xref: /openbmc/linux/fs/proc/base.c (revision b38269ec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/proc/base.c
4  *
5  *  Copyright (C) 1991, 1992 Linus Torvalds
6  *
7  *  proc base directory handling functions
8  *
9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10  *  Instead of using magical inumbers to determine the kind of object
11  *  we allocate and fill in-core inodes upon lookup. They don't even
12  *  go into icache. We cache the reference to task_struct upon lookup too.
13  *  Eventually it should become a filesystem in its own. We don't use the
14  *  rest of procfs anymore.
15  *
16  *
17  *  Changelog:
18  *  17-Jan-2005
19  *  Allan Bezerra
20  *  Bruna Moreira <bruna.moreira@indt.org.br>
21  *  Edjard Mota <edjard.mota@indt.org.br>
22  *  Ilias Biris <ilias.biris@indt.org.br>
23  *  Mauricio Lin <mauricio.lin@indt.org.br>
24  *
25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26  *
27  *  A new process specific entry (smaps) included in /proc. It shows the
28  *  size of rss for each memory area. The maps entry lacks information
29  *  about physical memory size (rss) for each mapped file, i.e.,
30  *  rss information for executables and library files.
31  *  This additional information is useful for any tools that need to know
32  *  about physical memory consumption for a process specific library.
33  *
34  *  Changelog:
35  *  21-Feb-2005
36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37  *  Pud inclusion in the page table walking.
38  *
39  *  ChangeLog:
40  *  10-Mar-2005
41  *  10LE Instituto Nokia de Tecnologia - INdT:
42  *  A better way to walks through the page table as suggested by Hugh Dickins.
43  *
44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45  *  Smaps information related to shared, private, clean and dirty pages.
46  *
47  *  Paul Mundt <paul.mundt@nokia.com>:
48  *  Overall revision about smaps.
49  */
50 
51 #include <linux/uaccess.h>
52 
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/generic-radix-tree.h>
63 #include <linux/string.h>
64 #include <linux/seq_file.h>
65 #include <linux/namei.h>
66 #include <linux/mnt_namespace.h>
67 #include <linux/mm.h>
68 #include <linux/swap.h>
69 #include <linux/rcupdate.h>
70 #include <linux/stacktrace.h>
71 #include <linux/resource.h>
72 #include <linux/module.h>
73 #include <linux/mount.h>
74 #include <linux/security.h>
75 #include <linux/ptrace.h>
76 #include <linux/tracehook.h>
77 #include <linux/printk.h>
78 #include <linux/cache.h>
79 #include <linux/cgroup.h>
80 #include <linux/cpuset.h>
81 #include <linux/audit.h>
82 #include <linux/poll.h>
83 #include <linux/nsproxy.h>
84 #include <linux/oom.h>
85 #include <linux/elf.h>
86 #include <linux/pid_namespace.h>
87 #include <linux/user_namespace.h>
88 #include <linux/fs_struct.h>
89 #include <linux/slab.h>
90 #include <linux/sched/autogroup.h>
91 #include <linux/sched/mm.h>
92 #include <linux/sched/coredump.h>
93 #include <linux/sched/debug.h>
94 #include <linux/sched/stat.h>
95 #include <linux/posix-timers.h>
96 #include <linux/time_namespace.h>
97 #include <linux/resctrl.h>
98 #include <linux/cn_proc.h>
99 #include <trace/events/oom.h>
100 #include "internal.h"
101 #include "fd.h"
102 
103 #include "../../lib/kstrtox.h"
104 
105 /* NOTE:
106  *	Implementing inode permission operations in /proc is almost
107  *	certainly an error.  Permission checks need to happen during
108  *	each system call not at open time.  The reason is that most of
109  *	what we wish to check for permissions in /proc varies at runtime.
110  *
111  *	The classic example of a problem is opening file descriptors
112  *	in /proc for a task before it execs a suid executable.
113  */
114 
115 static u8 nlink_tid __ro_after_init;
116 static u8 nlink_tgid __ro_after_init;
117 
118 struct pid_entry {
119 	const char *name;
120 	unsigned int len;
121 	umode_t mode;
122 	const struct inode_operations *iop;
123 	const struct file_operations *fop;
124 	union proc_op op;
125 };
126 
127 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
128 	.name = (NAME),					\
129 	.len  = sizeof(NAME) - 1,			\
130 	.mode = MODE,					\
131 	.iop  = IOP,					\
132 	.fop  = FOP,					\
133 	.op   = OP,					\
134 }
135 
136 #define DIR(NAME, MODE, iops, fops)	\
137 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
138 #define LNK(NAME, get_link)					\
139 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
140 		&proc_pid_link_inode_operations, NULL,		\
141 		{ .proc_get_link = get_link } )
142 #define REG(NAME, MODE, fops)				\
143 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
144 #define ONE(NAME, MODE, show)				\
145 	NOD(NAME, (S_IFREG|(MODE)),			\
146 		NULL, &proc_single_file_operations,	\
147 		{ .proc_show = show } )
148 #define ATTR(LSM, NAME, MODE)				\
149 	NOD(NAME, (S_IFREG|(MODE)),			\
150 		NULL, &proc_pid_attr_operations,	\
151 		{ .lsm = LSM })
152 
153 /*
154  * Count the number of hardlinks for the pid_entry table, excluding the .
155  * and .. links.
156  */
157 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
158 	unsigned int n)
159 {
160 	unsigned int i;
161 	unsigned int count;
162 
163 	count = 2;
164 	for (i = 0; i < n; ++i) {
165 		if (S_ISDIR(entries[i].mode))
166 			++count;
167 	}
168 
169 	return count;
170 }
171 
172 static int get_task_root(struct task_struct *task, struct path *root)
173 {
174 	int result = -ENOENT;
175 
176 	task_lock(task);
177 	if (task->fs) {
178 		get_fs_root(task->fs, root);
179 		result = 0;
180 	}
181 	task_unlock(task);
182 	return result;
183 }
184 
185 static int proc_cwd_link(struct dentry *dentry, struct path *path)
186 {
187 	struct task_struct *task = get_proc_task(d_inode(dentry));
188 	int result = -ENOENT;
189 
190 	if (task) {
191 		task_lock(task);
192 		if (task->fs) {
193 			get_fs_pwd(task->fs, path);
194 			result = 0;
195 		}
196 		task_unlock(task);
197 		put_task_struct(task);
198 	}
199 	return result;
200 }
201 
202 static int proc_root_link(struct dentry *dentry, struct path *path)
203 {
204 	struct task_struct *task = get_proc_task(d_inode(dentry));
205 	int result = -ENOENT;
206 
207 	if (task) {
208 		result = get_task_root(task, path);
209 		put_task_struct(task);
210 	}
211 	return result;
212 }
213 
214 /*
215  * If the user used setproctitle(), we just get the string from
216  * user space at arg_start, and limit it to a maximum of one page.
217  */
218 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
219 				size_t count, unsigned long pos,
220 				unsigned long arg_start)
221 {
222 	char *page;
223 	int ret, got;
224 
225 	if (pos >= PAGE_SIZE)
226 		return 0;
227 
228 	page = (char *)__get_free_page(GFP_KERNEL);
229 	if (!page)
230 		return -ENOMEM;
231 
232 	ret = 0;
233 	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
234 	if (got > 0) {
235 		int len = strnlen(page, got);
236 
237 		/* Include the NUL character if it was found */
238 		if (len < got)
239 			len++;
240 
241 		if (len > pos) {
242 			len -= pos;
243 			if (len > count)
244 				len = count;
245 			len -= copy_to_user(buf, page+pos, len);
246 			if (!len)
247 				len = -EFAULT;
248 			ret = len;
249 		}
250 	}
251 	free_page((unsigned long)page);
252 	return ret;
253 }
254 
255 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
256 			      size_t count, loff_t *ppos)
257 {
258 	unsigned long arg_start, arg_end, env_start, env_end;
259 	unsigned long pos, len;
260 	char *page, c;
261 
262 	/* Check if process spawned far enough to have cmdline. */
263 	if (!mm->env_end)
264 		return 0;
265 
266 	spin_lock(&mm->arg_lock);
267 	arg_start = mm->arg_start;
268 	arg_end = mm->arg_end;
269 	env_start = mm->env_start;
270 	env_end = mm->env_end;
271 	spin_unlock(&mm->arg_lock);
272 
273 	if (arg_start >= arg_end)
274 		return 0;
275 
276 	/*
277 	 * We allow setproctitle() to overwrite the argument
278 	 * strings, and overflow past the original end. But
279 	 * only when it overflows into the environment area.
280 	 */
281 	if (env_start != arg_end || env_end < env_start)
282 		env_start = env_end = arg_end;
283 	len = env_end - arg_start;
284 
285 	/* We're not going to care if "*ppos" has high bits set */
286 	pos = *ppos;
287 	if (pos >= len)
288 		return 0;
289 	if (count > len - pos)
290 		count = len - pos;
291 	if (!count)
292 		return 0;
293 
294 	/*
295 	 * Magical special case: if the argv[] end byte is not
296 	 * zero, the user has overwritten it with setproctitle(3).
297 	 *
298 	 * Possible future enhancement: do this only once when
299 	 * pos is 0, and set a flag in the 'struct file'.
300 	 */
301 	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
302 		return get_mm_proctitle(mm, buf, count, pos, arg_start);
303 
304 	/*
305 	 * For the non-setproctitle() case we limit things strictly
306 	 * to the [arg_start, arg_end[ range.
307 	 */
308 	pos += arg_start;
309 	if (pos < arg_start || pos >= arg_end)
310 		return 0;
311 	if (count > arg_end - pos)
312 		count = arg_end - pos;
313 
314 	page = (char *)__get_free_page(GFP_KERNEL);
315 	if (!page)
316 		return -ENOMEM;
317 
318 	len = 0;
319 	while (count) {
320 		int got;
321 		size_t size = min_t(size_t, PAGE_SIZE, count);
322 
323 		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
324 		if (got <= 0)
325 			break;
326 		got -= copy_to_user(buf, page, got);
327 		if (unlikely(!got)) {
328 			if (!len)
329 				len = -EFAULT;
330 			break;
331 		}
332 		pos += got;
333 		buf += got;
334 		len += got;
335 		count -= got;
336 	}
337 
338 	free_page((unsigned long)page);
339 	return len;
340 }
341 
342 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
343 				size_t count, loff_t *pos)
344 {
345 	struct mm_struct *mm;
346 	ssize_t ret;
347 
348 	mm = get_task_mm(tsk);
349 	if (!mm)
350 		return 0;
351 
352 	ret = get_mm_cmdline(mm, buf, count, pos);
353 	mmput(mm);
354 	return ret;
355 }
356 
357 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
358 				     size_t count, loff_t *pos)
359 {
360 	struct task_struct *tsk;
361 	ssize_t ret;
362 
363 	BUG_ON(*pos < 0);
364 
365 	tsk = get_proc_task(file_inode(file));
366 	if (!tsk)
367 		return -ESRCH;
368 	ret = get_task_cmdline(tsk, buf, count, pos);
369 	put_task_struct(tsk);
370 	if (ret > 0)
371 		*pos += ret;
372 	return ret;
373 }
374 
375 static const struct file_operations proc_pid_cmdline_ops = {
376 	.read	= proc_pid_cmdline_read,
377 	.llseek	= generic_file_llseek,
378 };
379 
380 #ifdef CONFIG_KALLSYMS
381 /*
382  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
383  * Returns the resolved symbol.  If that fails, simply return the address.
384  */
385 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
386 			  struct pid *pid, struct task_struct *task)
387 {
388 	unsigned long wchan;
389 
390 	if (ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
391 		wchan = get_wchan(task);
392 	else
393 		wchan = 0;
394 
395 	if (wchan)
396 		seq_printf(m, "%ps", (void *) wchan);
397 	else
398 		seq_putc(m, '0');
399 
400 	return 0;
401 }
402 #endif /* CONFIG_KALLSYMS */
403 
404 static int lock_trace(struct task_struct *task)
405 {
406 	int err = down_read_killable(&task->signal->exec_update_lock);
407 	if (err)
408 		return err;
409 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
410 		up_read(&task->signal->exec_update_lock);
411 		return -EPERM;
412 	}
413 	return 0;
414 }
415 
416 static void unlock_trace(struct task_struct *task)
417 {
418 	up_read(&task->signal->exec_update_lock);
419 }
420 
421 #ifdef CONFIG_STACKTRACE
422 
423 #define MAX_STACK_TRACE_DEPTH	64
424 
425 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
426 			  struct pid *pid, struct task_struct *task)
427 {
428 	unsigned long *entries;
429 	int err;
430 
431 	/*
432 	 * The ability to racily run the kernel stack unwinder on a running task
433 	 * and then observe the unwinder output is scary; while it is useful for
434 	 * debugging kernel issues, it can also allow an attacker to leak kernel
435 	 * stack contents.
436 	 * Doing this in a manner that is at least safe from races would require
437 	 * some work to ensure that the remote task can not be scheduled; and
438 	 * even then, this would still expose the unwinder as local attack
439 	 * surface.
440 	 * Therefore, this interface is restricted to root.
441 	 */
442 	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
443 		return -EACCES;
444 
445 	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
446 				GFP_KERNEL);
447 	if (!entries)
448 		return -ENOMEM;
449 
450 	err = lock_trace(task);
451 	if (!err) {
452 		unsigned int i, nr_entries;
453 
454 		nr_entries = stack_trace_save_tsk(task, entries,
455 						  MAX_STACK_TRACE_DEPTH, 0);
456 
457 		for (i = 0; i < nr_entries; i++) {
458 			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
459 		}
460 
461 		unlock_trace(task);
462 	}
463 	kfree(entries);
464 
465 	return err;
466 }
467 #endif
468 
469 #ifdef CONFIG_SCHED_INFO
470 /*
471  * Provides /proc/PID/schedstat
472  */
473 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
474 			      struct pid *pid, struct task_struct *task)
475 {
476 	if (unlikely(!sched_info_on()))
477 		seq_puts(m, "0 0 0\n");
478 	else
479 		seq_printf(m, "%llu %llu %lu\n",
480 		   (unsigned long long)task->se.sum_exec_runtime,
481 		   (unsigned long long)task->sched_info.run_delay,
482 		   task->sched_info.pcount);
483 
484 	return 0;
485 }
486 #endif
487 
488 #ifdef CONFIG_LATENCYTOP
489 static int lstats_show_proc(struct seq_file *m, void *v)
490 {
491 	int i;
492 	struct inode *inode = m->private;
493 	struct task_struct *task = get_proc_task(inode);
494 
495 	if (!task)
496 		return -ESRCH;
497 	seq_puts(m, "Latency Top version : v0.1\n");
498 	for (i = 0; i < LT_SAVECOUNT; i++) {
499 		struct latency_record *lr = &task->latency_record[i];
500 		if (lr->backtrace[0]) {
501 			int q;
502 			seq_printf(m, "%i %li %li",
503 				   lr->count, lr->time, lr->max);
504 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
505 				unsigned long bt = lr->backtrace[q];
506 
507 				if (!bt)
508 					break;
509 				seq_printf(m, " %ps", (void *)bt);
510 			}
511 			seq_putc(m, '\n');
512 		}
513 
514 	}
515 	put_task_struct(task);
516 	return 0;
517 }
518 
519 static int lstats_open(struct inode *inode, struct file *file)
520 {
521 	return single_open(file, lstats_show_proc, inode);
522 }
523 
524 static ssize_t lstats_write(struct file *file, const char __user *buf,
525 			    size_t count, loff_t *offs)
526 {
527 	struct task_struct *task = get_proc_task(file_inode(file));
528 
529 	if (!task)
530 		return -ESRCH;
531 	clear_tsk_latency_tracing(task);
532 	put_task_struct(task);
533 
534 	return count;
535 }
536 
537 static const struct file_operations proc_lstats_operations = {
538 	.open		= lstats_open,
539 	.read		= seq_read,
540 	.write		= lstats_write,
541 	.llseek		= seq_lseek,
542 	.release	= single_release,
543 };
544 
545 #endif
546 
547 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
548 			  struct pid *pid, struct task_struct *task)
549 {
550 	unsigned long totalpages = totalram_pages() + total_swap_pages;
551 	unsigned long points = 0;
552 	long badness;
553 
554 	badness = oom_badness(task, totalpages);
555 	/*
556 	 * Special case OOM_SCORE_ADJ_MIN for all others scale the
557 	 * badness value into [0, 2000] range which we have been
558 	 * exporting for a long time so userspace might depend on it.
559 	 */
560 	if (badness != LONG_MIN)
561 		points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
562 
563 	seq_printf(m, "%lu\n", points);
564 
565 	return 0;
566 }
567 
568 struct limit_names {
569 	const char *name;
570 	const char *unit;
571 };
572 
573 static const struct limit_names lnames[RLIM_NLIMITS] = {
574 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
575 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
576 	[RLIMIT_DATA] = {"Max data size", "bytes"},
577 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
578 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
579 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
580 	[RLIMIT_NPROC] = {"Max processes", "processes"},
581 	[RLIMIT_NOFILE] = {"Max open files", "files"},
582 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
583 	[RLIMIT_AS] = {"Max address space", "bytes"},
584 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
585 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
586 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
587 	[RLIMIT_NICE] = {"Max nice priority", NULL},
588 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
589 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
590 };
591 
592 /* Display limits for a process */
593 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
594 			   struct pid *pid, struct task_struct *task)
595 {
596 	unsigned int i;
597 	unsigned long flags;
598 
599 	struct rlimit rlim[RLIM_NLIMITS];
600 
601 	if (!lock_task_sighand(task, &flags))
602 		return 0;
603 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
604 	unlock_task_sighand(task, &flags);
605 
606 	/*
607 	 * print the file header
608 	 */
609 	seq_puts(m, "Limit                     "
610 		"Soft Limit           "
611 		"Hard Limit           "
612 		"Units     \n");
613 
614 	for (i = 0; i < RLIM_NLIMITS; i++) {
615 		if (rlim[i].rlim_cur == RLIM_INFINITY)
616 			seq_printf(m, "%-25s %-20s ",
617 				   lnames[i].name, "unlimited");
618 		else
619 			seq_printf(m, "%-25s %-20lu ",
620 				   lnames[i].name, rlim[i].rlim_cur);
621 
622 		if (rlim[i].rlim_max == RLIM_INFINITY)
623 			seq_printf(m, "%-20s ", "unlimited");
624 		else
625 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
626 
627 		if (lnames[i].unit)
628 			seq_printf(m, "%-10s\n", lnames[i].unit);
629 		else
630 			seq_putc(m, '\n');
631 	}
632 
633 	return 0;
634 }
635 
636 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
637 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
638 			    struct pid *pid, struct task_struct *task)
639 {
640 	struct syscall_info info;
641 	u64 *args = &info.data.args[0];
642 	int res;
643 
644 	res = lock_trace(task);
645 	if (res)
646 		return res;
647 
648 	if (task_current_syscall(task, &info))
649 		seq_puts(m, "running\n");
650 	else if (info.data.nr < 0)
651 		seq_printf(m, "%d 0x%llx 0x%llx\n",
652 			   info.data.nr, info.sp, info.data.instruction_pointer);
653 	else
654 		seq_printf(m,
655 		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
656 		       info.data.nr,
657 		       args[0], args[1], args[2], args[3], args[4], args[5],
658 		       info.sp, info.data.instruction_pointer);
659 	unlock_trace(task);
660 
661 	return 0;
662 }
663 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
664 
665 /************************************************************************/
666 /*                       Here the fs part begins                        */
667 /************************************************************************/
668 
669 /* permission checks */
670 static int proc_fd_access_allowed(struct inode *inode)
671 {
672 	struct task_struct *task;
673 	int allowed = 0;
674 	/* Allow access to a task's file descriptors if it is us or we
675 	 * may use ptrace attach to the process and find out that
676 	 * information.
677 	 */
678 	task = get_proc_task(inode);
679 	if (task) {
680 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
681 		put_task_struct(task);
682 	}
683 	return allowed;
684 }
685 
686 int proc_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
687 		 struct iattr *attr)
688 {
689 	int error;
690 	struct inode *inode = d_inode(dentry);
691 
692 	if (attr->ia_valid & ATTR_MODE)
693 		return -EPERM;
694 
695 	error = setattr_prepare(&init_user_ns, dentry, attr);
696 	if (error)
697 		return error;
698 
699 	setattr_copy(&init_user_ns, inode, attr);
700 	mark_inode_dirty(inode);
701 	return 0;
702 }
703 
704 /*
705  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
706  * or euid/egid (for hide_pid_min=2)?
707  */
708 static bool has_pid_permissions(struct proc_fs_info *fs_info,
709 				 struct task_struct *task,
710 				 enum proc_hidepid hide_pid_min)
711 {
712 	/*
713 	 * If 'hidpid' mount option is set force a ptrace check,
714 	 * we indicate that we are using a filesystem syscall
715 	 * by passing PTRACE_MODE_READ_FSCREDS
716 	 */
717 	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
718 		return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
719 
720 	if (fs_info->hide_pid < hide_pid_min)
721 		return true;
722 	if (in_group_p(fs_info->pid_gid))
723 		return true;
724 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
725 }
726 
727 
728 static int proc_pid_permission(struct user_namespace *mnt_userns,
729 			       struct inode *inode, int mask)
730 {
731 	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
732 	struct task_struct *task;
733 	bool has_perms;
734 
735 	task = get_proc_task(inode);
736 	if (!task)
737 		return -ESRCH;
738 	has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
739 	put_task_struct(task);
740 
741 	if (!has_perms) {
742 		if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
743 			/*
744 			 * Let's make getdents(), stat(), and open()
745 			 * consistent with each other.  If a process
746 			 * may not stat() a file, it shouldn't be seen
747 			 * in procfs at all.
748 			 */
749 			return -ENOENT;
750 		}
751 
752 		return -EPERM;
753 	}
754 	return generic_permission(&init_user_ns, inode, mask);
755 }
756 
757 
758 
759 static const struct inode_operations proc_def_inode_operations = {
760 	.setattr	= proc_setattr,
761 };
762 
763 static int proc_single_show(struct seq_file *m, void *v)
764 {
765 	struct inode *inode = m->private;
766 	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
767 	struct pid *pid = proc_pid(inode);
768 	struct task_struct *task;
769 	int ret;
770 
771 	task = get_pid_task(pid, PIDTYPE_PID);
772 	if (!task)
773 		return -ESRCH;
774 
775 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
776 
777 	put_task_struct(task);
778 	return ret;
779 }
780 
781 static int proc_single_open(struct inode *inode, struct file *filp)
782 {
783 	return single_open(filp, proc_single_show, inode);
784 }
785 
786 static const struct file_operations proc_single_file_operations = {
787 	.open		= proc_single_open,
788 	.read		= seq_read,
789 	.llseek		= seq_lseek,
790 	.release	= single_release,
791 };
792 
793 
794 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
795 {
796 	struct task_struct *task = get_proc_task(inode);
797 	struct mm_struct *mm = ERR_PTR(-ESRCH);
798 
799 	if (task) {
800 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
801 		put_task_struct(task);
802 
803 		if (!IS_ERR_OR_NULL(mm)) {
804 			/* ensure this mm_struct can't be freed */
805 			mmgrab(mm);
806 			/* but do not pin its memory */
807 			mmput(mm);
808 		}
809 	}
810 
811 	return mm;
812 }
813 
814 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
815 {
816 	struct mm_struct *mm = proc_mem_open(inode, mode);
817 
818 	if (IS_ERR(mm))
819 		return PTR_ERR(mm);
820 
821 	file->private_data = mm;
822 	return 0;
823 }
824 
825 static int mem_open(struct inode *inode, struct file *file)
826 {
827 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
828 
829 	/* OK to pass negative loff_t, we can catch out-of-range */
830 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
831 
832 	return ret;
833 }
834 
835 static ssize_t mem_rw(struct file *file, char __user *buf,
836 			size_t count, loff_t *ppos, int write)
837 {
838 	struct mm_struct *mm = file->private_data;
839 	unsigned long addr = *ppos;
840 	ssize_t copied;
841 	char *page;
842 	unsigned int flags;
843 
844 	if (!mm)
845 		return 0;
846 
847 	page = (char *)__get_free_page(GFP_KERNEL);
848 	if (!page)
849 		return -ENOMEM;
850 
851 	copied = 0;
852 	if (!mmget_not_zero(mm))
853 		goto free;
854 
855 	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
856 
857 	while (count > 0) {
858 		size_t this_len = min_t(size_t, count, PAGE_SIZE);
859 
860 		if (write && copy_from_user(page, buf, this_len)) {
861 			copied = -EFAULT;
862 			break;
863 		}
864 
865 		this_len = access_remote_vm(mm, addr, page, this_len, flags);
866 		if (!this_len) {
867 			if (!copied)
868 				copied = -EIO;
869 			break;
870 		}
871 
872 		if (!write && copy_to_user(buf, page, this_len)) {
873 			copied = -EFAULT;
874 			break;
875 		}
876 
877 		buf += this_len;
878 		addr += this_len;
879 		copied += this_len;
880 		count -= this_len;
881 	}
882 	*ppos = addr;
883 
884 	mmput(mm);
885 free:
886 	free_page((unsigned long) page);
887 	return copied;
888 }
889 
890 static ssize_t mem_read(struct file *file, char __user *buf,
891 			size_t count, loff_t *ppos)
892 {
893 	return mem_rw(file, buf, count, ppos, 0);
894 }
895 
896 static ssize_t mem_write(struct file *file, const char __user *buf,
897 			 size_t count, loff_t *ppos)
898 {
899 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
900 }
901 
902 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
903 {
904 	switch (orig) {
905 	case 0:
906 		file->f_pos = offset;
907 		break;
908 	case 1:
909 		file->f_pos += offset;
910 		break;
911 	default:
912 		return -EINVAL;
913 	}
914 	force_successful_syscall_return();
915 	return file->f_pos;
916 }
917 
918 static int mem_release(struct inode *inode, struct file *file)
919 {
920 	struct mm_struct *mm = file->private_data;
921 	if (mm)
922 		mmdrop(mm);
923 	return 0;
924 }
925 
926 static const struct file_operations proc_mem_operations = {
927 	.llseek		= mem_lseek,
928 	.read		= mem_read,
929 	.write		= mem_write,
930 	.open		= mem_open,
931 	.release	= mem_release,
932 };
933 
934 static int environ_open(struct inode *inode, struct file *file)
935 {
936 	return __mem_open(inode, file, PTRACE_MODE_READ);
937 }
938 
939 static ssize_t environ_read(struct file *file, char __user *buf,
940 			size_t count, loff_t *ppos)
941 {
942 	char *page;
943 	unsigned long src = *ppos;
944 	int ret = 0;
945 	struct mm_struct *mm = file->private_data;
946 	unsigned long env_start, env_end;
947 
948 	/* Ensure the process spawned far enough to have an environment. */
949 	if (!mm || !mm->env_end)
950 		return 0;
951 
952 	page = (char *)__get_free_page(GFP_KERNEL);
953 	if (!page)
954 		return -ENOMEM;
955 
956 	ret = 0;
957 	if (!mmget_not_zero(mm))
958 		goto free;
959 
960 	spin_lock(&mm->arg_lock);
961 	env_start = mm->env_start;
962 	env_end = mm->env_end;
963 	spin_unlock(&mm->arg_lock);
964 
965 	while (count > 0) {
966 		size_t this_len, max_len;
967 		int retval;
968 
969 		if (src >= (env_end - env_start))
970 			break;
971 
972 		this_len = env_end - (env_start + src);
973 
974 		max_len = min_t(size_t, PAGE_SIZE, count);
975 		this_len = min(max_len, this_len);
976 
977 		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
978 
979 		if (retval <= 0) {
980 			ret = retval;
981 			break;
982 		}
983 
984 		if (copy_to_user(buf, page, retval)) {
985 			ret = -EFAULT;
986 			break;
987 		}
988 
989 		ret += retval;
990 		src += retval;
991 		buf += retval;
992 		count -= retval;
993 	}
994 	*ppos = src;
995 	mmput(mm);
996 
997 free:
998 	free_page((unsigned long) page);
999 	return ret;
1000 }
1001 
1002 static const struct file_operations proc_environ_operations = {
1003 	.open		= environ_open,
1004 	.read		= environ_read,
1005 	.llseek		= generic_file_llseek,
1006 	.release	= mem_release,
1007 };
1008 
1009 static int auxv_open(struct inode *inode, struct file *file)
1010 {
1011 	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1012 }
1013 
1014 static ssize_t auxv_read(struct file *file, char __user *buf,
1015 			size_t count, loff_t *ppos)
1016 {
1017 	struct mm_struct *mm = file->private_data;
1018 	unsigned int nwords = 0;
1019 
1020 	if (!mm)
1021 		return 0;
1022 	do {
1023 		nwords += 2;
1024 	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1025 	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1026 				       nwords * sizeof(mm->saved_auxv[0]));
1027 }
1028 
1029 static const struct file_operations proc_auxv_operations = {
1030 	.open		= auxv_open,
1031 	.read		= auxv_read,
1032 	.llseek		= generic_file_llseek,
1033 	.release	= mem_release,
1034 };
1035 
1036 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1037 			    loff_t *ppos)
1038 {
1039 	struct task_struct *task = get_proc_task(file_inode(file));
1040 	char buffer[PROC_NUMBUF];
1041 	int oom_adj = OOM_ADJUST_MIN;
1042 	size_t len;
1043 
1044 	if (!task)
1045 		return -ESRCH;
1046 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1047 		oom_adj = OOM_ADJUST_MAX;
1048 	else
1049 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1050 			  OOM_SCORE_ADJ_MAX;
1051 	put_task_struct(task);
1052 	if (oom_adj > OOM_ADJUST_MAX)
1053 		oom_adj = OOM_ADJUST_MAX;
1054 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1055 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1056 }
1057 
1058 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1059 {
1060 	struct mm_struct *mm = NULL;
1061 	struct task_struct *task;
1062 	int err = 0;
1063 
1064 	task = get_proc_task(file_inode(file));
1065 	if (!task)
1066 		return -ESRCH;
1067 
1068 	mutex_lock(&oom_adj_mutex);
1069 	if (legacy) {
1070 		if (oom_adj < task->signal->oom_score_adj &&
1071 				!capable(CAP_SYS_RESOURCE)) {
1072 			err = -EACCES;
1073 			goto err_unlock;
1074 		}
1075 		/*
1076 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1077 		 * /proc/pid/oom_score_adj instead.
1078 		 */
1079 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1080 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1081 			  task_pid_nr(task));
1082 	} else {
1083 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1084 				!capable(CAP_SYS_RESOURCE)) {
1085 			err = -EACCES;
1086 			goto err_unlock;
1087 		}
1088 	}
1089 
1090 	/*
1091 	 * Make sure we will check other processes sharing the mm if this is
1092 	 * not vfrok which wants its own oom_score_adj.
1093 	 * pin the mm so it doesn't go away and get reused after task_unlock
1094 	 */
1095 	if (!task->vfork_done) {
1096 		struct task_struct *p = find_lock_task_mm(task);
1097 
1098 		if (p) {
1099 			if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1100 				mm = p->mm;
1101 				mmgrab(mm);
1102 			}
1103 			task_unlock(p);
1104 		}
1105 	}
1106 
1107 	task->signal->oom_score_adj = oom_adj;
1108 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1109 		task->signal->oom_score_adj_min = (short)oom_adj;
1110 	trace_oom_score_adj_update(task);
1111 
1112 	if (mm) {
1113 		struct task_struct *p;
1114 
1115 		rcu_read_lock();
1116 		for_each_process(p) {
1117 			if (same_thread_group(task, p))
1118 				continue;
1119 
1120 			/* do not touch kernel threads or the global init */
1121 			if (p->flags & PF_KTHREAD || is_global_init(p))
1122 				continue;
1123 
1124 			task_lock(p);
1125 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1126 				p->signal->oom_score_adj = oom_adj;
1127 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1128 					p->signal->oom_score_adj_min = (short)oom_adj;
1129 			}
1130 			task_unlock(p);
1131 		}
1132 		rcu_read_unlock();
1133 		mmdrop(mm);
1134 	}
1135 err_unlock:
1136 	mutex_unlock(&oom_adj_mutex);
1137 	put_task_struct(task);
1138 	return err;
1139 }
1140 
1141 /*
1142  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1143  * kernels.  The effective policy is defined by oom_score_adj, which has a
1144  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1145  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1146  * Processes that become oom disabled via oom_adj will still be oom disabled
1147  * with this implementation.
1148  *
1149  * oom_adj cannot be removed since existing userspace binaries use it.
1150  */
1151 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1152 			     size_t count, loff_t *ppos)
1153 {
1154 	char buffer[PROC_NUMBUF];
1155 	int oom_adj;
1156 	int err;
1157 
1158 	memset(buffer, 0, sizeof(buffer));
1159 	if (count > sizeof(buffer) - 1)
1160 		count = sizeof(buffer) - 1;
1161 	if (copy_from_user(buffer, buf, count)) {
1162 		err = -EFAULT;
1163 		goto out;
1164 	}
1165 
1166 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1167 	if (err)
1168 		goto out;
1169 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1170 	     oom_adj != OOM_DISABLE) {
1171 		err = -EINVAL;
1172 		goto out;
1173 	}
1174 
1175 	/*
1176 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1177 	 * value is always attainable.
1178 	 */
1179 	if (oom_adj == OOM_ADJUST_MAX)
1180 		oom_adj = OOM_SCORE_ADJ_MAX;
1181 	else
1182 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1183 
1184 	err = __set_oom_adj(file, oom_adj, true);
1185 out:
1186 	return err < 0 ? err : count;
1187 }
1188 
1189 static const struct file_operations proc_oom_adj_operations = {
1190 	.read		= oom_adj_read,
1191 	.write		= oom_adj_write,
1192 	.llseek		= generic_file_llseek,
1193 };
1194 
1195 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1196 					size_t count, loff_t *ppos)
1197 {
1198 	struct task_struct *task = get_proc_task(file_inode(file));
1199 	char buffer[PROC_NUMBUF];
1200 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1201 	size_t len;
1202 
1203 	if (!task)
1204 		return -ESRCH;
1205 	oom_score_adj = task->signal->oom_score_adj;
1206 	put_task_struct(task);
1207 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1208 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1209 }
1210 
1211 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1212 					size_t count, loff_t *ppos)
1213 {
1214 	char buffer[PROC_NUMBUF];
1215 	int oom_score_adj;
1216 	int err;
1217 
1218 	memset(buffer, 0, sizeof(buffer));
1219 	if (count > sizeof(buffer) - 1)
1220 		count = sizeof(buffer) - 1;
1221 	if (copy_from_user(buffer, buf, count)) {
1222 		err = -EFAULT;
1223 		goto out;
1224 	}
1225 
1226 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1227 	if (err)
1228 		goto out;
1229 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1230 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1231 		err = -EINVAL;
1232 		goto out;
1233 	}
1234 
1235 	err = __set_oom_adj(file, oom_score_adj, false);
1236 out:
1237 	return err < 0 ? err : count;
1238 }
1239 
1240 static const struct file_operations proc_oom_score_adj_operations = {
1241 	.read		= oom_score_adj_read,
1242 	.write		= oom_score_adj_write,
1243 	.llseek		= default_llseek,
1244 };
1245 
1246 #ifdef CONFIG_AUDIT
1247 #define TMPBUFLEN 11
1248 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1249 				  size_t count, loff_t *ppos)
1250 {
1251 	struct inode * inode = file_inode(file);
1252 	struct task_struct *task = get_proc_task(inode);
1253 	ssize_t length;
1254 	char tmpbuf[TMPBUFLEN];
1255 
1256 	if (!task)
1257 		return -ESRCH;
1258 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1259 			   from_kuid(file->f_cred->user_ns,
1260 				     audit_get_loginuid(task)));
1261 	put_task_struct(task);
1262 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1263 }
1264 
1265 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1266 				   size_t count, loff_t *ppos)
1267 {
1268 	struct inode * inode = file_inode(file);
1269 	uid_t loginuid;
1270 	kuid_t kloginuid;
1271 	int rv;
1272 
1273 	/* Don't let kthreads write their own loginuid */
1274 	if (current->flags & PF_KTHREAD)
1275 		return -EPERM;
1276 
1277 	rcu_read_lock();
1278 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1279 		rcu_read_unlock();
1280 		return -EPERM;
1281 	}
1282 	rcu_read_unlock();
1283 
1284 	if (*ppos != 0) {
1285 		/* No partial writes. */
1286 		return -EINVAL;
1287 	}
1288 
1289 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1290 	if (rv < 0)
1291 		return rv;
1292 
1293 	/* is userspace tring to explicitly UNSET the loginuid? */
1294 	if (loginuid == AUDIT_UID_UNSET) {
1295 		kloginuid = INVALID_UID;
1296 	} else {
1297 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1298 		if (!uid_valid(kloginuid))
1299 			return -EINVAL;
1300 	}
1301 
1302 	rv = audit_set_loginuid(kloginuid);
1303 	if (rv < 0)
1304 		return rv;
1305 	return count;
1306 }
1307 
1308 static const struct file_operations proc_loginuid_operations = {
1309 	.read		= proc_loginuid_read,
1310 	.write		= proc_loginuid_write,
1311 	.llseek		= generic_file_llseek,
1312 };
1313 
1314 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1315 				  size_t count, loff_t *ppos)
1316 {
1317 	struct inode * inode = file_inode(file);
1318 	struct task_struct *task = get_proc_task(inode);
1319 	ssize_t length;
1320 	char tmpbuf[TMPBUFLEN];
1321 
1322 	if (!task)
1323 		return -ESRCH;
1324 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1325 				audit_get_sessionid(task));
1326 	put_task_struct(task);
1327 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1328 }
1329 
1330 static const struct file_operations proc_sessionid_operations = {
1331 	.read		= proc_sessionid_read,
1332 	.llseek		= generic_file_llseek,
1333 };
1334 #endif
1335 
1336 #ifdef CONFIG_FAULT_INJECTION
1337 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1338 				      size_t count, loff_t *ppos)
1339 {
1340 	struct task_struct *task = get_proc_task(file_inode(file));
1341 	char buffer[PROC_NUMBUF];
1342 	size_t len;
1343 	int make_it_fail;
1344 
1345 	if (!task)
1346 		return -ESRCH;
1347 	make_it_fail = task->make_it_fail;
1348 	put_task_struct(task);
1349 
1350 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1351 
1352 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1353 }
1354 
1355 static ssize_t proc_fault_inject_write(struct file * file,
1356 			const char __user * buf, size_t count, loff_t *ppos)
1357 {
1358 	struct task_struct *task;
1359 	char buffer[PROC_NUMBUF];
1360 	int make_it_fail;
1361 	int rv;
1362 
1363 	if (!capable(CAP_SYS_RESOURCE))
1364 		return -EPERM;
1365 	memset(buffer, 0, sizeof(buffer));
1366 	if (count > sizeof(buffer) - 1)
1367 		count = sizeof(buffer) - 1;
1368 	if (copy_from_user(buffer, buf, count))
1369 		return -EFAULT;
1370 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1371 	if (rv < 0)
1372 		return rv;
1373 	if (make_it_fail < 0 || make_it_fail > 1)
1374 		return -EINVAL;
1375 
1376 	task = get_proc_task(file_inode(file));
1377 	if (!task)
1378 		return -ESRCH;
1379 	task->make_it_fail = make_it_fail;
1380 	put_task_struct(task);
1381 
1382 	return count;
1383 }
1384 
1385 static const struct file_operations proc_fault_inject_operations = {
1386 	.read		= proc_fault_inject_read,
1387 	.write		= proc_fault_inject_write,
1388 	.llseek		= generic_file_llseek,
1389 };
1390 
1391 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1392 				   size_t count, loff_t *ppos)
1393 {
1394 	struct task_struct *task;
1395 	int err;
1396 	unsigned int n;
1397 
1398 	err = kstrtouint_from_user(buf, count, 0, &n);
1399 	if (err)
1400 		return err;
1401 
1402 	task = get_proc_task(file_inode(file));
1403 	if (!task)
1404 		return -ESRCH;
1405 	task->fail_nth = n;
1406 	put_task_struct(task);
1407 
1408 	return count;
1409 }
1410 
1411 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1412 				  size_t count, loff_t *ppos)
1413 {
1414 	struct task_struct *task;
1415 	char numbuf[PROC_NUMBUF];
1416 	ssize_t len;
1417 
1418 	task = get_proc_task(file_inode(file));
1419 	if (!task)
1420 		return -ESRCH;
1421 	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1422 	put_task_struct(task);
1423 	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1424 }
1425 
1426 static const struct file_operations proc_fail_nth_operations = {
1427 	.read		= proc_fail_nth_read,
1428 	.write		= proc_fail_nth_write,
1429 };
1430 #endif
1431 
1432 
1433 #ifdef CONFIG_SCHED_DEBUG
1434 /*
1435  * Print out various scheduling related per-task fields:
1436  */
1437 static int sched_show(struct seq_file *m, void *v)
1438 {
1439 	struct inode *inode = m->private;
1440 	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1441 	struct task_struct *p;
1442 
1443 	p = get_proc_task(inode);
1444 	if (!p)
1445 		return -ESRCH;
1446 	proc_sched_show_task(p, ns, m);
1447 
1448 	put_task_struct(p);
1449 
1450 	return 0;
1451 }
1452 
1453 static ssize_t
1454 sched_write(struct file *file, const char __user *buf,
1455 	    size_t count, loff_t *offset)
1456 {
1457 	struct inode *inode = file_inode(file);
1458 	struct task_struct *p;
1459 
1460 	p = get_proc_task(inode);
1461 	if (!p)
1462 		return -ESRCH;
1463 	proc_sched_set_task(p);
1464 
1465 	put_task_struct(p);
1466 
1467 	return count;
1468 }
1469 
1470 static int sched_open(struct inode *inode, struct file *filp)
1471 {
1472 	return single_open(filp, sched_show, inode);
1473 }
1474 
1475 static const struct file_operations proc_pid_sched_operations = {
1476 	.open		= sched_open,
1477 	.read		= seq_read,
1478 	.write		= sched_write,
1479 	.llseek		= seq_lseek,
1480 	.release	= single_release,
1481 };
1482 
1483 #endif
1484 
1485 #ifdef CONFIG_SCHED_AUTOGROUP
1486 /*
1487  * Print out autogroup related information:
1488  */
1489 static int sched_autogroup_show(struct seq_file *m, void *v)
1490 {
1491 	struct inode *inode = m->private;
1492 	struct task_struct *p;
1493 
1494 	p = get_proc_task(inode);
1495 	if (!p)
1496 		return -ESRCH;
1497 	proc_sched_autogroup_show_task(p, m);
1498 
1499 	put_task_struct(p);
1500 
1501 	return 0;
1502 }
1503 
1504 static ssize_t
1505 sched_autogroup_write(struct file *file, const char __user *buf,
1506 	    size_t count, loff_t *offset)
1507 {
1508 	struct inode *inode = file_inode(file);
1509 	struct task_struct *p;
1510 	char buffer[PROC_NUMBUF];
1511 	int nice;
1512 	int err;
1513 
1514 	memset(buffer, 0, sizeof(buffer));
1515 	if (count > sizeof(buffer) - 1)
1516 		count = sizeof(buffer) - 1;
1517 	if (copy_from_user(buffer, buf, count))
1518 		return -EFAULT;
1519 
1520 	err = kstrtoint(strstrip(buffer), 0, &nice);
1521 	if (err < 0)
1522 		return err;
1523 
1524 	p = get_proc_task(inode);
1525 	if (!p)
1526 		return -ESRCH;
1527 
1528 	err = proc_sched_autogroup_set_nice(p, nice);
1529 	if (err)
1530 		count = err;
1531 
1532 	put_task_struct(p);
1533 
1534 	return count;
1535 }
1536 
1537 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1538 {
1539 	int ret;
1540 
1541 	ret = single_open(filp, sched_autogroup_show, NULL);
1542 	if (!ret) {
1543 		struct seq_file *m = filp->private_data;
1544 
1545 		m->private = inode;
1546 	}
1547 	return ret;
1548 }
1549 
1550 static const struct file_operations proc_pid_sched_autogroup_operations = {
1551 	.open		= sched_autogroup_open,
1552 	.read		= seq_read,
1553 	.write		= sched_autogroup_write,
1554 	.llseek		= seq_lseek,
1555 	.release	= single_release,
1556 };
1557 
1558 #endif /* CONFIG_SCHED_AUTOGROUP */
1559 
1560 #ifdef CONFIG_TIME_NS
1561 static int timens_offsets_show(struct seq_file *m, void *v)
1562 {
1563 	struct task_struct *p;
1564 
1565 	p = get_proc_task(file_inode(m->file));
1566 	if (!p)
1567 		return -ESRCH;
1568 	proc_timens_show_offsets(p, m);
1569 
1570 	put_task_struct(p);
1571 
1572 	return 0;
1573 }
1574 
1575 static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1576 				    size_t count, loff_t *ppos)
1577 {
1578 	struct inode *inode = file_inode(file);
1579 	struct proc_timens_offset offsets[2];
1580 	char *kbuf = NULL, *pos, *next_line;
1581 	struct task_struct *p;
1582 	int ret, noffsets;
1583 
1584 	/* Only allow < page size writes at the beginning of the file */
1585 	if ((*ppos != 0) || (count >= PAGE_SIZE))
1586 		return -EINVAL;
1587 
1588 	/* Slurp in the user data */
1589 	kbuf = memdup_user_nul(buf, count);
1590 	if (IS_ERR(kbuf))
1591 		return PTR_ERR(kbuf);
1592 
1593 	/* Parse the user data */
1594 	ret = -EINVAL;
1595 	noffsets = 0;
1596 	for (pos = kbuf; pos; pos = next_line) {
1597 		struct proc_timens_offset *off = &offsets[noffsets];
1598 		char clock[10];
1599 		int err;
1600 
1601 		/* Find the end of line and ensure we don't look past it */
1602 		next_line = strchr(pos, '\n');
1603 		if (next_line) {
1604 			*next_line = '\0';
1605 			next_line++;
1606 			if (*next_line == '\0')
1607 				next_line = NULL;
1608 		}
1609 
1610 		err = sscanf(pos, "%9s %lld %lu", clock,
1611 				&off->val.tv_sec, &off->val.tv_nsec);
1612 		if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1613 			goto out;
1614 
1615 		clock[sizeof(clock) - 1] = 0;
1616 		if (strcmp(clock, "monotonic") == 0 ||
1617 		    strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1618 			off->clockid = CLOCK_MONOTONIC;
1619 		else if (strcmp(clock, "boottime") == 0 ||
1620 			 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1621 			off->clockid = CLOCK_BOOTTIME;
1622 		else
1623 			goto out;
1624 
1625 		noffsets++;
1626 		if (noffsets == ARRAY_SIZE(offsets)) {
1627 			if (next_line)
1628 				count = next_line - kbuf;
1629 			break;
1630 		}
1631 	}
1632 
1633 	ret = -ESRCH;
1634 	p = get_proc_task(inode);
1635 	if (!p)
1636 		goto out;
1637 	ret = proc_timens_set_offset(file, p, offsets, noffsets);
1638 	put_task_struct(p);
1639 	if (ret)
1640 		goto out;
1641 
1642 	ret = count;
1643 out:
1644 	kfree(kbuf);
1645 	return ret;
1646 }
1647 
1648 static int timens_offsets_open(struct inode *inode, struct file *filp)
1649 {
1650 	return single_open(filp, timens_offsets_show, inode);
1651 }
1652 
1653 static const struct file_operations proc_timens_offsets_operations = {
1654 	.open		= timens_offsets_open,
1655 	.read		= seq_read,
1656 	.write		= timens_offsets_write,
1657 	.llseek		= seq_lseek,
1658 	.release	= single_release,
1659 };
1660 #endif /* CONFIG_TIME_NS */
1661 
1662 static ssize_t comm_write(struct file *file, const char __user *buf,
1663 				size_t count, loff_t *offset)
1664 {
1665 	struct inode *inode = file_inode(file);
1666 	struct task_struct *p;
1667 	char buffer[TASK_COMM_LEN];
1668 	const size_t maxlen = sizeof(buffer) - 1;
1669 
1670 	memset(buffer, 0, sizeof(buffer));
1671 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1672 		return -EFAULT;
1673 
1674 	p = get_proc_task(inode);
1675 	if (!p)
1676 		return -ESRCH;
1677 
1678 	if (same_thread_group(current, p)) {
1679 		set_task_comm(p, buffer);
1680 		proc_comm_connector(p);
1681 	}
1682 	else
1683 		count = -EINVAL;
1684 
1685 	put_task_struct(p);
1686 
1687 	return count;
1688 }
1689 
1690 static int comm_show(struct seq_file *m, void *v)
1691 {
1692 	struct inode *inode = m->private;
1693 	struct task_struct *p;
1694 
1695 	p = get_proc_task(inode);
1696 	if (!p)
1697 		return -ESRCH;
1698 
1699 	proc_task_name(m, p, false);
1700 	seq_putc(m, '\n');
1701 
1702 	put_task_struct(p);
1703 
1704 	return 0;
1705 }
1706 
1707 static int comm_open(struct inode *inode, struct file *filp)
1708 {
1709 	return single_open(filp, comm_show, inode);
1710 }
1711 
1712 static const struct file_operations proc_pid_set_comm_operations = {
1713 	.open		= comm_open,
1714 	.read		= seq_read,
1715 	.write		= comm_write,
1716 	.llseek		= seq_lseek,
1717 	.release	= single_release,
1718 };
1719 
1720 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1721 {
1722 	struct task_struct *task;
1723 	struct file *exe_file;
1724 
1725 	task = get_proc_task(d_inode(dentry));
1726 	if (!task)
1727 		return -ENOENT;
1728 	exe_file = get_task_exe_file(task);
1729 	put_task_struct(task);
1730 	if (exe_file) {
1731 		*exe_path = exe_file->f_path;
1732 		path_get(&exe_file->f_path);
1733 		fput(exe_file);
1734 		return 0;
1735 	} else
1736 		return -ENOENT;
1737 }
1738 
1739 static const char *proc_pid_get_link(struct dentry *dentry,
1740 				     struct inode *inode,
1741 				     struct delayed_call *done)
1742 {
1743 	struct path path;
1744 	int error = -EACCES;
1745 
1746 	if (!dentry)
1747 		return ERR_PTR(-ECHILD);
1748 
1749 	/* Are we allowed to snoop on the tasks file descriptors? */
1750 	if (!proc_fd_access_allowed(inode))
1751 		goto out;
1752 
1753 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1754 	if (error)
1755 		goto out;
1756 
1757 	error = nd_jump_link(&path);
1758 out:
1759 	return ERR_PTR(error);
1760 }
1761 
1762 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1763 {
1764 	char *tmp = (char *)__get_free_page(GFP_KERNEL);
1765 	char *pathname;
1766 	int len;
1767 
1768 	if (!tmp)
1769 		return -ENOMEM;
1770 
1771 	pathname = d_path(path, tmp, PAGE_SIZE);
1772 	len = PTR_ERR(pathname);
1773 	if (IS_ERR(pathname))
1774 		goto out;
1775 	len = tmp + PAGE_SIZE - 1 - pathname;
1776 
1777 	if (len > buflen)
1778 		len = buflen;
1779 	if (copy_to_user(buffer, pathname, len))
1780 		len = -EFAULT;
1781  out:
1782 	free_page((unsigned long)tmp);
1783 	return len;
1784 }
1785 
1786 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1787 {
1788 	int error = -EACCES;
1789 	struct inode *inode = d_inode(dentry);
1790 	struct path path;
1791 
1792 	/* Are we allowed to snoop on the tasks file descriptors? */
1793 	if (!proc_fd_access_allowed(inode))
1794 		goto out;
1795 
1796 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1797 	if (error)
1798 		goto out;
1799 
1800 	error = do_proc_readlink(&path, buffer, buflen);
1801 	path_put(&path);
1802 out:
1803 	return error;
1804 }
1805 
1806 const struct inode_operations proc_pid_link_inode_operations = {
1807 	.readlink	= proc_pid_readlink,
1808 	.get_link	= proc_pid_get_link,
1809 	.setattr	= proc_setattr,
1810 };
1811 
1812 
1813 /* building an inode */
1814 
1815 void task_dump_owner(struct task_struct *task, umode_t mode,
1816 		     kuid_t *ruid, kgid_t *rgid)
1817 {
1818 	/* Depending on the state of dumpable compute who should own a
1819 	 * proc file for a task.
1820 	 */
1821 	const struct cred *cred;
1822 	kuid_t uid;
1823 	kgid_t gid;
1824 
1825 	if (unlikely(task->flags & PF_KTHREAD)) {
1826 		*ruid = GLOBAL_ROOT_UID;
1827 		*rgid = GLOBAL_ROOT_GID;
1828 		return;
1829 	}
1830 
1831 	/* Default to the tasks effective ownership */
1832 	rcu_read_lock();
1833 	cred = __task_cred(task);
1834 	uid = cred->euid;
1835 	gid = cred->egid;
1836 	rcu_read_unlock();
1837 
1838 	/*
1839 	 * Before the /proc/pid/status file was created the only way to read
1840 	 * the effective uid of a /process was to stat /proc/pid.  Reading
1841 	 * /proc/pid/status is slow enough that procps and other packages
1842 	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1843 	 * made this apply to all per process world readable and executable
1844 	 * directories.
1845 	 */
1846 	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1847 		struct mm_struct *mm;
1848 		task_lock(task);
1849 		mm = task->mm;
1850 		/* Make non-dumpable tasks owned by some root */
1851 		if (mm) {
1852 			if (get_dumpable(mm) != SUID_DUMP_USER) {
1853 				struct user_namespace *user_ns = mm->user_ns;
1854 
1855 				uid = make_kuid(user_ns, 0);
1856 				if (!uid_valid(uid))
1857 					uid = GLOBAL_ROOT_UID;
1858 
1859 				gid = make_kgid(user_ns, 0);
1860 				if (!gid_valid(gid))
1861 					gid = GLOBAL_ROOT_GID;
1862 			}
1863 		} else {
1864 			uid = GLOBAL_ROOT_UID;
1865 			gid = GLOBAL_ROOT_GID;
1866 		}
1867 		task_unlock(task);
1868 	}
1869 	*ruid = uid;
1870 	*rgid = gid;
1871 }
1872 
1873 void proc_pid_evict_inode(struct proc_inode *ei)
1874 {
1875 	struct pid *pid = ei->pid;
1876 
1877 	if (S_ISDIR(ei->vfs_inode.i_mode)) {
1878 		spin_lock(&pid->lock);
1879 		hlist_del_init_rcu(&ei->sibling_inodes);
1880 		spin_unlock(&pid->lock);
1881 	}
1882 
1883 	put_pid(pid);
1884 }
1885 
1886 struct inode *proc_pid_make_inode(struct super_block * sb,
1887 				  struct task_struct *task, umode_t mode)
1888 {
1889 	struct inode * inode;
1890 	struct proc_inode *ei;
1891 	struct pid *pid;
1892 
1893 	/* We need a new inode */
1894 
1895 	inode = new_inode(sb);
1896 	if (!inode)
1897 		goto out;
1898 
1899 	/* Common stuff */
1900 	ei = PROC_I(inode);
1901 	inode->i_mode = mode;
1902 	inode->i_ino = get_next_ino();
1903 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1904 	inode->i_op = &proc_def_inode_operations;
1905 
1906 	/*
1907 	 * grab the reference to task.
1908 	 */
1909 	pid = get_task_pid(task, PIDTYPE_PID);
1910 	if (!pid)
1911 		goto out_unlock;
1912 
1913 	/* Let the pid remember us for quick removal */
1914 	ei->pid = pid;
1915 	if (S_ISDIR(mode)) {
1916 		spin_lock(&pid->lock);
1917 		hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1918 		spin_unlock(&pid->lock);
1919 	}
1920 
1921 	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1922 	security_task_to_inode(task, inode);
1923 
1924 out:
1925 	return inode;
1926 
1927 out_unlock:
1928 	iput(inode);
1929 	return NULL;
1930 }
1931 
1932 int pid_getattr(struct user_namespace *mnt_userns, const struct path *path,
1933 		struct kstat *stat, u32 request_mask, unsigned int query_flags)
1934 {
1935 	struct inode *inode = d_inode(path->dentry);
1936 	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
1937 	struct task_struct *task;
1938 
1939 	generic_fillattr(&init_user_ns, inode, stat);
1940 
1941 	stat->uid = GLOBAL_ROOT_UID;
1942 	stat->gid = GLOBAL_ROOT_GID;
1943 	rcu_read_lock();
1944 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1945 	if (task) {
1946 		if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
1947 			rcu_read_unlock();
1948 			/*
1949 			 * This doesn't prevent learning whether PID exists,
1950 			 * it only makes getattr() consistent with readdir().
1951 			 */
1952 			return -ENOENT;
1953 		}
1954 		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1955 	}
1956 	rcu_read_unlock();
1957 	return 0;
1958 }
1959 
1960 /* dentry stuff */
1961 
1962 /*
1963  * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1964  */
1965 void pid_update_inode(struct task_struct *task, struct inode *inode)
1966 {
1967 	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1968 
1969 	inode->i_mode &= ~(S_ISUID | S_ISGID);
1970 	security_task_to_inode(task, inode);
1971 }
1972 
1973 /*
1974  * Rewrite the inode's ownerships here because the owning task may have
1975  * performed a setuid(), etc.
1976  *
1977  */
1978 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1979 {
1980 	struct inode *inode;
1981 	struct task_struct *task;
1982 
1983 	if (flags & LOOKUP_RCU)
1984 		return -ECHILD;
1985 
1986 	inode = d_inode(dentry);
1987 	task = get_proc_task(inode);
1988 
1989 	if (task) {
1990 		pid_update_inode(task, inode);
1991 		put_task_struct(task);
1992 		return 1;
1993 	}
1994 	return 0;
1995 }
1996 
1997 static inline bool proc_inode_is_dead(struct inode *inode)
1998 {
1999 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2000 }
2001 
2002 int pid_delete_dentry(const struct dentry *dentry)
2003 {
2004 	/* Is the task we represent dead?
2005 	 * If so, then don't put the dentry on the lru list,
2006 	 * kill it immediately.
2007 	 */
2008 	return proc_inode_is_dead(d_inode(dentry));
2009 }
2010 
2011 const struct dentry_operations pid_dentry_operations =
2012 {
2013 	.d_revalidate	= pid_revalidate,
2014 	.d_delete	= pid_delete_dentry,
2015 };
2016 
2017 /* Lookups */
2018 
2019 /*
2020  * Fill a directory entry.
2021  *
2022  * If possible create the dcache entry and derive our inode number and
2023  * file type from dcache entry.
2024  *
2025  * Since all of the proc inode numbers are dynamically generated, the inode
2026  * numbers do not exist until the inode is cache.  This means creating
2027  * the dcache entry in readdir is necessary to keep the inode numbers
2028  * reported by readdir in sync with the inode numbers reported
2029  * by stat.
2030  */
2031 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2032 	const char *name, unsigned int len,
2033 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
2034 {
2035 	struct dentry *child, *dir = file->f_path.dentry;
2036 	struct qstr qname = QSTR_INIT(name, len);
2037 	struct inode *inode;
2038 	unsigned type = DT_UNKNOWN;
2039 	ino_t ino = 1;
2040 
2041 	child = d_hash_and_lookup(dir, &qname);
2042 	if (!child) {
2043 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2044 		child = d_alloc_parallel(dir, &qname, &wq);
2045 		if (IS_ERR(child))
2046 			goto end_instantiate;
2047 		if (d_in_lookup(child)) {
2048 			struct dentry *res;
2049 			res = instantiate(child, task, ptr);
2050 			d_lookup_done(child);
2051 			if (unlikely(res)) {
2052 				dput(child);
2053 				child = res;
2054 				if (IS_ERR(child))
2055 					goto end_instantiate;
2056 			}
2057 		}
2058 	}
2059 	inode = d_inode(child);
2060 	ino = inode->i_ino;
2061 	type = inode->i_mode >> 12;
2062 	dput(child);
2063 end_instantiate:
2064 	return dir_emit(ctx, name, len, ino, type);
2065 }
2066 
2067 /*
2068  * dname_to_vma_addr - maps a dentry name into two unsigned longs
2069  * which represent vma start and end addresses.
2070  */
2071 static int dname_to_vma_addr(struct dentry *dentry,
2072 			     unsigned long *start, unsigned long *end)
2073 {
2074 	const char *str = dentry->d_name.name;
2075 	unsigned long long sval, eval;
2076 	unsigned int len;
2077 
2078 	if (str[0] == '0' && str[1] != '-')
2079 		return -EINVAL;
2080 	len = _parse_integer(str, 16, &sval);
2081 	if (len & KSTRTOX_OVERFLOW)
2082 		return -EINVAL;
2083 	if (sval != (unsigned long)sval)
2084 		return -EINVAL;
2085 	str += len;
2086 
2087 	if (*str != '-')
2088 		return -EINVAL;
2089 	str++;
2090 
2091 	if (str[0] == '0' && str[1])
2092 		return -EINVAL;
2093 	len = _parse_integer(str, 16, &eval);
2094 	if (len & KSTRTOX_OVERFLOW)
2095 		return -EINVAL;
2096 	if (eval != (unsigned long)eval)
2097 		return -EINVAL;
2098 	str += len;
2099 
2100 	if (*str != '\0')
2101 		return -EINVAL;
2102 
2103 	*start = sval;
2104 	*end = eval;
2105 
2106 	return 0;
2107 }
2108 
2109 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2110 {
2111 	unsigned long vm_start, vm_end;
2112 	bool exact_vma_exists = false;
2113 	struct mm_struct *mm = NULL;
2114 	struct task_struct *task;
2115 	struct inode *inode;
2116 	int status = 0;
2117 
2118 	if (flags & LOOKUP_RCU)
2119 		return -ECHILD;
2120 
2121 	inode = d_inode(dentry);
2122 	task = get_proc_task(inode);
2123 	if (!task)
2124 		goto out_notask;
2125 
2126 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2127 	if (IS_ERR_OR_NULL(mm))
2128 		goto out;
2129 
2130 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2131 		status = mmap_read_lock_killable(mm);
2132 		if (!status) {
2133 			exact_vma_exists = !!find_exact_vma(mm, vm_start,
2134 							    vm_end);
2135 			mmap_read_unlock(mm);
2136 		}
2137 	}
2138 
2139 	mmput(mm);
2140 
2141 	if (exact_vma_exists) {
2142 		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2143 
2144 		security_task_to_inode(task, inode);
2145 		status = 1;
2146 	}
2147 
2148 out:
2149 	put_task_struct(task);
2150 
2151 out_notask:
2152 	return status;
2153 }
2154 
2155 static const struct dentry_operations tid_map_files_dentry_operations = {
2156 	.d_revalidate	= map_files_d_revalidate,
2157 	.d_delete	= pid_delete_dentry,
2158 };
2159 
2160 static int map_files_get_link(struct dentry *dentry, struct path *path)
2161 {
2162 	unsigned long vm_start, vm_end;
2163 	struct vm_area_struct *vma;
2164 	struct task_struct *task;
2165 	struct mm_struct *mm;
2166 	int rc;
2167 
2168 	rc = -ENOENT;
2169 	task = get_proc_task(d_inode(dentry));
2170 	if (!task)
2171 		goto out;
2172 
2173 	mm = get_task_mm(task);
2174 	put_task_struct(task);
2175 	if (!mm)
2176 		goto out;
2177 
2178 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2179 	if (rc)
2180 		goto out_mmput;
2181 
2182 	rc = mmap_read_lock_killable(mm);
2183 	if (rc)
2184 		goto out_mmput;
2185 
2186 	rc = -ENOENT;
2187 	vma = find_exact_vma(mm, vm_start, vm_end);
2188 	if (vma && vma->vm_file) {
2189 		*path = vma->vm_file->f_path;
2190 		path_get(path);
2191 		rc = 0;
2192 	}
2193 	mmap_read_unlock(mm);
2194 
2195 out_mmput:
2196 	mmput(mm);
2197 out:
2198 	return rc;
2199 }
2200 
2201 struct map_files_info {
2202 	unsigned long	start;
2203 	unsigned long	end;
2204 	fmode_t		mode;
2205 };
2206 
2207 /*
2208  * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2209  * to concerns about how the symlinks may be used to bypass permissions on
2210  * ancestor directories in the path to the file in question.
2211  */
2212 static const char *
2213 proc_map_files_get_link(struct dentry *dentry,
2214 			struct inode *inode,
2215 		        struct delayed_call *done)
2216 {
2217 	if (!checkpoint_restore_ns_capable(&init_user_ns))
2218 		return ERR_PTR(-EPERM);
2219 
2220 	return proc_pid_get_link(dentry, inode, done);
2221 }
2222 
2223 /*
2224  * Identical to proc_pid_link_inode_operations except for get_link()
2225  */
2226 static const struct inode_operations proc_map_files_link_inode_operations = {
2227 	.readlink	= proc_pid_readlink,
2228 	.get_link	= proc_map_files_get_link,
2229 	.setattr	= proc_setattr,
2230 };
2231 
2232 static struct dentry *
2233 proc_map_files_instantiate(struct dentry *dentry,
2234 			   struct task_struct *task, const void *ptr)
2235 {
2236 	fmode_t mode = (fmode_t)(unsigned long)ptr;
2237 	struct proc_inode *ei;
2238 	struct inode *inode;
2239 
2240 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2241 				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2242 				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2243 	if (!inode)
2244 		return ERR_PTR(-ENOENT);
2245 
2246 	ei = PROC_I(inode);
2247 	ei->op.proc_get_link = map_files_get_link;
2248 
2249 	inode->i_op = &proc_map_files_link_inode_operations;
2250 	inode->i_size = 64;
2251 
2252 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2253 	return d_splice_alias(inode, dentry);
2254 }
2255 
2256 static struct dentry *proc_map_files_lookup(struct inode *dir,
2257 		struct dentry *dentry, unsigned int flags)
2258 {
2259 	unsigned long vm_start, vm_end;
2260 	struct vm_area_struct *vma;
2261 	struct task_struct *task;
2262 	struct dentry *result;
2263 	struct mm_struct *mm;
2264 
2265 	result = ERR_PTR(-ENOENT);
2266 	task = get_proc_task(dir);
2267 	if (!task)
2268 		goto out;
2269 
2270 	result = ERR_PTR(-EACCES);
2271 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2272 		goto out_put_task;
2273 
2274 	result = ERR_PTR(-ENOENT);
2275 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2276 		goto out_put_task;
2277 
2278 	mm = get_task_mm(task);
2279 	if (!mm)
2280 		goto out_put_task;
2281 
2282 	result = ERR_PTR(-EINTR);
2283 	if (mmap_read_lock_killable(mm))
2284 		goto out_put_mm;
2285 
2286 	result = ERR_PTR(-ENOENT);
2287 	vma = find_exact_vma(mm, vm_start, vm_end);
2288 	if (!vma)
2289 		goto out_no_vma;
2290 
2291 	if (vma->vm_file)
2292 		result = proc_map_files_instantiate(dentry, task,
2293 				(void *)(unsigned long)vma->vm_file->f_mode);
2294 
2295 out_no_vma:
2296 	mmap_read_unlock(mm);
2297 out_put_mm:
2298 	mmput(mm);
2299 out_put_task:
2300 	put_task_struct(task);
2301 out:
2302 	return result;
2303 }
2304 
2305 static const struct inode_operations proc_map_files_inode_operations = {
2306 	.lookup		= proc_map_files_lookup,
2307 	.permission	= proc_fd_permission,
2308 	.setattr	= proc_setattr,
2309 };
2310 
2311 static int
2312 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2313 {
2314 	struct vm_area_struct *vma;
2315 	struct task_struct *task;
2316 	struct mm_struct *mm;
2317 	unsigned long nr_files, pos, i;
2318 	GENRADIX(struct map_files_info) fa;
2319 	struct map_files_info *p;
2320 	int ret;
2321 
2322 	genradix_init(&fa);
2323 
2324 	ret = -ENOENT;
2325 	task = get_proc_task(file_inode(file));
2326 	if (!task)
2327 		goto out;
2328 
2329 	ret = -EACCES;
2330 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2331 		goto out_put_task;
2332 
2333 	ret = 0;
2334 	if (!dir_emit_dots(file, ctx))
2335 		goto out_put_task;
2336 
2337 	mm = get_task_mm(task);
2338 	if (!mm)
2339 		goto out_put_task;
2340 
2341 	ret = mmap_read_lock_killable(mm);
2342 	if (ret) {
2343 		mmput(mm);
2344 		goto out_put_task;
2345 	}
2346 
2347 	nr_files = 0;
2348 
2349 	/*
2350 	 * We need two passes here:
2351 	 *
2352 	 *  1) Collect vmas of mapped files with mmap_lock taken
2353 	 *  2) Release mmap_lock and instantiate entries
2354 	 *
2355 	 * otherwise we get lockdep complained, since filldir()
2356 	 * routine might require mmap_lock taken in might_fault().
2357 	 */
2358 
2359 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2360 		if (!vma->vm_file)
2361 			continue;
2362 		if (++pos <= ctx->pos)
2363 			continue;
2364 
2365 		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2366 		if (!p) {
2367 			ret = -ENOMEM;
2368 			mmap_read_unlock(mm);
2369 			mmput(mm);
2370 			goto out_put_task;
2371 		}
2372 
2373 		p->start = vma->vm_start;
2374 		p->end = vma->vm_end;
2375 		p->mode = vma->vm_file->f_mode;
2376 	}
2377 	mmap_read_unlock(mm);
2378 	mmput(mm);
2379 
2380 	for (i = 0; i < nr_files; i++) {
2381 		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2382 		unsigned int len;
2383 
2384 		p = genradix_ptr(&fa, i);
2385 		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2386 		if (!proc_fill_cache(file, ctx,
2387 				      buf, len,
2388 				      proc_map_files_instantiate,
2389 				      task,
2390 				      (void *)(unsigned long)p->mode))
2391 			break;
2392 		ctx->pos++;
2393 	}
2394 
2395 out_put_task:
2396 	put_task_struct(task);
2397 out:
2398 	genradix_free(&fa);
2399 	return ret;
2400 }
2401 
2402 static const struct file_operations proc_map_files_operations = {
2403 	.read		= generic_read_dir,
2404 	.iterate_shared	= proc_map_files_readdir,
2405 	.llseek		= generic_file_llseek,
2406 };
2407 
2408 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2409 struct timers_private {
2410 	struct pid *pid;
2411 	struct task_struct *task;
2412 	struct sighand_struct *sighand;
2413 	struct pid_namespace *ns;
2414 	unsigned long flags;
2415 };
2416 
2417 static void *timers_start(struct seq_file *m, loff_t *pos)
2418 {
2419 	struct timers_private *tp = m->private;
2420 
2421 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2422 	if (!tp->task)
2423 		return ERR_PTR(-ESRCH);
2424 
2425 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2426 	if (!tp->sighand)
2427 		return ERR_PTR(-ESRCH);
2428 
2429 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2430 }
2431 
2432 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2433 {
2434 	struct timers_private *tp = m->private;
2435 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2436 }
2437 
2438 static void timers_stop(struct seq_file *m, void *v)
2439 {
2440 	struct timers_private *tp = m->private;
2441 
2442 	if (tp->sighand) {
2443 		unlock_task_sighand(tp->task, &tp->flags);
2444 		tp->sighand = NULL;
2445 	}
2446 
2447 	if (tp->task) {
2448 		put_task_struct(tp->task);
2449 		tp->task = NULL;
2450 	}
2451 }
2452 
2453 static int show_timer(struct seq_file *m, void *v)
2454 {
2455 	struct k_itimer *timer;
2456 	struct timers_private *tp = m->private;
2457 	int notify;
2458 	static const char * const nstr[] = {
2459 		[SIGEV_SIGNAL] = "signal",
2460 		[SIGEV_NONE] = "none",
2461 		[SIGEV_THREAD] = "thread",
2462 	};
2463 
2464 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2465 	notify = timer->it_sigev_notify;
2466 
2467 	seq_printf(m, "ID: %d\n", timer->it_id);
2468 	seq_printf(m, "signal: %d/%px\n",
2469 		   timer->sigq->info.si_signo,
2470 		   timer->sigq->info.si_value.sival_ptr);
2471 	seq_printf(m, "notify: %s/%s.%d\n",
2472 		   nstr[notify & ~SIGEV_THREAD_ID],
2473 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2474 		   pid_nr_ns(timer->it_pid, tp->ns));
2475 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2476 
2477 	return 0;
2478 }
2479 
2480 static const struct seq_operations proc_timers_seq_ops = {
2481 	.start	= timers_start,
2482 	.next	= timers_next,
2483 	.stop	= timers_stop,
2484 	.show	= show_timer,
2485 };
2486 
2487 static int proc_timers_open(struct inode *inode, struct file *file)
2488 {
2489 	struct timers_private *tp;
2490 
2491 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2492 			sizeof(struct timers_private));
2493 	if (!tp)
2494 		return -ENOMEM;
2495 
2496 	tp->pid = proc_pid(inode);
2497 	tp->ns = proc_pid_ns(inode->i_sb);
2498 	return 0;
2499 }
2500 
2501 static const struct file_operations proc_timers_operations = {
2502 	.open		= proc_timers_open,
2503 	.read		= seq_read,
2504 	.llseek		= seq_lseek,
2505 	.release	= seq_release_private,
2506 };
2507 #endif
2508 
2509 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2510 					size_t count, loff_t *offset)
2511 {
2512 	struct inode *inode = file_inode(file);
2513 	struct task_struct *p;
2514 	u64 slack_ns;
2515 	int err;
2516 
2517 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2518 	if (err < 0)
2519 		return err;
2520 
2521 	p = get_proc_task(inode);
2522 	if (!p)
2523 		return -ESRCH;
2524 
2525 	if (p != current) {
2526 		rcu_read_lock();
2527 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2528 			rcu_read_unlock();
2529 			count = -EPERM;
2530 			goto out;
2531 		}
2532 		rcu_read_unlock();
2533 
2534 		err = security_task_setscheduler(p);
2535 		if (err) {
2536 			count = err;
2537 			goto out;
2538 		}
2539 	}
2540 
2541 	task_lock(p);
2542 	if (slack_ns == 0)
2543 		p->timer_slack_ns = p->default_timer_slack_ns;
2544 	else
2545 		p->timer_slack_ns = slack_ns;
2546 	task_unlock(p);
2547 
2548 out:
2549 	put_task_struct(p);
2550 
2551 	return count;
2552 }
2553 
2554 static int timerslack_ns_show(struct seq_file *m, void *v)
2555 {
2556 	struct inode *inode = m->private;
2557 	struct task_struct *p;
2558 	int err = 0;
2559 
2560 	p = get_proc_task(inode);
2561 	if (!p)
2562 		return -ESRCH;
2563 
2564 	if (p != current) {
2565 		rcu_read_lock();
2566 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2567 			rcu_read_unlock();
2568 			err = -EPERM;
2569 			goto out;
2570 		}
2571 		rcu_read_unlock();
2572 
2573 		err = security_task_getscheduler(p);
2574 		if (err)
2575 			goto out;
2576 	}
2577 
2578 	task_lock(p);
2579 	seq_printf(m, "%llu\n", p->timer_slack_ns);
2580 	task_unlock(p);
2581 
2582 out:
2583 	put_task_struct(p);
2584 
2585 	return err;
2586 }
2587 
2588 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2589 {
2590 	return single_open(filp, timerslack_ns_show, inode);
2591 }
2592 
2593 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2594 	.open		= timerslack_ns_open,
2595 	.read		= seq_read,
2596 	.write		= timerslack_ns_write,
2597 	.llseek		= seq_lseek,
2598 	.release	= single_release,
2599 };
2600 
2601 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2602 	struct task_struct *task, const void *ptr)
2603 {
2604 	const struct pid_entry *p = ptr;
2605 	struct inode *inode;
2606 	struct proc_inode *ei;
2607 
2608 	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2609 	if (!inode)
2610 		return ERR_PTR(-ENOENT);
2611 
2612 	ei = PROC_I(inode);
2613 	if (S_ISDIR(inode->i_mode))
2614 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2615 	if (p->iop)
2616 		inode->i_op = p->iop;
2617 	if (p->fop)
2618 		inode->i_fop = p->fop;
2619 	ei->op = p->op;
2620 	pid_update_inode(task, inode);
2621 	d_set_d_op(dentry, &pid_dentry_operations);
2622 	return d_splice_alias(inode, dentry);
2623 }
2624 
2625 static struct dentry *proc_pident_lookup(struct inode *dir,
2626 					 struct dentry *dentry,
2627 					 const struct pid_entry *p,
2628 					 const struct pid_entry *end)
2629 {
2630 	struct task_struct *task = get_proc_task(dir);
2631 	struct dentry *res = ERR_PTR(-ENOENT);
2632 
2633 	if (!task)
2634 		goto out_no_task;
2635 
2636 	/*
2637 	 * Yes, it does not scale. And it should not. Don't add
2638 	 * new entries into /proc/<tgid>/ without very good reasons.
2639 	 */
2640 	for (; p < end; p++) {
2641 		if (p->len != dentry->d_name.len)
2642 			continue;
2643 		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2644 			res = proc_pident_instantiate(dentry, task, p);
2645 			break;
2646 		}
2647 	}
2648 	put_task_struct(task);
2649 out_no_task:
2650 	return res;
2651 }
2652 
2653 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2654 		const struct pid_entry *ents, unsigned int nents)
2655 {
2656 	struct task_struct *task = get_proc_task(file_inode(file));
2657 	const struct pid_entry *p;
2658 
2659 	if (!task)
2660 		return -ENOENT;
2661 
2662 	if (!dir_emit_dots(file, ctx))
2663 		goto out;
2664 
2665 	if (ctx->pos >= nents + 2)
2666 		goto out;
2667 
2668 	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2669 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2670 				proc_pident_instantiate, task, p))
2671 			break;
2672 		ctx->pos++;
2673 	}
2674 out:
2675 	put_task_struct(task);
2676 	return 0;
2677 }
2678 
2679 #ifdef CONFIG_SECURITY
2680 static int proc_pid_attr_open(struct inode *inode, struct file *file)
2681 {
2682 	file->private_data = NULL;
2683 	__mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2684 	return 0;
2685 }
2686 
2687 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2688 				  size_t count, loff_t *ppos)
2689 {
2690 	struct inode * inode = file_inode(file);
2691 	char *p = NULL;
2692 	ssize_t length;
2693 	struct task_struct *task = get_proc_task(inode);
2694 
2695 	if (!task)
2696 		return -ESRCH;
2697 
2698 	length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2699 				      (char*)file->f_path.dentry->d_name.name,
2700 				      &p);
2701 	put_task_struct(task);
2702 	if (length > 0)
2703 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2704 	kfree(p);
2705 	return length;
2706 }
2707 
2708 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2709 				   size_t count, loff_t *ppos)
2710 {
2711 	struct inode * inode = file_inode(file);
2712 	struct task_struct *task;
2713 	void *page;
2714 	int rv;
2715 
2716 	/* A task may only write when it was the opener. */
2717 	if (file->private_data != current->mm)
2718 		return -EPERM;
2719 
2720 	rcu_read_lock();
2721 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2722 	if (!task) {
2723 		rcu_read_unlock();
2724 		return -ESRCH;
2725 	}
2726 	/* A task may only write its own attributes. */
2727 	if (current != task) {
2728 		rcu_read_unlock();
2729 		return -EACCES;
2730 	}
2731 	/* Prevent changes to overridden credentials. */
2732 	if (current_cred() != current_real_cred()) {
2733 		rcu_read_unlock();
2734 		return -EBUSY;
2735 	}
2736 	rcu_read_unlock();
2737 
2738 	if (count > PAGE_SIZE)
2739 		count = PAGE_SIZE;
2740 
2741 	/* No partial writes. */
2742 	if (*ppos != 0)
2743 		return -EINVAL;
2744 
2745 	page = memdup_user(buf, count);
2746 	if (IS_ERR(page)) {
2747 		rv = PTR_ERR(page);
2748 		goto out;
2749 	}
2750 
2751 	/* Guard against adverse ptrace interaction */
2752 	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2753 	if (rv < 0)
2754 		goto out_free;
2755 
2756 	rv = security_setprocattr(PROC_I(inode)->op.lsm,
2757 				  file->f_path.dentry->d_name.name, page,
2758 				  count);
2759 	mutex_unlock(&current->signal->cred_guard_mutex);
2760 out_free:
2761 	kfree(page);
2762 out:
2763 	return rv;
2764 }
2765 
2766 static const struct file_operations proc_pid_attr_operations = {
2767 	.open		= proc_pid_attr_open,
2768 	.read		= proc_pid_attr_read,
2769 	.write		= proc_pid_attr_write,
2770 	.llseek		= generic_file_llseek,
2771 	.release	= mem_release,
2772 };
2773 
2774 #define LSM_DIR_OPS(LSM) \
2775 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2776 			     struct dir_context *ctx) \
2777 { \
2778 	return proc_pident_readdir(filp, ctx, \
2779 				   LSM##_attr_dir_stuff, \
2780 				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2781 } \
2782 \
2783 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2784 	.read		= generic_read_dir, \
2785 	.iterate	= proc_##LSM##_attr_dir_iterate, \
2786 	.llseek		= default_llseek, \
2787 }; \
2788 \
2789 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2790 				struct dentry *dentry, unsigned int flags) \
2791 { \
2792 	return proc_pident_lookup(dir, dentry, \
2793 				  LSM##_attr_dir_stuff, \
2794 				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2795 } \
2796 \
2797 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2798 	.lookup		= proc_##LSM##_attr_dir_lookup, \
2799 	.getattr	= pid_getattr, \
2800 	.setattr	= proc_setattr, \
2801 }
2802 
2803 #ifdef CONFIG_SECURITY_SMACK
2804 static const struct pid_entry smack_attr_dir_stuff[] = {
2805 	ATTR("smack", "current",	0666),
2806 };
2807 LSM_DIR_OPS(smack);
2808 #endif
2809 
2810 #ifdef CONFIG_SECURITY_APPARMOR
2811 static const struct pid_entry apparmor_attr_dir_stuff[] = {
2812 	ATTR("apparmor", "current",	0666),
2813 	ATTR("apparmor", "prev",	0444),
2814 	ATTR("apparmor", "exec",	0666),
2815 };
2816 LSM_DIR_OPS(apparmor);
2817 #endif
2818 
2819 static const struct pid_entry attr_dir_stuff[] = {
2820 	ATTR(NULL, "current",		0666),
2821 	ATTR(NULL, "prev",		0444),
2822 	ATTR(NULL, "exec",		0666),
2823 	ATTR(NULL, "fscreate",		0666),
2824 	ATTR(NULL, "keycreate",		0666),
2825 	ATTR(NULL, "sockcreate",	0666),
2826 #ifdef CONFIG_SECURITY_SMACK
2827 	DIR("smack",			0555,
2828 	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2829 #endif
2830 #ifdef CONFIG_SECURITY_APPARMOR
2831 	DIR("apparmor",			0555,
2832 	    proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2833 #endif
2834 };
2835 
2836 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2837 {
2838 	return proc_pident_readdir(file, ctx,
2839 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2840 }
2841 
2842 static const struct file_operations proc_attr_dir_operations = {
2843 	.read		= generic_read_dir,
2844 	.iterate_shared	= proc_attr_dir_readdir,
2845 	.llseek		= generic_file_llseek,
2846 };
2847 
2848 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2849 				struct dentry *dentry, unsigned int flags)
2850 {
2851 	return proc_pident_lookup(dir, dentry,
2852 				  attr_dir_stuff,
2853 				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2854 }
2855 
2856 static const struct inode_operations proc_attr_dir_inode_operations = {
2857 	.lookup		= proc_attr_dir_lookup,
2858 	.getattr	= pid_getattr,
2859 	.setattr	= proc_setattr,
2860 };
2861 
2862 #endif
2863 
2864 #ifdef CONFIG_ELF_CORE
2865 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2866 					 size_t count, loff_t *ppos)
2867 {
2868 	struct task_struct *task = get_proc_task(file_inode(file));
2869 	struct mm_struct *mm;
2870 	char buffer[PROC_NUMBUF];
2871 	size_t len;
2872 	int ret;
2873 
2874 	if (!task)
2875 		return -ESRCH;
2876 
2877 	ret = 0;
2878 	mm = get_task_mm(task);
2879 	if (mm) {
2880 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2881 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2882 				MMF_DUMP_FILTER_SHIFT));
2883 		mmput(mm);
2884 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2885 	}
2886 
2887 	put_task_struct(task);
2888 
2889 	return ret;
2890 }
2891 
2892 static ssize_t proc_coredump_filter_write(struct file *file,
2893 					  const char __user *buf,
2894 					  size_t count,
2895 					  loff_t *ppos)
2896 {
2897 	struct task_struct *task;
2898 	struct mm_struct *mm;
2899 	unsigned int val;
2900 	int ret;
2901 	int i;
2902 	unsigned long mask;
2903 
2904 	ret = kstrtouint_from_user(buf, count, 0, &val);
2905 	if (ret < 0)
2906 		return ret;
2907 
2908 	ret = -ESRCH;
2909 	task = get_proc_task(file_inode(file));
2910 	if (!task)
2911 		goto out_no_task;
2912 
2913 	mm = get_task_mm(task);
2914 	if (!mm)
2915 		goto out_no_mm;
2916 	ret = 0;
2917 
2918 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2919 		if (val & mask)
2920 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2921 		else
2922 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2923 	}
2924 
2925 	mmput(mm);
2926  out_no_mm:
2927 	put_task_struct(task);
2928  out_no_task:
2929 	if (ret < 0)
2930 		return ret;
2931 	return count;
2932 }
2933 
2934 static const struct file_operations proc_coredump_filter_operations = {
2935 	.read		= proc_coredump_filter_read,
2936 	.write		= proc_coredump_filter_write,
2937 	.llseek		= generic_file_llseek,
2938 };
2939 #endif
2940 
2941 #ifdef CONFIG_TASK_IO_ACCOUNTING
2942 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2943 {
2944 	struct task_io_accounting acct = task->ioac;
2945 	unsigned long flags;
2946 	int result;
2947 
2948 	result = down_read_killable(&task->signal->exec_update_lock);
2949 	if (result)
2950 		return result;
2951 
2952 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2953 		result = -EACCES;
2954 		goto out_unlock;
2955 	}
2956 
2957 	if (whole && lock_task_sighand(task, &flags)) {
2958 		struct task_struct *t = task;
2959 
2960 		task_io_accounting_add(&acct, &task->signal->ioac);
2961 		while_each_thread(task, t)
2962 			task_io_accounting_add(&acct, &t->ioac);
2963 
2964 		unlock_task_sighand(task, &flags);
2965 	}
2966 	seq_printf(m,
2967 		   "rchar: %llu\n"
2968 		   "wchar: %llu\n"
2969 		   "syscr: %llu\n"
2970 		   "syscw: %llu\n"
2971 		   "read_bytes: %llu\n"
2972 		   "write_bytes: %llu\n"
2973 		   "cancelled_write_bytes: %llu\n",
2974 		   (unsigned long long)acct.rchar,
2975 		   (unsigned long long)acct.wchar,
2976 		   (unsigned long long)acct.syscr,
2977 		   (unsigned long long)acct.syscw,
2978 		   (unsigned long long)acct.read_bytes,
2979 		   (unsigned long long)acct.write_bytes,
2980 		   (unsigned long long)acct.cancelled_write_bytes);
2981 	result = 0;
2982 
2983 out_unlock:
2984 	up_read(&task->signal->exec_update_lock);
2985 	return result;
2986 }
2987 
2988 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2989 				  struct pid *pid, struct task_struct *task)
2990 {
2991 	return do_io_accounting(task, m, 0);
2992 }
2993 
2994 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2995 				   struct pid *pid, struct task_struct *task)
2996 {
2997 	return do_io_accounting(task, m, 1);
2998 }
2999 #endif /* CONFIG_TASK_IO_ACCOUNTING */
3000 
3001 #ifdef CONFIG_USER_NS
3002 static int proc_id_map_open(struct inode *inode, struct file *file,
3003 	const struct seq_operations *seq_ops)
3004 {
3005 	struct user_namespace *ns = NULL;
3006 	struct task_struct *task;
3007 	struct seq_file *seq;
3008 	int ret = -EINVAL;
3009 
3010 	task = get_proc_task(inode);
3011 	if (task) {
3012 		rcu_read_lock();
3013 		ns = get_user_ns(task_cred_xxx(task, user_ns));
3014 		rcu_read_unlock();
3015 		put_task_struct(task);
3016 	}
3017 	if (!ns)
3018 		goto err;
3019 
3020 	ret = seq_open(file, seq_ops);
3021 	if (ret)
3022 		goto err_put_ns;
3023 
3024 	seq = file->private_data;
3025 	seq->private = ns;
3026 
3027 	return 0;
3028 err_put_ns:
3029 	put_user_ns(ns);
3030 err:
3031 	return ret;
3032 }
3033 
3034 static int proc_id_map_release(struct inode *inode, struct file *file)
3035 {
3036 	struct seq_file *seq = file->private_data;
3037 	struct user_namespace *ns = seq->private;
3038 	put_user_ns(ns);
3039 	return seq_release(inode, file);
3040 }
3041 
3042 static int proc_uid_map_open(struct inode *inode, struct file *file)
3043 {
3044 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3045 }
3046 
3047 static int proc_gid_map_open(struct inode *inode, struct file *file)
3048 {
3049 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3050 }
3051 
3052 static int proc_projid_map_open(struct inode *inode, struct file *file)
3053 {
3054 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3055 }
3056 
3057 static const struct file_operations proc_uid_map_operations = {
3058 	.open		= proc_uid_map_open,
3059 	.write		= proc_uid_map_write,
3060 	.read		= seq_read,
3061 	.llseek		= seq_lseek,
3062 	.release	= proc_id_map_release,
3063 };
3064 
3065 static const struct file_operations proc_gid_map_operations = {
3066 	.open		= proc_gid_map_open,
3067 	.write		= proc_gid_map_write,
3068 	.read		= seq_read,
3069 	.llseek		= seq_lseek,
3070 	.release	= proc_id_map_release,
3071 };
3072 
3073 static const struct file_operations proc_projid_map_operations = {
3074 	.open		= proc_projid_map_open,
3075 	.write		= proc_projid_map_write,
3076 	.read		= seq_read,
3077 	.llseek		= seq_lseek,
3078 	.release	= proc_id_map_release,
3079 };
3080 
3081 static int proc_setgroups_open(struct inode *inode, struct file *file)
3082 {
3083 	struct user_namespace *ns = NULL;
3084 	struct task_struct *task;
3085 	int ret;
3086 
3087 	ret = -ESRCH;
3088 	task = get_proc_task(inode);
3089 	if (task) {
3090 		rcu_read_lock();
3091 		ns = get_user_ns(task_cred_xxx(task, user_ns));
3092 		rcu_read_unlock();
3093 		put_task_struct(task);
3094 	}
3095 	if (!ns)
3096 		goto err;
3097 
3098 	if (file->f_mode & FMODE_WRITE) {
3099 		ret = -EACCES;
3100 		if (!ns_capable(ns, CAP_SYS_ADMIN))
3101 			goto err_put_ns;
3102 	}
3103 
3104 	ret = single_open(file, &proc_setgroups_show, ns);
3105 	if (ret)
3106 		goto err_put_ns;
3107 
3108 	return 0;
3109 err_put_ns:
3110 	put_user_ns(ns);
3111 err:
3112 	return ret;
3113 }
3114 
3115 static int proc_setgroups_release(struct inode *inode, struct file *file)
3116 {
3117 	struct seq_file *seq = file->private_data;
3118 	struct user_namespace *ns = seq->private;
3119 	int ret = single_release(inode, file);
3120 	put_user_ns(ns);
3121 	return ret;
3122 }
3123 
3124 static const struct file_operations proc_setgroups_operations = {
3125 	.open		= proc_setgroups_open,
3126 	.write		= proc_setgroups_write,
3127 	.read		= seq_read,
3128 	.llseek		= seq_lseek,
3129 	.release	= proc_setgroups_release,
3130 };
3131 #endif /* CONFIG_USER_NS */
3132 
3133 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3134 				struct pid *pid, struct task_struct *task)
3135 {
3136 	int err = lock_trace(task);
3137 	if (!err) {
3138 		seq_printf(m, "%08x\n", task->personality);
3139 		unlock_trace(task);
3140 	}
3141 	return err;
3142 }
3143 
3144 #ifdef CONFIG_LIVEPATCH
3145 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3146 				struct pid *pid, struct task_struct *task)
3147 {
3148 	seq_printf(m, "%d\n", task->patch_state);
3149 	return 0;
3150 }
3151 #endif /* CONFIG_LIVEPATCH */
3152 
3153 #ifdef CONFIG_STACKLEAK_METRICS
3154 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3155 				struct pid *pid, struct task_struct *task)
3156 {
3157 	unsigned long prev_depth = THREAD_SIZE -
3158 				(task->prev_lowest_stack & (THREAD_SIZE - 1));
3159 	unsigned long depth = THREAD_SIZE -
3160 				(task->lowest_stack & (THREAD_SIZE - 1));
3161 
3162 	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3163 							prev_depth, depth);
3164 	return 0;
3165 }
3166 #endif /* CONFIG_STACKLEAK_METRICS */
3167 
3168 /*
3169  * Thread groups
3170  */
3171 static const struct file_operations proc_task_operations;
3172 static const struct inode_operations proc_task_inode_operations;
3173 
3174 static const struct pid_entry tgid_base_stuff[] = {
3175 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3176 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3177 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3178 	DIR("fdinfo",     S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3179 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3180 #ifdef CONFIG_NET
3181 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3182 #endif
3183 	REG("environ",    S_IRUSR, proc_environ_operations),
3184 	REG("auxv",       S_IRUSR, proc_auxv_operations),
3185 	ONE("status",     S_IRUGO, proc_pid_status),
3186 	ONE("personality", S_IRUSR, proc_pid_personality),
3187 	ONE("limits",	  S_IRUGO, proc_pid_limits),
3188 #ifdef CONFIG_SCHED_DEBUG
3189 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3190 #endif
3191 #ifdef CONFIG_SCHED_AUTOGROUP
3192 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3193 #endif
3194 #ifdef CONFIG_TIME_NS
3195 	REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3196 #endif
3197 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3198 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3199 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3200 #endif
3201 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3202 	ONE("stat",       S_IRUGO, proc_tgid_stat),
3203 	ONE("statm",      S_IRUGO, proc_pid_statm),
3204 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3205 #ifdef CONFIG_NUMA
3206 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3207 #endif
3208 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3209 	LNK("cwd",        proc_cwd_link),
3210 	LNK("root",       proc_root_link),
3211 	LNK("exe",        proc_exe_link),
3212 	REG("mounts",     S_IRUGO, proc_mounts_operations),
3213 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3214 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3215 #ifdef CONFIG_PROC_PAGE_MONITOR
3216 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3217 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3218 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3219 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3220 #endif
3221 #ifdef CONFIG_SECURITY
3222 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3223 #endif
3224 #ifdef CONFIG_KALLSYMS
3225 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3226 #endif
3227 #ifdef CONFIG_STACKTRACE
3228 	ONE("stack",      S_IRUSR, proc_pid_stack),
3229 #endif
3230 #ifdef CONFIG_SCHED_INFO
3231 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3232 #endif
3233 #ifdef CONFIG_LATENCYTOP
3234 	REG("latency",  S_IRUGO, proc_lstats_operations),
3235 #endif
3236 #ifdef CONFIG_PROC_PID_CPUSET
3237 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3238 #endif
3239 #ifdef CONFIG_CGROUPS
3240 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3241 #endif
3242 #ifdef CONFIG_PROC_CPU_RESCTRL
3243 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3244 #endif
3245 	ONE("oom_score",  S_IRUGO, proc_oom_score),
3246 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3247 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3248 #ifdef CONFIG_AUDIT
3249 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3250 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3251 #endif
3252 #ifdef CONFIG_FAULT_INJECTION
3253 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3254 	REG("fail-nth", 0644, proc_fail_nth_operations),
3255 #endif
3256 #ifdef CONFIG_ELF_CORE
3257 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3258 #endif
3259 #ifdef CONFIG_TASK_IO_ACCOUNTING
3260 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3261 #endif
3262 #ifdef CONFIG_USER_NS
3263 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3264 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3265 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3266 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3267 #endif
3268 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3269 	REG("timers",	  S_IRUGO, proc_timers_operations),
3270 #endif
3271 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3272 #ifdef CONFIG_LIVEPATCH
3273 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3274 #endif
3275 #ifdef CONFIG_STACKLEAK_METRICS
3276 	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3277 #endif
3278 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3279 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3280 #endif
3281 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
3282 	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3283 #endif
3284 };
3285 
3286 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3287 {
3288 	return proc_pident_readdir(file, ctx,
3289 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3290 }
3291 
3292 static const struct file_operations proc_tgid_base_operations = {
3293 	.read		= generic_read_dir,
3294 	.iterate_shared	= proc_tgid_base_readdir,
3295 	.llseek		= generic_file_llseek,
3296 };
3297 
3298 struct pid *tgid_pidfd_to_pid(const struct file *file)
3299 {
3300 	if (file->f_op != &proc_tgid_base_operations)
3301 		return ERR_PTR(-EBADF);
3302 
3303 	return proc_pid(file_inode(file));
3304 }
3305 
3306 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3307 {
3308 	return proc_pident_lookup(dir, dentry,
3309 				  tgid_base_stuff,
3310 				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3311 }
3312 
3313 static const struct inode_operations proc_tgid_base_inode_operations = {
3314 	.lookup		= proc_tgid_base_lookup,
3315 	.getattr	= pid_getattr,
3316 	.setattr	= proc_setattr,
3317 	.permission	= proc_pid_permission,
3318 };
3319 
3320 /**
3321  * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
3322  * @pid: pid that should be flushed.
3323  *
3324  * This function walks a list of inodes (that belong to any proc
3325  * filesystem) that are attached to the pid and flushes them from
3326  * the dentry cache.
3327  *
3328  * It is safe and reasonable to cache /proc entries for a task until
3329  * that task exits.  After that they just clog up the dcache with
3330  * useless entries, possibly causing useful dcache entries to be
3331  * flushed instead.  This routine is provided to flush those useless
3332  * dcache entries when a process is reaped.
3333  *
3334  * NOTE: This routine is just an optimization so it does not guarantee
3335  *       that no dcache entries will exist after a process is reaped
3336  *       it just makes it very unlikely that any will persist.
3337  */
3338 
3339 void proc_flush_pid(struct pid *pid)
3340 {
3341 	proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3342 }
3343 
3344 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3345 				   struct task_struct *task, const void *ptr)
3346 {
3347 	struct inode *inode;
3348 
3349 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3350 	if (!inode)
3351 		return ERR_PTR(-ENOENT);
3352 
3353 	inode->i_op = &proc_tgid_base_inode_operations;
3354 	inode->i_fop = &proc_tgid_base_operations;
3355 	inode->i_flags|=S_IMMUTABLE;
3356 
3357 	set_nlink(inode, nlink_tgid);
3358 	pid_update_inode(task, inode);
3359 
3360 	d_set_d_op(dentry, &pid_dentry_operations);
3361 	return d_splice_alias(inode, dentry);
3362 }
3363 
3364 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3365 {
3366 	struct task_struct *task;
3367 	unsigned tgid;
3368 	struct proc_fs_info *fs_info;
3369 	struct pid_namespace *ns;
3370 	struct dentry *result = ERR_PTR(-ENOENT);
3371 
3372 	tgid = name_to_int(&dentry->d_name);
3373 	if (tgid == ~0U)
3374 		goto out;
3375 
3376 	fs_info = proc_sb_info(dentry->d_sb);
3377 	ns = fs_info->pid_ns;
3378 	rcu_read_lock();
3379 	task = find_task_by_pid_ns(tgid, ns);
3380 	if (task)
3381 		get_task_struct(task);
3382 	rcu_read_unlock();
3383 	if (!task)
3384 		goto out;
3385 
3386 	/* Limit procfs to only ptraceable tasks */
3387 	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3388 		if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3389 			goto out_put_task;
3390 	}
3391 
3392 	result = proc_pid_instantiate(dentry, task, NULL);
3393 out_put_task:
3394 	put_task_struct(task);
3395 out:
3396 	return result;
3397 }
3398 
3399 /*
3400  * Find the first task with tgid >= tgid
3401  *
3402  */
3403 struct tgid_iter {
3404 	unsigned int tgid;
3405 	struct task_struct *task;
3406 };
3407 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3408 {
3409 	struct pid *pid;
3410 
3411 	if (iter.task)
3412 		put_task_struct(iter.task);
3413 	rcu_read_lock();
3414 retry:
3415 	iter.task = NULL;
3416 	pid = find_ge_pid(iter.tgid, ns);
3417 	if (pid) {
3418 		iter.tgid = pid_nr_ns(pid, ns);
3419 		iter.task = pid_task(pid, PIDTYPE_TGID);
3420 		if (!iter.task) {
3421 			iter.tgid += 1;
3422 			goto retry;
3423 		}
3424 		get_task_struct(iter.task);
3425 	}
3426 	rcu_read_unlock();
3427 	return iter;
3428 }
3429 
3430 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3431 
3432 /* for the /proc/ directory itself, after non-process stuff has been done */
3433 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3434 {
3435 	struct tgid_iter iter;
3436 	struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3437 	struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3438 	loff_t pos = ctx->pos;
3439 
3440 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3441 		return 0;
3442 
3443 	if (pos == TGID_OFFSET - 2) {
3444 		struct inode *inode = d_inode(fs_info->proc_self);
3445 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3446 			return 0;
3447 		ctx->pos = pos = pos + 1;
3448 	}
3449 	if (pos == TGID_OFFSET - 1) {
3450 		struct inode *inode = d_inode(fs_info->proc_thread_self);
3451 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3452 			return 0;
3453 		ctx->pos = pos = pos + 1;
3454 	}
3455 	iter.tgid = pos - TGID_OFFSET;
3456 	iter.task = NULL;
3457 	for (iter = next_tgid(ns, iter);
3458 	     iter.task;
3459 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3460 		char name[10 + 1];
3461 		unsigned int len;
3462 
3463 		cond_resched();
3464 		if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3465 			continue;
3466 
3467 		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3468 		ctx->pos = iter.tgid + TGID_OFFSET;
3469 		if (!proc_fill_cache(file, ctx, name, len,
3470 				     proc_pid_instantiate, iter.task, NULL)) {
3471 			put_task_struct(iter.task);
3472 			return 0;
3473 		}
3474 	}
3475 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3476 	return 0;
3477 }
3478 
3479 /*
3480  * proc_tid_comm_permission is a special permission function exclusively
3481  * used for the node /proc/<pid>/task/<tid>/comm.
3482  * It bypasses generic permission checks in the case where a task of the same
3483  * task group attempts to access the node.
3484  * The rationale behind this is that glibc and bionic access this node for
3485  * cross thread naming (pthread_set/getname_np(!self)). However, if
3486  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3487  * which locks out the cross thread naming implementation.
3488  * This function makes sure that the node is always accessible for members of
3489  * same thread group.
3490  */
3491 static int proc_tid_comm_permission(struct user_namespace *mnt_userns,
3492 				    struct inode *inode, int mask)
3493 {
3494 	bool is_same_tgroup;
3495 	struct task_struct *task;
3496 
3497 	task = get_proc_task(inode);
3498 	if (!task)
3499 		return -ESRCH;
3500 	is_same_tgroup = same_thread_group(current, task);
3501 	put_task_struct(task);
3502 
3503 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3504 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3505 		 * read or written by the members of the corresponding
3506 		 * thread group.
3507 		 */
3508 		return 0;
3509 	}
3510 
3511 	return generic_permission(&init_user_ns, inode, mask);
3512 }
3513 
3514 static const struct inode_operations proc_tid_comm_inode_operations = {
3515 		.permission = proc_tid_comm_permission,
3516 };
3517 
3518 /*
3519  * Tasks
3520  */
3521 static const struct pid_entry tid_base_stuff[] = {
3522 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3523 	DIR("fdinfo",    S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3524 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3525 #ifdef CONFIG_NET
3526 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3527 #endif
3528 	REG("environ",   S_IRUSR, proc_environ_operations),
3529 	REG("auxv",      S_IRUSR, proc_auxv_operations),
3530 	ONE("status",    S_IRUGO, proc_pid_status),
3531 	ONE("personality", S_IRUSR, proc_pid_personality),
3532 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3533 #ifdef CONFIG_SCHED_DEBUG
3534 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3535 #endif
3536 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3537 			 &proc_tid_comm_inode_operations,
3538 			 &proc_pid_set_comm_operations, {}),
3539 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3540 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3541 #endif
3542 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3543 	ONE("stat",      S_IRUGO, proc_tid_stat),
3544 	ONE("statm",     S_IRUGO, proc_pid_statm),
3545 	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3546 #ifdef CONFIG_PROC_CHILDREN
3547 	REG("children",  S_IRUGO, proc_tid_children_operations),
3548 #endif
3549 #ifdef CONFIG_NUMA
3550 	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3551 #endif
3552 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3553 	LNK("cwd",       proc_cwd_link),
3554 	LNK("root",      proc_root_link),
3555 	LNK("exe",       proc_exe_link),
3556 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3557 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3558 #ifdef CONFIG_PROC_PAGE_MONITOR
3559 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3560 	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3561 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3562 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3563 #endif
3564 #ifdef CONFIG_SECURITY
3565 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3566 #endif
3567 #ifdef CONFIG_KALLSYMS
3568 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3569 #endif
3570 #ifdef CONFIG_STACKTRACE
3571 	ONE("stack",      S_IRUSR, proc_pid_stack),
3572 #endif
3573 #ifdef CONFIG_SCHED_INFO
3574 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3575 #endif
3576 #ifdef CONFIG_LATENCYTOP
3577 	REG("latency",  S_IRUGO, proc_lstats_operations),
3578 #endif
3579 #ifdef CONFIG_PROC_PID_CPUSET
3580 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3581 #endif
3582 #ifdef CONFIG_CGROUPS
3583 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3584 #endif
3585 #ifdef CONFIG_PROC_CPU_RESCTRL
3586 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3587 #endif
3588 	ONE("oom_score", S_IRUGO, proc_oom_score),
3589 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3590 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3591 #ifdef CONFIG_AUDIT
3592 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3593 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3594 #endif
3595 #ifdef CONFIG_FAULT_INJECTION
3596 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3597 	REG("fail-nth", 0644, proc_fail_nth_operations),
3598 #endif
3599 #ifdef CONFIG_TASK_IO_ACCOUNTING
3600 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3601 #endif
3602 #ifdef CONFIG_USER_NS
3603 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3604 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3605 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3606 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3607 #endif
3608 #ifdef CONFIG_LIVEPATCH
3609 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3610 #endif
3611 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3612 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3613 #endif
3614 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
3615 	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3616 #endif
3617 };
3618 
3619 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3620 {
3621 	return proc_pident_readdir(file, ctx,
3622 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3623 }
3624 
3625 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3626 {
3627 	return proc_pident_lookup(dir, dentry,
3628 				  tid_base_stuff,
3629 				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3630 }
3631 
3632 static const struct file_operations proc_tid_base_operations = {
3633 	.read		= generic_read_dir,
3634 	.iterate_shared	= proc_tid_base_readdir,
3635 	.llseek		= generic_file_llseek,
3636 };
3637 
3638 static const struct inode_operations proc_tid_base_inode_operations = {
3639 	.lookup		= proc_tid_base_lookup,
3640 	.getattr	= pid_getattr,
3641 	.setattr	= proc_setattr,
3642 };
3643 
3644 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3645 	struct task_struct *task, const void *ptr)
3646 {
3647 	struct inode *inode;
3648 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3649 	if (!inode)
3650 		return ERR_PTR(-ENOENT);
3651 
3652 	inode->i_op = &proc_tid_base_inode_operations;
3653 	inode->i_fop = &proc_tid_base_operations;
3654 	inode->i_flags |= S_IMMUTABLE;
3655 
3656 	set_nlink(inode, nlink_tid);
3657 	pid_update_inode(task, inode);
3658 
3659 	d_set_d_op(dentry, &pid_dentry_operations);
3660 	return d_splice_alias(inode, dentry);
3661 }
3662 
3663 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3664 {
3665 	struct task_struct *task;
3666 	struct task_struct *leader = get_proc_task(dir);
3667 	unsigned tid;
3668 	struct proc_fs_info *fs_info;
3669 	struct pid_namespace *ns;
3670 	struct dentry *result = ERR_PTR(-ENOENT);
3671 
3672 	if (!leader)
3673 		goto out_no_task;
3674 
3675 	tid = name_to_int(&dentry->d_name);
3676 	if (tid == ~0U)
3677 		goto out;
3678 
3679 	fs_info = proc_sb_info(dentry->d_sb);
3680 	ns = fs_info->pid_ns;
3681 	rcu_read_lock();
3682 	task = find_task_by_pid_ns(tid, ns);
3683 	if (task)
3684 		get_task_struct(task);
3685 	rcu_read_unlock();
3686 	if (!task)
3687 		goto out;
3688 	if (!same_thread_group(leader, task))
3689 		goto out_drop_task;
3690 
3691 	result = proc_task_instantiate(dentry, task, NULL);
3692 out_drop_task:
3693 	put_task_struct(task);
3694 out:
3695 	put_task_struct(leader);
3696 out_no_task:
3697 	return result;
3698 }
3699 
3700 /*
3701  * Find the first tid of a thread group to return to user space.
3702  *
3703  * Usually this is just the thread group leader, but if the users
3704  * buffer was too small or there was a seek into the middle of the
3705  * directory we have more work todo.
3706  *
3707  * In the case of a short read we start with find_task_by_pid.
3708  *
3709  * In the case of a seek we start with the leader and walk nr
3710  * threads past it.
3711  */
3712 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3713 					struct pid_namespace *ns)
3714 {
3715 	struct task_struct *pos, *task;
3716 	unsigned long nr = f_pos;
3717 
3718 	if (nr != f_pos)	/* 32bit overflow? */
3719 		return NULL;
3720 
3721 	rcu_read_lock();
3722 	task = pid_task(pid, PIDTYPE_PID);
3723 	if (!task)
3724 		goto fail;
3725 
3726 	/* Attempt to start with the tid of a thread */
3727 	if (tid && nr) {
3728 		pos = find_task_by_pid_ns(tid, ns);
3729 		if (pos && same_thread_group(pos, task))
3730 			goto found;
3731 	}
3732 
3733 	/* If nr exceeds the number of threads there is nothing todo */
3734 	if (nr >= get_nr_threads(task))
3735 		goto fail;
3736 
3737 	/* If we haven't found our starting place yet start
3738 	 * with the leader and walk nr threads forward.
3739 	 */
3740 	pos = task = task->group_leader;
3741 	do {
3742 		if (!nr--)
3743 			goto found;
3744 	} while_each_thread(task, pos);
3745 fail:
3746 	pos = NULL;
3747 	goto out;
3748 found:
3749 	get_task_struct(pos);
3750 out:
3751 	rcu_read_unlock();
3752 	return pos;
3753 }
3754 
3755 /*
3756  * Find the next thread in the thread list.
3757  * Return NULL if there is an error or no next thread.
3758  *
3759  * The reference to the input task_struct is released.
3760  */
3761 static struct task_struct *next_tid(struct task_struct *start)
3762 {
3763 	struct task_struct *pos = NULL;
3764 	rcu_read_lock();
3765 	if (pid_alive(start)) {
3766 		pos = next_thread(start);
3767 		if (thread_group_leader(pos))
3768 			pos = NULL;
3769 		else
3770 			get_task_struct(pos);
3771 	}
3772 	rcu_read_unlock();
3773 	put_task_struct(start);
3774 	return pos;
3775 }
3776 
3777 /* for the /proc/TGID/task/ directories */
3778 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3779 {
3780 	struct inode *inode = file_inode(file);
3781 	struct task_struct *task;
3782 	struct pid_namespace *ns;
3783 	int tid;
3784 
3785 	if (proc_inode_is_dead(inode))
3786 		return -ENOENT;
3787 
3788 	if (!dir_emit_dots(file, ctx))
3789 		return 0;
3790 
3791 	/* f_version caches the tgid value that the last readdir call couldn't
3792 	 * return. lseek aka telldir automagically resets f_version to 0.
3793 	 */
3794 	ns = proc_pid_ns(inode->i_sb);
3795 	tid = (int)file->f_version;
3796 	file->f_version = 0;
3797 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3798 	     task;
3799 	     task = next_tid(task), ctx->pos++) {
3800 		char name[10 + 1];
3801 		unsigned int len;
3802 		tid = task_pid_nr_ns(task, ns);
3803 		len = snprintf(name, sizeof(name), "%u", tid);
3804 		if (!proc_fill_cache(file, ctx, name, len,
3805 				proc_task_instantiate, task, NULL)) {
3806 			/* returning this tgid failed, save it as the first
3807 			 * pid for the next readir call */
3808 			file->f_version = (u64)tid;
3809 			put_task_struct(task);
3810 			break;
3811 		}
3812 	}
3813 
3814 	return 0;
3815 }
3816 
3817 static int proc_task_getattr(struct user_namespace *mnt_userns,
3818 			     const struct path *path, struct kstat *stat,
3819 			     u32 request_mask, unsigned int query_flags)
3820 {
3821 	struct inode *inode = d_inode(path->dentry);
3822 	struct task_struct *p = get_proc_task(inode);
3823 	generic_fillattr(&init_user_ns, inode, stat);
3824 
3825 	if (p) {
3826 		stat->nlink += get_nr_threads(p);
3827 		put_task_struct(p);
3828 	}
3829 
3830 	return 0;
3831 }
3832 
3833 static const struct inode_operations proc_task_inode_operations = {
3834 	.lookup		= proc_task_lookup,
3835 	.getattr	= proc_task_getattr,
3836 	.setattr	= proc_setattr,
3837 	.permission	= proc_pid_permission,
3838 };
3839 
3840 static const struct file_operations proc_task_operations = {
3841 	.read		= generic_read_dir,
3842 	.iterate_shared	= proc_task_readdir,
3843 	.llseek		= generic_file_llseek,
3844 };
3845 
3846 void __init set_proc_pid_nlink(void)
3847 {
3848 	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3849 	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3850 }
3851