xref: /openbmc/linux/fs/proc/base.c (revision b96c0546)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/proc/base.c
4  *
5  *  Copyright (C) 1991, 1992 Linus Torvalds
6  *
7  *  proc base directory handling functions
8  *
9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10  *  Instead of using magical inumbers to determine the kind of object
11  *  we allocate and fill in-core inodes upon lookup. They don't even
12  *  go into icache. We cache the reference to task_struct upon lookup too.
13  *  Eventually it should become a filesystem in its own. We don't use the
14  *  rest of procfs anymore.
15  *
16  *
17  *  Changelog:
18  *  17-Jan-2005
19  *  Allan Bezerra
20  *  Bruna Moreira <bruna.moreira@indt.org.br>
21  *  Edjard Mota <edjard.mota@indt.org.br>
22  *  Ilias Biris <ilias.biris@indt.org.br>
23  *  Mauricio Lin <mauricio.lin@indt.org.br>
24  *
25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26  *
27  *  A new process specific entry (smaps) included in /proc. It shows the
28  *  size of rss for each memory area. The maps entry lacks information
29  *  about physical memory size (rss) for each mapped file, i.e.,
30  *  rss information for executables and library files.
31  *  This additional information is useful for any tools that need to know
32  *  about physical memory consumption for a process specific library.
33  *
34  *  Changelog:
35  *  21-Feb-2005
36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37  *  Pud inclusion in the page table walking.
38  *
39  *  ChangeLog:
40  *  10-Mar-2005
41  *  10LE Instituto Nokia de Tecnologia - INdT:
42  *  A better way to walks through the page table as suggested by Hugh Dickins.
43  *
44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45  *  Smaps information related to shared, private, clean and dirty pages.
46  *
47  *  Paul Mundt <paul.mundt@nokia.com>:
48  *  Overall revision about smaps.
49  */
50 
51 #include <linux/uaccess.h>
52 
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/generic-radix-tree.h>
63 #include <linux/string.h>
64 #include <linux/seq_file.h>
65 #include <linux/namei.h>
66 #include <linux/mnt_namespace.h>
67 #include <linux/mm.h>
68 #include <linux/swap.h>
69 #include <linux/rcupdate.h>
70 #include <linux/kallsyms.h>
71 #include <linux/stacktrace.h>
72 #include <linux/resource.h>
73 #include <linux/module.h>
74 #include <linux/mount.h>
75 #include <linux/security.h>
76 #include <linux/ptrace.h>
77 #include <linux/tracehook.h>
78 #include <linux/printk.h>
79 #include <linux/cache.h>
80 #include <linux/cgroup.h>
81 #include <linux/cpuset.h>
82 #include <linux/audit.h>
83 #include <linux/poll.h>
84 #include <linux/nsproxy.h>
85 #include <linux/oom.h>
86 #include <linux/elf.h>
87 #include <linux/pid_namespace.h>
88 #include <linux/user_namespace.h>
89 #include <linux/fs_struct.h>
90 #include <linux/slab.h>
91 #include <linux/sched/autogroup.h>
92 #include <linux/sched/mm.h>
93 #include <linux/sched/coredump.h>
94 #include <linux/sched/debug.h>
95 #include <linux/sched/stat.h>
96 #include <linux/posix-timers.h>
97 #include <linux/time_namespace.h>
98 #include <linux/resctrl.h>
99 #include <trace/events/oom.h>
100 #include "internal.h"
101 #include "fd.h"
102 
103 #include "../../lib/kstrtox.h"
104 
105 /* NOTE:
106  *	Implementing inode permission operations in /proc is almost
107  *	certainly an error.  Permission checks need to happen during
108  *	each system call not at open time.  The reason is that most of
109  *	what we wish to check for permissions in /proc varies at runtime.
110  *
111  *	The classic example of a problem is opening file descriptors
112  *	in /proc for a task before it execs a suid executable.
113  */
114 
115 static u8 nlink_tid __ro_after_init;
116 static u8 nlink_tgid __ro_after_init;
117 
118 struct pid_entry {
119 	const char *name;
120 	unsigned int len;
121 	umode_t mode;
122 	const struct inode_operations *iop;
123 	const struct file_operations *fop;
124 	union proc_op op;
125 };
126 
127 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
128 	.name = (NAME),					\
129 	.len  = sizeof(NAME) - 1,			\
130 	.mode = MODE,					\
131 	.iop  = IOP,					\
132 	.fop  = FOP,					\
133 	.op   = OP,					\
134 }
135 
136 #define DIR(NAME, MODE, iops, fops)	\
137 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
138 #define LNK(NAME, get_link)					\
139 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
140 		&proc_pid_link_inode_operations, NULL,		\
141 		{ .proc_get_link = get_link } )
142 #define REG(NAME, MODE, fops)				\
143 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
144 #define ONE(NAME, MODE, show)				\
145 	NOD(NAME, (S_IFREG|(MODE)),			\
146 		NULL, &proc_single_file_operations,	\
147 		{ .proc_show = show } )
148 #define ATTR(LSM, NAME, MODE)				\
149 	NOD(NAME, (S_IFREG|(MODE)),			\
150 		NULL, &proc_pid_attr_operations,	\
151 		{ .lsm = LSM })
152 
153 /*
154  * Count the number of hardlinks for the pid_entry table, excluding the .
155  * and .. links.
156  */
157 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
158 	unsigned int n)
159 {
160 	unsigned int i;
161 	unsigned int count;
162 
163 	count = 2;
164 	for (i = 0; i < n; ++i) {
165 		if (S_ISDIR(entries[i].mode))
166 			++count;
167 	}
168 
169 	return count;
170 }
171 
172 static int get_task_root(struct task_struct *task, struct path *root)
173 {
174 	int result = -ENOENT;
175 
176 	task_lock(task);
177 	if (task->fs) {
178 		get_fs_root(task->fs, root);
179 		result = 0;
180 	}
181 	task_unlock(task);
182 	return result;
183 }
184 
185 static int proc_cwd_link(struct dentry *dentry, struct path *path)
186 {
187 	struct task_struct *task = get_proc_task(d_inode(dentry));
188 	int result = -ENOENT;
189 
190 	if (task) {
191 		task_lock(task);
192 		if (task->fs) {
193 			get_fs_pwd(task->fs, path);
194 			result = 0;
195 		}
196 		task_unlock(task);
197 		put_task_struct(task);
198 	}
199 	return result;
200 }
201 
202 static int proc_root_link(struct dentry *dentry, struct path *path)
203 {
204 	struct task_struct *task = get_proc_task(d_inode(dentry));
205 	int result = -ENOENT;
206 
207 	if (task) {
208 		result = get_task_root(task, path);
209 		put_task_struct(task);
210 	}
211 	return result;
212 }
213 
214 /*
215  * If the user used setproctitle(), we just get the string from
216  * user space at arg_start, and limit it to a maximum of one page.
217  */
218 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
219 				size_t count, unsigned long pos,
220 				unsigned long arg_start)
221 {
222 	char *page;
223 	int ret, got;
224 
225 	if (pos >= PAGE_SIZE)
226 		return 0;
227 
228 	page = (char *)__get_free_page(GFP_KERNEL);
229 	if (!page)
230 		return -ENOMEM;
231 
232 	ret = 0;
233 	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
234 	if (got > 0) {
235 		int len = strnlen(page, got);
236 
237 		/* Include the NUL character if it was found */
238 		if (len < got)
239 			len++;
240 
241 		if (len > pos) {
242 			len -= pos;
243 			if (len > count)
244 				len = count;
245 			len -= copy_to_user(buf, page+pos, len);
246 			if (!len)
247 				len = -EFAULT;
248 			ret = len;
249 		}
250 	}
251 	free_page((unsigned long)page);
252 	return ret;
253 }
254 
255 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
256 			      size_t count, loff_t *ppos)
257 {
258 	unsigned long arg_start, arg_end, env_start, env_end;
259 	unsigned long pos, len;
260 	char *page, c;
261 
262 	/* Check if process spawned far enough to have cmdline. */
263 	if (!mm->env_end)
264 		return 0;
265 
266 	spin_lock(&mm->arg_lock);
267 	arg_start = mm->arg_start;
268 	arg_end = mm->arg_end;
269 	env_start = mm->env_start;
270 	env_end = mm->env_end;
271 	spin_unlock(&mm->arg_lock);
272 
273 	if (arg_start >= arg_end)
274 		return 0;
275 
276 	/*
277 	 * We allow setproctitle() to overwrite the argument
278 	 * strings, and overflow past the original end. But
279 	 * only when it overflows into the environment area.
280 	 */
281 	if (env_start != arg_end || env_end < env_start)
282 		env_start = env_end = arg_end;
283 	len = env_end - arg_start;
284 
285 	/* We're not going to care if "*ppos" has high bits set */
286 	pos = *ppos;
287 	if (pos >= len)
288 		return 0;
289 	if (count > len - pos)
290 		count = len - pos;
291 	if (!count)
292 		return 0;
293 
294 	/*
295 	 * Magical special case: if the argv[] end byte is not
296 	 * zero, the user has overwritten it with setproctitle(3).
297 	 *
298 	 * Possible future enhancement: do this only once when
299 	 * pos is 0, and set a flag in the 'struct file'.
300 	 */
301 	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
302 		return get_mm_proctitle(mm, buf, count, pos, arg_start);
303 
304 	/*
305 	 * For the non-setproctitle() case we limit things strictly
306 	 * to the [arg_start, arg_end[ range.
307 	 */
308 	pos += arg_start;
309 	if (pos < arg_start || pos >= arg_end)
310 		return 0;
311 	if (count > arg_end - pos)
312 		count = arg_end - pos;
313 
314 	page = (char *)__get_free_page(GFP_KERNEL);
315 	if (!page)
316 		return -ENOMEM;
317 
318 	len = 0;
319 	while (count) {
320 		int got;
321 		size_t size = min_t(size_t, PAGE_SIZE, count);
322 
323 		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
324 		if (got <= 0)
325 			break;
326 		got -= copy_to_user(buf, page, got);
327 		if (unlikely(!got)) {
328 			if (!len)
329 				len = -EFAULT;
330 			break;
331 		}
332 		pos += got;
333 		buf += got;
334 		len += got;
335 		count -= got;
336 	}
337 
338 	free_page((unsigned long)page);
339 	return len;
340 }
341 
342 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
343 				size_t count, loff_t *pos)
344 {
345 	struct mm_struct *mm;
346 	ssize_t ret;
347 
348 	mm = get_task_mm(tsk);
349 	if (!mm)
350 		return 0;
351 
352 	ret = get_mm_cmdline(mm, buf, count, pos);
353 	mmput(mm);
354 	return ret;
355 }
356 
357 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
358 				     size_t count, loff_t *pos)
359 {
360 	struct task_struct *tsk;
361 	ssize_t ret;
362 
363 	BUG_ON(*pos < 0);
364 
365 	tsk = get_proc_task(file_inode(file));
366 	if (!tsk)
367 		return -ESRCH;
368 	ret = get_task_cmdline(tsk, buf, count, pos);
369 	put_task_struct(tsk);
370 	if (ret > 0)
371 		*pos += ret;
372 	return ret;
373 }
374 
375 static const struct file_operations proc_pid_cmdline_ops = {
376 	.read	= proc_pid_cmdline_read,
377 	.llseek	= generic_file_llseek,
378 };
379 
380 #ifdef CONFIG_KALLSYMS
381 /*
382  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
383  * Returns the resolved symbol.  If that fails, simply return the address.
384  */
385 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
386 			  struct pid *pid, struct task_struct *task)
387 {
388 	unsigned long wchan;
389 	char symname[KSYM_NAME_LEN];
390 
391 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
392 		goto print0;
393 
394 	wchan = get_wchan(task);
395 	if (wchan && !lookup_symbol_name(wchan, symname)) {
396 		seq_puts(m, symname);
397 		return 0;
398 	}
399 
400 print0:
401 	seq_putc(m, '0');
402 	return 0;
403 }
404 #endif /* CONFIG_KALLSYMS */
405 
406 static int lock_trace(struct task_struct *task)
407 {
408 	int err = mutex_lock_killable(&task->signal->exec_update_mutex);
409 	if (err)
410 		return err;
411 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
412 		mutex_unlock(&task->signal->exec_update_mutex);
413 		return -EPERM;
414 	}
415 	return 0;
416 }
417 
418 static void unlock_trace(struct task_struct *task)
419 {
420 	mutex_unlock(&task->signal->exec_update_mutex);
421 }
422 
423 #ifdef CONFIG_STACKTRACE
424 
425 #define MAX_STACK_TRACE_DEPTH	64
426 
427 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
428 			  struct pid *pid, struct task_struct *task)
429 {
430 	unsigned long *entries;
431 	int err;
432 
433 	/*
434 	 * The ability to racily run the kernel stack unwinder on a running task
435 	 * and then observe the unwinder output is scary; while it is useful for
436 	 * debugging kernel issues, it can also allow an attacker to leak kernel
437 	 * stack contents.
438 	 * Doing this in a manner that is at least safe from races would require
439 	 * some work to ensure that the remote task can not be scheduled; and
440 	 * even then, this would still expose the unwinder as local attack
441 	 * surface.
442 	 * Therefore, this interface is restricted to root.
443 	 */
444 	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
445 		return -EACCES;
446 
447 	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
448 				GFP_KERNEL);
449 	if (!entries)
450 		return -ENOMEM;
451 
452 	err = lock_trace(task);
453 	if (!err) {
454 		unsigned int i, nr_entries;
455 
456 		nr_entries = stack_trace_save_tsk(task, entries,
457 						  MAX_STACK_TRACE_DEPTH, 0);
458 
459 		for (i = 0; i < nr_entries; i++) {
460 			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
461 		}
462 
463 		unlock_trace(task);
464 	}
465 	kfree(entries);
466 
467 	return err;
468 }
469 #endif
470 
471 #ifdef CONFIG_SCHED_INFO
472 /*
473  * Provides /proc/PID/schedstat
474  */
475 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
476 			      struct pid *pid, struct task_struct *task)
477 {
478 	if (unlikely(!sched_info_on()))
479 		seq_puts(m, "0 0 0\n");
480 	else
481 		seq_printf(m, "%llu %llu %lu\n",
482 		   (unsigned long long)task->se.sum_exec_runtime,
483 		   (unsigned long long)task->sched_info.run_delay,
484 		   task->sched_info.pcount);
485 
486 	return 0;
487 }
488 #endif
489 
490 #ifdef CONFIG_LATENCYTOP
491 static int lstats_show_proc(struct seq_file *m, void *v)
492 {
493 	int i;
494 	struct inode *inode = m->private;
495 	struct task_struct *task = get_proc_task(inode);
496 
497 	if (!task)
498 		return -ESRCH;
499 	seq_puts(m, "Latency Top version : v0.1\n");
500 	for (i = 0; i < LT_SAVECOUNT; i++) {
501 		struct latency_record *lr = &task->latency_record[i];
502 		if (lr->backtrace[0]) {
503 			int q;
504 			seq_printf(m, "%i %li %li",
505 				   lr->count, lr->time, lr->max);
506 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
507 				unsigned long bt = lr->backtrace[q];
508 
509 				if (!bt)
510 					break;
511 				seq_printf(m, " %ps", (void *)bt);
512 			}
513 			seq_putc(m, '\n');
514 		}
515 
516 	}
517 	put_task_struct(task);
518 	return 0;
519 }
520 
521 static int lstats_open(struct inode *inode, struct file *file)
522 {
523 	return single_open(file, lstats_show_proc, inode);
524 }
525 
526 static ssize_t lstats_write(struct file *file, const char __user *buf,
527 			    size_t count, loff_t *offs)
528 {
529 	struct task_struct *task = get_proc_task(file_inode(file));
530 
531 	if (!task)
532 		return -ESRCH;
533 	clear_tsk_latency_tracing(task);
534 	put_task_struct(task);
535 
536 	return count;
537 }
538 
539 static const struct file_operations proc_lstats_operations = {
540 	.open		= lstats_open,
541 	.read		= seq_read,
542 	.write		= lstats_write,
543 	.llseek		= seq_lseek,
544 	.release	= single_release,
545 };
546 
547 #endif
548 
549 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
550 			  struct pid *pid, struct task_struct *task)
551 {
552 	unsigned long totalpages = totalram_pages() + total_swap_pages;
553 	unsigned long points = 0;
554 	long badness;
555 
556 	badness = oom_badness(task, totalpages);
557 	/*
558 	 * Special case OOM_SCORE_ADJ_MIN for all others scale the
559 	 * badness value into [0, 2000] range which we have been
560 	 * exporting for a long time so userspace might depend on it.
561 	 */
562 	if (badness != LONG_MIN)
563 		points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
564 
565 	seq_printf(m, "%lu\n", points);
566 
567 	return 0;
568 }
569 
570 struct limit_names {
571 	const char *name;
572 	const char *unit;
573 };
574 
575 static const struct limit_names lnames[RLIM_NLIMITS] = {
576 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
577 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
578 	[RLIMIT_DATA] = {"Max data size", "bytes"},
579 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
580 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
581 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
582 	[RLIMIT_NPROC] = {"Max processes", "processes"},
583 	[RLIMIT_NOFILE] = {"Max open files", "files"},
584 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
585 	[RLIMIT_AS] = {"Max address space", "bytes"},
586 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
587 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
588 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
589 	[RLIMIT_NICE] = {"Max nice priority", NULL},
590 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
591 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
592 };
593 
594 /* Display limits for a process */
595 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
596 			   struct pid *pid, struct task_struct *task)
597 {
598 	unsigned int i;
599 	unsigned long flags;
600 
601 	struct rlimit rlim[RLIM_NLIMITS];
602 
603 	if (!lock_task_sighand(task, &flags))
604 		return 0;
605 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
606 	unlock_task_sighand(task, &flags);
607 
608 	/*
609 	 * print the file header
610 	 */
611 	seq_puts(m, "Limit                     "
612 		"Soft Limit           "
613 		"Hard Limit           "
614 		"Units     \n");
615 
616 	for (i = 0; i < RLIM_NLIMITS; i++) {
617 		if (rlim[i].rlim_cur == RLIM_INFINITY)
618 			seq_printf(m, "%-25s %-20s ",
619 				   lnames[i].name, "unlimited");
620 		else
621 			seq_printf(m, "%-25s %-20lu ",
622 				   lnames[i].name, rlim[i].rlim_cur);
623 
624 		if (rlim[i].rlim_max == RLIM_INFINITY)
625 			seq_printf(m, "%-20s ", "unlimited");
626 		else
627 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
628 
629 		if (lnames[i].unit)
630 			seq_printf(m, "%-10s\n", lnames[i].unit);
631 		else
632 			seq_putc(m, '\n');
633 	}
634 
635 	return 0;
636 }
637 
638 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
639 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
640 			    struct pid *pid, struct task_struct *task)
641 {
642 	struct syscall_info info;
643 	u64 *args = &info.data.args[0];
644 	int res;
645 
646 	res = lock_trace(task);
647 	if (res)
648 		return res;
649 
650 	if (task_current_syscall(task, &info))
651 		seq_puts(m, "running\n");
652 	else if (info.data.nr < 0)
653 		seq_printf(m, "%d 0x%llx 0x%llx\n",
654 			   info.data.nr, info.sp, info.data.instruction_pointer);
655 	else
656 		seq_printf(m,
657 		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
658 		       info.data.nr,
659 		       args[0], args[1], args[2], args[3], args[4], args[5],
660 		       info.sp, info.data.instruction_pointer);
661 	unlock_trace(task);
662 
663 	return 0;
664 }
665 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
666 
667 /************************************************************************/
668 /*                       Here the fs part begins                        */
669 /************************************************************************/
670 
671 /* permission checks */
672 static int proc_fd_access_allowed(struct inode *inode)
673 {
674 	struct task_struct *task;
675 	int allowed = 0;
676 	/* Allow access to a task's file descriptors if it is us or we
677 	 * may use ptrace attach to the process and find out that
678 	 * information.
679 	 */
680 	task = get_proc_task(inode);
681 	if (task) {
682 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
683 		put_task_struct(task);
684 	}
685 	return allowed;
686 }
687 
688 int proc_setattr(struct dentry *dentry, struct iattr *attr)
689 {
690 	int error;
691 	struct inode *inode = d_inode(dentry);
692 
693 	if (attr->ia_valid & ATTR_MODE)
694 		return -EPERM;
695 
696 	error = setattr_prepare(dentry, attr);
697 	if (error)
698 		return error;
699 
700 	setattr_copy(inode, attr);
701 	mark_inode_dirty(inode);
702 	return 0;
703 }
704 
705 /*
706  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
707  * or euid/egid (for hide_pid_min=2)?
708  */
709 static bool has_pid_permissions(struct proc_fs_info *fs_info,
710 				 struct task_struct *task,
711 				 enum proc_hidepid hide_pid_min)
712 {
713 	/*
714 	 * If 'hidpid' mount option is set force a ptrace check,
715 	 * we indicate that we are using a filesystem syscall
716 	 * by passing PTRACE_MODE_READ_FSCREDS
717 	 */
718 	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
719 		return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
720 
721 	if (fs_info->hide_pid < hide_pid_min)
722 		return true;
723 	if (in_group_p(fs_info->pid_gid))
724 		return true;
725 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
726 }
727 
728 
729 static int proc_pid_permission(struct inode *inode, int mask)
730 {
731 	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
732 	struct task_struct *task;
733 	bool has_perms;
734 
735 	task = get_proc_task(inode);
736 	if (!task)
737 		return -ESRCH;
738 	has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
739 	put_task_struct(task);
740 
741 	if (!has_perms) {
742 		if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
743 			/*
744 			 * Let's make getdents(), stat(), and open()
745 			 * consistent with each other.  If a process
746 			 * may not stat() a file, it shouldn't be seen
747 			 * in procfs at all.
748 			 */
749 			return -ENOENT;
750 		}
751 
752 		return -EPERM;
753 	}
754 	return generic_permission(inode, mask);
755 }
756 
757 
758 
759 static const struct inode_operations proc_def_inode_operations = {
760 	.setattr	= proc_setattr,
761 };
762 
763 static int proc_single_show(struct seq_file *m, void *v)
764 {
765 	struct inode *inode = m->private;
766 	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
767 	struct pid *pid = proc_pid(inode);
768 	struct task_struct *task;
769 	int ret;
770 
771 	task = get_pid_task(pid, PIDTYPE_PID);
772 	if (!task)
773 		return -ESRCH;
774 
775 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
776 
777 	put_task_struct(task);
778 	return ret;
779 }
780 
781 static int proc_single_open(struct inode *inode, struct file *filp)
782 {
783 	return single_open(filp, proc_single_show, inode);
784 }
785 
786 static const struct file_operations proc_single_file_operations = {
787 	.open		= proc_single_open,
788 	.read		= seq_read,
789 	.llseek		= seq_lseek,
790 	.release	= single_release,
791 };
792 
793 
794 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
795 {
796 	struct task_struct *task = get_proc_task(inode);
797 	struct mm_struct *mm = ERR_PTR(-ESRCH);
798 
799 	if (task) {
800 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
801 		put_task_struct(task);
802 
803 		if (!IS_ERR_OR_NULL(mm)) {
804 			/* ensure this mm_struct can't be freed */
805 			mmgrab(mm);
806 			/* but do not pin its memory */
807 			mmput(mm);
808 		}
809 	}
810 
811 	return mm;
812 }
813 
814 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
815 {
816 	struct mm_struct *mm = proc_mem_open(inode, mode);
817 
818 	if (IS_ERR(mm))
819 		return PTR_ERR(mm);
820 
821 	file->private_data = mm;
822 	return 0;
823 }
824 
825 static int mem_open(struct inode *inode, struct file *file)
826 {
827 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
828 
829 	/* OK to pass negative loff_t, we can catch out-of-range */
830 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
831 
832 	return ret;
833 }
834 
835 static ssize_t mem_rw(struct file *file, char __user *buf,
836 			size_t count, loff_t *ppos, int write)
837 {
838 	struct mm_struct *mm = file->private_data;
839 	unsigned long addr = *ppos;
840 	ssize_t copied;
841 	char *page;
842 	unsigned int flags;
843 
844 	if (!mm)
845 		return 0;
846 
847 	page = (char *)__get_free_page(GFP_KERNEL);
848 	if (!page)
849 		return -ENOMEM;
850 
851 	copied = 0;
852 	if (!mmget_not_zero(mm))
853 		goto free;
854 
855 	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
856 
857 	while (count > 0) {
858 		int this_len = min_t(int, count, PAGE_SIZE);
859 
860 		if (write && copy_from_user(page, buf, this_len)) {
861 			copied = -EFAULT;
862 			break;
863 		}
864 
865 		this_len = access_remote_vm(mm, addr, page, this_len, flags);
866 		if (!this_len) {
867 			if (!copied)
868 				copied = -EIO;
869 			break;
870 		}
871 
872 		if (!write && copy_to_user(buf, page, this_len)) {
873 			copied = -EFAULT;
874 			break;
875 		}
876 
877 		buf += this_len;
878 		addr += this_len;
879 		copied += this_len;
880 		count -= this_len;
881 	}
882 	*ppos = addr;
883 
884 	mmput(mm);
885 free:
886 	free_page((unsigned long) page);
887 	return copied;
888 }
889 
890 static ssize_t mem_read(struct file *file, char __user *buf,
891 			size_t count, loff_t *ppos)
892 {
893 	return mem_rw(file, buf, count, ppos, 0);
894 }
895 
896 static ssize_t mem_write(struct file *file, const char __user *buf,
897 			 size_t count, loff_t *ppos)
898 {
899 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
900 }
901 
902 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
903 {
904 	switch (orig) {
905 	case 0:
906 		file->f_pos = offset;
907 		break;
908 	case 1:
909 		file->f_pos += offset;
910 		break;
911 	default:
912 		return -EINVAL;
913 	}
914 	force_successful_syscall_return();
915 	return file->f_pos;
916 }
917 
918 static int mem_release(struct inode *inode, struct file *file)
919 {
920 	struct mm_struct *mm = file->private_data;
921 	if (mm)
922 		mmdrop(mm);
923 	return 0;
924 }
925 
926 static const struct file_operations proc_mem_operations = {
927 	.llseek		= mem_lseek,
928 	.read		= mem_read,
929 	.write		= mem_write,
930 	.open		= mem_open,
931 	.release	= mem_release,
932 };
933 
934 static int environ_open(struct inode *inode, struct file *file)
935 {
936 	return __mem_open(inode, file, PTRACE_MODE_READ);
937 }
938 
939 static ssize_t environ_read(struct file *file, char __user *buf,
940 			size_t count, loff_t *ppos)
941 {
942 	char *page;
943 	unsigned long src = *ppos;
944 	int ret = 0;
945 	struct mm_struct *mm = file->private_data;
946 	unsigned long env_start, env_end;
947 
948 	/* Ensure the process spawned far enough to have an environment. */
949 	if (!mm || !mm->env_end)
950 		return 0;
951 
952 	page = (char *)__get_free_page(GFP_KERNEL);
953 	if (!page)
954 		return -ENOMEM;
955 
956 	ret = 0;
957 	if (!mmget_not_zero(mm))
958 		goto free;
959 
960 	spin_lock(&mm->arg_lock);
961 	env_start = mm->env_start;
962 	env_end = mm->env_end;
963 	spin_unlock(&mm->arg_lock);
964 
965 	while (count > 0) {
966 		size_t this_len, max_len;
967 		int retval;
968 
969 		if (src >= (env_end - env_start))
970 			break;
971 
972 		this_len = env_end - (env_start + src);
973 
974 		max_len = min_t(size_t, PAGE_SIZE, count);
975 		this_len = min(max_len, this_len);
976 
977 		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
978 
979 		if (retval <= 0) {
980 			ret = retval;
981 			break;
982 		}
983 
984 		if (copy_to_user(buf, page, retval)) {
985 			ret = -EFAULT;
986 			break;
987 		}
988 
989 		ret += retval;
990 		src += retval;
991 		buf += retval;
992 		count -= retval;
993 	}
994 	*ppos = src;
995 	mmput(mm);
996 
997 free:
998 	free_page((unsigned long) page);
999 	return ret;
1000 }
1001 
1002 static const struct file_operations proc_environ_operations = {
1003 	.open		= environ_open,
1004 	.read		= environ_read,
1005 	.llseek		= generic_file_llseek,
1006 	.release	= mem_release,
1007 };
1008 
1009 static int auxv_open(struct inode *inode, struct file *file)
1010 {
1011 	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1012 }
1013 
1014 static ssize_t auxv_read(struct file *file, char __user *buf,
1015 			size_t count, loff_t *ppos)
1016 {
1017 	struct mm_struct *mm = file->private_data;
1018 	unsigned int nwords = 0;
1019 
1020 	if (!mm)
1021 		return 0;
1022 	do {
1023 		nwords += 2;
1024 	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1025 	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1026 				       nwords * sizeof(mm->saved_auxv[0]));
1027 }
1028 
1029 static const struct file_operations proc_auxv_operations = {
1030 	.open		= auxv_open,
1031 	.read		= auxv_read,
1032 	.llseek		= generic_file_llseek,
1033 	.release	= mem_release,
1034 };
1035 
1036 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1037 			    loff_t *ppos)
1038 {
1039 	struct task_struct *task = get_proc_task(file_inode(file));
1040 	char buffer[PROC_NUMBUF];
1041 	int oom_adj = OOM_ADJUST_MIN;
1042 	size_t len;
1043 
1044 	if (!task)
1045 		return -ESRCH;
1046 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1047 		oom_adj = OOM_ADJUST_MAX;
1048 	else
1049 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1050 			  OOM_SCORE_ADJ_MAX;
1051 	put_task_struct(task);
1052 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1053 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1054 }
1055 
1056 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1057 {
1058 	struct mm_struct *mm = NULL;
1059 	struct task_struct *task;
1060 	int err = 0;
1061 
1062 	task = get_proc_task(file_inode(file));
1063 	if (!task)
1064 		return -ESRCH;
1065 
1066 	mutex_lock(&oom_adj_mutex);
1067 	if (legacy) {
1068 		if (oom_adj < task->signal->oom_score_adj &&
1069 				!capable(CAP_SYS_RESOURCE)) {
1070 			err = -EACCES;
1071 			goto err_unlock;
1072 		}
1073 		/*
1074 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1075 		 * /proc/pid/oom_score_adj instead.
1076 		 */
1077 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1078 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1079 			  task_pid_nr(task));
1080 	} else {
1081 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1082 				!capable(CAP_SYS_RESOURCE)) {
1083 			err = -EACCES;
1084 			goto err_unlock;
1085 		}
1086 	}
1087 
1088 	/*
1089 	 * Make sure we will check other processes sharing the mm if this is
1090 	 * not vfrok which wants its own oom_score_adj.
1091 	 * pin the mm so it doesn't go away and get reused after task_unlock
1092 	 */
1093 	if (!task->vfork_done) {
1094 		struct task_struct *p = find_lock_task_mm(task);
1095 
1096 		if (p) {
1097 			if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1098 				mm = p->mm;
1099 				mmgrab(mm);
1100 			}
1101 			task_unlock(p);
1102 		}
1103 	}
1104 
1105 	task->signal->oom_score_adj = oom_adj;
1106 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1107 		task->signal->oom_score_adj_min = (short)oom_adj;
1108 	trace_oom_score_adj_update(task);
1109 
1110 	if (mm) {
1111 		struct task_struct *p;
1112 
1113 		rcu_read_lock();
1114 		for_each_process(p) {
1115 			if (same_thread_group(task, p))
1116 				continue;
1117 
1118 			/* do not touch kernel threads or the global init */
1119 			if (p->flags & PF_KTHREAD || is_global_init(p))
1120 				continue;
1121 
1122 			task_lock(p);
1123 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1124 				p->signal->oom_score_adj = oom_adj;
1125 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1126 					p->signal->oom_score_adj_min = (short)oom_adj;
1127 			}
1128 			task_unlock(p);
1129 		}
1130 		rcu_read_unlock();
1131 		mmdrop(mm);
1132 	}
1133 err_unlock:
1134 	mutex_unlock(&oom_adj_mutex);
1135 	put_task_struct(task);
1136 	return err;
1137 }
1138 
1139 /*
1140  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1141  * kernels.  The effective policy is defined by oom_score_adj, which has a
1142  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1143  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1144  * Processes that become oom disabled via oom_adj will still be oom disabled
1145  * with this implementation.
1146  *
1147  * oom_adj cannot be removed since existing userspace binaries use it.
1148  */
1149 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1150 			     size_t count, loff_t *ppos)
1151 {
1152 	char buffer[PROC_NUMBUF];
1153 	int oom_adj;
1154 	int err;
1155 
1156 	memset(buffer, 0, sizeof(buffer));
1157 	if (count > sizeof(buffer) - 1)
1158 		count = sizeof(buffer) - 1;
1159 	if (copy_from_user(buffer, buf, count)) {
1160 		err = -EFAULT;
1161 		goto out;
1162 	}
1163 
1164 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1165 	if (err)
1166 		goto out;
1167 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1168 	     oom_adj != OOM_DISABLE) {
1169 		err = -EINVAL;
1170 		goto out;
1171 	}
1172 
1173 	/*
1174 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1175 	 * value is always attainable.
1176 	 */
1177 	if (oom_adj == OOM_ADJUST_MAX)
1178 		oom_adj = OOM_SCORE_ADJ_MAX;
1179 	else
1180 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1181 
1182 	err = __set_oom_adj(file, oom_adj, true);
1183 out:
1184 	return err < 0 ? err : count;
1185 }
1186 
1187 static const struct file_operations proc_oom_adj_operations = {
1188 	.read		= oom_adj_read,
1189 	.write		= oom_adj_write,
1190 	.llseek		= generic_file_llseek,
1191 };
1192 
1193 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1194 					size_t count, loff_t *ppos)
1195 {
1196 	struct task_struct *task = get_proc_task(file_inode(file));
1197 	char buffer[PROC_NUMBUF];
1198 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1199 	size_t len;
1200 
1201 	if (!task)
1202 		return -ESRCH;
1203 	oom_score_adj = task->signal->oom_score_adj;
1204 	put_task_struct(task);
1205 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1206 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1207 }
1208 
1209 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1210 					size_t count, loff_t *ppos)
1211 {
1212 	char buffer[PROC_NUMBUF];
1213 	int oom_score_adj;
1214 	int err;
1215 
1216 	memset(buffer, 0, sizeof(buffer));
1217 	if (count > sizeof(buffer) - 1)
1218 		count = sizeof(buffer) - 1;
1219 	if (copy_from_user(buffer, buf, count)) {
1220 		err = -EFAULT;
1221 		goto out;
1222 	}
1223 
1224 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1225 	if (err)
1226 		goto out;
1227 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1228 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1229 		err = -EINVAL;
1230 		goto out;
1231 	}
1232 
1233 	err = __set_oom_adj(file, oom_score_adj, false);
1234 out:
1235 	return err < 0 ? err : count;
1236 }
1237 
1238 static const struct file_operations proc_oom_score_adj_operations = {
1239 	.read		= oom_score_adj_read,
1240 	.write		= oom_score_adj_write,
1241 	.llseek		= default_llseek,
1242 };
1243 
1244 #ifdef CONFIG_AUDIT
1245 #define TMPBUFLEN 11
1246 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1247 				  size_t count, loff_t *ppos)
1248 {
1249 	struct inode * inode = file_inode(file);
1250 	struct task_struct *task = get_proc_task(inode);
1251 	ssize_t length;
1252 	char tmpbuf[TMPBUFLEN];
1253 
1254 	if (!task)
1255 		return -ESRCH;
1256 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1257 			   from_kuid(file->f_cred->user_ns,
1258 				     audit_get_loginuid(task)));
1259 	put_task_struct(task);
1260 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1261 }
1262 
1263 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1264 				   size_t count, loff_t *ppos)
1265 {
1266 	struct inode * inode = file_inode(file);
1267 	uid_t loginuid;
1268 	kuid_t kloginuid;
1269 	int rv;
1270 
1271 	/* Don't let kthreads write their own loginuid */
1272 	if (current->flags & PF_KTHREAD)
1273 		return -EPERM;
1274 
1275 	rcu_read_lock();
1276 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1277 		rcu_read_unlock();
1278 		return -EPERM;
1279 	}
1280 	rcu_read_unlock();
1281 
1282 	if (*ppos != 0) {
1283 		/* No partial writes. */
1284 		return -EINVAL;
1285 	}
1286 
1287 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1288 	if (rv < 0)
1289 		return rv;
1290 
1291 	/* is userspace tring to explicitly UNSET the loginuid? */
1292 	if (loginuid == AUDIT_UID_UNSET) {
1293 		kloginuid = INVALID_UID;
1294 	} else {
1295 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1296 		if (!uid_valid(kloginuid))
1297 			return -EINVAL;
1298 	}
1299 
1300 	rv = audit_set_loginuid(kloginuid);
1301 	if (rv < 0)
1302 		return rv;
1303 	return count;
1304 }
1305 
1306 static const struct file_operations proc_loginuid_operations = {
1307 	.read		= proc_loginuid_read,
1308 	.write		= proc_loginuid_write,
1309 	.llseek		= generic_file_llseek,
1310 };
1311 
1312 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1313 				  size_t count, loff_t *ppos)
1314 {
1315 	struct inode * inode = file_inode(file);
1316 	struct task_struct *task = get_proc_task(inode);
1317 	ssize_t length;
1318 	char tmpbuf[TMPBUFLEN];
1319 
1320 	if (!task)
1321 		return -ESRCH;
1322 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1323 				audit_get_sessionid(task));
1324 	put_task_struct(task);
1325 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1326 }
1327 
1328 static const struct file_operations proc_sessionid_operations = {
1329 	.read		= proc_sessionid_read,
1330 	.llseek		= generic_file_llseek,
1331 };
1332 #endif
1333 
1334 #ifdef CONFIG_FAULT_INJECTION
1335 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1336 				      size_t count, loff_t *ppos)
1337 {
1338 	struct task_struct *task = get_proc_task(file_inode(file));
1339 	char buffer[PROC_NUMBUF];
1340 	size_t len;
1341 	int make_it_fail;
1342 
1343 	if (!task)
1344 		return -ESRCH;
1345 	make_it_fail = task->make_it_fail;
1346 	put_task_struct(task);
1347 
1348 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1349 
1350 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1351 }
1352 
1353 static ssize_t proc_fault_inject_write(struct file * file,
1354 			const char __user * buf, size_t count, loff_t *ppos)
1355 {
1356 	struct task_struct *task;
1357 	char buffer[PROC_NUMBUF];
1358 	int make_it_fail;
1359 	int rv;
1360 
1361 	if (!capable(CAP_SYS_RESOURCE))
1362 		return -EPERM;
1363 	memset(buffer, 0, sizeof(buffer));
1364 	if (count > sizeof(buffer) - 1)
1365 		count = sizeof(buffer) - 1;
1366 	if (copy_from_user(buffer, buf, count))
1367 		return -EFAULT;
1368 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1369 	if (rv < 0)
1370 		return rv;
1371 	if (make_it_fail < 0 || make_it_fail > 1)
1372 		return -EINVAL;
1373 
1374 	task = get_proc_task(file_inode(file));
1375 	if (!task)
1376 		return -ESRCH;
1377 	task->make_it_fail = make_it_fail;
1378 	put_task_struct(task);
1379 
1380 	return count;
1381 }
1382 
1383 static const struct file_operations proc_fault_inject_operations = {
1384 	.read		= proc_fault_inject_read,
1385 	.write		= proc_fault_inject_write,
1386 	.llseek		= generic_file_llseek,
1387 };
1388 
1389 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1390 				   size_t count, loff_t *ppos)
1391 {
1392 	struct task_struct *task;
1393 	int err;
1394 	unsigned int n;
1395 
1396 	err = kstrtouint_from_user(buf, count, 0, &n);
1397 	if (err)
1398 		return err;
1399 
1400 	task = get_proc_task(file_inode(file));
1401 	if (!task)
1402 		return -ESRCH;
1403 	task->fail_nth = n;
1404 	put_task_struct(task);
1405 
1406 	return count;
1407 }
1408 
1409 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1410 				  size_t count, loff_t *ppos)
1411 {
1412 	struct task_struct *task;
1413 	char numbuf[PROC_NUMBUF];
1414 	ssize_t len;
1415 
1416 	task = get_proc_task(file_inode(file));
1417 	if (!task)
1418 		return -ESRCH;
1419 	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1420 	put_task_struct(task);
1421 	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1422 }
1423 
1424 static const struct file_operations proc_fail_nth_operations = {
1425 	.read		= proc_fail_nth_read,
1426 	.write		= proc_fail_nth_write,
1427 };
1428 #endif
1429 
1430 
1431 #ifdef CONFIG_SCHED_DEBUG
1432 /*
1433  * Print out various scheduling related per-task fields:
1434  */
1435 static int sched_show(struct seq_file *m, void *v)
1436 {
1437 	struct inode *inode = m->private;
1438 	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1439 	struct task_struct *p;
1440 
1441 	p = get_proc_task(inode);
1442 	if (!p)
1443 		return -ESRCH;
1444 	proc_sched_show_task(p, ns, m);
1445 
1446 	put_task_struct(p);
1447 
1448 	return 0;
1449 }
1450 
1451 static ssize_t
1452 sched_write(struct file *file, const char __user *buf,
1453 	    size_t count, loff_t *offset)
1454 {
1455 	struct inode *inode = file_inode(file);
1456 	struct task_struct *p;
1457 
1458 	p = get_proc_task(inode);
1459 	if (!p)
1460 		return -ESRCH;
1461 	proc_sched_set_task(p);
1462 
1463 	put_task_struct(p);
1464 
1465 	return count;
1466 }
1467 
1468 static int sched_open(struct inode *inode, struct file *filp)
1469 {
1470 	return single_open(filp, sched_show, inode);
1471 }
1472 
1473 static const struct file_operations proc_pid_sched_operations = {
1474 	.open		= sched_open,
1475 	.read		= seq_read,
1476 	.write		= sched_write,
1477 	.llseek		= seq_lseek,
1478 	.release	= single_release,
1479 };
1480 
1481 #endif
1482 
1483 #ifdef CONFIG_SCHED_AUTOGROUP
1484 /*
1485  * Print out autogroup related information:
1486  */
1487 static int sched_autogroup_show(struct seq_file *m, void *v)
1488 {
1489 	struct inode *inode = m->private;
1490 	struct task_struct *p;
1491 
1492 	p = get_proc_task(inode);
1493 	if (!p)
1494 		return -ESRCH;
1495 	proc_sched_autogroup_show_task(p, m);
1496 
1497 	put_task_struct(p);
1498 
1499 	return 0;
1500 }
1501 
1502 static ssize_t
1503 sched_autogroup_write(struct file *file, const char __user *buf,
1504 	    size_t count, loff_t *offset)
1505 {
1506 	struct inode *inode = file_inode(file);
1507 	struct task_struct *p;
1508 	char buffer[PROC_NUMBUF];
1509 	int nice;
1510 	int err;
1511 
1512 	memset(buffer, 0, sizeof(buffer));
1513 	if (count > sizeof(buffer) - 1)
1514 		count = sizeof(buffer) - 1;
1515 	if (copy_from_user(buffer, buf, count))
1516 		return -EFAULT;
1517 
1518 	err = kstrtoint(strstrip(buffer), 0, &nice);
1519 	if (err < 0)
1520 		return err;
1521 
1522 	p = get_proc_task(inode);
1523 	if (!p)
1524 		return -ESRCH;
1525 
1526 	err = proc_sched_autogroup_set_nice(p, nice);
1527 	if (err)
1528 		count = err;
1529 
1530 	put_task_struct(p);
1531 
1532 	return count;
1533 }
1534 
1535 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1536 {
1537 	int ret;
1538 
1539 	ret = single_open(filp, sched_autogroup_show, NULL);
1540 	if (!ret) {
1541 		struct seq_file *m = filp->private_data;
1542 
1543 		m->private = inode;
1544 	}
1545 	return ret;
1546 }
1547 
1548 static const struct file_operations proc_pid_sched_autogroup_operations = {
1549 	.open		= sched_autogroup_open,
1550 	.read		= seq_read,
1551 	.write		= sched_autogroup_write,
1552 	.llseek		= seq_lseek,
1553 	.release	= single_release,
1554 };
1555 
1556 #endif /* CONFIG_SCHED_AUTOGROUP */
1557 
1558 #ifdef CONFIG_TIME_NS
1559 static int timens_offsets_show(struct seq_file *m, void *v)
1560 {
1561 	struct task_struct *p;
1562 
1563 	p = get_proc_task(file_inode(m->file));
1564 	if (!p)
1565 		return -ESRCH;
1566 	proc_timens_show_offsets(p, m);
1567 
1568 	put_task_struct(p);
1569 
1570 	return 0;
1571 }
1572 
1573 static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1574 				    size_t count, loff_t *ppos)
1575 {
1576 	struct inode *inode = file_inode(file);
1577 	struct proc_timens_offset offsets[2];
1578 	char *kbuf = NULL, *pos, *next_line;
1579 	struct task_struct *p;
1580 	int ret, noffsets;
1581 
1582 	/* Only allow < page size writes at the beginning of the file */
1583 	if ((*ppos != 0) || (count >= PAGE_SIZE))
1584 		return -EINVAL;
1585 
1586 	/* Slurp in the user data */
1587 	kbuf = memdup_user_nul(buf, count);
1588 	if (IS_ERR(kbuf))
1589 		return PTR_ERR(kbuf);
1590 
1591 	/* Parse the user data */
1592 	ret = -EINVAL;
1593 	noffsets = 0;
1594 	for (pos = kbuf; pos; pos = next_line) {
1595 		struct proc_timens_offset *off = &offsets[noffsets];
1596 		char clock[10];
1597 		int err;
1598 
1599 		/* Find the end of line and ensure we don't look past it */
1600 		next_line = strchr(pos, '\n');
1601 		if (next_line) {
1602 			*next_line = '\0';
1603 			next_line++;
1604 			if (*next_line == '\0')
1605 				next_line = NULL;
1606 		}
1607 
1608 		err = sscanf(pos, "%9s %lld %lu", clock,
1609 				&off->val.tv_sec, &off->val.tv_nsec);
1610 		if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1611 			goto out;
1612 
1613 		clock[sizeof(clock) - 1] = 0;
1614 		if (strcmp(clock, "monotonic") == 0 ||
1615 		    strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1616 			off->clockid = CLOCK_MONOTONIC;
1617 		else if (strcmp(clock, "boottime") == 0 ||
1618 			 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1619 			off->clockid = CLOCK_BOOTTIME;
1620 		else
1621 			goto out;
1622 
1623 		noffsets++;
1624 		if (noffsets == ARRAY_SIZE(offsets)) {
1625 			if (next_line)
1626 				count = next_line - kbuf;
1627 			break;
1628 		}
1629 	}
1630 
1631 	ret = -ESRCH;
1632 	p = get_proc_task(inode);
1633 	if (!p)
1634 		goto out;
1635 	ret = proc_timens_set_offset(file, p, offsets, noffsets);
1636 	put_task_struct(p);
1637 	if (ret)
1638 		goto out;
1639 
1640 	ret = count;
1641 out:
1642 	kfree(kbuf);
1643 	return ret;
1644 }
1645 
1646 static int timens_offsets_open(struct inode *inode, struct file *filp)
1647 {
1648 	return single_open(filp, timens_offsets_show, inode);
1649 }
1650 
1651 static const struct file_operations proc_timens_offsets_operations = {
1652 	.open		= timens_offsets_open,
1653 	.read		= seq_read,
1654 	.write		= timens_offsets_write,
1655 	.llseek		= seq_lseek,
1656 	.release	= single_release,
1657 };
1658 #endif /* CONFIG_TIME_NS */
1659 
1660 static ssize_t comm_write(struct file *file, const char __user *buf,
1661 				size_t count, loff_t *offset)
1662 {
1663 	struct inode *inode = file_inode(file);
1664 	struct task_struct *p;
1665 	char buffer[TASK_COMM_LEN];
1666 	const size_t maxlen = sizeof(buffer) - 1;
1667 
1668 	memset(buffer, 0, sizeof(buffer));
1669 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1670 		return -EFAULT;
1671 
1672 	p = get_proc_task(inode);
1673 	if (!p)
1674 		return -ESRCH;
1675 
1676 	if (same_thread_group(current, p))
1677 		set_task_comm(p, buffer);
1678 	else
1679 		count = -EINVAL;
1680 
1681 	put_task_struct(p);
1682 
1683 	return count;
1684 }
1685 
1686 static int comm_show(struct seq_file *m, void *v)
1687 {
1688 	struct inode *inode = m->private;
1689 	struct task_struct *p;
1690 
1691 	p = get_proc_task(inode);
1692 	if (!p)
1693 		return -ESRCH;
1694 
1695 	proc_task_name(m, p, false);
1696 	seq_putc(m, '\n');
1697 
1698 	put_task_struct(p);
1699 
1700 	return 0;
1701 }
1702 
1703 static int comm_open(struct inode *inode, struct file *filp)
1704 {
1705 	return single_open(filp, comm_show, inode);
1706 }
1707 
1708 static const struct file_operations proc_pid_set_comm_operations = {
1709 	.open		= comm_open,
1710 	.read		= seq_read,
1711 	.write		= comm_write,
1712 	.llseek		= seq_lseek,
1713 	.release	= single_release,
1714 };
1715 
1716 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1717 {
1718 	struct task_struct *task;
1719 	struct file *exe_file;
1720 
1721 	task = get_proc_task(d_inode(dentry));
1722 	if (!task)
1723 		return -ENOENT;
1724 	exe_file = get_task_exe_file(task);
1725 	put_task_struct(task);
1726 	if (exe_file) {
1727 		*exe_path = exe_file->f_path;
1728 		path_get(&exe_file->f_path);
1729 		fput(exe_file);
1730 		return 0;
1731 	} else
1732 		return -ENOENT;
1733 }
1734 
1735 static const char *proc_pid_get_link(struct dentry *dentry,
1736 				     struct inode *inode,
1737 				     struct delayed_call *done)
1738 {
1739 	struct path path;
1740 	int error = -EACCES;
1741 
1742 	if (!dentry)
1743 		return ERR_PTR(-ECHILD);
1744 
1745 	/* Are we allowed to snoop on the tasks file descriptors? */
1746 	if (!proc_fd_access_allowed(inode))
1747 		goto out;
1748 
1749 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1750 	if (error)
1751 		goto out;
1752 
1753 	error = nd_jump_link(&path);
1754 out:
1755 	return ERR_PTR(error);
1756 }
1757 
1758 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1759 {
1760 	char *tmp = (char *)__get_free_page(GFP_KERNEL);
1761 	char *pathname;
1762 	int len;
1763 
1764 	if (!tmp)
1765 		return -ENOMEM;
1766 
1767 	pathname = d_path(path, tmp, PAGE_SIZE);
1768 	len = PTR_ERR(pathname);
1769 	if (IS_ERR(pathname))
1770 		goto out;
1771 	len = tmp + PAGE_SIZE - 1 - pathname;
1772 
1773 	if (len > buflen)
1774 		len = buflen;
1775 	if (copy_to_user(buffer, pathname, len))
1776 		len = -EFAULT;
1777  out:
1778 	free_page((unsigned long)tmp);
1779 	return len;
1780 }
1781 
1782 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1783 {
1784 	int error = -EACCES;
1785 	struct inode *inode = d_inode(dentry);
1786 	struct path path;
1787 
1788 	/* Are we allowed to snoop on the tasks file descriptors? */
1789 	if (!proc_fd_access_allowed(inode))
1790 		goto out;
1791 
1792 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1793 	if (error)
1794 		goto out;
1795 
1796 	error = do_proc_readlink(&path, buffer, buflen);
1797 	path_put(&path);
1798 out:
1799 	return error;
1800 }
1801 
1802 const struct inode_operations proc_pid_link_inode_operations = {
1803 	.readlink	= proc_pid_readlink,
1804 	.get_link	= proc_pid_get_link,
1805 	.setattr	= proc_setattr,
1806 };
1807 
1808 
1809 /* building an inode */
1810 
1811 void task_dump_owner(struct task_struct *task, umode_t mode,
1812 		     kuid_t *ruid, kgid_t *rgid)
1813 {
1814 	/* Depending on the state of dumpable compute who should own a
1815 	 * proc file for a task.
1816 	 */
1817 	const struct cred *cred;
1818 	kuid_t uid;
1819 	kgid_t gid;
1820 
1821 	if (unlikely(task->flags & PF_KTHREAD)) {
1822 		*ruid = GLOBAL_ROOT_UID;
1823 		*rgid = GLOBAL_ROOT_GID;
1824 		return;
1825 	}
1826 
1827 	/* Default to the tasks effective ownership */
1828 	rcu_read_lock();
1829 	cred = __task_cred(task);
1830 	uid = cred->euid;
1831 	gid = cred->egid;
1832 	rcu_read_unlock();
1833 
1834 	/*
1835 	 * Before the /proc/pid/status file was created the only way to read
1836 	 * the effective uid of a /process was to stat /proc/pid.  Reading
1837 	 * /proc/pid/status is slow enough that procps and other packages
1838 	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1839 	 * made this apply to all per process world readable and executable
1840 	 * directories.
1841 	 */
1842 	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1843 		struct mm_struct *mm;
1844 		task_lock(task);
1845 		mm = task->mm;
1846 		/* Make non-dumpable tasks owned by some root */
1847 		if (mm) {
1848 			if (get_dumpable(mm) != SUID_DUMP_USER) {
1849 				struct user_namespace *user_ns = mm->user_ns;
1850 
1851 				uid = make_kuid(user_ns, 0);
1852 				if (!uid_valid(uid))
1853 					uid = GLOBAL_ROOT_UID;
1854 
1855 				gid = make_kgid(user_ns, 0);
1856 				if (!gid_valid(gid))
1857 					gid = GLOBAL_ROOT_GID;
1858 			}
1859 		} else {
1860 			uid = GLOBAL_ROOT_UID;
1861 			gid = GLOBAL_ROOT_GID;
1862 		}
1863 		task_unlock(task);
1864 	}
1865 	*ruid = uid;
1866 	*rgid = gid;
1867 }
1868 
1869 void proc_pid_evict_inode(struct proc_inode *ei)
1870 {
1871 	struct pid *pid = ei->pid;
1872 
1873 	if (S_ISDIR(ei->vfs_inode.i_mode)) {
1874 		spin_lock(&pid->lock);
1875 		hlist_del_init_rcu(&ei->sibling_inodes);
1876 		spin_unlock(&pid->lock);
1877 	}
1878 
1879 	put_pid(pid);
1880 }
1881 
1882 struct inode *proc_pid_make_inode(struct super_block * sb,
1883 				  struct task_struct *task, umode_t mode)
1884 {
1885 	struct inode * inode;
1886 	struct proc_inode *ei;
1887 	struct pid *pid;
1888 
1889 	/* We need a new inode */
1890 
1891 	inode = new_inode(sb);
1892 	if (!inode)
1893 		goto out;
1894 
1895 	/* Common stuff */
1896 	ei = PROC_I(inode);
1897 	inode->i_mode = mode;
1898 	inode->i_ino = get_next_ino();
1899 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1900 	inode->i_op = &proc_def_inode_operations;
1901 
1902 	/*
1903 	 * grab the reference to task.
1904 	 */
1905 	pid = get_task_pid(task, PIDTYPE_PID);
1906 	if (!pid)
1907 		goto out_unlock;
1908 
1909 	/* Let the pid remember us for quick removal */
1910 	ei->pid = pid;
1911 	if (S_ISDIR(mode)) {
1912 		spin_lock(&pid->lock);
1913 		hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1914 		spin_unlock(&pid->lock);
1915 	}
1916 
1917 	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1918 	security_task_to_inode(task, inode);
1919 
1920 out:
1921 	return inode;
1922 
1923 out_unlock:
1924 	iput(inode);
1925 	return NULL;
1926 }
1927 
1928 int pid_getattr(const struct path *path, struct kstat *stat,
1929 		u32 request_mask, unsigned int query_flags)
1930 {
1931 	struct inode *inode = d_inode(path->dentry);
1932 	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
1933 	struct task_struct *task;
1934 
1935 	generic_fillattr(inode, stat);
1936 
1937 	stat->uid = GLOBAL_ROOT_UID;
1938 	stat->gid = GLOBAL_ROOT_GID;
1939 	rcu_read_lock();
1940 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1941 	if (task) {
1942 		if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
1943 			rcu_read_unlock();
1944 			/*
1945 			 * This doesn't prevent learning whether PID exists,
1946 			 * it only makes getattr() consistent with readdir().
1947 			 */
1948 			return -ENOENT;
1949 		}
1950 		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1951 	}
1952 	rcu_read_unlock();
1953 	return 0;
1954 }
1955 
1956 /* dentry stuff */
1957 
1958 /*
1959  * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1960  */
1961 void pid_update_inode(struct task_struct *task, struct inode *inode)
1962 {
1963 	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1964 
1965 	inode->i_mode &= ~(S_ISUID | S_ISGID);
1966 	security_task_to_inode(task, inode);
1967 }
1968 
1969 /*
1970  * Rewrite the inode's ownerships here because the owning task may have
1971  * performed a setuid(), etc.
1972  *
1973  */
1974 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1975 {
1976 	struct inode *inode;
1977 	struct task_struct *task;
1978 
1979 	if (flags & LOOKUP_RCU)
1980 		return -ECHILD;
1981 
1982 	inode = d_inode(dentry);
1983 	task = get_proc_task(inode);
1984 
1985 	if (task) {
1986 		pid_update_inode(task, inode);
1987 		put_task_struct(task);
1988 		return 1;
1989 	}
1990 	return 0;
1991 }
1992 
1993 static inline bool proc_inode_is_dead(struct inode *inode)
1994 {
1995 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1996 }
1997 
1998 int pid_delete_dentry(const struct dentry *dentry)
1999 {
2000 	/* Is the task we represent dead?
2001 	 * If so, then don't put the dentry on the lru list,
2002 	 * kill it immediately.
2003 	 */
2004 	return proc_inode_is_dead(d_inode(dentry));
2005 }
2006 
2007 const struct dentry_operations pid_dentry_operations =
2008 {
2009 	.d_revalidate	= pid_revalidate,
2010 	.d_delete	= pid_delete_dentry,
2011 };
2012 
2013 /* Lookups */
2014 
2015 /*
2016  * Fill a directory entry.
2017  *
2018  * If possible create the dcache entry and derive our inode number and
2019  * file type from dcache entry.
2020  *
2021  * Since all of the proc inode numbers are dynamically generated, the inode
2022  * numbers do not exist until the inode is cache.  This means creating the
2023  * the dcache entry in readdir is necessary to keep the inode numbers
2024  * reported by readdir in sync with the inode numbers reported
2025  * by stat.
2026  */
2027 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2028 	const char *name, unsigned int len,
2029 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
2030 {
2031 	struct dentry *child, *dir = file->f_path.dentry;
2032 	struct qstr qname = QSTR_INIT(name, len);
2033 	struct inode *inode;
2034 	unsigned type = DT_UNKNOWN;
2035 	ino_t ino = 1;
2036 
2037 	child = d_hash_and_lookup(dir, &qname);
2038 	if (!child) {
2039 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2040 		child = d_alloc_parallel(dir, &qname, &wq);
2041 		if (IS_ERR(child))
2042 			goto end_instantiate;
2043 		if (d_in_lookup(child)) {
2044 			struct dentry *res;
2045 			res = instantiate(child, task, ptr);
2046 			d_lookup_done(child);
2047 			if (unlikely(res)) {
2048 				dput(child);
2049 				child = res;
2050 				if (IS_ERR(child))
2051 					goto end_instantiate;
2052 			}
2053 		}
2054 	}
2055 	inode = d_inode(child);
2056 	ino = inode->i_ino;
2057 	type = inode->i_mode >> 12;
2058 	dput(child);
2059 end_instantiate:
2060 	return dir_emit(ctx, name, len, ino, type);
2061 }
2062 
2063 /*
2064  * dname_to_vma_addr - maps a dentry name into two unsigned longs
2065  * which represent vma start and end addresses.
2066  */
2067 static int dname_to_vma_addr(struct dentry *dentry,
2068 			     unsigned long *start, unsigned long *end)
2069 {
2070 	const char *str = dentry->d_name.name;
2071 	unsigned long long sval, eval;
2072 	unsigned int len;
2073 
2074 	if (str[0] == '0' && str[1] != '-')
2075 		return -EINVAL;
2076 	len = _parse_integer(str, 16, &sval);
2077 	if (len & KSTRTOX_OVERFLOW)
2078 		return -EINVAL;
2079 	if (sval != (unsigned long)sval)
2080 		return -EINVAL;
2081 	str += len;
2082 
2083 	if (*str != '-')
2084 		return -EINVAL;
2085 	str++;
2086 
2087 	if (str[0] == '0' && str[1])
2088 		return -EINVAL;
2089 	len = _parse_integer(str, 16, &eval);
2090 	if (len & KSTRTOX_OVERFLOW)
2091 		return -EINVAL;
2092 	if (eval != (unsigned long)eval)
2093 		return -EINVAL;
2094 	str += len;
2095 
2096 	if (*str != '\0')
2097 		return -EINVAL;
2098 
2099 	*start = sval;
2100 	*end = eval;
2101 
2102 	return 0;
2103 }
2104 
2105 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2106 {
2107 	unsigned long vm_start, vm_end;
2108 	bool exact_vma_exists = false;
2109 	struct mm_struct *mm = NULL;
2110 	struct task_struct *task;
2111 	struct inode *inode;
2112 	int status = 0;
2113 
2114 	if (flags & LOOKUP_RCU)
2115 		return -ECHILD;
2116 
2117 	inode = d_inode(dentry);
2118 	task = get_proc_task(inode);
2119 	if (!task)
2120 		goto out_notask;
2121 
2122 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2123 	if (IS_ERR_OR_NULL(mm))
2124 		goto out;
2125 
2126 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2127 		status = mmap_read_lock_killable(mm);
2128 		if (!status) {
2129 			exact_vma_exists = !!find_exact_vma(mm, vm_start,
2130 							    vm_end);
2131 			mmap_read_unlock(mm);
2132 		}
2133 	}
2134 
2135 	mmput(mm);
2136 
2137 	if (exact_vma_exists) {
2138 		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2139 
2140 		security_task_to_inode(task, inode);
2141 		status = 1;
2142 	}
2143 
2144 out:
2145 	put_task_struct(task);
2146 
2147 out_notask:
2148 	return status;
2149 }
2150 
2151 static const struct dentry_operations tid_map_files_dentry_operations = {
2152 	.d_revalidate	= map_files_d_revalidate,
2153 	.d_delete	= pid_delete_dentry,
2154 };
2155 
2156 static int map_files_get_link(struct dentry *dentry, struct path *path)
2157 {
2158 	unsigned long vm_start, vm_end;
2159 	struct vm_area_struct *vma;
2160 	struct task_struct *task;
2161 	struct mm_struct *mm;
2162 	int rc;
2163 
2164 	rc = -ENOENT;
2165 	task = get_proc_task(d_inode(dentry));
2166 	if (!task)
2167 		goto out;
2168 
2169 	mm = get_task_mm(task);
2170 	put_task_struct(task);
2171 	if (!mm)
2172 		goto out;
2173 
2174 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2175 	if (rc)
2176 		goto out_mmput;
2177 
2178 	rc = mmap_read_lock_killable(mm);
2179 	if (rc)
2180 		goto out_mmput;
2181 
2182 	rc = -ENOENT;
2183 	vma = find_exact_vma(mm, vm_start, vm_end);
2184 	if (vma && vma->vm_file) {
2185 		*path = vma->vm_file->f_path;
2186 		path_get(path);
2187 		rc = 0;
2188 	}
2189 	mmap_read_unlock(mm);
2190 
2191 out_mmput:
2192 	mmput(mm);
2193 out:
2194 	return rc;
2195 }
2196 
2197 struct map_files_info {
2198 	unsigned long	start;
2199 	unsigned long	end;
2200 	fmode_t		mode;
2201 };
2202 
2203 /*
2204  * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2205  * to concerns about how the symlinks may be used to bypass permissions on
2206  * ancestor directories in the path to the file in question.
2207  */
2208 static const char *
2209 proc_map_files_get_link(struct dentry *dentry,
2210 			struct inode *inode,
2211 		        struct delayed_call *done)
2212 {
2213 	if (!checkpoint_restore_ns_capable(&init_user_ns))
2214 		return ERR_PTR(-EPERM);
2215 
2216 	return proc_pid_get_link(dentry, inode, done);
2217 }
2218 
2219 /*
2220  * Identical to proc_pid_link_inode_operations except for get_link()
2221  */
2222 static const struct inode_operations proc_map_files_link_inode_operations = {
2223 	.readlink	= proc_pid_readlink,
2224 	.get_link	= proc_map_files_get_link,
2225 	.setattr	= proc_setattr,
2226 };
2227 
2228 static struct dentry *
2229 proc_map_files_instantiate(struct dentry *dentry,
2230 			   struct task_struct *task, const void *ptr)
2231 {
2232 	fmode_t mode = (fmode_t)(unsigned long)ptr;
2233 	struct proc_inode *ei;
2234 	struct inode *inode;
2235 
2236 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2237 				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2238 				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2239 	if (!inode)
2240 		return ERR_PTR(-ENOENT);
2241 
2242 	ei = PROC_I(inode);
2243 	ei->op.proc_get_link = map_files_get_link;
2244 
2245 	inode->i_op = &proc_map_files_link_inode_operations;
2246 	inode->i_size = 64;
2247 
2248 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2249 	return d_splice_alias(inode, dentry);
2250 }
2251 
2252 static struct dentry *proc_map_files_lookup(struct inode *dir,
2253 		struct dentry *dentry, unsigned int flags)
2254 {
2255 	unsigned long vm_start, vm_end;
2256 	struct vm_area_struct *vma;
2257 	struct task_struct *task;
2258 	struct dentry *result;
2259 	struct mm_struct *mm;
2260 
2261 	result = ERR_PTR(-ENOENT);
2262 	task = get_proc_task(dir);
2263 	if (!task)
2264 		goto out;
2265 
2266 	result = ERR_PTR(-EACCES);
2267 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2268 		goto out_put_task;
2269 
2270 	result = ERR_PTR(-ENOENT);
2271 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2272 		goto out_put_task;
2273 
2274 	mm = get_task_mm(task);
2275 	if (!mm)
2276 		goto out_put_task;
2277 
2278 	result = ERR_PTR(-EINTR);
2279 	if (mmap_read_lock_killable(mm))
2280 		goto out_put_mm;
2281 
2282 	result = ERR_PTR(-ENOENT);
2283 	vma = find_exact_vma(mm, vm_start, vm_end);
2284 	if (!vma)
2285 		goto out_no_vma;
2286 
2287 	if (vma->vm_file)
2288 		result = proc_map_files_instantiate(dentry, task,
2289 				(void *)(unsigned long)vma->vm_file->f_mode);
2290 
2291 out_no_vma:
2292 	mmap_read_unlock(mm);
2293 out_put_mm:
2294 	mmput(mm);
2295 out_put_task:
2296 	put_task_struct(task);
2297 out:
2298 	return result;
2299 }
2300 
2301 static const struct inode_operations proc_map_files_inode_operations = {
2302 	.lookup		= proc_map_files_lookup,
2303 	.permission	= proc_fd_permission,
2304 	.setattr	= proc_setattr,
2305 };
2306 
2307 static int
2308 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2309 {
2310 	struct vm_area_struct *vma;
2311 	struct task_struct *task;
2312 	struct mm_struct *mm;
2313 	unsigned long nr_files, pos, i;
2314 	GENRADIX(struct map_files_info) fa;
2315 	struct map_files_info *p;
2316 	int ret;
2317 
2318 	genradix_init(&fa);
2319 
2320 	ret = -ENOENT;
2321 	task = get_proc_task(file_inode(file));
2322 	if (!task)
2323 		goto out;
2324 
2325 	ret = -EACCES;
2326 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2327 		goto out_put_task;
2328 
2329 	ret = 0;
2330 	if (!dir_emit_dots(file, ctx))
2331 		goto out_put_task;
2332 
2333 	mm = get_task_mm(task);
2334 	if (!mm)
2335 		goto out_put_task;
2336 
2337 	ret = mmap_read_lock_killable(mm);
2338 	if (ret) {
2339 		mmput(mm);
2340 		goto out_put_task;
2341 	}
2342 
2343 	nr_files = 0;
2344 
2345 	/*
2346 	 * We need two passes here:
2347 	 *
2348 	 *  1) Collect vmas of mapped files with mmap_lock taken
2349 	 *  2) Release mmap_lock and instantiate entries
2350 	 *
2351 	 * otherwise we get lockdep complained, since filldir()
2352 	 * routine might require mmap_lock taken in might_fault().
2353 	 */
2354 
2355 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2356 		if (!vma->vm_file)
2357 			continue;
2358 		if (++pos <= ctx->pos)
2359 			continue;
2360 
2361 		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2362 		if (!p) {
2363 			ret = -ENOMEM;
2364 			mmap_read_unlock(mm);
2365 			mmput(mm);
2366 			goto out_put_task;
2367 		}
2368 
2369 		p->start = vma->vm_start;
2370 		p->end = vma->vm_end;
2371 		p->mode = vma->vm_file->f_mode;
2372 	}
2373 	mmap_read_unlock(mm);
2374 	mmput(mm);
2375 
2376 	for (i = 0; i < nr_files; i++) {
2377 		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2378 		unsigned int len;
2379 
2380 		p = genradix_ptr(&fa, i);
2381 		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2382 		if (!proc_fill_cache(file, ctx,
2383 				      buf, len,
2384 				      proc_map_files_instantiate,
2385 				      task,
2386 				      (void *)(unsigned long)p->mode))
2387 			break;
2388 		ctx->pos++;
2389 	}
2390 
2391 out_put_task:
2392 	put_task_struct(task);
2393 out:
2394 	genradix_free(&fa);
2395 	return ret;
2396 }
2397 
2398 static const struct file_operations proc_map_files_operations = {
2399 	.read		= generic_read_dir,
2400 	.iterate_shared	= proc_map_files_readdir,
2401 	.llseek		= generic_file_llseek,
2402 };
2403 
2404 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2405 struct timers_private {
2406 	struct pid *pid;
2407 	struct task_struct *task;
2408 	struct sighand_struct *sighand;
2409 	struct pid_namespace *ns;
2410 	unsigned long flags;
2411 };
2412 
2413 static void *timers_start(struct seq_file *m, loff_t *pos)
2414 {
2415 	struct timers_private *tp = m->private;
2416 
2417 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2418 	if (!tp->task)
2419 		return ERR_PTR(-ESRCH);
2420 
2421 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2422 	if (!tp->sighand)
2423 		return ERR_PTR(-ESRCH);
2424 
2425 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2426 }
2427 
2428 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2429 {
2430 	struct timers_private *tp = m->private;
2431 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2432 }
2433 
2434 static void timers_stop(struct seq_file *m, void *v)
2435 {
2436 	struct timers_private *tp = m->private;
2437 
2438 	if (tp->sighand) {
2439 		unlock_task_sighand(tp->task, &tp->flags);
2440 		tp->sighand = NULL;
2441 	}
2442 
2443 	if (tp->task) {
2444 		put_task_struct(tp->task);
2445 		tp->task = NULL;
2446 	}
2447 }
2448 
2449 static int show_timer(struct seq_file *m, void *v)
2450 {
2451 	struct k_itimer *timer;
2452 	struct timers_private *tp = m->private;
2453 	int notify;
2454 	static const char * const nstr[] = {
2455 		[SIGEV_SIGNAL] = "signal",
2456 		[SIGEV_NONE] = "none",
2457 		[SIGEV_THREAD] = "thread",
2458 	};
2459 
2460 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2461 	notify = timer->it_sigev_notify;
2462 
2463 	seq_printf(m, "ID: %d\n", timer->it_id);
2464 	seq_printf(m, "signal: %d/%px\n",
2465 		   timer->sigq->info.si_signo,
2466 		   timer->sigq->info.si_value.sival_ptr);
2467 	seq_printf(m, "notify: %s/%s.%d\n",
2468 		   nstr[notify & ~SIGEV_THREAD_ID],
2469 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2470 		   pid_nr_ns(timer->it_pid, tp->ns));
2471 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2472 
2473 	return 0;
2474 }
2475 
2476 static const struct seq_operations proc_timers_seq_ops = {
2477 	.start	= timers_start,
2478 	.next	= timers_next,
2479 	.stop	= timers_stop,
2480 	.show	= show_timer,
2481 };
2482 
2483 static int proc_timers_open(struct inode *inode, struct file *file)
2484 {
2485 	struct timers_private *tp;
2486 
2487 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2488 			sizeof(struct timers_private));
2489 	if (!tp)
2490 		return -ENOMEM;
2491 
2492 	tp->pid = proc_pid(inode);
2493 	tp->ns = proc_pid_ns(inode->i_sb);
2494 	return 0;
2495 }
2496 
2497 static const struct file_operations proc_timers_operations = {
2498 	.open		= proc_timers_open,
2499 	.read		= seq_read,
2500 	.llseek		= seq_lseek,
2501 	.release	= seq_release_private,
2502 };
2503 #endif
2504 
2505 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2506 					size_t count, loff_t *offset)
2507 {
2508 	struct inode *inode = file_inode(file);
2509 	struct task_struct *p;
2510 	u64 slack_ns;
2511 	int err;
2512 
2513 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2514 	if (err < 0)
2515 		return err;
2516 
2517 	p = get_proc_task(inode);
2518 	if (!p)
2519 		return -ESRCH;
2520 
2521 	if (p != current) {
2522 		rcu_read_lock();
2523 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2524 			rcu_read_unlock();
2525 			count = -EPERM;
2526 			goto out;
2527 		}
2528 		rcu_read_unlock();
2529 
2530 		err = security_task_setscheduler(p);
2531 		if (err) {
2532 			count = err;
2533 			goto out;
2534 		}
2535 	}
2536 
2537 	task_lock(p);
2538 	if (slack_ns == 0)
2539 		p->timer_slack_ns = p->default_timer_slack_ns;
2540 	else
2541 		p->timer_slack_ns = slack_ns;
2542 	task_unlock(p);
2543 
2544 out:
2545 	put_task_struct(p);
2546 
2547 	return count;
2548 }
2549 
2550 static int timerslack_ns_show(struct seq_file *m, void *v)
2551 {
2552 	struct inode *inode = m->private;
2553 	struct task_struct *p;
2554 	int err = 0;
2555 
2556 	p = get_proc_task(inode);
2557 	if (!p)
2558 		return -ESRCH;
2559 
2560 	if (p != current) {
2561 		rcu_read_lock();
2562 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2563 			rcu_read_unlock();
2564 			err = -EPERM;
2565 			goto out;
2566 		}
2567 		rcu_read_unlock();
2568 
2569 		err = security_task_getscheduler(p);
2570 		if (err)
2571 			goto out;
2572 	}
2573 
2574 	task_lock(p);
2575 	seq_printf(m, "%llu\n", p->timer_slack_ns);
2576 	task_unlock(p);
2577 
2578 out:
2579 	put_task_struct(p);
2580 
2581 	return err;
2582 }
2583 
2584 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2585 {
2586 	return single_open(filp, timerslack_ns_show, inode);
2587 }
2588 
2589 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2590 	.open		= timerslack_ns_open,
2591 	.read		= seq_read,
2592 	.write		= timerslack_ns_write,
2593 	.llseek		= seq_lseek,
2594 	.release	= single_release,
2595 };
2596 
2597 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2598 	struct task_struct *task, const void *ptr)
2599 {
2600 	const struct pid_entry *p = ptr;
2601 	struct inode *inode;
2602 	struct proc_inode *ei;
2603 
2604 	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2605 	if (!inode)
2606 		return ERR_PTR(-ENOENT);
2607 
2608 	ei = PROC_I(inode);
2609 	if (S_ISDIR(inode->i_mode))
2610 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2611 	if (p->iop)
2612 		inode->i_op = p->iop;
2613 	if (p->fop)
2614 		inode->i_fop = p->fop;
2615 	ei->op = p->op;
2616 	pid_update_inode(task, inode);
2617 	d_set_d_op(dentry, &pid_dentry_operations);
2618 	return d_splice_alias(inode, dentry);
2619 }
2620 
2621 static struct dentry *proc_pident_lookup(struct inode *dir,
2622 					 struct dentry *dentry,
2623 					 const struct pid_entry *p,
2624 					 const struct pid_entry *end)
2625 {
2626 	struct task_struct *task = get_proc_task(dir);
2627 	struct dentry *res = ERR_PTR(-ENOENT);
2628 
2629 	if (!task)
2630 		goto out_no_task;
2631 
2632 	/*
2633 	 * Yes, it does not scale. And it should not. Don't add
2634 	 * new entries into /proc/<tgid>/ without very good reasons.
2635 	 */
2636 	for (; p < end; p++) {
2637 		if (p->len != dentry->d_name.len)
2638 			continue;
2639 		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2640 			res = proc_pident_instantiate(dentry, task, p);
2641 			break;
2642 		}
2643 	}
2644 	put_task_struct(task);
2645 out_no_task:
2646 	return res;
2647 }
2648 
2649 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2650 		const struct pid_entry *ents, unsigned int nents)
2651 {
2652 	struct task_struct *task = get_proc_task(file_inode(file));
2653 	const struct pid_entry *p;
2654 
2655 	if (!task)
2656 		return -ENOENT;
2657 
2658 	if (!dir_emit_dots(file, ctx))
2659 		goto out;
2660 
2661 	if (ctx->pos >= nents + 2)
2662 		goto out;
2663 
2664 	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2665 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2666 				proc_pident_instantiate, task, p))
2667 			break;
2668 		ctx->pos++;
2669 	}
2670 out:
2671 	put_task_struct(task);
2672 	return 0;
2673 }
2674 
2675 #ifdef CONFIG_SECURITY
2676 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2677 				  size_t count, loff_t *ppos)
2678 {
2679 	struct inode * inode = file_inode(file);
2680 	char *p = NULL;
2681 	ssize_t length;
2682 	struct task_struct *task = get_proc_task(inode);
2683 
2684 	if (!task)
2685 		return -ESRCH;
2686 
2687 	length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2688 				      (char*)file->f_path.dentry->d_name.name,
2689 				      &p);
2690 	put_task_struct(task);
2691 	if (length > 0)
2692 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2693 	kfree(p);
2694 	return length;
2695 }
2696 
2697 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2698 				   size_t count, loff_t *ppos)
2699 {
2700 	struct inode * inode = file_inode(file);
2701 	struct task_struct *task;
2702 	void *page;
2703 	int rv;
2704 
2705 	rcu_read_lock();
2706 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2707 	if (!task) {
2708 		rcu_read_unlock();
2709 		return -ESRCH;
2710 	}
2711 	/* A task may only write its own attributes. */
2712 	if (current != task) {
2713 		rcu_read_unlock();
2714 		return -EACCES;
2715 	}
2716 	/* Prevent changes to overridden credentials. */
2717 	if (current_cred() != current_real_cred()) {
2718 		rcu_read_unlock();
2719 		return -EBUSY;
2720 	}
2721 	rcu_read_unlock();
2722 
2723 	if (count > PAGE_SIZE)
2724 		count = PAGE_SIZE;
2725 
2726 	/* No partial writes. */
2727 	if (*ppos != 0)
2728 		return -EINVAL;
2729 
2730 	page = memdup_user(buf, count);
2731 	if (IS_ERR(page)) {
2732 		rv = PTR_ERR(page);
2733 		goto out;
2734 	}
2735 
2736 	/* Guard against adverse ptrace interaction */
2737 	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2738 	if (rv < 0)
2739 		goto out_free;
2740 
2741 	rv = security_setprocattr(PROC_I(inode)->op.lsm,
2742 				  file->f_path.dentry->d_name.name, page,
2743 				  count);
2744 	mutex_unlock(&current->signal->cred_guard_mutex);
2745 out_free:
2746 	kfree(page);
2747 out:
2748 	return rv;
2749 }
2750 
2751 static const struct file_operations proc_pid_attr_operations = {
2752 	.read		= proc_pid_attr_read,
2753 	.write		= proc_pid_attr_write,
2754 	.llseek		= generic_file_llseek,
2755 };
2756 
2757 #define LSM_DIR_OPS(LSM) \
2758 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2759 			     struct dir_context *ctx) \
2760 { \
2761 	return proc_pident_readdir(filp, ctx, \
2762 				   LSM##_attr_dir_stuff, \
2763 				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2764 } \
2765 \
2766 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2767 	.read		= generic_read_dir, \
2768 	.iterate	= proc_##LSM##_attr_dir_iterate, \
2769 	.llseek		= default_llseek, \
2770 }; \
2771 \
2772 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2773 				struct dentry *dentry, unsigned int flags) \
2774 { \
2775 	return proc_pident_lookup(dir, dentry, \
2776 				  LSM##_attr_dir_stuff, \
2777 				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2778 } \
2779 \
2780 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2781 	.lookup		= proc_##LSM##_attr_dir_lookup, \
2782 	.getattr	= pid_getattr, \
2783 	.setattr	= proc_setattr, \
2784 }
2785 
2786 #ifdef CONFIG_SECURITY_SMACK
2787 static const struct pid_entry smack_attr_dir_stuff[] = {
2788 	ATTR("smack", "current",	0666),
2789 };
2790 LSM_DIR_OPS(smack);
2791 #endif
2792 
2793 #ifdef CONFIG_SECURITY_APPARMOR
2794 static const struct pid_entry apparmor_attr_dir_stuff[] = {
2795 	ATTR("apparmor", "current",	0666),
2796 	ATTR("apparmor", "prev",	0444),
2797 	ATTR("apparmor", "exec",	0666),
2798 };
2799 LSM_DIR_OPS(apparmor);
2800 #endif
2801 
2802 static const struct pid_entry attr_dir_stuff[] = {
2803 	ATTR(NULL, "current",		0666),
2804 	ATTR(NULL, "prev",		0444),
2805 	ATTR(NULL, "exec",		0666),
2806 	ATTR(NULL, "fscreate",		0666),
2807 	ATTR(NULL, "keycreate",		0666),
2808 	ATTR(NULL, "sockcreate",	0666),
2809 #ifdef CONFIG_SECURITY_SMACK
2810 	DIR("smack",			0555,
2811 	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2812 #endif
2813 #ifdef CONFIG_SECURITY_APPARMOR
2814 	DIR("apparmor",			0555,
2815 	    proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2816 #endif
2817 };
2818 
2819 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2820 {
2821 	return proc_pident_readdir(file, ctx,
2822 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2823 }
2824 
2825 static const struct file_operations proc_attr_dir_operations = {
2826 	.read		= generic_read_dir,
2827 	.iterate_shared	= proc_attr_dir_readdir,
2828 	.llseek		= generic_file_llseek,
2829 };
2830 
2831 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2832 				struct dentry *dentry, unsigned int flags)
2833 {
2834 	return proc_pident_lookup(dir, dentry,
2835 				  attr_dir_stuff,
2836 				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2837 }
2838 
2839 static const struct inode_operations proc_attr_dir_inode_operations = {
2840 	.lookup		= proc_attr_dir_lookup,
2841 	.getattr	= pid_getattr,
2842 	.setattr	= proc_setattr,
2843 };
2844 
2845 #endif
2846 
2847 #ifdef CONFIG_ELF_CORE
2848 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2849 					 size_t count, loff_t *ppos)
2850 {
2851 	struct task_struct *task = get_proc_task(file_inode(file));
2852 	struct mm_struct *mm;
2853 	char buffer[PROC_NUMBUF];
2854 	size_t len;
2855 	int ret;
2856 
2857 	if (!task)
2858 		return -ESRCH;
2859 
2860 	ret = 0;
2861 	mm = get_task_mm(task);
2862 	if (mm) {
2863 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2864 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2865 				MMF_DUMP_FILTER_SHIFT));
2866 		mmput(mm);
2867 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2868 	}
2869 
2870 	put_task_struct(task);
2871 
2872 	return ret;
2873 }
2874 
2875 static ssize_t proc_coredump_filter_write(struct file *file,
2876 					  const char __user *buf,
2877 					  size_t count,
2878 					  loff_t *ppos)
2879 {
2880 	struct task_struct *task;
2881 	struct mm_struct *mm;
2882 	unsigned int val;
2883 	int ret;
2884 	int i;
2885 	unsigned long mask;
2886 
2887 	ret = kstrtouint_from_user(buf, count, 0, &val);
2888 	if (ret < 0)
2889 		return ret;
2890 
2891 	ret = -ESRCH;
2892 	task = get_proc_task(file_inode(file));
2893 	if (!task)
2894 		goto out_no_task;
2895 
2896 	mm = get_task_mm(task);
2897 	if (!mm)
2898 		goto out_no_mm;
2899 	ret = 0;
2900 
2901 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2902 		if (val & mask)
2903 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2904 		else
2905 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2906 	}
2907 
2908 	mmput(mm);
2909  out_no_mm:
2910 	put_task_struct(task);
2911  out_no_task:
2912 	if (ret < 0)
2913 		return ret;
2914 	return count;
2915 }
2916 
2917 static const struct file_operations proc_coredump_filter_operations = {
2918 	.read		= proc_coredump_filter_read,
2919 	.write		= proc_coredump_filter_write,
2920 	.llseek		= generic_file_llseek,
2921 };
2922 #endif
2923 
2924 #ifdef CONFIG_TASK_IO_ACCOUNTING
2925 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2926 {
2927 	struct task_io_accounting acct = task->ioac;
2928 	unsigned long flags;
2929 	int result;
2930 
2931 	result = mutex_lock_killable(&task->signal->exec_update_mutex);
2932 	if (result)
2933 		return result;
2934 
2935 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2936 		result = -EACCES;
2937 		goto out_unlock;
2938 	}
2939 
2940 	if (whole && lock_task_sighand(task, &flags)) {
2941 		struct task_struct *t = task;
2942 
2943 		task_io_accounting_add(&acct, &task->signal->ioac);
2944 		while_each_thread(task, t)
2945 			task_io_accounting_add(&acct, &t->ioac);
2946 
2947 		unlock_task_sighand(task, &flags);
2948 	}
2949 	seq_printf(m,
2950 		   "rchar: %llu\n"
2951 		   "wchar: %llu\n"
2952 		   "syscr: %llu\n"
2953 		   "syscw: %llu\n"
2954 		   "read_bytes: %llu\n"
2955 		   "write_bytes: %llu\n"
2956 		   "cancelled_write_bytes: %llu\n",
2957 		   (unsigned long long)acct.rchar,
2958 		   (unsigned long long)acct.wchar,
2959 		   (unsigned long long)acct.syscr,
2960 		   (unsigned long long)acct.syscw,
2961 		   (unsigned long long)acct.read_bytes,
2962 		   (unsigned long long)acct.write_bytes,
2963 		   (unsigned long long)acct.cancelled_write_bytes);
2964 	result = 0;
2965 
2966 out_unlock:
2967 	mutex_unlock(&task->signal->exec_update_mutex);
2968 	return result;
2969 }
2970 
2971 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2972 				  struct pid *pid, struct task_struct *task)
2973 {
2974 	return do_io_accounting(task, m, 0);
2975 }
2976 
2977 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2978 				   struct pid *pid, struct task_struct *task)
2979 {
2980 	return do_io_accounting(task, m, 1);
2981 }
2982 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2983 
2984 #ifdef CONFIG_USER_NS
2985 static int proc_id_map_open(struct inode *inode, struct file *file,
2986 	const struct seq_operations *seq_ops)
2987 {
2988 	struct user_namespace *ns = NULL;
2989 	struct task_struct *task;
2990 	struct seq_file *seq;
2991 	int ret = -EINVAL;
2992 
2993 	task = get_proc_task(inode);
2994 	if (task) {
2995 		rcu_read_lock();
2996 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2997 		rcu_read_unlock();
2998 		put_task_struct(task);
2999 	}
3000 	if (!ns)
3001 		goto err;
3002 
3003 	ret = seq_open(file, seq_ops);
3004 	if (ret)
3005 		goto err_put_ns;
3006 
3007 	seq = file->private_data;
3008 	seq->private = ns;
3009 
3010 	return 0;
3011 err_put_ns:
3012 	put_user_ns(ns);
3013 err:
3014 	return ret;
3015 }
3016 
3017 static int proc_id_map_release(struct inode *inode, struct file *file)
3018 {
3019 	struct seq_file *seq = file->private_data;
3020 	struct user_namespace *ns = seq->private;
3021 	put_user_ns(ns);
3022 	return seq_release(inode, file);
3023 }
3024 
3025 static int proc_uid_map_open(struct inode *inode, struct file *file)
3026 {
3027 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3028 }
3029 
3030 static int proc_gid_map_open(struct inode *inode, struct file *file)
3031 {
3032 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3033 }
3034 
3035 static int proc_projid_map_open(struct inode *inode, struct file *file)
3036 {
3037 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3038 }
3039 
3040 static const struct file_operations proc_uid_map_operations = {
3041 	.open		= proc_uid_map_open,
3042 	.write		= proc_uid_map_write,
3043 	.read		= seq_read,
3044 	.llseek		= seq_lseek,
3045 	.release	= proc_id_map_release,
3046 };
3047 
3048 static const struct file_operations proc_gid_map_operations = {
3049 	.open		= proc_gid_map_open,
3050 	.write		= proc_gid_map_write,
3051 	.read		= seq_read,
3052 	.llseek		= seq_lseek,
3053 	.release	= proc_id_map_release,
3054 };
3055 
3056 static const struct file_operations proc_projid_map_operations = {
3057 	.open		= proc_projid_map_open,
3058 	.write		= proc_projid_map_write,
3059 	.read		= seq_read,
3060 	.llseek		= seq_lseek,
3061 	.release	= proc_id_map_release,
3062 };
3063 
3064 static int proc_setgroups_open(struct inode *inode, struct file *file)
3065 {
3066 	struct user_namespace *ns = NULL;
3067 	struct task_struct *task;
3068 	int ret;
3069 
3070 	ret = -ESRCH;
3071 	task = get_proc_task(inode);
3072 	if (task) {
3073 		rcu_read_lock();
3074 		ns = get_user_ns(task_cred_xxx(task, user_ns));
3075 		rcu_read_unlock();
3076 		put_task_struct(task);
3077 	}
3078 	if (!ns)
3079 		goto err;
3080 
3081 	if (file->f_mode & FMODE_WRITE) {
3082 		ret = -EACCES;
3083 		if (!ns_capable(ns, CAP_SYS_ADMIN))
3084 			goto err_put_ns;
3085 	}
3086 
3087 	ret = single_open(file, &proc_setgroups_show, ns);
3088 	if (ret)
3089 		goto err_put_ns;
3090 
3091 	return 0;
3092 err_put_ns:
3093 	put_user_ns(ns);
3094 err:
3095 	return ret;
3096 }
3097 
3098 static int proc_setgroups_release(struct inode *inode, struct file *file)
3099 {
3100 	struct seq_file *seq = file->private_data;
3101 	struct user_namespace *ns = seq->private;
3102 	int ret = single_release(inode, file);
3103 	put_user_ns(ns);
3104 	return ret;
3105 }
3106 
3107 static const struct file_operations proc_setgroups_operations = {
3108 	.open		= proc_setgroups_open,
3109 	.write		= proc_setgroups_write,
3110 	.read		= seq_read,
3111 	.llseek		= seq_lseek,
3112 	.release	= proc_setgroups_release,
3113 };
3114 #endif /* CONFIG_USER_NS */
3115 
3116 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3117 				struct pid *pid, struct task_struct *task)
3118 {
3119 	int err = lock_trace(task);
3120 	if (!err) {
3121 		seq_printf(m, "%08x\n", task->personality);
3122 		unlock_trace(task);
3123 	}
3124 	return err;
3125 }
3126 
3127 #ifdef CONFIG_LIVEPATCH
3128 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3129 				struct pid *pid, struct task_struct *task)
3130 {
3131 	seq_printf(m, "%d\n", task->patch_state);
3132 	return 0;
3133 }
3134 #endif /* CONFIG_LIVEPATCH */
3135 
3136 #ifdef CONFIG_STACKLEAK_METRICS
3137 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3138 				struct pid *pid, struct task_struct *task)
3139 {
3140 	unsigned long prev_depth = THREAD_SIZE -
3141 				(task->prev_lowest_stack & (THREAD_SIZE - 1));
3142 	unsigned long depth = THREAD_SIZE -
3143 				(task->lowest_stack & (THREAD_SIZE - 1));
3144 
3145 	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3146 							prev_depth, depth);
3147 	return 0;
3148 }
3149 #endif /* CONFIG_STACKLEAK_METRICS */
3150 
3151 /*
3152  * Thread groups
3153  */
3154 static const struct file_operations proc_task_operations;
3155 static const struct inode_operations proc_task_inode_operations;
3156 
3157 static const struct pid_entry tgid_base_stuff[] = {
3158 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3159 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3160 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3161 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3162 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3163 #ifdef CONFIG_NET
3164 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3165 #endif
3166 	REG("environ",    S_IRUSR, proc_environ_operations),
3167 	REG("auxv",       S_IRUSR, proc_auxv_operations),
3168 	ONE("status",     S_IRUGO, proc_pid_status),
3169 	ONE("personality", S_IRUSR, proc_pid_personality),
3170 	ONE("limits",	  S_IRUGO, proc_pid_limits),
3171 #ifdef CONFIG_SCHED_DEBUG
3172 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3173 #endif
3174 #ifdef CONFIG_SCHED_AUTOGROUP
3175 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3176 #endif
3177 #ifdef CONFIG_TIME_NS
3178 	REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3179 #endif
3180 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3181 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3182 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3183 #endif
3184 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3185 	ONE("stat",       S_IRUGO, proc_tgid_stat),
3186 	ONE("statm",      S_IRUGO, proc_pid_statm),
3187 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3188 #ifdef CONFIG_NUMA
3189 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3190 #endif
3191 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3192 	LNK("cwd",        proc_cwd_link),
3193 	LNK("root",       proc_root_link),
3194 	LNK("exe",        proc_exe_link),
3195 	REG("mounts",     S_IRUGO, proc_mounts_operations),
3196 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3197 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3198 #ifdef CONFIG_PROC_PAGE_MONITOR
3199 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3200 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3201 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3202 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3203 #endif
3204 #ifdef CONFIG_SECURITY
3205 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3206 #endif
3207 #ifdef CONFIG_KALLSYMS
3208 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3209 #endif
3210 #ifdef CONFIG_STACKTRACE
3211 	ONE("stack",      S_IRUSR, proc_pid_stack),
3212 #endif
3213 #ifdef CONFIG_SCHED_INFO
3214 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3215 #endif
3216 #ifdef CONFIG_LATENCYTOP
3217 	REG("latency",  S_IRUGO, proc_lstats_operations),
3218 #endif
3219 #ifdef CONFIG_PROC_PID_CPUSET
3220 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3221 #endif
3222 #ifdef CONFIG_CGROUPS
3223 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3224 #endif
3225 #ifdef CONFIG_PROC_CPU_RESCTRL
3226 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3227 #endif
3228 	ONE("oom_score",  S_IRUGO, proc_oom_score),
3229 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3230 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3231 #ifdef CONFIG_AUDIT
3232 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3233 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3234 #endif
3235 #ifdef CONFIG_FAULT_INJECTION
3236 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3237 	REG("fail-nth", 0644, proc_fail_nth_operations),
3238 #endif
3239 #ifdef CONFIG_ELF_CORE
3240 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3241 #endif
3242 #ifdef CONFIG_TASK_IO_ACCOUNTING
3243 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3244 #endif
3245 #ifdef CONFIG_USER_NS
3246 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3247 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3248 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3249 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3250 #endif
3251 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3252 	REG("timers",	  S_IRUGO, proc_timers_operations),
3253 #endif
3254 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3255 #ifdef CONFIG_LIVEPATCH
3256 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3257 #endif
3258 #ifdef CONFIG_STACKLEAK_METRICS
3259 	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3260 #endif
3261 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3262 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3263 #endif
3264 };
3265 
3266 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3267 {
3268 	return proc_pident_readdir(file, ctx,
3269 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3270 }
3271 
3272 static const struct file_operations proc_tgid_base_operations = {
3273 	.read		= generic_read_dir,
3274 	.iterate_shared	= proc_tgid_base_readdir,
3275 	.llseek		= generic_file_llseek,
3276 };
3277 
3278 struct pid *tgid_pidfd_to_pid(const struct file *file)
3279 {
3280 	if (file->f_op != &proc_tgid_base_operations)
3281 		return ERR_PTR(-EBADF);
3282 
3283 	return proc_pid(file_inode(file));
3284 }
3285 
3286 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3287 {
3288 	return proc_pident_lookup(dir, dentry,
3289 				  tgid_base_stuff,
3290 				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3291 }
3292 
3293 static const struct inode_operations proc_tgid_base_inode_operations = {
3294 	.lookup		= proc_tgid_base_lookup,
3295 	.getattr	= pid_getattr,
3296 	.setattr	= proc_setattr,
3297 	.permission	= proc_pid_permission,
3298 };
3299 
3300 /**
3301  * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
3302  * @pid: pid that should be flushed.
3303  *
3304  * This function walks a list of inodes (that belong to any proc
3305  * filesystem) that are attached to the pid and flushes them from
3306  * the dentry cache.
3307  *
3308  * It is safe and reasonable to cache /proc entries for a task until
3309  * that task exits.  After that they just clog up the dcache with
3310  * useless entries, possibly causing useful dcache entries to be
3311  * flushed instead.  This routine is provided to flush those useless
3312  * dcache entries when a process is reaped.
3313  *
3314  * NOTE: This routine is just an optimization so it does not guarantee
3315  *       that no dcache entries will exist after a process is reaped
3316  *       it just makes it very unlikely that any will persist.
3317  */
3318 
3319 void proc_flush_pid(struct pid *pid)
3320 {
3321 	proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3322 }
3323 
3324 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3325 				   struct task_struct *task, const void *ptr)
3326 {
3327 	struct inode *inode;
3328 
3329 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3330 	if (!inode)
3331 		return ERR_PTR(-ENOENT);
3332 
3333 	inode->i_op = &proc_tgid_base_inode_operations;
3334 	inode->i_fop = &proc_tgid_base_operations;
3335 	inode->i_flags|=S_IMMUTABLE;
3336 
3337 	set_nlink(inode, nlink_tgid);
3338 	pid_update_inode(task, inode);
3339 
3340 	d_set_d_op(dentry, &pid_dentry_operations);
3341 	return d_splice_alias(inode, dentry);
3342 }
3343 
3344 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3345 {
3346 	struct task_struct *task;
3347 	unsigned tgid;
3348 	struct proc_fs_info *fs_info;
3349 	struct pid_namespace *ns;
3350 	struct dentry *result = ERR_PTR(-ENOENT);
3351 
3352 	tgid = name_to_int(&dentry->d_name);
3353 	if (tgid == ~0U)
3354 		goto out;
3355 
3356 	fs_info = proc_sb_info(dentry->d_sb);
3357 	ns = fs_info->pid_ns;
3358 	rcu_read_lock();
3359 	task = find_task_by_pid_ns(tgid, ns);
3360 	if (task)
3361 		get_task_struct(task);
3362 	rcu_read_unlock();
3363 	if (!task)
3364 		goto out;
3365 
3366 	/* Limit procfs to only ptraceable tasks */
3367 	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3368 		if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3369 			goto out_put_task;
3370 	}
3371 
3372 	result = proc_pid_instantiate(dentry, task, NULL);
3373 out_put_task:
3374 	put_task_struct(task);
3375 out:
3376 	return result;
3377 }
3378 
3379 /*
3380  * Find the first task with tgid >= tgid
3381  *
3382  */
3383 struct tgid_iter {
3384 	unsigned int tgid;
3385 	struct task_struct *task;
3386 };
3387 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3388 {
3389 	struct pid *pid;
3390 
3391 	if (iter.task)
3392 		put_task_struct(iter.task);
3393 	rcu_read_lock();
3394 retry:
3395 	iter.task = NULL;
3396 	pid = find_ge_pid(iter.tgid, ns);
3397 	if (pid) {
3398 		iter.tgid = pid_nr_ns(pid, ns);
3399 		iter.task = pid_task(pid, PIDTYPE_TGID);
3400 		if (!iter.task) {
3401 			iter.tgid += 1;
3402 			goto retry;
3403 		}
3404 		get_task_struct(iter.task);
3405 	}
3406 	rcu_read_unlock();
3407 	return iter;
3408 }
3409 
3410 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3411 
3412 /* for the /proc/ directory itself, after non-process stuff has been done */
3413 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3414 {
3415 	struct tgid_iter iter;
3416 	struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3417 	struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3418 	loff_t pos = ctx->pos;
3419 
3420 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3421 		return 0;
3422 
3423 	if (pos == TGID_OFFSET - 2) {
3424 		struct inode *inode = d_inode(fs_info->proc_self);
3425 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3426 			return 0;
3427 		ctx->pos = pos = pos + 1;
3428 	}
3429 	if (pos == TGID_OFFSET - 1) {
3430 		struct inode *inode = d_inode(fs_info->proc_thread_self);
3431 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3432 			return 0;
3433 		ctx->pos = pos = pos + 1;
3434 	}
3435 	iter.tgid = pos - TGID_OFFSET;
3436 	iter.task = NULL;
3437 	for (iter = next_tgid(ns, iter);
3438 	     iter.task;
3439 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3440 		char name[10 + 1];
3441 		unsigned int len;
3442 
3443 		cond_resched();
3444 		if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3445 			continue;
3446 
3447 		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3448 		ctx->pos = iter.tgid + TGID_OFFSET;
3449 		if (!proc_fill_cache(file, ctx, name, len,
3450 				     proc_pid_instantiate, iter.task, NULL)) {
3451 			put_task_struct(iter.task);
3452 			return 0;
3453 		}
3454 	}
3455 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3456 	return 0;
3457 }
3458 
3459 /*
3460  * proc_tid_comm_permission is a special permission function exclusively
3461  * used for the node /proc/<pid>/task/<tid>/comm.
3462  * It bypasses generic permission checks in the case where a task of the same
3463  * task group attempts to access the node.
3464  * The rationale behind this is that glibc and bionic access this node for
3465  * cross thread naming (pthread_set/getname_np(!self)). However, if
3466  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3467  * which locks out the cross thread naming implementation.
3468  * This function makes sure that the node is always accessible for members of
3469  * same thread group.
3470  */
3471 static int proc_tid_comm_permission(struct inode *inode, int mask)
3472 {
3473 	bool is_same_tgroup;
3474 	struct task_struct *task;
3475 
3476 	task = get_proc_task(inode);
3477 	if (!task)
3478 		return -ESRCH;
3479 	is_same_tgroup = same_thread_group(current, task);
3480 	put_task_struct(task);
3481 
3482 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3483 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3484 		 * read or written by the members of the corresponding
3485 		 * thread group.
3486 		 */
3487 		return 0;
3488 	}
3489 
3490 	return generic_permission(inode, mask);
3491 }
3492 
3493 static const struct inode_operations proc_tid_comm_inode_operations = {
3494 		.permission = proc_tid_comm_permission,
3495 };
3496 
3497 /*
3498  * Tasks
3499  */
3500 static const struct pid_entry tid_base_stuff[] = {
3501 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3502 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3503 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3504 #ifdef CONFIG_NET
3505 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3506 #endif
3507 	REG("environ",   S_IRUSR, proc_environ_operations),
3508 	REG("auxv",      S_IRUSR, proc_auxv_operations),
3509 	ONE("status",    S_IRUGO, proc_pid_status),
3510 	ONE("personality", S_IRUSR, proc_pid_personality),
3511 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3512 #ifdef CONFIG_SCHED_DEBUG
3513 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3514 #endif
3515 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3516 			 &proc_tid_comm_inode_operations,
3517 			 &proc_pid_set_comm_operations, {}),
3518 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3519 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3520 #endif
3521 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3522 	ONE("stat",      S_IRUGO, proc_tid_stat),
3523 	ONE("statm",     S_IRUGO, proc_pid_statm),
3524 	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3525 #ifdef CONFIG_PROC_CHILDREN
3526 	REG("children",  S_IRUGO, proc_tid_children_operations),
3527 #endif
3528 #ifdef CONFIG_NUMA
3529 	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3530 #endif
3531 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3532 	LNK("cwd",       proc_cwd_link),
3533 	LNK("root",      proc_root_link),
3534 	LNK("exe",       proc_exe_link),
3535 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3536 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3537 #ifdef CONFIG_PROC_PAGE_MONITOR
3538 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3539 	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3540 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3541 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3542 #endif
3543 #ifdef CONFIG_SECURITY
3544 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3545 #endif
3546 #ifdef CONFIG_KALLSYMS
3547 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3548 #endif
3549 #ifdef CONFIG_STACKTRACE
3550 	ONE("stack",      S_IRUSR, proc_pid_stack),
3551 #endif
3552 #ifdef CONFIG_SCHED_INFO
3553 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3554 #endif
3555 #ifdef CONFIG_LATENCYTOP
3556 	REG("latency",  S_IRUGO, proc_lstats_operations),
3557 #endif
3558 #ifdef CONFIG_PROC_PID_CPUSET
3559 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3560 #endif
3561 #ifdef CONFIG_CGROUPS
3562 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3563 #endif
3564 #ifdef CONFIG_PROC_CPU_RESCTRL
3565 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3566 #endif
3567 	ONE("oom_score", S_IRUGO, proc_oom_score),
3568 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3569 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3570 #ifdef CONFIG_AUDIT
3571 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3572 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3573 #endif
3574 #ifdef CONFIG_FAULT_INJECTION
3575 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3576 	REG("fail-nth", 0644, proc_fail_nth_operations),
3577 #endif
3578 #ifdef CONFIG_TASK_IO_ACCOUNTING
3579 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3580 #endif
3581 #ifdef CONFIG_USER_NS
3582 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3583 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3584 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3585 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3586 #endif
3587 #ifdef CONFIG_LIVEPATCH
3588 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3589 #endif
3590 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3591 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3592 #endif
3593 };
3594 
3595 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3596 {
3597 	return proc_pident_readdir(file, ctx,
3598 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3599 }
3600 
3601 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3602 {
3603 	return proc_pident_lookup(dir, dentry,
3604 				  tid_base_stuff,
3605 				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3606 }
3607 
3608 static const struct file_operations proc_tid_base_operations = {
3609 	.read		= generic_read_dir,
3610 	.iterate_shared	= proc_tid_base_readdir,
3611 	.llseek		= generic_file_llseek,
3612 };
3613 
3614 static const struct inode_operations proc_tid_base_inode_operations = {
3615 	.lookup		= proc_tid_base_lookup,
3616 	.getattr	= pid_getattr,
3617 	.setattr	= proc_setattr,
3618 };
3619 
3620 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3621 	struct task_struct *task, const void *ptr)
3622 {
3623 	struct inode *inode;
3624 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3625 	if (!inode)
3626 		return ERR_PTR(-ENOENT);
3627 
3628 	inode->i_op = &proc_tid_base_inode_operations;
3629 	inode->i_fop = &proc_tid_base_operations;
3630 	inode->i_flags |= S_IMMUTABLE;
3631 
3632 	set_nlink(inode, nlink_tid);
3633 	pid_update_inode(task, inode);
3634 
3635 	d_set_d_op(dentry, &pid_dentry_operations);
3636 	return d_splice_alias(inode, dentry);
3637 }
3638 
3639 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3640 {
3641 	struct task_struct *task;
3642 	struct task_struct *leader = get_proc_task(dir);
3643 	unsigned tid;
3644 	struct proc_fs_info *fs_info;
3645 	struct pid_namespace *ns;
3646 	struct dentry *result = ERR_PTR(-ENOENT);
3647 
3648 	if (!leader)
3649 		goto out_no_task;
3650 
3651 	tid = name_to_int(&dentry->d_name);
3652 	if (tid == ~0U)
3653 		goto out;
3654 
3655 	fs_info = proc_sb_info(dentry->d_sb);
3656 	ns = fs_info->pid_ns;
3657 	rcu_read_lock();
3658 	task = find_task_by_pid_ns(tid, ns);
3659 	if (task)
3660 		get_task_struct(task);
3661 	rcu_read_unlock();
3662 	if (!task)
3663 		goto out;
3664 	if (!same_thread_group(leader, task))
3665 		goto out_drop_task;
3666 
3667 	result = proc_task_instantiate(dentry, task, NULL);
3668 out_drop_task:
3669 	put_task_struct(task);
3670 out:
3671 	put_task_struct(leader);
3672 out_no_task:
3673 	return result;
3674 }
3675 
3676 /*
3677  * Find the first tid of a thread group to return to user space.
3678  *
3679  * Usually this is just the thread group leader, but if the users
3680  * buffer was too small or there was a seek into the middle of the
3681  * directory we have more work todo.
3682  *
3683  * In the case of a short read we start with find_task_by_pid.
3684  *
3685  * In the case of a seek we start with the leader and walk nr
3686  * threads past it.
3687  */
3688 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3689 					struct pid_namespace *ns)
3690 {
3691 	struct task_struct *pos, *task;
3692 	unsigned long nr = f_pos;
3693 
3694 	if (nr != f_pos)	/* 32bit overflow? */
3695 		return NULL;
3696 
3697 	rcu_read_lock();
3698 	task = pid_task(pid, PIDTYPE_PID);
3699 	if (!task)
3700 		goto fail;
3701 
3702 	/* Attempt to start with the tid of a thread */
3703 	if (tid && nr) {
3704 		pos = find_task_by_pid_ns(tid, ns);
3705 		if (pos && same_thread_group(pos, task))
3706 			goto found;
3707 	}
3708 
3709 	/* If nr exceeds the number of threads there is nothing todo */
3710 	if (nr >= get_nr_threads(task))
3711 		goto fail;
3712 
3713 	/* If we haven't found our starting place yet start
3714 	 * with the leader and walk nr threads forward.
3715 	 */
3716 	pos = task = task->group_leader;
3717 	do {
3718 		if (!nr--)
3719 			goto found;
3720 	} while_each_thread(task, pos);
3721 fail:
3722 	pos = NULL;
3723 	goto out;
3724 found:
3725 	get_task_struct(pos);
3726 out:
3727 	rcu_read_unlock();
3728 	return pos;
3729 }
3730 
3731 /*
3732  * Find the next thread in the thread list.
3733  * Return NULL if there is an error or no next thread.
3734  *
3735  * The reference to the input task_struct is released.
3736  */
3737 static struct task_struct *next_tid(struct task_struct *start)
3738 {
3739 	struct task_struct *pos = NULL;
3740 	rcu_read_lock();
3741 	if (pid_alive(start)) {
3742 		pos = next_thread(start);
3743 		if (thread_group_leader(pos))
3744 			pos = NULL;
3745 		else
3746 			get_task_struct(pos);
3747 	}
3748 	rcu_read_unlock();
3749 	put_task_struct(start);
3750 	return pos;
3751 }
3752 
3753 /* for the /proc/TGID/task/ directories */
3754 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3755 {
3756 	struct inode *inode = file_inode(file);
3757 	struct task_struct *task;
3758 	struct pid_namespace *ns;
3759 	int tid;
3760 
3761 	if (proc_inode_is_dead(inode))
3762 		return -ENOENT;
3763 
3764 	if (!dir_emit_dots(file, ctx))
3765 		return 0;
3766 
3767 	/* f_version caches the tgid value that the last readdir call couldn't
3768 	 * return. lseek aka telldir automagically resets f_version to 0.
3769 	 */
3770 	ns = proc_pid_ns(inode->i_sb);
3771 	tid = (int)file->f_version;
3772 	file->f_version = 0;
3773 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3774 	     task;
3775 	     task = next_tid(task), ctx->pos++) {
3776 		char name[10 + 1];
3777 		unsigned int len;
3778 		tid = task_pid_nr_ns(task, ns);
3779 		len = snprintf(name, sizeof(name), "%u", tid);
3780 		if (!proc_fill_cache(file, ctx, name, len,
3781 				proc_task_instantiate, task, NULL)) {
3782 			/* returning this tgid failed, save it as the first
3783 			 * pid for the next readir call */
3784 			file->f_version = (u64)tid;
3785 			put_task_struct(task);
3786 			break;
3787 		}
3788 	}
3789 
3790 	return 0;
3791 }
3792 
3793 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3794 			     u32 request_mask, unsigned int query_flags)
3795 {
3796 	struct inode *inode = d_inode(path->dentry);
3797 	struct task_struct *p = get_proc_task(inode);
3798 	generic_fillattr(inode, stat);
3799 
3800 	if (p) {
3801 		stat->nlink += get_nr_threads(p);
3802 		put_task_struct(p);
3803 	}
3804 
3805 	return 0;
3806 }
3807 
3808 static const struct inode_operations proc_task_inode_operations = {
3809 	.lookup		= proc_task_lookup,
3810 	.getattr	= proc_task_getattr,
3811 	.setattr	= proc_setattr,
3812 	.permission	= proc_pid_permission,
3813 };
3814 
3815 static const struct file_operations proc_task_operations = {
3816 	.read		= generic_read_dir,
3817 	.iterate_shared	= proc_task_readdir,
3818 	.llseek		= generic_file_llseek,
3819 };
3820 
3821 void __init set_proc_pid_nlink(void)
3822 {
3823 	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3824 	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3825 }
3826