1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/proc/base.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * proc base directory handling functions 8 * 9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 10 * Instead of using magical inumbers to determine the kind of object 11 * we allocate and fill in-core inodes upon lookup. They don't even 12 * go into icache. We cache the reference to task_struct upon lookup too. 13 * Eventually it should become a filesystem in its own. We don't use the 14 * rest of procfs anymore. 15 * 16 * 17 * Changelog: 18 * 17-Jan-2005 19 * Allan Bezerra 20 * Bruna Moreira <bruna.moreira@indt.org.br> 21 * Edjard Mota <edjard.mota@indt.org.br> 22 * Ilias Biris <ilias.biris@indt.org.br> 23 * Mauricio Lin <mauricio.lin@indt.org.br> 24 * 25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 26 * 27 * A new process specific entry (smaps) included in /proc. It shows the 28 * size of rss for each memory area. The maps entry lacks information 29 * about physical memory size (rss) for each mapped file, i.e., 30 * rss information for executables and library files. 31 * This additional information is useful for any tools that need to know 32 * about physical memory consumption for a process specific library. 33 * 34 * Changelog: 35 * 21-Feb-2005 36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 37 * Pud inclusion in the page table walking. 38 * 39 * ChangeLog: 40 * 10-Mar-2005 41 * 10LE Instituto Nokia de Tecnologia - INdT: 42 * A better way to walks through the page table as suggested by Hugh Dickins. 43 * 44 * Simo Piiroinen <simo.piiroinen@nokia.com>: 45 * Smaps information related to shared, private, clean and dirty pages. 46 * 47 * Paul Mundt <paul.mundt@nokia.com>: 48 * Overall revision about smaps. 49 */ 50 51 #include <linux/uaccess.h> 52 53 #include <linux/errno.h> 54 #include <linux/time.h> 55 #include <linux/proc_fs.h> 56 #include <linux/stat.h> 57 #include <linux/task_io_accounting_ops.h> 58 #include <linux/init.h> 59 #include <linux/capability.h> 60 #include <linux/file.h> 61 #include <linux/fdtable.h> 62 #include <linux/generic-radix-tree.h> 63 #include <linux/string.h> 64 #include <linux/seq_file.h> 65 #include <linux/namei.h> 66 #include <linux/mnt_namespace.h> 67 #include <linux/mm.h> 68 #include <linux/swap.h> 69 #include <linux/rcupdate.h> 70 #include <linux/kallsyms.h> 71 #include <linux/stacktrace.h> 72 #include <linux/resource.h> 73 #include <linux/module.h> 74 #include <linux/mount.h> 75 #include <linux/security.h> 76 #include <linux/ptrace.h> 77 #include <linux/tracehook.h> 78 #include <linux/printk.h> 79 #include <linux/cache.h> 80 #include <linux/cgroup.h> 81 #include <linux/cpuset.h> 82 #include <linux/audit.h> 83 #include <linux/poll.h> 84 #include <linux/nsproxy.h> 85 #include <linux/oom.h> 86 #include <linux/elf.h> 87 #include <linux/pid_namespace.h> 88 #include <linux/user_namespace.h> 89 #include <linux/fs_struct.h> 90 #include <linux/slab.h> 91 #include <linux/sched/autogroup.h> 92 #include <linux/sched/mm.h> 93 #include <linux/sched/coredump.h> 94 #include <linux/sched/debug.h> 95 #include <linux/sched/stat.h> 96 #include <linux/posix-timers.h> 97 #include <trace/events/oom.h> 98 #include "internal.h" 99 #include "fd.h" 100 101 #include "../../lib/kstrtox.h" 102 103 /* NOTE: 104 * Implementing inode permission operations in /proc is almost 105 * certainly an error. Permission checks need to happen during 106 * each system call not at open time. The reason is that most of 107 * what we wish to check for permissions in /proc varies at runtime. 108 * 109 * The classic example of a problem is opening file descriptors 110 * in /proc for a task before it execs a suid executable. 111 */ 112 113 static u8 nlink_tid __ro_after_init; 114 static u8 nlink_tgid __ro_after_init; 115 116 struct pid_entry { 117 const char *name; 118 unsigned int len; 119 umode_t mode; 120 const struct inode_operations *iop; 121 const struct file_operations *fop; 122 union proc_op op; 123 }; 124 125 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 126 .name = (NAME), \ 127 .len = sizeof(NAME) - 1, \ 128 .mode = MODE, \ 129 .iop = IOP, \ 130 .fop = FOP, \ 131 .op = OP, \ 132 } 133 134 #define DIR(NAME, MODE, iops, fops) \ 135 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 136 #define LNK(NAME, get_link) \ 137 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 138 &proc_pid_link_inode_operations, NULL, \ 139 { .proc_get_link = get_link } ) 140 #define REG(NAME, MODE, fops) \ 141 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 142 #define ONE(NAME, MODE, show) \ 143 NOD(NAME, (S_IFREG|(MODE)), \ 144 NULL, &proc_single_file_operations, \ 145 { .proc_show = show } ) 146 #define ATTR(LSM, NAME, MODE) \ 147 NOD(NAME, (S_IFREG|(MODE)), \ 148 NULL, &proc_pid_attr_operations, \ 149 { .lsm = LSM }) 150 151 /* 152 * Count the number of hardlinks for the pid_entry table, excluding the . 153 * and .. links. 154 */ 155 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries, 156 unsigned int n) 157 { 158 unsigned int i; 159 unsigned int count; 160 161 count = 2; 162 for (i = 0; i < n; ++i) { 163 if (S_ISDIR(entries[i].mode)) 164 ++count; 165 } 166 167 return count; 168 } 169 170 static int get_task_root(struct task_struct *task, struct path *root) 171 { 172 int result = -ENOENT; 173 174 task_lock(task); 175 if (task->fs) { 176 get_fs_root(task->fs, root); 177 result = 0; 178 } 179 task_unlock(task); 180 return result; 181 } 182 183 static int proc_cwd_link(struct dentry *dentry, struct path *path) 184 { 185 struct task_struct *task = get_proc_task(d_inode(dentry)); 186 int result = -ENOENT; 187 188 if (task) { 189 task_lock(task); 190 if (task->fs) { 191 get_fs_pwd(task->fs, path); 192 result = 0; 193 } 194 task_unlock(task); 195 put_task_struct(task); 196 } 197 return result; 198 } 199 200 static int proc_root_link(struct dentry *dentry, struct path *path) 201 { 202 struct task_struct *task = get_proc_task(d_inode(dentry)); 203 int result = -ENOENT; 204 205 if (task) { 206 result = get_task_root(task, path); 207 put_task_struct(task); 208 } 209 return result; 210 } 211 212 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf, 213 size_t count, loff_t *ppos) 214 { 215 unsigned long arg_start, arg_end, env_start, env_end; 216 unsigned long pos, len; 217 char *page; 218 219 /* Check if process spawned far enough to have cmdline. */ 220 if (!mm->env_end) 221 return 0; 222 223 spin_lock(&mm->arg_lock); 224 arg_start = mm->arg_start; 225 arg_end = mm->arg_end; 226 env_start = mm->env_start; 227 env_end = mm->env_end; 228 spin_unlock(&mm->arg_lock); 229 230 if (arg_start >= arg_end) 231 return 0; 232 233 /* 234 * We have traditionally allowed the user to re-write 235 * the argument strings and overflow the end result 236 * into the environment section. But only do that if 237 * the environment area is contiguous to the arguments. 238 */ 239 if (env_start != arg_end || env_start >= env_end) 240 env_start = env_end = arg_end; 241 242 /* .. and limit it to a maximum of one page of slop */ 243 if (env_end >= arg_end + PAGE_SIZE) 244 env_end = arg_end + PAGE_SIZE - 1; 245 246 /* We're not going to care if "*ppos" has high bits set */ 247 pos = arg_start + *ppos; 248 249 /* .. but we do check the result is in the proper range */ 250 if (pos < arg_start || pos >= env_end) 251 return 0; 252 253 /* .. and we never go past env_end */ 254 if (env_end - pos < count) 255 count = env_end - pos; 256 257 page = (char *)__get_free_page(GFP_KERNEL); 258 if (!page) 259 return -ENOMEM; 260 261 len = 0; 262 while (count) { 263 int got; 264 size_t size = min_t(size_t, PAGE_SIZE, count); 265 long offset; 266 267 /* 268 * Are we already starting past the official end? 269 * We always include the last byte that is *supposed* 270 * to be NUL 271 */ 272 offset = (pos >= arg_end) ? pos - arg_end + 1 : 0; 273 274 got = access_remote_vm(mm, pos - offset, page, size + offset, FOLL_ANON); 275 if (got <= offset) 276 break; 277 got -= offset; 278 279 /* Don't walk past a NUL character once you hit arg_end */ 280 if (pos + got >= arg_end) { 281 int n = 0; 282 283 /* 284 * If we started before 'arg_end' but ended up 285 * at or after it, we start the NUL character 286 * check at arg_end-1 (where we expect the normal 287 * EOF to be). 288 * 289 * NOTE! This is smaller than 'got', because 290 * pos + got >= arg_end 291 */ 292 if (pos < arg_end) 293 n = arg_end - pos - 1; 294 295 /* Cut off at first NUL after 'n' */ 296 got = n + strnlen(page+n, offset+got-n); 297 if (got < offset) 298 break; 299 got -= offset; 300 301 /* Include the NUL if it existed */ 302 if (got < size) 303 got++; 304 } 305 306 got -= copy_to_user(buf, page+offset, got); 307 if (unlikely(!got)) { 308 if (!len) 309 len = -EFAULT; 310 break; 311 } 312 pos += got; 313 buf += got; 314 len += got; 315 count -= got; 316 } 317 318 free_page((unsigned long)page); 319 return len; 320 } 321 322 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf, 323 size_t count, loff_t *pos) 324 { 325 struct mm_struct *mm; 326 ssize_t ret; 327 328 mm = get_task_mm(tsk); 329 if (!mm) 330 return 0; 331 332 ret = get_mm_cmdline(mm, buf, count, pos); 333 mmput(mm); 334 return ret; 335 } 336 337 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf, 338 size_t count, loff_t *pos) 339 { 340 struct task_struct *tsk; 341 ssize_t ret; 342 343 BUG_ON(*pos < 0); 344 345 tsk = get_proc_task(file_inode(file)); 346 if (!tsk) 347 return -ESRCH; 348 ret = get_task_cmdline(tsk, buf, count, pos); 349 put_task_struct(tsk); 350 if (ret > 0) 351 *pos += ret; 352 return ret; 353 } 354 355 static const struct file_operations proc_pid_cmdline_ops = { 356 .read = proc_pid_cmdline_read, 357 .llseek = generic_file_llseek, 358 }; 359 360 #ifdef CONFIG_KALLSYMS 361 /* 362 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 363 * Returns the resolved symbol. If that fails, simply return the address. 364 */ 365 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns, 366 struct pid *pid, struct task_struct *task) 367 { 368 unsigned long wchan; 369 char symname[KSYM_NAME_LEN]; 370 371 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 372 goto print0; 373 374 wchan = get_wchan(task); 375 if (wchan && !lookup_symbol_name(wchan, symname)) { 376 seq_puts(m, symname); 377 return 0; 378 } 379 380 print0: 381 seq_putc(m, '0'); 382 return 0; 383 } 384 #endif /* CONFIG_KALLSYMS */ 385 386 static int lock_trace(struct task_struct *task) 387 { 388 int err = mutex_lock_killable(&task->signal->cred_guard_mutex); 389 if (err) 390 return err; 391 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) { 392 mutex_unlock(&task->signal->cred_guard_mutex); 393 return -EPERM; 394 } 395 return 0; 396 } 397 398 static void unlock_trace(struct task_struct *task) 399 { 400 mutex_unlock(&task->signal->cred_guard_mutex); 401 } 402 403 #ifdef CONFIG_STACKTRACE 404 405 #define MAX_STACK_TRACE_DEPTH 64 406 407 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 408 struct pid *pid, struct task_struct *task) 409 { 410 struct stack_trace trace; 411 unsigned long *entries; 412 int err; 413 414 /* 415 * The ability to racily run the kernel stack unwinder on a running task 416 * and then observe the unwinder output is scary; while it is useful for 417 * debugging kernel issues, it can also allow an attacker to leak kernel 418 * stack contents. 419 * Doing this in a manner that is at least safe from races would require 420 * some work to ensure that the remote task can not be scheduled; and 421 * even then, this would still expose the unwinder as local attack 422 * surface. 423 * Therefore, this interface is restricted to root. 424 */ 425 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 426 return -EACCES; 427 428 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries), 429 GFP_KERNEL); 430 if (!entries) 431 return -ENOMEM; 432 433 trace.nr_entries = 0; 434 trace.max_entries = MAX_STACK_TRACE_DEPTH; 435 trace.entries = entries; 436 trace.skip = 0; 437 438 err = lock_trace(task); 439 if (!err) { 440 unsigned int i; 441 442 save_stack_trace_tsk(task, &trace); 443 444 for (i = 0; i < trace.nr_entries; i++) { 445 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]); 446 } 447 unlock_trace(task); 448 } 449 kfree(entries); 450 451 return err; 452 } 453 #endif 454 455 #ifdef CONFIG_SCHED_INFO 456 /* 457 * Provides /proc/PID/schedstat 458 */ 459 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns, 460 struct pid *pid, struct task_struct *task) 461 { 462 if (unlikely(!sched_info_on())) 463 seq_puts(m, "0 0 0\n"); 464 else 465 seq_printf(m, "%llu %llu %lu\n", 466 (unsigned long long)task->se.sum_exec_runtime, 467 (unsigned long long)task->sched_info.run_delay, 468 task->sched_info.pcount); 469 470 return 0; 471 } 472 #endif 473 474 #ifdef CONFIG_LATENCYTOP 475 static int lstats_show_proc(struct seq_file *m, void *v) 476 { 477 int i; 478 struct inode *inode = m->private; 479 struct task_struct *task = get_proc_task(inode); 480 481 if (!task) 482 return -ESRCH; 483 seq_puts(m, "Latency Top version : v0.1\n"); 484 for (i = 0; i < LT_SAVECOUNT; i++) { 485 struct latency_record *lr = &task->latency_record[i]; 486 if (lr->backtrace[0]) { 487 int q; 488 seq_printf(m, "%i %li %li", 489 lr->count, lr->time, lr->max); 490 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 491 unsigned long bt = lr->backtrace[q]; 492 if (!bt) 493 break; 494 if (bt == ULONG_MAX) 495 break; 496 seq_printf(m, " %ps", (void *)bt); 497 } 498 seq_putc(m, '\n'); 499 } 500 501 } 502 put_task_struct(task); 503 return 0; 504 } 505 506 static int lstats_open(struct inode *inode, struct file *file) 507 { 508 return single_open(file, lstats_show_proc, inode); 509 } 510 511 static ssize_t lstats_write(struct file *file, const char __user *buf, 512 size_t count, loff_t *offs) 513 { 514 struct task_struct *task = get_proc_task(file_inode(file)); 515 516 if (!task) 517 return -ESRCH; 518 clear_all_latency_tracing(task); 519 put_task_struct(task); 520 521 return count; 522 } 523 524 static const struct file_operations proc_lstats_operations = { 525 .open = lstats_open, 526 .read = seq_read, 527 .write = lstats_write, 528 .llseek = seq_lseek, 529 .release = single_release, 530 }; 531 532 #endif 533 534 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns, 535 struct pid *pid, struct task_struct *task) 536 { 537 unsigned long totalpages = totalram_pages() + total_swap_pages; 538 unsigned long points = 0; 539 540 points = oom_badness(task, NULL, NULL, totalpages) * 541 1000 / totalpages; 542 seq_printf(m, "%lu\n", points); 543 544 return 0; 545 } 546 547 struct limit_names { 548 const char *name; 549 const char *unit; 550 }; 551 552 static const struct limit_names lnames[RLIM_NLIMITS] = { 553 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 554 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 555 [RLIMIT_DATA] = {"Max data size", "bytes"}, 556 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 557 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 558 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 559 [RLIMIT_NPROC] = {"Max processes", "processes"}, 560 [RLIMIT_NOFILE] = {"Max open files", "files"}, 561 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 562 [RLIMIT_AS] = {"Max address space", "bytes"}, 563 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 564 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 565 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 566 [RLIMIT_NICE] = {"Max nice priority", NULL}, 567 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 568 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 569 }; 570 571 /* Display limits for a process */ 572 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns, 573 struct pid *pid, struct task_struct *task) 574 { 575 unsigned int i; 576 unsigned long flags; 577 578 struct rlimit rlim[RLIM_NLIMITS]; 579 580 if (!lock_task_sighand(task, &flags)) 581 return 0; 582 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 583 unlock_task_sighand(task, &flags); 584 585 /* 586 * print the file header 587 */ 588 seq_puts(m, "Limit " 589 "Soft Limit " 590 "Hard Limit " 591 "Units \n"); 592 593 for (i = 0; i < RLIM_NLIMITS; i++) { 594 if (rlim[i].rlim_cur == RLIM_INFINITY) 595 seq_printf(m, "%-25s %-20s ", 596 lnames[i].name, "unlimited"); 597 else 598 seq_printf(m, "%-25s %-20lu ", 599 lnames[i].name, rlim[i].rlim_cur); 600 601 if (rlim[i].rlim_max == RLIM_INFINITY) 602 seq_printf(m, "%-20s ", "unlimited"); 603 else 604 seq_printf(m, "%-20lu ", rlim[i].rlim_max); 605 606 if (lnames[i].unit) 607 seq_printf(m, "%-10s\n", lnames[i].unit); 608 else 609 seq_putc(m, '\n'); 610 } 611 612 return 0; 613 } 614 615 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 616 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns, 617 struct pid *pid, struct task_struct *task) 618 { 619 long nr; 620 unsigned long args[6], sp, pc; 621 int res; 622 623 res = lock_trace(task); 624 if (res) 625 return res; 626 627 if (task_current_syscall(task, &nr, args, 6, &sp, &pc)) 628 seq_puts(m, "running\n"); 629 else if (nr < 0) 630 seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc); 631 else 632 seq_printf(m, 633 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n", 634 nr, 635 args[0], args[1], args[2], args[3], args[4], args[5], 636 sp, pc); 637 unlock_trace(task); 638 639 return 0; 640 } 641 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 642 643 /************************************************************************/ 644 /* Here the fs part begins */ 645 /************************************************************************/ 646 647 /* permission checks */ 648 static int proc_fd_access_allowed(struct inode *inode) 649 { 650 struct task_struct *task; 651 int allowed = 0; 652 /* Allow access to a task's file descriptors if it is us or we 653 * may use ptrace attach to the process and find out that 654 * information. 655 */ 656 task = get_proc_task(inode); 657 if (task) { 658 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 659 put_task_struct(task); 660 } 661 return allowed; 662 } 663 664 int proc_setattr(struct dentry *dentry, struct iattr *attr) 665 { 666 int error; 667 struct inode *inode = d_inode(dentry); 668 669 if (attr->ia_valid & ATTR_MODE) 670 return -EPERM; 671 672 error = setattr_prepare(dentry, attr); 673 if (error) 674 return error; 675 676 setattr_copy(inode, attr); 677 mark_inode_dirty(inode); 678 return 0; 679 } 680 681 /* 682 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 683 * or euid/egid (for hide_pid_min=2)? 684 */ 685 static bool has_pid_permissions(struct pid_namespace *pid, 686 struct task_struct *task, 687 int hide_pid_min) 688 { 689 if (pid->hide_pid < hide_pid_min) 690 return true; 691 if (in_group_p(pid->pid_gid)) 692 return true; 693 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 694 } 695 696 697 static int proc_pid_permission(struct inode *inode, int mask) 698 { 699 struct pid_namespace *pid = proc_pid_ns(inode); 700 struct task_struct *task; 701 bool has_perms; 702 703 task = get_proc_task(inode); 704 if (!task) 705 return -ESRCH; 706 has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS); 707 put_task_struct(task); 708 709 if (!has_perms) { 710 if (pid->hide_pid == HIDEPID_INVISIBLE) { 711 /* 712 * Let's make getdents(), stat(), and open() 713 * consistent with each other. If a process 714 * may not stat() a file, it shouldn't be seen 715 * in procfs at all. 716 */ 717 return -ENOENT; 718 } 719 720 return -EPERM; 721 } 722 return generic_permission(inode, mask); 723 } 724 725 726 727 static const struct inode_operations proc_def_inode_operations = { 728 .setattr = proc_setattr, 729 }; 730 731 static int proc_single_show(struct seq_file *m, void *v) 732 { 733 struct inode *inode = m->private; 734 struct pid_namespace *ns = proc_pid_ns(inode); 735 struct pid *pid = proc_pid(inode); 736 struct task_struct *task; 737 int ret; 738 739 task = get_pid_task(pid, PIDTYPE_PID); 740 if (!task) 741 return -ESRCH; 742 743 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 744 745 put_task_struct(task); 746 return ret; 747 } 748 749 static int proc_single_open(struct inode *inode, struct file *filp) 750 { 751 return single_open(filp, proc_single_show, inode); 752 } 753 754 static const struct file_operations proc_single_file_operations = { 755 .open = proc_single_open, 756 .read = seq_read, 757 .llseek = seq_lseek, 758 .release = single_release, 759 }; 760 761 762 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode) 763 { 764 struct task_struct *task = get_proc_task(inode); 765 struct mm_struct *mm = ERR_PTR(-ESRCH); 766 767 if (task) { 768 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS); 769 put_task_struct(task); 770 771 if (!IS_ERR_OR_NULL(mm)) { 772 /* ensure this mm_struct can't be freed */ 773 mmgrab(mm); 774 /* but do not pin its memory */ 775 mmput(mm); 776 } 777 } 778 779 return mm; 780 } 781 782 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) 783 { 784 struct mm_struct *mm = proc_mem_open(inode, mode); 785 786 if (IS_ERR(mm)) 787 return PTR_ERR(mm); 788 789 file->private_data = mm; 790 return 0; 791 } 792 793 static int mem_open(struct inode *inode, struct file *file) 794 { 795 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH); 796 797 /* OK to pass negative loff_t, we can catch out-of-range */ 798 file->f_mode |= FMODE_UNSIGNED_OFFSET; 799 800 return ret; 801 } 802 803 static ssize_t mem_rw(struct file *file, char __user *buf, 804 size_t count, loff_t *ppos, int write) 805 { 806 struct mm_struct *mm = file->private_data; 807 unsigned long addr = *ppos; 808 ssize_t copied; 809 char *page; 810 unsigned int flags; 811 812 if (!mm) 813 return 0; 814 815 page = (char *)__get_free_page(GFP_KERNEL); 816 if (!page) 817 return -ENOMEM; 818 819 copied = 0; 820 if (!mmget_not_zero(mm)) 821 goto free; 822 823 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0); 824 825 while (count > 0) { 826 int this_len = min_t(int, count, PAGE_SIZE); 827 828 if (write && copy_from_user(page, buf, this_len)) { 829 copied = -EFAULT; 830 break; 831 } 832 833 this_len = access_remote_vm(mm, addr, page, this_len, flags); 834 if (!this_len) { 835 if (!copied) 836 copied = -EIO; 837 break; 838 } 839 840 if (!write && copy_to_user(buf, page, this_len)) { 841 copied = -EFAULT; 842 break; 843 } 844 845 buf += this_len; 846 addr += this_len; 847 copied += this_len; 848 count -= this_len; 849 } 850 *ppos = addr; 851 852 mmput(mm); 853 free: 854 free_page((unsigned long) page); 855 return copied; 856 } 857 858 static ssize_t mem_read(struct file *file, char __user *buf, 859 size_t count, loff_t *ppos) 860 { 861 return mem_rw(file, buf, count, ppos, 0); 862 } 863 864 static ssize_t mem_write(struct file *file, const char __user *buf, 865 size_t count, loff_t *ppos) 866 { 867 return mem_rw(file, (char __user*)buf, count, ppos, 1); 868 } 869 870 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 871 { 872 switch (orig) { 873 case 0: 874 file->f_pos = offset; 875 break; 876 case 1: 877 file->f_pos += offset; 878 break; 879 default: 880 return -EINVAL; 881 } 882 force_successful_syscall_return(); 883 return file->f_pos; 884 } 885 886 static int mem_release(struct inode *inode, struct file *file) 887 { 888 struct mm_struct *mm = file->private_data; 889 if (mm) 890 mmdrop(mm); 891 return 0; 892 } 893 894 static const struct file_operations proc_mem_operations = { 895 .llseek = mem_lseek, 896 .read = mem_read, 897 .write = mem_write, 898 .open = mem_open, 899 .release = mem_release, 900 }; 901 902 static int environ_open(struct inode *inode, struct file *file) 903 { 904 return __mem_open(inode, file, PTRACE_MODE_READ); 905 } 906 907 static ssize_t environ_read(struct file *file, char __user *buf, 908 size_t count, loff_t *ppos) 909 { 910 char *page; 911 unsigned long src = *ppos; 912 int ret = 0; 913 struct mm_struct *mm = file->private_data; 914 unsigned long env_start, env_end; 915 916 /* Ensure the process spawned far enough to have an environment. */ 917 if (!mm || !mm->env_end) 918 return 0; 919 920 page = (char *)__get_free_page(GFP_KERNEL); 921 if (!page) 922 return -ENOMEM; 923 924 ret = 0; 925 if (!mmget_not_zero(mm)) 926 goto free; 927 928 spin_lock(&mm->arg_lock); 929 env_start = mm->env_start; 930 env_end = mm->env_end; 931 spin_unlock(&mm->arg_lock); 932 933 while (count > 0) { 934 size_t this_len, max_len; 935 int retval; 936 937 if (src >= (env_end - env_start)) 938 break; 939 940 this_len = env_end - (env_start + src); 941 942 max_len = min_t(size_t, PAGE_SIZE, count); 943 this_len = min(max_len, this_len); 944 945 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON); 946 947 if (retval <= 0) { 948 ret = retval; 949 break; 950 } 951 952 if (copy_to_user(buf, page, retval)) { 953 ret = -EFAULT; 954 break; 955 } 956 957 ret += retval; 958 src += retval; 959 buf += retval; 960 count -= retval; 961 } 962 *ppos = src; 963 mmput(mm); 964 965 free: 966 free_page((unsigned long) page); 967 return ret; 968 } 969 970 static const struct file_operations proc_environ_operations = { 971 .open = environ_open, 972 .read = environ_read, 973 .llseek = generic_file_llseek, 974 .release = mem_release, 975 }; 976 977 static int auxv_open(struct inode *inode, struct file *file) 978 { 979 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 980 } 981 982 static ssize_t auxv_read(struct file *file, char __user *buf, 983 size_t count, loff_t *ppos) 984 { 985 struct mm_struct *mm = file->private_data; 986 unsigned int nwords = 0; 987 988 if (!mm) 989 return 0; 990 do { 991 nwords += 2; 992 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 993 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv, 994 nwords * sizeof(mm->saved_auxv[0])); 995 } 996 997 static const struct file_operations proc_auxv_operations = { 998 .open = auxv_open, 999 .read = auxv_read, 1000 .llseek = generic_file_llseek, 1001 .release = mem_release, 1002 }; 1003 1004 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count, 1005 loff_t *ppos) 1006 { 1007 struct task_struct *task = get_proc_task(file_inode(file)); 1008 char buffer[PROC_NUMBUF]; 1009 int oom_adj = OOM_ADJUST_MIN; 1010 size_t len; 1011 1012 if (!task) 1013 return -ESRCH; 1014 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX) 1015 oom_adj = OOM_ADJUST_MAX; 1016 else 1017 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) / 1018 OOM_SCORE_ADJ_MAX; 1019 put_task_struct(task); 1020 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj); 1021 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1022 } 1023 1024 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy) 1025 { 1026 static DEFINE_MUTEX(oom_adj_mutex); 1027 struct mm_struct *mm = NULL; 1028 struct task_struct *task; 1029 int err = 0; 1030 1031 task = get_proc_task(file_inode(file)); 1032 if (!task) 1033 return -ESRCH; 1034 1035 mutex_lock(&oom_adj_mutex); 1036 if (legacy) { 1037 if (oom_adj < task->signal->oom_score_adj && 1038 !capable(CAP_SYS_RESOURCE)) { 1039 err = -EACCES; 1040 goto err_unlock; 1041 } 1042 /* 1043 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use 1044 * /proc/pid/oom_score_adj instead. 1045 */ 1046 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 1047 current->comm, task_pid_nr(current), task_pid_nr(task), 1048 task_pid_nr(task)); 1049 } else { 1050 if ((short)oom_adj < task->signal->oom_score_adj_min && 1051 !capable(CAP_SYS_RESOURCE)) { 1052 err = -EACCES; 1053 goto err_unlock; 1054 } 1055 } 1056 1057 /* 1058 * Make sure we will check other processes sharing the mm if this is 1059 * not vfrok which wants its own oom_score_adj. 1060 * pin the mm so it doesn't go away and get reused after task_unlock 1061 */ 1062 if (!task->vfork_done) { 1063 struct task_struct *p = find_lock_task_mm(task); 1064 1065 if (p) { 1066 if (atomic_read(&p->mm->mm_users) > 1) { 1067 mm = p->mm; 1068 mmgrab(mm); 1069 } 1070 task_unlock(p); 1071 } 1072 } 1073 1074 task->signal->oom_score_adj = oom_adj; 1075 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1076 task->signal->oom_score_adj_min = (short)oom_adj; 1077 trace_oom_score_adj_update(task); 1078 1079 if (mm) { 1080 struct task_struct *p; 1081 1082 rcu_read_lock(); 1083 for_each_process(p) { 1084 if (same_thread_group(task, p)) 1085 continue; 1086 1087 /* do not touch kernel threads or the global init */ 1088 if (p->flags & PF_KTHREAD || is_global_init(p)) 1089 continue; 1090 1091 task_lock(p); 1092 if (!p->vfork_done && process_shares_mm(p, mm)) { 1093 p->signal->oom_score_adj = oom_adj; 1094 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1095 p->signal->oom_score_adj_min = (short)oom_adj; 1096 } 1097 task_unlock(p); 1098 } 1099 rcu_read_unlock(); 1100 mmdrop(mm); 1101 } 1102 err_unlock: 1103 mutex_unlock(&oom_adj_mutex); 1104 put_task_struct(task); 1105 return err; 1106 } 1107 1108 /* 1109 * /proc/pid/oom_adj exists solely for backwards compatibility with previous 1110 * kernels. The effective policy is defined by oom_score_adj, which has a 1111 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly. 1112 * Values written to oom_adj are simply mapped linearly to oom_score_adj. 1113 * Processes that become oom disabled via oom_adj will still be oom disabled 1114 * with this implementation. 1115 * 1116 * oom_adj cannot be removed since existing userspace binaries use it. 1117 */ 1118 static ssize_t oom_adj_write(struct file *file, const char __user *buf, 1119 size_t count, loff_t *ppos) 1120 { 1121 char buffer[PROC_NUMBUF]; 1122 int oom_adj; 1123 int err; 1124 1125 memset(buffer, 0, sizeof(buffer)); 1126 if (count > sizeof(buffer) - 1) 1127 count = sizeof(buffer) - 1; 1128 if (copy_from_user(buffer, buf, count)) { 1129 err = -EFAULT; 1130 goto out; 1131 } 1132 1133 err = kstrtoint(strstrip(buffer), 0, &oom_adj); 1134 if (err) 1135 goto out; 1136 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) && 1137 oom_adj != OOM_DISABLE) { 1138 err = -EINVAL; 1139 goto out; 1140 } 1141 1142 /* 1143 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 1144 * value is always attainable. 1145 */ 1146 if (oom_adj == OOM_ADJUST_MAX) 1147 oom_adj = OOM_SCORE_ADJ_MAX; 1148 else 1149 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE; 1150 1151 err = __set_oom_adj(file, oom_adj, true); 1152 out: 1153 return err < 0 ? err : count; 1154 } 1155 1156 static const struct file_operations proc_oom_adj_operations = { 1157 .read = oom_adj_read, 1158 .write = oom_adj_write, 1159 .llseek = generic_file_llseek, 1160 }; 1161 1162 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 1163 size_t count, loff_t *ppos) 1164 { 1165 struct task_struct *task = get_proc_task(file_inode(file)); 1166 char buffer[PROC_NUMBUF]; 1167 short oom_score_adj = OOM_SCORE_ADJ_MIN; 1168 size_t len; 1169 1170 if (!task) 1171 return -ESRCH; 1172 oom_score_adj = task->signal->oom_score_adj; 1173 put_task_struct(task); 1174 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj); 1175 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1176 } 1177 1178 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 1179 size_t count, loff_t *ppos) 1180 { 1181 char buffer[PROC_NUMBUF]; 1182 int oom_score_adj; 1183 int err; 1184 1185 memset(buffer, 0, sizeof(buffer)); 1186 if (count > sizeof(buffer) - 1) 1187 count = sizeof(buffer) - 1; 1188 if (copy_from_user(buffer, buf, count)) { 1189 err = -EFAULT; 1190 goto out; 1191 } 1192 1193 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1194 if (err) 1195 goto out; 1196 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1197 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1198 err = -EINVAL; 1199 goto out; 1200 } 1201 1202 err = __set_oom_adj(file, oom_score_adj, false); 1203 out: 1204 return err < 0 ? err : count; 1205 } 1206 1207 static const struct file_operations proc_oom_score_adj_operations = { 1208 .read = oom_score_adj_read, 1209 .write = oom_score_adj_write, 1210 .llseek = default_llseek, 1211 }; 1212 1213 #ifdef CONFIG_AUDIT 1214 #define TMPBUFLEN 11 1215 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1216 size_t count, loff_t *ppos) 1217 { 1218 struct inode * inode = file_inode(file); 1219 struct task_struct *task = get_proc_task(inode); 1220 ssize_t length; 1221 char tmpbuf[TMPBUFLEN]; 1222 1223 if (!task) 1224 return -ESRCH; 1225 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1226 from_kuid(file->f_cred->user_ns, 1227 audit_get_loginuid(task))); 1228 put_task_struct(task); 1229 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1230 } 1231 1232 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1233 size_t count, loff_t *ppos) 1234 { 1235 struct inode * inode = file_inode(file); 1236 uid_t loginuid; 1237 kuid_t kloginuid; 1238 int rv; 1239 1240 rcu_read_lock(); 1241 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1242 rcu_read_unlock(); 1243 return -EPERM; 1244 } 1245 rcu_read_unlock(); 1246 1247 if (*ppos != 0) { 1248 /* No partial writes. */ 1249 return -EINVAL; 1250 } 1251 1252 rv = kstrtou32_from_user(buf, count, 10, &loginuid); 1253 if (rv < 0) 1254 return rv; 1255 1256 /* is userspace tring to explicitly UNSET the loginuid? */ 1257 if (loginuid == AUDIT_UID_UNSET) { 1258 kloginuid = INVALID_UID; 1259 } else { 1260 kloginuid = make_kuid(file->f_cred->user_ns, loginuid); 1261 if (!uid_valid(kloginuid)) 1262 return -EINVAL; 1263 } 1264 1265 rv = audit_set_loginuid(kloginuid); 1266 if (rv < 0) 1267 return rv; 1268 return count; 1269 } 1270 1271 static const struct file_operations proc_loginuid_operations = { 1272 .read = proc_loginuid_read, 1273 .write = proc_loginuid_write, 1274 .llseek = generic_file_llseek, 1275 }; 1276 1277 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1278 size_t count, loff_t *ppos) 1279 { 1280 struct inode * inode = file_inode(file); 1281 struct task_struct *task = get_proc_task(inode); 1282 ssize_t length; 1283 char tmpbuf[TMPBUFLEN]; 1284 1285 if (!task) 1286 return -ESRCH; 1287 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1288 audit_get_sessionid(task)); 1289 put_task_struct(task); 1290 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1291 } 1292 1293 static const struct file_operations proc_sessionid_operations = { 1294 .read = proc_sessionid_read, 1295 .llseek = generic_file_llseek, 1296 }; 1297 #endif 1298 1299 #ifdef CONFIG_FAULT_INJECTION 1300 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1301 size_t count, loff_t *ppos) 1302 { 1303 struct task_struct *task = get_proc_task(file_inode(file)); 1304 char buffer[PROC_NUMBUF]; 1305 size_t len; 1306 int make_it_fail; 1307 1308 if (!task) 1309 return -ESRCH; 1310 make_it_fail = task->make_it_fail; 1311 put_task_struct(task); 1312 1313 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1314 1315 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1316 } 1317 1318 static ssize_t proc_fault_inject_write(struct file * file, 1319 const char __user * buf, size_t count, loff_t *ppos) 1320 { 1321 struct task_struct *task; 1322 char buffer[PROC_NUMBUF]; 1323 int make_it_fail; 1324 int rv; 1325 1326 if (!capable(CAP_SYS_RESOURCE)) 1327 return -EPERM; 1328 memset(buffer, 0, sizeof(buffer)); 1329 if (count > sizeof(buffer) - 1) 1330 count = sizeof(buffer) - 1; 1331 if (copy_from_user(buffer, buf, count)) 1332 return -EFAULT; 1333 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail); 1334 if (rv < 0) 1335 return rv; 1336 if (make_it_fail < 0 || make_it_fail > 1) 1337 return -EINVAL; 1338 1339 task = get_proc_task(file_inode(file)); 1340 if (!task) 1341 return -ESRCH; 1342 task->make_it_fail = make_it_fail; 1343 put_task_struct(task); 1344 1345 return count; 1346 } 1347 1348 static const struct file_operations proc_fault_inject_operations = { 1349 .read = proc_fault_inject_read, 1350 .write = proc_fault_inject_write, 1351 .llseek = generic_file_llseek, 1352 }; 1353 1354 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf, 1355 size_t count, loff_t *ppos) 1356 { 1357 struct task_struct *task; 1358 int err; 1359 unsigned int n; 1360 1361 err = kstrtouint_from_user(buf, count, 0, &n); 1362 if (err) 1363 return err; 1364 1365 task = get_proc_task(file_inode(file)); 1366 if (!task) 1367 return -ESRCH; 1368 task->fail_nth = n; 1369 put_task_struct(task); 1370 1371 return count; 1372 } 1373 1374 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf, 1375 size_t count, loff_t *ppos) 1376 { 1377 struct task_struct *task; 1378 char numbuf[PROC_NUMBUF]; 1379 ssize_t len; 1380 1381 task = get_proc_task(file_inode(file)); 1382 if (!task) 1383 return -ESRCH; 1384 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth); 1385 put_task_struct(task); 1386 return simple_read_from_buffer(buf, count, ppos, numbuf, len); 1387 } 1388 1389 static const struct file_operations proc_fail_nth_operations = { 1390 .read = proc_fail_nth_read, 1391 .write = proc_fail_nth_write, 1392 }; 1393 #endif 1394 1395 1396 #ifdef CONFIG_SCHED_DEBUG 1397 /* 1398 * Print out various scheduling related per-task fields: 1399 */ 1400 static int sched_show(struct seq_file *m, void *v) 1401 { 1402 struct inode *inode = m->private; 1403 struct pid_namespace *ns = proc_pid_ns(inode); 1404 struct task_struct *p; 1405 1406 p = get_proc_task(inode); 1407 if (!p) 1408 return -ESRCH; 1409 proc_sched_show_task(p, ns, m); 1410 1411 put_task_struct(p); 1412 1413 return 0; 1414 } 1415 1416 static ssize_t 1417 sched_write(struct file *file, const char __user *buf, 1418 size_t count, loff_t *offset) 1419 { 1420 struct inode *inode = file_inode(file); 1421 struct task_struct *p; 1422 1423 p = get_proc_task(inode); 1424 if (!p) 1425 return -ESRCH; 1426 proc_sched_set_task(p); 1427 1428 put_task_struct(p); 1429 1430 return count; 1431 } 1432 1433 static int sched_open(struct inode *inode, struct file *filp) 1434 { 1435 return single_open(filp, sched_show, inode); 1436 } 1437 1438 static const struct file_operations proc_pid_sched_operations = { 1439 .open = sched_open, 1440 .read = seq_read, 1441 .write = sched_write, 1442 .llseek = seq_lseek, 1443 .release = single_release, 1444 }; 1445 1446 #endif 1447 1448 #ifdef CONFIG_SCHED_AUTOGROUP 1449 /* 1450 * Print out autogroup related information: 1451 */ 1452 static int sched_autogroup_show(struct seq_file *m, void *v) 1453 { 1454 struct inode *inode = m->private; 1455 struct task_struct *p; 1456 1457 p = get_proc_task(inode); 1458 if (!p) 1459 return -ESRCH; 1460 proc_sched_autogroup_show_task(p, m); 1461 1462 put_task_struct(p); 1463 1464 return 0; 1465 } 1466 1467 static ssize_t 1468 sched_autogroup_write(struct file *file, const char __user *buf, 1469 size_t count, loff_t *offset) 1470 { 1471 struct inode *inode = file_inode(file); 1472 struct task_struct *p; 1473 char buffer[PROC_NUMBUF]; 1474 int nice; 1475 int err; 1476 1477 memset(buffer, 0, sizeof(buffer)); 1478 if (count > sizeof(buffer) - 1) 1479 count = sizeof(buffer) - 1; 1480 if (copy_from_user(buffer, buf, count)) 1481 return -EFAULT; 1482 1483 err = kstrtoint(strstrip(buffer), 0, &nice); 1484 if (err < 0) 1485 return err; 1486 1487 p = get_proc_task(inode); 1488 if (!p) 1489 return -ESRCH; 1490 1491 err = proc_sched_autogroup_set_nice(p, nice); 1492 if (err) 1493 count = err; 1494 1495 put_task_struct(p); 1496 1497 return count; 1498 } 1499 1500 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1501 { 1502 int ret; 1503 1504 ret = single_open(filp, sched_autogroup_show, NULL); 1505 if (!ret) { 1506 struct seq_file *m = filp->private_data; 1507 1508 m->private = inode; 1509 } 1510 return ret; 1511 } 1512 1513 static const struct file_operations proc_pid_sched_autogroup_operations = { 1514 .open = sched_autogroup_open, 1515 .read = seq_read, 1516 .write = sched_autogroup_write, 1517 .llseek = seq_lseek, 1518 .release = single_release, 1519 }; 1520 1521 #endif /* CONFIG_SCHED_AUTOGROUP */ 1522 1523 static ssize_t comm_write(struct file *file, const char __user *buf, 1524 size_t count, loff_t *offset) 1525 { 1526 struct inode *inode = file_inode(file); 1527 struct task_struct *p; 1528 char buffer[TASK_COMM_LEN]; 1529 const size_t maxlen = sizeof(buffer) - 1; 1530 1531 memset(buffer, 0, sizeof(buffer)); 1532 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count)) 1533 return -EFAULT; 1534 1535 p = get_proc_task(inode); 1536 if (!p) 1537 return -ESRCH; 1538 1539 if (same_thread_group(current, p)) 1540 set_task_comm(p, buffer); 1541 else 1542 count = -EINVAL; 1543 1544 put_task_struct(p); 1545 1546 return count; 1547 } 1548 1549 static int comm_show(struct seq_file *m, void *v) 1550 { 1551 struct inode *inode = m->private; 1552 struct task_struct *p; 1553 1554 p = get_proc_task(inode); 1555 if (!p) 1556 return -ESRCH; 1557 1558 proc_task_name(m, p, false); 1559 seq_putc(m, '\n'); 1560 1561 put_task_struct(p); 1562 1563 return 0; 1564 } 1565 1566 static int comm_open(struct inode *inode, struct file *filp) 1567 { 1568 return single_open(filp, comm_show, inode); 1569 } 1570 1571 static const struct file_operations proc_pid_set_comm_operations = { 1572 .open = comm_open, 1573 .read = seq_read, 1574 .write = comm_write, 1575 .llseek = seq_lseek, 1576 .release = single_release, 1577 }; 1578 1579 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1580 { 1581 struct task_struct *task; 1582 struct file *exe_file; 1583 1584 task = get_proc_task(d_inode(dentry)); 1585 if (!task) 1586 return -ENOENT; 1587 exe_file = get_task_exe_file(task); 1588 put_task_struct(task); 1589 if (exe_file) { 1590 *exe_path = exe_file->f_path; 1591 path_get(&exe_file->f_path); 1592 fput(exe_file); 1593 return 0; 1594 } else 1595 return -ENOENT; 1596 } 1597 1598 static const char *proc_pid_get_link(struct dentry *dentry, 1599 struct inode *inode, 1600 struct delayed_call *done) 1601 { 1602 struct path path; 1603 int error = -EACCES; 1604 1605 if (!dentry) 1606 return ERR_PTR(-ECHILD); 1607 1608 /* Are we allowed to snoop on the tasks file descriptors? */ 1609 if (!proc_fd_access_allowed(inode)) 1610 goto out; 1611 1612 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1613 if (error) 1614 goto out; 1615 1616 nd_jump_link(&path); 1617 return NULL; 1618 out: 1619 return ERR_PTR(error); 1620 } 1621 1622 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1623 { 1624 char *tmp = (char *)__get_free_page(GFP_KERNEL); 1625 char *pathname; 1626 int len; 1627 1628 if (!tmp) 1629 return -ENOMEM; 1630 1631 pathname = d_path(path, tmp, PAGE_SIZE); 1632 len = PTR_ERR(pathname); 1633 if (IS_ERR(pathname)) 1634 goto out; 1635 len = tmp + PAGE_SIZE - 1 - pathname; 1636 1637 if (len > buflen) 1638 len = buflen; 1639 if (copy_to_user(buffer, pathname, len)) 1640 len = -EFAULT; 1641 out: 1642 free_page((unsigned long)tmp); 1643 return len; 1644 } 1645 1646 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1647 { 1648 int error = -EACCES; 1649 struct inode *inode = d_inode(dentry); 1650 struct path path; 1651 1652 /* Are we allowed to snoop on the tasks file descriptors? */ 1653 if (!proc_fd_access_allowed(inode)) 1654 goto out; 1655 1656 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1657 if (error) 1658 goto out; 1659 1660 error = do_proc_readlink(&path, buffer, buflen); 1661 path_put(&path); 1662 out: 1663 return error; 1664 } 1665 1666 const struct inode_operations proc_pid_link_inode_operations = { 1667 .readlink = proc_pid_readlink, 1668 .get_link = proc_pid_get_link, 1669 .setattr = proc_setattr, 1670 }; 1671 1672 1673 /* building an inode */ 1674 1675 void task_dump_owner(struct task_struct *task, umode_t mode, 1676 kuid_t *ruid, kgid_t *rgid) 1677 { 1678 /* Depending on the state of dumpable compute who should own a 1679 * proc file for a task. 1680 */ 1681 const struct cred *cred; 1682 kuid_t uid; 1683 kgid_t gid; 1684 1685 if (unlikely(task->flags & PF_KTHREAD)) { 1686 *ruid = GLOBAL_ROOT_UID; 1687 *rgid = GLOBAL_ROOT_GID; 1688 return; 1689 } 1690 1691 /* Default to the tasks effective ownership */ 1692 rcu_read_lock(); 1693 cred = __task_cred(task); 1694 uid = cred->euid; 1695 gid = cred->egid; 1696 rcu_read_unlock(); 1697 1698 /* 1699 * Before the /proc/pid/status file was created the only way to read 1700 * the effective uid of a /process was to stat /proc/pid. Reading 1701 * /proc/pid/status is slow enough that procps and other packages 1702 * kept stating /proc/pid. To keep the rules in /proc simple I have 1703 * made this apply to all per process world readable and executable 1704 * directories. 1705 */ 1706 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) { 1707 struct mm_struct *mm; 1708 task_lock(task); 1709 mm = task->mm; 1710 /* Make non-dumpable tasks owned by some root */ 1711 if (mm) { 1712 if (get_dumpable(mm) != SUID_DUMP_USER) { 1713 struct user_namespace *user_ns = mm->user_ns; 1714 1715 uid = make_kuid(user_ns, 0); 1716 if (!uid_valid(uid)) 1717 uid = GLOBAL_ROOT_UID; 1718 1719 gid = make_kgid(user_ns, 0); 1720 if (!gid_valid(gid)) 1721 gid = GLOBAL_ROOT_GID; 1722 } 1723 } else { 1724 uid = GLOBAL_ROOT_UID; 1725 gid = GLOBAL_ROOT_GID; 1726 } 1727 task_unlock(task); 1728 } 1729 *ruid = uid; 1730 *rgid = gid; 1731 } 1732 1733 struct inode *proc_pid_make_inode(struct super_block * sb, 1734 struct task_struct *task, umode_t mode) 1735 { 1736 struct inode * inode; 1737 struct proc_inode *ei; 1738 1739 /* We need a new inode */ 1740 1741 inode = new_inode(sb); 1742 if (!inode) 1743 goto out; 1744 1745 /* Common stuff */ 1746 ei = PROC_I(inode); 1747 inode->i_mode = mode; 1748 inode->i_ino = get_next_ino(); 1749 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1750 inode->i_op = &proc_def_inode_operations; 1751 1752 /* 1753 * grab the reference to task. 1754 */ 1755 ei->pid = get_task_pid(task, PIDTYPE_PID); 1756 if (!ei->pid) 1757 goto out_unlock; 1758 1759 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1760 security_task_to_inode(task, inode); 1761 1762 out: 1763 return inode; 1764 1765 out_unlock: 1766 iput(inode); 1767 return NULL; 1768 } 1769 1770 int pid_getattr(const struct path *path, struct kstat *stat, 1771 u32 request_mask, unsigned int query_flags) 1772 { 1773 struct inode *inode = d_inode(path->dentry); 1774 struct pid_namespace *pid = proc_pid_ns(inode); 1775 struct task_struct *task; 1776 1777 generic_fillattr(inode, stat); 1778 1779 stat->uid = GLOBAL_ROOT_UID; 1780 stat->gid = GLOBAL_ROOT_GID; 1781 rcu_read_lock(); 1782 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1783 if (task) { 1784 if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) { 1785 rcu_read_unlock(); 1786 /* 1787 * This doesn't prevent learning whether PID exists, 1788 * it only makes getattr() consistent with readdir(). 1789 */ 1790 return -ENOENT; 1791 } 1792 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid); 1793 } 1794 rcu_read_unlock(); 1795 return 0; 1796 } 1797 1798 /* dentry stuff */ 1799 1800 /* 1801 * Set <pid>/... inode ownership (can change due to setuid(), etc.) 1802 */ 1803 void pid_update_inode(struct task_struct *task, struct inode *inode) 1804 { 1805 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid); 1806 1807 inode->i_mode &= ~(S_ISUID | S_ISGID); 1808 security_task_to_inode(task, inode); 1809 } 1810 1811 /* 1812 * Rewrite the inode's ownerships here because the owning task may have 1813 * performed a setuid(), etc. 1814 * 1815 */ 1816 static int pid_revalidate(struct dentry *dentry, unsigned int flags) 1817 { 1818 struct inode *inode; 1819 struct task_struct *task; 1820 1821 if (flags & LOOKUP_RCU) 1822 return -ECHILD; 1823 1824 inode = d_inode(dentry); 1825 task = get_proc_task(inode); 1826 1827 if (task) { 1828 pid_update_inode(task, inode); 1829 put_task_struct(task); 1830 return 1; 1831 } 1832 return 0; 1833 } 1834 1835 static inline bool proc_inode_is_dead(struct inode *inode) 1836 { 1837 return !proc_pid(inode)->tasks[PIDTYPE_PID].first; 1838 } 1839 1840 int pid_delete_dentry(const struct dentry *dentry) 1841 { 1842 /* Is the task we represent dead? 1843 * If so, then don't put the dentry on the lru list, 1844 * kill it immediately. 1845 */ 1846 return proc_inode_is_dead(d_inode(dentry)); 1847 } 1848 1849 const struct dentry_operations pid_dentry_operations = 1850 { 1851 .d_revalidate = pid_revalidate, 1852 .d_delete = pid_delete_dentry, 1853 }; 1854 1855 /* Lookups */ 1856 1857 /* 1858 * Fill a directory entry. 1859 * 1860 * If possible create the dcache entry and derive our inode number and 1861 * file type from dcache entry. 1862 * 1863 * Since all of the proc inode numbers are dynamically generated, the inode 1864 * numbers do not exist until the inode is cache. This means creating the 1865 * the dcache entry in readdir is necessary to keep the inode numbers 1866 * reported by readdir in sync with the inode numbers reported 1867 * by stat. 1868 */ 1869 bool proc_fill_cache(struct file *file, struct dir_context *ctx, 1870 const char *name, unsigned int len, 1871 instantiate_t instantiate, struct task_struct *task, const void *ptr) 1872 { 1873 struct dentry *child, *dir = file->f_path.dentry; 1874 struct qstr qname = QSTR_INIT(name, len); 1875 struct inode *inode; 1876 unsigned type = DT_UNKNOWN; 1877 ino_t ino = 1; 1878 1879 child = d_hash_and_lookup(dir, &qname); 1880 if (!child) { 1881 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1882 child = d_alloc_parallel(dir, &qname, &wq); 1883 if (IS_ERR(child)) 1884 goto end_instantiate; 1885 if (d_in_lookup(child)) { 1886 struct dentry *res; 1887 res = instantiate(child, task, ptr); 1888 d_lookup_done(child); 1889 if (unlikely(res)) { 1890 dput(child); 1891 child = res; 1892 if (IS_ERR(child)) 1893 goto end_instantiate; 1894 } 1895 } 1896 } 1897 inode = d_inode(child); 1898 ino = inode->i_ino; 1899 type = inode->i_mode >> 12; 1900 dput(child); 1901 end_instantiate: 1902 return dir_emit(ctx, name, len, ino, type); 1903 } 1904 1905 /* 1906 * dname_to_vma_addr - maps a dentry name into two unsigned longs 1907 * which represent vma start and end addresses. 1908 */ 1909 static int dname_to_vma_addr(struct dentry *dentry, 1910 unsigned long *start, unsigned long *end) 1911 { 1912 const char *str = dentry->d_name.name; 1913 unsigned long long sval, eval; 1914 unsigned int len; 1915 1916 if (str[0] == '0' && str[1] != '-') 1917 return -EINVAL; 1918 len = _parse_integer(str, 16, &sval); 1919 if (len & KSTRTOX_OVERFLOW) 1920 return -EINVAL; 1921 if (sval != (unsigned long)sval) 1922 return -EINVAL; 1923 str += len; 1924 1925 if (*str != '-') 1926 return -EINVAL; 1927 str++; 1928 1929 if (str[0] == '0' && str[1]) 1930 return -EINVAL; 1931 len = _parse_integer(str, 16, &eval); 1932 if (len & KSTRTOX_OVERFLOW) 1933 return -EINVAL; 1934 if (eval != (unsigned long)eval) 1935 return -EINVAL; 1936 str += len; 1937 1938 if (*str != '\0') 1939 return -EINVAL; 1940 1941 *start = sval; 1942 *end = eval; 1943 1944 return 0; 1945 } 1946 1947 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags) 1948 { 1949 unsigned long vm_start, vm_end; 1950 bool exact_vma_exists = false; 1951 struct mm_struct *mm = NULL; 1952 struct task_struct *task; 1953 struct inode *inode; 1954 int status = 0; 1955 1956 if (flags & LOOKUP_RCU) 1957 return -ECHILD; 1958 1959 inode = d_inode(dentry); 1960 task = get_proc_task(inode); 1961 if (!task) 1962 goto out_notask; 1963 1964 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 1965 if (IS_ERR_OR_NULL(mm)) 1966 goto out; 1967 1968 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 1969 down_read(&mm->mmap_sem); 1970 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end); 1971 up_read(&mm->mmap_sem); 1972 } 1973 1974 mmput(mm); 1975 1976 if (exact_vma_exists) { 1977 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1978 1979 security_task_to_inode(task, inode); 1980 status = 1; 1981 } 1982 1983 out: 1984 put_task_struct(task); 1985 1986 out_notask: 1987 return status; 1988 } 1989 1990 static const struct dentry_operations tid_map_files_dentry_operations = { 1991 .d_revalidate = map_files_d_revalidate, 1992 .d_delete = pid_delete_dentry, 1993 }; 1994 1995 static int map_files_get_link(struct dentry *dentry, struct path *path) 1996 { 1997 unsigned long vm_start, vm_end; 1998 struct vm_area_struct *vma; 1999 struct task_struct *task; 2000 struct mm_struct *mm; 2001 int rc; 2002 2003 rc = -ENOENT; 2004 task = get_proc_task(d_inode(dentry)); 2005 if (!task) 2006 goto out; 2007 2008 mm = get_task_mm(task); 2009 put_task_struct(task); 2010 if (!mm) 2011 goto out; 2012 2013 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 2014 if (rc) 2015 goto out_mmput; 2016 2017 rc = -ENOENT; 2018 down_read(&mm->mmap_sem); 2019 vma = find_exact_vma(mm, vm_start, vm_end); 2020 if (vma && vma->vm_file) { 2021 *path = vma->vm_file->f_path; 2022 path_get(path); 2023 rc = 0; 2024 } 2025 up_read(&mm->mmap_sem); 2026 2027 out_mmput: 2028 mmput(mm); 2029 out: 2030 return rc; 2031 } 2032 2033 struct map_files_info { 2034 unsigned long start; 2035 unsigned long end; 2036 fmode_t mode; 2037 }; 2038 2039 /* 2040 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the 2041 * symlinks may be used to bypass permissions on ancestor directories in the 2042 * path to the file in question. 2043 */ 2044 static const char * 2045 proc_map_files_get_link(struct dentry *dentry, 2046 struct inode *inode, 2047 struct delayed_call *done) 2048 { 2049 if (!capable(CAP_SYS_ADMIN)) 2050 return ERR_PTR(-EPERM); 2051 2052 return proc_pid_get_link(dentry, inode, done); 2053 } 2054 2055 /* 2056 * Identical to proc_pid_link_inode_operations except for get_link() 2057 */ 2058 static const struct inode_operations proc_map_files_link_inode_operations = { 2059 .readlink = proc_pid_readlink, 2060 .get_link = proc_map_files_get_link, 2061 .setattr = proc_setattr, 2062 }; 2063 2064 static struct dentry * 2065 proc_map_files_instantiate(struct dentry *dentry, 2066 struct task_struct *task, const void *ptr) 2067 { 2068 fmode_t mode = (fmode_t)(unsigned long)ptr; 2069 struct proc_inode *ei; 2070 struct inode *inode; 2071 2072 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK | 2073 ((mode & FMODE_READ ) ? S_IRUSR : 0) | 2074 ((mode & FMODE_WRITE) ? S_IWUSR : 0)); 2075 if (!inode) 2076 return ERR_PTR(-ENOENT); 2077 2078 ei = PROC_I(inode); 2079 ei->op.proc_get_link = map_files_get_link; 2080 2081 inode->i_op = &proc_map_files_link_inode_operations; 2082 inode->i_size = 64; 2083 2084 d_set_d_op(dentry, &tid_map_files_dentry_operations); 2085 return d_splice_alias(inode, dentry); 2086 } 2087 2088 static struct dentry *proc_map_files_lookup(struct inode *dir, 2089 struct dentry *dentry, unsigned int flags) 2090 { 2091 unsigned long vm_start, vm_end; 2092 struct vm_area_struct *vma; 2093 struct task_struct *task; 2094 struct dentry *result; 2095 struct mm_struct *mm; 2096 2097 result = ERR_PTR(-ENOENT); 2098 task = get_proc_task(dir); 2099 if (!task) 2100 goto out; 2101 2102 result = ERR_PTR(-EACCES); 2103 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2104 goto out_put_task; 2105 2106 result = ERR_PTR(-ENOENT); 2107 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2108 goto out_put_task; 2109 2110 mm = get_task_mm(task); 2111 if (!mm) 2112 goto out_put_task; 2113 2114 down_read(&mm->mmap_sem); 2115 vma = find_exact_vma(mm, vm_start, vm_end); 2116 if (!vma) 2117 goto out_no_vma; 2118 2119 if (vma->vm_file) 2120 result = proc_map_files_instantiate(dentry, task, 2121 (void *)(unsigned long)vma->vm_file->f_mode); 2122 2123 out_no_vma: 2124 up_read(&mm->mmap_sem); 2125 mmput(mm); 2126 out_put_task: 2127 put_task_struct(task); 2128 out: 2129 return result; 2130 } 2131 2132 static const struct inode_operations proc_map_files_inode_operations = { 2133 .lookup = proc_map_files_lookup, 2134 .permission = proc_fd_permission, 2135 .setattr = proc_setattr, 2136 }; 2137 2138 static int 2139 proc_map_files_readdir(struct file *file, struct dir_context *ctx) 2140 { 2141 struct vm_area_struct *vma; 2142 struct task_struct *task; 2143 struct mm_struct *mm; 2144 unsigned long nr_files, pos, i; 2145 GENRADIX(struct map_files_info) fa; 2146 struct map_files_info *p; 2147 int ret; 2148 2149 genradix_init(&fa); 2150 2151 ret = -ENOENT; 2152 task = get_proc_task(file_inode(file)); 2153 if (!task) 2154 goto out; 2155 2156 ret = -EACCES; 2157 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2158 goto out_put_task; 2159 2160 ret = 0; 2161 if (!dir_emit_dots(file, ctx)) 2162 goto out_put_task; 2163 2164 mm = get_task_mm(task); 2165 if (!mm) 2166 goto out_put_task; 2167 down_read(&mm->mmap_sem); 2168 2169 nr_files = 0; 2170 2171 /* 2172 * We need two passes here: 2173 * 2174 * 1) Collect vmas of mapped files with mmap_sem taken 2175 * 2) Release mmap_sem and instantiate entries 2176 * 2177 * otherwise we get lockdep complained, since filldir() 2178 * routine might require mmap_sem taken in might_fault(). 2179 */ 2180 2181 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) { 2182 if (!vma->vm_file) 2183 continue; 2184 if (++pos <= ctx->pos) 2185 continue; 2186 2187 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL); 2188 if (!p) { 2189 ret = -ENOMEM; 2190 up_read(&mm->mmap_sem); 2191 mmput(mm); 2192 goto out_put_task; 2193 } 2194 2195 p->start = vma->vm_start; 2196 p->end = vma->vm_end; 2197 p->mode = vma->vm_file->f_mode; 2198 } 2199 up_read(&mm->mmap_sem); 2200 mmput(mm); 2201 2202 for (i = 0; i < nr_files; i++) { 2203 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */ 2204 unsigned int len; 2205 2206 p = genradix_ptr(&fa, i); 2207 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end); 2208 if (!proc_fill_cache(file, ctx, 2209 buf, len, 2210 proc_map_files_instantiate, 2211 task, 2212 (void *)(unsigned long)p->mode)) 2213 break; 2214 ctx->pos++; 2215 } 2216 2217 out_put_task: 2218 put_task_struct(task); 2219 out: 2220 genradix_free(&fa); 2221 return ret; 2222 } 2223 2224 static const struct file_operations proc_map_files_operations = { 2225 .read = generic_read_dir, 2226 .iterate_shared = proc_map_files_readdir, 2227 .llseek = generic_file_llseek, 2228 }; 2229 2230 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 2231 struct timers_private { 2232 struct pid *pid; 2233 struct task_struct *task; 2234 struct sighand_struct *sighand; 2235 struct pid_namespace *ns; 2236 unsigned long flags; 2237 }; 2238 2239 static void *timers_start(struct seq_file *m, loff_t *pos) 2240 { 2241 struct timers_private *tp = m->private; 2242 2243 tp->task = get_pid_task(tp->pid, PIDTYPE_PID); 2244 if (!tp->task) 2245 return ERR_PTR(-ESRCH); 2246 2247 tp->sighand = lock_task_sighand(tp->task, &tp->flags); 2248 if (!tp->sighand) 2249 return ERR_PTR(-ESRCH); 2250 2251 return seq_list_start(&tp->task->signal->posix_timers, *pos); 2252 } 2253 2254 static void *timers_next(struct seq_file *m, void *v, loff_t *pos) 2255 { 2256 struct timers_private *tp = m->private; 2257 return seq_list_next(v, &tp->task->signal->posix_timers, pos); 2258 } 2259 2260 static void timers_stop(struct seq_file *m, void *v) 2261 { 2262 struct timers_private *tp = m->private; 2263 2264 if (tp->sighand) { 2265 unlock_task_sighand(tp->task, &tp->flags); 2266 tp->sighand = NULL; 2267 } 2268 2269 if (tp->task) { 2270 put_task_struct(tp->task); 2271 tp->task = NULL; 2272 } 2273 } 2274 2275 static int show_timer(struct seq_file *m, void *v) 2276 { 2277 struct k_itimer *timer; 2278 struct timers_private *tp = m->private; 2279 int notify; 2280 static const char * const nstr[] = { 2281 [SIGEV_SIGNAL] = "signal", 2282 [SIGEV_NONE] = "none", 2283 [SIGEV_THREAD] = "thread", 2284 }; 2285 2286 timer = list_entry((struct list_head *)v, struct k_itimer, list); 2287 notify = timer->it_sigev_notify; 2288 2289 seq_printf(m, "ID: %d\n", timer->it_id); 2290 seq_printf(m, "signal: %d/%px\n", 2291 timer->sigq->info.si_signo, 2292 timer->sigq->info.si_value.sival_ptr); 2293 seq_printf(m, "notify: %s/%s.%d\n", 2294 nstr[notify & ~SIGEV_THREAD_ID], 2295 (notify & SIGEV_THREAD_ID) ? "tid" : "pid", 2296 pid_nr_ns(timer->it_pid, tp->ns)); 2297 seq_printf(m, "ClockID: %d\n", timer->it_clock); 2298 2299 return 0; 2300 } 2301 2302 static const struct seq_operations proc_timers_seq_ops = { 2303 .start = timers_start, 2304 .next = timers_next, 2305 .stop = timers_stop, 2306 .show = show_timer, 2307 }; 2308 2309 static int proc_timers_open(struct inode *inode, struct file *file) 2310 { 2311 struct timers_private *tp; 2312 2313 tp = __seq_open_private(file, &proc_timers_seq_ops, 2314 sizeof(struct timers_private)); 2315 if (!tp) 2316 return -ENOMEM; 2317 2318 tp->pid = proc_pid(inode); 2319 tp->ns = proc_pid_ns(inode); 2320 return 0; 2321 } 2322 2323 static const struct file_operations proc_timers_operations = { 2324 .open = proc_timers_open, 2325 .read = seq_read, 2326 .llseek = seq_lseek, 2327 .release = seq_release_private, 2328 }; 2329 #endif 2330 2331 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf, 2332 size_t count, loff_t *offset) 2333 { 2334 struct inode *inode = file_inode(file); 2335 struct task_struct *p; 2336 u64 slack_ns; 2337 int err; 2338 2339 err = kstrtoull_from_user(buf, count, 10, &slack_ns); 2340 if (err < 0) 2341 return err; 2342 2343 p = get_proc_task(inode); 2344 if (!p) 2345 return -ESRCH; 2346 2347 if (p != current) { 2348 rcu_read_lock(); 2349 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2350 rcu_read_unlock(); 2351 count = -EPERM; 2352 goto out; 2353 } 2354 rcu_read_unlock(); 2355 2356 err = security_task_setscheduler(p); 2357 if (err) { 2358 count = err; 2359 goto out; 2360 } 2361 } 2362 2363 task_lock(p); 2364 if (slack_ns == 0) 2365 p->timer_slack_ns = p->default_timer_slack_ns; 2366 else 2367 p->timer_slack_ns = slack_ns; 2368 task_unlock(p); 2369 2370 out: 2371 put_task_struct(p); 2372 2373 return count; 2374 } 2375 2376 static int timerslack_ns_show(struct seq_file *m, void *v) 2377 { 2378 struct inode *inode = m->private; 2379 struct task_struct *p; 2380 int err = 0; 2381 2382 p = get_proc_task(inode); 2383 if (!p) 2384 return -ESRCH; 2385 2386 if (p != current) { 2387 rcu_read_lock(); 2388 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2389 rcu_read_unlock(); 2390 err = -EPERM; 2391 goto out; 2392 } 2393 rcu_read_unlock(); 2394 2395 err = security_task_getscheduler(p); 2396 if (err) 2397 goto out; 2398 } 2399 2400 task_lock(p); 2401 seq_printf(m, "%llu\n", p->timer_slack_ns); 2402 task_unlock(p); 2403 2404 out: 2405 put_task_struct(p); 2406 2407 return err; 2408 } 2409 2410 static int timerslack_ns_open(struct inode *inode, struct file *filp) 2411 { 2412 return single_open(filp, timerslack_ns_show, inode); 2413 } 2414 2415 static const struct file_operations proc_pid_set_timerslack_ns_operations = { 2416 .open = timerslack_ns_open, 2417 .read = seq_read, 2418 .write = timerslack_ns_write, 2419 .llseek = seq_lseek, 2420 .release = single_release, 2421 }; 2422 2423 static struct dentry *proc_pident_instantiate(struct dentry *dentry, 2424 struct task_struct *task, const void *ptr) 2425 { 2426 const struct pid_entry *p = ptr; 2427 struct inode *inode; 2428 struct proc_inode *ei; 2429 2430 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode); 2431 if (!inode) 2432 return ERR_PTR(-ENOENT); 2433 2434 ei = PROC_I(inode); 2435 if (S_ISDIR(inode->i_mode)) 2436 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2437 if (p->iop) 2438 inode->i_op = p->iop; 2439 if (p->fop) 2440 inode->i_fop = p->fop; 2441 ei->op = p->op; 2442 pid_update_inode(task, inode); 2443 d_set_d_op(dentry, &pid_dentry_operations); 2444 return d_splice_alias(inode, dentry); 2445 } 2446 2447 static struct dentry *proc_pident_lookup(struct inode *dir, 2448 struct dentry *dentry, 2449 const struct pid_entry *p, 2450 const struct pid_entry *end) 2451 { 2452 struct task_struct *task = get_proc_task(dir); 2453 struct dentry *res = ERR_PTR(-ENOENT); 2454 2455 if (!task) 2456 goto out_no_task; 2457 2458 /* 2459 * Yes, it does not scale. And it should not. Don't add 2460 * new entries into /proc/<tgid>/ without very good reasons. 2461 */ 2462 for (; p < end; p++) { 2463 if (p->len != dentry->d_name.len) 2464 continue; 2465 if (!memcmp(dentry->d_name.name, p->name, p->len)) { 2466 res = proc_pident_instantiate(dentry, task, p); 2467 break; 2468 } 2469 } 2470 put_task_struct(task); 2471 out_no_task: 2472 return res; 2473 } 2474 2475 static int proc_pident_readdir(struct file *file, struct dir_context *ctx, 2476 const struct pid_entry *ents, unsigned int nents) 2477 { 2478 struct task_struct *task = get_proc_task(file_inode(file)); 2479 const struct pid_entry *p; 2480 2481 if (!task) 2482 return -ENOENT; 2483 2484 if (!dir_emit_dots(file, ctx)) 2485 goto out; 2486 2487 if (ctx->pos >= nents + 2) 2488 goto out; 2489 2490 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) { 2491 if (!proc_fill_cache(file, ctx, p->name, p->len, 2492 proc_pident_instantiate, task, p)) 2493 break; 2494 ctx->pos++; 2495 } 2496 out: 2497 put_task_struct(task); 2498 return 0; 2499 } 2500 2501 #ifdef CONFIG_SECURITY 2502 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2503 size_t count, loff_t *ppos) 2504 { 2505 struct inode * inode = file_inode(file); 2506 char *p = NULL; 2507 ssize_t length; 2508 struct task_struct *task = get_proc_task(inode); 2509 2510 if (!task) 2511 return -ESRCH; 2512 2513 length = security_getprocattr(task, PROC_I(inode)->op.lsm, 2514 (char*)file->f_path.dentry->d_name.name, 2515 &p); 2516 put_task_struct(task); 2517 if (length > 0) 2518 length = simple_read_from_buffer(buf, count, ppos, p, length); 2519 kfree(p); 2520 return length; 2521 } 2522 2523 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2524 size_t count, loff_t *ppos) 2525 { 2526 struct inode * inode = file_inode(file); 2527 struct task_struct *task; 2528 void *page; 2529 int rv; 2530 2531 rcu_read_lock(); 2532 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2533 if (!task) { 2534 rcu_read_unlock(); 2535 return -ESRCH; 2536 } 2537 /* A task may only write its own attributes. */ 2538 if (current != task) { 2539 rcu_read_unlock(); 2540 return -EACCES; 2541 } 2542 rcu_read_unlock(); 2543 2544 if (count > PAGE_SIZE) 2545 count = PAGE_SIZE; 2546 2547 /* No partial writes. */ 2548 if (*ppos != 0) 2549 return -EINVAL; 2550 2551 page = memdup_user(buf, count); 2552 if (IS_ERR(page)) { 2553 rv = PTR_ERR(page); 2554 goto out; 2555 } 2556 2557 /* Guard against adverse ptrace interaction */ 2558 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex); 2559 if (rv < 0) 2560 goto out_free; 2561 2562 rv = security_setprocattr(PROC_I(inode)->op.lsm, 2563 file->f_path.dentry->d_name.name, page, 2564 count); 2565 mutex_unlock(¤t->signal->cred_guard_mutex); 2566 out_free: 2567 kfree(page); 2568 out: 2569 return rv; 2570 } 2571 2572 static const struct file_operations proc_pid_attr_operations = { 2573 .read = proc_pid_attr_read, 2574 .write = proc_pid_attr_write, 2575 .llseek = generic_file_llseek, 2576 }; 2577 2578 #define LSM_DIR_OPS(LSM) \ 2579 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \ 2580 struct dir_context *ctx) \ 2581 { \ 2582 return proc_pident_readdir(filp, ctx, \ 2583 LSM##_attr_dir_stuff, \ 2584 ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2585 } \ 2586 \ 2587 static const struct file_operations proc_##LSM##_attr_dir_ops = { \ 2588 .read = generic_read_dir, \ 2589 .iterate = proc_##LSM##_attr_dir_iterate, \ 2590 .llseek = default_llseek, \ 2591 }; \ 2592 \ 2593 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \ 2594 struct dentry *dentry, unsigned int flags) \ 2595 { \ 2596 return proc_pident_lookup(dir, dentry, \ 2597 LSM##_attr_dir_stuff, \ 2598 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2599 } \ 2600 \ 2601 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \ 2602 .lookup = proc_##LSM##_attr_dir_lookup, \ 2603 .getattr = pid_getattr, \ 2604 .setattr = proc_setattr, \ 2605 } 2606 2607 #ifdef CONFIG_SECURITY_SMACK 2608 static const struct pid_entry smack_attr_dir_stuff[] = { 2609 ATTR("smack", "current", 0666), 2610 }; 2611 LSM_DIR_OPS(smack); 2612 #endif 2613 2614 static const struct pid_entry attr_dir_stuff[] = { 2615 ATTR(NULL, "current", 0666), 2616 ATTR(NULL, "prev", 0444), 2617 ATTR(NULL, "exec", 0666), 2618 ATTR(NULL, "fscreate", 0666), 2619 ATTR(NULL, "keycreate", 0666), 2620 ATTR(NULL, "sockcreate", 0666), 2621 #ifdef CONFIG_SECURITY_SMACK 2622 DIR("smack", 0555, 2623 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops), 2624 #endif 2625 }; 2626 2627 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx) 2628 { 2629 return proc_pident_readdir(file, ctx, 2630 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2631 } 2632 2633 static const struct file_operations proc_attr_dir_operations = { 2634 .read = generic_read_dir, 2635 .iterate_shared = proc_attr_dir_readdir, 2636 .llseek = generic_file_llseek, 2637 }; 2638 2639 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2640 struct dentry *dentry, unsigned int flags) 2641 { 2642 return proc_pident_lookup(dir, dentry, 2643 attr_dir_stuff, 2644 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff)); 2645 } 2646 2647 static const struct inode_operations proc_attr_dir_inode_operations = { 2648 .lookup = proc_attr_dir_lookup, 2649 .getattr = pid_getattr, 2650 .setattr = proc_setattr, 2651 }; 2652 2653 #endif 2654 2655 #ifdef CONFIG_ELF_CORE 2656 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2657 size_t count, loff_t *ppos) 2658 { 2659 struct task_struct *task = get_proc_task(file_inode(file)); 2660 struct mm_struct *mm; 2661 char buffer[PROC_NUMBUF]; 2662 size_t len; 2663 int ret; 2664 2665 if (!task) 2666 return -ESRCH; 2667 2668 ret = 0; 2669 mm = get_task_mm(task); 2670 if (mm) { 2671 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2672 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2673 MMF_DUMP_FILTER_SHIFT)); 2674 mmput(mm); 2675 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2676 } 2677 2678 put_task_struct(task); 2679 2680 return ret; 2681 } 2682 2683 static ssize_t proc_coredump_filter_write(struct file *file, 2684 const char __user *buf, 2685 size_t count, 2686 loff_t *ppos) 2687 { 2688 struct task_struct *task; 2689 struct mm_struct *mm; 2690 unsigned int val; 2691 int ret; 2692 int i; 2693 unsigned long mask; 2694 2695 ret = kstrtouint_from_user(buf, count, 0, &val); 2696 if (ret < 0) 2697 return ret; 2698 2699 ret = -ESRCH; 2700 task = get_proc_task(file_inode(file)); 2701 if (!task) 2702 goto out_no_task; 2703 2704 mm = get_task_mm(task); 2705 if (!mm) 2706 goto out_no_mm; 2707 ret = 0; 2708 2709 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2710 if (val & mask) 2711 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2712 else 2713 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2714 } 2715 2716 mmput(mm); 2717 out_no_mm: 2718 put_task_struct(task); 2719 out_no_task: 2720 if (ret < 0) 2721 return ret; 2722 return count; 2723 } 2724 2725 static const struct file_operations proc_coredump_filter_operations = { 2726 .read = proc_coredump_filter_read, 2727 .write = proc_coredump_filter_write, 2728 .llseek = generic_file_llseek, 2729 }; 2730 #endif 2731 2732 #ifdef CONFIG_TASK_IO_ACCOUNTING 2733 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole) 2734 { 2735 struct task_io_accounting acct = task->ioac; 2736 unsigned long flags; 2737 int result; 2738 2739 result = mutex_lock_killable(&task->signal->cred_guard_mutex); 2740 if (result) 2741 return result; 2742 2743 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) { 2744 result = -EACCES; 2745 goto out_unlock; 2746 } 2747 2748 if (whole && lock_task_sighand(task, &flags)) { 2749 struct task_struct *t = task; 2750 2751 task_io_accounting_add(&acct, &task->signal->ioac); 2752 while_each_thread(task, t) 2753 task_io_accounting_add(&acct, &t->ioac); 2754 2755 unlock_task_sighand(task, &flags); 2756 } 2757 seq_printf(m, 2758 "rchar: %llu\n" 2759 "wchar: %llu\n" 2760 "syscr: %llu\n" 2761 "syscw: %llu\n" 2762 "read_bytes: %llu\n" 2763 "write_bytes: %llu\n" 2764 "cancelled_write_bytes: %llu\n", 2765 (unsigned long long)acct.rchar, 2766 (unsigned long long)acct.wchar, 2767 (unsigned long long)acct.syscr, 2768 (unsigned long long)acct.syscw, 2769 (unsigned long long)acct.read_bytes, 2770 (unsigned long long)acct.write_bytes, 2771 (unsigned long long)acct.cancelled_write_bytes); 2772 result = 0; 2773 2774 out_unlock: 2775 mutex_unlock(&task->signal->cred_guard_mutex); 2776 return result; 2777 } 2778 2779 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2780 struct pid *pid, struct task_struct *task) 2781 { 2782 return do_io_accounting(task, m, 0); 2783 } 2784 2785 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2786 struct pid *pid, struct task_struct *task) 2787 { 2788 return do_io_accounting(task, m, 1); 2789 } 2790 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 2791 2792 #ifdef CONFIG_USER_NS 2793 static int proc_id_map_open(struct inode *inode, struct file *file, 2794 const struct seq_operations *seq_ops) 2795 { 2796 struct user_namespace *ns = NULL; 2797 struct task_struct *task; 2798 struct seq_file *seq; 2799 int ret = -EINVAL; 2800 2801 task = get_proc_task(inode); 2802 if (task) { 2803 rcu_read_lock(); 2804 ns = get_user_ns(task_cred_xxx(task, user_ns)); 2805 rcu_read_unlock(); 2806 put_task_struct(task); 2807 } 2808 if (!ns) 2809 goto err; 2810 2811 ret = seq_open(file, seq_ops); 2812 if (ret) 2813 goto err_put_ns; 2814 2815 seq = file->private_data; 2816 seq->private = ns; 2817 2818 return 0; 2819 err_put_ns: 2820 put_user_ns(ns); 2821 err: 2822 return ret; 2823 } 2824 2825 static int proc_id_map_release(struct inode *inode, struct file *file) 2826 { 2827 struct seq_file *seq = file->private_data; 2828 struct user_namespace *ns = seq->private; 2829 put_user_ns(ns); 2830 return seq_release(inode, file); 2831 } 2832 2833 static int proc_uid_map_open(struct inode *inode, struct file *file) 2834 { 2835 return proc_id_map_open(inode, file, &proc_uid_seq_operations); 2836 } 2837 2838 static int proc_gid_map_open(struct inode *inode, struct file *file) 2839 { 2840 return proc_id_map_open(inode, file, &proc_gid_seq_operations); 2841 } 2842 2843 static int proc_projid_map_open(struct inode *inode, struct file *file) 2844 { 2845 return proc_id_map_open(inode, file, &proc_projid_seq_operations); 2846 } 2847 2848 static const struct file_operations proc_uid_map_operations = { 2849 .open = proc_uid_map_open, 2850 .write = proc_uid_map_write, 2851 .read = seq_read, 2852 .llseek = seq_lseek, 2853 .release = proc_id_map_release, 2854 }; 2855 2856 static const struct file_operations proc_gid_map_operations = { 2857 .open = proc_gid_map_open, 2858 .write = proc_gid_map_write, 2859 .read = seq_read, 2860 .llseek = seq_lseek, 2861 .release = proc_id_map_release, 2862 }; 2863 2864 static const struct file_operations proc_projid_map_operations = { 2865 .open = proc_projid_map_open, 2866 .write = proc_projid_map_write, 2867 .read = seq_read, 2868 .llseek = seq_lseek, 2869 .release = proc_id_map_release, 2870 }; 2871 2872 static int proc_setgroups_open(struct inode *inode, struct file *file) 2873 { 2874 struct user_namespace *ns = NULL; 2875 struct task_struct *task; 2876 int ret; 2877 2878 ret = -ESRCH; 2879 task = get_proc_task(inode); 2880 if (task) { 2881 rcu_read_lock(); 2882 ns = get_user_ns(task_cred_xxx(task, user_ns)); 2883 rcu_read_unlock(); 2884 put_task_struct(task); 2885 } 2886 if (!ns) 2887 goto err; 2888 2889 if (file->f_mode & FMODE_WRITE) { 2890 ret = -EACCES; 2891 if (!ns_capable(ns, CAP_SYS_ADMIN)) 2892 goto err_put_ns; 2893 } 2894 2895 ret = single_open(file, &proc_setgroups_show, ns); 2896 if (ret) 2897 goto err_put_ns; 2898 2899 return 0; 2900 err_put_ns: 2901 put_user_ns(ns); 2902 err: 2903 return ret; 2904 } 2905 2906 static int proc_setgroups_release(struct inode *inode, struct file *file) 2907 { 2908 struct seq_file *seq = file->private_data; 2909 struct user_namespace *ns = seq->private; 2910 int ret = single_release(inode, file); 2911 put_user_ns(ns); 2912 return ret; 2913 } 2914 2915 static const struct file_operations proc_setgroups_operations = { 2916 .open = proc_setgroups_open, 2917 .write = proc_setgroups_write, 2918 .read = seq_read, 2919 .llseek = seq_lseek, 2920 .release = proc_setgroups_release, 2921 }; 2922 #endif /* CONFIG_USER_NS */ 2923 2924 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 2925 struct pid *pid, struct task_struct *task) 2926 { 2927 int err = lock_trace(task); 2928 if (!err) { 2929 seq_printf(m, "%08x\n", task->personality); 2930 unlock_trace(task); 2931 } 2932 return err; 2933 } 2934 2935 #ifdef CONFIG_LIVEPATCH 2936 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns, 2937 struct pid *pid, struct task_struct *task) 2938 { 2939 seq_printf(m, "%d\n", task->patch_state); 2940 return 0; 2941 } 2942 #endif /* CONFIG_LIVEPATCH */ 2943 2944 #ifdef CONFIG_STACKLEAK_METRICS 2945 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns, 2946 struct pid *pid, struct task_struct *task) 2947 { 2948 unsigned long prev_depth = THREAD_SIZE - 2949 (task->prev_lowest_stack & (THREAD_SIZE - 1)); 2950 unsigned long depth = THREAD_SIZE - 2951 (task->lowest_stack & (THREAD_SIZE - 1)); 2952 2953 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n", 2954 prev_depth, depth); 2955 return 0; 2956 } 2957 #endif /* CONFIG_STACKLEAK_METRICS */ 2958 2959 /* 2960 * Thread groups 2961 */ 2962 static const struct file_operations proc_task_operations; 2963 static const struct inode_operations proc_task_inode_operations; 2964 2965 static const struct pid_entry tgid_base_stuff[] = { 2966 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 2967 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 2968 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 2969 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 2970 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 2971 #ifdef CONFIG_NET 2972 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 2973 #endif 2974 REG("environ", S_IRUSR, proc_environ_operations), 2975 REG("auxv", S_IRUSR, proc_auxv_operations), 2976 ONE("status", S_IRUGO, proc_pid_status), 2977 ONE("personality", S_IRUSR, proc_pid_personality), 2978 ONE("limits", S_IRUGO, proc_pid_limits), 2979 #ifdef CONFIG_SCHED_DEBUG 2980 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 2981 #endif 2982 #ifdef CONFIG_SCHED_AUTOGROUP 2983 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 2984 #endif 2985 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 2986 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 2987 ONE("syscall", S_IRUSR, proc_pid_syscall), 2988 #endif 2989 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 2990 ONE("stat", S_IRUGO, proc_tgid_stat), 2991 ONE("statm", S_IRUGO, proc_pid_statm), 2992 REG("maps", S_IRUGO, proc_pid_maps_operations), 2993 #ifdef CONFIG_NUMA 2994 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 2995 #endif 2996 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 2997 LNK("cwd", proc_cwd_link), 2998 LNK("root", proc_root_link), 2999 LNK("exe", proc_exe_link), 3000 REG("mounts", S_IRUGO, proc_mounts_operations), 3001 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3002 REG("mountstats", S_IRUSR, proc_mountstats_operations), 3003 #ifdef CONFIG_PROC_PAGE_MONITOR 3004 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3005 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3006 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3007 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3008 #endif 3009 #ifdef CONFIG_SECURITY 3010 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3011 #endif 3012 #ifdef CONFIG_KALLSYMS 3013 ONE("wchan", S_IRUGO, proc_pid_wchan), 3014 #endif 3015 #ifdef CONFIG_STACKTRACE 3016 ONE("stack", S_IRUSR, proc_pid_stack), 3017 #endif 3018 #ifdef CONFIG_SCHED_INFO 3019 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3020 #endif 3021 #ifdef CONFIG_LATENCYTOP 3022 REG("latency", S_IRUGO, proc_lstats_operations), 3023 #endif 3024 #ifdef CONFIG_PROC_PID_CPUSET 3025 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3026 #endif 3027 #ifdef CONFIG_CGROUPS 3028 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3029 #endif 3030 ONE("oom_score", S_IRUGO, proc_oom_score), 3031 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3032 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3033 #ifdef CONFIG_AUDIT 3034 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3035 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3036 #endif 3037 #ifdef CONFIG_FAULT_INJECTION 3038 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3039 REG("fail-nth", 0644, proc_fail_nth_operations), 3040 #endif 3041 #ifdef CONFIG_ELF_CORE 3042 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 3043 #endif 3044 #ifdef CONFIG_TASK_IO_ACCOUNTING 3045 ONE("io", S_IRUSR, proc_tgid_io_accounting), 3046 #endif 3047 #ifdef CONFIG_USER_NS 3048 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3049 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3050 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3051 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3052 #endif 3053 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 3054 REG("timers", S_IRUGO, proc_timers_operations), 3055 #endif 3056 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations), 3057 #ifdef CONFIG_LIVEPATCH 3058 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3059 #endif 3060 #ifdef CONFIG_STACKLEAK_METRICS 3061 ONE("stack_depth", S_IRUGO, proc_stack_depth), 3062 #endif 3063 }; 3064 3065 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx) 3066 { 3067 return proc_pident_readdir(file, ctx, 3068 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3069 } 3070 3071 static const struct file_operations proc_tgid_base_operations = { 3072 .read = generic_read_dir, 3073 .iterate_shared = proc_tgid_base_readdir, 3074 .llseek = generic_file_llseek, 3075 }; 3076 3077 struct pid *tgid_pidfd_to_pid(const struct file *file) 3078 { 3079 if (!d_is_dir(file->f_path.dentry) || 3080 (file->f_op != &proc_tgid_base_operations)) 3081 return ERR_PTR(-EBADF); 3082 3083 return proc_pid(file_inode(file)); 3084 } 3085 3086 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3087 { 3088 return proc_pident_lookup(dir, dentry, 3089 tgid_base_stuff, 3090 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff)); 3091 } 3092 3093 static const struct inode_operations proc_tgid_base_inode_operations = { 3094 .lookup = proc_tgid_base_lookup, 3095 .getattr = pid_getattr, 3096 .setattr = proc_setattr, 3097 .permission = proc_pid_permission, 3098 }; 3099 3100 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid) 3101 { 3102 struct dentry *dentry, *leader, *dir; 3103 char buf[10 + 1]; 3104 struct qstr name; 3105 3106 name.name = buf; 3107 name.len = snprintf(buf, sizeof(buf), "%u", pid); 3108 /* no ->d_hash() rejects on procfs */ 3109 dentry = d_hash_and_lookup(mnt->mnt_root, &name); 3110 if (dentry) { 3111 d_invalidate(dentry); 3112 dput(dentry); 3113 } 3114 3115 if (pid == tgid) 3116 return; 3117 3118 name.name = buf; 3119 name.len = snprintf(buf, sizeof(buf), "%u", tgid); 3120 leader = d_hash_and_lookup(mnt->mnt_root, &name); 3121 if (!leader) 3122 goto out; 3123 3124 name.name = "task"; 3125 name.len = strlen(name.name); 3126 dir = d_hash_and_lookup(leader, &name); 3127 if (!dir) 3128 goto out_put_leader; 3129 3130 name.name = buf; 3131 name.len = snprintf(buf, sizeof(buf), "%u", pid); 3132 dentry = d_hash_and_lookup(dir, &name); 3133 if (dentry) { 3134 d_invalidate(dentry); 3135 dput(dentry); 3136 } 3137 3138 dput(dir); 3139 out_put_leader: 3140 dput(leader); 3141 out: 3142 return; 3143 } 3144 3145 /** 3146 * proc_flush_task - Remove dcache entries for @task from the /proc dcache. 3147 * @task: task that should be flushed. 3148 * 3149 * When flushing dentries from proc, one needs to flush them from global 3150 * proc (proc_mnt) and from all the namespaces' procs this task was seen 3151 * in. This call is supposed to do all of this job. 3152 * 3153 * Looks in the dcache for 3154 * /proc/@pid 3155 * /proc/@tgid/task/@pid 3156 * if either directory is present flushes it and all of it'ts children 3157 * from the dcache. 3158 * 3159 * It is safe and reasonable to cache /proc entries for a task until 3160 * that task exits. After that they just clog up the dcache with 3161 * useless entries, possibly causing useful dcache entries to be 3162 * flushed instead. This routine is proved to flush those useless 3163 * dcache entries at process exit time. 3164 * 3165 * NOTE: This routine is just an optimization so it does not guarantee 3166 * that no dcache entries will exist at process exit time it 3167 * just makes it very unlikely that any will persist. 3168 */ 3169 3170 void proc_flush_task(struct task_struct *task) 3171 { 3172 int i; 3173 struct pid *pid, *tgid; 3174 struct upid *upid; 3175 3176 pid = task_pid(task); 3177 tgid = task_tgid(task); 3178 3179 for (i = 0; i <= pid->level; i++) { 3180 upid = &pid->numbers[i]; 3181 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr, 3182 tgid->numbers[i].nr); 3183 } 3184 } 3185 3186 static struct dentry *proc_pid_instantiate(struct dentry * dentry, 3187 struct task_struct *task, const void *ptr) 3188 { 3189 struct inode *inode; 3190 3191 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3192 if (!inode) 3193 return ERR_PTR(-ENOENT); 3194 3195 inode->i_op = &proc_tgid_base_inode_operations; 3196 inode->i_fop = &proc_tgid_base_operations; 3197 inode->i_flags|=S_IMMUTABLE; 3198 3199 set_nlink(inode, nlink_tgid); 3200 pid_update_inode(task, inode); 3201 3202 d_set_d_op(dentry, &pid_dentry_operations); 3203 return d_splice_alias(inode, dentry); 3204 } 3205 3206 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags) 3207 { 3208 struct task_struct *task; 3209 unsigned tgid; 3210 struct pid_namespace *ns; 3211 struct dentry *result = ERR_PTR(-ENOENT); 3212 3213 tgid = name_to_int(&dentry->d_name); 3214 if (tgid == ~0U) 3215 goto out; 3216 3217 ns = dentry->d_sb->s_fs_info; 3218 rcu_read_lock(); 3219 task = find_task_by_pid_ns(tgid, ns); 3220 if (task) 3221 get_task_struct(task); 3222 rcu_read_unlock(); 3223 if (!task) 3224 goto out; 3225 3226 result = proc_pid_instantiate(dentry, task, NULL); 3227 put_task_struct(task); 3228 out: 3229 return result; 3230 } 3231 3232 /* 3233 * Find the first task with tgid >= tgid 3234 * 3235 */ 3236 struct tgid_iter { 3237 unsigned int tgid; 3238 struct task_struct *task; 3239 }; 3240 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3241 { 3242 struct pid *pid; 3243 3244 if (iter.task) 3245 put_task_struct(iter.task); 3246 rcu_read_lock(); 3247 retry: 3248 iter.task = NULL; 3249 pid = find_ge_pid(iter.tgid, ns); 3250 if (pid) { 3251 iter.tgid = pid_nr_ns(pid, ns); 3252 iter.task = pid_task(pid, PIDTYPE_PID); 3253 /* What we to know is if the pid we have find is the 3254 * pid of a thread_group_leader. Testing for task 3255 * being a thread_group_leader is the obvious thing 3256 * todo but there is a window when it fails, due to 3257 * the pid transfer logic in de_thread. 3258 * 3259 * So we perform the straight forward test of seeing 3260 * if the pid we have found is the pid of a thread 3261 * group leader, and don't worry if the task we have 3262 * found doesn't happen to be a thread group leader. 3263 * As we don't care in the case of readdir. 3264 */ 3265 if (!iter.task || !has_group_leader_pid(iter.task)) { 3266 iter.tgid += 1; 3267 goto retry; 3268 } 3269 get_task_struct(iter.task); 3270 } 3271 rcu_read_unlock(); 3272 return iter; 3273 } 3274 3275 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2) 3276 3277 /* for the /proc/ directory itself, after non-process stuff has been done */ 3278 int proc_pid_readdir(struct file *file, struct dir_context *ctx) 3279 { 3280 struct tgid_iter iter; 3281 struct pid_namespace *ns = proc_pid_ns(file_inode(file)); 3282 loff_t pos = ctx->pos; 3283 3284 if (pos >= PID_MAX_LIMIT + TGID_OFFSET) 3285 return 0; 3286 3287 if (pos == TGID_OFFSET - 2) { 3288 struct inode *inode = d_inode(ns->proc_self); 3289 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK)) 3290 return 0; 3291 ctx->pos = pos = pos + 1; 3292 } 3293 if (pos == TGID_OFFSET - 1) { 3294 struct inode *inode = d_inode(ns->proc_thread_self); 3295 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK)) 3296 return 0; 3297 ctx->pos = pos = pos + 1; 3298 } 3299 iter.tgid = pos - TGID_OFFSET; 3300 iter.task = NULL; 3301 for (iter = next_tgid(ns, iter); 3302 iter.task; 3303 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3304 char name[10 + 1]; 3305 unsigned int len; 3306 3307 cond_resched(); 3308 if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE)) 3309 continue; 3310 3311 len = snprintf(name, sizeof(name), "%u", iter.tgid); 3312 ctx->pos = iter.tgid + TGID_OFFSET; 3313 if (!proc_fill_cache(file, ctx, name, len, 3314 proc_pid_instantiate, iter.task, NULL)) { 3315 put_task_struct(iter.task); 3316 return 0; 3317 } 3318 } 3319 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET; 3320 return 0; 3321 } 3322 3323 /* 3324 * proc_tid_comm_permission is a special permission function exclusively 3325 * used for the node /proc/<pid>/task/<tid>/comm. 3326 * It bypasses generic permission checks in the case where a task of the same 3327 * task group attempts to access the node. 3328 * The rationale behind this is that glibc and bionic access this node for 3329 * cross thread naming (pthread_set/getname_np(!self)). However, if 3330 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0, 3331 * which locks out the cross thread naming implementation. 3332 * This function makes sure that the node is always accessible for members of 3333 * same thread group. 3334 */ 3335 static int proc_tid_comm_permission(struct inode *inode, int mask) 3336 { 3337 bool is_same_tgroup; 3338 struct task_struct *task; 3339 3340 task = get_proc_task(inode); 3341 if (!task) 3342 return -ESRCH; 3343 is_same_tgroup = same_thread_group(current, task); 3344 put_task_struct(task); 3345 3346 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) { 3347 /* This file (/proc/<pid>/task/<tid>/comm) can always be 3348 * read or written by the members of the corresponding 3349 * thread group. 3350 */ 3351 return 0; 3352 } 3353 3354 return generic_permission(inode, mask); 3355 } 3356 3357 static const struct inode_operations proc_tid_comm_inode_operations = { 3358 .permission = proc_tid_comm_permission, 3359 }; 3360 3361 /* 3362 * Tasks 3363 */ 3364 static const struct pid_entry tid_base_stuff[] = { 3365 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3366 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3367 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3368 #ifdef CONFIG_NET 3369 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3370 #endif 3371 REG("environ", S_IRUSR, proc_environ_operations), 3372 REG("auxv", S_IRUSR, proc_auxv_operations), 3373 ONE("status", S_IRUGO, proc_pid_status), 3374 ONE("personality", S_IRUSR, proc_pid_personality), 3375 ONE("limits", S_IRUGO, proc_pid_limits), 3376 #ifdef CONFIG_SCHED_DEBUG 3377 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3378 #endif 3379 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR, 3380 &proc_tid_comm_inode_operations, 3381 &proc_pid_set_comm_operations, {}), 3382 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3383 ONE("syscall", S_IRUSR, proc_pid_syscall), 3384 #endif 3385 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3386 ONE("stat", S_IRUGO, proc_tid_stat), 3387 ONE("statm", S_IRUGO, proc_pid_statm), 3388 REG("maps", S_IRUGO, proc_pid_maps_operations), 3389 #ifdef CONFIG_PROC_CHILDREN 3390 REG("children", S_IRUGO, proc_tid_children_operations), 3391 #endif 3392 #ifdef CONFIG_NUMA 3393 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3394 #endif 3395 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3396 LNK("cwd", proc_cwd_link), 3397 LNK("root", proc_root_link), 3398 LNK("exe", proc_exe_link), 3399 REG("mounts", S_IRUGO, proc_mounts_operations), 3400 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3401 #ifdef CONFIG_PROC_PAGE_MONITOR 3402 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3403 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3404 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3405 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3406 #endif 3407 #ifdef CONFIG_SECURITY 3408 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3409 #endif 3410 #ifdef CONFIG_KALLSYMS 3411 ONE("wchan", S_IRUGO, proc_pid_wchan), 3412 #endif 3413 #ifdef CONFIG_STACKTRACE 3414 ONE("stack", S_IRUSR, proc_pid_stack), 3415 #endif 3416 #ifdef CONFIG_SCHED_INFO 3417 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3418 #endif 3419 #ifdef CONFIG_LATENCYTOP 3420 REG("latency", S_IRUGO, proc_lstats_operations), 3421 #endif 3422 #ifdef CONFIG_PROC_PID_CPUSET 3423 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3424 #endif 3425 #ifdef CONFIG_CGROUPS 3426 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3427 #endif 3428 ONE("oom_score", S_IRUGO, proc_oom_score), 3429 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3430 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3431 #ifdef CONFIG_AUDIT 3432 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3433 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3434 #endif 3435 #ifdef CONFIG_FAULT_INJECTION 3436 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3437 REG("fail-nth", 0644, proc_fail_nth_operations), 3438 #endif 3439 #ifdef CONFIG_TASK_IO_ACCOUNTING 3440 ONE("io", S_IRUSR, proc_tid_io_accounting), 3441 #endif 3442 #ifdef CONFIG_USER_NS 3443 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3444 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3445 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3446 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3447 #endif 3448 #ifdef CONFIG_LIVEPATCH 3449 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3450 #endif 3451 }; 3452 3453 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx) 3454 { 3455 return proc_pident_readdir(file, ctx, 3456 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3457 } 3458 3459 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3460 { 3461 return proc_pident_lookup(dir, dentry, 3462 tid_base_stuff, 3463 tid_base_stuff + ARRAY_SIZE(tid_base_stuff)); 3464 } 3465 3466 static const struct file_operations proc_tid_base_operations = { 3467 .read = generic_read_dir, 3468 .iterate_shared = proc_tid_base_readdir, 3469 .llseek = generic_file_llseek, 3470 }; 3471 3472 static const struct inode_operations proc_tid_base_inode_operations = { 3473 .lookup = proc_tid_base_lookup, 3474 .getattr = pid_getattr, 3475 .setattr = proc_setattr, 3476 }; 3477 3478 static struct dentry *proc_task_instantiate(struct dentry *dentry, 3479 struct task_struct *task, const void *ptr) 3480 { 3481 struct inode *inode; 3482 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3483 if (!inode) 3484 return ERR_PTR(-ENOENT); 3485 3486 inode->i_op = &proc_tid_base_inode_operations; 3487 inode->i_fop = &proc_tid_base_operations; 3488 inode->i_flags |= S_IMMUTABLE; 3489 3490 set_nlink(inode, nlink_tid); 3491 pid_update_inode(task, inode); 3492 3493 d_set_d_op(dentry, &pid_dentry_operations); 3494 return d_splice_alias(inode, dentry); 3495 } 3496 3497 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3498 { 3499 struct task_struct *task; 3500 struct task_struct *leader = get_proc_task(dir); 3501 unsigned tid; 3502 struct pid_namespace *ns; 3503 struct dentry *result = ERR_PTR(-ENOENT); 3504 3505 if (!leader) 3506 goto out_no_task; 3507 3508 tid = name_to_int(&dentry->d_name); 3509 if (tid == ~0U) 3510 goto out; 3511 3512 ns = dentry->d_sb->s_fs_info; 3513 rcu_read_lock(); 3514 task = find_task_by_pid_ns(tid, ns); 3515 if (task) 3516 get_task_struct(task); 3517 rcu_read_unlock(); 3518 if (!task) 3519 goto out; 3520 if (!same_thread_group(leader, task)) 3521 goto out_drop_task; 3522 3523 result = proc_task_instantiate(dentry, task, NULL); 3524 out_drop_task: 3525 put_task_struct(task); 3526 out: 3527 put_task_struct(leader); 3528 out_no_task: 3529 return result; 3530 } 3531 3532 /* 3533 * Find the first tid of a thread group to return to user space. 3534 * 3535 * Usually this is just the thread group leader, but if the users 3536 * buffer was too small or there was a seek into the middle of the 3537 * directory we have more work todo. 3538 * 3539 * In the case of a short read we start with find_task_by_pid. 3540 * 3541 * In the case of a seek we start with the leader and walk nr 3542 * threads past it. 3543 */ 3544 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos, 3545 struct pid_namespace *ns) 3546 { 3547 struct task_struct *pos, *task; 3548 unsigned long nr = f_pos; 3549 3550 if (nr != f_pos) /* 32bit overflow? */ 3551 return NULL; 3552 3553 rcu_read_lock(); 3554 task = pid_task(pid, PIDTYPE_PID); 3555 if (!task) 3556 goto fail; 3557 3558 /* Attempt to start with the tid of a thread */ 3559 if (tid && nr) { 3560 pos = find_task_by_pid_ns(tid, ns); 3561 if (pos && same_thread_group(pos, task)) 3562 goto found; 3563 } 3564 3565 /* If nr exceeds the number of threads there is nothing todo */ 3566 if (nr >= get_nr_threads(task)) 3567 goto fail; 3568 3569 /* If we haven't found our starting place yet start 3570 * with the leader and walk nr threads forward. 3571 */ 3572 pos = task = task->group_leader; 3573 do { 3574 if (!nr--) 3575 goto found; 3576 } while_each_thread(task, pos); 3577 fail: 3578 pos = NULL; 3579 goto out; 3580 found: 3581 get_task_struct(pos); 3582 out: 3583 rcu_read_unlock(); 3584 return pos; 3585 } 3586 3587 /* 3588 * Find the next thread in the thread list. 3589 * Return NULL if there is an error or no next thread. 3590 * 3591 * The reference to the input task_struct is released. 3592 */ 3593 static struct task_struct *next_tid(struct task_struct *start) 3594 { 3595 struct task_struct *pos = NULL; 3596 rcu_read_lock(); 3597 if (pid_alive(start)) { 3598 pos = next_thread(start); 3599 if (thread_group_leader(pos)) 3600 pos = NULL; 3601 else 3602 get_task_struct(pos); 3603 } 3604 rcu_read_unlock(); 3605 put_task_struct(start); 3606 return pos; 3607 } 3608 3609 /* for the /proc/TGID/task/ directories */ 3610 static int proc_task_readdir(struct file *file, struct dir_context *ctx) 3611 { 3612 struct inode *inode = file_inode(file); 3613 struct task_struct *task; 3614 struct pid_namespace *ns; 3615 int tid; 3616 3617 if (proc_inode_is_dead(inode)) 3618 return -ENOENT; 3619 3620 if (!dir_emit_dots(file, ctx)) 3621 return 0; 3622 3623 /* f_version caches the tgid value that the last readdir call couldn't 3624 * return. lseek aka telldir automagically resets f_version to 0. 3625 */ 3626 ns = proc_pid_ns(inode); 3627 tid = (int)file->f_version; 3628 file->f_version = 0; 3629 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns); 3630 task; 3631 task = next_tid(task), ctx->pos++) { 3632 char name[10 + 1]; 3633 unsigned int len; 3634 tid = task_pid_nr_ns(task, ns); 3635 len = snprintf(name, sizeof(name), "%u", tid); 3636 if (!proc_fill_cache(file, ctx, name, len, 3637 proc_task_instantiate, task, NULL)) { 3638 /* returning this tgid failed, save it as the first 3639 * pid for the next readir call */ 3640 file->f_version = (u64)tid; 3641 put_task_struct(task); 3642 break; 3643 } 3644 } 3645 3646 return 0; 3647 } 3648 3649 static int proc_task_getattr(const struct path *path, struct kstat *stat, 3650 u32 request_mask, unsigned int query_flags) 3651 { 3652 struct inode *inode = d_inode(path->dentry); 3653 struct task_struct *p = get_proc_task(inode); 3654 generic_fillattr(inode, stat); 3655 3656 if (p) { 3657 stat->nlink += get_nr_threads(p); 3658 put_task_struct(p); 3659 } 3660 3661 return 0; 3662 } 3663 3664 static const struct inode_operations proc_task_inode_operations = { 3665 .lookup = proc_task_lookup, 3666 .getattr = proc_task_getattr, 3667 .setattr = proc_setattr, 3668 .permission = proc_pid_permission, 3669 }; 3670 3671 static const struct file_operations proc_task_operations = { 3672 .read = generic_read_dir, 3673 .iterate_shared = proc_task_readdir, 3674 .llseek = generic_file_llseek, 3675 }; 3676 3677 void __init set_proc_pid_nlink(void) 3678 { 3679 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3680 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3681 } 3682