xref: /openbmc/linux/fs/proc/base.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/fs_struct.h>
85 #include <linux/slab.h>
86 #include "internal.h"
87 
88 /* NOTE:
89  *	Implementing inode permission operations in /proc is almost
90  *	certainly an error.  Permission checks need to happen during
91  *	each system call not at open time.  The reason is that most of
92  *	what we wish to check for permissions in /proc varies at runtime.
93  *
94  *	The classic example of a problem is opening file descriptors
95  *	in /proc for a task before it execs a suid executable.
96  */
97 
98 struct pid_entry {
99 	char *name;
100 	int len;
101 	mode_t mode;
102 	const struct inode_operations *iop;
103 	const struct file_operations *fop;
104 	union proc_op op;
105 };
106 
107 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
108 	.name = (NAME),					\
109 	.len  = sizeof(NAME) - 1,			\
110 	.mode = MODE,					\
111 	.iop  = IOP,					\
112 	.fop  = FOP,					\
113 	.op   = OP,					\
114 }
115 
116 #define DIR(NAME, MODE, iops, fops)	\
117 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
118 #define LNK(NAME, get_link)					\
119 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
120 		&proc_pid_link_inode_operations, NULL,		\
121 		{ .proc_get_link = get_link } )
122 #define REG(NAME, MODE, fops)				\
123 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
124 #define INF(NAME, MODE, read)				\
125 	NOD(NAME, (S_IFREG|(MODE)), 			\
126 		NULL, &proc_info_file_operations,	\
127 		{ .proc_read = read } )
128 #define ONE(NAME, MODE, show)				\
129 	NOD(NAME, (S_IFREG|(MODE)), 			\
130 		NULL, &proc_single_file_operations,	\
131 		{ .proc_show = show } )
132 
133 /*
134  * Count the number of hardlinks for the pid_entry table, excluding the .
135  * and .. links.
136  */
137 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
138 	unsigned int n)
139 {
140 	unsigned int i;
141 	unsigned int count;
142 
143 	count = 0;
144 	for (i = 0; i < n; ++i) {
145 		if (S_ISDIR(entries[i].mode))
146 			++count;
147 	}
148 
149 	return count;
150 }
151 
152 static int get_task_root(struct task_struct *task, struct path *root)
153 {
154 	int result = -ENOENT;
155 
156 	task_lock(task);
157 	if (task->fs) {
158 		get_fs_root(task->fs, root);
159 		result = 0;
160 	}
161 	task_unlock(task);
162 	return result;
163 }
164 
165 static int proc_cwd_link(struct inode *inode, struct path *path)
166 {
167 	struct task_struct *task = get_proc_task(inode);
168 	int result = -ENOENT;
169 
170 	if (task) {
171 		task_lock(task);
172 		if (task->fs) {
173 			get_fs_pwd(task->fs, path);
174 			result = 0;
175 		}
176 		task_unlock(task);
177 		put_task_struct(task);
178 	}
179 	return result;
180 }
181 
182 static int proc_root_link(struct inode *inode, struct path *path)
183 {
184 	struct task_struct *task = get_proc_task(inode);
185 	int result = -ENOENT;
186 
187 	if (task) {
188 		result = get_task_root(task, path);
189 		put_task_struct(task);
190 	}
191 	return result;
192 }
193 
194 /*
195  * Return zero if current may access user memory in @task, -error if not.
196  */
197 static int check_mem_permission(struct task_struct *task)
198 {
199 	/*
200 	 * A task can always look at itself, in case it chooses
201 	 * to use system calls instead of load instructions.
202 	 */
203 	if (task == current)
204 		return 0;
205 
206 	/*
207 	 * If current is actively ptrace'ing, and would also be
208 	 * permitted to freshly attach with ptrace now, permit it.
209 	 */
210 	if (task_is_stopped_or_traced(task)) {
211 		int match;
212 		rcu_read_lock();
213 		match = (tracehook_tracer_task(task) == current);
214 		rcu_read_unlock();
215 		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
216 			return 0;
217 	}
218 
219 	/*
220 	 * Noone else is allowed.
221 	 */
222 	return -EPERM;
223 }
224 
225 struct mm_struct *mm_for_maps(struct task_struct *task)
226 {
227 	struct mm_struct *mm;
228 
229 	if (mutex_lock_killable(&task->signal->cred_guard_mutex))
230 		return NULL;
231 
232 	mm = get_task_mm(task);
233 	if (mm && mm != current->mm &&
234 			!ptrace_may_access(task, PTRACE_MODE_READ)) {
235 		mmput(mm);
236 		mm = NULL;
237 	}
238 	mutex_unlock(&task->signal->cred_guard_mutex);
239 
240 	return mm;
241 }
242 
243 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
244 {
245 	int res = 0;
246 	unsigned int len;
247 	struct mm_struct *mm = get_task_mm(task);
248 	if (!mm)
249 		goto out;
250 	if (!mm->arg_end)
251 		goto out_mm;	/* Shh! No looking before we're done */
252 
253  	len = mm->arg_end - mm->arg_start;
254 
255 	if (len > PAGE_SIZE)
256 		len = PAGE_SIZE;
257 
258 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
259 
260 	// If the nul at the end of args has been overwritten, then
261 	// assume application is using setproctitle(3).
262 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
263 		len = strnlen(buffer, res);
264 		if (len < res) {
265 		    res = len;
266 		} else {
267 			len = mm->env_end - mm->env_start;
268 			if (len > PAGE_SIZE - res)
269 				len = PAGE_SIZE - res;
270 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
271 			res = strnlen(buffer, res);
272 		}
273 	}
274 out_mm:
275 	mmput(mm);
276 out:
277 	return res;
278 }
279 
280 static int proc_pid_auxv(struct task_struct *task, char *buffer)
281 {
282 	int res = 0;
283 	struct mm_struct *mm = get_task_mm(task);
284 	if (mm) {
285 		unsigned int nwords = 0;
286 		do {
287 			nwords += 2;
288 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
289 		res = nwords * sizeof(mm->saved_auxv[0]);
290 		if (res > PAGE_SIZE)
291 			res = PAGE_SIZE;
292 		memcpy(buffer, mm->saved_auxv, res);
293 		mmput(mm);
294 	}
295 	return res;
296 }
297 
298 
299 #ifdef CONFIG_KALLSYMS
300 /*
301  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
302  * Returns the resolved symbol.  If that fails, simply return the address.
303  */
304 static int proc_pid_wchan(struct task_struct *task, char *buffer)
305 {
306 	unsigned long wchan;
307 	char symname[KSYM_NAME_LEN];
308 
309 	wchan = get_wchan(task);
310 
311 	if (lookup_symbol_name(wchan, symname) < 0)
312 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
313 			return 0;
314 		else
315 			return sprintf(buffer, "%lu", wchan);
316 	else
317 		return sprintf(buffer, "%s", symname);
318 }
319 #endif /* CONFIG_KALLSYMS */
320 
321 #ifdef CONFIG_STACKTRACE
322 
323 #define MAX_STACK_TRACE_DEPTH	64
324 
325 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
326 			  struct pid *pid, struct task_struct *task)
327 {
328 	struct stack_trace trace;
329 	unsigned long *entries;
330 	int i;
331 
332 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
333 	if (!entries)
334 		return -ENOMEM;
335 
336 	trace.nr_entries	= 0;
337 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
338 	trace.entries		= entries;
339 	trace.skip		= 0;
340 	save_stack_trace_tsk(task, &trace);
341 
342 	for (i = 0; i < trace.nr_entries; i++) {
343 		seq_printf(m, "[<%p>] %pS\n",
344 			   (void *)entries[i], (void *)entries[i]);
345 	}
346 	kfree(entries);
347 
348 	return 0;
349 }
350 #endif
351 
352 #ifdef CONFIG_SCHEDSTATS
353 /*
354  * Provides /proc/PID/schedstat
355  */
356 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
357 {
358 	return sprintf(buffer, "%llu %llu %lu\n",
359 			(unsigned long long)task->se.sum_exec_runtime,
360 			(unsigned long long)task->sched_info.run_delay,
361 			task->sched_info.pcount);
362 }
363 #endif
364 
365 #ifdef CONFIG_LATENCYTOP
366 static int lstats_show_proc(struct seq_file *m, void *v)
367 {
368 	int i;
369 	struct inode *inode = m->private;
370 	struct task_struct *task = get_proc_task(inode);
371 
372 	if (!task)
373 		return -ESRCH;
374 	seq_puts(m, "Latency Top version : v0.1\n");
375 	for (i = 0; i < 32; i++) {
376 		if (task->latency_record[i].backtrace[0]) {
377 			int q;
378 			seq_printf(m, "%i %li %li ",
379 				task->latency_record[i].count,
380 				task->latency_record[i].time,
381 				task->latency_record[i].max);
382 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
383 				char sym[KSYM_SYMBOL_LEN];
384 				char *c;
385 				if (!task->latency_record[i].backtrace[q])
386 					break;
387 				if (task->latency_record[i].backtrace[q] == ULONG_MAX)
388 					break;
389 				sprint_symbol(sym, task->latency_record[i].backtrace[q]);
390 				c = strchr(sym, '+');
391 				if (c)
392 					*c = 0;
393 				seq_printf(m, "%s ", sym);
394 			}
395 			seq_printf(m, "\n");
396 		}
397 
398 	}
399 	put_task_struct(task);
400 	return 0;
401 }
402 
403 static int lstats_open(struct inode *inode, struct file *file)
404 {
405 	return single_open(file, lstats_show_proc, inode);
406 }
407 
408 static ssize_t lstats_write(struct file *file, const char __user *buf,
409 			    size_t count, loff_t *offs)
410 {
411 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
412 
413 	if (!task)
414 		return -ESRCH;
415 	clear_all_latency_tracing(task);
416 	put_task_struct(task);
417 
418 	return count;
419 }
420 
421 static const struct file_operations proc_lstats_operations = {
422 	.open		= lstats_open,
423 	.read		= seq_read,
424 	.write		= lstats_write,
425 	.llseek		= seq_lseek,
426 	.release	= single_release,
427 };
428 
429 #endif
430 
431 static int proc_oom_score(struct task_struct *task, char *buffer)
432 {
433 	unsigned long points = 0;
434 
435 	read_lock(&tasklist_lock);
436 	if (pid_alive(task))
437 		points = oom_badness(task, NULL, NULL,
438 					totalram_pages + total_swap_pages);
439 	read_unlock(&tasklist_lock);
440 	return sprintf(buffer, "%lu\n", points);
441 }
442 
443 struct limit_names {
444 	char *name;
445 	char *unit;
446 };
447 
448 static const struct limit_names lnames[RLIM_NLIMITS] = {
449 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
450 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
451 	[RLIMIT_DATA] = {"Max data size", "bytes"},
452 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
453 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
454 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
455 	[RLIMIT_NPROC] = {"Max processes", "processes"},
456 	[RLIMIT_NOFILE] = {"Max open files", "files"},
457 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
458 	[RLIMIT_AS] = {"Max address space", "bytes"},
459 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
460 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
461 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
462 	[RLIMIT_NICE] = {"Max nice priority", NULL},
463 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
464 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
465 };
466 
467 /* Display limits for a process */
468 static int proc_pid_limits(struct task_struct *task, char *buffer)
469 {
470 	unsigned int i;
471 	int count = 0;
472 	unsigned long flags;
473 	char *bufptr = buffer;
474 
475 	struct rlimit rlim[RLIM_NLIMITS];
476 
477 	if (!lock_task_sighand(task, &flags))
478 		return 0;
479 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
480 	unlock_task_sighand(task, &flags);
481 
482 	/*
483 	 * print the file header
484 	 */
485 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
486 			"Limit", "Soft Limit", "Hard Limit", "Units");
487 
488 	for (i = 0; i < RLIM_NLIMITS; i++) {
489 		if (rlim[i].rlim_cur == RLIM_INFINITY)
490 			count += sprintf(&bufptr[count], "%-25s %-20s ",
491 					 lnames[i].name, "unlimited");
492 		else
493 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
494 					 lnames[i].name, rlim[i].rlim_cur);
495 
496 		if (rlim[i].rlim_max == RLIM_INFINITY)
497 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
498 		else
499 			count += sprintf(&bufptr[count], "%-20lu ",
500 					 rlim[i].rlim_max);
501 
502 		if (lnames[i].unit)
503 			count += sprintf(&bufptr[count], "%-10s\n",
504 					 lnames[i].unit);
505 		else
506 			count += sprintf(&bufptr[count], "\n");
507 	}
508 
509 	return count;
510 }
511 
512 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
513 static int proc_pid_syscall(struct task_struct *task, char *buffer)
514 {
515 	long nr;
516 	unsigned long args[6], sp, pc;
517 
518 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
519 		return sprintf(buffer, "running\n");
520 
521 	if (nr < 0)
522 		return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
523 
524 	return sprintf(buffer,
525 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
526 		       nr,
527 		       args[0], args[1], args[2], args[3], args[4], args[5],
528 		       sp, pc);
529 }
530 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
531 
532 /************************************************************************/
533 /*                       Here the fs part begins                        */
534 /************************************************************************/
535 
536 /* permission checks */
537 static int proc_fd_access_allowed(struct inode *inode)
538 {
539 	struct task_struct *task;
540 	int allowed = 0;
541 	/* Allow access to a task's file descriptors if it is us or we
542 	 * may use ptrace attach to the process and find out that
543 	 * information.
544 	 */
545 	task = get_proc_task(inode);
546 	if (task) {
547 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
548 		put_task_struct(task);
549 	}
550 	return allowed;
551 }
552 
553 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
554 {
555 	int error;
556 	struct inode *inode = dentry->d_inode;
557 
558 	if (attr->ia_valid & ATTR_MODE)
559 		return -EPERM;
560 
561 	error = inode_change_ok(inode, attr);
562 	if (error)
563 		return error;
564 
565 	if ((attr->ia_valid & ATTR_SIZE) &&
566 	    attr->ia_size != i_size_read(inode)) {
567 		error = vmtruncate(inode, attr->ia_size);
568 		if (error)
569 			return error;
570 	}
571 
572 	setattr_copy(inode, attr);
573 	mark_inode_dirty(inode);
574 	return 0;
575 }
576 
577 static const struct inode_operations proc_def_inode_operations = {
578 	.setattr	= proc_setattr,
579 };
580 
581 static int mounts_open_common(struct inode *inode, struct file *file,
582 			      const struct seq_operations *op)
583 {
584 	struct task_struct *task = get_proc_task(inode);
585 	struct nsproxy *nsp;
586 	struct mnt_namespace *ns = NULL;
587 	struct path root;
588 	struct proc_mounts *p;
589 	int ret = -EINVAL;
590 
591 	if (task) {
592 		rcu_read_lock();
593 		nsp = task_nsproxy(task);
594 		if (nsp) {
595 			ns = nsp->mnt_ns;
596 			if (ns)
597 				get_mnt_ns(ns);
598 		}
599 		rcu_read_unlock();
600 		if (ns && get_task_root(task, &root) == 0)
601 			ret = 0;
602 		put_task_struct(task);
603 	}
604 
605 	if (!ns)
606 		goto err;
607 	if (ret)
608 		goto err_put_ns;
609 
610 	ret = -ENOMEM;
611 	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
612 	if (!p)
613 		goto err_put_path;
614 
615 	file->private_data = &p->m;
616 	ret = seq_open(file, op);
617 	if (ret)
618 		goto err_free;
619 
620 	p->m.private = p;
621 	p->ns = ns;
622 	p->root = root;
623 	p->event = ns->event;
624 
625 	return 0;
626 
627  err_free:
628 	kfree(p);
629  err_put_path:
630 	path_put(&root);
631  err_put_ns:
632 	put_mnt_ns(ns);
633  err:
634 	return ret;
635 }
636 
637 static int mounts_release(struct inode *inode, struct file *file)
638 {
639 	struct proc_mounts *p = file->private_data;
640 	path_put(&p->root);
641 	put_mnt_ns(p->ns);
642 	return seq_release(inode, file);
643 }
644 
645 static unsigned mounts_poll(struct file *file, poll_table *wait)
646 {
647 	struct proc_mounts *p = file->private_data;
648 	unsigned res = POLLIN | POLLRDNORM;
649 
650 	poll_wait(file, &p->ns->poll, wait);
651 	if (mnt_had_events(p))
652 		res |= POLLERR | POLLPRI;
653 
654 	return res;
655 }
656 
657 static int mounts_open(struct inode *inode, struct file *file)
658 {
659 	return mounts_open_common(inode, file, &mounts_op);
660 }
661 
662 static const struct file_operations proc_mounts_operations = {
663 	.open		= mounts_open,
664 	.read		= seq_read,
665 	.llseek		= seq_lseek,
666 	.release	= mounts_release,
667 	.poll		= mounts_poll,
668 };
669 
670 static int mountinfo_open(struct inode *inode, struct file *file)
671 {
672 	return mounts_open_common(inode, file, &mountinfo_op);
673 }
674 
675 static const struct file_operations proc_mountinfo_operations = {
676 	.open		= mountinfo_open,
677 	.read		= seq_read,
678 	.llseek		= seq_lseek,
679 	.release	= mounts_release,
680 	.poll		= mounts_poll,
681 };
682 
683 static int mountstats_open(struct inode *inode, struct file *file)
684 {
685 	return mounts_open_common(inode, file, &mountstats_op);
686 }
687 
688 static const struct file_operations proc_mountstats_operations = {
689 	.open		= mountstats_open,
690 	.read		= seq_read,
691 	.llseek		= seq_lseek,
692 	.release	= mounts_release,
693 };
694 
695 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
696 
697 static ssize_t proc_info_read(struct file * file, char __user * buf,
698 			  size_t count, loff_t *ppos)
699 {
700 	struct inode * inode = file->f_path.dentry->d_inode;
701 	unsigned long page;
702 	ssize_t length;
703 	struct task_struct *task = get_proc_task(inode);
704 
705 	length = -ESRCH;
706 	if (!task)
707 		goto out_no_task;
708 
709 	if (count > PROC_BLOCK_SIZE)
710 		count = PROC_BLOCK_SIZE;
711 
712 	length = -ENOMEM;
713 	if (!(page = __get_free_page(GFP_TEMPORARY)))
714 		goto out;
715 
716 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
717 
718 	if (length >= 0)
719 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
720 	free_page(page);
721 out:
722 	put_task_struct(task);
723 out_no_task:
724 	return length;
725 }
726 
727 static const struct file_operations proc_info_file_operations = {
728 	.read		= proc_info_read,
729 	.llseek		= generic_file_llseek,
730 };
731 
732 static int proc_single_show(struct seq_file *m, void *v)
733 {
734 	struct inode *inode = m->private;
735 	struct pid_namespace *ns;
736 	struct pid *pid;
737 	struct task_struct *task;
738 	int ret;
739 
740 	ns = inode->i_sb->s_fs_info;
741 	pid = proc_pid(inode);
742 	task = get_pid_task(pid, PIDTYPE_PID);
743 	if (!task)
744 		return -ESRCH;
745 
746 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
747 
748 	put_task_struct(task);
749 	return ret;
750 }
751 
752 static int proc_single_open(struct inode *inode, struct file *filp)
753 {
754 	int ret;
755 	ret = single_open(filp, proc_single_show, NULL);
756 	if (!ret) {
757 		struct seq_file *m = filp->private_data;
758 
759 		m->private = inode;
760 	}
761 	return ret;
762 }
763 
764 static const struct file_operations proc_single_file_operations = {
765 	.open		= proc_single_open,
766 	.read		= seq_read,
767 	.llseek		= seq_lseek,
768 	.release	= single_release,
769 };
770 
771 static int mem_open(struct inode* inode, struct file* file)
772 {
773 	file->private_data = (void*)((long)current->self_exec_id);
774 	/* OK to pass negative loff_t, we can catch out-of-range */
775 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
776 	return 0;
777 }
778 
779 static ssize_t mem_read(struct file * file, char __user * buf,
780 			size_t count, loff_t *ppos)
781 {
782 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
783 	char *page;
784 	unsigned long src = *ppos;
785 	int ret = -ESRCH;
786 	struct mm_struct *mm;
787 
788 	if (!task)
789 		goto out_no_task;
790 
791 	if (check_mem_permission(task))
792 		goto out;
793 
794 	ret = -ENOMEM;
795 	page = (char *)__get_free_page(GFP_TEMPORARY);
796 	if (!page)
797 		goto out;
798 
799 	ret = 0;
800 
801 	mm = get_task_mm(task);
802 	if (!mm)
803 		goto out_free;
804 
805 	ret = -EIO;
806 
807 	if (file->private_data != (void*)((long)current->self_exec_id))
808 		goto out_put;
809 
810 	ret = 0;
811 
812 	while (count > 0) {
813 		int this_len, retval;
814 
815 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
816 		retval = access_process_vm(task, src, page, this_len, 0);
817 		if (!retval || check_mem_permission(task)) {
818 			if (!ret)
819 				ret = -EIO;
820 			break;
821 		}
822 
823 		if (copy_to_user(buf, page, retval)) {
824 			ret = -EFAULT;
825 			break;
826 		}
827 
828 		ret += retval;
829 		src += retval;
830 		buf += retval;
831 		count -= retval;
832 	}
833 	*ppos = src;
834 
835 out_put:
836 	mmput(mm);
837 out_free:
838 	free_page((unsigned long) page);
839 out:
840 	put_task_struct(task);
841 out_no_task:
842 	return ret;
843 }
844 
845 #define mem_write NULL
846 
847 #ifndef mem_write
848 /* This is a security hazard */
849 static ssize_t mem_write(struct file * file, const char __user *buf,
850 			 size_t count, loff_t *ppos)
851 {
852 	int copied;
853 	char *page;
854 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
855 	unsigned long dst = *ppos;
856 
857 	copied = -ESRCH;
858 	if (!task)
859 		goto out_no_task;
860 
861 	if (check_mem_permission(task))
862 		goto out;
863 
864 	copied = -ENOMEM;
865 	page = (char *)__get_free_page(GFP_TEMPORARY);
866 	if (!page)
867 		goto out;
868 
869 	copied = 0;
870 	while (count > 0) {
871 		int this_len, retval;
872 
873 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
874 		if (copy_from_user(page, buf, this_len)) {
875 			copied = -EFAULT;
876 			break;
877 		}
878 		retval = access_process_vm(task, dst, page, this_len, 1);
879 		if (!retval) {
880 			if (!copied)
881 				copied = -EIO;
882 			break;
883 		}
884 		copied += retval;
885 		buf += retval;
886 		dst += retval;
887 		count -= retval;
888 	}
889 	*ppos = dst;
890 	free_page((unsigned long) page);
891 out:
892 	put_task_struct(task);
893 out_no_task:
894 	return copied;
895 }
896 #endif
897 
898 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
899 {
900 	switch (orig) {
901 	case 0:
902 		file->f_pos = offset;
903 		break;
904 	case 1:
905 		file->f_pos += offset;
906 		break;
907 	default:
908 		return -EINVAL;
909 	}
910 	force_successful_syscall_return();
911 	return file->f_pos;
912 }
913 
914 static const struct file_operations proc_mem_operations = {
915 	.llseek		= mem_lseek,
916 	.read		= mem_read,
917 	.write		= mem_write,
918 	.open		= mem_open,
919 };
920 
921 static ssize_t environ_read(struct file *file, char __user *buf,
922 			size_t count, loff_t *ppos)
923 {
924 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
925 	char *page;
926 	unsigned long src = *ppos;
927 	int ret = -ESRCH;
928 	struct mm_struct *mm;
929 
930 	if (!task)
931 		goto out_no_task;
932 
933 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
934 		goto out;
935 
936 	ret = -ENOMEM;
937 	page = (char *)__get_free_page(GFP_TEMPORARY);
938 	if (!page)
939 		goto out;
940 
941 	ret = 0;
942 
943 	mm = get_task_mm(task);
944 	if (!mm)
945 		goto out_free;
946 
947 	while (count > 0) {
948 		int this_len, retval, max_len;
949 
950 		this_len = mm->env_end - (mm->env_start + src);
951 
952 		if (this_len <= 0)
953 			break;
954 
955 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
956 		this_len = (this_len > max_len) ? max_len : this_len;
957 
958 		retval = access_process_vm(task, (mm->env_start + src),
959 			page, this_len, 0);
960 
961 		if (retval <= 0) {
962 			ret = retval;
963 			break;
964 		}
965 
966 		if (copy_to_user(buf, page, retval)) {
967 			ret = -EFAULT;
968 			break;
969 		}
970 
971 		ret += retval;
972 		src += retval;
973 		buf += retval;
974 		count -= retval;
975 	}
976 	*ppos = src;
977 
978 	mmput(mm);
979 out_free:
980 	free_page((unsigned long) page);
981 out:
982 	put_task_struct(task);
983 out_no_task:
984 	return ret;
985 }
986 
987 static const struct file_operations proc_environ_operations = {
988 	.read		= environ_read,
989 	.llseek		= generic_file_llseek,
990 };
991 
992 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
993 				size_t count, loff_t *ppos)
994 {
995 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
996 	char buffer[PROC_NUMBUF];
997 	size_t len;
998 	int oom_adjust = OOM_DISABLE;
999 	unsigned long flags;
1000 
1001 	if (!task)
1002 		return -ESRCH;
1003 
1004 	if (lock_task_sighand(task, &flags)) {
1005 		oom_adjust = task->signal->oom_adj;
1006 		unlock_task_sighand(task, &flags);
1007 	}
1008 
1009 	put_task_struct(task);
1010 
1011 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1012 
1013 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1014 }
1015 
1016 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1017 				size_t count, loff_t *ppos)
1018 {
1019 	struct task_struct *task;
1020 	char buffer[PROC_NUMBUF];
1021 	long oom_adjust;
1022 	unsigned long flags;
1023 	int err;
1024 
1025 	memset(buffer, 0, sizeof(buffer));
1026 	if (count > sizeof(buffer) - 1)
1027 		count = sizeof(buffer) - 1;
1028 	if (copy_from_user(buffer, buf, count)) {
1029 		err = -EFAULT;
1030 		goto out;
1031 	}
1032 
1033 	err = strict_strtol(strstrip(buffer), 0, &oom_adjust);
1034 	if (err)
1035 		goto out;
1036 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1037 	     oom_adjust != OOM_DISABLE) {
1038 		err = -EINVAL;
1039 		goto out;
1040 	}
1041 
1042 	task = get_proc_task(file->f_path.dentry->d_inode);
1043 	if (!task) {
1044 		err = -ESRCH;
1045 		goto out;
1046 	}
1047 
1048 	task_lock(task);
1049 	if (!task->mm) {
1050 		err = -EINVAL;
1051 		goto err_task_lock;
1052 	}
1053 
1054 	if (!lock_task_sighand(task, &flags)) {
1055 		err = -ESRCH;
1056 		goto err_task_lock;
1057 	}
1058 
1059 	if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1060 		err = -EACCES;
1061 		goto err_sighand;
1062 	}
1063 
1064 	if (oom_adjust != task->signal->oom_adj) {
1065 		if (oom_adjust == OOM_DISABLE)
1066 			atomic_inc(&task->mm->oom_disable_count);
1067 		if (task->signal->oom_adj == OOM_DISABLE)
1068 			atomic_dec(&task->mm->oom_disable_count);
1069 	}
1070 
1071 	/*
1072 	 * Warn that /proc/pid/oom_adj is deprecated, see
1073 	 * Documentation/feature-removal-schedule.txt.
1074 	 */
1075 	printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, "
1076 			"please use /proc/%d/oom_score_adj instead.\n",
1077 			current->comm, task_pid_nr(current),
1078 			task_pid_nr(task), task_pid_nr(task));
1079 	task->signal->oom_adj = oom_adjust;
1080 	/*
1081 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1082 	 * value is always attainable.
1083 	 */
1084 	if (task->signal->oom_adj == OOM_ADJUST_MAX)
1085 		task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1086 	else
1087 		task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1088 								-OOM_DISABLE;
1089 err_sighand:
1090 	unlock_task_sighand(task, &flags);
1091 err_task_lock:
1092 	task_unlock(task);
1093 	put_task_struct(task);
1094 out:
1095 	return err < 0 ? err : count;
1096 }
1097 
1098 static const struct file_operations proc_oom_adjust_operations = {
1099 	.read		= oom_adjust_read,
1100 	.write		= oom_adjust_write,
1101 	.llseek		= generic_file_llseek,
1102 };
1103 
1104 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1105 					size_t count, loff_t *ppos)
1106 {
1107 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1108 	char buffer[PROC_NUMBUF];
1109 	int oom_score_adj = OOM_SCORE_ADJ_MIN;
1110 	unsigned long flags;
1111 	size_t len;
1112 
1113 	if (!task)
1114 		return -ESRCH;
1115 	if (lock_task_sighand(task, &flags)) {
1116 		oom_score_adj = task->signal->oom_score_adj;
1117 		unlock_task_sighand(task, &flags);
1118 	}
1119 	put_task_struct(task);
1120 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1121 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1122 }
1123 
1124 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1125 					size_t count, loff_t *ppos)
1126 {
1127 	struct task_struct *task;
1128 	char buffer[PROC_NUMBUF];
1129 	unsigned long flags;
1130 	long oom_score_adj;
1131 	int err;
1132 
1133 	memset(buffer, 0, sizeof(buffer));
1134 	if (count > sizeof(buffer) - 1)
1135 		count = sizeof(buffer) - 1;
1136 	if (copy_from_user(buffer, buf, count)) {
1137 		err = -EFAULT;
1138 		goto out;
1139 	}
1140 
1141 	err = strict_strtol(strstrip(buffer), 0, &oom_score_adj);
1142 	if (err)
1143 		goto out;
1144 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1145 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1146 		err = -EINVAL;
1147 		goto out;
1148 	}
1149 
1150 	task = get_proc_task(file->f_path.dentry->d_inode);
1151 	if (!task) {
1152 		err = -ESRCH;
1153 		goto out;
1154 	}
1155 
1156 	task_lock(task);
1157 	if (!task->mm) {
1158 		err = -EINVAL;
1159 		goto err_task_lock;
1160 	}
1161 
1162 	if (!lock_task_sighand(task, &flags)) {
1163 		err = -ESRCH;
1164 		goto err_task_lock;
1165 	}
1166 
1167 	if (oom_score_adj < task->signal->oom_score_adj &&
1168 			!capable(CAP_SYS_RESOURCE)) {
1169 		err = -EACCES;
1170 		goto err_sighand;
1171 	}
1172 
1173 	if (oom_score_adj != task->signal->oom_score_adj) {
1174 		if (oom_score_adj == OOM_SCORE_ADJ_MIN)
1175 			atomic_inc(&task->mm->oom_disable_count);
1176 		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1177 			atomic_dec(&task->mm->oom_disable_count);
1178 	}
1179 	task->signal->oom_score_adj = oom_score_adj;
1180 	/*
1181 	 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1182 	 * always attainable.
1183 	 */
1184 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1185 		task->signal->oom_adj = OOM_DISABLE;
1186 	else
1187 		task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1188 							OOM_SCORE_ADJ_MAX;
1189 err_sighand:
1190 	unlock_task_sighand(task, &flags);
1191 err_task_lock:
1192 	task_unlock(task);
1193 	put_task_struct(task);
1194 out:
1195 	return err < 0 ? err : count;
1196 }
1197 
1198 static const struct file_operations proc_oom_score_adj_operations = {
1199 	.read		= oom_score_adj_read,
1200 	.write		= oom_score_adj_write,
1201 	.llseek		= default_llseek,
1202 };
1203 
1204 #ifdef CONFIG_AUDITSYSCALL
1205 #define TMPBUFLEN 21
1206 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1207 				  size_t count, loff_t *ppos)
1208 {
1209 	struct inode * inode = file->f_path.dentry->d_inode;
1210 	struct task_struct *task = get_proc_task(inode);
1211 	ssize_t length;
1212 	char tmpbuf[TMPBUFLEN];
1213 
1214 	if (!task)
1215 		return -ESRCH;
1216 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1217 				audit_get_loginuid(task));
1218 	put_task_struct(task);
1219 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1220 }
1221 
1222 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1223 				   size_t count, loff_t *ppos)
1224 {
1225 	struct inode * inode = file->f_path.dentry->d_inode;
1226 	char *page, *tmp;
1227 	ssize_t length;
1228 	uid_t loginuid;
1229 
1230 	if (!capable(CAP_AUDIT_CONTROL))
1231 		return -EPERM;
1232 
1233 	rcu_read_lock();
1234 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1235 		rcu_read_unlock();
1236 		return -EPERM;
1237 	}
1238 	rcu_read_unlock();
1239 
1240 	if (count >= PAGE_SIZE)
1241 		count = PAGE_SIZE - 1;
1242 
1243 	if (*ppos != 0) {
1244 		/* No partial writes. */
1245 		return -EINVAL;
1246 	}
1247 	page = (char*)__get_free_page(GFP_TEMPORARY);
1248 	if (!page)
1249 		return -ENOMEM;
1250 	length = -EFAULT;
1251 	if (copy_from_user(page, buf, count))
1252 		goto out_free_page;
1253 
1254 	page[count] = '\0';
1255 	loginuid = simple_strtoul(page, &tmp, 10);
1256 	if (tmp == page) {
1257 		length = -EINVAL;
1258 		goto out_free_page;
1259 
1260 	}
1261 	length = audit_set_loginuid(current, loginuid);
1262 	if (likely(length == 0))
1263 		length = count;
1264 
1265 out_free_page:
1266 	free_page((unsigned long) page);
1267 	return length;
1268 }
1269 
1270 static const struct file_operations proc_loginuid_operations = {
1271 	.read		= proc_loginuid_read,
1272 	.write		= proc_loginuid_write,
1273 	.llseek		= generic_file_llseek,
1274 };
1275 
1276 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1277 				  size_t count, loff_t *ppos)
1278 {
1279 	struct inode * inode = file->f_path.dentry->d_inode;
1280 	struct task_struct *task = get_proc_task(inode);
1281 	ssize_t length;
1282 	char tmpbuf[TMPBUFLEN];
1283 
1284 	if (!task)
1285 		return -ESRCH;
1286 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1287 				audit_get_sessionid(task));
1288 	put_task_struct(task);
1289 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1290 }
1291 
1292 static const struct file_operations proc_sessionid_operations = {
1293 	.read		= proc_sessionid_read,
1294 	.llseek		= generic_file_llseek,
1295 };
1296 #endif
1297 
1298 #ifdef CONFIG_FAULT_INJECTION
1299 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1300 				      size_t count, loff_t *ppos)
1301 {
1302 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1303 	char buffer[PROC_NUMBUF];
1304 	size_t len;
1305 	int make_it_fail;
1306 
1307 	if (!task)
1308 		return -ESRCH;
1309 	make_it_fail = task->make_it_fail;
1310 	put_task_struct(task);
1311 
1312 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1313 
1314 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1315 }
1316 
1317 static ssize_t proc_fault_inject_write(struct file * file,
1318 			const char __user * buf, size_t count, loff_t *ppos)
1319 {
1320 	struct task_struct *task;
1321 	char buffer[PROC_NUMBUF], *end;
1322 	int make_it_fail;
1323 
1324 	if (!capable(CAP_SYS_RESOURCE))
1325 		return -EPERM;
1326 	memset(buffer, 0, sizeof(buffer));
1327 	if (count > sizeof(buffer) - 1)
1328 		count = sizeof(buffer) - 1;
1329 	if (copy_from_user(buffer, buf, count))
1330 		return -EFAULT;
1331 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1332 	if (*end)
1333 		return -EINVAL;
1334 	task = get_proc_task(file->f_dentry->d_inode);
1335 	if (!task)
1336 		return -ESRCH;
1337 	task->make_it_fail = make_it_fail;
1338 	put_task_struct(task);
1339 
1340 	return count;
1341 }
1342 
1343 static const struct file_operations proc_fault_inject_operations = {
1344 	.read		= proc_fault_inject_read,
1345 	.write		= proc_fault_inject_write,
1346 	.llseek		= generic_file_llseek,
1347 };
1348 #endif
1349 
1350 
1351 #ifdef CONFIG_SCHED_DEBUG
1352 /*
1353  * Print out various scheduling related per-task fields:
1354  */
1355 static int sched_show(struct seq_file *m, void *v)
1356 {
1357 	struct inode *inode = m->private;
1358 	struct task_struct *p;
1359 
1360 	p = get_proc_task(inode);
1361 	if (!p)
1362 		return -ESRCH;
1363 	proc_sched_show_task(p, m);
1364 
1365 	put_task_struct(p);
1366 
1367 	return 0;
1368 }
1369 
1370 static ssize_t
1371 sched_write(struct file *file, const char __user *buf,
1372 	    size_t count, loff_t *offset)
1373 {
1374 	struct inode *inode = file->f_path.dentry->d_inode;
1375 	struct task_struct *p;
1376 
1377 	p = get_proc_task(inode);
1378 	if (!p)
1379 		return -ESRCH;
1380 	proc_sched_set_task(p);
1381 
1382 	put_task_struct(p);
1383 
1384 	return count;
1385 }
1386 
1387 static int sched_open(struct inode *inode, struct file *filp)
1388 {
1389 	int ret;
1390 
1391 	ret = single_open(filp, sched_show, NULL);
1392 	if (!ret) {
1393 		struct seq_file *m = filp->private_data;
1394 
1395 		m->private = inode;
1396 	}
1397 	return ret;
1398 }
1399 
1400 static const struct file_operations proc_pid_sched_operations = {
1401 	.open		= sched_open,
1402 	.read		= seq_read,
1403 	.write		= sched_write,
1404 	.llseek		= seq_lseek,
1405 	.release	= single_release,
1406 };
1407 
1408 #endif
1409 
1410 #ifdef CONFIG_SCHED_AUTOGROUP
1411 /*
1412  * Print out autogroup related information:
1413  */
1414 static int sched_autogroup_show(struct seq_file *m, void *v)
1415 {
1416 	struct inode *inode = m->private;
1417 	struct task_struct *p;
1418 
1419 	p = get_proc_task(inode);
1420 	if (!p)
1421 		return -ESRCH;
1422 	proc_sched_autogroup_show_task(p, m);
1423 
1424 	put_task_struct(p);
1425 
1426 	return 0;
1427 }
1428 
1429 static ssize_t
1430 sched_autogroup_write(struct file *file, const char __user *buf,
1431 	    size_t count, loff_t *offset)
1432 {
1433 	struct inode *inode = file->f_path.dentry->d_inode;
1434 	struct task_struct *p;
1435 	char buffer[PROC_NUMBUF];
1436 	long nice;
1437 	int err;
1438 
1439 	memset(buffer, 0, sizeof(buffer));
1440 	if (count > sizeof(buffer) - 1)
1441 		count = sizeof(buffer) - 1;
1442 	if (copy_from_user(buffer, buf, count))
1443 		return -EFAULT;
1444 
1445 	err = strict_strtol(strstrip(buffer), 0, &nice);
1446 	if (err)
1447 		return -EINVAL;
1448 
1449 	p = get_proc_task(inode);
1450 	if (!p)
1451 		return -ESRCH;
1452 
1453 	err = nice;
1454 	err = proc_sched_autogroup_set_nice(p, &err);
1455 	if (err)
1456 		count = err;
1457 
1458 	put_task_struct(p);
1459 
1460 	return count;
1461 }
1462 
1463 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1464 {
1465 	int ret;
1466 
1467 	ret = single_open(filp, sched_autogroup_show, NULL);
1468 	if (!ret) {
1469 		struct seq_file *m = filp->private_data;
1470 
1471 		m->private = inode;
1472 	}
1473 	return ret;
1474 }
1475 
1476 static const struct file_operations proc_pid_sched_autogroup_operations = {
1477 	.open		= sched_autogroup_open,
1478 	.read		= seq_read,
1479 	.write		= sched_autogroup_write,
1480 	.llseek		= seq_lseek,
1481 	.release	= single_release,
1482 };
1483 
1484 #endif /* CONFIG_SCHED_AUTOGROUP */
1485 
1486 static ssize_t comm_write(struct file *file, const char __user *buf,
1487 				size_t count, loff_t *offset)
1488 {
1489 	struct inode *inode = file->f_path.dentry->d_inode;
1490 	struct task_struct *p;
1491 	char buffer[TASK_COMM_LEN];
1492 
1493 	memset(buffer, 0, sizeof(buffer));
1494 	if (count > sizeof(buffer) - 1)
1495 		count = sizeof(buffer) - 1;
1496 	if (copy_from_user(buffer, buf, count))
1497 		return -EFAULT;
1498 
1499 	p = get_proc_task(inode);
1500 	if (!p)
1501 		return -ESRCH;
1502 
1503 	if (same_thread_group(current, p))
1504 		set_task_comm(p, buffer);
1505 	else
1506 		count = -EINVAL;
1507 
1508 	put_task_struct(p);
1509 
1510 	return count;
1511 }
1512 
1513 static int comm_show(struct seq_file *m, void *v)
1514 {
1515 	struct inode *inode = m->private;
1516 	struct task_struct *p;
1517 
1518 	p = get_proc_task(inode);
1519 	if (!p)
1520 		return -ESRCH;
1521 
1522 	task_lock(p);
1523 	seq_printf(m, "%s\n", p->comm);
1524 	task_unlock(p);
1525 
1526 	put_task_struct(p);
1527 
1528 	return 0;
1529 }
1530 
1531 static int comm_open(struct inode *inode, struct file *filp)
1532 {
1533 	int ret;
1534 
1535 	ret = single_open(filp, comm_show, NULL);
1536 	if (!ret) {
1537 		struct seq_file *m = filp->private_data;
1538 
1539 		m->private = inode;
1540 	}
1541 	return ret;
1542 }
1543 
1544 static const struct file_operations proc_pid_set_comm_operations = {
1545 	.open		= comm_open,
1546 	.read		= seq_read,
1547 	.write		= comm_write,
1548 	.llseek		= seq_lseek,
1549 	.release	= single_release,
1550 };
1551 
1552 /*
1553  * We added or removed a vma mapping the executable. The vmas are only mapped
1554  * during exec and are not mapped with the mmap system call.
1555  * Callers must hold down_write() on the mm's mmap_sem for these
1556  */
1557 void added_exe_file_vma(struct mm_struct *mm)
1558 {
1559 	mm->num_exe_file_vmas++;
1560 }
1561 
1562 void removed_exe_file_vma(struct mm_struct *mm)
1563 {
1564 	mm->num_exe_file_vmas--;
1565 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1566 		fput(mm->exe_file);
1567 		mm->exe_file = NULL;
1568 	}
1569 
1570 }
1571 
1572 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1573 {
1574 	if (new_exe_file)
1575 		get_file(new_exe_file);
1576 	if (mm->exe_file)
1577 		fput(mm->exe_file);
1578 	mm->exe_file = new_exe_file;
1579 	mm->num_exe_file_vmas = 0;
1580 }
1581 
1582 struct file *get_mm_exe_file(struct mm_struct *mm)
1583 {
1584 	struct file *exe_file;
1585 
1586 	/* We need mmap_sem to protect against races with removal of
1587 	 * VM_EXECUTABLE vmas */
1588 	down_read(&mm->mmap_sem);
1589 	exe_file = mm->exe_file;
1590 	if (exe_file)
1591 		get_file(exe_file);
1592 	up_read(&mm->mmap_sem);
1593 	return exe_file;
1594 }
1595 
1596 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1597 {
1598 	/* It's safe to write the exe_file pointer without exe_file_lock because
1599 	 * this is called during fork when the task is not yet in /proc */
1600 	newmm->exe_file = get_mm_exe_file(oldmm);
1601 }
1602 
1603 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1604 {
1605 	struct task_struct *task;
1606 	struct mm_struct *mm;
1607 	struct file *exe_file;
1608 
1609 	task = get_proc_task(inode);
1610 	if (!task)
1611 		return -ENOENT;
1612 	mm = get_task_mm(task);
1613 	put_task_struct(task);
1614 	if (!mm)
1615 		return -ENOENT;
1616 	exe_file = get_mm_exe_file(mm);
1617 	mmput(mm);
1618 	if (exe_file) {
1619 		*exe_path = exe_file->f_path;
1620 		path_get(&exe_file->f_path);
1621 		fput(exe_file);
1622 		return 0;
1623 	} else
1624 		return -ENOENT;
1625 }
1626 
1627 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1628 {
1629 	struct inode *inode = dentry->d_inode;
1630 	int error = -EACCES;
1631 
1632 	/* We don't need a base pointer in the /proc filesystem */
1633 	path_put(&nd->path);
1634 
1635 	/* Are we allowed to snoop on the tasks file descriptors? */
1636 	if (!proc_fd_access_allowed(inode))
1637 		goto out;
1638 
1639 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1640 out:
1641 	return ERR_PTR(error);
1642 }
1643 
1644 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1645 {
1646 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1647 	char *pathname;
1648 	int len;
1649 
1650 	if (!tmp)
1651 		return -ENOMEM;
1652 
1653 	pathname = d_path(path, tmp, PAGE_SIZE);
1654 	len = PTR_ERR(pathname);
1655 	if (IS_ERR(pathname))
1656 		goto out;
1657 	len = tmp + PAGE_SIZE - 1 - pathname;
1658 
1659 	if (len > buflen)
1660 		len = buflen;
1661 	if (copy_to_user(buffer, pathname, len))
1662 		len = -EFAULT;
1663  out:
1664 	free_page((unsigned long)tmp);
1665 	return len;
1666 }
1667 
1668 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1669 {
1670 	int error = -EACCES;
1671 	struct inode *inode = dentry->d_inode;
1672 	struct path path;
1673 
1674 	/* Are we allowed to snoop on the tasks file descriptors? */
1675 	if (!proc_fd_access_allowed(inode))
1676 		goto out;
1677 
1678 	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1679 	if (error)
1680 		goto out;
1681 
1682 	error = do_proc_readlink(&path, buffer, buflen);
1683 	path_put(&path);
1684 out:
1685 	return error;
1686 }
1687 
1688 static const struct inode_operations proc_pid_link_inode_operations = {
1689 	.readlink	= proc_pid_readlink,
1690 	.follow_link	= proc_pid_follow_link,
1691 	.setattr	= proc_setattr,
1692 };
1693 
1694 
1695 /* building an inode */
1696 
1697 static int task_dumpable(struct task_struct *task)
1698 {
1699 	int dumpable = 0;
1700 	struct mm_struct *mm;
1701 
1702 	task_lock(task);
1703 	mm = task->mm;
1704 	if (mm)
1705 		dumpable = get_dumpable(mm);
1706 	task_unlock(task);
1707 	if(dumpable == 1)
1708 		return 1;
1709 	return 0;
1710 }
1711 
1712 
1713 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1714 {
1715 	struct inode * inode;
1716 	struct proc_inode *ei;
1717 	const struct cred *cred;
1718 
1719 	/* We need a new inode */
1720 
1721 	inode = new_inode(sb);
1722 	if (!inode)
1723 		goto out;
1724 
1725 	/* Common stuff */
1726 	ei = PROC_I(inode);
1727 	inode->i_ino = get_next_ino();
1728 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1729 	inode->i_op = &proc_def_inode_operations;
1730 
1731 	/*
1732 	 * grab the reference to task.
1733 	 */
1734 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1735 	if (!ei->pid)
1736 		goto out_unlock;
1737 
1738 	if (task_dumpable(task)) {
1739 		rcu_read_lock();
1740 		cred = __task_cred(task);
1741 		inode->i_uid = cred->euid;
1742 		inode->i_gid = cred->egid;
1743 		rcu_read_unlock();
1744 	}
1745 	security_task_to_inode(task, inode);
1746 
1747 out:
1748 	return inode;
1749 
1750 out_unlock:
1751 	iput(inode);
1752 	return NULL;
1753 }
1754 
1755 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1756 {
1757 	struct inode *inode = dentry->d_inode;
1758 	struct task_struct *task;
1759 	const struct cred *cred;
1760 
1761 	generic_fillattr(inode, stat);
1762 
1763 	rcu_read_lock();
1764 	stat->uid = 0;
1765 	stat->gid = 0;
1766 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1767 	if (task) {
1768 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1769 		    task_dumpable(task)) {
1770 			cred = __task_cred(task);
1771 			stat->uid = cred->euid;
1772 			stat->gid = cred->egid;
1773 		}
1774 	}
1775 	rcu_read_unlock();
1776 	return 0;
1777 }
1778 
1779 /* dentry stuff */
1780 
1781 /*
1782  *	Exceptional case: normally we are not allowed to unhash a busy
1783  * directory. In this case, however, we can do it - no aliasing problems
1784  * due to the way we treat inodes.
1785  *
1786  * Rewrite the inode's ownerships here because the owning task may have
1787  * performed a setuid(), etc.
1788  *
1789  * Before the /proc/pid/status file was created the only way to read
1790  * the effective uid of a /process was to stat /proc/pid.  Reading
1791  * /proc/pid/status is slow enough that procps and other packages
1792  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1793  * made this apply to all per process world readable and executable
1794  * directories.
1795  */
1796 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1797 {
1798 	struct inode *inode = dentry->d_inode;
1799 	struct task_struct *task = get_proc_task(inode);
1800 	const struct cred *cred;
1801 
1802 	if (task) {
1803 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1804 		    task_dumpable(task)) {
1805 			rcu_read_lock();
1806 			cred = __task_cred(task);
1807 			inode->i_uid = cred->euid;
1808 			inode->i_gid = cred->egid;
1809 			rcu_read_unlock();
1810 		} else {
1811 			inode->i_uid = 0;
1812 			inode->i_gid = 0;
1813 		}
1814 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1815 		security_task_to_inode(task, inode);
1816 		put_task_struct(task);
1817 		return 1;
1818 	}
1819 	d_drop(dentry);
1820 	return 0;
1821 }
1822 
1823 static int pid_delete_dentry(struct dentry * dentry)
1824 {
1825 	/* Is the task we represent dead?
1826 	 * If so, then don't put the dentry on the lru list,
1827 	 * kill it immediately.
1828 	 */
1829 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1830 }
1831 
1832 static const struct dentry_operations pid_dentry_operations =
1833 {
1834 	.d_revalidate	= pid_revalidate,
1835 	.d_delete	= pid_delete_dentry,
1836 };
1837 
1838 /* Lookups */
1839 
1840 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1841 				struct task_struct *, const void *);
1842 
1843 /*
1844  * Fill a directory entry.
1845  *
1846  * If possible create the dcache entry and derive our inode number and
1847  * file type from dcache entry.
1848  *
1849  * Since all of the proc inode numbers are dynamically generated, the inode
1850  * numbers do not exist until the inode is cache.  This means creating the
1851  * the dcache entry in readdir is necessary to keep the inode numbers
1852  * reported by readdir in sync with the inode numbers reported
1853  * by stat.
1854  */
1855 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1856 	char *name, int len,
1857 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1858 {
1859 	struct dentry *child, *dir = filp->f_path.dentry;
1860 	struct inode *inode;
1861 	struct qstr qname;
1862 	ino_t ino = 0;
1863 	unsigned type = DT_UNKNOWN;
1864 
1865 	qname.name = name;
1866 	qname.len  = len;
1867 	qname.hash = full_name_hash(name, len);
1868 
1869 	child = d_lookup(dir, &qname);
1870 	if (!child) {
1871 		struct dentry *new;
1872 		new = d_alloc(dir, &qname);
1873 		if (new) {
1874 			child = instantiate(dir->d_inode, new, task, ptr);
1875 			if (child)
1876 				dput(new);
1877 			else
1878 				child = new;
1879 		}
1880 	}
1881 	if (!child || IS_ERR(child) || !child->d_inode)
1882 		goto end_instantiate;
1883 	inode = child->d_inode;
1884 	if (inode) {
1885 		ino = inode->i_ino;
1886 		type = inode->i_mode >> 12;
1887 	}
1888 	dput(child);
1889 end_instantiate:
1890 	if (!ino)
1891 		ino = find_inode_number(dir, &qname);
1892 	if (!ino)
1893 		ino = 1;
1894 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1895 }
1896 
1897 static unsigned name_to_int(struct dentry *dentry)
1898 {
1899 	const char *name = dentry->d_name.name;
1900 	int len = dentry->d_name.len;
1901 	unsigned n = 0;
1902 
1903 	if (len > 1 && *name == '0')
1904 		goto out;
1905 	while (len-- > 0) {
1906 		unsigned c = *name++ - '0';
1907 		if (c > 9)
1908 			goto out;
1909 		if (n >= (~0U-9)/10)
1910 			goto out;
1911 		n *= 10;
1912 		n += c;
1913 	}
1914 	return n;
1915 out:
1916 	return ~0U;
1917 }
1918 
1919 #define PROC_FDINFO_MAX 64
1920 
1921 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1922 {
1923 	struct task_struct *task = get_proc_task(inode);
1924 	struct files_struct *files = NULL;
1925 	struct file *file;
1926 	int fd = proc_fd(inode);
1927 
1928 	if (task) {
1929 		files = get_files_struct(task);
1930 		put_task_struct(task);
1931 	}
1932 	if (files) {
1933 		/*
1934 		 * We are not taking a ref to the file structure, so we must
1935 		 * hold ->file_lock.
1936 		 */
1937 		spin_lock(&files->file_lock);
1938 		file = fcheck_files(files, fd);
1939 		if (file) {
1940 			if (path) {
1941 				*path = file->f_path;
1942 				path_get(&file->f_path);
1943 			}
1944 			if (info)
1945 				snprintf(info, PROC_FDINFO_MAX,
1946 					 "pos:\t%lli\n"
1947 					 "flags:\t0%o\n",
1948 					 (long long) file->f_pos,
1949 					 file->f_flags);
1950 			spin_unlock(&files->file_lock);
1951 			put_files_struct(files);
1952 			return 0;
1953 		}
1954 		spin_unlock(&files->file_lock);
1955 		put_files_struct(files);
1956 	}
1957 	return -ENOENT;
1958 }
1959 
1960 static int proc_fd_link(struct inode *inode, struct path *path)
1961 {
1962 	return proc_fd_info(inode, path, NULL);
1963 }
1964 
1965 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1966 {
1967 	struct inode *inode = dentry->d_inode;
1968 	struct task_struct *task = get_proc_task(inode);
1969 	int fd = proc_fd(inode);
1970 	struct files_struct *files;
1971 	const struct cred *cred;
1972 
1973 	if (task) {
1974 		files = get_files_struct(task);
1975 		if (files) {
1976 			rcu_read_lock();
1977 			if (fcheck_files(files, fd)) {
1978 				rcu_read_unlock();
1979 				put_files_struct(files);
1980 				if (task_dumpable(task)) {
1981 					rcu_read_lock();
1982 					cred = __task_cred(task);
1983 					inode->i_uid = cred->euid;
1984 					inode->i_gid = cred->egid;
1985 					rcu_read_unlock();
1986 				} else {
1987 					inode->i_uid = 0;
1988 					inode->i_gid = 0;
1989 				}
1990 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1991 				security_task_to_inode(task, inode);
1992 				put_task_struct(task);
1993 				return 1;
1994 			}
1995 			rcu_read_unlock();
1996 			put_files_struct(files);
1997 		}
1998 		put_task_struct(task);
1999 	}
2000 	d_drop(dentry);
2001 	return 0;
2002 }
2003 
2004 static const struct dentry_operations tid_fd_dentry_operations =
2005 {
2006 	.d_revalidate	= tid_fd_revalidate,
2007 	.d_delete	= pid_delete_dentry,
2008 };
2009 
2010 static struct dentry *proc_fd_instantiate(struct inode *dir,
2011 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2012 {
2013 	unsigned fd = *(const unsigned *)ptr;
2014 	struct file *file;
2015 	struct files_struct *files;
2016  	struct inode *inode;
2017  	struct proc_inode *ei;
2018 	struct dentry *error = ERR_PTR(-ENOENT);
2019 
2020 	inode = proc_pid_make_inode(dir->i_sb, task);
2021 	if (!inode)
2022 		goto out;
2023 	ei = PROC_I(inode);
2024 	ei->fd = fd;
2025 	files = get_files_struct(task);
2026 	if (!files)
2027 		goto out_iput;
2028 	inode->i_mode = S_IFLNK;
2029 
2030 	/*
2031 	 * We are not taking a ref to the file structure, so we must
2032 	 * hold ->file_lock.
2033 	 */
2034 	spin_lock(&files->file_lock);
2035 	file = fcheck_files(files, fd);
2036 	if (!file)
2037 		goto out_unlock;
2038 	if (file->f_mode & FMODE_READ)
2039 		inode->i_mode |= S_IRUSR | S_IXUSR;
2040 	if (file->f_mode & FMODE_WRITE)
2041 		inode->i_mode |= S_IWUSR | S_IXUSR;
2042 	spin_unlock(&files->file_lock);
2043 	put_files_struct(files);
2044 
2045 	inode->i_op = &proc_pid_link_inode_operations;
2046 	inode->i_size = 64;
2047 	ei->op.proc_get_link = proc_fd_link;
2048 	dentry->d_op = &tid_fd_dentry_operations;
2049 	d_add(dentry, inode);
2050 	/* Close the race of the process dying before we return the dentry */
2051 	if (tid_fd_revalidate(dentry, NULL))
2052 		error = NULL;
2053 
2054  out:
2055 	return error;
2056 out_unlock:
2057 	spin_unlock(&files->file_lock);
2058 	put_files_struct(files);
2059 out_iput:
2060 	iput(inode);
2061 	goto out;
2062 }
2063 
2064 static struct dentry *proc_lookupfd_common(struct inode *dir,
2065 					   struct dentry *dentry,
2066 					   instantiate_t instantiate)
2067 {
2068 	struct task_struct *task = get_proc_task(dir);
2069 	unsigned fd = name_to_int(dentry);
2070 	struct dentry *result = ERR_PTR(-ENOENT);
2071 
2072 	if (!task)
2073 		goto out_no_task;
2074 	if (fd == ~0U)
2075 		goto out;
2076 
2077 	result = instantiate(dir, dentry, task, &fd);
2078 out:
2079 	put_task_struct(task);
2080 out_no_task:
2081 	return result;
2082 }
2083 
2084 static int proc_readfd_common(struct file * filp, void * dirent,
2085 			      filldir_t filldir, instantiate_t instantiate)
2086 {
2087 	struct dentry *dentry = filp->f_path.dentry;
2088 	struct inode *inode = dentry->d_inode;
2089 	struct task_struct *p = get_proc_task(inode);
2090 	unsigned int fd, ino;
2091 	int retval;
2092 	struct files_struct * files;
2093 
2094 	retval = -ENOENT;
2095 	if (!p)
2096 		goto out_no_task;
2097 	retval = 0;
2098 
2099 	fd = filp->f_pos;
2100 	switch (fd) {
2101 		case 0:
2102 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
2103 				goto out;
2104 			filp->f_pos++;
2105 		case 1:
2106 			ino = parent_ino(dentry);
2107 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2108 				goto out;
2109 			filp->f_pos++;
2110 		default:
2111 			files = get_files_struct(p);
2112 			if (!files)
2113 				goto out;
2114 			rcu_read_lock();
2115 			for (fd = filp->f_pos-2;
2116 			     fd < files_fdtable(files)->max_fds;
2117 			     fd++, filp->f_pos++) {
2118 				char name[PROC_NUMBUF];
2119 				int len;
2120 
2121 				if (!fcheck_files(files, fd))
2122 					continue;
2123 				rcu_read_unlock();
2124 
2125 				len = snprintf(name, sizeof(name), "%d", fd);
2126 				if (proc_fill_cache(filp, dirent, filldir,
2127 						    name, len, instantiate,
2128 						    p, &fd) < 0) {
2129 					rcu_read_lock();
2130 					break;
2131 				}
2132 				rcu_read_lock();
2133 			}
2134 			rcu_read_unlock();
2135 			put_files_struct(files);
2136 	}
2137 out:
2138 	put_task_struct(p);
2139 out_no_task:
2140 	return retval;
2141 }
2142 
2143 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2144 				    struct nameidata *nd)
2145 {
2146 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
2147 }
2148 
2149 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2150 {
2151 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
2152 }
2153 
2154 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2155 				      size_t len, loff_t *ppos)
2156 {
2157 	char tmp[PROC_FDINFO_MAX];
2158 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2159 	if (!err)
2160 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2161 	return err;
2162 }
2163 
2164 static const struct file_operations proc_fdinfo_file_operations = {
2165 	.open           = nonseekable_open,
2166 	.read		= proc_fdinfo_read,
2167 	.llseek		= no_llseek,
2168 };
2169 
2170 static const struct file_operations proc_fd_operations = {
2171 	.read		= generic_read_dir,
2172 	.readdir	= proc_readfd,
2173 	.llseek		= default_llseek,
2174 };
2175 
2176 /*
2177  * /proc/pid/fd needs a special permission handler so that a process can still
2178  * access /proc/self/fd after it has executed a setuid().
2179  */
2180 static int proc_fd_permission(struct inode *inode, int mask)
2181 {
2182 	int rv;
2183 
2184 	rv = generic_permission(inode, mask, NULL);
2185 	if (rv == 0)
2186 		return 0;
2187 	if (task_pid(current) == proc_pid(inode))
2188 		rv = 0;
2189 	return rv;
2190 }
2191 
2192 /*
2193  * proc directories can do almost nothing..
2194  */
2195 static const struct inode_operations proc_fd_inode_operations = {
2196 	.lookup		= proc_lookupfd,
2197 	.permission	= proc_fd_permission,
2198 	.setattr	= proc_setattr,
2199 };
2200 
2201 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2202 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2203 {
2204 	unsigned fd = *(unsigned *)ptr;
2205  	struct inode *inode;
2206  	struct proc_inode *ei;
2207 	struct dentry *error = ERR_PTR(-ENOENT);
2208 
2209 	inode = proc_pid_make_inode(dir->i_sb, task);
2210 	if (!inode)
2211 		goto out;
2212 	ei = PROC_I(inode);
2213 	ei->fd = fd;
2214 	inode->i_mode = S_IFREG | S_IRUSR;
2215 	inode->i_fop = &proc_fdinfo_file_operations;
2216 	dentry->d_op = &tid_fd_dentry_operations;
2217 	d_add(dentry, inode);
2218 	/* Close the race of the process dying before we return the dentry */
2219 	if (tid_fd_revalidate(dentry, NULL))
2220 		error = NULL;
2221 
2222  out:
2223 	return error;
2224 }
2225 
2226 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2227 					struct dentry *dentry,
2228 					struct nameidata *nd)
2229 {
2230 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2231 }
2232 
2233 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2234 {
2235 	return proc_readfd_common(filp, dirent, filldir,
2236 				  proc_fdinfo_instantiate);
2237 }
2238 
2239 static const struct file_operations proc_fdinfo_operations = {
2240 	.read		= generic_read_dir,
2241 	.readdir	= proc_readfdinfo,
2242 	.llseek		= default_llseek,
2243 };
2244 
2245 /*
2246  * proc directories can do almost nothing..
2247  */
2248 static const struct inode_operations proc_fdinfo_inode_operations = {
2249 	.lookup		= proc_lookupfdinfo,
2250 	.setattr	= proc_setattr,
2251 };
2252 
2253 
2254 static struct dentry *proc_pident_instantiate(struct inode *dir,
2255 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2256 {
2257 	const struct pid_entry *p = ptr;
2258 	struct inode *inode;
2259 	struct proc_inode *ei;
2260 	struct dentry *error = ERR_PTR(-ENOENT);
2261 
2262 	inode = proc_pid_make_inode(dir->i_sb, task);
2263 	if (!inode)
2264 		goto out;
2265 
2266 	ei = PROC_I(inode);
2267 	inode->i_mode = p->mode;
2268 	if (S_ISDIR(inode->i_mode))
2269 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
2270 	if (p->iop)
2271 		inode->i_op = p->iop;
2272 	if (p->fop)
2273 		inode->i_fop = p->fop;
2274 	ei->op = p->op;
2275 	dentry->d_op = &pid_dentry_operations;
2276 	d_add(dentry, inode);
2277 	/* Close the race of the process dying before we return the dentry */
2278 	if (pid_revalidate(dentry, NULL))
2279 		error = NULL;
2280 out:
2281 	return error;
2282 }
2283 
2284 static struct dentry *proc_pident_lookup(struct inode *dir,
2285 					 struct dentry *dentry,
2286 					 const struct pid_entry *ents,
2287 					 unsigned int nents)
2288 {
2289 	struct dentry *error;
2290 	struct task_struct *task = get_proc_task(dir);
2291 	const struct pid_entry *p, *last;
2292 
2293 	error = ERR_PTR(-ENOENT);
2294 
2295 	if (!task)
2296 		goto out_no_task;
2297 
2298 	/*
2299 	 * Yes, it does not scale. And it should not. Don't add
2300 	 * new entries into /proc/<tgid>/ without very good reasons.
2301 	 */
2302 	last = &ents[nents - 1];
2303 	for (p = ents; p <= last; p++) {
2304 		if (p->len != dentry->d_name.len)
2305 			continue;
2306 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2307 			break;
2308 	}
2309 	if (p > last)
2310 		goto out;
2311 
2312 	error = proc_pident_instantiate(dir, dentry, task, p);
2313 out:
2314 	put_task_struct(task);
2315 out_no_task:
2316 	return error;
2317 }
2318 
2319 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2320 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2321 {
2322 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2323 				proc_pident_instantiate, task, p);
2324 }
2325 
2326 static int proc_pident_readdir(struct file *filp,
2327 		void *dirent, filldir_t filldir,
2328 		const struct pid_entry *ents, unsigned int nents)
2329 {
2330 	int i;
2331 	struct dentry *dentry = filp->f_path.dentry;
2332 	struct inode *inode = dentry->d_inode;
2333 	struct task_struct *task = get_proc_task(inode);
2334 	const struct pid_entry *p, *last;
2335 	ino_t ino;
2336 	int ret;
2337 
2338 	ret = -ENOENT;
2339 	if (!task)
2340 		goto out_no_task;
2341 
2342 	ret = 0;
2343 	i = filp->f_pos;
2344 	switch (i) {
2345 	case 0:
2346 		ino = inode->i_ino;
2347 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2348 			goto out;
2349 		i++;
2350 		filp->f_pos++;
2351 		/* fall through */
2352 	case 1:
2353 		ino = parent_ino(dentry);
2354 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2355 			goto out;
2356 		i++;
2357 		filp->f_pos++;
2358 		/* fall through */
2359 	default:
2360 		i -= 2;
2361 		if (i >= nents) {
2362 			ret = 1;
2363 			goto out;
2364 		}
2365 		p = ents + i;
2366 		last = &ents[nents - 1];
2367 		while (p <= last) {
2368 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2369 				goto out;
2370 			filp->f_pos++;
2371 			p++;
2372 		}
2373 	}
2374 
2375 	ret = 1;
2376 out:
2377 	put_task_struct(task);
2378 out_no_task:
2379 	return ret;
2380 }
2381 
2382 #ifdef CONFIG_SECURITY
2383 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2384 				  size_t count, loff_t *ppos)
2385 {
2386 	struct inode * inode = file->f_path.dentry->d_inode;
2387 	char *p = NULL;
2388 	ssize_t length;
2389 	struct task_struct *task = get_proc_task(inode);
2390 
2391 	if (!task)
2392 		return -ESRCH;
2393 
2394 	length = security_getprocattr(task,
2395 				      (char*)file->f_path.dentry->d_name.name,
2396 				      &p);
2397 	put_task_struct(task);
2398 	if (length > 0)
2399 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2400 	kfree(p);
2401 	return length;
2402 }
2403 
2404 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2405 				   size_t count, loff_t *ppos)
2406 {
2407 	struct inode * inode = file->f_path.dentry->d_inode;
2408 	char *page;
2409 	ssize_t length;
2410 	struct task_struct *task = get_proc_task(inode);
2411 
2412 	length = -ESRCH;
2413 	if (!task)
2414 		goto out_no_task;
2415 	if (count > PAGE_SIZE)
2416 		count = PAGE_SIZE;
2417 
2418 	/* No partial writes. */
2419 	length = -EINVAL;
2420 	if (*ppos != 0)
2421 		goto out;
2422 
2423 	length = -ENOMEM;
2424 	page = (char*)__get_free_page(GFP_TEMPORARY);
2425 	if (!page)
2426 		goto out;
2427 
2428 	length = -EFAULT;
2429 	if (copy_from_user(page, buf, count))
2430 		goto out_free;
2431 
2432 	/* Guard against adverse ptrace interaction */
2433 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2434 	if (length < 0)
2435 		goto out_free;
2436 
2437 	length = security_setprocattr(task,
2438 				      (char*)file->f_path.dentry->d_name.name,
2439 				      (void*)page, count);
2440 	mutex_unlock(&task->signal->cred_guard_mutex);
2441 out_free:
2442 	free_page((unsigned long) page);
2443 out:
2444 	put_task_struct(task);
2445 out_no_task:
2446 	return length;
2447 }
2448 
2449 static const struct file_operations proc_pid_attr_operations = {
2450 	.read		= proc_pid_attr_read,
2451 	.write		= proc_pid_attr_write,
2452 	.llseek		= generic_file_llseek,
2453 };
2454 
2455 static const struct pid_entry attr_dir_stuff[] = {
2456 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2457 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2458 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2459 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2460 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2461 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2462 };
2463 
2464 static int proc_attr_dir_readdir(struct file * filp,
2465 			     void * dirent, filldir_t filldir)
2466 {
2467 	return proc_pident_readdir(filp,dirent,filldir,
2468 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2469 }
2470 
2471 static const struct file_operations proc_attr_dir_operations = {
2472 	.read		= generic_read_dir,
2473 	.readdir	= proc_attr_dir_readdir,
2474 	.llseek		= default_llseek,
2475 };
2476 
2477 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2478 				struct dentry *dentry, struct nameidata *nd)
2479 {
2480 	return proc_pident_lookup(dir, dentry,
2481 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2482 }
2483 
2484 static const struct inode_operations proc_attr_dir_inode_operations = {
2485 	.lookup		= proc_attr_dir_lookup,
2486 	.getattr	= pid_getattr,
2487 	.setattr	= proc_setattr,
2488 };
2489 
2490 #endif
2491 
2492 #ifdef CONFIG_ELF_CORE
2493 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2494 					 size_t count, loff_t *ppos)
2495 {
2496 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2497 	struct mm_struct *mm;
2498 	char buffer[PROC_NUMBUF];
2499 	size_t len;
2500 	int ret;
2501 
2502 	if (!task)
2503 		return -ESRCH;
2504 
2505 	ret = 0;
2506 	mm = get_task_mm(task);
2507 	if (mm) {
2508 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2509 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2510 				MMF_DUMP_FILTER_SHIFT));
2511 		mmput(mm);
2512 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2513 	}
2514 
2515 	put_task_struct(task);
2516 
2517 	return ret;
2518 }
2519 
2520 static ssize_t proc_coredump_filter_write(struct file *file,
2521 					  const char __user *buf,
2522 					  size_t count,
2523 					  loff_t *ppos)
2524 {
2525 	struct task_struct *task;
2526 	struct mm_struct *mm;
2527 	char buffer[PROC_NUMBUF], *end;
2528 	unsigned int val;
2529 	int ret;
2530 	int i;
2531 	unsigned long mask;
2532 
2533 	ret = -EFAULT;
2534 	memset(buffer, 0, sizeof(buffer));
2535 	if (count > sizeof(buffer) - 1)
2536 		count = sizeof(buffer) - 1;
2537 	if (copy_from_user(buffer, buf, count))
2538 		goto out_no_task;
2539 
2540 	ret = -EINVAL;
2541 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2542 	if (*end == '\n')
2543 		end++;
2544 	if (end - buffer == 0)
2545 		goto out_no_task;
2546 
2547 	ret = -ESRCH;
2548 	task = get_proc_task(file->f_dentry->d_inode);
2549 	if (!task)
2550 		goto out_no_task;
2551 
2552 	ret = end - buffer;
2553 	mm = get_task_mm(task);
2554 	if (!mm)
2555 		goto out_no_mm;
2556 
2557 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2558 		if (val & mask)
2559 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2560 		else
2561 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2562 	}
2563 
2564 	mmput(mm);
2565  out_no_mm:
2566 	put_task_struct(task);
2567  out_no_task:
2568 	return ret;
2569 }
2570 
2571 static const struct file_operations proc_coredump_filter_operations = {
2572 	.read		= proc_coredump_filter_read,
2573 	.write		= proc_coredump_filter_write,
2574 	.llseek		= generic_file_llseek,
2575 };
2576 #endif
2577 
2578 /*
2579  * /proc/self:
2580  */
2581 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2582 			      int buflen)
2583 {
2584 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2585 	pid_t tgid = task_tgid_nr_ns(current, ns);
2586 	char tmp[PROC_NUMBUF];
2587 	if (!tgid)
2588 		return -ENOENT;
2589 	sprintf(tmp, "%d", tgid);
2590 	return vfs_readlink(dentry,buffer,buflen,tmp);
2591 }
2592 
2593 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2594 {
2595 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2596 	pid_t tgid = task_tgid_nr_ns(current, ns);
2597 	char *name = ERR_PTR(-ENOENT);
2598 	if (tgid) {
2599 		name = __getname();
2600 		if (!name)
2601 			name = ERR_PTR(-ENOMEM);
2602 		else
2603 			sprintf(name, "%d", tgid);
2604 	}
2605 	nd_set_link(nd, name);
2606 	return NULL;
2607 }
2608 
2609 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2610 				void *cookie)
2611 {
2612 	char *s = nd_get_link(nd);
2613 	if (!IS_ERR(s))
2614 		__putname(s);
2615 }
2616 
2617 static const struct inode_operations proc_self_inode_operations = {
2618 	.readlink	= proc_self_readlink,
2619 	.follow_link	= proc_self_follow_link,
2620 	.put_link	= proc_self_put_link,
2621 };
2622 
2623 /*
2624  * proc base
2625  *
2626  * These are the directory entries in the root directory of /proc
2627  * that properly belong to the /proc filesystem, as they describe
2628  * describe something that is process related.
2629  */
2630 static const struct pid_entry proc_base_stuff[] = {
2631 	NOD("self", S_IFLNK|S_IRWXUGO,
2632 		&proc_self_inode_operations, NULL, {}),
2633 };
2634 
2635 /*
2636  *	Exceptional case: normally we are not allowed to unhash a busy
2637  * directory. In this case, however, we can do it - no aliasing problems
2638  * due to the way we treat inodes.
2639  */
2640 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2641 {
2642 	struct inode *inode = dentry->d_inode;
2643 	struct task_struct *task = get_proc_task(inode);
2644 	if (task) {
2645 		put_task_struct(task);
2646 		return 1;
2647 	}
2648 	d_drop(dentry);
2649 	return 0;
2650 }
2651 
2652 static const struct dentry_operations proc_base_dentry_operations =
2653 {
2654 	.d_revalidate	= proc_base_revalidate,
2655 	.d_delete	= pid_delete_dentry,
2656 };
2657 
2658 static struct dentry *proc_base_instantiate(struct inode *dir,
2659 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2660 {
2661 	const struct pid_entry *p = ptr;
2662 	struct inode *inode;
2663 	struct proc_inode *ei;
2664 	struct dentry *error;
2665 
2666 	/* Allocate the inode */
2667 	error = ERR_PTR(-ENOMEM);
2668 	inode = new_inode(dir->i_sb);
2669 	if (!inode)
2670 		goto out;
2671 
2672 	/* Initialize the inode */
2673 	ei = PROC_I(inode);
2674 	inode->i_ino = get_next_ino();
2675 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2676 
2677 	/*
2678 	 * grab the reference to the task.
2679 	 */
2680 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2681 	if (!ei->pid)
2682 		goto out_iput;
2683 
2684 	inode->i_mode = p->mode;
2685 	if (S_ISDIR(inode->i_mode))
2686 		inode->i_nlink = 2;
2687 	if (S_ISLNK(inode->i_mode))
2688 		inode->i_size = 64;
2689 	if (p->iop)
2690 		inode->i_op = p->iop;
2691 	if (p->fop)
2692 		inode->i_fop = p->fop;
2693 	ei->op = p->op;
2694 	dentry->d_op = &proc_base_dentry_operations;
2695 	d_add(dentry, inode);
2696 	error = NULL;
2697 out:
2698 	return error;
2699 out_iput:
2700 	iput(inode);
2701 	goto out;
2702 }
2703 
2704 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2705 {
2706 	struct dentry *error;
2707 	struct task_struct *task = get_proc_task(dir);
2708 	const struct pid_entry *p, *last;
2709 
2710 	error = ERR_PTR(-ENOENT);
2711 
2712 	if (!task)
2713 		goto out_no_task;
2714 
2715 	/* Lookup the directory entry */
2716 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2717 	for (p = proc_base_stuff; p <= last; p++) {
2718 		if (p->len != dentry->d_name.len)
2719 			continue;
2720 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2721 			break;
2722 	}
2723 	if (p > last)
2724 		goto out;
2725 
2726 	error = proc_base_instantiate(dir, dentry, task, p);
2727 
2728 out:
2729 	put_task_struct(task);
2730 out_no_task:
2731 	return error;
2732 }
2733 
2734 static int proc_base_fill_cache(struct file *filp, void *dirent,
2735 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2736 {
2737 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2738 				proc_base_instantiate, task, p);
2739 }
2740 
2741 #ifdef CONFIG_TASK_IO_ACCOUNTING
2742 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2743 {
2744 	struct task_io_accounting acct = task->ioac;
2745 	unsigned long flags;
2746 
2747 	if (whole && lock_task_sighand(task, &flags)) {
2748 		struct task_struct *t = task;
2749 
2750 		task_io_accounting_add(&acct, &task->signal->ioac);
2751 		while_each_thread(task, t)
2752 			task_io_accounting_add(&acct, &t->ioac);
2753 
2754 		unlock_task_sighand(task, &flags);
2755 	}
2756 	return sprintf(buffer,
2757 			"rchar: %llu\n"
2758 			"wchar: %llu\n"
2759 			"syscr: %llu\n"
2760 			"syscw: %llu\n"
2761 			"read_bytes: %llu\n"
2762 			"write_bytes: %llu\n"
2763 			"cancelled_write_bytes: %llu\n",
2764 			(unsigned long long)acct.rchar,
2765 			(unsigned long long)acct.wchar,
2766 			(unsigned long long)acct.syscr,
2767 			(unsigned long long)acct.syscw,
2768 			(unsigned long long)acct.read_bytes,
2769 			(unsigned long long)acct.write_bytes,
2770 			(unsigned long long)acct.cancelled_write_bytes);
2771 }
2772 
2773 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2774 {
2775 	return do_io_accounting(task, buffer, 0);
2776 }
2777 
2778 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2779 {
2780 	return do_io_accounting(task, buffer, 1);
2781 }
2782 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2783 
2784 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2785 				struct pid *pid, struct task_struct *task)
2786 {
2787 	seq_printf(m, "%08x\n", task->personality);
2788 	return 0;
2789 }
2790 
2791 /*
2792  * Thread groups
2793  */
2794 static const struct file_operations proc_task_operations;
2795 static const struct inode_operations proc_task_inode_operations;
2796 
2797 static const struct pid_entry tgid_base_stuff[] = {
2798 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2799 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2800 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2801 #ifdef CONFIG_NET
2802 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2803 #endif
2804 	REG("environ",    S_IRUSR, proc_environ_operations),
2805 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2806 	ONE("status",     S_IRUGO, proc_pid_status),
2807 	ONE("personality", S_IRUSR, proc_pid_personality),
2808 	INF("limits",	  S_IRUGO, proc_pid_limits),
2809 #ifdef CONFIG_SCHED_DEBUG
2810 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2811 #endif
2812 #ifdef CONFIG_SCHED_AUTOGROUP
2813 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2814 #endif
2815 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2816 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2817 	INF("syscall",    S_IRUSR, proc_pid_syscall),
2818 #endif
2819 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2820 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2821 	ONE("statm",      S_IRUGO, proc_pid_statm),
2822 	REG("maps",       S_IRUGO, proc_maps_operations),
2823 #ifdef CONFIG_NUMA
2824 	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2825 #endif
2826 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2827 	LNK("cwd",        proc_cwd_link),
2828 	LNK("root",       proc_root_link),
2829 	LNK("exe",        proc_exe_link),
2830 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2831 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2832 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2833 #ifdef CONFIG_PROC_PAGE_MONITOR
2834 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2835 	REG("smaps",      S_IRUGO, proc_smaps_operations),
2836 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2837 #endif
2838 #ifdef CONFIG_SECURITY
2839 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2840 #endif
2841 #ifdef CONFIG_KALLSYMS
2842 	INF("wchan",      S_IRUGO, proc_pid_wchan),
2843 #endif
2844 #ifdef CONFIG_STACKTRACE
2845 	ONE("stack",      S_IRUSR, proc_pid_stack),
2846 #endif
2847 #ifdef CONFIG_SCHEDSTATS
2848 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2849 #endif
2850 #ifdef CONFIG_LATENCYTOP
2851 	REG("latency",  S_IRUGO, proc_lstats_operations),
2852 #endif
2853 #ifdef CONFIG_PROC_PID_CPUSET
2854 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2855 #endif
2856 #ifdef CONFIG_CGROUPS
2857 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2858 #endif
2859 	INF("oom_score",  S_IRUGO, proc_oom_score),
2860 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2861 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2862 #ifdef CONFIG_AUDITSYSCALL
2863 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2864 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2865 #endif
2866 #ifdef CONFIG_FAULT_INJECTION
2867 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2868 #endif
2869 #ifdef CONFIG_ELF_CORE
2870 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2871 #endif
2872 #ifdef CONFIG_TASK_IO_ACCOUNTING
2873 	INF("io",	S_IRUGO, proc_tgid_io_accounting),
2874 #endif
2875 };
2876 
2877 static int proc_tgid_base_readdir(struct file * filp,
2878 			     void * dirent, filldir_t filldir)
2879 {
2880 	return proc_pident_readdir(filp,dirent,filldir,
2881 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2882 }
2883 
2884 static const struct file_operations proc_tgid_base_operations = {
2885 	.read		= generic_read_dir,
2886 	.readdir	= proc_tgid_base_readdir,
2887 	.llseek		= default_llseek,
2888 };
2889 
2890 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2891 	return proc_pident_lookup(dir, dentry,
2892 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2893 }
2894 
2895 static const struct inode_operations proc_tgid_base_inode_operations = {
2896 	.lookup		= proc_tgid_base_lookup,
2897 	.getattr	= pid_getattr,
2898 	.setattr	= proc_setattr,
2899 };
2900 
2901 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2902 {
2903 	struct dentry *dentry, *leader, *dir;
2904 	char buf[PROC_NUMBUF];
2905 	struct qstr name;
2906 
2907 	name.name = buf;
2908 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2909 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2910 	if (dentry) {
2911 		shrink_dcache_parent(dentry);
2912 		d_drop(dentry);
2913 		dput(dentry);
2914 	}
2915 
2916 	name.name = buf;
2917 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2918 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2919 	if (!leader)
2920 		goto out;
2921 
2922 	name.name = "task";
2923 	name.len = strlen(name.name);
2924 	dir = d_hash_and_lookup(leader, &name);
2925 	if (!dir)
2926 		goto out_put_leader;
2927 
2928 	name.name = buf;
2929 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2930 	dentry = d_hash_and_lookup(dir, &name);
2931 	if (dentry) {
2932 		shrink_dcache_parent(dentry);
2933 		d_drop(dentry);
2934 		dput(dentry);
2935 	}
2936 
2937 	dput(dir);
2938 out_put_leader:
2939 	dput(leader);
2940 out:
2941 	return;
2942 }
2943 
2944 /**
2945  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2946  * @task: task that should be flushed.
2947  *
2948  * When flushing dentries from proc, one needs to flush them from global
2949  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2950  * in. This call is supposed to do all of this job.
2951  *
2952  * Looks in the dcache for
2953  * /proc/@pid
2954  * /proc/@tgid/task/@pid
2955  * if either directory is present flushes it and all of it'ts children
2956  * from the dcache.
2957  *
2958  * It is safe and reasonable to cache /proc entries for a task until
2959  * that task exits.  After that they just clog up the dcache with
2960  * useless entries, possibly causing useful dcache entries to be
2961  * flushed instead.  This routine is proved to flush those useless
2962  * dcache entries at process exit time.
2963  *
2964  * NOTE: This routine is just an optimization so it does not guarantee
2965  *       that no dcache entries will exist at process exit time it
2966  *       just makes it very unlikely that any will persist.
2967  */
2968 
2969 void proc_flush_task(struct task_struct *task)
2970 {
2971 	int i;
2972 	struct pid *pid, *tgid;
2973 	struct upid *upid;
2974 
2975 	pid = task_pid(task);
2976 	tgid = task_tgid(task);
2977 
2978 	for (i = 0; i <= pid->level; i++) {
2979 		upid = &pid->numbers[i];
2980 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2981 					tgid->numbers[i].nr);
2982 	}
2983 
2984 	upid = &pid->numbers[pid->level];
2985 	if (upid->nr == 1)
2986 		pid_ns_release_proc(upid->ns);
2987 }
2988 
2989 static struct dentry *proc_pid_instantiate(struct inode *dir,
2990 					   struct dentry * dentry,
2991 					   struct task_struct *task, const void *ptr)
2992 {
2993 	struct dentry *error = ERR_PTR(-ENOENT);
2994 	struct inode *inode;
2995 
2996 	inode = proc_pid_make_inode(dir->i_sb, task);
2997 	if (!inode)
2998 		goto out;
2999 
3000 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3001 	inode->i_op = &proc_tgid_base_inode_operations;
3002 	inode->i_fop = &proc_tgid_base_operations;
3003 	inode->i_flags|=S_IMMUTABLE;
3004 
3005 	inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
3006 		ARRAY_SIZE(tgid_base_stuff));
3007 
3008 	dentry->d_op = &pid_dentry_operations;
3009 
3010 	d_add(dentry, inode);
3011 	/* Close the race of the process dying before we return the dentry */
3012 	if (pid_revalidate(dentry, NULL))
3013 		error = NULL;
3014 out:
3015 	return error;
3016 }
3017 
3018 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3019 {
3020 	struct dentry *result;
3021 	struct task_struct *task;
3022 	unsigned tgid;
3023 	struct pid_namespace *ns;
3024 
3025 	result = proc_base_lookup(dir, dentry);
3026 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3027 		goto out;
3028 
3029 	tgid = name_to_int(dentry);
3030 	if (tgid == ~0U)
3031 		goto out;
3032 
3033 	ns = dentry->d_sb->s_fs_info;
3034 	rcu_read_lock();
3035 	task = find_task_by_pid_ns(tgid, ns);
3036 	if (task)
3037 		get_task_struct(task);
3038 	rcu_read_unlock();
3039 	if (!task)
3040 		goto out;
3041 
3042 	result = proc_pid_instantiate(dir, dentry, task, NULL);
3043 	put_task_struct(task);
3044 out:
3045 	return result;
3046 }
3047 
3048 /*
3049  * Find the first task with tgid >= tgid
3050  *
3051  */
3052 struct tgid_iter {
3053 	unsigned int tgid;
3054 	struct task_struct *task;
3055 };
3056 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3057 {
3058 	struct pid *pid;
3059 
3060 	if (iter.task)
3061 		put_task_struct(iter.task);
3062 	rcu_read_lock();
3063 retry:
3064 	iter.task = NULL;
3065 	pid = find_ge_pid(iter.tgid, ns);
3066 	if (pid) {
3067 		iter.tgid = pid_nr_ns(pid, ns);
3068 		iter.task = pid_task(pid, PIDTYPE_PID);
3069 		/* What we to know is if the pid we have find is the
3070 		 * pid of a thread_group_leader.  Testing for task
3071 		 * being a thread_group_leader is the obvious thing
3072 		 * todo but there is a window when it fails, due to
3073 		 * the pid transfer logic in de_thread.
3074 		 *
3075 		 * So we perform the straight forward test of seeing
3076 		 * if the pid we have found is the pid of a thread
3077 		 * group leader, and don't worry if the task we have
3078 		 * found doesn't happen to be a thread group leader.
3079 		 * As we don't care in the case of readdir.
3080 		 */
3081 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3082 			iter.tgid += 1;
3083 			goto retry;
3084 		}
3085 		get_task_struct(iter.task);
3086 	}
3087 	rcu_read_unlock();
3088 	return iter;
3089 }
3090 
3091 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3092 
3093 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3094 	struct tgid_iter iter)
3095 {
3096 	char name[PROC_NUMBUF];
3097 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3098 	return proc_fill_cache(filp, dirent, filldir, name, len,
3099 				proc_pid_instantiate, iter.task, NULL);
3100 }
3101 
3102 /* for the /proc/ directory itself, after non-process stuff has been done */
3103 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3104 {
3105 	unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3106 	struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
3107 	struct tgid_iter iter;
3108 	struct pid_namespace *ns;
3109 
3110 	if (!reaper)
3111 		goto out_no_task;
3112 
3113 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3114 		const struct pid_entry *p = &proc_base_stuff[nr];
3115 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3116 			goto out;
3117 	}
3118 
3119 	ns = filp->f_dentry->d_sb->s_fs_info;
3120 	iter.task = NULL;
3121 	iter.tgid = filp->f_pos - TGID_OFFSET;
3122 	for (iter = next_tgid(ns, iter);
3123 	     iter.task;
3124 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3125 		filp->f_pos = iter.tgid + TGID_OFFSET;
3126 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
3127 			put_task_struct(iter.task);
3128 			goto out;
3129 		}
3130 	}
3131 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3132 out:
3133 	put_task_struct(reaper);
3134 out_no_task:
3135 	return 0;
3136 }
3137 
3138 /*
3139  * Tasks
3140  */
3141 static const struct pid_entry tid_base_stuff[] = {
3142 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3143 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3144 	REG("environ",   S_IRUSR, proc_environ_operations),
3145 	INF("auxv",      S_IRUSR, proc_pid_auxv),
3146 	ONE("status",    S_IRUGO, proc_pid_status),
3147 	ONE("personality", S_IRUSR, proc_pid_personality),
3148 	INF("limits",	 S_IRUGO, proc_pid_limits),
3149 #ifdef CONFIG_SCHED_DEBUG
3150 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3151 #endif
3152 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3153 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3154 	INF("syscall",   S_IRUSR, proc_pid_syscall),
3155 #endif
3156 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
3157 	ONE("stat",      S_IRUGO, proc_tid_stat),
3158 	ONE("statm",     S_IRUGO, proc_pid_statm),
3159 	REG("maps",      S_IRUGO, proc_maps_operations),
3160 #ifdef CONFIG_NUMA
3161 	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3162 #endif
3163 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3164 	LNK("cwd",       proc_cwd_link),
3165 	LNK("root",      proc_root_link),
3166 	LNK("exe",       proc_exe_link),
3167 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3168 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3169 #ifdef CONFIG_PROC_PAGE_MONITOR
3170 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3171 	REG("smaps",     S_IRUGO, proc_smaps_operations),
3172 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3173 #endif
3174 #ifdef CONFIG_SECURITY
3175 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3176 #endif
3177 #ifdef CONFIG_KALLSYMS
3178 	INF("wchan",     S_IRUGO, proc_pid_wchan),
3179 #endif
3180 #ifdef CONFIG_STACKTRACE
3181 	ONE("stack",      S_IRUSR, proc_pid_stack),
3182 #endif
3183 #ifdef CONFIG_SCHEDSTATS
3184 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
3185 #endif
3186 #ifdef CONFIG_LATENCYTOP
3187 	REG("latency",  S_IRUGO, proc_lstats_operations),
3188 #endif
3189 #ifdef CONFIG_PROC_PID_CPUSET
3190 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
3191 #endif
3192 #ifdef CONFIG_CGROUPS
3193 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3194 #endif
3195 	INF("oom_score", S_IRUGO, proc_oom_score),
3196 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3197 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3198 #ifdef CONFIG_AUDITSYSCALL
3199 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3200 	REG("sessionid",  S_IRUSR, proc_sessionid_operations),
3201 #endif
3202 #ifdef CONFIG_FAULT_INJECTION
3203 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3204 #endif
3205 #ifdef CONFIG_TASK_IO_ACCOUNTING
3206 	INF("io",	S_IRUGO, proc_tid_io_accounting),
3207 #endif
3208 };
3209 
3210 static int proc_tid_base_readdir(struct file * filp,
3211 			     void * dirent, filldir_t filldir)
3212 {
3213 	return proc_pident_readdir(filp,dirent,filldir,
3214 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3215 }
3216 
3217 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3218 	return proc_pident_lookup(dir, dentry,
3219 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3220 }
3221 
3222 static const struct file_operations proc_tid_base_operations = {
3223 	.read		= generic_read_dir,
3224 	.readdir	= proc_tid_base_readdir,
3225 	.llseek		= default_llseek,
3226 };
3227 
3228 static const struct inode_operations proc_tid_base_inode_operations = {
3229 	.lookup		= proc_tid_base_lookup,
3230 	.getattr	= pid_getattr,
3231 	.setattr	= proc_setattr,
3232 };
3233 
3234 static struct dentry *proc_task_instantiate(struct inode *dir,
3235 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3236 {
3237 	struct dentry *error = ERR_PTR(-ENOENT);
3238 	struct inode *inode;
3239 	inode = proc_pid_make_inode(dir->i_sb, task);
3240 
3241 	if (!inode)
3242 		goto out;
3243 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3244 	inode->i_op = &proc_tid_base_inode_operations;
3245 	inode->i_fop = &proc_tid_base_operations;
3246 	inode->i_flags|=S_IMMUTABLE;
3247 
3248 	inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3249 		ARRAY_SIZE(tid_base_stuff));
3250 
3251 	dentry->d_op = &pid_dentry_operations;
3252 
3253 	d_add(dentry, inode);
3254 	/* Close the race of the process dying before we return the dentry */
3255 	if (pid_revalidate(dentry, NULL))
3256 		error = NULL;
3257 out:
3258 	return error;
3259 }
3260 
3261 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3262 {
3263 	struct dentry *result = ERR_PTR(-ENOENT);
3264 	struct task_struct *task;
3265 	struct task_struct *leader = get_proc_task(dir);
3266 	unsigned tid;
3267 	struct pid_namespace *ns;
3268 
3269 	if (!leader)
3270 		goto out_no_task;
3271 
3272 	tid = name_to_int(dentry);
3273 	if (tid == ~0U)
3274 		goto out;
3275 
3276 	ns = dentry->d_sb->s_fs_info;
3277 	rcu_read_lock();
3278 	task = find_task_by_pid_ns(tid, ns);
3279 	if (task)
3280 		get_task_struct(task);
3281 	rcu_read_unlock();
3282 	if (!task)
3283 		goto out;
3284 	if (!same_thread_group(leader, task))
3285 		goto out_drop_task;
3286 
3287 	result = proc_task_instantiate(dir, dentry, task, NULL);
3288 out_drop_task:
3289 	put_task_struct(task);
3290 out:
3291 	put_task_struct(leader);
3292 out_no_task:
3293 	return result;
3294 }
3295 
3296 /*
3297  * Find the first tid of a thread group to return to user space.
3298  *
3299  * Usually this is just the thread group leader, but if the users
3300  * buffer was too small or there was a seek into the middle of the
3301  * directory we have more work todo.
3302  *
3303  * In the case of a short read we start with find_task_by_pid.
3304  *
3305  * In the case of a seek we start with the leader and walk nr
3306  * threads past it.
3307  */
3308 static struct task_struct *first_tid(struct task_struct *leader,
3309 		int tid, int nr, struct pid_namespace *ns)
3310 {
3311 	struct task_struct *pos;
3312 
3313 	rcu_read_lock();
3314 	/* Attempt to start with the pid of a thread */
3315 	if (tid && (nr > 0)) {
3316 		pos = find_task_by_pid_ns(tid, ns);
3317 		if (pos && (pos->group_leader == leader))
3318 			goto found;
3319 	}
3320 
3321 	/* If nr exceeds the number of threads there is nothing todo */
3322 	pos = NULL;
3323 	if (nr && nr >= get_nr_threads(leader))
3324 		goto out;
3325 
3326 	/* If we haven't found our starting place yet start
3327 	 * with the leader and walk nr threads forward.
3328 	 */
3329 	for (pos = leader; nr > 0; --nr) {
3330 		pos = next_thread(pos);
3331 		if (pos == leader) {
3332 			pos = NULL;
3333 			goto out;
3334 		}
3335 	}
3336 found:
3337 	get_task_struct(pos);
3338 out:
3339 	rcu_read_unlock();
3340 	return pos;
3341 }
3342 
3343 /*
3344  * Find the next thread in the thread list.
3345  * Return NULL if there is an error or no next thread.
3346  *
3347  * The reference to the input task_struct is released.
3348  */
3349 static struct task_struct *next_tid(struct task_struct *start)
3350 {
3351 	struct task_struct *pos = NULL;
3352 	rcu_read_lock();
3353 	if (pid_alive(start)) {
3354 		pos = next_thread(start);
3355 		if (thread_group_leader(pos))
3356 			pos = NULL;
3357 		else
3358 			get_task_struct(pos);
3359 	}
3360 	rcu_read_unlock();
3361 	put_task_struct(start);
3362 	return pos;
3363 }
3364 
3365 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3366 	struct task_struct *task, int tid)
3367 {
3368 	char name[PROC_NUMBUF];
3369 	int len = snprintf(name, sizeof(name), "%d", tid);
3370 	return proc_fill_cache(filp, dirent, filldir, name, len,
3371 				proc_task_instantiate, task, NULL);
3372 }
3373 
3374 /* for the /proc/TGID/task/ directories */
3375 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3376 {
3377 	struct dentry *dentry = filp->f_path.dentry;
3378 	struct inode *inode = dentry->d_inode;
3379 	struct task_struct *leader = NULL;
3380 	struct task_struct *task;
3381 	int retval = -ENOENT;
3382 	ino_t ino;
3383 	int tid;
3384 	struct pid_namespace *ns;
3385 
3386 	task = get_proc_task(inode);
3387 	if (!task)
3388 		goto out_no_task;
3389 	rcu_read_lock();
3390 	if (pid_alive(task)) {
3391 		leader = task->group_leader;
3392 		get_task_struct(leader);
3393 	}
3394 	rcu_read_unlock();
3395 	put_task_struct(task);
3396 	if (!leader)
3397 		goto out_no_task;
3398 	retval = 0;
3399 
3400 	switch ((unsigned long)filp->f_pos) {
3401 	case 0:
3402 		ino = inode->i_ino;
3403 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3404 			goto out;
3405 		filp->f_pos++;
3406 		/* fall through */
3407 	case 1:
3408 		ino = parent_ino(dentry);
3409 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3410 			goto out;
3411 		filp->f_pos++;
3412 		/* fall through */
3413 	}
3414 
3415 	/* f_version caches the tgid value that the last readdir call couldn't
3416 	 * return. lseek aka telldir automagically resets f_version to 0.
3417 	 */
3418 	ns = filp->f_dentry->d_sb->s_fs_info;
3419 	tid = (int)filp->f_version;
3420 	filp->f_version = 0;
3421 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3422 	     task;
3423 	     task = next_tid(task), filp->f_pos++) {
3424 		tid = task_pid_nr_ns(task, ns);
3425 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3426 			/* returning this tgid failed, save it as the first
3427 			 * pid for the next readir call */
3428 			filp->f_version = (u64)tid;
3429 			put_task_struct(task);
3430 			break;
3431 		}
3432 	}
3433 out:
3434 	put_task_struct(leader);
3435 out_no_task:
3436 	return retval;
3437 }
3438 
3439 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3440 {
3441 	struct inode *inode = dentry->d_inode;
3442 	struct task_struct *p = get_proc_task(inode);
3443 	generic_fillattr(inode, stat);
3444 
3445 	if (p) {
3446 		stat->nlink += get_nr_threads(p);
3447 		put_task_struct(p);
3448 	}
3449 
3450 	return 0;
3451 }
3452 
3453 static const struct inode_operations proc_task_inode_operations = {
3454 	.lookup		= proc_task_lookup,
3455 	.getattr	= proc_task_getattr,
3456 	.setattr	= proc_setattr,
3457 };
3458 
3459 static const struct file_operations proc_task_operations = {
3460 	.read		= generic_read_dir,
3461 	.readdir	= proc_task_readdir,
3462 	.llseek		= default_llseek,
3463 };
3464