xref: /openbmc/linux/fs/proc/base.c (revision c0e297dc)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/flex_array.h>
89 #include <linux/posix-timers.h>
90 #ifdef CONFIG_HARDWALL
91 #include <asm/hardwall.h>
92 #endif
93 #include <trace/events/oom.h>
94 #include "internal.h"
95 #include "fd.h"
96 
97 /* NOTE:
98  *	Implementing inode permission operations in /proc is almost
99  *	certainly an error.  Permission checks need to happen during
100  *	each system call not at open time.  The reason is that most of
101  *	what we wish to check for permissions in /proc varies at runtime.
102  *
103  *	The classic example of a problem is opening file descriptors
104  *	in /proc for a task before it execs a suid executable.
105  */
106 
107 struct pid_entry {
108 	const char *name;
109 	int len;
110 	umode_t mode;
111 	const struct inode_operations *iop;
112 	const struct file_operations *fop;
113 	union proc_op op;
114 };
115 
116 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
117 	.name = (NAME),					\
118 	.len  = sizeof(NAME) - 1,			\
119 	.mode = MODE,					\
120 	.iop  = IOP,					\
121 	.fop  = FOP,					\
122 	.op   = OP,					\
123 }
124 
125 #define DIR(NAME, MODE, iops, fops)	\
126 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
127 #define LNK(NAME, get_link)					\
128 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
129 		&proc_pid_link_inode_operations, NULL,		\
130 		{ .proc_get_link = get_link } )
131 #define REG(NAME, MODE, fops)				\
132 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
133 #define ONE(NAME, MODE, show)				\
134 	NOD(NAME, (S_IFREG|(MODE)), 			\
135 		NULL, &proc_single_file_operations,	\
136 		{ .proc_show = show } )
137 
138 /*
139  * Count the number of hardlinks for the pid_entry table, excluding the .
140  * and .. links.
141  */
142 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
143 	unsigned int n)
144 {
145 	unsigned int i;
146 	unsigned int count;
147 
148 	count = 0;
149 	for (i = 0; i < n; ++i) {
150 		if (S_ISDIR(entries[i].mode))
151 			++count;
152 	}
153 
154 	return count;
155 }
156 
157 static int get_task_root(struct task_struct *task, struct path *root)
158 {
159 	int result = -ENOENT;
160 
161 	task_lock(task);
162 	if (task->fs) {
163 		get_fs_root(task->fs, root);
164 		result = 0;
165 	}
166 	task_unlock(task);
167 	return result;
168 }
169 
170 static int proc_cwd_link(struct dentry *dentry, struct path *path)
171 {
172 	struct task_struct *task = get_proc_task(d_inode(dentry));
173 	int result = -ENOENT;
174 
175 	if (task) {
176 		task_lock(task);
177 		if (task->fs) {
178 			get_fs_pwd(task->fs, path);
179 			result = 0;
180 		}
181 		task_unlock(task);
182 		put_task_struct(task);
183 	}
184 	return result;
185 }
186 
187 static int proc_root_link(struct dentry *dentry, struct path *path)
188 {
189 	struct task_struct *task = get_proc_task(d_inode(dentry));
190 	int result = -ENOENT;
191 
192 	if (task) {
193 		result = get_task_root(task, path);
194 		put_task_struct(task);
195 	}
196 	return result;
197 }
198 
199 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
200 				     size_t _count, loff_t *pos)
201 {
202 	struct task_struct *tsk;
203 	struct mm_struct *mm;
204 	char *page;
205 	unsigned long count = _count;
206 	unsigned long arg_start, arg_end, env_start, env_end;
207 	unsigned long len1, len2, len;
208 	unsigned long p;
209 	char c;
210 	ssize_t rv;
211 
212 	BUG_ON(*pos < 0);
213 
214 	tsk = get_proc_task(file_inode(file));
215 	if (!tsk)
216 		return -ESRCH;
217 	mm = get_task_mm(tsk);
218 	put_task_struct(tsk);
219 	if (!mm)
220 		return 0;
221 	/* Check if process spawned far enough to have cmdline. */
222 	if (!mm->env_end) {
223 		rv = 0;
224 		goto out_mmput;
225 	}
226 
227 	page = (char *)__get_free_page(GFP_TEMPORARY);
228 	if (!page) {
229 		rv = -ENOMEM;
230 		goto out_mmput;
231 	}
232 
233 	down_read(&mm->mmap_sem);
234 	arg_start = mm->arg_start;
235 	arg_end = mm->arg_end;
236 	env_start = mm->env_start;
237 	env_end = mm->env_end;
238 	up_read(&mm->mmap_sem);
239 
240 	BUG_ON(arg_start > arg_end);
241 	BUG_ON(env_start > env_end);
242 
243 	len1 = arg_end - arg_start;
244 	len2 = env_end - env_start;
245 
246 	/* Empty ARGV. */
247 	if (len1 == 0) {
248 		rv = 0;
249 		goto out_free_page;
250 	}
251 	/*
252 	 * Inherently racy -- command line shares address space
253 	 * with code and data.
254 	 */
255 	rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
256 	if (rv <= 0)
257 		goto out_free_page;
258 
259 	rv = 0;
260 
261 	if (c == '\0') {
262 		/* Command line (set of strings) occupies whole ARGV. */
263 		if (len1 <= *pos)
264 			goto out_free_page;
265 
266 		p = arg_start + *pos;
267 		len = len1 - *pos;
268 		while (count > 0 && len > 0) {
269 			unsigned int _count;
270 			int nr_read;
271 
272 			_count = min3(count, len, PAGE_SIZE);
273 			nr_read = access_remote_vm(mm, p, page, _count, 0);
274 			if (nr_read < 0)
275 				rv = nr_read;
276 			if (nr_read <= 0)
277 				goto out_free_page;
278 
279 			if (copy_to_user(buf, page, nr_read)) {
280 				rv = -EFAULT;
281 				goto out_free_page;
282 			}
283 
284 			p	+= nr_read;
285 			len	-= nr_read;
286 			buf	+= nr_read;
287 			count	-= nr_read;
288 			rv	+= nr_read;
289 		}
290 	} else {
291 		/*
292 		 * Command line (1 string) occupies ARGV and maybe
293 		 * extends into ENVP.
294 		 */
295 		if (len1 + len2 <= *pos)
296 			goto skip_argv_envp;
297 		if (len1 <= *pos)
298 			goto skip_argv;
299 
300 		p = arg_start + *pos;
301 		len = len1 - *pos;
302 		while (count > 0 && len > 0) {
303 			unsigned int _count, l;
304 			int nr_read;
305 			bool final;
306 
307 			_count = min3(count, len, PAGE_SIZE);
308 			nr_read = access_remote_vm(mm, p, page, _count, 0);
309 			if (nr_read < 0)
310 				rv = nr_read;
311 			if (nr_read <= 0)
312 				goto out_free_page;
313 
314 			/*
315 			 * Command line can be shorter than whole ARGV
316 			 * even if last "marker" byte says it is not.
317 			 */
318 			final = false;
319 			l = strnlen(page, nr_read);
320 			if (l < nr_read) {
321 				nr_read = l;
322 				final = true;
323 			}
324 
325 			if (copy_to_user(buf, page, nr_read)) {
326 				rv = -EFAULT;
327 				goto out_free_page;
328 			}
329 
330 			p	+= nr_read;
331 			len	-= nr_read;
332 			buf	+= nr_read;
333 			count	-= nr_read;
334 			rv	+= nr_read;
335 
336 			if (final)
337 				goto out_free_page;
338 		}
339 skip_argv:
340 		/*
341 		 * Command line (1 string) occupies ARGV and
342 		 * extends into ENVP.
343 		 */
344 		if (len1 <= *pos) {
345 			p = env_start + *pos - len1;
346 			len = len1 + len2 - *pos;
347 		} else {
348 			p = env_start;
349 			len = len2;
350 		}
351 		while (count > 0 && len > 0) {
352 			unsigned int _count, l;
353 			int nr_read;
354 			bool final;
355 
356 			_count = min3(count, len, PAGE_SIZE);
357 			nr_read = access_remote_vm(mm, p, page, _count, 0);
358 			if (nr_read < 0)
359 				rv = nr_read;
360 			if (nr_read <= 0)
361 				goto out_free_page;
362 
363 			/* Find EOS. */
364 			final = false;
365 			l = strnlen(page, nr_read);
366 			if (l < nr_read) {
367 				nr_read = l;
368 				final = true;
369 			}
370 
371 			if (copy_to_user(buf, page, nr_read)) {
372 				rv = -EFAULT;
373 				goto out_free_page;
374 			}
375 
376 			p	+= nr_read;
377 			len	-= nr_read;
378 			buf	+= nr_read;
379 			count	-= nr_read;
380 			rv	+= nr_read;
381 
382 			if (final)
383 				goto out_free_page;
384 		}
385 skip_argv_envp:
386 		;
387 	}
388 
389 out_free_page:
390 	free_page((unsigned long)page);
391 out_mmput:
392 	mmput(mm);
393 	if (rv > 0)
394 		*pos += rv;
395 	return rv;
396 }
397 
398 static const struct file_operations proc_pid_cmdline_ops = {
399 	.read	= proc_pid_cmdline_read,
400 	.llseek	= generic_file_llseek,
401 };
402 
403 static int proc_pid_auxv(struct seq_file *m, struct pid_namespace *ns,
404 			 struct pid *pid, struct task_struct *task)
405 {
406 	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
407 	if (mm && !IS_ERR(mm)) {
408 		unsigned int nwords = 0;
409 		do {
410 			nwords += 2;
411 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
412 		seq_write(m, mm->saved_auxv, nwords * sizeof(mm->saved_auxv[0]));
413 		mmput(mm);
414 		return 0;
415 	} else
416 		return PTR_ERR(mm);
417 }
418 
419 
420 #ifdef CONFIG_KALLSYMS
421 /*
422  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
423  * Returns the resolved symbol.  If that fails, simply return the address.
424  */
425 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
426 			  struct pid *pid, struct task_struct *task)
427 {
428 	unsigned long wchan;
429 	char symname[KSYM_NAME_LEN];
430 
431 	wchan = get_wchan(task);
432 
433 	if (lookup_symbol_name(wchan, symname) < 0) {
434 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
435 			return 0;
436 		seq_printf(m, "%lu", wchan);
437 	} else {
438 		seq_printf(m, "%s", symname);
439 	}
440 
441 	return 0;
442 }
443 #endif /* CONFIG_KALLSYMS */
444 
445 static int lock_trace(struct task_struct *task)
446 {
447 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
448 	if (err)
449 		return err;
450 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
451 		mutex_unlock(&task->signal->cred_guard_mutex);
452 		return -EPERM;
453 	}
454 	return 0;
455 }
456 
457 static void unlock_trace(struct task_struct *task)
458 {
459 	mutex_unlock(&task->signal->cred_guard_mutex);
460 }
461 
462 #ifdef CONFIG_STACKTRACE
463 
464 #define MAX_STACK_TRACE_DEPTH	64
465 
466 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
467 			  struct pid *pid, struct task_struct *task)
468 {
469 	struct stack_trace trace;
470 	unsigned long *entries;
471 	int err;
472 	int i;
473 
474 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
475 	if (!entries)
476 		return -ENOMEM;
477 
478 	trace.nr_entries	= 0;
479 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
480 	trace.entries		= entries;
481 	trace.skip		= 0;
482 
483 	err = lock_trace(task);
484 	if (!err) {
485 		save_stack_trace_tsk(task, &trace);
486 
487 		for (i = 0; i < trace.nr_entries; i++) {
488 			seq_printf(m, "[<%pK>] %pS\n",
489 				   (void *)entries[i], (void *)entries[i]);
490 		}
491 		unlock_trace(task);
492 	}
493 	kfree(entries);
494 
495 	return err;
496 }
497 #endif
498 
499 #ifdef CONFIG_SCHED_INFO
500 /*
501  * Provides /proc/PID/schedstat
502  */
503 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
504 			      struct pid *pid, struct task_struct *task)
505 {
506 	if (unlikely(!sched_info_on()))
507 		seq_printf(m, "0 0 0\n");
508 	else
509 		seq_printf(m, "%llu %llu %lu\n",
510 		   (unsigned long long)task->se.sum_exec_runtime,
511 		   (unsigned long long)task->sched_info.run_delay,
512 		   task->sched_info.pcount);
513 
514 	return 0;
515 }
516 #endif
517 
518 #ifdef CONFIG_LATENCYTOP
519 static int lstats_show_proc(struct seq_file *m, void *v)
520 {
521 	int i;
522 	struct inode *inode = m->private;
523 	struct task_struct *task = get_proc_task(inode);
524 
525 	if (!task)
526 		return -ESRCH;
527 	seq_puts(m, "Latency Top version : v0.1\n");
528 	for (i = 0; i < 32; i++) {
529 		struct latency_record *lr = &task->latency_record[i];
530 		if (lr->backtrace[0]) {
531 			int q;
532 			seq_printf(m, "%i %li %li",
533 				   lr->count, lr->time, lr->max);
534 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
535 				unsigned long bt = lr->backtrace[q];
536 				if (!bt)
537 					break;
538 				if (bt == ULONG_MAX)
539 					break;
540 				seq_printf(m, " %ps", (void *)bt);
541 			}
542 			seq_putc(m, '\n');
543 		}
544 
545 	}
546 	put_task_struct(task);
547 	return 0;
548 }
549 
550 static int lstats_open(struct inode *inode, struct file *file)
551 {
552 	return single_open(file, lstats_show_proc, inode);
553 }
554 
555 static ssize_t lstats_write(struct file *file, const char __user *buf,
556 			    size_t count, loff_t *offs)
557 {
558 	struct task_struct *task = get_proc_task(file_inode(file));
559 
560 	if (!task)
561 		return -ESRCH;
562 	clear_all_latency_tracing(task);
563 	put_task_struct(task);
564 
565 	return count;
566 }
567 
568 static const struct file_operations proc_lstats_operations = {
569 	.open		= lstats_open,
570 	.read		= seq_read,
571 	.write		= lstats_write,
572 	.llseek		= seq_lseek,
573 	.release	= single_release,
574 };
575 
576 #endif
577 
578 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
579 			  struct pid *pid, struct task_struct *task)
580 {
581 	unsigned long totalpages = totalram_pages + total_swap_pages;
582 	unsigned long points = 0;
583 
584 	read_lock(&tasklist_lock);
585 	if (pid_alive(task))
586 		points = oom_badness(task, NULL, NULL, totalpages) *
587 						1000 / totalpages;
588 	read_unlock(&tasklist_lock);
589 	seq_printf(m, "%lu\n", points);
590 
591 	return 0;
592 }
593 
594 struct limit_names {
595 	const char *name;
596 	const char *unit;
597 };
598 
599 static const struct limit_names lnames[RLIM_NLIMITS] = {
600 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
601 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
602 	[RLIMIT_DATA] = {"Max data size", "bytes"},
603 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
604 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
605 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
606 	[RLIMIT_NPROC] = {"Max processes", "processes"},
607 	[RLIMIT_NOFILE] = {"Max open files", "files"},
608 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
609 	[RLIMIT_AS] = {"Max address space", "bytes"},
610 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
611 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
612 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
613 	[RLIMIT_NICE] = {"Max nice priority", NULL},
614 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
615 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
616 };
617 
618 /* Display limits for a process */
619 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
620 			   struct pid *pid, struct task_struct *task)
621 {
622 	unsigned int i;
623 	unsigned long flags;
624 
625 	struct rlimit rlim[RLIM_NLIMITS];
626 
627 	if (!lock_task_sighand(task, &flags))
628 		return 0;
629 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
630 	unlock_task_sighand(task, &flags);
631 
632 	/*
633 	 * print the file header
634 	 */
635        seq_printf(m, "%-25s %-20s %-20s %-10s\n",
636 		  "Limit", "Soft Limit", "Hard Limit", "Units");
637 
638 	for (i = 0; i < RLIM_NLIMITS; i++) {
639 		if (rlim[i].rlim_cur == RLIM_INFINITY)
640 			seq_printf(m, "%-25s %-20s ",
641 				   lnames[i].name, "unlimited");
642 		else
643 			seq_printf(m, "%-25s %-20lu ",
644 				   lnames[i].name, rlim[i].rlim_cur);
645 
646 		if (rlim[i].rlim_max == RLIM_INFINITY)
647 			seq_printf(m, "%-20s ", "unlimited");
648 		else
649 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
650 
651 		if (lnames[i].unit)
652 			seq_printf(m, "%-10s\n", lnames[i].unit);
653 		else
654 			seq_putc(m, '\n');
655 	}
656 
657 	return 0;
658 }
659 
660 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
661 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
662 			    struct pid *pid, struct task_struct *task)
663 {
664 	long nr;
665 	unsigned long args[6], sp, pc;
666 	int res;
667 
668 	res = lock_trace(task);
669 	if (res)
670 		return res;
671 
672 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
673 		seq_puts(m, "running\n");
674 	else if (nr < 0)
675 		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
676 	else
677 		seq_printf(m,
678 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
679 		       nr,
680 		       args[0], args[1], args[2], args[3], args[4], args[5],
681 		       sp, pc);
682 	unlock_trace(task);
683 
684 	return 0;
685 }
686 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
687 
688 /************************************************************************/
689 /*                       Here the fs part begins                        */
690 /************************************************************************/
691 
692 /* permission checks */
693 static int proc_fd_access_allowed(struct inode *inode)
694 {
695 	struct task_struct *task;
696 	int allowed = 0;
697 	/* Allow access to a task's file descriptors if it is us or we
698 	 * may use ptrace attach to the process and find out that
699 	 * information.
700 	 */
701 	task = get_proc_task(inode);
702 	if (task) {
703 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
704 		put_task_struct(task);
705 	}
706 	return allowed;
707 }
708 
709 int proc_setattr(struct dentry *dentry, struct iattr *attr)
710 {
711 	int error;
712 	struct inode *inode = d_inode(dentry);
713 
714 	if (attr->ia_valid & ATTR_MODE)
715 		return -EPERM;
716 
717 	error = inode_change_ok(inode, attr);
718 	if (error)
719 		return error;
720 
721 	setattr_copy(inode, attr);
722 	mark_inode_dirty(inode);
723 	return 0;
724 }
725 
726 /*
727  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
728  * or euid/egid (for hide_pid_min=2)?
729  */
730 static bool has_pid_permissions(struct pid_namespace *pid,
731 				 struct task_struct *task,
732 				 int hide_pid_min)
733 {
734 	if (pid->hide_pid < hide_pid_min)
735 		return true;
736 	if (in_group_p(pid->pid_gid))
737 		return true;
738 	return ptrace_may_access(task, PTRACE_MODE_READ);
739 }
740 
741 
742 static int proc_pid_permission(struct inode *inode, int mask)
743 {
744 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
745 	struct task_struct *task;
746 	bool has_perms;
747 
748 	task = get_proc_task(inode);
749 	if (!task)
750 		return -ESRCH;
751 	has_perms = has_pid_permissions(pid, task, 1);
752 	put_task_struct(task);
753 
754 	if (!has_perms) {
755 		if (pid->hide_pid == 2) {
756 			/*
757 			 * Let's make getdents(), stat(), and open()
758 			 * consistent with each other.  If a process
759 			 * may not stat() a file, it shouldn't be seen
760 			 * in procfs at all.
761 			 */
762 			return -ENOENT;
763 		}
764 
765 		return -EPERM;
766 	}
767 	return generic_permission(inode, mask);
768 }
769 
770 
771 
772 static const struct inode_operations proc_def_inode_operations = {
773 	.setattr	= proc_setattr,
774 };
775 
776 static int proc_single_show(struct seq_file *m, void *v)
777 {
778 	struct inode *inode = m->private;
779 	struct pid_namespace *ns;
780 	struct pid *pid;
781 	struct task_struct *task;
782 	int ret;
783 
784 	ns = inode->i_sb->s_fs_info;
785 	pid = proc_pid(inode);
786 	task = get_pid_task(pid, PIDTYPE_PID);
787 	if (!task)
788 		return -ESRCH;
789 
790 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
791 
792 	put_task_struct(task);
793 	return ret;
794 }
795 
796 static int proc_single_open(struct inode *inode, struct file *filp)
797 {
798 	return single_open(filp, proc_single_show, inode);
799 }
800 
801 static const struct file_operations proc_single_file_operations = {
802 	.open		= proc_single_open,
803 	.read		= seq_read,
804 	.llseek		= seq_lseek,
805 	.release	= single_release,
806 };
807 
808 
809 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
810 {
811 	struct task_struct *task = get_proc_task(inode);
812 	struct mm_struct *mm = ERR_PTR(-ESRCH);
813 
814 	if (task) {
815 		mm = mm_access(task, mode);
816 		put_task_struct(task);
817 
818 		if (!IS_ERR_OR_NULL(mm)) {
819 			/* ensure this mm_struct can't be freed */
820 			atomic_inc(&mm->mm_count);
821 			/* but do not pin its memory */
822 			mmput(mm);
823 		}
824 	}
825 
826 	return mm;
827 }
828 
829 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
830 {
831 	struct mm_struct *mm = proc_mem_open(inode, mode);
832 
833 	if (IS_ERR(mm))
834 		return PTR_ERR(mm);
835 
836 	file->private_data = mm;
837 	return 0;
838 }
839 
840 static int mem_open(struct inode *inode, struct file *file)
841 {
842 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
843 
844 	/* OK to pass negative loff_t, we can catch out-of-range */
845 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
846 
847 	return ret;
848 }
849 
850 static ssize_t mem_rw(struct file *file, char __user *buf,
851 			size_t count, loff_t *ppos, int write)
852 {
853 	struct mm_struct *mm = file->private_data;
854 	unsigned long addr = *ppos;
855 	ssize_t copied;
856 	char *page;
857 
858 	if (!mm)
859 		return 0;
860 
861 	page = (char *)__get_free_page(GFP_TEMPORARY);
862 	if (!page)
863 		return -ENOMEM;
864 
865 	copied = 0;
866 	if (!atomic_inc_not_zero(&mm->mm_users))
867 		goto free;
868 
869 	while (count > 0) {
870 		int this_len = min_t(int, count, PAGE_SIZE);
871 
872 		if (write && copy_from_user(page, buf, this_len)) {
873 			copied = -EFAULT;
874 			break;
875 		}
876 
877 		this_len = access_remote_vm(mm, addr, page, this_len, write);
878 		if (!this_len) {
879 			if (!copied)
880 				copied = -EIO;
881 			break;
882 		}
883 
884 		if (!write && copy_to_user(buf, page, this_len)) {
885 			copied = -EFAULT;
886 			break;
887 		}
888 
889 		buf += this_len;
890 		addr += this_len;
891 		copied += this_len;
892 		count -= this_len;
893 	}
894 	*ppos = addr;
895 
896 	mmput(mm);
897 free:
898 	free_page((unsigned long) page);
899 	return copied;
900 }
901 
902 static ssize_t mem_read(struct file *file, char __user *buf,
903 			size_t count, loff_t *ppos)
904 {
905 	return mem_rw(file, buf, count, ppos, 0);
906 }
907 
908 static ssize_t mem_write(struct file *file, const char __user *buf,
909 			 size_t count, loff_t *ppos)
910 {
911 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
912 }
913 
914 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
915 {
916 	switch (orig) {
917 	case 0:
918 		file->f_pos = offset;
919 		break;
920 	case 1:
921 		file->f_pos += offset;
922 		break;
923 	default:
924 		return -EINVAL;
925 	}
926 	force_successful_syscall_return();
927 	return file->f_pos;
928 }
929 
930 static int mem_release(struct inode *inode, struct file *file)
931 {
932 	struct mm_struct *mm = file->private_data;
933 	if (mm)
934 		mmdrop(mm);
935 	return 0;
936 }
937 
938 static const struct file_operations proc_mem_operations = {
939 	.llseek		= mem_lseek,
940 	.read		= mem_read,
941 	.write		= mem_write,
942 	.open		= mem_open,
943 	.release	= mem_release,
944 };
945 
946 static int environ_open(struct inode *inode, struct file *file)
947 {
948 	return __mem_open(inode, file, PTRACE_MODE_READ);
949 }
950 
951 static ssize_t environ_read(struct file *file, char __user *buf,
952 			size_t count, loff_t *ppos)
953 {
954 	char *page;
955 	unsigned long src = *ppos;
956 	int ret = 0;
957 	struct mm_struct *mm = file->private_data;
958 
959 	if (!mm)
960 		return 0;
961 
962 	page = (char *)__get_free_page(GFP_TEMPORARY);
963 	if (!page)
964 		return -ENOMEM;
965 
966 	ret = 0;
967 	if (!atomic_inc_not_zero(&mm->mm_users))
968 		goto free;
969 	while (count > 0) {
970 		size_t this_len, max_len;
971 		int retval;
972 
973 		if (src >= (mm->env_end - mm->env_start))
974 			break;
975 
976 		this_len = mm->env_end - (mm->env_start + src);
977 
978 		max_len = min_t(size_t, PAGE_SIZE, count);
979 		this_len = min(max_len, this_len);
980 
981 		retval = access_remote_vm(mm, (mm->env_start + src),
982 			page, this_len, 0);
983 
984 		if (retval <= 0) {
985 			ret = retval;
986 			break;
987 		}
988 
989 		if (copy_to_user(buf, page, retval)) {
990 			ret = -EFAULT;
991 			break;
992 		}
993 
994 		ret += retval;
995 		src += retval;
996 		buf += retval;
997 		count -= retval;
998 	}
999 	*ppos = src;
1000 	mmput(mm);
1001 
1002 free:
1003 	free_page((unsigned long) page);
1004 	return ret;
1005 }
1006 
1007 static const struct file_operations proc_environ_operations = {
1008 	.open		= environ_open,
1009 	.read		= environ_read,
1010 	.llseek		= generic_file_llseek,
1011 	.release	= mem_release,
1012 };
1013 
1014 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1015 			    loff_t *ppos)
1016 {
1017 	struct task_struct *task = get_proc_task(file_inode(file));
1018 	char buffer[PROC_NUMBUF];
1019 	int oom_adj = OOM_ADJUST_MIN;
1020 	size_t len;
1021 	unsigned long flags;
1022 
1023 	if (!task)
1024 		return -ESRCH;
1025 	if (lock_task_sighand(task, &flags)) {
1026 		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1027 			oom_adj = OOM_ADJUST_MAX;
1028 		else
1029 			oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1030 				  OOM_SCORE_ADJ_MAX;
1031 		unlock_task_sighand(task, &flags);
1032 	}
1033 	put_task_struct(task);
1034 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1035 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1036 }
1037 
1038 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1039 			     size_t count, loff_t *ppos)
1040 {
1041 	struct task_struct *task;
1042 	char buffer[PROC_NUMBUF];
1043 	int oom_adj;
1044 	unsigned long flags;
1045 	int err;
1046 
1047 	memset(buffer, 0, sizeof(buffer));
1048 	if (count > sizeof(buffer) - 1)
1049 		count = sizeof(buffer) - 1;
1050 	if (copy_from_user(buffer, buf, count)) {
1051 		err = -EFAULT;
1052 		goto out;
1053 	}
1054 
1055 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1056 	if (err)
1057 		goto out;
1058 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1059 	     oom_adj != OOM_DISABLE) {
1060 		err = -EINVAL;
1061 		goto out;
1062 	}
1063 
1064 	task = get_proc_task(file_inode(file));
1065 	if (!task) {
1066 		err = -ESRCH;
1067 		goto out;
1068 	}
1069 
1070 	task_lock(task);
1071 	if (!task->mm) {
1072 		err = -EINVAL;
1073 		goto err_task_lock;
1074 	}
1075 
1076 	if (!lock_task_sighand(task, &flags)) {
1077 		err = -ESRCH;
1078 		goto err_task_lock;
1079 	}
1080 
1081 	/*
1082 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1083 	 * value is always attainable.
1084 	 */
1085 	if (oom_adj == OOM_ADJUST_MAX)
1086 		oom_adj = OOM_SCORE_ADJ_MAX;
1087 	else
1088 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1089 
1090 	if (oom_adj < task->signal->oom_score_adj &&
1091 	    !capable(CAP_SYS_RESOURCE)) {
1092 		err = -EACCES;
1093 		goto err_sighand;
1094 	}
1095 
1096 	/*
1097 	 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1098 	 * /proc/pid/oom_score_adj instead.
1099 	 */
1100 	pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1101 		  current->comm, task_pid_nr(current), task_pid_nr(task),
1102 		  task_pid_nr(task));
1103 
1104 	task->signal->oom_score_adj = oom_adj;
1105 	trace_oom_score_adj_update(task);
1106 err_sighand:
1107 	unlock_task_sighand(task, &flags);
1108 err_task_lock:
1109 	task_unlock(task);
1110 	put_task_struct(task);
1111 out:
1112 	return err < 0 ? err : count;
1113 }
1114 
1115 static const struct file_operations proc_oom_adj_operations = {
1116 	.read		= oom_adj_read,
1117 	.write		= oom_adj_write,
1118 	.llseek		= generic_file_llseek,
1119 };
1120 
1121 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1122 					size_t count, loff_t *ppos)
1123 {
1124 	struct task_struct *task = get_proc_task(file_inode(file));
1125 	char buffer[PROC_NUMBUF];
1126 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1127 	unsigned long flags;
1128 	size_t len;
1129 
1130 	if (!task)
1131 		return -ESRCH;
1132 	if (lock_task_sighand(task, &flags)) {
1133 		oom_score_adj = task->signal->oom_score_adj;
1134 		unlock_task_sighand(task, &flags);
1135 	}
1136 	put_task_struct(task);
1137 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1138 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1139 }
1140 
1141 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1142 					size_t count, loff_t *ppos)
1143 {
1144 	struct task_struct *task;
1145 	char buffer[PROC_NUMBUF];
1146 	unsigned long flags;
1147 	int oom_score_adj;
1148 	int err;
1149 
1150 	memset(buffer, 0, sizeof(buffer));
1151 	if (count > sizeof(buffer) - 1)
1152 		count = sizeof(buffer) - 1;
1153 	if (copy_from_user(buffer, buf, count)) {
1154 		err = -EFAULT;
1155 		goto out;
1156 	}
1157 
1158 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1159 	if (err)
1160 		goto out;
1161 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1162 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1163 		err = -EINVAL;
1164 		goto out;
1165 	}
1166 
1167 	task = get_proc_task(file_inode(file));
1168 	if (!task) {
1169 		err = -ESRCH;
1170 		goto out;
1171 	}
1172 
1173 	task_lock(task);
1174 	if (!task->mm) {
1175 		err = -EINVAL;
1176 		goto err_task_lock;
1177 	}
1178 
1179 	if (!lock_task_sighand(task, &flags)) {
1180 		err = -ESRCH;
1181 		goto err_task_lock;
1182 	}
1183 
1184 	if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1185 			!capable(CAP_SYS_RESOURCE)) {
1186 		err = -EACCES;
1187 		goto err_sighand;
1188 	}
1189 
1190 	task->signal->oom_score_adj = (short)oom_score_adj;
1191 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1192 		task->signal->oom_score_adj_min = (short)oom_score_adj;
1193 	trace_oom_score_adj_update(task);
1194 
1195 err_sighand:
1196 	unlock_task_sighand(task, &flags);
1197 err_task_lock:
1198 	task_unlock(task);
1199 	put_task_struct(task);
1200 out:
1201 	return err < 0 ? err : count;
1202 }
1203 
1204 static const struct file_operations proc_oom_score_adj_operations = {
1205 	.read		= oom_score_adj_read,
1206 	.write		= oom_score_adj_write,
1207 	.llseek		= default_llseek,
1208 };
1209 
1210 #ifdef CONFIG_AUDITSYSCALL
1211 #define TMPBUFLEN 21
1212 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1213 				  size_t count, loff_t *ppos)
1214 {
1215 	struct inode * inode = file_inode(file);
1216 	struct task_struct *task = get_proc_task(inode);
1217 	ssize_t length;
1218 	char tmpbuf[TMPBUFLEN];
1219 
1220 	if (!task)
1221 		return -ESRCH;
1222 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1223 			   from_kuid(file->f_cred->user_ns,
1224 				     audit_get_loginuid(task)));
1225 	put_task_struct(task);
1226 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1227 }
1228 
1229 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1230 				   size_t count, loff_t *ppos)
1231 {
1232 	struct inode * inode = file_inode(file);
1233 	char *page, *tmp;
1234 	ssize_t length;
1235 	uid_t loginuid;
1236 	kuid_t kloginuid;
1237 
1238 	rcu_read_lock();
1239 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1240 		rcu_read_unlock();
1241 		return -EPERM;
1242 	}
1243 	rcu_read_unlock();
1244 
1245 	if (count >= PAGE_SIZE)
1246 		count = PAGE_SIZE - 1;
1247 
1248 	if (*ppos != 0) {
1249 		/* No partial writes. */
1250 		return -EINVAL;
1251 	}
1252 	page = (char*)__get_free_page(GFP_TEMPORARY);
1253 	if (!page)
1254 		return -ENOMEM;
1255 	length = -EFAULT;
1256 	if (copy_from_user(page, buf, count))
1257 		goto out_free_page;
1258 
1259 	page[count] = '\0';
1260 	loginuid = simple_strtoul(page, &tmp, 10);
1261 	if (tmp == page) {
1262 		length = -EINVAL;
1263 		goto out_free_page;
1264 
1265 	}
1266 
1267 	/* is userspace tring to explicitly UNSET the loginuid? */
1268 	if (loginuid == AUDIT_UID_UNSET) {
1269 		kloginuid = INVALID_UID;
1270 	} else {
1271 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1272 		if (!uid_valid(kloginuid)) {
1273 			length = -EINVAL;
1274 			goto out_free_page;
1275 		}
1276 	}
1277 
1278 	length = audit_set_loginuid(kloginuid);
1279 	if (likely(length == 0))
1280 		length = count;
1281 
1282 out_free_page:
1283 	free_page((unsigned long) page);
1284 	return length;
1285 }
1286 
1287 static const struct file_operations proc_loginuid_operations = {
1288 	.read		= proc_loginuid_read,
1289 	.write		= proc_loginuid_write,
1290 	.llseek		= generic_file_llseek,
1291 };
1292 
1293 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1294 				  size_t count, loff_t *ppos)
1295 {
1296 	struct inode * inode = file_inode(file);
1297 	struct task_struct *task = get_proc_task(inode);
1298 	ssize_t length;
1299 	char tmpbuf[TMPBUFLEN];
1300 
1301 	if (!task)
1302 		return -ESRCH;
1303 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1304 				audit_get_sessionid(task));
1305 	put_task_struct(task);
1306 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1307 }
1308 
1309 static const struct file_operations proc_sessionid_operations = {
1310 	.read		= proc_sessionid_read,
1311 	.llseek		= generic_file_llseek,
1312 };
1313 #endif
1314 
1315 #ifdef CONFIG_FAULT_INJECTION
1316 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1317 				      size_t count, loff_t *ppos)
1318 {
1319 	struct task_struct *task = get_proc_task(file_inode(file));
1320 	char buffer[PROC_NUMBUF];
1321 	size_t len;
1322 	int make_it_fail;
1323 
1324 	if (!task)
1325 		return -ESRCH;
1326 	make_it_fail = task->make_it_fail;
1327 	put_task_struct(task);
1328 
1329 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1330 
1331 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1332 }
1333 
1334 static ssize_t proc_fault_inject_write(struct file * file,
1335 			const char __user * buf, size_t count, loff_t *ppos)
1336 {
1337 	struct task_struct *task;
1338 	char buffer[PROC_NUMBUF], *end;
1339 	int make_it_fail;
1340 
1341 	if (!capable(CAP_SYS_RESOURCE))
1342 		return -EPERM;
1343 	memset(buffer, 0, sizeof(buffer));
1344 	if (count > sizeof(buffer) - 1)
1345 		count = sizeof(buffer) - 1;
1346 	if (copy_from_user(buffer, buf, count))
1347 		return -EFAULT;
1348 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1349 	if (*end)
1350 		return -EINVAL;
1351 	if (make_it_fail < 0 || make_it_fail > 1)
1352 		return -EINVAL;
1353 
1354 	task = get_proc_task(file_inode(file));
1355 	if (!task)
1356 		return -ESRCH;
1357 	task->make_it_fail = make_it_fail;
1358 	put_task_struct(task);
1359 
1360 	return count;
1361 }
1362 
1363 static const struct file_operations proc_fault_inject_operations = {
1364 	.read		= proc_fault_inject_read,
1365 	.write		= proc_fault_inject_write,
1366 	.llseek		= generic_file_llseek,
1367 };
1368 #endif
1369 
1370 
1371 #ifdef CONFIG_SCHED_DEBUG
1372 /*
1373  * Print out various scheduling related per-task fields:
1374  */
1375 static int sched_show(struct seq_file *m, void *v)
1376 {
1377 	struct inode *inode = m->private;
1378 	struct task_struct *p;
1379 
1380 	p = get_proc_task(inode);
1381 	if (!p)
1382 		return -ESRCH;
1383 	proc_sched_show_task(p, m);
1384 
1385 	put_task_struct(p);
1386 
1387 	return 0;
1388 }
1389 
1390 static ssize_t
1391 sched_write(struct file *file, const char __user *buf,
1392 	    size_t count, loff_t *offset)
1393 {
1394 	struct inode *inode = file_inode(file);
1395 	struct task_struct *p;
1396 
1397 	p = get_proc_task(inode);
1398 	if (!p)
1399 		return -ESRCH;
1400 	proc_sched_set_task(p);
1401 
1402 	put_task_struct(p);
1403 
1404 	return count;
1405 }
1406 
1407 static int sched_open(struct inode *inode, struct file *filp)
1408 {
1409 	return single_open(filp, sched_show, inode);
1410 }
1411 
1412 static const struct file_operations proc_pid_sched_operations = {
1413 	.open		= sched_open,
1414 	.read		= seq_read,
1415 	.write		= sched_write,
1416 	.llseek		= seq_lseek,
1417 	.release	= single_release,
1418 };
1419 
1420 #endif
1421 
1422 #ifdef CONFIG_SCHED_AUTOGROUP
1423 /*
1424  * Print out autogroup related information:
1425  */
1426 static int sched_autogroup_show(struct seq_file *m, void *v)
1427 {
1428 	struct inode *inode = m->private;
1429 	struct task_struct *p;
1430 
1431 	p = get_proc_task(inode);
1432 	if (!p)
1433 		return -ESRCH;
1434 	proc_sched_autogroup_show_task(p, m);
1435 
1436 	put_task_struct(p);
1437 
1438 	return 0;
1439 }
1440 
1441 static ssize_t
1442 sched_autogroup_write(struct file *file, const char __user *buf,
1443 	    size_t count, loff_t *offset)
1444 {
1445 	struct inode *inode = file_inode(file);
1446 	struct task_struct *p;
1447 	char buffer[PROC_NUMBUF];
1448 	int nice;
1449 	int err;
1450 
1451 	memset(buffer, 0, sizeof(buffer));
1452 	if (count > sizeof(buffer) - 1)
1453 		count = sizeof(buffer) - 1;
1454 	if (copy_from_user(buffer, buf, count))
1455 		return -EFAULT;
1456 
1457 	err = kstrtoint(strstrip(buffer), 0, &nice);
1458 	if (err < 0)
1459 		return err;
1460 
1461 	p = get_proc_task(inode);
1462 	if (!p)
1463 		return -ESRCH;
1464 
1465 	err = proc_sched_autogroup_set_nice(p, nice);
1466 	if (err)
1467 		count = err;
1468 
1469 	put_task_struct(p);
1470 
1471 	return count;
1472 }
1473 
1474 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1475 {
1476 	int ret;
1477 
1478 	ret = single_open(filp, sched_autogroup_show, NULL);
1479 	if (!ret) {
1480 		struct seq_file *m = filp->private_data;
1481 
1482 		m->private = inode;
1483 	}
1484 	return ret;
1485 }
1486 
1487 static const struct file_operations proc_pid_sched_autogroup_operations = {
1488 	.open		= sched_autogroup_open,
1489 	.read		= seq_read,
1490 	.write		= sched_autogroup_write,
1491 	.llseek		= seq_lseek,
1492 	.release	= single_release,
1493 };
1494 
1495 #endif /* CONFIG_SCHED_AUTOGROUP */
1496 
1497 static ssize_t comm_write(struct file *file, const char __user *buf,
1498 				size_t count, loff_t *offset)
1499 {
1500 	struct inode *inode = file_inode(file);
1501 	struct task_struct *p;
1502 	char buffer[TASK_COMM_LEN];
1503 	const size_t maxlen = sizeof(buffer) - 1;
1504 
1505 	memset(buffer, 0, sizeof(buffer));
1506 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1507 		return -EFAULT;
1508 
1509 	p = get_proc_task(inode);
1510 	if (!p)
1511 		return -ESRCH;
1512 
1513 	if (same_thread_group(current, p))
1514 		set_task_comm(p, buffer);
1515 	else
1516 		count = -EINVAL;
1517 
1518 	put_task_struct(p);
1519 
1520 	return count;
1521 }
1522 
1523 static int comm_show(struct seq_file *m, void *v)
1524 {
1525 	struct inode *inode = m->private;
1526 	struct task_struct *p;
1527 
1528 	p = get_proc_task(inode);
1529 	if (!p)
1530 		return -ESRCH;
1531 
1532 	task_lock(p);
1533 	seq_printf(m, "%s\n", p->comm);
1534 	task_unlock(p);
1535 
1536 	put_task_struct(p);
1537 
1538 	return 0;
1539 }
1540 
1541 static int comm_open(struct inode *inode, struct file *filp)
1542 {
1543 	return single_open(filp, comm_show, inode);
1544 }
1545 
1546 static const struct file_operations proc_pid_set_comm_operations = {
1547 	.open		= comm_open,
1548 	.read		= seq_read,
1549 	.write		= comm_write,
1550 	.llseek		= seq_lseek,
1551 	.release	= single_release,
1552 };
1553 
1554 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1555 {
1556 	struct task_struct *task;
1557 	struct mm_struct *mm;
1558 	struct file *exe_file;
1559 
1560 	task = get_proc_task(d_inode(dentry));
1561 	if (!task)
1562 		return -ENOENT;
1563 	mm = get_task_mm(task);
1564 	put_task_struct(task);
1565 	if (!mm)
1566 		return -ENOENT;
1567 	exe_file = get_mm_exe_file(mm);
1568 	mmput(mm);
1569 	if (exe_file) {
1570 		*exe_path = exe_file->f_path;
1571 		path_get(&exe_file->f_path);
1572 		fput(exe_file);
1573 		return 0;
1574 	} else
1575 		return -ENOENT;
1576 }
1577 
1578 static const char *proc_pid_follow_link(struct dentry *dentry, void **cookie)
1579 {
1580 	struct inode *inode = d_inode(dentry);
1581 	struct path path;
1582 	int error = -EACCES;
1583 
1584 	/* Are we allowed to snoop on the tasks file descriptors? */
1585 	if (!proc_fd_access_allowed(inode))
1586 		goto out;
1587 
1588 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1589 	if (error)
1590 		goto out;
1591 
1592 	nd_jump_link(&path);
1593 	return NULL;
1594 out:
1595 	return ERR_PTR(error);
1596 }
1597 
1598 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1599 {
1600 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1601 	char *pathname;
1602 	int len;
1603 
1604 	if (!tmp)
1605 		return -ENOMEM;
1606 
1607 	pathname = d_path(path, tmp, PAGE_SIZE);
1608 	len = PTR_ERR(pathname);
1609 	if (IS_ERR(pathname))
1610 		goto out;
1611 	len = tmp + PAGE_SIZE - 1 - pathname;
1612 
1613 	if (len > buflen)
1614 		len = buflen;
1615 	if (copy_to_user(buffer, pathname, len))
1616 		len = -EFAULT;
1617  out:
1618 	free_page((unsigned long)tmp);
1619 	return len;
1620 }
1621 
1622 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1623 {
1624 	int error = -EACCES;
1625 	struct inode *inode = d_inode(dentry);
1626 	struct path path;
1627 
1628 	/* Are we allowed to snoop on the tasks file descriptors? */
1629 	if (!proc_fd_access_allowed(inode))
1630 		goto out;
1631 
1632 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1633 	if (error)
1634 		goto out;
1635 
1636 	error = do_proc_readlink(&path, buffer, buflen);
1637 	path_put(&path);
1638 out:
1639 	return error;
1640 }
1641 
1642 const struct inode_operations proc_pid_link_inode_operations = {
1643 	.readlink	= proc_pid_readlink,
1644 	.follow_link	= proc_pid_follow_link,
1645 	.setattr	= proc_setattr,
1646 };
1647 
1648 
1649 /* building an inode */
1650 
1651 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1652 {
1653 	struct inode * inode;
1654 	struct proc_inode *ei;
1655 	const struct cred *cred;
1656 
1657 	/* We need a new inode */
1658 
1659 	inode = new_inode(sb);
1660 	if (!inode)
1661 		goto out;
1662 
1663 	/* Common stuff */
1664 	ei = PROC_I(inode);
1665 	inode->i_ino = get_next_ino();
1666 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1667 	inode->i_op = &proc_def_inode_operations;
1668 
1669 	/*
1670 	 * grab the reference to task.
1671 	 */
1672 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1673 	if (!ei->pid)
1674 		goto out_unlock;
1675 
1676 	if (task_dumpable(task)) {
1677 		rcu_read_lock();
1678 		cred = __task_cred(task);
1679 		inode->i_uid = cred->euid;
1680 		inode->i_gid = cred->egid;
1681 		rcu_read_unlock();
1682 	}
1683 	security_task_to_inode(task, inode);
1684 
1685 out:
1686 	return inode;
1687 
1688 out_unlock:
1689 	iput(inode);
1690 	return NULL;
1691 }
1692 
1693 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1694 {
1695 	struct inode *inode = d_inode(dentry);
1696 	struct task_struct *task;
1697 	const struct cred *cred;
1698 	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1699 
1700 	generic_fillattr(inode, stat);
1701 
1702 	rcu_read_lock();
1703 	stat->uid = GLOBAL_ROOT_UID;
1704 	stat->gid = GLOBAL_ROOT_GID;
1705 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1706 	if (task) {
1707 		if (!has_pid_permissions(pid, task, 2)) {
1708 			rcu_read_unlock();
1709 			/*
1710 			 * This doesn't prevent learning whether PID exists,
1711 			 * it only makes getattr() consistent with readdir().
1712 			 */
1713 			return -ENOENT;
1714 		}
1715 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1716 		    task_dumpable(task)) {
1717 			cred = __task_cred(task);
1718 			stat->uid = cred->euid;
1719 			stat->gid = cred->egid;
1720 		}
1721 	}
1722 	rcu_read_unlock();
1723 	return 0;
1724 }
1725 
1726 /* dentry stuff */
1727 
1728 /*
1729  *	Exceptional case: normally we are not allowed to unhash a busy
1730  * directory. In this case, however, we can do it - no aliasing problems
1731  * due to the way we treat inodes.
1732  *
1733  * Rewrite the inode's ownerships here because the owning task may have
1734  * performed a setuid(), etc.
1735  *
1736  * Before the /proc/pid/status file was created the only way to read
1737  * the effective uid of a /process was to stat /proc/pid.  Reading
1738  * /proc/pid/status is slow enough that procps and other packages
1739  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1740  * made this apply to all per process world readable and executable
1741  * directories.
1742  */
1743 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1744 {
1745 	struct inode *inode;
1746 	struct task_struct *task;
1747 	const struct cred *cred;
1748 
1749 	if (flags & LOOKUP_RCU)
1750 		return -ECHILD;
1751 
1752 	inode = d_inode(dentry);
1753 	task = get_proc_task(inode);
1754 
1755 	if (task) {
1756 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1757 		    task_dumpable(task)) {
1758 			rcu_read_lock();
1759 			cred = __task_cred(task);
1760 			inode->i_uid = cred->euid;
1761 			inode->i_gid = cred->egid;
1762 			rcu_read_unlock();
1763 		} else {
1764 			inode->i_uid = GLOBAL_ROOT_UID;
1765 			inode->i_gid = GLOBAL_ROOT_GID;
1766 		}
1767 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1768 		security_task_to_inode(task, inode);
1769 		put_task_struct(task);
1770 		return 1;
1771 	}
1772 	return 0;
1773 }
1774 
1775 static inline bool proc_inode_is_dead(struct inode *inode)
1776 {
1777 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1778 }
1779 
1780 int pid_delete_dentry(const struct dentry *dentry)
1781 {
1782 	/* Is the task we represent dead?
1783 	 * If so, then don't put the dentry on the lru list,
1784 	 * kill it immediately.
1785 	 */
1786 	return proc_inode_is_dead(d_inode(dentry));
1787 }
1788 
1789 const struct dentry_operations pid_dentry_operations =
1790 {
1791 	.d_revalidate	= pid_revalidate,
1792 	.d_delete	= pid_delete_dentry,
1793 };
1794 
1795 /* Lookups */
1796 
1797 /*
1798  * Fill a directory entry.
1799  *
1800  * If possible create the dcache entry and derive our inode number and
1801  * file type from dcache entry.
1802  *
1803  * Since all of the proc inode numbers are dynamically generated, the inode
1804  * numbers do not exist until the inode is cache.  This means creating the
1805  * the dcache entry in readdir is necessary to keep the inode numbers
1806  * reported by readdir in sync with the inode numbers reported
1807  * by stat.
1808  */
1809 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1810 	const char *name, int len,
1811 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1812 {
1813 	struct dentry *child, *dir = file->f_path.dentry;
1814 	struct qstr qname = QSTR_INIT(name, len);
1815 	struct inode *inode;
1816 	unsigned type;
1817 	ino_t ino;
1818 
1819 	child = d_hash_and_lookup(dir, &qname);
1820 	if (!child) {
1821 		child = d_alloc(dir, &qname);
1822 		if (!child)
1823 			goto end_instantiate;
1824 		if (instantiate(d_inode(dir), child, task, ptr) < 0) {
1825 			dput(child);
1826 			goto end_instantiate;
1827 		}
1828 	}
1829 	inode = d_inode(child);
1830 	ino = inode->i_ino;
1831 	type = inode->i_mode >> 12;
1832 	dput(child);
1833 	return dir_emit(ctx, name, len, ino, type);
1834 
1835 end_instantiate:
1836 	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1837 }
1838 
1839 #ifdef CONFIG_CHECKPOINT_RESTORE
1840 
1841 /*
1842  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1843  * which represent vma start and end addresses.
1844  */
1845 static int dname_to_vma_addr(struct dentry *dentry,
1846 			     unsigned long *start, unsigned long *end)
1847 {
1848 	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1849 		return -EINVAL;
1850 
1851 	return 0;
1852 }
1853 
1854 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1855 {
1856 	unsigned long vm_start, vm_end;
1857 	bool exact_vma_exists = false;
1858 	struct mm_struct *mm = NULL;
1859 	struct task_struct *task;
1860 	const struct cred *cred;
1861 	struct inode *inode;
1862 	int status = 0;
1863 
1864 	if (flags & LOOKUP_RCU)
1865 		return -ECHILD;
1866 
1867 	if (!capable(CAP_SYS_ADMIN)) {
1868 		status = -EPERM;
1869 		goto out_notask;
1870 	}
1871 
1872 	inode = d_inode(dentry);
1873 	task = get_proc_task(inode);
1874 	if (!task)
1875 		goto out_notask;
1876 
1877 	mm = mm_access(task, PTRACE_MODE_READ);
1878 	if (IS_ERR_OR_NULL(mm))
1879 		goto out;
1880 
1881 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1882 		down_read(&mm->mmap_sem);
1883 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1884 		up_read(&mm->mmap_sem);
1885 	}
1886 
1887 	mmput(mm);
1888 
1889 	if (exact_vma_exists) {
1890 		if (task_dumpable(task)) {
1891 			rcu_read_lock();
1892 			cred = __task_cred(task);
1893 			inode->i_uid = cred->euid;
1894 			inode->i_gid = cred->egid;
1895 			rcu_read_unlock();
1896 		} else {
1897 			inode->i_uid = GLOBAL_ROOT_UID;
1898 			inode->i_gid = GLOBAL_ROOT_GID;
1899 		}
1900 		security_task_to_inode(task, inode);
1901 		status = 1;
1902 	}
1903 
1904 out:
1905 	put_task_struct(task);
1906 
1907 out_notask:
1908 	return status;
1909 }
1910 
1911 static const struct dentry_operations tid_map_files_dentry_operations = {
1912 	.d_revalidate	= map_files_d_revalidate,
1913 	.d_delete	= pid_delete_dentry,
1914 };
1915 
1916 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1917 {
1918 	unsigned long vm_start, vm_end;
1919 	struct vm_area_struct *vma;
1920 	struct task_struct *task;
1921 	struct mm_struct *mm;
1922 	int rc;
1923 
1924 	rc = -ENOENT;
1925 	task = get_proc_task(d_inode(dentry));
1926 	if (!task)
1927 		goto out;
1928 
1929 	mm = get_task_mm(task);
1930 	put_task_struct(task);
1931 	if (!mm)
1932 		goto out;
1933 
1934 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1935 	if (rc)
1936 		goto out_mmput;
1937 
1938 	rc = -ENOENT;
1939 	down_read(&mm->mmap_sem);
1940 	vma = find_exact_vma(mm, vm_start, vm_end);
1941 	if (vma && vma->vm_file) {
1942 		*path = vma->vm_file->f_path;
1943 		path_get(path);
1944 		rc = 0;
1945 	}
1946 	up_read(&mm->mmap_sem);
1947 
1948 out_mmput:
1949 	mmput(mm);
1950 out:
1951 	return rc;
1952 }
1953 
1954 struct map_files_info {
1955 	fmode_t		mode;
1956 	unsigned long	len;
1957 	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1958 };
1959 
1960 static int
1961 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1962 			   struct task_struct *task, const void *ptr)
1963 {
1964 	fmode_t mode = (fmode_t)(unsigned long)ptr;
1965 	struct proc_inode *ei;
1966 	struct inode *inode;
1967 
1968 	inode = proc_pid_make_inode(dir->i_sb, task);
1969 	if (!inode)
1970 		return -ENOENT;
1971 
1972 	ei = PROC_I(inode);
1973 	ei->op.proc_get_link = proc_map_files_get_link;
1974 
1975 	inode->i_op = &proc_pid_link_inode_operations;
1976 	inode->i_size = 64;
1977 	inode->i_mode = S_IFLNK;
1978 
1979 	if (mode & FMODE_READ)
1980 		inode->i_mode |= S_IRUSR;
1981 	if (mode & FMODE_WRITE)
1982 		inode->i_mode |= S_IWUSR;
1983 
1984 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
1985 	d_add(dentry, inode);
1986 
1987 	return 0;
1988 }
1989 
1990 static struct dentry *proc_map_files_lookup(struct inode *dir,
1991 		struct dentry *dentry, unsigned int flags)
1992 {
1993 	unsigned long vm_start, vm_end;
1994 	struct vm_area_struct *vma;
1995 	struct task_struct *task;
1996 	int result;
1997 	struct mm_struct *mm;
1998 
1999 	result = -EPERM;
2000 	if (!capable(CAP_SYS_ADMIN))
2001 		goto out;
2002 
2003 	result = -ENOENT;
2004 	task = get_proc_task(dir);
2005 	if (!task)
2006 		goto out;
2007 
2008 	result = -EACCES;
2009 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2010 		goto out_put_task;
2011 
2012 	result = -ENOENT;
2013 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2014 		goto out_put_task;
2015 
2016 	mm = get_task_mm(task);
2017 	if (!mm)
2018 		goto out_put_task;
2019 
2020 	down_read(&mm->mmap_sem);
2021 	vma = find_exact_vma(mm, vm_start, vm_end);
2022 	if (!vma)
2023 		goto out_no_vma;
2024 
2025 	if (vma->vm_file)
2026 		result = proc_map_files_instantiate(dir, dentry, task,
2027 				(void *)(unsigned long)vma->vm_file->f_mode);
2028 
2029 out_no_vma:
2030 	up_read(&mm->mmap_sem);
2031 	mmput(mm);
2032 out_put_task:
2033 	put_task_struct(task);
2034 out:
2035 	return ERR_PTR(result);
2036 }
2037 
2038 static const struct inode_operations proc_map_files_inode_operations = {
2039 	.lookup		= proc_map_files_lookup,
2040 	.permission	= proc_fd_permission,
2041 	.setattr	= proc_setattr,
2042 };
2043 
2044 static int
2045 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2046 {
2047 	struct vm_area_struct *vma;
2048 	struct task_struct *task;
2049 	struct mm_struct *mm;
2050 	unsigned long nr_files, pos, i;
2051 	struct flex_array *fa = NULL;
2052 	struct map_files_info info;
2053 	struct map_files_info *p;
2054 	int ret;
2055 
2056 	ret = -EPERM;
2057 	if (!capable(CAP_SYS_ADMIN))
2058 		goto out;
2059 
2060 	ret = -ENOENT;
2061 	task = get_proc_task(file_inode(file));
2062 	if (!task)
2063 		goto out;
2064 
2065 	ret = -EACCES;
2066 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2067 		goto out_put_task;
2068 
2069 	ret = 0;
2070 	if (!dir_emit_dots(file, ctx))
2071 		goto out_put_task;
2072 
2073 	mm = get_task_mm(task);
2074 	if (!mm)
2075 		goto out_put_task;
2076 	down_read(&mm->mmap_sem);
2077 
2078 	nr_files = 0;
2079 
2080 	/*
2081 	 * We need two passes here:
2082 	 *
2083 	 *  1) Collect vmas of mapped files with mmap_sem taken
2084 	 *  2) Release mmap_sem and instantiate entries
2085 	 *
2086 	 * otherwise we get lockdep complained, since filldir()
2087 	 * routine might require mmap_sem taken in might_fault().
2088 	 */
2089 
2090 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2091 		if (vma->vm_file && ++pos > ctx->pos)
2092 			nr_files++;
2093 	}
2094 
2095 	if (nr_files) {
2096 		fa = flex_array_alloc(sizeof(info), nr_files,
2097 					GFP_KERNEL);
2098 		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2099 						GFP_KERNEL)) {
2100 			ret = -ENOMEM;
2101 			if (fa)
2102 				flex_array_free(fa);
2103 			up_read(&mm->mmap_sem);
2104 			mmput(mm);
2105 			goto out_put_task;
2106 		}
2107 		for (i = 0, vma = mm->mmap, pos = 2; vma;
2108 				vma = vma->vm_next) {
2109 			if (!vma->vm_file)
2110 				continue;
2111 			if (++pos <= ctx->pos)
2112 				continue;
2113 
2114 			info.mode = vma->vm_file->f_mode;
2115 			info.len = snprintf(info.name,
2116 					sizeof(info.name), "%lx-%lx",
2117 					vma->vm_start, vma->vm_end);
2118 			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2119 				BUG();
2120 		}
2121 	}
2122 	up_read(&mm->mmap_sem);
2123 
2124 	for (i = 0; i < nr_files; i++) {
2125 		p = flex_array_get(fa, i);
2126 		if (!proc_fill_cache(file, ctx,
2127 				      p->name, p->len,
2128 				      proc_map_files_instantiate,
2129 				      task,
2130 				      (void *)(unsigned long)p->mode))
2131 			break;
2132 		ctx->pos++;
2133 	}
2134 	if (fa)
2135 		flex_array_free(fa);
2136 	mmput(mm);
2137 
2138 out_put_task:
2139 	put_task_struct(task);
2140 out:
2141 	return ret;
2142 }
2143 
2144 static const struct file_operations proc_map_files_operations = {
2145 	.read		= generic_read_dir,
2146 	.iterate	= proc_map_files_readdir,
2147 	.llseek		= default_llseek,
2148 };
2149 
2150 struct timers_private {
2151 	struct pid *pid;
2152 	struct task_struct *task;
2153 	struct sighand_struct *sighand;
2154 	struct pid_namespace *ns;
2155 	unsigned long flags;
2156 };
2157 
2158 static void *timers_start(struct seq_file *m, loff_t *pos)
2159 {
2160 	struct timers_private *tp = m->private;
2161 
2162 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2163 	if (!tp->task)
2164 		return ERR_PTR(-ESRCH);
2165 
2166 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2167 	if (!tp->sighand)
2168 		return ERR_PTR(-ESRCH);
2169 
2170 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2171 }
2172 
2173 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2174 {
2175 	struct timers_private *tp = m->private;
2176 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2177 }
2178 
2179 static void timers_stop(struct seq_file *m, void *v)
2180 {
2181 	struct timers_private *tp = m->private;
2182 
2183 	if (tp->sighand) {
2184 		unlock_task_sighand(tp->task, &tp->flags);
2185 		tp->sighand = NULL;
2186 	}
2187 
2188 	if (tp->task) {
2189 		put_task_struct(tp->task);
2190 		tp->task = NULL;
2191 	}
2192 }
2193 
2194 static int show_timer(struct seq_file *m, void *v)
2195 {
2196 	struct k_itimer *timer;
2197 	struct timers_private *tp = m->private;
2198 	int notify;
2199 	static const char * const nstr[] = {
2200 		[SIGEV_SIGNAL] = "signal",
2201 		[SIGEV_NONE] = "none",
2202 		[SIGEV_THREAD] = "thread",
2203 	};
2204 
2205 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2206 	notify = timer->it_sigev_notify;
2207 
2208 	seq_printf(m, "ID: %d\n", timer->it_id);
2209 	seq_printf(m, "signal: %d/%p\n",
2210 		   timer->sigq->info.si_signo,
2211 		   timer->sigq->info.si_value.sival_ptr);
2212 	seq_printf(m, "notify: %s/%s.%d\n",
2213 		   nstr[notify & ~SIGEV_THREAD_ID],
2214 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2215 		   pid_nr_ns(timer->it_pid, tp->ns));
2216 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2217 
2218 	return 0;
2219 }
2220 
2221 static const struct seq_operations proc_timers_seq_ops = {
2222 	.start	= timers_start,
2223 	.next	= timers_next,
2224 	.stop	= timers_stop,
2225 	.show	= show_timer,
2226 };
2227 
2228 static int proc_timers_open(struct inode *inode, struct file *file)
2229 {
2230 	struct timers_private *tp;
2231 
2232 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2233 			sizeof(struct timers_private));
2234 	if (!tp)
2235 		return -ENOMEM;
2236 
2237 	tp->pid = proc_pid(inode);
2238 	tp->ns = inode->i_sb->s_fs_info;
2239 	return 0;
2240 }
2241 
2242 static const struct file_operations proc_timers_operations = {
2243 	.open		= proc_timers_open,
2244 	.read		= seq_read,
2245 	.llseek		= seq_lseek,
2246 	.release	= seq_release_private,
2247 };
2248 #endif /* CONFIG_CHECKPOINT_RESTORE */
2249 
2250 static int proc_pident_instantiate(struct inode *dir,
2251 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2252 {
2253 	const struct pid_entry *p = ptr;
2254 	struct inode *inode;
2255 	struct proc_inode *ei;
2256 
2257 	inode = proc_pid_make_inode(dir->i_sb, task);
2258 	if (!inode)
2259 		goto out;
2260 
2261 	ei = PROC_I(inode);
2262 	inode->i_mode = p->mode;
2263 	if (S_ISDIR(inode->i_mode))
2264 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2265 	if (p->iop)
2266 		inode->i_op = p->iop;
2267 	if (p->fop)
2268 		inode->i_fop = p->fop;
2269 	ei->op = p->op;
2270 	d_set_d_op(dentry, &pid_dentry_operations);
2271 	d_add(dentry, inode);
2272 	/* Close the race of the process dying before we return the dentry */
2273 	if (pid_revalidate(dentry, 0))
2274 		return 0;
2275 out:
2276 	return -ENOENT;
2277 }
2278 
2279 static struct dentry *proc_pident_lookup(struct inode *dir,
2280 					 struct dentry *dentry,
2281 					 const struct pid_entry *ents,
2282 					 unsigned int nents)
2283 {
2284 	int error;
2285 	struct task_struct *task = get_proc_task(dir);
2286 	const struct pid_entry *p, *last;
2287 
2288 	error = -ENOENT;
2289 
2290 	if (!task)
2291 		goto out_no_task;
2292 
2293 	/*
2294 	 * Yes, it does not scale. And it should not. Don't add
2295 	 * new entries into /proc/<tgid>/ without very good reasons.
2296 	 */
2297 	last = &ents[nents - 1];
2298 	for (p = ents; p <= last; p++) {
2299 		if (p->len != dentry->d_name.len)
2300 			continue;
2301 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2302 			break;
2303 	}
2304 	if (p > last)
2305 		goto out;
2306 
2307 	error = proc_pident_instantiate(dir, dentry, task, p);
2308 out:
2309 	put_task_struct(task);
2310 out_no_task:
2311 	return ERR_PTR(error);
2312 }
2313 
2314 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2315 		const struct pid_entry *ents, unsigned int nents)
2316 {
2317 	struct task_struct *task = get_proc_task(file_inode(file));
2318 	const struct pid_entry *p;
2319 
2320 	if (!task)
2321 		return -ENOENT;
2322 
2323 	if (!dir_emit_dots(file, ctx))
2324 		goto out;
2325 
2326 	if (ctx->pos >= nents + 2)
2327 		goto out;
2328 
2329 	for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2330 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2331 				proc_pident_instantiate, task, p))
2332 			break;
2333 		ctx->pos++;
2334 	}
2335 out:
2336 	put_task_struct(task);
2337 	return 0;
2338 }
2339 
2340 #ifdef CONFIG_SECURITY
2341 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2342 				  size_t count, loff_t *ppos)
2343 {
2344 	struct inode * inode = file_inode(file);
2345 	char *p = NULL;
2346 	ssize_t length;
2347 	struct task_struct *task = get_proc_task(inode);
2348 
2349 	if (!task)
2350 		return -ESRCH;
2351 
2352 	length = security_getprocattr(task,
2353 				      (char*)file->f_path.dentry->d_name.name,
2354 				      &p);
2355 	put_task_struct(task);
2356 	if (length > 0)
2357 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2358 	kfree(p);
2359 	return length;
2360 }
2361 
2362 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2363 				   size_t count, loff_t *ppos)
2364 {
2365 	struct inode * inode = file_inode(file);
2366 	char *page;
2367 	ssize_t length;
2368 	struct task_struct *task = get_proc_task(inode);
2369 
2370 	length = -ESRCH;
2371 	if (!task)
2372 		goto out_no_task;
2373 	if (count > PAGE_SIZE)
2374 		count = PAGE_SIZE;
2375 
2376 	/* No partial writes. */
2377 	length = -EINVAL;
2378 	if (*ppos != 0)
2379 		goto out;
2380 
2381 	length = -ENOMEM;
2382 	page = (char*)__get_free_page(GFP_TEMPORARY);
2383 	if (!page)
2384 		goto out;
2385 
2386 	length = -EFAULT;
2387 	if (copy_from_user(page, buf, count))
2388 		goto out_free;
2389 
2390 	/* Guard against adverse ptrace interaction */
2391 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2392 	if (length < 0)
2393 		goto out_free;
2394 
2395 	length = security_setprocattr(task,
2396 				      (char*)file->f_path.dentry->d_name.name,
2397 				      (void*)page, count);
2398 	mutex_unlock(&task->signal->cred_guard_mutex);
2399 out_free:
2400 	free_page((unsigned long) page);
2401 out:
2402 	put_task_struct(task);
2403 out_no_task:
2404 	return length;
2405 }
2406 
2407 static const struct file_operations proc_pid_attr_operations = {
2408 	.read		= proc_pid_attr_read,
2409 	.write		= proc_pid_attr_write,
2410 	.llseek		= generic_file_llseek,
2411 };
2412 
2413 static const struct pid_entry attr_dir_stuff[] = {
2414 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2415 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2416 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2417 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2418 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2419 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2420 };
2421 
2422 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2423 {
2424 	return proc_pident_readdir(file, ctx,
2425 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2426 }
2427 
2428 static const struct file_operations proc_attr_dir_operations = {
2429 	.read		= generic_read_dir,
2430 	.iterate	= proc_attr_dir_readdir,
2431 	.llseek		= default_llseek,
2432 };
2433 
2434 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2435 				struct dentry *dentry, unsigned int flags)
2436 {
2437 	return proc_pident_lookup(dir, dentry,
2438 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2439 }
2440 
2441 static const struct inode_operations proc_attr_dir_inode_operations = {
2442 	.lookup		= proc_attr_dir_lookup,
2443 	.getattr	= pid_getattr,
2444 	.setattr	= proc_setattr,
2445 };
2446 
2447 #endif
2448 
2449 #ifdef CONFIG_ELF_CORE
2450 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2451 					 size_t count, loff_t *ppos)
2452 {
2453 	struct task_struct *task = get_proc_task(file_inode(file));
2454 	struct mm_struct *mm;
2455 	char buffer[PROC_NUMBUF];
2456 	size_t len;
2457 	int ret;
2458 
2459 	if (!task)
2460 		return -ESRCH;
2461 
2462 	ret = 0;
2463 	mm = get_task_mm(task);
2464 	if (mm) {
2465 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2466 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2467 				MMF_DUMP_FILTER_SHIFT));
2468 		mmput(mm);
2469 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2470 	}
2471 
2472 	put_task_struct(task);
2473 
2474 	return ret;
2475 }
2476 
2477 static ssize_t proc_coredump_filter_write(struct file *file,
2478 					  const char __user *buf,
2479 					  size_t count,
2480 					  loff_t *ppos)
2481 {
2482 	struct task_struct *task;
2483 	struct mm_struct *mm;
2484 	char buffer[PROC_NUMBUF], *end;
2485 	unsigned int val;
2486 	int ret;
2487 	int i;
2488 	unsigned long mask;
2489 
2490 	ret = -EFAULT;
2491 	memset(buffer, 0, sizeof(buffer));
2492 	if (count > sizeof(buffer) - 1)
2493 		count = sizeof(buffer) - 1;
2494 	if (copy_from_user(buffer, buf, count))
2495 		goto out_no_task;
2496 
2497 	ret = -EINVAL;
2498 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2499 	if (*end == '\n')
2500 		end++;
2501 	if (end - buffer == 0)
2502 		goto out_no_task;
2503 
2504 	ret = -ESRCH;
2505 	task = get_proc_task(file_inode(file));
2506 	if (!task)
2507 		goto out_no_task;
2508 
2509 	ret = end - buffer;
2510 	mm = get_task_mm(task);
2511 	if (!mm)
2512 		goto out_no_mm;
2513 
2514 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2515 		if (val & mask)
2516 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2517 		else
2518 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2519 	}
2520 
2521 	mmput(mm);
2522  out_no_mm:
2523 	put_task_struct(task);
2524  out_no_task:
2525 	return ret;
2526 }
2527 
2528 static const struct file_operations proc_coredump_filter_operations = {
2529 	.read		= proc_coredump_filter_read,
2530 	.write		= proc_coredump_filter_write,
2531 	.llseek		= generic_file_llseek,
2532 };
2533 #endif
2534 
2535 #ifdef CONFIG_TASK_IO_ACCOUNTING
2536 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2537 {
2538 	struct task_io_accounting acct = task->ioac;
2539 	unsigned long flags;
2540 	int result;
2541 
2542 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2543 	if (result)
2544 		return result;
2545 
2546 	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2547 		result = -EACCES;
2548 		goto out_unlock;
2549 	}
2550 
2551 	if (whole && lock_task_sighand(task, &flags)) {
2552 		struct task_struct *t = task;
2553 
2554 		task_io_accounting_add(&acct, &task->signal->ioac);
2555 		while_each_thread(task, t)
2556 			task_io_accounting_add(&acct, &t->ioac);
2557 
2558 		unlock_task_sighand(task, &flags);
2559 	}
2560 	seq_printf(m,
2561 		   "rchar: %llu\n"
2562 		   "wchar: %llu\n"
2563 		   "syscr: %llu\n"
2564 		   "syscw: %llu\n"
2565 		   "read_bytes: %llu\n"
2566 		   "write_bytes: %llu\n"
2567 		   "cancelled_write_bytes: %llu\n",
2568 		   (unsigned long long)acct.rchar,
2569 		   (unsigned long long)acct.wchar,
2570 		   (unsigned long long)acct.syscr,
2571 		   (unsigned long long)acct.syscw,
2572 		   (unsigned long long)acct.read_bytes,
2573 		   (unsigned long long)acct.write_bytes,
2574 		   (unsigned long long)acct.cancelled_write_bytes);
2575 	result = 0;
2576 
2577 out_unlock:
2578 	mutex_unlock(&task->signal->cred_guard_mutex);
2579 	return result;
2580 }
2581 
2582 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2583 				  struct pid *pid, struct task_struct *task)
2584 {
2585 	return do_io_accounting(task, m, 0);
2586 }
2587 
2588 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2589 				   struct pid *pid, struct task_struct *task)
2590 {
2591 	return do_io_accounting(task, m, 1);
2592 }
2593 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2594 
2595 #ifdef CONFIG_USER_NS
2596 static int proc_id_map_open(struct inode *inode, struct file *file,
2597 	const struct seq_operations *seq_ops)
2598 {
2599 	struct user_namespace *ns = NULL;
2600 	struct task_struct *task;
2601 	struct seq_file *seq;
2602 	int ret = -EINVAL;
2603 
2604 	task = get_proc_task(inode);
2605 	if (task) {
2606 		rcu_read_lock();
2607 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2608 		rcu_read_unlock();
2609 		put_task_struct(task);
2610 	}
2611 	if (!ns)
2612 		goto err;
2613 
2614 	ret = seq_open(file, seq_ops);
2615 	if (ret)
2616 		goto err_put_ns;
2617 
2618 	seq = file->private_data;
2619 	seq->private = ns;
2620 
2621 	return 0;
2622 err_put_ns:
2623 	put_user_ns(ns);
2624 err:
2625 	return ret;
2626 }
2627 
2628 static int proc_id_map_release(struct inode *inode, struct file *file)
2629 {
2630 	struct seq_file *seq = file->private_data;
2631 	struct user_namespace *ns = seq->private;
2632 	put_user_ns(ns);
2633 	return seq_release(inode, file);
2634 }
2635 
2636 static int proc_uid_map_open(struct inode *inode, struct file *file)
2637 {
2638 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2639 }
2640 
2641 static int proc_gid_map_open(struct inode *inode, struct file *file)
2642 {
2643 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2644 }
2645 
2646 static int proc_projid_map_open(struct inode *inode, struct file *file)
2647 {
2648 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2649 }
2650 
2651 static const struct file_operations proc_uid_map_operations = {
2652 	.open		= proc_uid_map_open,
2653 	.write		= proc_uid_map_write,
2654 	.read		= seq_read,
2655 	.llseek		= seq_lseek,
2656 	.release	= proc_id_map_release,
2657 };
2658 
2659 static const struct file_operations proc_gid_map_operations = {
2660 	.open		= proc_gid_map_open,
2661 	.write		= proc_gid_map_write,
2662 	.read		= seq_read,
2663 	.llseek		= seq_lseek,
2664 	.release	= proc_id_map_release,
2665 };
2666 
2667 static const struct file_operations proc_projid_map_operations = {
2668 	.open		= proc_projid_map_open,
2669 	.write		= proc_projid_map_write,
2670 	.read		= seq_read,
2671 	.llseek		= seq_lseek,
2672 	.release	= proc_id_map_release,
2673 };
2674 
2675 static int proc_setgroups_open(struct inode *inode, struct file *file)
2676 {
2677 	struct user_namespace *ns = NULL;
2678 	struct task_struct *task;
2679 	int ret;
2680 
2681 	ret = -ESRCH;
2682 	task = get_proc_task(inode);
2683 	if (task) {
2684 		rcu_read_lock();
2685 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2686 		rcu_read_unlock();
2687 		put_task_struct(task);
2688 	}
2689 	if (!ns)
2690 		goto err;
2691 
2692 	if (file->f_mode & FMODE_WRITE) {
2693 		ret = -EACCES;
2694 		if (!ns_capable(ns, CAP_SYS_ADMIN))
2695 			goto err_put_ns;
2696 	}
2697 
2698 	ret = single_open(file, &proc_setgroups_show, ns);
2699 	if (ret)
2700 		goto err_put_ns;
2701 
2702 	return 0;
2703 err_put_ns:
2704 	put_user_ns(ns);
2705 err:
2706 	return ret;
2707 }
2708 
2709 static int proc_setgroups_release(struct inode *inode, struct file *file)
2710 {
2711 	struct seq_file *seq = file->private_data;
2712 	struct user_namespace *ns = seq->private;
2713 	int ret = single_release(inode, file);
2714 	put_user_ns(ns);
2715 	return ret;
2716 }
2717 
2718 static const struct file_operations proc_setgroups_operations = {
2719 	.open		= proc_setgroups_open,
2720 	.write		= proc_setgroups_write,
2721 	.read		= seq_read,
2722 	.llseek		= seq_lseek,
2723 	.release	= proc_setgroups_release,
2724 };
2725 #endif /* CONFIG_USER_NS */
2726 
2727 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2728 				struct pid *pid, struct task_struct *task)
2729 {
2730 	int err = lock_trace(task);
2731 	if (!err) {
2732 		seq_printf(m, "%08x\n", task->personality);
2733 		unlock_trace(task);
2734 	}
2735 	return err;
2736 }
2737 
2738 /*
2739  * Thread groups
2740  */
2741 static const struct file_operations proc_task_operations;
2742 static const struct inode_operations proc_task_inode_operations;
2743 
2744 static const struct pid_entry tgid_base_stuff[] = {
2745 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2746 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2747 #ifdef CONFIG_CHECKPOINT_RESTORE
2748 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2749 #endif
2750 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2751 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2752 #ifdef CONFIG_NET
2753 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2754 #endif
2755 	REG("environ",    S_IRUSR, proc_environ_operations),
2756 	ONE("auxv",       S_IRUSR, proc_pid_auxv),
2757 	ONE("status",     S_IRUGO, proc_pid_status),
2758 	ONE("personality", S_IRUSR, proc_pid_personality),
2759 	ONE("limits",	  S_IRUGO, proc_pid_limits),
2760 #ifdef CONFIG_SCHED_DEBUG
2761 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2762 #endif
2763 #ifdef CONFIG_SCHED_AUTOGROUP
2764 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2765 #endif
2766 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2767 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2768 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2769 #endif
2770 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2771 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2772 	ONE("statm",      S_IRUGO, proc_pid_statm),
2773 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2774 #ifdef CONFIG_NUMA
2775 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2776 #endif
2777 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2778 	LNK("cwd",        proc_cwd_link),
2779 	LNK("root",       proc_root_link),
2780 	LNK("exe",        proc_exe_link),
2781 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2782 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2783 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2784 #ifdef CONFIG_PROC_PAGE_MONITOR
2785 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2786 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2787 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2788 #endif
2789 #ifdef CONFIG_SECURITY
2790 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2791 #endif
2792 #ifdef CONFIG_KALLSYMS
2793 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2794 #endif
2795 #ifdef CONFIG_STACKTRACE
2796 	ONE("stack",      S_IRUSR, proc_pid_stack),
2797 #endif
2798 #ifdef CONFIG_SCHED_INFO
2799 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2800 #endif
2801 #ifdef CONFIG_LATENCYTOP
2802 	REG("latency",  S_IRUGO, proc_lstats_operations),
2803 #endif
2804 #ifdef CONFIG_PROC_PID_CPUSET
2805 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2806 #endif
2807 #ifdef CONFIG_CGROUPS
2808 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2809 #endif
2810 	ONE("oom_score",  S_IRUGO, proc_oom_score),
2811 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2812 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2813 #ifdef CONFIG_AUDITSYSCALL
2814 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2815 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2816 #endif
2817 #ifdef CONFIG_FAULT_INJECTION
2818 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2819 #endif
2820 #ifdef CONFIG_ELF_CORE
2821 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2822 #endif
2823 #ifdef CONFIG_TASK_IO_ACCOUNTING
2824 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2825 #endif
2826 #ifdef CONFIG_HARDWALL
2827 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2828 #endif
2829 #ifdef CONFIG_USER_NS
2830 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2831 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2832 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2833 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2834 #endif
2835 #ifdef CONFIG_CHECKPOINT_RESTORE
2836 	REG("timers",	  S_IRUGO, proc_timers_operations),
2837 #endif
2838 };
2839 
2840 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2841 {
2842 	return proc_pident_readdir(file, ctx,
2843 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2844 }
2845 
2846 static const struct file_operations proc_tgid_base_operations = {
2847 	.read		= generic_read_dir,
2848 	.iterate	= proc_tgid_base_readdir,
2849 	.llseek		= default_llseek,
2850 };
2851 
2852 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2853 {
2854 	return proc_pident_lookup(dir, dentry,
2855 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2856 }
2857 
2858 static const struct inode_operations proc_tgid_base_inode_operations = {
2859 	.lookup		= proc_tgid_base_lookup,
2860 	.getattr	= pid_getattr,
2861 	.setattr	= proc_setattr,
2862 	.permission	= proc_pid_permission,
2863 };
2864 
2865 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2866 {
2867 	struct dentry *dentry, *leader, *dir;
2868 	char buf[PROC_NUMBUF];
2869 	struct qstr name;
2870 
2871 	name.name = buf;
2872 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2873 	/* no ->d_hash() rejects on procfs */
2874 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2875 	if (dentry) {
2876 		d_invalidate(dentry);
2877 		dput(dentry);
2878 	}
2879 
2880 	if (pid == tgid)
2881 		return;
2882 
2883 	name.name = buf;
2884 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2885 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2886 	if (!leader)
2887 		goto out;
2888 
2889 	name.name = "task";
2890 	name.len = strlen(name.name);
2891 	dir = d_hash_and_lookup(leader, &name);
2892 	if (!dir)
2893 		goto out_put_leader;
2894 
2895 	name.name = buf;
2896 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2897 	dentry = d_hash_and_lookup(dir, &name);
2898 	if (dentry) {
2899 		d_invalidate(dentry);
2900 		dput(dentry);
2901 	}
2902 
2903 	dput(dir);
2904 out_put_leader:
2905 	dput(leader);
2906 out:
2907 	return;
2908 }
2909 
2910 /**
2911  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2912  * @task: task that should be flushed.
2913  *
2914  * When flushing dentries from proc, one needs to flush them from global
2915  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2916  * in. This call is supposed to do all of this job.
2917  *
2918  * Looks in the dcache for
2919  * /proc/@pid
2920  * /proc/@tgid/task/@pid
2921  * if either directory is present flushes it and all of it'ts children
2922  * from the dcache.
2923  *
2924  * It is safe and reasonable to cache /proc entries for a task until
2925  * that task exits.  After that they just clog up the dcache with
2926  * useless entries, possibly causing useful dcache entries to be
2927  * flushed instead.  This routine is proved to flush those useless
2928  * dcache entries at process exit time.
2929  *
2930  * NOTE: This routine is just an optimization so it does not guarantee
2931  *       that no dcache entries will exist at process exit time it
2932  *       just makes it very unlikely that any will persist.
2933  */
2934 
2935 void proc_flush_task(struct task_struct *task)
2936 {
2937 	int i;
2938 	struct pid *pid, *tgid;
2939 	struct upid *upid;
2940 
2941 	pid = task_pid(task);
2942 	tgid = task_tgid(task);
2943 
2944 	for (i = 0; i <= pid->level; i++) {
2945 		upid = &pid->numbers[i];
2946 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2947 					tgid->numbers[i].nr);
2948 	}
2949 }
2950 
2951 static int proc_pid_instantiate(struct inode *dir,
2952 				   struct dentry * dentry,
2953 				   struct task_struct *task, const void *ptr)
2954 {
2955 	struct inode *inode;
2956 
2957 	inode = proc_pid_make_inode(dir->i_sb, task);
2958 	if (!inode)
2959 		goto out;
2960 
2961 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2962 	inode->i_op = &proc_tgid_base_inode_operations;
2963 	inode->i_fop = &proc_tgid_base_operations;
2964 	inode->i_flags|=S_IMMUTABLE;
2965 
2966 	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2967 						  ARRAY_SIZE(tgid_base_stuff)));
2968 
2969 	d_set_d_op(dentry, &pid_dentry_operations);
2970 
2971 	d_add(dentry, inode);
2972 	/* Close the race of the process dying before we return the dentry */
2973 	if (pid_revalidate(dentry, 0))
2974 		return 0;
2975 out:
2976 	return -ENOENT;
2977 }
2978 
2979 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2980 {
2981 	int result = -ENOENT;
2982 	struct task_struct *task;
2983 	unsigned tgid;
2984 	struct pid_namespace *ns;
2985 
2986 	tgid = name_to_int(&dentry->d_name);
2987 	if (tgid == ~0U)
2988 		goto out;
2989 
2990 	ns = dentry->d_sb->s_fs_info;
2991 	rcu_read_lock();
2992 	task = find_task_by_pid_ns(tgid, ns);
2993 	if (task)
2994 		get_task_struct(task);
2995 	rcu_read_unlock();
2996 	if (!task)
2997 		goto out;
2998 
2999 	result = proc_pid_instantiate(dir, dentry, task, NULL);
3000 	put_task_struct(task);
3001 out:
3002 	return ERR_PTR(result);
3003 }
3004 
3005 /*
3006  * Find the first task with tgid >= tgid
3007  *
3008  */
3009 struct tgid_iter {
3010 	unsigned int tgid;
3011 	struct task_struct *task;
3012 };
3013 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3014 {
3015 	struct pid *pid;
3016 
3017 	if (iter.task)
3018 		put_task_struct(iter.task);
3019 	rcu_read_lock();
3020 retry:
3021 	iter.task = NULL;
3022 	pid = find_ge_pid(iter.tgid, ns);
3023 	if (pid) {
3024 		iter.tgid = pid_nr_ns(pid, ns);
3025 		iter.task = pid_task(pid, PIDTYPE_PID);
3026 		/* What we to know is if the pid we have find is the
3027 		 * pid of a thread_group_leader.  Testing for task
3028 		 * being a thread_group_leader is the obvious thing
3029 		 * todo but there is a window when it fails, due to
3030 		 * the pid transfer logic in de_thread.
3031 		 *
3032 		 * So we perform the straight forward test of seeing
3033 		 * if the pid we have found is the pid of a thread
3034 		 * group leader, and don't worry if the task we have
3035 		 * found doesn't happen to be a thread group leader.
3036 		 * As we don't care in the case of readdir.
3037 		 */
3038 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3039 			iter.tgid += 1;
3040 			goto retry;
3041 		}
3042 		get_task_struct(iter.task);
3043 	}
3044 	rcu_read_unlock();
3045 	return iter;
3046 }
3047 
3048 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3049 
3050 /* for the /proc/ directory itself, after non-process stuff has been done */
3051 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3052 {
3053 	struct tgid_iter iter;
3054 	struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3055 	loff_t pos = ctx->pos;
3056 
3057 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3058 		return 0;
3059 
3060 	if (pos == TGID_OFFSET - 2) {
3061 		struct inode *inode = d_inode(ns->proc_self);
3062 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3063 			return 0;
3064 		ctx->pos = pos = pos + 1;
3065 	}
3066 	if (pos == TGID_OFFSET - 1) {
3067 		struct inode *inode = d_inode(ns->proc_thread_self);
3068 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3069 			return 0;
3070 		ctx->pos = pos = pos + 1;
3071 	}
3072 	iter.tgid = pos - TGID_OFFSET;
3073 	iter.task = NULL;
3074 	for (iter = next_tgid(ns, iter);
3075 	     iter.task;
3076 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3077 		char name[PROC_NUMBUF];
3078 		int len;
3079 		if (!has_pid_permissions(ns, iter.task, 2))
3080 			continue;
3081 
3082 		len = snprintf(name, sizeof(name), "%d", iter.tgid);
3083 		ctx->pos = iter.tgid + TGID_OFFSET;
3084 		if (!proc_fill_cache(file, ctx, name, len,
3085 				     proc_pid_instantiate, iter.task, NULL)) {
3086 			put_task_struct(iter.task);
3087 			return 0;
3088 		}
3089 	}
3090 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3091 	return 0;
3092 }
3093 
3094 /*
3095  * Tasks
3096  */
3097 static const struct pid_entry tid_base_stuff[] = {
3098 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3099 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3100 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3101 #ifdef CONFIG_NET
3102 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3103 #endif
3104 	REG("environ",   S_IRUSR, proc_environ_operations),
3105 	ONE("auxv",      S_IRUSR, proc_pid_auxv),
3106 	ONE("status",    S_IRUGO, proc_pid_status),
3107 	ONE("personality", S_IRUSR, proc_pid_personality),
3108 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3109 #ifdef CONFIG_SCHED_DEBUG
3110 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3111 #endif
3112 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3113 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3114 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3115 #endif
3116 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3117 	ONE("stat",      S_IRUGO, proc_tid_stat),
3118 	ONE("statm",     S_IRUGO, proc_pid_statm),
3119 	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3120 #ifdef CONFIG_PROC_CHILDREN
3121 	REG("children",  S_IRUGO, proc_tid_children_operations),
3122 #endif
3123 #ifdef CONFIG_NUMA
3124 	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3125 #endif
3126 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3127 	LNK("cwd",       proc_cwd_link),
3128 	LNK("root",      proc_root_link),
3129 	LNK("exe",       proc_exe_link),
3130 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3131 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3132 #ifdef CONFIG_PROC_PAGE_MONITOR
3133 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3134 	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3135 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3136 #endif
3137 #ifdef CONFIG_SECURITY
3138 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3139 #endif
3140 #ifdef CONFIG_KALLSYMS
3141 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3142 #endif
3143 #ifdef CONFIG_STACKTRACE
3144 	ONE("stack",      S_IRUSR, proc_pid_stack),
3145 #endif
3146 #ifdef CONFIG_SCHED_INFO
3147 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3148 #endif
3149 #ifdef CONFIG_LATENCYTOP
3150 	REG("latency",  S_IRUGO, proc_lstats_operations),
3151 #endif
3152 #ifdef CONFIG_PROC_PID_CPUSET
3153 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3154 #endif
3155 #ifdef CONFIG_CGROUPS
3156 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3157 #endif
3158 	ONE("oom_score", S_IRUGO, proc_oom_score),
3159 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3160 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3161 #ifdef CONFIG_AUDITSYSCALL
3162 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3163 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3164 #endif
3165 #ifdef CONFIG_FAULT_INJECTION
3166 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3167 #endif
3168 #ifdef CONFIG_TASK_IO_ACCOUNTING
3169 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3170 #endif
3171 #ifdef CONFIG_HARDWALL
3172 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3173 #endif
3174 #ifdef CONFIG_USER_NS
3175 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3176 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3177 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3178 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3179 #endif
3180 };
3181 
3182 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3183 {
3184 	return proc_pident_readdir(file, ctx,
3185 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3186 }
3187 
3188 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3189 {
3190 	return proc_pident_lookup(dir, dentry,
3191 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3192 }
3193 
3194 static const struct file_operations proc_tid_base_operations = {
3195 	.read		= generic_read_dir,
3196 	.iterate	= proc_tid_base_readdir,
3197 	.llseek		= default_llseek,
3198 };
3199 
3200 static const struct inode_operations proc_tid_base_inode_operations = {
3201 	.lookup		= proc_tid_base_lookup,
3202 	.getattr	= pid_getattr,
3203 	.setattr	= proc_setattr,
3204 };
3205 
3206 static int proc_task_instantiate(struct inode *dir,
3207 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3208 {
3209 	struct inode *inode;
3210 	inode = proc_pid_make_inode(dir->i_sb, task);
3211 
3212 	if (!inode)
3213 		goto out;
3214 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3215 	inode->i_op = &proc_tid_base_inode_operations;
3216 	inode->i_fop = &proc_tid_base_operations;
3217 	inode->i_flags|=S_IMMUTABLE;
3218 
3219 	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3220 						  ARRAY_SIZE(tid_base_stuff)));
3221 
3222 	d_set_d_op(dentry, &pid_dentry_operations);
3223 
3224 	d_add(dentry, inode);
3225 	/* Close the race of the process dying before we return the dentry */
3226 	if (pid_revalidate(dentry, 0))
3227 		return 0;
3228 out:
3229 	return -ENOENT;
3230 }
3231 
3232 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3233 {
3234 	int result = -ENOENT;
3235 	struct task_struct *task;
3236 	struct task_struct *leader = get_proc_task(dir);
3237 	unsigned tid;
3238 	struct pid_namespace *ns;
3239 
3240 	if (!leader)
3241 		goto out_no_task;
3242 
3243 	tid = name_to_int(&dentry->d_name);
3244 	if (tid == ~0U)
3245 		goto out;
3246 
3247 	ns = dentry->d_sb->s_fs_info;
3248 	rcu_read_lock();
3249 	task = find_task_by_pid_ns(tid, ns);
3250 	if (task)
3251 		get_task_struct(task);
3252 	rcu_read_unlock();
3253 	if (!task)
3254 		goto out;
3255 	if (!same_thread_group(leader, task))
3256 		goto out_drop_task;
3257 
3258 	result = proc_task_instantiate(dir, dentry, task, NULL);
3259 out_drop_task:
3260 	put_task_struct(task);
3261 out:
3262 	put_task_struct(leader);
3263 out_no_task:
3264 	return ERR_PTR(result);
3265 }
3266 
3267 /*
3268  * Find the first tid of a thread group to return to user space.
3269  *
3270  * Usually this is just the thread group leader, but if the users
3271  * buffer was too small or there was a seek into the middle of the
3272  * directory we have more work todo.
3273  *
3274  * In the case of a short read we start with find_task_by_pid.
3275  *
3276  * In the case of a seek we start with the leader and walk nr
3277  * threads past it.
3278  */
3279 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3280 					struct pid_namespace *ns)
3281 {
3282 	struct task_struct *pos, *task;
3283 	unsigned long nr = f_pos;
3284 
3285 	if (nr != f_pos)	/* 32bit overflow? */
3286 		return NULL;
3287 
3288 	rcu_read_lock();
3289 	task = pid_task(pid, PIDTYPE_PID);
3290 	if (!task)
3291 		goto fail;
3292 
3293 	/* Attempt to start with the tid of a thread */
3294 	if (tid && nr) {
3295 		pos = find_task_by_pid_ns(tid, ns);
3296 		if (pos && same_thread_group(pos, task))
3297 			goto found;
3298 	}
3299 
3300 	/* If nr exceeds the number of threads there is nothing todo */
3301 	if (nr >= get_nr_threads(task))
3302 		goto fail;
3303 
3304 	/* If we haven't found our starting place yet start
3305 	 * with the leader and walk nr threads forward.
3306 	 */
3307 	pos = task = task->group_leader;
3308 	do {
3309 		if (!nr--)
3310 			goto found;
3311 	} while_each_thread(task, pos);
3312 fail:
3313 	pos = NULL;
3314 	goto out;
3315 found:
3316 	get_task_struct(pos);
3317 out:
3318 	rcu_read_unlock();
3319 	return pos;
3320 }
3321 
3322 /*
3323  * Find the next thread in the thread list.
3324  * Return NULL if there is an error or no next thread.
3325  *
3326  * The reference to the input task_struct is released.
3327  */
3328 static struct task_struct *next_tid(struct task_struct *start)
3329 {
3330 	struct task_struct *pos = NULL;
3331 	rcu_read_lock();
3332 	if (pid_alive(start)) {
3333 		pos = next_thread(start);
3334 		if (thread_group_leader(pos))
3335 			pos = NULL;
3336 		else
3337 			get_task_struct(pos);
3338 	}
3339 	rcu_read_unlock();
3340 	put_task_struct(start);
3341 	return pos;
3342 }
3343 
3344 /* for the /proc/TGID/task/ directories */
3345 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3346 {
3347 	struct inode *inode = file_inode(file);
3348 	struct task_struct *task;
3349 	struct pid_namespace *ns;
3350 	int tid;
3351 
3352 	if (proc_inode_is_dead(inode))
3353 		return -ENOENT;
3354 
3355 	if (!dir_emit_dots(file, ctx))
3356 		return 0;
3357 
3358 	/* f_version caches the tgid value that the last readdir call couldn't
3359 	 * return. lseek aka telldir automagically resets f_version to 0.
3360 	 */
3361 	ns = inode->i_sb->s_fs_info;
3362 	tid = (int)file->f_version;
3363 	file->f_version = 0;
3364 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3365 	     task;
3366 	     task = next_tid(task), ctx->pos++) {
3367 		char name[PROC_NUMBUF];
3368 		int len;
3369 		tid = task_pid_nr_ns(task, ns);
3370 		len = snprintf(name, sizeof(name), "%d", tid);
3371 		if (!proc_fill_cache(file, ctx, name, len,
3372 				proc_task_instantiate, task, NULL)) {
3373 			/* returning this tgid failed, save it as the first
3374 			 * pid for the next readir call */
3375 			file->f_version = (u64)tid;
3376 			put_task_struct(task);
3377 			break;
3378 		}
3379 	}
3380 
3381 	return 0;
3382 }
3383 
3384 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3385 {
3386 	struct inode *inode = d_inode(dentry);
3387 	struct task_struct *p = get_proc_task(inode);
3388 	generic_fillattr(inode, stat);
3389 
3390 	if (p) {
3391 		stat->nlink += get_nr_threads(p);
3392 		put_task_struct(p);
3393 	}
3394 
3395 	return 0;
3396 }
3397 
3398 static const struct inode_operations proc_task_inode_operations = {
3399 	.lookup		= proc_task_lookup,
3400 	.getattr	= proc_task_getattr,
3401 	.setattr	= proc_setattr,
3402 	.permission	= proc_pid_permission,
3403 };
3404 
3405 static const struct file_operations proc_task_operations = {
3406 	.read		= generic_read_dir,
3407 	.iterate	= proc_task_readdir,
3408 	.llseek		= default_llseek,
3409 };
3410