1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/proc/base.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * proc base directory handling functions 8 * 9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 10 * Instead of using magical inumbers to determine the kind of object 11 * we allocate and fill in-core inodes upon lookup. They don't even 12 * go into icache. We cache the reference to task_struct upon lookup too. 13 * Eventually it should become a filesystem in its own. We don't use the 14 * rest of procfs anymore. 15 * 16 * 17 * Changelog: 18 * 17-Jan-2005 19 * Allan Bezerra 20 * Bruna Moreira <bruna.moreira@indt.org.br> 21 * Edjard Mota <edjard.mota@indt.org.br> 22 * Ilias Biris <ilias.biris@indt.org.br> 23 * Mauricio Lin <mauricio.lin@indt.org.br> 24 * 25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 26 * 27 * A new process specific entry (smaps) included in /proc. It shows the 28 * size of rss for each memory area. The maps entry lacks information 29 * about physical memory size (rss) for each mapped file, i.e., 30 * rss information for executables and library files. 31 * This additional information is useful for any tools that need to know 32 * about physical memory consumption for a process specific library. 33 * 34 * Changelog: 35 * 21-Feb-2005 36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 37 * Pud inclusion in the page table walking. 38 * 39 * ChangeLog: 40 * 10-Mar-2005 41 * 10LE Instituto Nokia de Tecnologia - INdT: 42 * A better way to walks through the page table as suggested by Hugh Dickins. 43 * 44 * Simo Piiroinen <simo.piiroinen@nokia.com>: 45 * Smaps information related to shared, private, clean and dirty pages. 46 * 47 * Paul Mundt <paul.mundt@nokia.com>: 48 * Overall revision about smaps. 49 */ 50 51 #include <linux/uaccess.h> 52 53 #include <linux/errno.h> 54 #include <linux/time.h> 55 #include <linux/proc_fs.h> 56 #include <linux/stat.h> 57 #include <linux/task_io_accounting_ops.h> 58 #include <linux/init.h> 59 #include <linux/capability.h> 60 #include <linux/file.h> 61 #include <linux/fdtable.h> 62 #include <linux/generic-radix-tree.h> 63 #include <linux/string.h> 64 #include <linux/seq_file.h> 65 #include <linux/namei.h> 66 #include <linux/mnt_namespace.h> 67 #include <linux/mm.h> 68 #include <linux/swap.h> 69 #include <linux/rcupdate.h> 70 #include <linux/kallsyms.h> 71 #include <linux/stacktrace.h> 72 #include <linux/resource.h> 73 #include <linux/module.h> 74 #include <linux/mount.h> 75 #include <linux/security.h> 76 #include <linux/ptrace.h> 77 #include <linux/tracehook.h> 78 #include <linux/printk.h> 79 #include <linux/cache.h> 80 #include <linux/cgroup.h> 81 #include <linux/cpuset.h> 82 #include <linux/audit.h> 83 #include <linux/poll.h> 84 #include <linux/nsproxy.h> 85 #include <linux/oom.h> 86 #include <linux/elf.h> 87 #include <linux/pid_namespace.h> 88 #include <linux/user_namespace.h> 89 #include <linux/fs_struct.h> 90 #include <linux/slab.h> 91 #include <linux/sched/autogroup.h> 92 #include <linux/sched/mm.h> 93 #include <linux/sched/coredump.h> 94 #include <linux/sched/debug.h> 95 #include <linux/sched/stat.h> 96 #include <linux/posix-timers.h> 97 #include <linux/time_namespace.h> 98 #include <linux/resctrl.h> 99 #include <linux/cn_proc.h> 100 #include <trace/events/oom.h> 101 #include "internal.h" 102 #include "fd.h" 103 104 #include "../../lib/kstrtox.h" 105 106 /* NOTE: 107 * Implementing inode permission operations in /proc is almost 108 * certainly an error. Permission checks need to happen during 109 * each system call not at open time. The reason is that most of 110 * what we wish to check for permissions in /proc varies at runtime. 111 * 112 * The classic example of a problem is opening file descriptors 113 * in /proc for a task before it execs a suid executable. 114 */ 115 116 static u8 nlink_tid __ro_after_init; 117 static u8 nlink_tgid __ro_after_init; 118 119 struct pid_entry { 120 const char *name; 121 unsigned int len; 122 umode_t mode; 123 const struct inode_operations *iop; 124 const struct file_operations *fop; 125 union proc_op op; 126 }; 127 128 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 129 .name = (NAME), \ 130 .len = sizeof(NAME) - 1, \ 131 .mode = MODE, \ 132 .iop = IOP, \ 133 .fop = FOP, \ 134 .op = OP, \ 135 } 136 137 #define DIR(NAME, MODE, iops, fops) \ 138 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 139 #define LNK(NAME, get_link) \ 140 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 141 &proc_pid_link_inode_operations, NULL, \ 142 { .proc_get_link = get_link } ) 143 #define REG(NAME, MODE, fops) \ 144 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 145 #define ONE(NAME, MODE, show) \ 146 NOD(NAME, (S_IFREG|(MODE)), \ 147 NULL, &proc_single_file_operations, \ 148 { .proc_show = show } ) 149 #define ATTR(LSM, NAME, MODE) \ 150 NOD(NAME, (S_IFREG|(MODE)), \ 151 NULL, &proc_pid_attr_operations, \ 152 { .lsm = LSM }) 153 154 /* 155 * Count the number of hardlinks for the pid_entry table, excluding the . 156 * and .. links. 157 */ 158 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries, 159 unsigned int n) 160 { 161 unsigned int i; 162 unsigned int count; 163 164 count = 2; 165 for (i = 0; i < n; ++i) { 166 if (S_ISDIR(entries[i].mode)) 167 ++count; 168 } 169 170 return count; 171 } 172 173 static int get_task_root(struct task_struct *task, struct path *root) 174 { 175 int result = -ENOENT; 176 177 task_lock(task); 178 if (task->fs) { 179 get_fs_root(task->fs, root); 180 result = 0; 181 } 182 task_unlock(task); 183 return result; 184 } 185 186 static int proc_cwd_link(struct dentry *dentry, struct path *path) 187 { 188 struct task_struct *task = get_proc_task(d_inode(dentry)); 189 int result = -ENOENT; 190 191 if (task) { 192 task_lock(task); 193 if (task->fs) { 194 get_fs_pwd(task->fs, path); 195 result = 0; 196 } 197 task_unlock(task); 198 put_task_struct(task); 199 } 200 return result; 201 } 202 203 static int proc_root_link(struct dentry *dentry, struct path *path) 204 { 205 struct task_struct *task = get_proc_task(d_inode(dentry)); 206 int result = -ENOENT; 207 208 if (task) { 209 result = get_task_root(task, path); 210 put_task_struct(task); 211 } 212 return result; 213 } 214 215 /* 216 * If the user used setproctitle(), we just get the string from 217 * user space at arg_start, and limit it to a maximum of one page. 218 */ 219 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf, 220 size_t count, unsigned long pos, 221 unsigned long arg_start) 222 { 223 char *page; 224 int ret, got; 225 226 if (pos >= PAGE_SIZE) 227 return 0; 228 229 page = (char *)__get_free_page(GFP_KERNEL); 230 if (!page) 231 return -ENOMEM; 232 233 ret = 0; 234 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON); 235 if (got > 0) { 236 int len = strnlen(page, got); 237 238 /* Include the NUL character if it was found */ 239 if (len < got) 240 len++; 241 242 if (len > pos) { 243 len -= pos; 244 if (len > count) 245 len = count; 246 len -= copy_to_user(buf, page+pos, len); 247 if (!len) 248 len = -EFAULT; 249 ret = len; 250 } 251 } 252 free_page((unsigned long)page); 253 return ret; 254 } 255 256 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf, 257 size_t count, loff_t *ppos) 258 { 259 unsigned long arg_start, arg_end, env_start, env_end; 260 unsigned long pos, len; 261 char *page, c; 262 263 /* Check if process spawned far enough to have cmdline. */ 264 if (!mm->env_end) 265 return 0; 266 267 spin_lock(&mm->arg_lock); 268 arg_start = mm->arg_start; 269 arg_end = mm->arg_end; 270 env_start = mm->env_start; 271 env_end = mm->env_end; 272 spin_unlock(&mm->arg_lock); 273 274 if (arg_start >= arg_end) 275 return 0; 276 277 /* 278 * We allow setproctitle() to overwrite the argument 279 * strings, and overflow past the original end. But 280 * only when it overflows into the environment area. 281 */ 282 if (env_start != arg_end || env_end < env_start) 283 env_start = env_end = arg_end; 284 len = env_end - arg_start; 285 286 /* We're not going to care if "*ppos" has high bits set */ 287 pos = *ppos; 288 if (pos >= len) 289 return 0; 290 if (count > len - pos) 291 count = len - pos; 292 if (!count) 293 return 0; 294 295 /* 296 * Magical special case: if the argv[] end byte is not 297 * zero, the user has overwritten it with setproctitle(3). 298 * 299 * Possible future enhancement: do this only once when 300 * pos is 0, and set a flag in the 'struct file'. 301 */ 302 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c) 303 return get_mm_proctitle(mm, buf, count, pos, arg_start); 304 305 /* 306 * For the non-setproctitle() case we limit things strictly 307 * to the [arg_start, arg_end[ range. 308 */ 309 pos += arg_start; 310 if (pos < arg_start || pos >= arg_end) 311 return 0; 312 if (count > arg_end - pos) 313 count = arg_end - pos; 314 315 page = (char *)__get_free_page(GFP_KERNEL); 316 if (!page) 317 return -ENOMEM; 318 319 len = 0; 320 while (count) { 321 int got; 322 size_t size = min_t(size_t, PAGE_SIZE, count); 323 324 got = access_remote_vm(mm, pos, page, size, FOLL_ANON); 325 if (got <= 0) 326 break; 327 got -= copy_to_user(buf, page, got); 328 if (unlikely(!got)) { 329 if (!len) 330 len = -EFAULT; 331 break; 332 } 333 pos += got; 334 buf += got; 335 len += got; 336 count -= got; 337 } 338 339 free_page((unsigned long)page); 340 return len; 341 } 342 343 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf, 344 size_t count, loff_t *pos) 345 { 346 struct mm_struct *mm; 347 ssize_t ret; 348 349 mm = get_task_mm(tsk); 350 if (!mm) 351 return 0; 352 353 ret = get_mm_cmdline(mm, buf, count, pos); 354 mmput(mm); 355 return ret; 356 } 357 358 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf, 359 size_t count, loff_t *pos) 360 { 361 struct task_struct *tsk; 362 ssize_t ret; 363 364 BUG_ON(*pos < 0); 365 366 tsk = get_proc_task(file_inode(file)); 367 if (!tsk) 368 return -ESRCH; 369 ret = get_task_cmdline(tsk, buf, count, pos); 370 put_task_struct(tsk); 371 if (ret > 0) 372 *pos += ret; 373 return ret; 374 } 375 376 static const struct file_operations proc_pid_cmdline_ops = { 377 .read = proc_pid_cmdline_read, 378 .llseek = generic_file_llseek, 379 }; 380 381 #ifdef CONFIG_KALLSYMS 382 /* 383 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 384 * Returns the resolved symbol. If that fails, simply return the address. 385 */ 386 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns, 387 struct pid *pid, struct task_struct *task) 388 { 389 unsigned long wchan; 390 char symname[KSYM_NAME_LEN]; 391 392 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 393 goto print0; 394 395 wchan = get_wchan(task); 396 if (wchan && !lookup_symbol_name(wchan, symname)) { 397 seq_puts(m, symname); 398 return 0; 399 } 400 401 print0: 402 seq_putc(m, '0'); 403 return 0; 404 } 405 #endif /* CONFIG_KALLSYMS */ 406 407 static int lock_trace(struct task_struct *task) 408 { 409 int err = down_read_killable(&task->signal->exec_update_lock); 410 if (err) 411 return err; 412 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) { 413 up_read(&task->signal->exec_update_lock); 414 return -EPERM; 415 } 416 return 0; 417 } 418 419 static void unlock_trace(struct task_struct *task) 420 { 421 up_read(&task->signal->exec_update_lock); 422 } 423 424 #ifdef CONFIG_STACKTRACE 425 426 #define MAX_STACK_TRACE_DEPTH 64 427 428 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 429 struct pid *pid, struct task_struct *task) 430 { 431 unsigned long *entries; 432 int err; 433 434 /* 435 * The ability to racily run the kernel stack unwinder on a running task 436 * and then observe the unwinder output is scary; while it is useful for 437 * debugging kernel issues, it can also allow an attacker to leak kernel 438 * stack contents. 439 * Doing this in a manner that is at least safe from races would require 440 * some work to ensure that the remote task can not be scheduled; and 441 * even then, this would still expose the unwinder as local attack 442 * surface. 443 * Therefore, this interface is restricted to root. 444 */ 445 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 446 return -EACCES; 447 448 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries), 449 GFP_KERNEL); 450 if (!entries) 451 return -ENOMEM; 452 453 err = lock_trace(task); 454 if (!err) { 455 unsigned int i, nr_entries; 456 457 nr_entries = stack_trace_save_tsk(task, entries, 458 MAX_STACK_TRACE_DEPTH, 0); 459 460 for (i = 0; i < nr_entries; i++) { 461 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]); 462 } 463 464 unlock_trace(task); 465 } 466 kfree(entries); 467 468 return err; 469 } 470 #endif 471 472 #ifdef CONFIG_SCHED_INFO 473 /* 474 * Provides /proc/PID/schedstat 475 */ 476 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns, 477 struct pid *pid, struct task_struct *task) 478 { 479 if (unlikely(!sched_info_on())) 480 seq_puts(m, "0 0 0\n"); 481 else 482 seq_printf(m, "%llu %llu %lu\n", 483 (unsigned long long)task->se.sum_exec_runtime, 484 (unsigned long long)task->sched_info.run_delay, 485 task->sched_info.pcount); 486 487 return 0; 488 } 489 #endif 490 491 #ifdef CONFIG_LATENCYTOP 492 static int lstats_show_proc(struct seq_file *m, void *v) 493 { 494 int i; 495 struct inode *inode = m->private; 496 struct task_struct *task = get_proc_task(inode); 497 498 if (!task) 499 return -ESRCH; 500 seq_puts(m, "Latency Top version : v0.1\n"); 501 for (i = 0; i < LT_SAVECOUNT; i++) { 502 struct latency_record *lr = &task->latency_record[i]; 503 if (lr->backtrace[0]) { 504 int q; 505 seq_printf(m, "%i %li %li", 506 lr->count, lr->time, lr->max); 507 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 508 unsigned long bt = lr->backtrace[q]; 509 510 if (!bt) 511 break; 512 seq_printf(m, " %ps", (void *)bt); 513 } 514 seq_putc(m, '\n'); 515 } 516 517 } 518 put_task_struct(task); 519 return 0; 520 } 521 522 static int lstats_open(struct inode *inode, struct file *file) 523 { 524 return single_open(file, lstats_show_proc, inode); 525 } 526 527 static ssize_t lstats_write(struct file *file, const char __user *buf, 528 size_t count, loff_t *offs) 529 { 530 struct task_struct *task = get_proc_task(file_inode(file)); 531 532 if (!task) 533 return -ESRCH; 534 clear_tsk_latency_tracing(task); 535 put_task_struct(task); 536 537 return count; 538 } 539 540 static const struct file_operations proc_lstats_operations = { 541 .open = lstats_open, 542 .read = seq_read, 543 .write = lstats_write, 544 .llseek = seq_lseek, 545 .release = single_release, 546 }; 547 548 #endif 549 550 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns, 551 struct pid *pid, struct task_struct *task) 552 { 553 unsigned long totalpages = totalram_pages() + total_swap_pages; 554 unsigned long points = 0; 555 long badness; 556 557 badness = oom_badness(task, totalpages); 558 /* 559 * Special case OOM_SCORE_ADJ_MIN for all others scale the 560 * badness value into [0, 2000] range which we have been 561 * exporting for a long time so userspace might depend on it. 562 */ 563 if (badness != LONG_MIN) 564 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3; 565 566 seq_printf(m, "%lu\n", points); 567 568 return 0; 569 } 570 571 struct limit_names { 572 const char *name; 573 const char *unit; 574 }; 575 576 static const struct limit_names lnames[RLIM_NLIMITS] = { 577 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 578 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 579 [RLIMIT_DATA] = {"Max data size", "bytes"}, 580 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 581 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 582 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 583 [RLIMIT_NPROC] = {"Max processes", "processes"}, 584 [RLIMIT_NOFILE] = {"Max open files", "files"}, 585 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 586 [RLIMIT_AS] = {"Max address space", "bytes"}, 587 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 588 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 589 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 590 [RLIMIT_NICE] = {"Max nice priority", NULL}, 591 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 592 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 593 }; 594 595 /* Display limits for a process */ 596 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns, 597 struct pid *pid, struct task_struct *task) 598 { 599 unsigned int i; 600 unsigned long flags; 601 602 struct rlimit rlim[RLIM_NLIMITS]; 603 604 if (!lock_task_sighand(task, &flags)) 605 return 0; 606 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 607 unlock_task_sighand(task, &flags); 608 609 /* 610 * print the file header 611 */ 612 seq_puts(m, "Limit " 613 "Soft Limit " 614 "Hard Limit " 615 "Units \n"); 616 617 for (i = 0; i < RLIM_NLIMITS; i++) { 618 if (rlim[i].rlim_cur == RLIM_INFINITY) 619 seq_printf(m, "%-25s %-20s ", 620 lnames[i].name, "unlimited"); 621 else 622 seq_printf(m, "%-25s %-20lu ", 623 lnames[i].name, rlim[i].rlim_cur); 624 625 if (rlim[i].rlim_max == RLIM_INFINITY) 626 seq_printf(m, "%-20s ", "unlimited"); 627 else 628 seq_printf(m, "%-20lu ", rlim[i].rlim_max); 629 630 if (lnames[i].unit) 631 seq_printf(m, "%-10s\n", lnames[i].unit); 632 else 633 seq_putc(m, '\n'); 634 } 635 636 return 0; 637 } 638 639 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 640 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns, 641 struct pid *pid, struct task_struct *task) 642 { 643 struct syscall_info info; 644 u64 *args = &info.data.args[0]; 645 int res; 646 647 res = lock_trace(task); 648 if (res) 649 return res; 650 651 if (task_current_syscall(task, &info)) 652 seq_puts(m, "running\n"); 653 else if (info.data.nr < 0) 654 seq_printf(m, "%d 0x%llx 0x%llx\n", 655 info.data.nr, info.sp, info.data.instruction_pointer); 656 else 657 seq_printf(m, 658 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n", 659 info.data.nr, 660 args[0], args[1], args[2], args[3], args[4], args[5], 661 info.sp, info.data.instruction_pointer); 662 unlock_trace(task); 663 664 return 0; 665 } 666 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 667 668 /************************************************************************/ 669 /* Here the fs part begins */ 670 /************************************************************************/ 671 672 /* permission checks */ 673 static bool proc_fd_access_allowed(struct inode *inode) 674 { 675 struct task_struct *task; 676 bool allowed = false; 677 /* Allow access to a task's file descriptors if it is us or we 678 * may use ptrace attach to the process and find out that 679 * information. 680 */ 681 task = get_proc_task(inode); 682 if (task) { 683 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 684 put_task_struct(task); 685 } 686 return allowed; 687 } 688 689 int proc_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 690 struct iattr *attr) 691 { 692 int error; 693 struct inode *inode = d_inode(dentry); 694 695 if (attr->ia_valid & ATTR_MODE) 696 return -EPERM; 697 698 error = setattr_prepare(&init_user_ns, dentry, attr); 699 if (error) 700 return error; 701 702 setattr_copy(&init_user_ns, inode, attr); 703 mark_inode_dirty(inode); 704 return 0; 705 } 706 707 /* 708 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 709 * or euid/egid (for hide_pid_min=2)? 710 */ 711 static bool has_pid_permissions(struct proc_fs_info *fs_info, 712 struct task_struct *task, 713 enum proc_hidepid hide_pid_min) 714 { 715 /* 716 * If 'hidpid' mount option is set force a ptrace check, 717 * we indicate that we are using a filesystem syscall 718 * by passing PTRACE_MODE_READ_FSCREDS 719 */ 720 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) 721 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 722 723 if (fs_info->hide_pid < hide_pid_min) 724 return true; 725 if (in_group_p(fs_info->pid_gid)) 726 return true; 727 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 728 } 729 730 731 static int proc_pid_permission(struct user_namespace *mnt_userns, 732 struct inode *inode, int mask) 733 { 734 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 735 struct task_struct *task; 736 bool has_perms; 737 738 task = get_proc_task(inode); 739 if (!task) 740 return -ESRCH; 741 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS); 742 put_task_struct(task); 743 744 if (!has_perms) { 745 if (fs_info->hide_pid == HIDEPID_INVISIBLE) { 746 /* 747 * Let's make getdents(), stat(), and open() 748 * consistent with each other. If a process 749 * may not stat() a file, it shouldn't be seen 750 * in procfs at all. 751 */ 752 return -ENOENT; 753 } 754 755 return -EPERM; 756 } 757 return generic_permission(&init_user_ns, inode, mask); 758 } 759 760 761 762 static const struct inode_operations proc_def_inode_operations = { 763 .setattr = proc_setattr, 764 }; 765 766 static int proc_single_show(struct seq_file *m, void *v) 767 { 768 struct inode *inode = m->private; 769 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 770 struct pid *pid = proc_pid(inode); 771 struct task_struct *task; 772 int ret; 773 774 task = get_pid_task(pid, PIDTYPE_PID); 775 if (!task) 776 return -ESRCH; 777 778 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 779 780 put_task_struct(task); 781 return ret; 782 } 783 784 static int proc_single_open(struct inode *inode, struct file *filp) 785 { 786 return single_open(filp, proc_single_show, inode); 787 } 788 789 static const struct file_operations proc_single_file_operations = { 790 .open = proc_single_open, 791 .read = seq_read, 792 .llseek = seq_lseek, 793 .release = single_release, 794 }; 795 796 797 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode) 798 { 799 struct task_struct *task = get_proc_task(inode); 800 struct mm_struct *mm = ERR_PTR(-ESRCH); 801 802 if (task) { 803 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS); 804 put_task_struct(task); 805 806 if (!IS_ERR_OR_NULL(mm)) { 807 /* ensure this mm_struct can't be freed */ 808 mmgrab(mm); 809 /* but do not pin its memory */ 810 mmput(mm); 811 } 812 } 813 814 return mm; 815 } 816 817 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) 818 { 819 struct mm_struct *mm = proc_mem_open(inode, mode); 820 821 if (IS_ERR(mm)) 822 return PTR_ERR(mm); 823 824 file->private_data = mm; 825 return 0; 826 } 827 828 static int mem_open(struct inode *inode, struct file *file) 829 { 830 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH); 831 832 /* OK to pass negative loff_t, we can catch out-of-range */ 833 file->f_mode |= FMODE_UNSIGNED_OFFSET; 834 835 return ret; 836 } 837 838 static ssize_t mem_rw(struct file *file, char __user *buf, 839 size_t count, loff_t *ppos, int write) 840 { 841 struct mm_struct *mm = file->private_data; 842 unsigned long addr = *ppos; 843 ssize_t copied; 844 char *page; 845 unsigned int flags; 846 847 if (!mm) 848 return 0; 849 850 page = (char *)__get_free_page(GFP_KERNEL); 851 if (!page) 852 return -ENOMEM; 853 854 copied = 0; 855 if (!mmget_not_zero(mm)) 856 goto free; 857 858 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0); 859 860 while (count > 0) { 861 size_t this_len = min_t(size_t, count, PAGE_SIZE); 862 863 if (write && copy_from_user(page, buf, this_len)) { 864 copied = -EFAULT; 865 break; 866 } 867 868 this_len = access_remote_vm(mm, addr, page, this_len, flags); 869 if (!this_len) { 870 if (!copied) 871 copied = -EIO; 872 break; 873 } 874 875 if (!write && copy_to_user(buf, page, this_len)) { 876 copied = -EFAULT; 877 break; 878 } 879 880 buf += this_len; 881 addr += this_len; 882 copied += this_len; 883 count -= this_len; 884 } 885 *ppos = addr; 886 887 mmput(mm); 888 free: 889 free_page((unsigned long) page); 890 return copied; 891 } 892 893 static ssize_t mem_read(struct file *file, char __user *buf, 894 size_t count, loff_t *ppos) 895 { 896 return mem_rw(file, buf, count, ppos, 0); 897 } 898 899 static ssize_t mem_write(struct file *file, const char __user *buf, 900 size_t count, loff_t *ppos) 901 { 902 return mem_rw(file, (char __user*)buf, count, ppos, 1); 903 } 904 905 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 906 { 907 switch (orig) { 908 case 0: 909 file->f_pos = offset; 910 break; 911 case 1: 912 file->f_pos += offset; 913 break; 914 default: 915 return -EINVAL; 916 } 917 force_successful_syscall_return(); 918 return file->f_pos; 919 } 920 921 static int mem_release(struct inode *inode, struct file *file) 922 { 923 struct mm_struct *mm = file->private_data; 924 if (mm) 925 mmdrop(mm); 926 return 0; 927 } 928 929 static const struct file_operations proc_mem_operations = { 930 .llseek = mem_lseek, 931 .read = mem_read, 932 .write = mem_write, 933 .open = mem_open, 934 .release = mem_release, 935 }; 936 937 static int environ_open(struct inode *inode, struct file *file) 938 { 939 return __mem_open(inode, file, PTRACE_MODE_READ); 940 } 941 942 static ssize_t environ_read(struct file *file, char __user *buf, 943 size_t count, loff_t *ppos) 944 { 945 char *page; 946 unsigned long src = *ppos; 947 int ret = 0; 948 struct mm_struct *mm = file->private_data; 949 unsigned long env_start, env_end; 950 951 /* Ensure the process spawned far enough to have an environment. */ 952 if (!mm || !mm->env_end) 953 return 0; 954 955 page = (char *)__get_free_page(GFP_KERNEL); 956 if (!page) 957 return -ENOMEM; 958 959 ret = 0; 960 if (!mmget_not_zero(mm)) 961 goto free; 962 963 spin_lock(&mm->arg_lock); 964 env_start = mm->env_start; 965 env_end = mm->env_end; 966 spin_unlock(&mm->arg_lock); 967 968 while (count > 0) { 969 size_t this_len, max_len; 970 int retval; 971 972 if (src >= (env_end - env_start)) 973 break; 974 975 this_len = env_end - (env_start + src); 976 977 max_len = min_t(size_t, PAGE_SIZE, count); 978 this_len = min(max_len, this_len); 979 980 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON); 981 982 if (retval <= 0) { 983 ret = retval; 984 break; 985 } 986 987 if (copy_to_user(buf, page, retval)) { 988 ret = -EFAULT; 989 break; 990 } 991 992 ret += retval; 993 src += retval; 994 buf += retval; 995 count -= retval; 996 } 997 *ppos = src; 998 mmput(mm); 999 1000 free: 1001 free_page((unsigned long) page); 1002 return ret; 1003 } 1004 1005 static const struct file_operations proc_environ_operations = { 1006 .open = environ_open, 1007 .read = environ_read, 1008 .llseek = generic_file_llseek, 1009 .release = mem_release, 1010 }; 1011 1012 static int auxv_open(struct inode *inode, struct file *file) 1013 { 1014 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 1015 } 1016 1017 static ssize_t auxv_read(struct file *file, char __user *buf, 1018 size_t count, loff_t *ppos) 1019 { 1020 struct mm_struct *mm = file->private_data; 1021 unsigned int nwords = 0; 1022 1023 if (!mm) 1024 return 0; 1025 do { 1026 nwords += 2; 1027 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 1028 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv, 1029 nwords * sizeof(mm->saved_auxv[0])); 1030 } 1031 1032 static const struct file_operations proc_auxv_operations = { 1033 .open = auxv_open, 1034 .read = auxv_read, 1035 .llseek = generic_file_llseek, 1036 .release = mem_release, 1037 }; 1038 1039 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count, 1040 loff_t *ppos) 1041 { 1042 struct task_struct *task = get_proc_task(file_inode(file)); 1043 char buffer[PROC_NUMBUF]; 1044 int oom_adj = OOM_ADJUST_MIN; 1045 size_t len; 1046 1047 if (!task) 1048 return -ESRCH; 1049 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX) 1050 oom_adj = OOM_ADJUST_MAX; 1051 else 1052 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) / 1053 OOM_SCORE_ADJ_MAX; 1054 put_task_struct(task); 1055 if (oom_adj > OOM_ADJUST_MAX) 1056 oom_adj = OOM_ADJUST_MAX; 1057 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj); 1058 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1059 } 1060 1061 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy) 1062 { 1063 struct mm_struct *mm = NULL; 1064 struct task_struct *task; 1065 int err = 0; 1066 1067 task = get_proc_task(file_inode(file)); 1068 if (!task) 1069 return -ESRCH; 1070 1071 mutex_lock(&oom_adj_mutex); 1072 if (legacy) { 1073 if (oom_adj < task->signal->oom_score_adj && 1074 !capable(CAP_SYS_RESOURCE)) { 1075 err = -EACCES; 1076 goto err_unlock; 1077 } 1078 /* 1079 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use 1080 * /proc/pid/oom_score_adj instead. 1081 */ 1082 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 1083 current->comm, task_pid_nr(current), task_pid_nr(task), 1084 task_pid_nr(task)); 1085 } else { 1086 if ((short)oom_adj < task->signal->oom_score_adj_min && 1087 !capable(CAP_SYS_RESOURCE)) { 1088 err = -EACCES; 1089 goto err_unlock; 1090 } 1091 } 1092 1093 /* 1094 * Make sure we will check other processes sharing the mm if this is 1095 * not vfrok which wants its own oom_score_adj. 1096 * pin the mm so it doesn't go away and get reused after task_unlock 1097 */ 1098 if (!task->vfork_done) { 1099 struct task_struct *p = find_lock_task_mm(task); 1100 1101 if (p) { 1102 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) { 1103 mm = p->mm; 1104 mmgrab(mm); 1105 } 1106 task_unlock(p); 1107 } 1108 } 1109 1110 task->signal->oom_score_adj = oom_adj; 1111 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1112 task->signal->oom_score_adj_min = (short)oom_adj; 1113 trace_oom_score_adj_update(task); 1114 1115 if (mm) { 1116 struct task_struct *p; 1117 1118 rcu_read_lock(); 1119 for_each_process(p) { 1120 if (same_thread_group(task, p)) 1121 continue; 1122 1123 /* do not touch kernel threads or the global init */ 1124 if (p->flags & PF_KTHREAD || is_global_init(p)) 1125 continue; 1126 1127 task_lock(p); 1128 if (!p->vfork_done && process_shares_mm(p, mm)) { 1129 p->signal->oom_score_adj = oom_adj; 1130 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1131 p->signal->oom_score_adj_min = (short)oom_adj; 1132 } 1133 task_unlock(p); 1134 } 1135 rcu_read_unlock(); 1136 mmdrop(mm); 1137 } 1138 err_unlock: 1139 mutex_unlock(&oom_adj_mutex); 1140 put_task_struct(task); 1141 return err; 1142 } 1143 1144 /* 1145 * /proc/pid/oom_adj exists solely for backwards compatibility with previous 1146 * kernels. The effective policy is defined by oom_score_adj, which has a 1147 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly. 1148 * Values written to oom_adj are simply mapped linearly to oom_score_adj. 1149 * Processes that become oom disabled via oom_adj will still be oom disabled 1150 * with this implementation. 1151 * 1152 * oom_adj cannot be removed since existing userspace binaries use it. 1153 */ 1154 static ssize_t oom_adj_write(struct file *file, const char __user *buf, 1155 size_t count, loff_t *ppos) 1156 { 1157 char buffer[PROC_NUMBUF]; 1158 int oom_adj; 1159 int err; 1160 1161 memset(buffer, 0, sizeof(buffer)); 1162 if (count > sizeof(buffer) - 1) 1163 count = sizeof(buffer) - 1; 1164 if (copy_from_user(buffer, buf, count)) { 1165 err = -EFAULT; 1166 goto out; 1167 } 1168 1169 err = kstrtoint(strstrip(buffer), 0, &oom_adj); 1170 if (err) 1171 goto out; 1172 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) && 1173 oom_adj != OOM_DISABLE) { 1174 err = -EINVAL; 1175 goto out; 1176 } 1177 1178 /* 1179 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 1180 * value is always attainable. 1181 */ 1182 if (oom_adj == OOM_ADJUST_MAX) 1183 oom_adj = OOM_SCORE_ADJ_MAX; 1184 else 1185 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE; 1186 1187 err = __set_oom_adj(file, oom_adj, true); 1188 out: 1189 return err < 0 ? err : count; 1190 } 1191 1192 static const struct file_operations proc_oom_adj_operations = { 1193 .read = oom_adj_read, 1194 .write = oom_adj_write, 1195 .llseek = generic_file_llseek, 1196 }; 1197 1198 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 1199 size_t count, loff_t *ppos) 1200 { 1201 struct task_struct *task = get_proc_task(file_inode(file)); 1202 char buffer[PROC_NUMBUF]; 1203 short oom_score_adj = OOM_SCORE_ADJ_MIN; 1204 size_t len; 1205 1206 if (!task) 1207 return -ESRCH; 1208 oom_score_adj = task->signal->oom_score_adj; 1209 put_task_struct(task); 1210 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj); 1211 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1212 } 1213 1214 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 1215 size_t count, loff_t *ppos) 1216 { 1217 char buffer[PROC_NUMBUF]; 1218 int oom_score_adj; 1219 int err; 1220 1221 memset(buffer, 0, sizeof(buffer)); 1222 if (count > sizeof(buffer) - 1) 1223 count = sizeof(buffer) - 1; 1224 if (copy_from_user(buffer, buf, count)) { 1225 err = -EFAULT; 1226 goto out; 1227 } 1228 1229 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1230 if (err) 1231 goto out; 1232 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1233 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1234 err = -EINVAL; 1235 goto out; 1236 } 1237 1238 err = __set_oom_adj(file, oom_score_adj, false); 1239 out: 1240 return err < 0 ? err : count; 1241 } 1242 1243 static const struct file_operations proc_oom_score_adj_operations = { 1244 .read = oom_score_adj_read, 1245 .write = oom_score_adj_write, 1246 .llseek = default_llseek, 1247 }; 1248 1249 #ifdef CONFIG_AUDIT 1250 #define TMPBUFLEN 11 1251 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1252 size_t count, loff_t *ppos) 1253 { 1254 struct inode * inode = file_inode(file); 1255 struct task_struct *task = get_proc_task(inode); 1256 ssize_t length; 1257 char tmpbuf[TMPBUFLEN]; 1258 1259 if (!task) 1260 return -ESRCH; 1261 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1262 from_kuid(file->f_cred->user_ns, 1263 audit_get_loginuid(task))); 1264 put_task_struct(task); 1265 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1266 } 1267 1268 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1269 size_t count, loff_t *ppos) 1270 { 1271 struct inode * inode = file_inode(file); 1272 uid_t loginuid; 1273 kuid_t kloginuid; 1274 int rv; 1275 1276 /* Don't let kthreads write their own loginuid */ 1277 if (current->flags & PF_KTHREAD) 1278 return -EPERM; 1279 1280 rcu_read_lock(); 1281 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1282 rcu_read_unlock(); 1283 return -EPERM; 1284 } 1285 rcu_read_unlock(); 1286 1287 if (*ppos != 0) { 1288 /* No partial writes. */ 1289 return -EINVAL; 1290 } 1291 1292 rv = kstrtou32_from_user(buf, count, 10, &loginuid); 1293 if (rv < 0) 1294 return rv; 1295 1296 /* is userspace tring to explicitly UNSET the loginuid? */ 1297 if (loginuid == AUDIT_UID_UNSET) { 1298 kloginuid = INVALID_UID; 1299 } else { 1300 kloginuid = make_kuid(file->f_cred->user_ns, loginuid); 1301 if (!uid_valid(kloginuid)) 1302 return -EINVAL; 1303 } 1304 1305 rv = audit_set_loginuid(kloginuid); 1306 if (rv < 0) 1307 return rv; 1308 return count; 1309 } 1310 1311 static const struct file_operations proc_loginuid_operations = { 1312 .read = proc_loginuid_read, 1313 .write = proc_loginuid_write, 1314 .llseek = generic_file_llseek, 1315 }; 1316 1317 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1318 size_t count, loff_t *ppos) 1319 { 1320 struct inode * inode = file_inode(file); 1321 struct task_struct *task = get_proc_task(inode); 1322 ssize_t length; 1323 char tmpbuf[TMPBUFLEN]; 1324 1325 if (!task) 1326 return -ESRCH; 1327 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1328 audit_get_sessionid(task)); 1329 put_task_struct(task); 1330 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1331 } 1332 1333 static const struct file_operations proc_sessionid_operations = { 1334 .read = proc_sessionid_read, 1335 .llseek = generic_file_llseek, 1336 }; 1337 #endif 1338 1339 #ifdef CONFIG_FAULT_INJECTION 1340 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1341 size_t count, loff_t *ppos) 1342 { 1343 struct task_struct *task = get_proc_task(file_inode(file)); 1344 char buffer[PROC_NUMBUF]; 1345 size_t len; 1346 int make_it_fail; 1347 1348 if (!task) 1349 return -ESRCH; 1350 make_it_fail = task->make_it_fail; 1351 put_task_struct(task); 1352 1353 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1354 1355 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1356 } 1357 1358 static ssize_t proc_fault_inject_write(struct file * file, 1359 const char __user * buf, size_t count, loff_t *ppos) 1360 { 1361 struct task_struct *task; 1362 char buffer[PROC_NUMBUF]; 1363 int make_it_fail; 1364 int rv; 1365 1366 if (!capable(CAP_SYS_RESOURCE)) 1367 return -EPERM; 1368 memset(buffer, 0, sizeof(buffer)); 1369 if (count > sizeof(buffer) - 1) 1370 count = sizeof(buffer) - 1; 1371 if (copy_from_user(buffer, buf, count)) 1372 return -EFAULT; 1373 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail); 1374 if (rv < 0) 1375 return rv; 1376 if (make_it_fail < 0 || make_it_fail > 1) 1377 return -EINVAL; 1378 1379 task = get_proc_task(file_inode(file)); 1380 if (!task) 1381 return -ESRCH; 1382 task->make_it_fail = make_it_fail; 1383 put_task_struct(task); 1384 1385 return count; 1386 } 1387 1388 static const struct file_operations proc_fault_inject_operations = { 1389 .read = proc_fault_inject_read, 1390 .write = proc_fault_inject_write, 1391 .llseek = generic_file_llseek, 1392 }; 1393 1394 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf, 1395 size_t count, loff_t *ppos) 1396 { 1397 struct task_struct *task; 1398 int err; 1399 unsigned int n; 1400 1401 err = kstrtouint_from_user(buf, count, 0, &n); 1402 if (err) 1403 return err; 1404 1405 task = get_proc_task(file_inode(file)); 1406 if (!task) 1407 return -ESRCH; 1408 task->fail_nth = n; 1409 put_task_struct(task); 1410 1411 return count; 1412 } 1413 1414 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf, 1415 size_t count, loff_t *ppos) 1416 { 1417 struct task_struct *task; 1418 char numbuf[PROC_NUMBUF]; 1419 ssize_t len; 1420 1421 task = get_proc_task(file_inode(file)); 1422 if (!task) 1423 return -ESRCH; 1424 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth); 1425 put_task_struct(task); 1426 return simple_read_from_buffer(buf, count, ppos, numbuf, len); 1427 } 1428 1429 static const struct file_operations proc_fail_nth_operations = { 1430 .read = proc_fail_nth_read, 1431 .write = proc_fail_nth_write, 1432 }; 1433 #endif 1434 1435 1436 #ifdef CONFIG_SCHED_DEBUG 1437 /* 1438 * Print out various scheduling related per-task fields: 1439 */ 1440 static int sched_show(struct seq_file *m, void *v) 1441 { 1442 struct inode *inode = m->private; 1443 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 1444 struct task_struct *p; 1445 1446 p = get_proc_task(inode); 1447 if (!p) 1448 return -ESRCH; 1449 proc_sched_show_task(p, ns, m); 1450 1451 put_task_struct(p); 1452 1453 return 0; 1454 } 1455 1456 static ssize_t 1457 sched_write(struct file *file, const char __user *buf, 1458 size_t count, loff_t *offset) 1459 { 1460 struct inode *inode = file_inode(file); 1461 struct task_struct *p; 1462 1463 p = get_proc_task(inode); 1464 if (!p) 1465 return -ESRCH; 1466 proc_sched_set_task(p); 1467 1468 put_task_struct(p); 1469 1470 return count; 1471 } 1472 1473 static int sched_open(struct inode *inode, struct file *filp) 1474 { 1475 return single_open(filp, sched_show, inode); 1476 } 1477 1478 static const struct file_operations proc_pid_sched_operations = { 1479 .open = sched_open, 1480 .read = seq_read, 1481 .write = sched_write, 1482 .llseek = seq_lseek, 1483 .release = single_release, 1484 }; 1485 1486 #endif 1487 1488 #ifdef CONFIG_SCHED_AUTOGROUP 1489 /* 1490 * Print out autogroup related information: 1491 */ 1492 static int sched_autogroup_show(struct seq_file *m, void *v) 1493 { 1494 struct inode *inode = m->private; 1495 struct task_struct *p; 1496 1497 p = get_proc_task(inode); 1498 if (!p) 1499 return -ESRCH; 1500 proc_sched_autogroup_show_task(p, m); 1501 1502 put_task_struct(p); 1503 1504 return 0; 1505 } 1506 1507 static ssize_t 1508 sched_autogroup_write(struct file *file, const char __user *buf, 1509 size_t count, loff_t *offset) 1510 { 1511 struct inode *inode = file_inode(file); 1512 struct task_struct *p; 1513 char buffer[PROC_NUMBUF]; 1514 int nice; 1515 int err; 1516 1517 memset(buffer, 0, sizeof(buffer)); 1518 if (count > sizeof(buffer) - 1) 1519 count = sizeof(buffer) - 1; 1520 if (copy_from_user(buffer, buf, count)) 1521 return -EFAULT; 1522 1523 err = kstrtoint(strstrip(buffer), 0, &nice); 1524 if (err < 0) 1525 return err; 1526 1527 p = get_proc_task(inode); 1528 if (!p) 1529 return -ESRCH; 1530 1531 err = proc_sched_autogroup_set_nice(p, nice); 1532 if (err) 1533 count = err; 1534 1535 put_task_struct(p); 1536 1537 return count; 1538 } 1539 1540 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1541 { 1542 int ret; 1543 1544 ret = single_open(filp, sched_autogroup_show, NULL); 1545 if (!ret) { 1546 struct seq_file *m = filp->private_data; 1547 1548 m->private = inode; 1549 } 1550 return ret; 1551 } 1552 1553 static const struct file_operations proc_pid_sched_autogroup_operations = { 1554 .open = sched_autogroup_open, 1555 .read = seq_read, 1556 .write = sched_autogroup_write, 1557 .llseek = seq_lseek, 1558 .release = single_release, 1559 }; 1560 1561 #endif /* CONFIG_SCHED_AUTOGROUP */ 1562 1563 #ifdef CONFIG_TIME_NS 1564 static int timens_offsets_show(struct seq_file *m, void *v) 1565 { 1566 struct task_struct *p; 1567 1568 p = get_proc_task(file_inode(m->file)); 1569 if (!p) 1570 return -ESRCH; 1571 proc_timens_show_offsets(p, m); 1572 1573 put_task_struct(p); 1574 1575 return 0; 1576 } 1577 1578 static ssize_t timens_offsets_write(struct file *file, const char __user *buf, 1579 size_t count, loff_t *ppos) 1580 { 1581 struct inode *inode = file_inode(file); 1582 struct proc_timens_offset offsets[2]; 1583 char *kbuf = NULL, *pos, *next_line; 1584 struct task_struct *p; 1585 int ret, noffsets; 1586 1587 /* Only allow < page size writes at the beginning of the file */ 1588 if ((*ppos != 0) || (count >= PAGE_SIZE)) 1589 return -EINVAL; 1590 1591 /* Slurp in the user data */ 1592 kbuf = memdup_user_nul(buf, count); 1593 if (IS_ERR(kbuf)) 1594 return PTR_ERR(kbuf); 1595 1596 /* Parse the user data */ 1597 ret = -EINVAL; 1598 noffsets = 0; 1599 for (pos = kbuf; pos; pos = next_line) { 1600 struct proc_timens_offset *off = &offsets[noffsets]; 1601 char clock[10]; 1602 int err; 1603 1604 /* Find the end of line and ensure we don't look past it */ 1605 next_line = strchr(pos, '\n'); 1606 if (next_line) { 1607 *next_line = '\0'; 1608 next_line++; 1609 if (*next_line == '\0') 1610 next_line = NULL; 1611 } 1612 1613 err = sscanf(pos, "%9s %lld %lu", clock, 1614 &off->val.tv_sec, &off->val.tv_nsec); 1615 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC) 1616 goto out; 1617 1618 clock[sizeof(clock) - 1] = 0; 1619 if (strcmp(clock, "monotonic") == 0 || 1620 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0) 1621 off->clockid = CLOCK_MONOTONIC; 1622 else if (strcmp(clock, "boottime") == 0 || 1623 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0) 1624 off->clockid = CLOCK_BOOTTIME; 1625 else 1626 goto out; 1627 1628 noffsets++; 1629 if (noffsets == ARRAY_SIZE(offsets)) { 1630 if (next_line) 1631 count = next_line - kbuf; 1632 break; 1633 } 1634 } 1635 1636 ret = -ESRCH; 1637 p = get_proc_task(inode); 1638 if (!p) 1639 goto out; 1640 ret = proc_timens_set_offset(file, p, offsets, noffsets); 1641 put_task_struct(p); 1642 if (ret) 1643 goto out; 1644 1645 ret = count; 1646 out: 1647 kfree(kbuf); 1648 return ret; 1649 } 1650 1651 static int timens_offsets_open(struct inode *inode, struct file *filp) 1652 { 1653 return single_open(filp, timens_offsets_show, inode); 1654 } 1655 1656 static const struct file_operations proc_timens_offsets_operations = { 1657 .open = timens_offsets_open, 1658 .read = seq_read, 1659 .write = timens_offsets_write, 1660 .llseek = seq_lseek, 1661 .release = single_release, 1662 }; 1663 #endif /* CONFIG_TIME_NS */ 1664 1665 static ssize_t comm_write(struct file *file, const char __user *buf, 1666 size_t count, loff_t *offset) 1667 { 1668 struct inode *inode = file_inode(file); 1669 struct task_struct *p; 1670 char buffer[TASK_COMM_LEN]; 1671 const size_t maxlen = sizeof(buffer) - 1; 1672 1673 memset(buffer, 0, sizeof(buffer)); 1674 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count)) 1675 return -EFAULT; 1676 1677 p = get_proc_task(inode); 1678 if (!p) 1679 return -ESRCH; 1680 1681 if (same_thread_group(current, p)) { 1682 set_task_comm(p, buffer); 1683 proc_comm_connector(p); 1684 } 1685 else 1686 count = -EINVAL; 1687 1688 put_task_struct(p); 1689 1690 return count; 1691 } 1692 1693 static int comm_show(struct seq_file *m, void *v) 1694 { 1695 struct inode *inode = m->private; 1696 struct task_struct *p; 1697 1698 p = get_proc_task(inode); 1699 if (!p) 1700 return -ESRCH; 1701 1702 proc_task_name(m, p, false); 1703 seq_putc(m, '\n'); 1704 1705 put_task_struct(p); 1706 1707 return 0; 1708 } 1709 1710 static int comm_open(struct inode *inode, struct file *filp) 1711 { 1712 return single_open(filp, comm_show, inode); 1713 } 1714 1715 static const struct file_operations proc_pid_set_comm_operations = { 1716 .open = comm_open, 1717 .read = seq_read, 1718 .write = comm_write, 1719 .llseek = seq_lseek, 1720 .release = single_release, 1721 }; 1722 1723 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1724 { 1725 struct task_struct *task; 1726 struct file *exe_file; 1727 1728 task = get_proc_task(d_inode(dentry)); 1729 if (!task) 1730 return -ENOENT; 1731 exe_file = get_task_exe_file(task); 1732 put_task_struct(task); 1733 if (exe_file) { 1734 *exe_path = exe_file->f_path; 1735 path_get(&exe_file->f_path); 1736 fput(exe_file); 1737 return 0; 1738 } else 1739 return -ENOENT; 1740 } 1741 1742 static const char *proc_pid_get_link(struct dentry *dentry, 1743 struct inode *inode, 1744 struct delayed_call *done) 1745 { 1746 struct path path; 1747 int error = -EACCES; 1748 1749 if (!dentry) 1750 return ERR_PTR(-ECHILD); 1751 1752 /* Are we allowed to snoop on the tasks file descriptors? */ 1753 if (!proc_fd_access_allowed(inode)) 1754 goto out; 1755 1756 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1757 if (error) 1758 goto out; 1759 1760 error = nd_jump_link(&path); 1761 out: 1762 return ERR_PTR(error); 1763 } 1764 1765 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1766 { 1767 char *tmp = (char *)__get_free_page(GFP_KERNEL); 1768 char *pathname; 1769 int len; 1770 1771 if (!tmp) 1772 return -ENOMEM; 1773 1774 pathname = d_path(path, tmp, PAGE_SIZE); 1775 len = PTR_ERR(pathname); 1776 if (IS_ERR(pathname)) 1777 goto out; 1778 len = tmp + PAGE_SIZE - 1 - pathname; 1779 1780 if (len > buflen) 1781 len = buflen; 1782 if (copy_to_user(buffer, pathname, len)) 1783 len = -EFAULT; 1784 out: 1785 free_page((unsigned long)tmp); 1786 return len; 1787 } 1788 1789 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1790 { 1791 int error = -EACCES; 1792 struct inode *inode = d_inode(dentry); 1793 struct path path; 1794 1795 /* Are we allowed to snoop on the tasks file descriptors? */ 1796 if (!proc_fd_access_allowed(inode)) 1797 goto out; 1798 1799 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1800 if (error) 1801 goto out; 1802 1803 error = do_proc_readlink(&path, buffer, buflen); 1804 path_put(&path); 1805 out: 1806 return error; 1807 } 1808 1809 const struct inode_operations proc_pid_link_inode_operations = { 1810 .readlink = proc_pid_readlink, 1811 .get_link = proc_pid_get_link, 1812 .setattr = proc_setattr, 1813 }; 1814 1815 1816 /* building an inode */ 1817 1818 void task_dump_owner(struct task_struct *task, umode_t mode, 1819 kuid_t *ruid, kgid_t *rgid) 1820 { 1821 /* Depending on the state of dumpable compute who should own a 1822 * proc file for a task. 1823 */ 1824 const struct cred *cred; 1825 kuid_t uid; 1826 kgid_t gid; 1827 1828 if (unlikely(task->flags & PF_KTHREAD)) { 1829 *ruid = GLOBAL_ROOT_UID; 1830 *rgid = GLOBAL_ROOT_GID; 1831 return; 1832 } 1833 1834 /* Default to the tasks effective ownership */ 1835 rcu_read_lock(); 1836 cred = __task_cred(task); 1837 uid = cred->euid; 1838 gid = cred->egid; 1839 rcu_read_unlock(); 1840 1841 /* 1842 * Before the /proc/pid/status file was created the only way to read 1843 * the effective uid of a /process was to stat /proc/pid. Reading 1844 * /proc/pid/status is slow enough that procps and other packages 1845 * kept stating /proc/pid. To keep the rules in /proc simple I have 1846 * made this apply to all per process world readable and executable 1847 * directories. 1848 */ 1849 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) { 1850 struct mm_struct *mm; 1851 task_lock(task); 1852 mm = task->mm; 1853 /* Make non-dumpable tasks owned by some root */ 1854 if (mm) { 1855 if (get_dumpable(mm) != SUID_DUMP_USER) { 1856 struct user_namespace *user_ns = mm->user_ns; 1857 1858 uid = make_kuid(user_ns, 0); 1859 if (!uid_valid(uid)) 1860 uid = GLOBAL_ROOT_UID; 1861 1862 gid = make_kgid(user_ns, 0); 1863 if (!gid_valid(gid)) 1864 gid = GLOBAL_ROOT_GID; 1865 } 1866 } else { 1867 uid = GLOBAL_ROOT_UID; 1868 gid = GLOBAL_ROOT_GID; 1869 } 1870 task_unlock(task); 1871 } 1872 *ruid = uid; 1873 *rgid = gid; 1874 } 1875 1876 void proc_pid_evict_inode(struct proc_inode *ei) 1877 { 1878 struct pid *pid = ei->pid; 1879 1880 if (S_ISDIR(ei->vfs_inode.i_mode)) { 1881 spin_lock(&pid->lock); 1882 hlist_del_init_rcu(&ei->sibling_inodes); 1883 spin_unlock(&pid->lock); 1884 } 1885 1886 put_pid(pid); 1887 } 1888 1889 struct inode *proc_pid_make_inode(struct super_block * sb, 1890 struct task_struct *task, umode_t mode) 1891 { 1892 struct inode * inode; 1893 struct proc_inode *ei; 1894 struct pid *pid; 1895 1896 /* We need a new inode */ 1897 1898 inode = new_inode(sb); 1899 if (!inode) 1900 goto out; 1901 1902 /* Common stuff */ 1903 ei = PROC_I(inode); 1904 inode->i_mode = mode; 1905 inode->i_ino = get_next_ino(); 1906 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1907 inode->i_op = &proc_def_inode_operations; 1908 1909 /* 1910 * grab the reference to task. 1911 */ 1912 pid = get_task_pid(task, PIDTYPE_PID); 1913 if (!pid) 1914 goto out_unlock; 1915 1916 /* Let the pid remember us for quick removal */ 1917 ei->pid = pid; 1918 if (S_ISDIR(mode)) { 1919 spin_lock(&pid->lock); 1920 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes); 1921 spin_unlock(&pid->lock); 1922 } 1923 1924 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1925 security_task_to_inode(task, inode); 1926 1927 out: 1928 return inode; 1929 1930 out_unlock: 1931 iput(inode); 1932 return NULL; 1933 } 1934 1935 int pid_getattr(struct user_namespace *mnt_userns, const struct path *path, 1936 struct kstat *stat, u32 request_mask, unsigned int query_flags) 1937 { 1938 struct inode *inode = d_inode(path->dentry); 1939 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 1940 struct task_struct *task; 1941 1942 generic_fillattr(&init_user_ns, inode, stat); 1943 1944 stat->uid = GLOBAL_ROOT_UID; 1945 stat->gid = GLOBAL_ROOT_GID; 1946 rcu_read_lock(); 1947 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1948 if (task) { 1949 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) { 1950 rcu_read_unlock(); 1951 /* 1952 * This doesn't prevent learning whether PID exists, 1953 * it only makes getattr() consistent with readdir(). 1954 */ 1955 return -ENOENT; 1956 } 1957 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid); 1958 } 1959 rcu_read_unlock(); 1960 return 0; 1961 } 1962 1963 /* dentry stuff */ 1964 1965 /* 1966 * Set <pid>/... inode ownership (can change due to setuid(), etc.) 1967 */ 1968 void pid_update_inode(struct task_struct *task, struct inode *inode) 1969 { 1970 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid); 1971 1972 inode->i_mode &= ~(S_ISUID | S_ISGID); 1973 security_task_to_inode(task, inode); 1974 } 1975 1976 /* 1977 * Rewrite the inode's ownerships here because the owning task may have 1978 * performed a setuid(), etc. 1979 * 1980 */ 1981 static int pid_revalidate(struct dentry *dentry, unsigned int flags) 1982 { 1983 struct inode *inode; 1984 struct task_struct *task; 1985 int ret = 0; 1986 1987 rcu_read_lock(); 1988 inode = d_inode_rcu(dentry); 1989 if (!inode) 1990 goto out; 1991 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1992 1993 if (task) { 1994 pid_update_inode(task, inode); 1995 ret = 1; 1996 } 1997 out: 1998 rcu_read_unlock(); 1999 return ret; 2000 } 2001 2002 static inline bool proc_inode_is_dead(struct inode *inode) 2003 { 2004 return !proc_pid(inode)->tasks[PIDTYPE_PID].first; 2005 } 2006 2007 int pid_delete_dentry(const struct dentry *dentry) 2008 { 2009 /* Is the task we represent dead? 2010 * If so, then don't put the dentry on the lru list, 2011 * kill it immediately. 2012 */ 2013 return proc_inode_is_dead(d_inode(dentry)); 2014 } 2015 2016 const struct dentry_operations pid_dentry_operations = 2017 { 2018 .d_revalidate = pid_revalidate, 2019 .d_delete = pid_delete_dentry, 2020 }; 2021 2022 /* Lookups */ 2023 2024 /* 2025 * Fill a directory entry. 2026 * 2027 * If possible create the dcache entry and derive our inode number and 2028 * file type from dcache entry. 2029 * 2030 * Since all of the proc inode numbers are dynamically generated, the inode 2031 * numbers do not exist until the inode is cache. This means creating 2032 * the dcache entry in readdir is necessary to keep the inode numbers 2033 * reported by readdir in sync with the inode numbers reported 2034 * by stat. 2035 */ 2036 bool proc_fill_cache(struct file *file, struct dir_context *ctx, 2037 const char *name, unsigned int len, 2038 instantiate_t instantiate, struct task_struct *task, const void *ptr) 2039 { 2040 struct dentry *child, *dir = file->f_path.dentry; 2041 struct qstr qname = QSTR_INIT(name, len); 2042 struct inode *inode; 2043 unsigned type = DT_UNKNOWN; 2044 ino_t ino = 1; 2045 2046 child = d_hash_and_lookup(dir, &qname); 2047 if (!child) { 2048 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2049 child = d_alloc_parallel(dir, &qname, &wq); 2050 if (IS_ERR(child)) 2051 goto end_instantiate; 2052 if (d_in_lookup(child)) { 2053 struct dentry *res; 2054 res = instantiate(child, task, ptr); 2055 d_lookup_done(child); 2056 if (unlikely(res)) { 2057 dput(child); 2058 child = res; 2059 if (IS_ERR(child)) 2060 goto end_instantiate; 2061 } 2062 } 2063 } 2064 inode = d_inode(child); 2065 ino = inode->i_ino; 2066 type = inode->i_mode >> 12; 2067 dput(child); 2068 end_instantiate: 2069 return dir_emit(ctx, name, len, ino, type); 2070 } 2071 2072 /* 2073 * dname_to_vma_addr - maps a dentry name into two unsigned longs 2074 * which represent vma start and end addresses. 2075 */ 2076 static int dname_to_vma_addr(struct dentry *dentry, 2077 unsigned long *start, unsigned long *end) 2078 { 2079 const char *str = dentry->d_name.name; 2080 unsigned long long sval, eval; 2081 unsigned int len; 2082 2083 if (str[0] == '0' && str[1] != '-') 2084 return -EINVAL; 2085 len = _parse_integer(str, 16, &sval); 2086 if (len & KSTRTOX_OVERFLOW) 2087 return -EINVAL; 2088 if (sval != (unsigned long)sval) 2089 return -EINVAL; 2090 str += len; 2091 2092 if (*str != '-') 2093 return -EINVAL; 2094 str++; 2095 2096 if (str[0] == '0' && str[1]) 2097 return -EINVAL; 2098 len = _parse_integer(str, 16, &eval); 2099 if (len & KSTRTOX_OVERFLOW) 2100 return -EINVAL; 2101 if (eval != (unsigned long)eval) 2102 return -EINVAL; 2103 str += len; 2104 2105 if (*str != '\0') 2106 return -EINVAL; 2107 2108 *start = sval; 2109 *end = eval; 2110 2111 return 0; 2112 } 2113 2114 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags) 2115 { 2116 unsigned long vm_start, vm_end; 2117 bool exact_vma_exists = false; 2118 struct mm_struct *mm = NULL; 2119 struct task_struct *task; 2120 struct inode *inode; 2121 int status = 0; 2122 2123 if (flags & LOOKUP_RCU) 2124 return -ECHILD; 2125 2126 inode = d_inode(dentry); 2127 task = get_proc_task(inode); 2128 if (!task) 2129 goto out_notask; 2130 2131 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 2132 if (IS_ERR_OR_NULL(mm)) 2133 goto out; 2134 2135 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 2136 status = mmap_read_lock_killable(mm); 2137 if (!status) { 2138 exact_vma_exists = !!find_exact_vma(mm, vm_start, 2139 vm_end); 2140 mmap_read_unlock(mm); 2141 } 2142 } 2143 2144 mmput(mm); 2145 2146 if (exact_vma_exists) { 2147 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 2148 2149 security_task_to_inode(task, inode); 2150 status = 1; 2151 } 2152 2153 out: 2154 put_task_struct(task); 2155 2156 out_notask: 2157 return status; 2158 } 2159 2160 static const struct dentry_operations tid_map_files_dentry_operations = { 2161 .d_revalidate = map_files_d_revalidate, 2162 .d_delete = pid_delete_dentry, 2163 }; 2164 2165 static int map_files_get_link(struct dentry *dentry, struct path *path) 2166 { 2167 unsigned long vm_start, vm_end; 2168 struct vm_area_struct *vma; 2169 struct task_struct *task; 2170 struct mm_struct *mm; 2171 int rc; 2172 2173 rc = -ENOENT; 2174 task = get_proc_task(d_inode(dentry)); 2175 if (!task) 2176 goto out; 2177 2178 mm = get_task_mm(task); 2179 put_task_struct(task); 2180 if (!mm) 2181 goto out; 2182 2183 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 2184 if (rc) 2185 goto out_mmput; 2186 2187 rc = mmap_read_lock_killable(mm); 2188 if (rc) 2189 goto out_mmput; 2190 2191 rc = -ENOENT; 2192 vma = find_exact_vma(mm, vm_start, vm_end); 2193 if (vma && vma->vm_file) { 2194 *path = vma->vm_file->f_path; 2195 path_get(path); 2196 rc = 0; 2197 } 2198 mmap_read_unlock(mm); 2199 2200 out_mmput: 2201 mmput(mm); 2202 out: 2203 return rc; 2204 } 2205 2206 struct map_files_info { 2207 unsigned long start; 2208 unsigned long end; 2209 fmode_t mode; 2210 }; 2211 2212 /* 2213 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due 2214 * to concerns about how the symlinks may be used to bypass permissions on 2215 * ancestor directories in the path to the file in question. 2216 */ 2217 static const char * 2218 proc_map_files_get_link(struct dentry *dentry, 2219 struct inode *inode, 2220 struct delayed_call *done) 2221 { 2222 if (!checkpoint_restore_ns_capable(&init_user_ns)) 2223 return ERR_PTR(-EPERM); 2224 2225 return proc_pid_get_link(dentry, inode, done); 2226 } 2227 2228 /* 2229 * Identical to proc_pid_link_inode_operations except for get_link() 2230 */ 2231 static const struct inode_operations proc_map_files_link_inode_operations = { 2232 .readlink = proc_pid_readlink, 2233 .get_link = proc_map_files_get_link, 2234 .setattr = proc_setattr, 2235 }; 2236 2237 static struct dentry * 2238 proc_map_files_instantiate(struct dentry *dentry, 2239 struct task_struct *task, const void *ptr) 2240 { 2241 fmode_t mode = (fmode_t)(unsigned long)ptr; 2242 struct proc_inode *ei; 2243 struct inode *inode; 2244 2245 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK | 2246 ((mode & FMODE_READ ) ? S_IRUSR : 0) | 2247 ((mode & FMODE_WRITE) ? S_IWUSR : 0)); 2248 if (!inode) 2249 return ERR_PTR(-ENOENT); 2250 2251 ei = PROC_I(inode); 2252 ei->op.proc_get_link = map_files_get_link; 2253 2254 inode->i_op = &proc_map_files_link_inode_operations; 2255 inode->i_size = 64; 2256 2257 d_set_d_op(dentry, &tid_map_files_dentry_operations); 2258 return d_splice_alias(inode, dentry); 2259 } 2260 2261 static struct dentry *proc_map_files_lookup(struct inode *dir, 2262 struct dentry *dentry, unsigned int flags) 2263 { 2264 unsigned long vm_start, vm_end; 2265 struct vm_area_struct *vma; 2266 struct task_struct *task; 2267 struct dentry *result; 2268 struct mm_struct *mm; 2269 2270 result = ERR_PTR(-ENOENT); 2271 task = get_proc_task(dir); 2272 if (!task) 2273 goto out; 2274 2275 result = ERR_PTR(-EACCES); 2276 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2277 goto out_put_task; 2278 2279 result = ERR_PTR(-ENOENT); 2280 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2281 goto out_put_task; 2282 2283 mm = get_task_mm(task); 2284 if (!mm) 2285 goto out_put_task; 2286 2287 result = ERR_PTR(-EINTR); 2288 if (mmap_read_lock_killable(mm)) 2289 goto out_put_mm; 2290 2291 result = ERR_PTR(-ENOENT); 2292 vma = find_exact_vma(mm, vm_start, vm_end); 2293 if (!vma) 2294 goto out_no_vma; 2295 2296 if (vma->vm_file) 2297 result = proc_map_files_instantiate(dentry, task, 2298 (void *)(unsigned long)vma->vm_file->f_mode); 2299 2300 out_no_vma: 2301 mmap_read_unlock(mm); 2302 out_put_mm: 2303 mmput(mm); 2304 out_put_task: 2305 put_task_struct(task); 2306 out: 2307 return result; 2308 } 2309 2310 static const struct inode_operations proc_map_files_inode_operations = { 2311 .lookup = proc_map_files_lookup, 2312 .permission = proc_fd_permission, 2313 .setattr = proc_setattr, 2314 }; 2315 2316 static int 2317 proc_map_files_readdir(struct file *file, struct dir_context *ctx) 2318 { 2319 struct vm_area_struct *vma; 2320 struct task_struct *task; 2321 struct mm_struct *mm; 2322 unsigned long nr_files, pos, i; 2323 GENRADIX(struct map_files_info) fa; 2324 struct map_files_info *p; 2325 int ret; 2326 2327 genradix_init(&fa); 2328 2329 ret = -ENOENT; 2330 task = get_proc_task(file_inode(file)); 2331 if (!task) 2332 goto out; 2333 2334 ret = -EACCES; 2335 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2336 goto out_put_task; 2337 2338 ret = 0; 2339 if (!dir_emit_dots(file, ctx)) 2340 goto out_put_task; 2341 2342 mm = get_task_mm(task); 2343 if (!mm) 2344 goto out_put_task; 2345 2346 ret = mmap_read_lock_killable(mm); 2347 if (ret) { 2348 mmput(mm); 2349 goto out_put_task; 2350 } 2351 2352 nr_files = 0; 2353 2354 /* 2355 * We need two passes here: 2356 * 2357 * 1) Collect vmas of mapped files with mmap_lock taken 2358 * 2) Release mmap_lock and instantiate entries 2359 * 2360 * otherwise we get lockdep complained, since filldir() 2361 * routine might require mmap_lock taken in might_fault(). 2362 */ 2363 2364 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) { 2365 if (!vma->vm_file) 2366 continue; 2367 if (++pos <= ctx->pos) 2368 continue; 2369 2370 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL); 2371 if (!p) { 2372 ret = -ENOMEM; 2373 mmap_read_unlock(mm); 2374 mmput(mm); 2375 goto out_put_task; 2376 } 2377 2378 p->start = vma->vm_start; 2379 p->end = vma->vm_end; 2380 p->mode = vma->vm_file->f_mode; 2381 } 2382 mmap_read_unlock(mm); 2383 mmput(mm); 2384 2385 for (i = 0; i < nr_files; i++) { 2386 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */ 2387 unsigned int len; 2388 2389 p = genradix_ptr(&fa, i); 2390 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end); 2391 if (!proc_fill_cache(file, ctx, 2392 buf, len, 2393 proc_map_files_instantiate, 2394 task, 2395 (void *)(unsigned long)p->mode)) 2396 break; 2397 ctx->pos++; 2398 } 2399 2400 out_put_task: 2401 put_task_struct(task); 2402 out: 2403 genradix_free(&fa); 2404 return ret; 2405 } 2406 2407 static const struct file_operations proc_map_files_operations = { 2408 .read = generic_read_dir, 2409 .iterate_shared = proc_map_files_readdir, 2410 .llseek = generic_file_llseek, 2411 }; 2412 2413 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 2414 struct timers_private { 2415 struct pid *pid; 2416 struct task_struct *task; 2417 struct sighand_struct *sighand; 2418 struct pid_namespace *ns; 2419 unsigned long flags; 2420 }; 2421 2422 static void *timers_start(struct seq_file *m, loff_t *pos) 2423 { 2424 struct timers_private *tp = m->private; 2425 2426 tp->task = get_pid_task(tp->pid, PIDTYPE_PID); 2427 if (!tp->task) 2428 return ERR_PTR(-ESRCH); 2429 2430 tp->sighand = lock_task_sighand(tp->task, &tp->flags); 2431 if (!tp->sighand) 2432 return ERR_PTR(-ESRCH); 2433 2434 return seq_list_start(&tp->task->signal->posix_timers, *pos); 2435 } 2436 2437 static void *timers_next(struct seq_file *m, void *v, loff_t *pos) 2438 { 2439 struct timers_private *tp = m->private; 2440 return seq_list_next(v, &tp->task->signal->posix_timers, pos); 2441 } 2442 2443 static void timers_stop(struct seq_file *m, void *v) 2444 { 2445 struct timers_private *tp = m->private; 2446 2447 if (tp->sighand) { 2448 unlock_task_sighand(tp->task, &tp->flags); 2449 tp->sighand = NULL; 2450 } 2451 2452 if (tp->task) { 2453 put_task_struct(tp->task); 2454 tp->task = NULL; 2455 } 2456 } 2457 2458 static int show_timer(struct seq_file *m, void *v) 2459 { 2460 struct k_itimer *timer; 2461 struct timers_private *tp = m->private; 2462 int notify; 2463 static const char * const nstr[] = { 2464 [SIGEV_SIGNAL] = "signal", 2465 [SIGEV_NONE] = "none", 2466 [SIGEV_THREAD] = "thread", 2467 }; 2468 2469 timer = list_entry((struct list_head *)v, struct k_itimer, list); 2470 notify = timer->it_sigev_notify; 2471 2472 seq_printf(m, "ID: %d\n", timer->it_id); 2473 seq_printf(m, "signal: %d/%px\n", 2474 timer->sigq->info.si_signo, 2475 timer->sigq->info.si_value.sival_ptr); 2476 seq_printf(m, "notify: %s/%s.%d\n", 2477 nstr[notify & ~SIGEV_THREAD_ID], 2478 (notify & SIGEV_THREAD_ID) ? "tid" : "pid", 2479 pid_nr_ns(timer->it_pid, tp->ns)); 2480 seq_printf(m, "ClockID: %d\n", timer->it_clock); 2481 2482 return 0; 2483 } 2484 2485 static const struct seq_operations proc_timers_seq_ops = { 2486 .start = timers_start, 2487 .next = timers_next, 2488 .stop = timers_stop, 2489 .show = show_timer, 2490 }; 2491 2492 static int proc_timers_open(struct inode *inode, struct file *file) 2493 { 2494 struct timers_private *tp; 2495 2496 tp = __seq_open_private(file, &proc_timers_seq_ops, 2497 sizeof(struct timers_private)); 2498 if (!tp) 2499 return -ENOMEM; 2500 2501 tp->pid = proc_pid(inode); 2502 tp->ns = proc_pid_ns(inode->i_sb); 2503 return 0; 2504 } 2505 2506 static const struct file_operations proc_timers_operations = { 2507 .open = proc_timers_open, 2508 .read = seq_read, 2509 .llseek = seq_lseek, 2510 .release = seq_release_private, 2511 }; 2512 #endif 2513 2514 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf, 2515 size_t count, loff_t *offset) 2516 { 2517 struct inode *inode = file_inode(file); 2518 struct task_struct *p; 2519 u64 slack_ns; 2520 int err; 2521 2522 err = kstrtoull_from_user(buf, count, 10, &slack_ns); 2523 if (err < 0) 2524 return err; 2525 2526 p = get_proc_task(inode); 2527 if (!p) 2528 return -ESRCH; 2529 2530 if (p != current) { 2531 rcu_read_lock(); 2532 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2533 rcu_read_unlock(); 2534 count = -EPERM; 2535 goto out; 2536 } 2537 rcu_read_unlock(); 2538 2539 err = security_task_setscheduler(p); 2540 if (err) { 2541 count = err; 2542 goto out; 2543 } 2544 } 2545 2546 task_lock(p); 2547 if (slack_ns == 0) 2548 p->timer_slack_ns = p->default_timer_slack_ns; 2549 else 2550 p->timer_slack_ns = slack_ns; 2551 task_unlock(p); 2552 2553 out: 2554 put_task_struct(p); 2555 2556 return count; 2557 } 2558 2559 static int timerslack_ns_show(struct seq_file *m, void *v) 2560 { 2561 struct inode *inode = m->private; 2562 struct task_struct *p; 2563 int err = 0; 2564 2565 p = get_proc_task(inode); 2566 if (!p) 2567 return -ESRCH; 2568 2569 if (p != current) { 2570 rcu_read_lock(); 2571 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2572 rcu_read_unlock(); 2573 err = -EPERM; 2574 goto out; 2575 } 2576 rcu_read_unlock(); 2577 2578 err = security_task_getscheduler(p); 2579 if (err) 2580 goto out; 2581 } 2582 2583 task_lock(p); 2584 seq_printf(m, "%llu\n", p->timer_slack_ns); 2585 task_unlock(p); 2586 2587 out: 2588 put_task_struct(p); 2589 2590 return err; 2591 } 2592 2593 static int timerslack_ns_open(struct inode *inode, struct file *filp) 2594 { 2595 return single_open(filp, timerslack_ns_show, inode); 2596 } 2597 2598 static const struct file_operations proc_pid_set_timerslack_ns_operations = { 2599 .open = timerslack_ns_open, 2600 .read = seq_read, 2601 .write = timerslack_ns_write, 2602 .llseek = seq_lseek, 2603 .release = single_release, 2604 }; 2605 2606 static struct dentry *proc_pident_instantiate(struct dentry *dentry, 2607 struct task_struct *task, const void *ptr) 2608 { 2609 const struct pid_entry *p = ptr; 2610 struct inode *inode; 2611 struct proc_inode *ei; 2612 2613 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode); 2614 if (!inode) 2615 return ERR_PTR(-ENOENT); 2616 2617 ei = PROC_I(inode); 2618 if (S_ISDIR(inode->i_mode)) 2619 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2620 if (p->iop) 2621 inode->i_op = p->iop; 2622 if (p->fop) 2623 inode->i_fop = p->fop; 2624 ei->op = p->op; 2625 pid_update_inode(task, inode); 2626 d_set_d_op(dentry, &pid_dentry_operations); 2627 return d_splice_alias(inode, dentry); 2628 } 2629 2630 static struct dentry *proc_pident_lookup(struct inode *dir, 2631 struct dentry *dentry, 2632 const struct pid_entry *p, 2633 const struct pid_entry *end) 2634 { 2635 struct task_struct *task = get_proc_task(dir); 2636 struct dentry *res = ERR_PTR(-ENOENT); 2637 2638 if (!task) 2639 goto out_no_task; 2640 2641 /* 2642 * Yes, it does not scale. And it should not. Don't add 2643 * new entries into /proc/<tgid>/ without very good reasons. 2644 */ 2645 for (; p < end; p++) { 2646 if (p->len != dentry->d_name.len) 2647 continue; 2648 if (!memcmp(dentry->d_name.name, p->name, p->len)) { 2649 res = proc_pident_instantiate(dentry, task, p); 2650 break; 2651 } 2652 } 2653 put_task_struct(task); 2654 out_no_task: 2655 return res; 2656 } 2657 2658 static int proc_pident_readdir(struct file *file, struct dir_context *ctx, 2659 const struct pid_entry *ents, unsigned int nents) 2660 { 2661 struct task_struct *task = get_proc_task(file_inode(file)); 2662 const struct pid_entry *p; 2663 2664 if (!task) 2665 return -ENOENT; 2666 2667 if (!dir_emit_dots(file, ctx)) 2668 goto out; 2669 2670 if (ctx->pos >= nents + 2) 2671 goto out; 2672 2673 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) { 2674 if (!proc_fill_cache(file, ctx, p->name, p->len, 2675 proc_pident_instantiate, task, p)) 2676 break; 2677 ctx->pos++; 2678 } 2679 out: 2680 put_task_struct(task); 2681 return 0; 2682 } 2683 2684 #ifdef CONFIG_SECURITY 2685 static int proc_pid_attr_open(struct inode *inode, struct file *file) 2686 { 2687 file->private_data = NULL; 2688 __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 2689 return 0; 2690 } 2691 2692 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2693 size_t count, loff_t *ppos) 2694 { 2695 struct inode * inode = file_inode(file); 2696 char *p = NULL; 2697 ssize_t length; 2698 struct task_struct *task = get_proc_task(inode); 2699 2700 if (!task) 2701 return -ESRCH; 2702 2703 length = security_getprocattr(task, PROC_I(inode)->op.lsm, 2704 (char*)file->f_path.dentry->d_name.name, 2705 &p); 2706 put_task_struct(task); 2707 if (length > 0) 2708 length = simple_read_from_buffer(buf, count, ppos, p, length); 2709 kfree(p); 2710 return length; 2711 } 2712 2713 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2714 size_t count, loff_t *ppos) 2715 { 2716 struct inode * inode = file_inode(file); 2717 struct task_struct *task; 2718 void *page; 2719 int rv; 2720 2721 /* A task may only write when it was the opener. */ 2722 if (file->private_data != current->mm) 2723 return -EPERM; 2724 2725 rcu_read_lock(); 2726 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2727 if (!task) { 2728 rcu_read_unlock(); 2729 return -ESRCH; 2730 } 2731 /* A task may only write its own attributes. */ 2732 if (current != task) { 2733 rcu_read_unlock(); 2734 return -EACCES; 2735 } 2736 /* Prevent changes to overridden credentials. */ 2737 if (current_cred() != current_real_cred()) { 2738 rcu_read_unlock(); 2739 return -EBUSY; 2740 } 2741 rcu_read_unlock(); 2742 2743 if (count > PAGE_SIZE) 2744 count = PAGE_SIZE; 2745 2746 /* No partial writes. */ 2747 if (*ppos != 0) 2748 return -EINVAL; 2749 2750 page = memdup_user(buf, count); 2751 if (IS_ERR(page)) { 2752 rv = PTR_ERR(page); 2753 goto out; 2754 } 2755 2756 /* Guard against adverse ptrace interaction */ 2757 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex); 2758 if (rv < 0) 2759 goto out_free; 2760 2761 rv = security_setprocattr(PROC_I(inode)->op.lsm, 2762 file->f_path.dentry->d_name.name, page, 2763 count); 2764 mutex_unlock(¤t->signal->cred_guard_mutex); 2765 out_free: 2766 kfree(page); 2767 out: 2768 return rv; 2769 } 2770 2771 static const struct file_operations proc_pid_attr_operations = { 2772 .open = proc_pid_attr_open, 2773 .read = proc_pid_attr_read, 2774 .write = proc_pid_attr_write, 2775 .llseek = generic_file_llseek, 2776 .release = mem_release, 2777 }; 2778 2779 #define LSM_DIR_OPS(LSM) \ 2780 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \ 2781 struct dir_context *ctx) \ 2782 { \ 2783 return proc_pident_readdir(filp, ctx, \ 2784 LSM##_attr_dir_stuff, \ 2785 ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2786 } \ 2787 \ 2788 static const struct file_operations proc_##LSM##_attr_dir_ops = { \ 2789 .read = generic_read_dir, \ 2790 .iterate = proc_##LSM##_attr_dir_iterate, \ 2791 .llseek = default_llseek, \ 2792 }; \ 2793 \ 2794 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \ 2795 struct dentry *dentry, unsigned int flags) \ 2796 { \ 2797 return proc_pident_lookup(dir, dentry, \ 2798 LSM##_attr_dir_stuff, \ 2799 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2800 } \ 2801 \ 2802 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \ 2803 .lookup = proc_##LSM##_attr_dir_lookup, \ 2804 .getattr = pid_getattr, \ 2805 .setattr = proc_setattr, \ 2806 } 2807 2808 #ifdef CONFIG_SECURITY_SMACK 2809 static const struct pid_entry smack_attr_dir_stuff[] = { 2810 ATTR("smack", "current", 0666), 2811 }; 2812 LSM_DIR_OPS(smack); 2813 #endif 2814 2815 #ifdef CONFIG_SECURITY_APPARMOR 2816 static const struct pid_entry apparmor_attr_dir_stuff[] = { 2817 ATTR("apparmor", "current", 0666), 2818 ATTR("apparmor", "prev", 0444), 2819 ATTR("apparmor", "exec", 0666), 2820 }; 2821 LSM_DIR_OPS(apparmor); 2822 #endif 2823 2824 static const struct pid_entry attr_dir_stuff[] = { 2825 ATTR(NULL, "current", 0666), 2826 ATTR(NULL, "prev", 0444), 2827 ATTR(NULL, "exec", 0666), 2828 ATTR(NULL, "fscreate", 0666), 2829 ATTR(NULL, "keycreate", 0666), 2830 ATTR(NULL, "sockcreate", 0666), 2831 #ifdef CONFIG_SECURITY_SMACK 2832 DIR("smack", 0555, 2833 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops), 2834 #endif 2835 #ifdef CONFIG_SECURITY_APPARMOR 2836 DIR("apparmor", 0555, 2837 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops), 2838 #endif 2839 }; 2840 2841 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx) 2842 { 2843 return proc_pident_readdir(file, ctx, 2844 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2845 } 2846 2847 static const struct file_operations proc_attr_dir_operations = { 2848 .read = generic_read_dir, 2849 .iterate_shared = proc_attr_dir_readdir, 2850 .llseek = generic_file_llseek, 2851 }; 2852 2853 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2854 struct dentry *dentry, unsigned int flags) 2855 { 2856 return proc_pident_lookup(dir, dentry, 2857 attr_dir_stuff, 2858 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff)); 2859 } 2860 2861 static const struct inode_operations proc_attr_dir_inode_operations = { 2862 .lookup = proc_attr_dir_lookup, 2863 .getattr = pid_getattr, 2864 .setattr = proc_setattr, 2865 }; 2866 2867 #endif 2868 2869 #ifdef CONFIG_ELF_CORE 2870 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2871 size_t count, loff_t *ppos) 2872 { 2873 struct task_struct *task = get_proc_task(file_inode(file)); 2874 struct mm_struct *mm; 2875 char buffer[PROC_NUMBUF]; 2876 size_t len; 2877 int ret; 2878 2879 if (!task) 2880 return -ESRCH; 2881 2882 ret = 0; 2883 mm = get_task_mm(task); 2884 if (mm) { 2885 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2886 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2887 MMF_DUMP_FILTER_SHIFT)); 2888 mmput(mm); 2889 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2890 } 2891 2892 put_task_struct(task); 2893 2894 return ret; 2895 } 2896 2897 static ssize_t proc_coredump_filter_write(struct file *file, 2898 const char __user *buf, 2899 size_t count, 2900 loff_t *ppos) 2901 { 2902 struct task_struct *task; 2903 struct mm_struct *mm; 2904 unsigned int val; 2905 int ret; 2906 int i; 2907 unsigned long mask; 2908 2909 ret = kstrtouint_from_user(buf, count, 0, &val); 2910 if (ret < 0) 2911 return ret; 2912 2913 ret = -ESRCH; 2914 task = get_proc_task(file_inode(file)); 2915 if (!task) 2916 goto out_no_task; 2917 2918 mm = get_task_mm(task); 2919 if (!mm) 2920 goto out_no_mm; 2921 ret = 0; 2922 2923 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2924 if (val & mask) 2925 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2926 else 2927 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2928 } 2929 2930 mmput(mm); 2931 out_no_mm: 2932 put_task_struct(task); 2933 out_no_task: 2934 if (ret < 0) 2935 return ret; 2936 return count; 2937 } 2938 2939 static const struct file_operations proc_coredump_filter_operations = { 2940 .read = proc_coredump_filter_read, 2941 .write = proc_coredump_filter_write, 2942 .llseek = generic_file_llseek, 2943 }; 2944 #endif 2945 2946 #ifdef CONFIG_TASK_IO_ACCOUNTING 2947 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole) 2948 { 2949 struct task_io_accounting acct = task->ioac; 2950 unsigned long flags; 2951 int result; 2952 2953 result = down_read_killable(&task->signal->exec_update_lock); 2954 if (result) 2955 return result; 2956 2957 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) { 2958 result = -EACCES; 2959 goto out_unlock; 2960 } 2961 2962 if (whole && lock_task_sighand(task, &flags)) { 2963 struct task_struct *t = task; 2964 2965 task_io_accounting_add(&acct, &task->signal->ioac); 2966 while_each_thread(task, t) 2967 task_io_accounting_add(&acct, &t->ioac); 2968 2969 unlock_task_sighand(task, &flags); 2970 } 2971 seq_printf(m, 2972 "rchar: %llu\n" 2973 "wchar: %llu\n" 2974 "syscr: %llu\n" 2975 "syscw: %llu\n" 2976 "read_bytes: %llu\n" 2977 "write_bytes: %llu\n" 2978 "cancelled_write_bytes: %llu\n", 2979 (unsigned long long)acct.rchar, 2980 (unsigned long long)acct.wchar, 2981 (unsigned long long)acct.syscr, 2982 (unsigned long long)acct.syscw, 2983 (unsigned long long)acct.read_bytes, 2984 (unsigned long long)acct.write_bytes, 2985 (unsigned long long)acct.cancelled_write_bytes); 2986 result = 0; 2987 2988 out_unlock: 2989 up_read(&task->signal->exec_update_lock); 2990 return result; 2991 } 2992 2993 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2994 struct pid *pid, struct task_struct *task) 2995 { 2996 return do_io_accounting(task, m, 0); 2997 } 2998 2999 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 3000 struct pid *pid, struct task_struct *task) 3001 { 3002 return do_io_accounting(task, m, 1); 3003 } 3004 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 3005 3006 #ifdef CONFIG_USER_NS 3007 static int proc_id_map_open(struct inode *inode, struct file *file, 3008 const struct seq_operations *seq_ops) 3009 { 3010 struct user_namespace *ns = NULL; 3011 struct task_struct *task; 3012 struct seq_file *seq; 3013 int ret = -EINVAL; 3014 3015 task = get_proc_task(inode); 3016 if (task) { 3017 rcu_read_lock(); 3018 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3019 rcu_read_unlock(); 3020 put_task_struct(task); 3021 } 3022 if (!ns) 3023 goto err; 3024 3025 ret = seq_open(file, seq_ops); 3026 if (ret) 3027 goto err_put_ns; 3028 3029 seq = file->private_data; 3030 seq->private = ns; 3031 3032 return 0; 3033 err_put_ns: 3034 put_user_ns(ns); 3035 err: 3036 return ret; 3037 } 3038 3039 static int proc_id_map_release(struct inode *inode, struct file *file) 3040 { 3041 struct seq_file *seq = file->private_data; 3042 struct user_namespace *ns = seq->private; 3043 put_user_ns(ns); 3044 return seq_release(inode, file); 3045 } 3046 3047 static int proc_uid_map_open(struct inode *inode, struct file *file) 3048 { 3049 return proc_id_map_open(inode, file, &proc_uid_seq_operations); 3050 } 3051 3052 static int proc_gid_map_open(struct inode *inode, struct file *file) 3053 { 3054 return proc_id_map_open(inode, file, &proc_gid_seq_operations); 3055 } 3056 3057 static int proc_projid_map_open(struct inode *inode, struct file *file) 3058 { 3059 return proc_id_map_open(inode, file, &proc_projid_seq_operations); 3060 } 3061 3062 static const struct file_operations proc_uid_map_operations = { 3063 .open = proc_uid_map_open, 3064 .write = proc_uid_map_write, 3065 .read = seq_read, 3066 .llseek = seq_lseek, 3067 .release = proc_id_map_release, 3068 }; 3069 3070 static const struct file_operations proc_gid_map_operations = { 3071 .open = proc_gid_map_open, 3072 .write = proc_gid_map_write, 3073 .read = seq_read, 3074 .llseek = seq_lseek, 3075 .release = proc_id_map_release, 3076 }; 3077 3078 static const struct file_operations proc_projid_map_operations = { 3079 .open = proc_projid_map_open, 3080 .write = proc_projid_map_write, 3081 .read = seq_read, 3082 .llseek = seq_lseek, 3083 .release = proc_id_map_release, 3084 }; 3085 3086 static int proc_setgroups_open(struct inode *inode, struct file *file) 3087 { 3088 struct user_namespace *ns = NULL; 3089 struct task_struct *task; 3090 int ret; 3091 3092 ret = -ESRCH; 3093 task = get_proc_task(inode); 3094 if (task) { 3095 rcu_read_lock(); 3096 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3097 rcu_read_unlock(); 3098 put_task_struct(task); 3099 } 3100 if (!ns) 3101 goto err; 3102 3103 if (file->f_mode & FMODE_WRITE) { 3104 ret = -EACCES; 3105 if (!ns_capable(ns, CAP_SYS_ADMIN)) 3106 goto err_put_ns; 3107 } 3108 3109 ret = single_open(file, &proc_setgroups_show, ns); 3110 if (ret) 3111 goto err_put_ns; 3112 3113 return 0; 3114 err_put_ns: 3115 put_user_ns(ns); 3116 err: 3117 return ret; 3118 } 3119 3120 static int proc_setgroups_release(struct inode *inode, struct file *file) 3121 { 3122 struct seq_file *seq = file->private_data; 3123 struct user_namespace *ns = seq->private; 3124 int ret = single_release(inode, file); 3125 put_user_ns(ns); 3126 return ret; 3127 } 3128 3129 static const struct file_operations proc_setgroups_operations = { 3130 .open = proc_setgroups_open, 3131 .write = proc_setgroups_write, 3132 .read = seq_read, 3133 .llseek = seq_lseek, 3134 .release = proc_setgroups_release, 3135 }; 3136 #endif /* CONFIG_USER_NS */ 3137 3138 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 3139 struct pid *pid, struct task_struct *task) 3140 { 3141 int err = lock_trace(task); 3142 if (!err) { 3143 seq_printf(m, "%08x\n", task->personality); 3144 unlock_trace(task); 3145 } 3146 return err; 3147 } 3148 3149 #ifdef CONFIG_LIVEPATCH 3150 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns, 3151 struct pid *pid, struct task_struct *task) 3152 { 3153 seq_printf(m, "%d\n", task->patch_state); 3154 return 0; 3155 } 3156 #endif /* CONFIG_LIVEPATCH */ 3157 3158 #ifdef CONFIG_STACKLEAK_METRICS 3159 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns, 3160 struct pid *pid, struct task_struct *task) 3161 { 3162 unsigned long prev_depth = THREAD_SIZE - 3163 (task->prev_lowest_stack & (THREAD_SIZE - 1)); 3164 unsigned long depth = THREAD_SIZE - 3165 (task->lowest_stack & (THREAD_SIZE - 1)); 3166 3167 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n", 3168 prev_depth, depth); 3169 return 0; 3170 } 3171 #endif /* CONFIG_STACKLEAK_METRICS */ 3172 3173 /* 3174 * Thread groups 3175 */ 3176 static const struct file_operations proc_task_operations; 3177 static const struct inode_operations proc_task_inode_operations; 3178 3179 static const struct pid_entry tgid_base_stuff[] = { 3180 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 3181 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3182 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 3183 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3184 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3185 #ifdef CONFIG_NET 3186 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3187 #endif 3188 REG("environ", S_IRUSR, proc_environ_operations), 3189 REG("auxv", S_IRUSR, proc_auxv_operations), 3190 ONE("status", S_IRUGO, proc_pid_status), 3191 ONE("personality", S_IRUSR, proc_pid_personality), 3192 ONE("limits", S_IRUGO, proc_pid_limits), 3193 #ifdef CONFIG_SCHED_DEBUG 3194 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3195 #endif 3196 #ifdef CONFIG_SCHED_AUTOGROUP 3197 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 3198 #endif 3199 #ifdef CONFIG_TIME_NS 3200 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations), 3201 #endif 3202 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 3203 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3204 ONE("syscall", S_IRUSR, proc_pid_syscall), 3205 #endif 3206 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3207 ONE("stat", S_IRUGO, proc_tgid_stat), 3208 ONE("statm", S_IRUGO, proc_pid_statm), 3209 REG("maps", S_IRUGO, proc_pid_maps_operations), 3210 #ifdef CONFIG_NUMA 3211 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3212 #endif 3213 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3214 LNK("cwd", proc_cwd_link), 3215 LNK("root", proc_root_link), 3216 LNK("exe", proc_exe_link), 3217 REG("mounts", S_IRUGO, proc_mounts_operations), 3218 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3219 REG("mountstats", S_IRUSR, proc_mountstats_operations), 3220 #ifdef CONFIG_PROC_PAGE_MONITOR 3221 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3222 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3223 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3224 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3225 #endif 3226 #ifdef CONFIG_SECURITY 3227 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3228 #endif 3229 #ifdef CONFIG_KALLSYMS 3230 ONE("wchan", S_IRUGO, proc_pid_wchan), 3231 #endif 3232 #ifdef CONFIG_STACKTRACE 3233 ONE("stack", S_IRUSR, proc_pid_stack), 3234 #endif 3235 #ifdef CONFIG_SCHED_INFO 3236 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3237 #endif 3238 #ifdef CONFIG_LATENCYTOP 3239 REG("latency", S_IRUGO, proc_lstats_operations), 3240 #endif 3241 #ifdef CONFIG_PROC_PID_CPUSET 3242 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3243 #endif 3244 #ifdef CONFIG_CGROUPS 3245 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3246 #endif 3247 #ifdef CONFIG_PROC_CPU_RESCTRL 3248 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3249 #endif 3250 ONE("oom_score", S_IRUGO, proc_oom_score), 3251 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3252 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3253 #ifdef CONFIG_AUDIT 3254 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3255 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3256 #endif 3257 #ifdef CONFIG_FAULT_INJECTION 3258 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3259 REG("fail-nth", 0644, proc_fail_nth_operations), 3260 #endif 3261 #ifdef CONFIG_ELF_CORE 3262 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 3263 #endif 3264 #ifdef CONFIG_TASK_IO_ACCOUNTING 3265 ONE("io", S_IRUSR, proc_tgid_io_accounting), 3266 #endif 3267 #ifdef CONFIG_USER_NS 3268 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3269 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3270 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3271 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3272 #endif 3273 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 3274 REG("timers", S_IRUGO, proc_timers_operations), 3275 #endif 3276 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations), 3277 #ifdef CONFIG_LIVEPATCH 3278 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3279 #endif 3280 #ifdef CONFIG_STACKLEAK_METRICS 3281 ONE("stack_depth", S_IRUGO, proc_stack_depth), 3282 #endif 3283 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3284 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3285 #endif 3286 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 3287 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache), 3288 #endif 3289 }; 3290 3291 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx) 3292 { 3293 return proc_pident_readdir(file, ctx, 3294 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3295 } 3296 3297 static const struct file_operations proc_tgid_base_operations = { 3298 .read = generic_read_dir, 3299 .iterate_shared = proc_tgid_base_readdir, 3300 .llseek = generic_file_llseek, 3301 }; 3302 3303 struct pid *tgid_pidfd_to_pid(const struct file *file) 3304 { 3305 if (file->f_op != &proc_tgid_base_operations) 3306 return ERR_PTR(-EBADF); 3307 3308 return proc_pid(file_inode(file)); 3309 } 3310 3311 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3312 { 3313 return proc_pident_lookup(dir, dentry, 3314 tgid_base_stuff, 3315 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff)); 3316 } 3317 3318 static const struct inode_operations proc_tgid_base_inode_operations = { 3319 .lookup = proc_tgid_base_lookup, 3320 .getattr = pid_getattr, 3321 .setattr = proc_setattr, 3322 .permission = proc_pid_permission, 3323 }; 3324 3325 /** 3326 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache. 3327 * @pid: pid that should be flushed. 3328 * 3329 * This function walks a list of inodes (that belong to any proc 3330 * filesystem) that are attached to the pid and flushes them from 3331 * the dentry cache. 3332 * 3333 * It is safe and reasonable to cache /proc entries for a task until 3334 * that task exits. After that they just clog up the dcache with 3335 * useless entries, possibly causing useful dcache entries to be 3336 * flushed instead. This routine is provided to flush those useless 3337 * dcache entries when a process is reaped. 3338 * 3339 * NOTE: This routine is just an optimization so it does not guarantee 3340 * that no dcache entries will exist after a process is reaped 3341 * it just makes it very unlikely that any will persist. 3342 */ 3343 3344 void proc_flush_pid(struct pid *pid) 3345 { 3346 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock); 3347 } 3348 3349 static struct dentry *proc_pid_instantiate(struct dentry * dentry, 3350 struct task_struct *task, const void *ptr) 3351 { 3352 struct inode *inode; 3353 3354 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3355 if (!inode) 3356 return ERR_PTR(-ENOENT); 3357 3358 inode->i_op = &proc_tgid_base_inode_operations; 3359 inode->i_fop = &proc_tgid_base_operations; 3360 inode->i_flags|=S_IMMUTABLE; 3361 3362 set_nlink(inode, nlink_tgid); 3363 pid_update_inode(task, inode); 3364 3365 d_set_d_op(dentry, &pid_dentry_operations); 3366 return d_splice_alias(inode, dentry); 3367 } 3368 3369 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags) 3370 { 3371 struct task_struct *task; 3372 unsigned tgid; 3373 struct proc_fs_info *fs_info; 3374 struct pid_namespace *ns; 3375 struct dentry *result = ERR_PTR(-ENOENT); 3376 3377 tgid = name_to_int(&dentry->d_name); 3378 if (tgid == ~0U) 3379 goto out; 3380 3381 fs_info = proc_sb_info(dentry->d_sb); 3382 ns = fs_info->pid_ns; 3383 rcu_read_lock(); 3384 task = find_task_by_pid_ns(tgid, ns); 3385 if (task) 3386 get_task_struct(task); 3387 rcu_read_unlock(); 3388 if (!task) 3389 goto out; 3390 3391 /* Limit procfs to only ptraceable tasks */ 3392 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) { 3393 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS)) 3394 goto out_put_task; 3395 } 3396 3397 result = proc_pid_instantiate(dentry, task, NULL); 3398 out_put_task: 3399 put_task_struct(task); 3400 out: 3401 return result; 3402 } 3403 3404 /* 3405 * Find the first task with tgid >= tgid 3406 * 3407 */ 3408 struct tgid_iter { 3409 unsigned int tgid; 3410 struct task_struct *task; 3411 }; 3412 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3413 { 3414 struct pid *pid; 3415 3416 if (iter.task) 3417 put_task_struct(iter.task); 3418 rcu_read_lock(); 3419 retry: 3420 iter.task = NULL; 3421 pid = find_ge_pid(iter.tgid, ns); 3422 if (pid) { 3423 iter.tgid = pid_nr_ns(pid, ns); 3424 iter.task = pid_task(pid, PIDTYPE_TGID); 3425 if (!iter.task) { 3426 iter.tgid += 1; 3427 goto retry; 3428 } 3429 get_task_struct(iter.task); 3430 } 3431 rcu_read_unlock(); 3432 return iter; 3433 } 3434 3435 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2) 3436 3437 /* for the /proc/ directory itself, after non-process stuff has been done */ 3438 int proc_pid_readdir(struct file *file, struct dir_context *ctx) 3439 { 3440 struct tgid_iter iter; 3441 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb); 3442 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb); 3443 loff_t pos = ctx->pos; 3444 3445 if (pos >= PID_MAX_LIMIT + TGID_OFFSET) 3446 return 0; 3447 3448 if (pos == TGID_OFFSET - 2) { 3449 struct inode *inode = d_inode(fs_info->proc_self); 3450 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK)) 3451 return 0; 3452 ctx->pos = pos = pos + 1; 3453 } 3454 if (pos == TGID_OFFSET - 1) { 3455 struct inode *inode = d_inode(fs_info->proc_thread_self); 3456 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK)) 3457 return 0; 3458 ctx->pos = pos = pos + 1; 3459 } 3460 iter.tgid = pos - TGID_OFFSET; 3461 iter.task = NULL; 3462 for (iter = next_tgid(ns, iter); 3463 iter.task; 3464 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3465 char name[10 + 1]; 3466 unsigned int len; 3467 3468 cond_resched(); 3469 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE)) 3470 continue; 3471 3472 len = snprintf(name, sizeof(name), "%u", iter.tgid); 3473 ctx->pos = iter.tgid + TGID_OFFSET; 3474 if (!proc_fill_cache(file, ctx, name, len, 3475 proc_pid_instantiate, iter.task, NULL)) { 3476 put_task_struct(iter.task); 3477 return 0; 3478 } 3479 } 3480 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET; 3481 return 0; 3482 } 3483 3484 /* 3485 * proc_tid_comm_permission is a special permission function exclusively 3486 * used for the node /proc/<pid>/task/<tid>/comm. 3487 * It bypasses generic permission checks in the case where a task of the same 3488 * task group attempts to access the node. 3489 * The rationale behind this is that glibc and bionic access this node for 3490 * cross thread naming (pthread_set/getname_np(!self)). However, if 3491 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0, 3492 * which locks out the cross thread naming implementation. 3493 * This function makes sure that the node is always accessible for members of 3494 * same thread group. 3495 */ 3496 static int proc_tid_comm_permission(struct user_namespace *mnt_userns, 3497 struct inode *inode, int mask) 3498 { 3499 bool is_same_tgroup; 3500 struct task_struct *task; 3501 3502 task = get_proc_task(inode); 3503 if (!task) 3504 return -ESRCH; 3505 is_same_tgroup = same_thread_group(current, task); 3506 put_task_struct(task); 3507 3508 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) { 3509 /* This file (/proc/<pid>/task/<tid>/comm) can always be 3510 * read or written by the members of the corresponding 3511 * thread group. 3512 */ 3513 return 0; 3514 } 3515 3516 return generic_permission(&init_user_ns, inode, mask); 3517 } 3518 3519 static const struct inode_operations proc_tid_comm_inode_operations = { 3520 .permission = proc_tid_comm_permission, 3521 }; 3522 3523 /* 3524 * Tasks 3525 */ 3526 static const struct pid_entry tid_base_stuff[] = { 3527 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3528 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3529 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3530 #ifdef CONFIG_NET 3531 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3532 #endif 3533 REG("environ", S_IRUSR, proc_environ_operations), 3534 REG("auxv", S_IRUSR, proc_auxv_operations), 3535 ONE("status", S_IRUGO, proc_pid_status), 3536 ONE("personality", S_IRUSR, proc_pid_personality), 3537 ONE("limits", S_IRUGO, proc_pid_limits), 3538 #ifdef CONFIG_SCHED_DEBUG 3539 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3540 #endif 3541 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR, 3542 &proc_tid_comm_inode_operations, 3543 &proc_pid_set_comm_operations, {}), 3544 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3545 ONE("syscall", S_IRUSR, proc_pid_syscall), 3546 #endif 3547 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3548 ONE("stat", S_IRUGO, proc_tid_stat), 3549 ONE("statm", S_IRUGO, proc_pid_statm), 3550 REG("maps", S_IRUGO, proc_pid_maps_operations), 3551 #ifdef CONFIG_PROC_CHILDREN 3552 REG("children", S_IRUGO, proc_tid_children_operations), 3553 #endif 3554 #ifdef CONFIG_NUMA 3555 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3556 #endif 3557 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3558 LNK("cwd", proc_cwd_link), 3559 LNK("root", proc_root_link), 3560 LNK("exe", proc_exe_link), 3561 REG("mounts", S_IRUGO, proc_mounts_operations), 3562 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3563 #ifdef CONFIG_PROC_PAGE_MONITOR 3564 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3565 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3566 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3567 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3568 #endif 3569 #ifdef CONFIG_SECURITY 3570 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3571 #endif 3572 #ifdef CONFIG_KALLSYMS 3573 ONE("wchan", S_IRUGO, proc_pid_wchan), 3574 #endif 3575 #ifdef CONFIG_STACKTRACE 3576 ONE("stack", S_IRUSR, proc_pid_stack), 3577 #endif 3578 #ifdef CONFIG_SCHED_INFO 3579 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3580 #endif 3581 #ifdef CONFIG_LATENCYTOP 3582 REG("latency", S_IRUGO, proc_lstats_operations), 3583 #endif 3584 #ifdef CONFIG_PROC_PID_CPUSET 3585 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3586 #endif 3587 #ifdef CONFIG_CGROUPS 3588 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3589 #endif 3590 #ifdef CONFIG_PROC_CPU_RESCTRL 3591 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3592 #endif 3593 ONE("oom_score", S_IRUGO, proc_oom_score), 3594 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3595 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3596 #ifdef CONFIG_AUDIT 3597 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3598 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3599 #endif 3600 #ifdef CONFIG_FAULT_INJECTION 3601 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3602 REG("fail-nth", 0644, proc_fail_nth_operations), 3603 #endif 3604 #ifdef CONFIG_TASK_IO_ACCOUNTING 3605 ONE("io", S_IRUSR, proc_tid_io_accounting), 3606 #endif 3607 #ifdef CONFIG_USER_NS 3608 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3609 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3610 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3611 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3612 #endif 3613 #ifdef CONFIG_LIVEPATCH 3614 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3615 #endif 3616 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3617 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3618 #endif 3619 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 3620 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache), 3621 #endif 3622 }; 3623 3624 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx) 3625 { 3626 return proc_pident_readdir(file, ctx, 3627 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3628 } 3629 3630 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3631 { 3632 return proc_pident_lookup(dir, dentry, 3633 tid_base_stuff, 3634 tid_base_stuff + ARRAY_SIZE(tid_base_stuff)); 3635 } 3636 3637 static const struct file_operations proc_tid_base_operations = { 3638 .read = generic_read_dir, 3639 .iterate_shared = proc_tid_base_readdir, 3640 .llseek = generic_file_llseek, 3641 }; 3642 3643 static const struct inode_operations proc_tid_base_inode_operations = { 3644 .lookup = proc_tid_base_lookup, 3645 .getattr = pid_getattr, 3646 .setattr = proc_setattr, 3647 }; 3648 3649 static struct dentry *proc_task_instantiate(struct dentry *dentry, 3650 struct task_struct *task, const void *ptr) 3651 { 3652 struct inode *inode; 3653 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3654 if (!inode) 3655 return ERR_PTR(-ENOENT); 3656 3657 inode->i_op = &proc_tid_base_inode_operations; 3658 inode->i_fop = &proc_tid_base_operations; 3659 inode->i_flags |= S_IMMUTABLE; 3660 3661 set_nlink(inode, nlink_tid); 3662 pid_update_inode(task, inode); 3663 3664 d_set_d_op(dentry, &pid_dentry_operations); 3665 return d_splice_alias(inode, dentry); 3666 } 3667 3668 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3669 { 3670 struct task_struct *task; 3671 struct task_struct *leader = get_proc_task(dir); 3672 unsigned tid; 3673 struct proc_fs_info *fs_info; 3674 struct pid_namespace *ns; 3675 struct dentry *result = ERR_PTR(-ENOENT); 3676 3677 if (!leader) 3678 goto out_no_task; 3679 3680 tid = name_to_int(&dentry->d_name); 3681 if (tid == ~0U) 3682 goto out; 3683 3684 fs_info = proc_sb_info(dentry->d_sb); 3685 ns = fs_info->pid_ns; 3686 rcu_read_lock(); 3687 task = find_task_by_pid_ns(tid, ns); 3688 if (task) 3689 get_task_struct(task); 3690 rcu_read_unlock(); 3691 if (!task) 3692 goto out; 3693 if (!same_thread_group(leader, task)) 3694 goto out_drop_task; 3695 3696 result = proc_task_instantiate(dentry, task, NULL); 3697 out_drop_task: 3698 put_task_struct(task); 3699 out: 3700 put_task_struct(leader); 3701 out_no_task: 3702 return result; 3703 } 3704 3705 /* 3706 * Find the first tid of a thread group to return to user space. 3707 * 3708 * Usually this is just the thread group leader, but if the users 3709 * buffer was too small or there was a seek into the middle of the 3710 * directory we have more work todo. 3711 * 3712 * In the case of a short read we start with find_task_by_pid. 3713 * 3714 * In the case of a seek we start with the leader and walk nr 3715 * threads past it. 3716 */ 3717 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos, 3718 struct pid_namespace *ns) 3719 { 3720 struct task_struct *pos, *task; 3721 unsigned long nr = f_pos; 3722 3723 if (nr != f_pos) /* 32bit overflow? */ 3724 return NULL; 3725 3726 rcu_read_lock(); 3727 task = pid_task(pid, PIDTYPE_PID); 3728 if (!task) 3729 goto fail; 3730 3731 /* Attempt to start with the tid of a thread */ 3732 if (tid && nr) { 3733 pos = find_task_by_pid_ns(tid, ns); 3734 if (pos && same_thread_group(pos, task)) 3735 goto found; 3736 } 3737 3738 /* If nr exceeds the number of threads there is nothing todo */ 3739 if (nr >= get_nr_threads(task)) 3740 goto fail; 3741 3742 /* If we haven't found our starting place yet start 3743 * with the leader and walk nr threads forward. 3744 */ 3745 pos = task = task->group_leader; 3746 do { 3747 if (!nr--) 3748 goto found; 3749 } while_each_thread(task, pos); 3750 fail: 3751 pos = NULL; 3752 goto out; 3753 found: 3754 get_task_struct(pos); 3755 out: 3756 rcu_read_unlock(); 3757 return pos; 3758 } 3759 3760 /* 3761 * Find the next thread in the thread list. 3762 * Return NULL if there is an error or no next thread. 3763 * 3764 * The reference to the input task_struct is released. 3765 */ 3766 static struct task_struct *next_tid(struct task_struct *start) 3767 { 3768 struct task_struct *pos = NULL; 3769 rcu_read_lock(); 3770 if (pid_alive(start)) { 3771 pos = next_thread(start); 3772 if (thread_group_leader(pos)) 3773 pos = NULL; 3774 else 3775 get_task_struct(pos); 3776 } 3777 rcu_read_unlock(); 3778 put_task_struct(start); 3779 return pos; 3780 } 3781 3782 /* for the /proc/TGID/task/ directories */ 3783 static int proc_task_readdir(struct file *file, struct dir_context *ctx) 3784 { 3785 struct inode *inode = file_inode(file); 3786 struct task_struct *task; 3787 struct pid_namespace *ns; 3788 int tid; 3789 3790 if (proc_inode_is_dead(inode)) 3791 return -ENOENT; 3792 3793 if (!dir_emit_dots(file, ctx)) 3794 return 0; 3795 3796 /* f_version caches the tgid value that the last readdir call couldn't 3797 * return. lseek aka telldir automagically resets f_version to 0. 3798 */ 3799 ns = proc_pid_ns(inode->i_sb); 3800 tid = (int)file->f_version; 3801 file->f_version = 0; 3802 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns); 3803 task; 3804 task = next_tid(task), ctx->pos++) { 3805 char name[10 + 1]; 3806 unsigned int len; 3807 3808 tid = task_pid_nr_ns(task, ns); 3809 if (!tid) 3810 continue; /* The task has just exited. */ 3811 len = snprintf(name, sizeof(name), "%u", tid); 3812 if (!proc_fill_cache(file, ctx, name, len, 3813 proc_task_instantiate, task, NULL)) { 3814 /* returning this tgid failed, save it as the first 3815 * pid for the next readir call */ 3816 file->f_version = (u64)tid; 3817 put_task_struct(task); 3818 break; 3819 } 3820 } 3821 3822 return 0; 3823 } 3824 3825 static int proc_task_getattr(struct user_namespace *mnt_userns, 3826 const struct path *path, struct kstat *stat, 3827 u32 request_mask, unsigned int query_flags) 3828 { 3829 struct inode *inode = d_inode(path->dentry); 3830 struct task_struct *p = get_proc_task(inode); 3831 generic_fillattr(&init_user_ns, inode, stat); 3832 3833 if (p) { 3834 stat->nlink += get_nr_threads(p); 3835 put_task_struct(p); 3836 } 3837 3838 return 0; 3839 } 3840 3841 static const struct inode_operations proc_task_inode_operations = { 3842 .lookup = proc_task_lookup, 3843 .getattr = proc_task_getattr, 3844 .setattr = proc_setattr, 3845 .permission = proc_pid_permission, 3846 }; 3847 3848 static const struct file_operations proc_task_operations = { 3849 .read = generic_read_dir, 3850 .iterate_shared = proc_task_readdir, 3851 .llseek = generic_file_llseek, 3852 }; 3853 3854 void __init set_proc_pid_nlink(void) 3855 { 3856 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3857 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3858 } 3859