by oom_score_adj, which has a
1147  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1148  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1149  * Processes that become oom disabled via oom_adj will still be oom disabled
1150  * with this implementation.
1151  *
1152  * oom_adj cannot be removed since existing userspace binaries use it.
1153  */
1154 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1155 			     size_t count, loff_t *ppos)
1156 {
1157 	char buffer[PROC_NUMBUF];
1158 	int oom_adj;
1159 	int err;
1160 
1161 	memset(buffer, 0, sizeof(buffer));
1162 	if (count > sizeof(buffer) - 1)
1163 		count = sizeof(buffer) - 1;
1164 	if (copy_from_user(buffer, buf, count)) {
1165 		err = -EFAULT;
1166 		goto out;
1167 	}
1168 
1169 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1170 	if (err)
1171 		goto out;
1172 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1173 	     oom_adj != OOM_DISABLE) {
1174 		err = -EINVAL;
1175 		goto out;
1176 	}
1177 
1178 	/*
1179 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1180 	 * value is always attainable.
1181 	 */
1182 	if (oom_adj == OOM_ADJUST_MAX)
1183 		oom_adj = OOM_SCORE_ADJ_MAX;
1184 	else
1185 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1186 
1187 	err = __set_oom_adj(file, oom_adj, true);
1188 out:
1189 	return err < 0 ? err : count;
1190 }
1191 
1192 static const struct file_operations proc_oom_adj_operations = {
1193 	.read		= oom_adj_read,
1194 	.write		= oom_adj_write,
1195 	.llseek		= generic_file_llseek,
1196 };
1197 
1198 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1199 					size_t count, loff_t *ppos)
1200 {
1201 	struct task_struct *task = get_proc_task(file_inode(file));
1202 	char buffer[PROC_NUMBUF];
1203 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1204 	size_t len;
1205 
1206 	if (!task)
1207 		return -ESRCH;
1208 	oom_score_adj = task->signal->oom_score_adj;
1209 	put_task_struct(task);
1210 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1211 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1212 }
1213 
1214 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1215 					size_t count, loff_t *ppos)
1216 {
1217 	char buffer[PROC_NUMBUF];
1218 	int oom_score_adj;
1219 	int err;
1220 
1221 	memset(buffer, 0, sizeof(buffer));
1222 	if (count > sizeof(buffer) - 1)
1223 		count = sizeof(buffer) - 1;
1224 	if (copy_from_user(buffer, buf, count)) {
1225 		err = -EFAULT;
1226 		goto out;
1227 	}
1228 
1229 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1230 	if (err)
1231 		goto out;
1232 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1233 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1234 		err = -EINVAL;
1235 		goto out;
1236 	}
1237 
1238 	err = __set_oom_adj(file, oom_score_adj, false);
1239 out:
1240 	return err < 0 ? err : count;
1241 }
1242 
1243 static const struct file_operations proc_oom_score_adj_operations = {
1244 	.read		= oom_score_adj_read,
1245 	.write		= oom_score_adj_write,
1246 	.llseek		= default_llseek,
1247 };
1248 
1249 #ifdef CONFIG_AUDIT
1250 #define TMPBUFLEN 11
1251 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1252 				  size_t count, loff_t *ppos)
1253 {
1254 	struct inode * inode = file_inode(file);
1255 	struct task_struct *task = get_proc_task(inode);
1256 	ssize_t length;
1257 	char tmpbuf[TMPBUFLEN];
1258 
1259 	if (!task)
1260 		return -ESRCH;
1261 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1262 			   from_kuid(file->f_cred->user_ns,
1263 				     audit_get_loginuid(task)));
1264 	put_task_struct(task);
1265 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1266 }
1267 
1268 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1269 				   size_t count, loff_t *ppos)
1270 {
1271 	struct inode * inode = file_inode(file);
1272 	uid_t loginuid;
1273 	kuid_t kloginuid;
1274 	int rv;
1275 
1276 	/* Don't let kthreads write their own loginuid */
1277 	if (current->flags & PF_KTHREAD)
1278 		return -EPERM;
1279 
1280 	rcu_read_lock();
1281 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1282 		rcu_read_unlock();
1283 		return -EPERM;
1284 	}
1285 	rcu_read_unlock();
1286 
1287 	if (*ppos != 0) {
1288 		/* No partial writes. */
1289 		return -EINVAL;
1290 	}
1291 
1292 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1293 	if (rv < 0)
1294 		return rv;
1295 
1296 	/* is userspace tring to explicitly UNSET the loginuid? */
1297 	if (loginuid == AUDIT_UID_UNSET) {
1298 		kloginuid = INVALID_UID;
1299 	} else {
1300 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1301 		if (!uid_valid(kloginuid))
1302 			return -EINVAL;
1303 	}
1304 
1305 	rv = audit_set_loginuid(kloginuid);
1306 	if (rv < 0)
1307 		return rv;
1308 	return count;
1309 }
1310 
1311 static const struct file_operations proc_loginuid_operations = {
1312 	.read		= proc_loginuid_read,
1313 	.write		= proc_loginuid_write,
1314 	.llseek		= generic_file_llseek,
1315 };
1316 
1317 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1318 				  size_t count, loff_t *ppos)
1319 {
1320 	struct inode * inode = file_inode(file);
1321 	struct task_struct *task = get_proc_task(inode);
1322 	ssize_t length;
1323 	char tmpbuf[TMPBUFLEN];
1324 
1325 	if (!task)
1326 		return -ESRCH;
1327 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1328 				audit_get_sessionid(task));
1329 	put_task_struct(task);
1330 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1331 }
1332 
1333 static const struct file_operations proc_sessionid_operations = {
1334 	.read		= proc_sessionid_read,
1335 	.llseek		= generic_file_llseek,
1336 };
1337 #endif
1338 
1339 #ifdef CONFIG_FAULT_INJECTION
1340 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1341 				      size_t count, loff_t *ppos)
1342 {
1343 	struct task_struct *task = get_proc_task(file_inode(file));
1344 	char buffer[PROC_NUMBUF];
1345 	size_t len;
1346 	int make_it_fail;
1347 
1348 	if (!task)
1349 		return -ESRCH;
1350 	make_it_fail = task->make_it_fail;
1351 	put_task_struct(task);
1352 
1353 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1354 
1355 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1356 }
1357 
1358 static ssize_t proc_fault_inject_write(struct file * file,
1359 			const char __user * buf, size_t count, loff_t *ppos)
1360 {
1361 	struct task_struct *task;
1362 	char buffer[PROC_NUMBUF];
1363 	int make_it_fail;
1364 	int rv;
1365 
1366 	if (!capable(CAP_SYS_RESOURCE))
1367 		return -EPERM;
1368 	memset(buffer, 0, sizeof(buffer));
1369 	if (count > sizeof(buffer) - 1)
1370 		count = sizeof(buffer) - 1;
1371 	if (copy_from_user(buffer, buf, count))
1372 		return -EFAULT;
1373 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1374 	if (rv < 0)
1375 		return rv;
1376 	if (make_it_fail < 0 || make_it_fail > 1)
1377 		return -EINVAL;
1378 
1379 	task = get_proc_task(file_inode(file));
1380 	if (!task)
1381 		return -ESRCH;
1382 	task->make_it_fail = make_it_fail;
1383 	put_task_struct(task);
1384 
1385 	return count;
1386 }
1387 
1388 static const struct file_operations proc_fault_inject_operations = {
1389 	.read		= proc_fault_inject_read,
1390 	.write		= proc_fault_inject_write,
1391 	.llseek		= generic_file_llseek,
1392 };
1393 
1394 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1395 				   size_t count, loff_t *ppos)
1396 {
1397 	struct task_struct *task;
1398 	int err;
1399 	unsigned int n;
1400 
1401 	err = kstrtouint_from_user(buf, count, 0, &n);
1402 	if (err)
1403 		return err;
1404 
1405 	task = get_proc_task(file_inode(file));
1406 	if (!task)
1407 		return -ESRCH;
1408 	task->fail_nth = n;
1409 	put_task_struct(task);
1410 
1411 	return count;
1412 }
1413 
1414 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1415 				  size_t count, loff_t *ppos)
1416 {
1417 	struct task_struct *task;
1418 	char numbuf[PROC_NUMBUF];
1419 	ssize_t len;
1420 
1421 	task = get_proc_task(file_inode(file));
1422 	if (!task)
1423 		return -ESRCH;
1424 	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1425 	put_task_struct(task);
1426 	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1427 }
1428 
1429 static const struct file_operations proc_fail_nth_operations = {
1430 	.read		= proc_fail_nth_read,
1431 	.write		= proc_fail_nth_write,
1432 };
1433 #endif
1434 
1435 
1436 #ifdef CONFIG_SCHED_DEBUG
1437 /*
1438  * Print out various scheduling related per-task fields:
1439  */
1440 static int sched_show(struct seq_file *m, void *v)
1441 {
1442 	struct inode *inode = m->private;
1443 	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1444 	struct task_struct *p;
1445 
1446 	p = get_proc_task(inode);
1447 	if (!p)
1448 		return -ESRCH;
1449 	proc_sched_show_task(p, ns, m);
1450 
1451 	put_task_struct(p);
1452 
1453 	return 0;
1454 }
1455 
1456 static ssize_t
1457 sched_write(struct file *file, const char __user *buf,
1458 	    size_t count, loff_t *offset)
1459 {
1460 	struct inode *inode = file_inode(file);
1461 	struct task_struct *p;
1462 
1463 	p = get_proc_task(inode);
1464 	if (!p)
1465 		return -ESRCH;
1466 	proc_sched_set_task(p);
1467 
1468 	put_task_struct(p);
1469 
1470 	return count;
1471 }
1472 
1473 static int sched_open(struct inode *inode, struct file *filp)
1474 {
1475 	return single_open(filp, sched_show, inode);
1476 }
1477 
1478 static const struct file_operations proc_pid_sched_operations = {
1479 	.open		= sched_open,
1480 	.read		= seq_read,
1481 	.write		= sched_write,
1482 	.llseek		= seq_lseek,
1483 	.release	= single_release,
1484 };
1485 
1486 #endif
1487 
1488 #ifdef CONFIG_SCHED_AUTOGROUP
1489 /*
1490  * Print out autogroup related information:
1491  */
1492 static int sched_autogroup_show(struct seq_file *m, void *v)
1493 {
1494 	struct inode *inode = m->private;
1495 	struct task_struct *p;
1496 
1497 	p = get_proc_task(inode);
1498 	if (!p)
1499 		return -ESRCH;
1500 	proc_sched_autogroup_show_task(p, m);
1501 
1502 	put_task_struct(p);
1503 
1504 	return 0;
1505 }
1506 
1507 static ssize_t
1508 sched_autogroup_write(struct file *file, const char __user *buf,
1509 	    size_t count, loff_t *offset)
1510 {
1511 	struct inode *inode = file_inode(file);
1512 	struct task_struct *p;
1513 	char buffer[PROC_NUMBUF];
1514 	int nice;
1515 	int err;
1516 
1517 	memset(buffer, 0, sizeof(buffer));
1518 	if (count > sizeof(buffer) - 1)
1519 		count = sizeof(buffer) - 1;
1520 	if (copy_from_user(buffer, buf, count))
1521 		return -EFAULT;
1522 
1523 	err = kstrtoint(strstrip(buffer), 0, &nice);
1524 	if (err < 0)
1525 		return err;
1526 
1527 	p = get_proc_task(inode);
1528 	if (!p)
1529 		return -ESRCH;
1530 
1531 	err = proc_sched_autogroup_set_nice(p, nice);
1532 	if (err)
1533 		count = err;
1534 
1535 	put_task_struct(p);
1536 
1537 	return count;
1538 }
1539 
1540 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1541 {
1542 	int ret;
1543 
1544 	ret = single_open(filp, sched_autogroup_show, NULL);
1545 	if (!ret) {
1546 		struct seq_file *m = filp->private_data;
1547 
1548 		m->private = inode;
1549 	}
1550 	return ret;
1551 }
1552 
1553 static const struct file_operations proc_pid_sched_autogroup_operations = {
1554 	.open		= sched_autogroup_open,
1555 	.read		= seq_read,
1556 	.write		= sched_autogroup_write,
1557 	.llseek		= seq_lseek,
1558 	.release	= single_release,
1559 };
1560 
1561 #endif /* CONFIG_SCHED_AUTOGROUP */
1562 
1563 #ifdef CONFIG_TIME_NS
1564 static int timens_offsets_show(struct seq_file *m, void *v)
1565 {
1566 	struct task_struct *p;
1567 
1568 	p = get_proc_task(file_inode(m->file));
1569 	if (!p)
1570 		return -ESRCH;
1571 	proc_timens_show_offsets(p, m);
1572 
1573 	put_task_struct(p);
1574 
1575 	return 0;
1576 }
1577 
1578 static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1579 				    size_t count, loff_t *ppos)
1580 {
1581 	struct inode *inode = file_inode(file);
1582 	struct proc_timens_offset offsets[2];
1583 	char *kbuf = NULL, *pos, *next_line;
1584 	struct task_struct *p;
1585 	int ret, noffsets;
1586 
1587 	/* Only allow < page size writes at the beginning of the file */
1588 	if ((*ppos != 0) || (count >= PAGE_SIZE))
1589 		return -EINVAL;
1590 
1591 	/* Slurp in the user data */
1592 	kbuf = memdup_user_nul(buf, count);
1593 	if (IS_ERR(kbuf))
1594 		return PTR_ERR(kbuf);
1595 
1596 	/* Parse the user data */
1597 	ret = -EINVAL;
1598 	noffsets = 0;
1599 	for (pos = kbuf; pos; pos = next_line) {
1600 		struct proc_timens_offset *off = &offsets[noffsets];
1601 		char clock[10];
1602 		int err;
1603 
1604 		/* Find the end of line and ensure we don't look past it */
1605 		next_line = strchr(pos, '\n');
1606 		if (next_line) {
1607 			*next_line = '\0';
1608 			next_line++;
1609 			if (*next_line == '\0')
1610 				next_line = NULL;
1611 		}
1612 
1613 		err = sscanf(pos, "%9s %lld %lu", clock,
1614 				&off->val.tv_sec, &off->val.tv_nsec);
1615 		if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1616 			goto out;
1617 
1618 		clock[sizeof(clock) - 1] = 0;
1619 		if (strcmp(clock, "monotonic") == 0 ||
1620 		    strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1621 			off->clockid = CLOCK_MONOTONIC;
1622 		else if (strcmp(clock, "boottime") == 0 ||
1623 			 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1624 			off->clockid = CLOCK_BOOTTIME;
1625 		else
1626 			goto out;
1627 
1628 		noffsets++;
1629 		if (noffsets == ARRAY_SIZE(offsets)) {
1630 			if (next_line)
1631 				count = next_line - kbuf;
1632 			break;
1633 		}
1634 	}
1635 
1636 	ret = -ESRCH;
1637 	p = get_proc_task(inode);
1638 	if (!p)
1639 		goto out;
1640 	ret = proc_timens_set_offset(file, p, offsets, noffsets);
1641 	put_task_struct(p);
1642 	if (ret)
1643 		goto out;
1644 
1645 	ret = count;
1646 out:
1647 	kfree(kbuf);
1648 	return ret;
1649 }
1650 
1651 static int timens_offsets_open(struct inode *inode, struct file *filp)
1652 {
1653 	return single_open(filp, timens_offsets_show, inode);
1654 }
1655 
1656 static const struct file_operations proc_timens_offsets_operations = {
1657 	.open		= timens_offsets_open,
1658 	.read		= seq_read,
1659 	.write		= timens_offsets_write,
1660 	.llseek		= seq_lseek,
1661 	.release	= single_release,
1662 };
1663 #endif /* CONFIG_TIME_NS */
1664 
1665 static ssize_t comm_write(struct file *file, const char __user *buf,
1666 				size_t count, loff_t *offset)
1667 {
1668 	struct inode *inode = file_inode(file);
1669 	struct task_struct *p;
1670 	char buffer[TASK_COMM_LEN];
1671 	const size_t maxlen = sizeof(buffer) - 1;
1672 
1673 	memset(buffer, 0, sizeof(buffer));
1674 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1675 		return -EFAULT;
1676 
1677 	p = get_proc_task(inode);
1678 	if (!p)
1679 		return -ESRCH;
1680 
1681 	if (same_thread_group(current, p)) {
1682 		set_task_comm(p, buffer);
1683 		proc_comm_connector(p);
1684 	}
1685 	else
1686 		count = -EINVAL;
1687 
1688 	put_task_struct(p);
1689 
1690 	return count;
1691 }
1692 
1693 static int comm_show(struct seq_file *m, void *v)
1694 {
1695 	struct inode *inode = m->private;
1696 	struct task_struct *p;
1697 
1698 	p = get_proc_task(inode);
1699 	if (!p)
1700 		return -ESRCH;
1701 
1702 	proc_task_name(m, p, false);
1703 	seq_putc(m, '\n');
1704 
1705 	put_task_struct(p);
1706 
1707 	return 0;
1708 }
1709 
1710 static int comm_open(struct inode *inode, struct file *filp)
1711 {
1712 	return single_open(filp, comm_show, inode);
1713 }
1714 
1715 static const struct file_operations proc_pid_set_comm_operations = {
1716 	.open		= comm_open,
1717 	.read		= seq_read,
1718 	.write		= comm_write,
1719 	.llseek		= seq_lseek,
1720 	.release	= single_release,
1721 };
1722 
1723 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1724 {
1725 	struct task_struct *task;
1726 	struct file *exe_file;
1727 
1728 	task = get_proc_task(d_inode(dentry));
1729 	if (!task)
1730 		return -ENOENT;
1731 	exe_file = get_task_exe_file(task);
1732 	put_task_struct(task);
1733 	if (exe_file) {
1734 		*exe_path = exe_file->f_path;
1735 		path_get(&exe_file->f_path);
1736 		fput(exe_file);
1737 		return 0;
1738 	} else
1739 		return -ENOENT;
1740 }
1741 
1742 static const char *proc_pid_get_link(struct dentry *dentry,
1743 				     struct inode *inode,
1744 				     struct delayed_call *done)
1745 {
1746 	struct path path;
1747 	int error = -EACCES;
1748 
1749 	if (!dentry)
1750 		return ERR_PTR(-ECHILD);
1751 
1752 	/* Are we allowed to snoop on the tasks file descriptors? */
1753 	if (!proc_fd_access_allowed(inode))
1754 		goto out;
1755 
1756 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1757 	if (error)
1758 		goto out;
1759 
1760 	error = nd_jump_link(&path);
1761 out:
1762 	return ERR_PTR(error);
1763 }
1764 
1765 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1766 {
1767 	char *tmp = (char *)__get_free_page(GFP_KERNEL);
1768 	char *pathname;
1769 	int len;
1770 
1771 	if (!tmp)
1772 		return -ENOMEM;
1773 
1774 	pathname = d_path(path, tmp, PAGE_SIZE);
1775 	len = PTR_ERR(pathname);
1776 	if (IS_ERR(pathname))
1777 		goto out;
1778 	len = tmp + PAGE_SIZE - 1 - pathname;
1779 
1780 	if (len > buflen)
1781 		len = buflen;
1782 	if (copy_to_user(buffer, pathname, len))
1783 		len = -EFAULT;
1784  out:
1785 	free_page((unsigned long)tmp);
1786 	return len;
1787 }
1788 
1789 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1790 {
1791 	int error = -EACCES;
1792 	struct inode *inode = d_inode(dentry);
1793 	struct path path;
1794 
1795 	/* Are we allowed to snoop on the tasks file descriptors? */
1796 	if (!proc_fd_access_allowed(inode))
1797 		goto out;
1798 
1799 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1800 	if (error)
1801 		goto out;
1802 
1803 	error = do_proc_readlink(&path, buffer, buflen);
1804 	path_put(&path);
1805 out:
1806 	return error;
1807 }
1808 
1809 const struct inode_operations proc_pid_link_inode_operations = {
1810 	.readlink	= proc_pid_readlink,
1811 	.get_link	= proc_pid_get_link,
1812 	.setattr	= proc_setattr,
1813 };
1814 
1815 
1816 /* building an inode */
1817 
1818 void task_dump_owner(struct task_struct *task, umode_t mode,
1819 		     kuid_t *ruid, kgid_t *rgid)
1820 {
1821 	/* Depending on the state of dumpable compute who should own a
1822 	 * proc file for a task.
1823 	 */
1824 	const struct cred *cred;
1825 	kuid_t uid;
1826 	kgid_t gid;
1827 
1828 	if (unlikely(task->flags & PF_KTHREAD)) {
1829 		*ruid = GLOBAL_ROOT_UID;
1830 		*rgid = GLOBAL_ROOT_GID;
1831 		return;
1832 	}
1833 
1834 	/* Default to the tasks effective ownership */
1835 	rcu_read_lock();
1836 	cred = __task_cred(task);
1837 	uid = cred->euid;
1838 	gid = cred->egid;
1839 	rcu_read_unlock();
1840 
1841 	/*
1842 	 * Before the /proc/pid/status file was created the only way to read
1843 	 * the effective uid of a /process was to stat /proc/pid.  Reading
1844 	 * /proc/pid/status is slow enough that procps and other packages
1845 	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1846 	 * made this apply to all per process world readable and executable
1847 	 * directories.
1848 	 */
1849 	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1850 		struct mm_struct *mm;
1851 		task_lock(task);
1852 		mm = task->mm;
1853 		/* Make non-dumpable tasks owned by some root */
1854 		if (mm) {
1855 			if (get_dumpable(mm) != SUID_DUMP_USER) {
1856 				struct user_namespace *user_ns = mm->user_ns;
1857 
1858 				uid = make_kuid(user_ns, 0);
1859 				if (!uid_valid(uid))
1860 					uid = GLOBAL_ROOT_UID;
1861 
1862 				gid = make_kgid(user_ns, 0);
1863 				if (!gid_valid(gid))
1864 					gid = GLOBAL_ROOT_GID;
1865 			}
1866 		} else {
1867 			uid = GLOBAL_ROOT_UID;
1868 			gid = GLOBAL_ROOT_GID;
1869 		}
1870 		task_unlock(task);
1871 	}
1872 	*ruid = uid;
1873 	*rgid = gid;
1874 }
1875 
1876 void proc_pid_evict_inode(struct proc_inode *ei)
1877 {
1878 	struct pid *pid = ei->pid;
1879 
1880 	if (S_ISDIR(ei->vfs_inode.i_mode)) {
1881 		spin_lock(&pid->lock);
1882 		hlist_del_init_rcu(&ei->sibling_inodes);
1883 		spin_unlock(&pid->lock);
1884 	}
1885 
1886 	put_pid(pid);
1887 }
1888 
1889 struct inode *proc_pid_make_inode(struct super_block * sb,
1890 				  struct task_struct *task, umode_t mode)
1891 {
1892 	struct inode * inode;
1893 	struct proc_inode *ei;
1894 	struct pid *pid;
1895 
1896 	/* We need a new inode */
1897 
1898 	inode = new_inode(sb);
1899 	if (!inode)
1900 		goto out;
1901 
1902 	/* Common stuff */
1903 	ei = PROC_I(inode);
1904 	inode->i_mode = mode;
1905 	inode->i_ino = get_next_ino();
1906 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1907 	inode->i_op = &proc_def_inode_operations;
1908 
1909 	/*
1910 	 * grab the reference to task.
1911 	 */
1912 	pid = get_task_pid(task, PIDTYPE_PID);
1913 	if (!pid)
1914 		goto out_unlock;
1915 
1916 	/* Let the pid remember us for quick removal */
1917 	ei->pid = pid;
1918 	if (S_ISDIR(mode)) {
1919 		spin_lock(&pid->lock);
1920 		hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1921 		spin_unlock(&pid->lock);
1922 	}
1923 
1924 	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1925 	security_task_to_inode(task, inode);
1926 
1927 out:
1928 	return inode;
1929 
1930 out_unlock:
1931 	iput(inode);
1932 	return NULL;
1933 }
1934 
1935 int pid_getattr(struct user_namespace *mnt_userns, const struct path *path,
1936 		struct kstat *stat, u32 request_mask, unsigned int query_flags)
1937 {
1938 	struct inode *inode = d_inode(path->dentry);
1939 	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
1940 	struct task_struct *task;
1941 
1942 	generic_fillattr(&init_user_ns, inode, stat);
1943 
1944 	stat->uid = GLOBAL_ROOT_UID;
1945 	stat->gid = GLOBAL_ROOT_GID;
1946 	rcu_read_lock();
1947 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1948 	if (task) {
1949 		if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
1950 			rcu_read_unlock();
1951 			/*
1952 			 * This doesn't prevent learning whether PID exists,
1953 			 * it only makes getattr() consistent with readdir().
1954 			 */
1955 			return -ENOENT;
1956 		}
1957 		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1958 	}
1959 	rcu_read_unlock();
1960 	return 0;
1961 }
1962 
1963 /* dentry stuff */
1964 
1965 /*
1966  * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1967  */
1968 void pid_update_inode(struct task_struct *task, struct inode *inode)
1969 {
1970 	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1971 
1972 	inode->i_mode &= ~(S_ISUID | S_ISGID);
1973 	security_task_to_inode(task, inode);
1974 }
1975 
1976 /*
1977  * Rewrite the inode's ownerships here because the owning task may have
1978  * performed a setuid(), etc.
1979  *
1980  */
1981 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1982 {
1983 	struct inode *inode;
1984 	struct task_struct *task;
1985 	int ret = 0;
1986 
1987 	rcu_read_lock();
1988 	inode = d_inode_rcu(dentry);
1989 	if (!inode)
1990 		goto out;
1991 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1992 
1993 	if (task) {
1994 		pid_update_inode(task, inode);
1995 		ret = 1;
1996 	}
1997 out:
1998 	rcu_read_unlock();
1999 	return ret;
2000 }
2001 
2002 static inline bool proc_inode_is_dead(struct inode *inode)
2003 {
2004 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2005 }
2006 
2007 int pid_delete_dentry(const struct dentry *dentry)
2008 {
2009 	/* Is the task we represent dead?
2010 	 * If so, then don't put the dentry on the lru list,
2011 	 * kill it immediately.
2012 	 */
2013 	return proc_inode_is_dead(d_inode(dentry));
2014 }
2015 
2016 const struct dentry_operations pid_dentry_operations =
2017 {
2018 	.d_revalidate	= pid_revalidate,
2019 	.d_delete	= pid_delete_dentry,
2020 };
2021 
2022 /* Lookups */
2023 
2024 /*
2025  * Fill a directory entry.
2026  *
2027  * If possible create the dcache entry and derive our inode number and
2028  * file type from dcache entry.
2029  *
2030  * Since all of the proc inode numbers are dynamically generated, the inode
2031  * numbers do not exist until the inode is cache.  This means creating
2032  * the dcache entry in readdir is necessary to keep the inode numbers
2033  * reported by readdir in sync with the inode numbers reported
2034  * by stat.
2035  */
2036 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2037 	const char *name, unsigned int len,
2038 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
2039 {
2040 	struct dentry *child, *dir = file->f_path.dentry;
2041 	struct qstr qname = QSTR_INIT(name, len);
2042 	struct inode *inode;
2043 	unsigned type = DT_UNKNOWN;
2044 	ino_t ino = 1;
2045 
2046 	child = d_hash_and_lookup(dir, &qname);
2047 	if (!child) {
2048 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2049 		child = d_alloc_parallel(dir, &qname, &wq);
2050 		if (IS_ERR(child))
2051 			goto end_instantiate;
2052 		if (d_in_lookup(child)) {
2053 			struct dentry *res;
2054 			res = instantiate(child, task, ptr);
2055 			d_lookup_done(child);
2056 			if (unlikely(res)) {
2057 				dput(child);
2058 				child = res;
2059 				if (IS_ERR(child))
2060 					goto end_instantiate;
2061 			}
2062 		}
2063 	}
2064 	inode = d_inode(child);
2065 	ino = inode->i_ino;
2066 	type = inode->i_mode >> 12;
2067 	dput(child);
2068 end_instantiate:
2069 	return dir_emit(ctx, name, len, ino, type);
2070 }
2071 
2072 /*
2073  * dname_to_vma_addr - maps a dentry name into two unsigned longs
2074  * which represent vma start and end addresses.
2075  */
2076 static int dname_to_vma_addr(struct dentry *dentry,
2077 			     unsigned long *start, unsigned long *end)
2078 {
2079 	const char *str = dentry->d_name.name;
2080 	unsigned long long sval, eval;
2081 	unsigned int len;
2082 
2083 	if (str[0] == '0' && str[1] != '-')
2084 		return -EINVAL;
2085 	len = _parse_integer(str, 16, &sval);
2086 	if (len & KSTRTOX_OVERFLOW)
2087 		return -EINVAL;
2088 	if (sval != (unsigned long)sval)
2089 		return -EINVAL;
2090 	str += len;
2091 
2092 	if (*str != '-')
2093 		return -EINVAL;
2094 	str++;
2095 
2096 	if (str[0] == '0' && str[1])
2097 		return -EINVAL;
2098 	len = _parse_integer(str, 16, &eval);
2099 	if (len & KSTRTOX_OVERFLOW)
2100 		return -EINVAL;
2101 	if (eval != (unsigned long)eval)
2102 		return -EINVAL;
2103 	str += len;
2104 
2105 	if (*str != '\0')
2106 		return -EINVAL;
2107 
2108 	*start = sval;
2109 	*end = eval;
2110 
2111 	return 0;
2112 }
2113 
2114 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2115 {
2116 	unsigned long vm_start, vm_end;
2117 	bool exact_vma_exists = false;
2118 	struct mm_struct *mm = NULL;
2119 	struct task_struct *task;
2120 	struct inode *inode;
2121 	int status = 0;
2122 
2123 	if (flags & LOOKUP_RCU)
2124 		return -ECHILD;
2125 
2126 	inode = d_inode(dentry);
2127 	task = get_proc_task(inode);
2128 	if (!task)
2129 		goto out_notask;
2130 
2131 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2132 	if (IS_ERR_OR_NULL(mm))
2133 		goto out;
2134 
2135 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2136 		status = mmap_read_lock_killable(mm);
2137 		if (!status) {
2138 			exact_vma_exists = !!find_exact_vma(mm, vm_start,
2139 							    vm_end);
2140 			mmap_read_unlock(mm);
2141 		}
2142 	}
2143 
2144 	mmput(mm);
2145 
2146 	if (exact_vma_exists) {
2147 		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2148 
2149 		security_task_to_inode(task, inode);
2150 		status = 1;
2151 	}
2152 
2153 out:
2154 	put_task_struct(task);
2155 
2156 out_notask:
2157 	return status;
2158 }
2159 
2160 static const struct dentry_operations tid_map_files_dentry_operations = {
2161 	.d_revalidate	= map_files_d_revalidate,
2162 	.d_delete	= pid_delete_dentry,
2163 };
2164 
2165 static int map_files_get_link(struct dentry *dentry, struct path *path)
2166 {
2167 	unsigned long vm_start, vm_end;
2168 	struct vm_area_struct *vma;
2169 	struct task_struct *task;
2170 	struct mm_struct *mm;
2171 	int rc;
2172 
2173 	rc = -ENOENT;
2174 	task = get_proc_task(d_inode(dentry));
2175 	if (!task)
2176 		goto out;
2177 
2178 	mm = get_task_mm(task);
2179 	put_task_struct(task);
2180 	if (!mm)
2181 		goto out;
2182 
2183 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2184 	if (rc)
2185 		goto out_mmput;
2186 
2187 	rc = mmap_read_lock_killable(mm);
2188 	if (rc)
2189 		goto out_mmput;
2190 
2191 	rc = -ENOENT;
2192 	vma = find_exact_vma(mm, vm_start, vm_end);
2193 	if (vma && vma->vm_file) {
2194 		*path = vma->vm_file->f_path;
2195 		path_get(path);
2196 		rc = 0;
2197 	}
2198 	mmap_read_unlock(mm);
2199 
2200 out_mmput:
2201 	mmput(mm);
2202 out:
2203 	return rc;
2204 }
2205 
2206 struct map_files_info {
2207 	unsigned long	start;
2208 	unsigned long	end;
2209 	fmode_t		mode;
2210 };
2211 
2212 /*
2213  * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2214  * to concerns about how the symlinks may be used to bypass permissions on
2215  * ancestor directories in the path to the file in question.
2216  */
2217 static const char *
2218 proc_map_files_get_link(struct dentry *dentry,
2219 			struct inode *inode,
2220 		        struct delayed_call *done)
2221 {
2222 	if (!checkpoint_restore_ns_capable(&init_user_ns))
2223 		return ERR_PTR(-EPERM);
2224 
2225 	return proc_pid_get_link(dentry, inode, done);
2226 }
2227 
2228 /*
2229  * Identical to proc_pid_link_inode_operations except for get_link()
2230  */
2231 static const struct inode_operations proc_map_files_link_inode_operations = {
2232 	.readlink	= proc_pid_readlink,
2233 	.get_link	= proc_map_files_get_link,
2234 	.setattr	= proc_setattr,
2235 };
2236 
2237 static struct dentry *
2238 proc_map_files_instantiate(struct dentry *dentry,
2239 			   struct task_struct *task, const void *ptr)
2240 {
2241 	fmode_t mode = (fmode_t)(unsigned long)ptr;
2242 	struct proc_inode *ei;
2243 	struct inode *inode;
2244 
2245 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2246 				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2247 				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2248 	if (!inode)
2249 		return ERR_PTR(-ENOENT);
2250 
2251 	ei = PROC_I(inode);
2252 	ei->op.proc_get_link = map_files_get_link;
2253 
2254 	inode->i_op = &proc_map_files_link_inode_operations;
2255 	inode->i_size = 64;
2256 
2257 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2258 	return d_splice_alias(inode, dentry);
2259 }
2260 
2261 static struct dentry *proc_map_files_lookup(struct inode *dir,
2262 		struct dentry *dentry, unsigned int flags)
2263 {
2264 	unsigned long vm_start, vm_end;
2265 	struct vm_area_struct *vma;
2266 	struct task_struct *task;
2267 	struct dentry *result;
2268 	struct mm_struct *mm;
2269 
2270 	result = ERR_PTR(-ENOENT);
2271 	task = get_proc_task(dir);
2272 	if (!task)
2273 		goto out;
2274 
2275 	result = ERR_PTR(-EACCES);
2276 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2277 		goto out_put_task;
2278 
2279 	result = ERR_PTR(-ENOENT);
2280 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2281 		goto out_put_task;
2282 
2283 	mm = get_task_mm(task);
2284 	if (!mm)
2285 		goto out_put_task;
2286 
2287 	result = ERR_PTR(-EINTR);
2288 	if (mmap_read_lock_killable(mm))
2289 		goto out_put_mm;
2290 
2291 	result = ERR_PTR(-ENOENT);
2292 	vma = find_exact_vma(mm, vm_start, vm_end);
2293 	if (!vma)
2294 		goto out_no_vma;
2295 
2296 	if (vma->vm_file)
2297 		result = proc_map_files_instantiate(dentry, task,
2298 				(void *)(unsigned long)vma->vm_file->f_mode);
2299 
2300 out_no_vma:
2301 	mmap_read_unlock(mm);
2302 out_put_mm:
2303 	mmput(mm);
2304 out_put_task:
2305 	put_task_struct(task);
2306 out:
2307 	return result;
2308 }
2309 
2310 static const struct inode_operations proc_map_files_inode_operations = {
2311 	.lookup		= proc_map_files_lookup,
2312 	.permission	= proc_fd_permission,
2313 	.setattr	= proc_setattr,
2314 };
2315 
2316 static int
2317 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2318 {
2319 	struct vm_area_struct *vma;
2320 	struct task_struct *task;
2321 	struct mm_struct *mm;
2322 	unsigned long nr_files, pos, i;
2323 	GENRADIX(struct map_files_info) fa;
2324 	struct map_files_info *p;
2325 	int ret;
2326 
2327 	genradix_init(&fa);
2328 
2329 	ret = -ENOENT;
2330 	task = get_proc_task(file_inode(file));
2331 	if (!task)
2332 		goto out;
2333 
2334 	ret = -EACCES;
2335 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2336 		goto out_put_task;
2337 
2338 	ret = 0;
2339 	if (!dir_emit_dots(file, ctx))
2340 		goto out_put_task;
2341 
2342 	mm = get_task_mm(task);
2343 	if (!mm)
2344 		goto out_put_task;
2345 
2346 	ret = mmap_read_lock_killable(mm);
2347 	if (ret) {
2348 		mmput(mm);
2349 		goto out_put_task;
2350 	}
2351 
2352 	nr_files = 0;
2353 
2354 	/*
2355 	 * We need two passes here:
2356 	 *
2357 	 *  1) Collect vmas of mapped files with mmap_lock taken
2358 	 *  2) Release mmap_lock and instantiate entries
2359 	 *
2360 	 * otherwise we get lockdep complained, since filldir()
2361 	 * routine might require mmap_lock taken in might_fault().
2362 	 */
2363 
2364 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2365 		if (!vma->vm_file)
2366 			continue;
2367 		if (++pos <= ctx->pos)
2368 			continue;
2369 
2370 		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2371 		if (!p) {
2372 			ret = -ENOMEM;
2373 			mmap_read_unlock(mm);
2374 			mmput(mm);
2375 			goto out_put_task;
2376 		}
2377 
2378 		p->start = vma->vm_start;
2379 		p->end = vma->vm_end;
2380 		p->mode = vma->vm_file->f_mode;
2381 	}
2382 	mmap_read_unlock(mm);
2383 	mmput(mm);
2384 
2385 	for (i = 0; i < nr_files; i++) {
2386 		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2387 		unsigned int len;
2388 
2389 		p = genradix_ptr(&fa, i);
2390 		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2391 		if (!proc_fill_cache(file, ctx,
2392 				      buf, len,
2393 				      proc_map_files_instantiate,
2394 				      task,
2395 				      (void *)(unsigned long)p->mode))
2396 			break;
2397 		ctx->pos++;
2398 	}
2399 
2400 out_put_task:
2401 	put_task_struct(task);
2402 out:
2403 	genradix_free(&fa);
2404 	return ret;
2405 }
2406 
2407 static const struct file_operations proc_map_files_operations = {
2408 	.read		= generic_read_dir,
2409 	.iterate_shared	= proc_map_files_readdir,
2410 	.llseek		= generic_file_llseek,
2411 };
2412 
2413 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2414 struct timers_private {
2415 	struct pid *pid;
2416 	struct task_struct *task;
2417 	struct sighand_struct *sighand;
2418 	struct pid_namespace *ns;
2419 	unsigned long flags;
2420 };
2421 
2422 static void *timers_start(struct seq_file *m, loff_t *pos)
2423 {
2424 	struct timers_private *tp = m->private;
2425 
2426 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2427 	if (!tp->task)
2428 		return ERR_PTR(-ESRCH);
2429 
2430 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2431 	if (!tp->sighand)
2432 		return ERR_PTR(-ESRCH);
2433 
2434 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2435 }
2436 
2437 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2438 {
2439 	struct timers_private *tp = m->private;
2440 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2441 }
2442 
2443 static void timers_stop(struct seq_file *m, void *v)
2444 {
2445 	struct timers_private *tp = m->private;
2446 
2447 	if (tp->sighand) {
2448 		unlock_task_sighand(tp->task, &tp->flags);
2449 		tp->sighand = NULL;
2450 	}
2451 
2452 	if (tp->task) {
2453 		put_task_struct(tp->task);
2454 		tp->task = NULL;
2455 	}
2456 }
2457 
2458 static int show_timer(struct seq_file *m, void *v)
2459 {
2460 	struct k_itimer *timer;
2461 	struct timers_private *tp = m->private;
2462 	int notify;
2463 	static const char * const nstr[] = {
2464 		[SIGEV_SIGNAL] = "signal",
2465 		[SIGEV_NONE] = "none",
2466 		[SIGEV_THREAD] = "thread",
2467 	};
2468 
2469 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2470 	notify = timer->it_sigev_notify;
2471 
2472 	seq_printf(m, "ID: %d\n", timer->it_id);
2473 	seq_printf(m, "signal: %d/%px\n",
2474 		   timer->sigq->info.si_signo,
2475 		   timer->sigq->info.si_value.sival_ptr);
2476 	seq_printf(m, "notify: %s/%s.%d\n",
2477 		   nstr[notify & ~SIGEV_THREAD_ID],
2478 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2479 		   pid_nr_ns(timer->it_pid, tp->ns));
2480 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2481 
2482 	return 0;
2483 }
2484 
2485 static const struct seq_operations proc_timers_seq_ops = {
2486 	.start	= timers_start,
2487 	.next	= timers_next,
2488 	.stop	= timers_stop,
2489 	.show	= show_timer,
2490 };
2491 
2492 static int proc_timers_open(struct inode *inode, struct file *file)
2493 {
2494 	struct timers_private *tp;
2495 
2496 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2497 			sizeof(struct timers_private));
2498 	if (!tp)
2499 		return -ENOMEM;
2500 
2501 	tp->pid = proc_pid(inode);
2502 	tp->ns = proc_pid_ns(inode->i_sb);
2503 	return 0;
2504 }
2505 
2506 static const struct file_operations proc_timers_operations = {
2507 	.open		= proc_timers_open,
2508 	.read		= seq_read,
2509 	.llseek		= seq_lseek,
2510 	.release	= seq_release_private,
2511 };
2512 #endif
2513 
2514 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2515 					size_t count, loff_t *offset)
2516 {
2517 	struct inode *inode = file_inode(file);
2518 	struct task_struct *p;
2519 	u64 slack_ns;
2520 	int err;
2521 
2522 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2523 	if (err < 0)
2524 		return err;
2525 
2526 	p = get_proc_task(inode);
2527 	if (!p)
2528 		return -ESRCH;
2529 
2530 	if (p != current) {
2531 		rcu_read_lock();
2532 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2533 			rcu_read_unlock();
2534 			count = -EPERM;
2535 			goto out;
2536 		}
2537 		rcu_read_unlock();
2538 
2539 		err = security_task_setscheduler(p);
2540 		if (err) {
2541 			count = err;
2542 			goto out;
2543 		}
2544 	}
2545 
2546 	task_lock(p);
2547 	if (slack_ns == 0)
2548 		p->timer_slack_ns = p->default_timer_slack_ns;
2549 	else
2550 		p->timer_slack_ns = slack_ns;
2551 	task_unlock(p);
2552 
2553 out:
2554 	put_task_struct(p);
2555 
2556 	return count;
2557 }
2558 
2559 static int timerslack_ns_show(struct seq_file *m, void *v)
2560 {
2561 	struct inode *inode = m->private;
2562 	struct task_struct *p;
2563 	int err = 0;
2564 
2565 	p = get_proc_task(inode);
2566 	if (!p)
2567 		return -ESRCH;
2568 
2569 	if (p != current) {
2570 		rcu_read_lock();
2571 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2572 			rcu_read_unlock();
2573 			err = -EPERM;
2574 			goto out;
2575 		}
2576 		rcu_read_unlock();
2577 
2578 		err = security_task_getscheduler(p);
2579 		if (err)
2580 			goto out;
2581 	}
2582 
2583 	task_lock(p);
2584 	seq_printf(m, "%llu\n", p->timer_slack_ns);
2585 	task_unlock(p);
2586 
2587 out:
2588 	put_task_struct(p);
2589 
2590 	return err;
2591 }
2592 
2593 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2594 {
2595 	return single_open(filp, timerslack_ns_show, inode);
2596 }
2597 
2598 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2599 	.open		= timerslack_ns_open,
2600 	.read		= seq_read,
2601 	.write		= timerslack_ns_write,
2602 	.llseek		= seq_lseek,
2603 	.release	= single_release,
2604 };
2605 
2606 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2607 	struct task_struct *task, const void *ptr)
2608 {
2609 	const struct pid_entry *p = ptr;
2610 	struct inode *inode;
2611 	struct proc_inode *ei;
2612 
2613 	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2614 	if (!inode)
2615 		return ERR_PTR(-ENOENT);
2616 
2617 	ei = PROC_I(inode);
2618 	if (S_ISDIR(inode->i_mode))
2619 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2620 	if (p->iop)
2621 		inode->i_op = p->iop;
2622 	if (p->fop)
2623 		inode->i_fop = p->fop;
2624 	ei->op = p->op;
2625 	pid_update_inode(task, inode);
2626 	d_set_d_op(dentry, &pid_dentry_operations);
2627 	return d_splice_alias(inode, dentry);
2628 }
2629 
2630 static struct dentry *proc_pident_lookup(struct inode *dir,
2631 					 struct dentry *dentry,
2632 					 const struct pid_entry *p,
2633 					 const struct pid_entry *end)
2634 {
2635 	struct task_struct *task = get_proc_task(dir);
2636 	struct dentry *res = ERR_PTR(-ENOENT);
2637 
2638 	if (!task)
2639 		goto out_no_task;
2640 
2641 	/*
2642 	 * Yes, it does not scale. And it should not. Don't add
2643 	 * new entries into /proc/<tgid>/ without very good reasons.
2644 	 */
2645 	for (; p < end; p++) {
2646 		if (p->len != dentry->d_name.len)
2647 			continue;
2648 		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2649 			res = proc_pident_instantiate(dentry, task, p);
2650 			break;
2651 		}
2652 	}
2653 	put_task_struct(task);
2654 out_no_task:
2655 	return res;
2656 }
2657 
2658 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2659 		const struct pid_entry *ents, unsigned int nents)
2660 {
2661 	struct task_struct *task = get_proc_task(file_inode(file));
2662 	const struct pid_entry *p;
2663 
2664 	if (!task)
2665 		return -ENOENT;
2666 
2667 	if (!dir_emit_dots(file, ctx))
2668 		goto out;
2669 
2670 	if (ctx->pos >= nents + 2)
2671 		goto out;
2672 
2673 	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2674 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2675 				proc_pident_instantiate, task, p))
2676 			break;
2677 		ctx->pos++;
2678 	}
2679 out:
2680 	put_task_struct(task);
2681 	return 0;
2682 }
2683 
2684 #ifdef CONFIG_SECURITY
2685 static int proc_pid_attr_open(struct inode *inode, struct file *file)
2686 {
2687 	file->private_data = NULL;
2688 	__mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2689 	return 0;
2690 }
2691 
2692 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2693 				  size_t count, loff_t *ppos)
2694 {
2695 	struct inode * inode = file_inode(file);
2696 	char *p = NULL;
2697 	ssize_t length;
2698 	struct task_struct *task = get_proc_task(inode);
2699 
2700 	if (!task)
2701 		return -ESRCH;
2702 
2703 	length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2704 				      (char*)file->f_path.dentry->d_name.name,
2705 				      &p);
2706 	put_task_struct(task);
2707 	if (length > 0)
2708 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2709 	kfree(p);
2710 	return length;
2711 }
2712 
2713 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2714 				   size_t count, loff_t *ppos)
2715 {
2716 	struct inode * inode = file_inode(file);
2717 	struct task_struct *task;
2718 	void *page;
2719 	int rv;
2720 
2721 	/* A task may only write when it was the opener. */
2722 	if (file->private_data != current->mm)
2723 		return -EPERM;
2724 
2725 	rcu_read_lock();
2726 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2727 	if (!task) {
2728 		rcu_read_unlock();
2729 		return -ESRCH;
2730 	}
2731 	/* A task may only write its own attributes. */
2732 	if (current != task) {
2733 		rcu_read_unlock();
2734 		return -EACCES;
2735 	}
2736 	/* Prevent changes to overridden credentials. */
2737 	if (current_cred() != current_real_cred()) {
2738 		rcu_read_unlock();
2739 		return -EBUSY;
2740 	}
2741 	rcu_read_unlock();
2742 
2743 	if (count > PAGE_SIZE)
2744 		count = PAGE_SIZE;
2745 
2746 	/* No partial writes. */
2747 	if (*ppos != 0)
2748 		return -EINVAL;
2749 
2750 	page = memdup_user(buf, count);
2751 	if (IS_ERR(page)) {
2752 		rv = PTR_ERR(page);
2753 		goto out;
2754 	}
2755 
2756 	/* Guard against adverse ptrace interaction */
2757 	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2758 	if (rv < 0)
2759 		goto out_free;
2760 
2761 	rv = security_setprocattr(PROC_I(inode)->op.lsm,
2762 				  file->f_path.dentry->d_name.name, page,
2763 				  count);
2764 	mutex_unlock(&current->signal->cred_guard_mutex);
2765 out_free:
2766 	kfree(page);
2767 out:
2768 	return rv;
2769 }
2770 
2771 static const struct file_operations proc_pid_attr_operations = {
2772 	.open		= proc_pid_attr_open,
2773 	.read		= proc_pid_attr_read,
2774 	.write		= proc_pid_attr_write,
2775 	.llseek		= generic_file_llseek,
2776 	.release	= mem_release,
2777 };
2778 
2779 #define LSM_DIR_OPS(LSM) \
2780 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2781 			     struct dir_context *ctx) \
2782 { \
2783 	return proc_pident_readdir(filp, ctx, \
2784 				   LSM##_attr_dir_stuff, \
2785 				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2786 } \
2787 \
2788 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2789 	.read		= generic_read_dir, \
2790 	.iterate	= proc_##LSM##_attr_dir_iterate, \
2791 	.llseek		= default_llseek, \
2792 }; \
2793 \
2794 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2795 				struct dentry *dentry, unsigned int flags) \
2796 { \
2797 	return proc_pident_lookup(dir, dentry, \
2798 				  LSM##_attr_dir_stuff, \
2799 				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2800 } \
2801 \
2802 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2803 	.lookup		= proc_##LSM##_attr_dir_lookup, \
2804 	.getattr	= pid_getattr, \
2805 	.setattr	= proc_setattr, \
2806 }
2807 
2808 #ifdef CONFIG_SECURITY_SMACK
2809 static const struct pid_entry smack_attr_dir_stuff[] = {
2810 	ATTR("smack", "current",	0666),
2811 };
2812 LSM_DIR_OPS(smack);
2813 #endif
2814 
2815 #ifdef CONFIG_SECURITY_APPARMOR
2816 static const struct pid_entry apparmor_attr_dir_stuff[] = {
2817 	ATTR("apparmor", "current",	0666),
2818 	ATTR("apparmor", "prev",	0444),
2819 	ATTR("apparmor", "exec",	0666),
2820 };
2821 LSM_DIR_OPS(apparmor);
2822 #endif
2823 
2824 static const struct pid_entry attr_dir_stuff[] = {
2825 	ATTR(NULL, "current",		0666),
2826 	ATTR(NULL, "prev",		0444),
2827 	ATTR(NULL, "exec",		0666),
2828 	ATTR(NULL, "fscreate",		0666),
2829 	ATTR(NULL, "keycreate",		0666),
2830 	ATTR(NULL, "sockcreate",	0666),
2831 #ifdef CONFIG_SECURITY_SMACK
2832 	DIR("smack",			0555,
2833 	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2834 #endif
2835 #ifdef CONFIG_SECURITY_APPARMOR
2836 	DIR("apparmor",			0555,
2837 	    proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2838 #endif
2839 };
2840 
2841 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2842 {
2843 	return proc_pident_readdir(file, ctx,
2844 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2845 }
2846 
2847 static const struct file_operations proc_attr_dir_operations = {
2848 	.read		= generic_read_dir,
2849 	.iterate_shared	= proc_attr_dir_readdir,
2850 	.llseek		= generic_file_llseek,
2851 };
2852 
2853 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2854 				struct dentry *dentry, unsigned int flags)
2855 {
2856 	return proc_pident_lookup(dir, dentry,
2857 				  attr_dir_stuff,
2858 				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2859 }
2860 
2861 static const struct inode_operations proc_attr_dir_inode_operations = {
2862 	.lookup		= proc_attr_dir_lookup,
2863 	.getattr	= pid_getattr,
2864 	.setattr	= proc_setattr,
2865 };
2866 
2867 #endif
2868 
2869 #ifdef CONFIG_ELF_CORE
2870 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2871 					 size_t count, loff_t *ppos)
2872 {
2873 	struct task_struct *task = get_proc_task(file_inode(file));
2874 	struct mm_struct *mm;
2875 	char buffer[PROC_NUMBUF];
2876 	size_t len;
2877 	int ret;
2878 
2879 	if (!task)
2880 		return -ESRCH;
2881 
2882 	ret = 0;
2883 	mm = get_task_mm(task);
2884 	if (mm) {
2885 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2886 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2887 				MMF_DUMP_FILTER_SHIFT));
2888 		mmput(mm);
2889 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2890 	}
2891 
2892 	put_task_struct(task);
2893 
2894 	return ret;
2895 }
2896 
2897 static ssize_t proc_coredump_filter_write(struct file *file,
2898 					  const char __user *buf,
2899 					  size_t count,
2900 					  loff_t *ppos)
2901 {
2902 	struct task_struct *task;
2903 	struct mm_struct *mm;
2904 	unsigned int val;
2905 	int ret;
2906 	int i;
2907 	unsigned long mask;
2908 
2909 	ret = kstrtouint_from_user(buf, count, 0, &val);
2910 	if (ret < 0)
2911 		return ret;
2912 
2913 	ret = -ESRCH;
2914 	task = get_proc_task(file_inode(file));
2915 	if (!task)
2916 		goto out_no_task;
2917 
2918 	mm = get_task_mm(task);
2919 	if (!mm)
2920 		goto out_no_mm;
2921 	ret = 0;
2922 
2923 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2924 		if (val & mask)
2925 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2926 		else
2927 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2928 	}
2929 
2930 	mmput(mm);
2931  out_no_mm:
2932 	put_task_struct(task);
2933  out_no_task:
2934 	if (ret < 0)
2935 		return ret;
2936 	return count;
2937 }
2938 
2939 static const struct file_operations proc_coredump_filter_operations = {
2940 	.read		= proc_coredump_filter_read,
2941 	.write		= proc_coredump_filter_write,
2942 	.llseek		= generic_file_llseek,
2943 };
2944 #endif
2945 
2946 #ifdef CONFIG_TASK_IO_ACCOUNTING
2947 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2948 {
2949 	struct task_io_accounting acct = task->ioac;
2950 	unsigned long flags;
2951 	int result;
2952 
2953 	result = down_read_killable(&task->signal->exec_update_lock);
2954 	if (result)
2955 		return result;
2956 
2957 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2958 		result = -EACCES;
2959 		goto out_unlock;
2960 	}
2961 
2962 	if (whole && lock_task_sighand(task, &flags)) {
2963 		struct task_struct *t = task;
2964 
2965 		task_io_accounting_add(&acct, &task->signal->ioac);
2966 		while_each_thread(task, t)
2967 			task_io_accounting_add(&acct, &t->ioac);
2968 
2969 		unlock_task_sighand(task, &flags);
2970 	}
2971 	seq_printf(m,
2972 		   "rchar: %llu\n"
2973 		   "wchar: %llu\n"
2974 		   "syscr: %llu\n"
2975 		   "syscw: %llu\n"
2976 		   "read_bytes: %llu\n"
2977 		   "write_bytes: %llu\n"
2978 		   "cancelled_write_bytes: %llu\n",
2979 		   (unsigned long long)acct.rchar,
2980 		   (unsigned long long)acct.wchar,
2981 		   (unsigned long long)acct.syscr,
2982 		   (unsigned long long)acct.syscw,
2983 		   (unsigned long long)acct.read_bytes,
2984 		   (unsigned long long)acct.write_bytes,
2985 		   (unsigned long long)acct.cancelled_write_bytes);
2986 	result = 0;
2987 
2988 out_unlock:
2989 	up_read(&task->signal->exec_update_lock);
2990 	return result;
2991 }
2992 
2993 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2994 				  struct pid *pid, struct task_struct *task)
2995 {
2996 	return do_io_accounting(task, m, 0);
2997 }
2998 
2999 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3000 				   struct pid *pid, struct task_struct *task)
3001 {
3002 	return do_io_accounting(task, m, 1);
3003 }
3004 #endif /* CONFIG_TASK_IO_ACCOUNTING */
3005 
3006 #ifdef CONFIG_USER_NS
3007 static int proc_id_map_open(struct inode *inode, struct file *file,
3008 	const struct seq_operations *seq_ops)
3009 {
3010 	struct user_namespace *ns = NULL;
3011 	struct task_struct *task;
3012 	struct seq_file *seq;
3013 	int ret = -EINVAL;
3014 
3015 	task = get_proc_task(inode);
3016 	if (task) {
3017 		rcu_read_lock();
3018 		ns = get_user_ns(task_cred_xxx(task, user_ns));
3019 		rcu_read_unlock();
3020 		put_task_struct(task);
3021 	}
3022 	if (!ns)
3023 		goto err;
3024 
3025 	ret = seq_open(file, seq_ops);
3026 	if (ret)
3027 		goto err_put_ns;
3028 
3029 	seq = file->private_data;
3030 	seq->private = ns;
3031 
3032 	return 0;
3033 err_put_ns:
3034 	put_user_ns(ns);
3035 err:
3036 	return ret;
3037 }
3038 
3039 static int proc_id_map_release(struct inode *inode, struct file *file)
3040 {
3041 	struct seq_file *seq = file->private_data;
3042 	struct user_namespace *ns = seq->private;
3043 	put_user_ns(ns);
3044 	return seq_release(inode, file);
3045 }
3046 
3047 static int proc_uid_map_open(struct inode *inode, struct file *file)
3048 {
3049 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3050 }
3051 
3052 static int proc_gid_map_open(struct inode *inode, struct file *file)
3053 {
3054 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3055 }
3056 
3057 static int proc_projid_map_open(struct inode *inode, struct file *file)
3058 {
3059 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3060 }
3061 
3062 static const struct file_operations proc_uid_map_operations = {
3063 	.open		= proc_uid_map_open,
3064 	.write		= proc_uid_map_write,
3065 	.read		= seq_read,
3066 	.llseek		= seq_lseek,
3067 	.release	= proc_id_map_release,
3068 };
3069 
3070 static const struct file_operations proc_gid_map_operations = {
3071 	.open		= proc_gid_map_open,
3072 	.write		= proc_gid_map_write,
3073 	.read		= seq_read,
3074 	.llseek		= seq_lseek,
3075 	.release	= proc_id_map_release,
3076 };
3077 
3078 static const struct file_operations proc_projid_map_operations = {
3079 	.open		= proc_projid_map_open,
3080 	.write		= proc_projid_map_write,
3081 	.read		= seq_read,
3082 	.llseek		= seq_lseek,
3083 	.release	= proc_id_map_release,
3084 };
3085 
3086 static int proc_setgroups_open(struct inode *inode, struct file *file)
3087 {
3088 	struct user_namespace *ns = NULL;
3089 	struct task_struct *task;
3090 	int ret;
3091 
3092 	ret = -ESRCH;
3093 	task = get_proc_task(inode);
3094 	if (task) {
3095 		rcu_read_lock();
3096 		ns = get_user_ns(task_cred_xxx(task, user_ns));
3097 		rcu_read_unlock();
3098 		put_task_struct(task);
3099 	}
3100 	if (!ns)
3101 		goto err;
3102 
3103 	if (file->f_mode & FMODE_WRITE) {
3104 		ret = -EACCES;
3105 		if (!ns_capable(ns, CAP_SYS_ADMIN))
3106 			goto err_put_ns;
3107 	}
3108 
3109 	ret = single_open(file, &proc_setgroups_show, ns);
3110 	if (ret)
3111 		goto err_put_ns;
3112 
3113 	return 0;
3114 err_put_ns:
3115 	put_user_ns(ns);
3116 err:
3117 	return ret;
3118 }
3119 
3120 static int proc_setgroups_release(struct inode *inode, struct file *file)
3121 {
3122 	struct seq_file *seq = file->private_data;
3123 	struct user_namespace *ns = seq->private;
3124 	int ret = single_release(inode, file);
3125 	put_user_ns(ns);
3126 	return ret;
3127 }
3128 
3129 static const struct file_operations proc_setgroups_operations = {
3130 	.open		= proc_setgroups_open,
3131 	.write		= proc_setgroups_write,
3132 	.read		= seq_read,
3133 	.llseek		= seq_lseek,
3134 	.release	= proc_setgroups_release,
3135 };
3136 #endif /* CONFIG_USER_NS */
3137 
3138 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3139 				struct pid *pid, struct task_struct *task)
3140 {
3141 	int err = lock_trace(task);
3142 	if (!err) {
3143 		seq_printf(m, "%08x\n", task->personality);
3144 		unlock_trace(task);
3145 	}
3146 	return err;
3147 }
3148 
3149 #ifdef CONFIG_LIVEPATCH
3150 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3151 				struct pid *pid, struct task_struct *task)
3152 {
3153 	seq_printf(m, "%d\n", task->patch_state);
3154 	return 0;
3155 }
3156 #endif /* CONFIG_LIVEPATCH */
3157 
3158 #ifdef CONFIG_STACKLEAK_METRICS
3159 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3160 				struct pid *pid, struct task_struct *task)
3161 {
3162 	unsigned long prev_depth = THREAD_SIZE -
3163 				(task->prev_lowest_stack & (THREAD_SIZE - 1));
3164 	unsigned long depth = THREAD_SIZE -
3165 				(task->lowest_stack & (THREAD_SIZE - 1));
3166 
3167 	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3168 							prev_depth, depth);
3169 	return 0;
3170 }
3171 #endif /* CONFIG_STACKLEAK_METRICS */
3172 
3173 /*
3174  * Thread groups
3175  */
3176 static const struct file_operations proc_task_operations;
3177 static const struct inode_operations proc_task_inode_operations;
3178 
3179 static const struct pid_entry tgid_base_stuff[] = {
3180 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3181 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3182 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3183 	DIR("fdinfo",     S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3184 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3185 #ifdef CONFIG_NET
3186 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3187 #endif
3188 	REG("environ",    S_IRUSR, proc_environ_operations),
3189 	REG("auxv",       S_IRUSR, proc_auxv_operations),
3190 	ONE("status",     S_IRUGO, proc_pid_status),
3191 	ONE("personality", S_IRUSR, proc_pid_personality),
3192 	ONE("limits",	  S_IRUGO, proc_pid_limits),
3193 #ifdef CONFIG_SCHED_DEBUG
3194 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3195 #endif
3196 #ifdef CONFIG_SCHED_AUTOGROUP
3197 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3198 #endif
3199 #ifdef CONFIG_TIME_NS
3200 	REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3201 #endif
3202 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3203 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3204 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3205 #endif
3206 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3207 	ONE("stat",       S_IRUGO, proc_tgid_stat),
3208 	ONE("statm",      S_IRUGO, proc_pid_statm),
3209 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3210 #ifdef CONFIG_NUMA
3211 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3212 #endif
3213 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3214 	LNK("cwd",        proc_cwd_link),
3215 	LNK("root",       proc_root_link),
3216 	LNK("exe",        proc_exe_link),
3217 	REG("mounts",     S_IRUGO, proc_mounts_operations),
3218 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3219 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3220 #ifdef CONFIG_PROC_PAGE_MONITOR
3221 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3222 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3223 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3224 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3225 #endif
3226 #ifdef CONFIG_SECURITY
3227 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3228 #endif
3229 #ifdef CONFIG_KALLSYMS
3230 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3231 #endif
3232 #ifdef CONFIG_STACKTRACE
3233 	ONE("stack",      S_IRUSR, proc_pid_stack),
3234 #endif
3235 #ifdef CONFIG_SCHED_INFO
3236 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3237 #endif
3238 #ifdef CONFIG_LATENCYTOP
3239 	REG("latency",  S_IRUGO, proc_lstats_operations),
3240 #endif
3241 #ifdef CONFIG_PROC_PID_CPUSET
3242 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3243 #endif
3244 #ifdef CONFIG_CGROUPS
3245 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3246 #endif
3247 #ifdef CONFIG_PROC_CPU_RESCTRL
3248 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3249 #endif
3250 	ONE("oom_score",  S_IRUGO, proc_oom_score),
3251 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3252 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3253 #ifdef CONFIG_AUDIT
3254 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3255 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3256 #endif
3257 #ifdef CONFIG_FAULT_INJECTION
3258 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3259 	REG("fail-nth", 0644, proc_fail_nth_operations),
3260 #endif
3261 #ifdef CONFIG_ELF_CORE
3262 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3263 #endif
3264 #ifdef CONFIG_TASK_IO_ACCOUNTING
3265 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3266 #endif
3267 #ifdef CONFIG_USER_NS
3268 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3269 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3270 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3271 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3272 #endif
3273 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3274 	REG("timers",	  S_IRUGO, proc_timers_operations),
3275 #endif
3276 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3277 #ifdef CONFIG_LIVEPATCH
3278 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3279 #endif
3280 #ifdef CONFIG_STACKLEAK_METRICS
3281 	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3282 #endif
3283 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3284 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3285 #endif
3286 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
3287 	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3288 #endif
3289 };
3290 
3291 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3292 {
3293 	return proc_pident_readdir(file, ctx,
3294 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3295 }
3296 
3297 static const struct file_operations proc_tgid_base_operations = {
3298 	.read		= generic_read_dir,
3299 	.iterate_shared	= proc_tgid_base_readdir,
3300 	.llseek		= generic_file_llseek,
3301 };
3302 
3303 struct pid *tgid_pidfd_to_pid(const struct file *file)
3304 {
3305 	if (file->f_op != &proc_tgid_base_operations)
3306 		return ERR_PTR(-EBADF);
3307 
3308 	return proc_pid(file_inode(file));
3309 }
3310 
3311 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3312 {
3313 	return proc_pident_lookup(dir, dentry,
3314 				  tgid_base_stuff,
3315 				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3316 }
3317 
3318 static const struct inode_operations proc_tgid_base_inode_operations = {
3319 	.lookup		= proc_tgid_base_lookup,
3320 	.getattr	= pid_getattr,
3321 	.setattr	= proc_setattr,
3322 	.permission	= proc_pid_permission,
3323 };
3324 
3325 /**
3326  * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
3327  * @pid: pid that should be flushed.
3328  *
3329  * This function walks a list of inodes (that belong to any proc
3330  * filesystem) that are attached to the pid and flushes them from
3331  * the dentry cache.
3332  *
3333  * It is safe and reasonable to cache /proc entries for a task until
3334  * that task exits.  After that they just clog up the dcache with
3335  * useless entries, possibly causing useful dcache entries to be
3336  * flushed instead.  This routine is provided to flush those useless
3337  * dcache entries when a process is reaped.
3338  *
3339  * NOTE: This routine is just an optimization so it does not guarantee
3340  *       that no dcache entries will exist after a process is reaped
3341  *       it just makes it very unlikely that any will persist.
3342  */
3343 
3344 void proc_flush_pid(struct pid *pid)
3345 {
3346 	proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3347 }
3348 
3349 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3350 				   struct task_struct *task, const void *ptr)
3351 {
3352 	struct inode *inode;
3353 
3354 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3355 	if (!inode)
3356 		return ERR_PTR(-ENOENT);
3357 
3358 	inode->i_op = &proc_tgid_base_inode_operations;
3359 	inode->i_fop = &proc_tgid_base_operations;
3360 	inode->i_flags|=S_IMMUTABLE;
3361 
3362 	set_nlink(inode, nlink_tgid);
3363 	pid_update_inode(task, inode);
3364 
3365 	d_set_d_op(dentry, &pid_dentry_operations);
3366 	return d_splice_alias(inode, dentry);
3367 }
3368 
3369 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3370 {
3371 	struct task_struct *task;
3372 	unsigned tgid;
3373 	struct proc_fs_info *fs_info;
3374 	struct pid_namespace *ns;
3375 	struct dentry *result = ERR_PTR(-ENOENT);
3376 
3377 	tgid = name_to_int(&dentry->d_name);
3378 	if (tgid == ~0U)
3379 		goto out;
3380 
3381 	fs_info = proc_sb_info(dentry->d_sb);
3382 	ns = fs_info->pid_ns;
3383 	rcu_read_lock();
3384 	task = find_task_by_pid_ns(tgid, ns);
3385 	if (task)
3386 		get_task_struct(task);
3387 	rcu_read_unlock();
3388 	if (!task)
3389 		goto out;
3390 
3391 	/* Limit procfs to only ptraceable tasks */
3392 	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3393 		if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3394 			goto out_put_task;
3395 	}
3396 
3397 	result = proc_pid_instantiate(dentry, task, NULL);
3398 out_put_task:
3399 	put_task_struct(task);
3400 out:
3401 	return result;
3402 }
3403 
3404 /*
3405  * Find the first task with tgid >= tgid
3406  *
3407  */
3408 struct tgid_iter {
3409 	unsigned int tgid;
3410 	struct task_struct *task;
3411 };
3412 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3413 {
3414 	struct pid *pid;
3415 
3416 	if (iter.task)
3417 		put_task_struct(iter.task);
3418 	rcu_read_lock();
3419 retry:
3420 	iter.task = NULL;
3421 	pid = find_ge_pid(iter.tgid, ns);
3422 	if (pid) {
3423 		iter.tgid = pid_nr_ns(pid, ns);
3424 		iter.task = pid_task(pid, PIDTYPE_TGID);
3425 		if (!iter.task) {
3426 			iter.tgid += 1;
3427 			goto retry;
3428 		}
3429 		get_task_struct(iter.task);
3430 	}
3431 	rcu_read_unlock();
3432 	return iter;
3433 }
3434 
3435 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3436 
3437 /* for the /proc/ directory itself, after non-process stuff has been done */
3438 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3439 {
3440 	struct tgid_iter iter;
3441 	struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3442 	struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3443 	loff_t pos = ctx->pos;
3444 
3445 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3446 		return 0;
3447 
3448 	if (pos == TGID_OFFSET - 2) {
3449 		struct inode *inode = d_inode(fs_info->proc_self);
3450 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3451 			return 0;
3452 		ctx->pos = pos = pos + 1;
3453 	}
3454 	if (pos == TGID_OFFSET - 1) {
3455 		struct inode *inode = d_inode(fs_info->proc_thread_self);
3456 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3457 			return 0;
3458 		ctx->pos = pos = pos + 1;
3459 	}
3460 	iter.tgid = pos - TGID_OFFSET;
3461 	iter.task = NULL;
3462 	for (iter = next_tgid(ns, iter);
3463 	     iter.task;
3464 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3465 		char name[10 + 1];
3466 		unsigned int len;
3467 
3468 		cond_resched();
3469 		if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3470 			continue;
3471 
3472 		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3473 		ctx->pos = iter.tgid + TGID_OFFSET;
3474 		if (!proc_fill_cache(file, ctx, name, len,
3475 				     proc_pid_instantiate, iter.task, NULL)) {
3476 			put_task_struct(iter.task);
3477 			return 0;
3478 		}
3479 	}
3480 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3481 	return 0;
3482 }
3483 
3484 /*
3485  * proc_tid_comm_permission is a special permission function exclusively
3486  * used for the node /proc/<pid>/task/<tid>/comm.
3487  * It bypasses generic permission checks in the case where a task of the same
3488  * task group attempts to access the node.
3489  * The rationale behind this is that glibc and bionic access this node for
3490  * cross thread naming (pthread_set/getname_np(!self)). However, if
3491  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3492  * which locks out the cross thread naming implementation.
3493  * This function makes sure that the node is always accessible for members of
3494  * same thread group.
3495  */
3496 static int proc_tid_comm_permission(struct user_namespace *mnt_userns,
3497 				    struct inode *inode, int mask)
3498 {
3499 	bool is_same_tgroup;
3500 	struct task_struct *task;
3501 
3502 	task = get_proc_task(inode);
3503 	if (!task)
3504 		return -ESRCH;
3505 	is_same_tgroup = same_thread_group(current, task);
3506 	put_task_struct(task);
3507 
3508 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3509 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3510 		 * read or written by the members of the corresponding
3511 		 * thread group.
3512 		 */
3513 		return 0;
3514 	}
3515 
3516 	return generic_permission(&init_user_ns, inode, mask);
3517 }
3518 
3519 static const struct inode_operations proc_tid_comm_inode_operations = {
3520 		.permission = proc_tid_comm_permission,
3521 };
3522 
3523 /*
3524  * Tasks
3525  */
3526 static const struct pid_entry tid_base_stuff[] = {
3527 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3528 	DIR("fdinfo",    S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3529 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3530 #ifdef CONFIG_NET
3531 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3532 #endif
3533 	REG("environ",   S_IRUSR, proc_environ_operations),
3534 	REG("auxv",      S_IRUSR, proc_auxv_operations),
3535 	ONE("status",    S_IRUGO, proc_pid_status),
3536 	ONE("personality", S_IRUSR, proc_pid_personality),
3537 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3538 #ifdef CONFIG_SCHED_DEBUG
3539 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3540 #endif
3541 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3542 			 &proc_tid_comm_inode_operations,
3543 			 &proc_pid_set_comm_operations, {}),
3544 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3545 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3546 #endif
3547 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3548 	ONE("stat",      S_IRUGO, proc_tid_stat),
3549 	ONE("statm",     S_IRUGO, proc_pid_statm),
3550 	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3551 #ifdef CONFIG_PROC_CHILDREN
3552 	REG("children",  S_IRUGO, proc_tid_children_operations),
3553 #endif
3554 #ifdef CONFIG_NUMA
3555 	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3556 #endif
3557 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3558 	LNK("cwd",       proc_cwd_link),
3559 	LNK("root",      proc_root_link),
3560 	LNK("exe",       proc_exe_link),
3561 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3562 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3563 #ifdef CONFIG_PROC_PAGE_MONITOR
3564 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3565 	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3566 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3567 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3568 #endif
3569 #ifdef CONFIG_SECURITY
3570 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3571 #endif
3572 #ifdef CONFIG_KALLSYMS
3573 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3574 #endif
3575 #ifdef CONFIG_STACKTRACE
3576 	ONE("stack",      S_IRUSR, proc_pid_stack),
3577 #endif
3578 #ifdef CONFIG_SCHED_INFO
3579 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3580 #endif
3581 #ifdef CONFIG_LATENCYTOP
3582 	REG("latency",  S_IRUGO, proc_lstats_operations),
3583 #endif
3584 #ifdef CONFIG_PROC_PID_CPUSET
3585 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3586 #endif
3587 #ifdef CONFIG_CGROUPS
3588 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3589 #endif
3590 #ifdef CONFIG_PROC_CPU_RESCTRL
3591 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3592 #endif
3593 	ONE("oom_score", S_IRUGO, proc_oom_score),
3594 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3595 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3596 #ifdef CONFIG_AUDIT
3597 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3598 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3599 #endif
3600 #ifdef CONFIG_FAULT_INJECTION
3601 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3602 	REG("fail-nth", 0644, proc_fail_nth_operations),
3603 #endif
3604 #ifdef CONFIG_TASK_IO_ACCOUNTING
3605 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3606 #endif
3607 #ifdef CONFIG_USER_NS
3608 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3609 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3610 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3611 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3612 #endif
3613 #ifdef CONFIG_LIVEPATCH
3614 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3615 #endif
3616 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3617 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3618 #endif
3619 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
3620 	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3621 #endif
3622 };
3623 
3624 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3625 {
3626 	return proc_pident_readdir(file, ctx,
3627 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3628 }
3629 
3630 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3631 {
3632 	return proc_pident_lookup(dir, dentry,
3633 				  tid_base_stuff,
3634 				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3635 }
3636 
3637 static const struct file_operations proc_tid_base_operations = {
3638 	.read		= generic_read_dir,
3639 	.iterate_shared	= proc_tid_base_readdir,
3640 	.llseek		= generic_file_llseek,
3641 };
3642 
3643 static const struct inode_operations proc_tid_base_inode_operations = {
3644 	.lookup		= proc_tid_base_lookup,
3645 	.getattr	= pid_getattr,
3646 	.setattr	= proc_setattr,
3647 };
3648 
3649 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3650 	struct task_struct *task, const void *ptr)
3651 {
3652 	struct inode *inode;
3653 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3654 	if (!inode)
3655 		return ERR_PTR(-ENOENT);
3656 
3657 	inode->i_op = &proc_tid_base_inode_operations;
3658 	inode->i_fop = &proc_tid_base_operations;
3659 	inode->i_flags |= S_IMMUTABLE;
3660 
3661 	set_nlink(inode, nlink_tid);
3662 	pid_update_inode(task, inode);
3663 
3664 	d_set_d_op(dentry, &pid_dentry_operations);
3665 	return d_splice_alias(inode, dentry);
3666 }
3667 
3668 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3669 {
3670 	struct task_struct *task;
3671 	struct task_struct *leader = get_proc_task(dir);
3672 	unsigned tid;
3673 	struct proc_fs_info *fs_info;
3674 	struct pid_namespace *ns;
3675 	struct dentry *result = ERR_PTR(-ENOENT);
3676 
3677 	if (!leader)
3678 		goto out_no_task;
3679 
3680 	tid = name_to_int(&dentry->d_name);
3681 	if (tid == ~0U)
3682 		goto out;
3683 
3684 	fs_info = proc_sb_info(dentry->d_sb);
3685 	ns = fs_info->pid_ns;
3686 	rcu_read_lock();
3687 	task = find_task_by_pid_ns(tid, ns);
3688 	if (task)
3689 		get_task_struct(task);
3690 	rcu_read_unlock();
3691 	if (!task)
3692 		goto out;
3693 	if (!same_thread_group(leader, task))
3694 		goto out_drop_task;
3695 
3696 	result = proc_task_instantiate(dentry, task, NULL);
3697 out_drop_task:
3698 	put_task_struct(task);
3699 out:
3700 	put_task_struct(leader);
3701 out_no_task:
3702 	return result;
3703 }
3704 
3705 /*
3706  * Find the first tid of a thread group to return to user space.
3707  *
3708  * Usually this is just the thread group leader, but if the users
3709  * buffer was too small or there was a seek into the middle of the
3710  * directory we have more work todo.
3711  *
3712  * In the case of a short read we start with find_task_by_pid.
3713  *
3714  * In the case of a seek we start with the leader and walk nr
3715  * threads past it.
3716  */
3717 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3718 					struct pid_namespace *ns)
3719 {
3720 	struct task_struct *pos, *task;
3721 	unsigned long nr = f_pos;
3722 
3723 	if (nr != f_pos)	/* 32bit overflow? */
3724 		return NULL;
3725 
3726 	rcu_read_lock();
3727 	task = pid_task(pid, PIDTYPE_PID);
3728 	if (!task)
3729 		goto fail;
3730 
3731 	/* Attempt to start with the tid of a thread */
3732 	if (tid && nr) {
3733 		pos = find_task_by_pid_ns(tid, ns);
3734 		if (pos && same_thread_group(pos, task))
3735 			goto found;
3736 	}
3737 
3738 	/* If nr exceeds the number of threads there is nothing todo */
3739 	if (nr >= get_nr_threads(task))
3740 		goto fail;
3741 
3742 	/* If we haven't found our starting place yet start
3743 	 * with the leader and walk nr threads forward.
3744 	 */
3745 	pos = task = task->group_leader;
3746 	do {
3747 		if (!nr--)
3748 			goto found;
3749 	} while_each_thread(task, pos);
3750 fail:
3751 	pos = NULL;
3752 	goto out;
3753 found:
3754 	get_task_struct(pos);
3755 out:
3756 	rcu_read_unlock();
3757 	return pos;
3758 }
3759 
3760 /*
3761  * Find the next thread in the thread list.
3762  * Return NULL if there is an error or no next thread.
3763  *
3764  * The reference to the input task_struct is released.
3765  */
3766 static struct task_struct *next_tid(struct task_struct *start)
3767 {
3768 	struct task_struct *pos = NULL;
3769 	rcu_read_lock();
3770 	if (pid_alive(start)) {
3771 		pos = next_thread(start);
3772 		if (thread_group_leader(pos))
3773 			pos = NULL;
3774 		else
3775 			get_task_struct(pos);
3776 	}
3777 	rcu_read_unlock();
3778 	put_task_struct(start);
3779 	return pos;
3780 }
3781 
3782 /* for the /proc/TGID/task/ directories */
3783 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3784 {
3785 	struct inode *inode = file_inode(file);
3786 	struct task_struct *task;
3787 	struct pid_namespace *ns;
3788 	int tid;
3789 
3790 	if (proc_inode_is_dead(inode))
3791 		return -ENOENT;
3792 
3793 	if (!dir_emit_dots(file, ctx))
3794 		return 0;
3795 
3796 	/* f_version caches the tgid value that the last readdir call couldn't
3797 	 * return. lseek aka telldir automagically resets f_version to 0.
3798 	 */
3799 	ns = proc_pid_ns(inode->i_sb);
3800 	tid = (int)file->f_version;
3801 	file->f_version = 0;
3802 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3803 	     task;
3804 	     task = next_tid(task), ctx->pos++) {
3805 		char name[10 + 1];
3806 		unsigned int len;
3807 
3808 		tid = task_pid_nr_ns(task, ns);
3809 		if (!tid)
3810 			continue;	/* The task has just exited. */
3811 		len = snprintf(name, sizeof(name), "%u", tid);
3812 		if (!proc_fill_cache(file, ctx, name, len,
3813 				proc_task_instantiate, task, NULL)) {
3814 			/* returning this tgid failed, save it as the first
3815 			 * pid for the next readir call */
3816 			file->f_version = (u64)tid;
3817 			put_task_struct(task);
3818 			break;
3819 		}
3820 	}
3821 
3822 	return 0;
3823 }
3824 
3825 static int proc_task_getattr(struct user_namespace *mnt_userns,
3826 			     const struct path *path, struct kstat *stat,
3827 			     u32 request_mask, unsigned int query_flags)
3828 {
3829 	struct inode *inode = d_inode(path->dentry);
3830 	struct task_struct *p = get_proc_task(inode);
3831 	generic_fillattr(&init_user_ns, inode, stat);
3832 
3833 	if (p) {
3834 		stat->nlink += get_nr_threads(p);
3835 		put_task_struct(p);
3836 	}
3837 
3838 	return 0;
3839 }
3840 
3841 static const struct inode_operations proc_task_inode_operations = {
3842 	.lookup		= proc_task_lookup,
3843 	.getattr	= proc_task_getattr,
3844 	.setattr	= proc_setattr,
3845 	.permission	= proc_pid_permission,
3846 };
3847 
3848 static const struct file_operations proc_task_operations = {
3849 	.read		= generic_read_dir,
3850 	.iterate_shared	= proc_task_readdir,
3851 	.llseek		= generic_file_llseek,
3852 };
3853 
3854 void __init set_proc_pid_nlink(void)
3855 {
3856 	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3857 	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3858 }
3859