xref: /openbmc/linux/fs/proc/base.c (revision b0f85fa11aefc4f3e03306b4cd47f113bd57dcba)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/flex_array.h>
89 #include <linux/posix-timers.h>
90 #ifdef CONFIG_HARDWALL
91 #include <asm/hardwall.h>
92 #endif
93 #include <trace/events/oom.h>
94 #include "internal.h"
95 #include "fd.h"
96 
97 /* NOTE:
98  *	Implementing inode permission operations in /proc is almost
99  *	certainly an error.  Permission checks need to happen during
100  *	each system call not at open time.  The reason is that most of
101  *	what we wish to check for permissions in /proc varies at runtime.
102  *
103  *	The classic example of a problem is opening file descriptors
104  *	in /proc for a task before it execs a suid executable.
105  */
106 
107 struct pid_entry {
108 	const char *name;
109 	int len;
110 	umode_t mode;
111 	const struct inode_operations *iop;
112 	const struct file_operations *fop;
113 	union proc_op op;
114 };
115 
116 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
117 	.name = (NAME),					\
118 	.len  = sizeof(NAME) - 1,			\
119 	.mode = MODE,					\
120 	.iop  = IOP,					\
121 	.fop  = FOP,					\
122 	.op   = OP,					\
123 }
124 
125 #define DIR(NAME, MODE, iops, fops)	\
126 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
127 #define LNK(NAME, get_link)					\
128 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
129 		&proc_pid_link_inode_operations, NULL,		\
130 		{ .proc_get_link = get_link } )
131 #define REG(NAME, MODE, fops)				\
132 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
133 #define ONE(NAME, MODE, show)				\
134 	NOD(NAME, (S_IFREG|(MODE)), 			\
135 		NULL, &proc_single_file_operations,	\
136 		{ .proc_show = show } )
137 
138 /*
139  * Count the number of hardlinks for the pid_entry table, excluding the .
140  * and .. links.
141  */
142 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
143 	unsigned int n)
144 {
145 	unsigned int i;
146 	unsigned int count;
147 
148 	count = 0;
149 	for (i = 0; i < n; ++i) {
150 		if (S_ISDIR(entries[i].mode))
151 			++count;
152 	}
153 
154 	return count;
155 }
156 
157 static int get_task_root(struct task_struct *task, struct path *root)
158 {
159 	int result = -ENOENT;
160 
161 	task_lock(task);
162 	if (task->fs) {
163 		get_fs_root(task->fs, root);
164 		result = 0;
165 	}
166 	task_unlock(task);
167 	return result;
168 }
169 
170 static int proc_cwd_link(struct dentry *dentry, struct path *path)
171 {
172 	struct task_struct *task = get_proc_task(d_inode(dentry));
173 	int result = -ENOENT;
174 
175 	if (task) {
176 		task_lock(task);
177 		if (task->fs) {
178 			get_fs_pwd(task->fs, path);
179 			result = 0;
180 		}
181 		task_unlock(task);
182 		put_task_struct(task);
183 	}
184 	return result;
185 }
186 
187 static int proc_root_link(struct dentry *dentry, struct path *path)
188 {
189 	struct task_struct *task = get_proc_task(d_inode(dentry));
190 	int result = -ENOENT;
191 
192 	if (task) {
193 		result = get_task_root(task, path);
194 		put_task_struct(task);
195 	}
196 	return result;
197 }
198 
199 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
200 				     size_t _count, loff_t *pos)
201 {
202 	struct task_struct *tsk;
203 	struct mm_struct *mm;
204 	char *page;
205 	unsigned long count = _count;
206 	unsigned long arg_start, arg_end, env_start, env_end;
207 	unsigned long len1, len2, len;
208 	unsigned long p;
209 	char c;
210 	ssize_t rv;
211 
212 	BUG_ON(*pos < 0);
213 
214 	tsk = get_proc_task(file_inode(file));
215 	if (!tsk)
216 		return -ESRCH;
217 	mm = get_task_mm(tsk);
218 	put_task_struct(tsk);
219 	if (!mm)
220 		return 0;
221 	/* Check if process spawned far enough to have cmdline. */
222 	if (!mm->env_end) {
223 		rv = 0;
224 		goto out_mmput;
225 	}
226 
227 	page = (char *)__get_free_page(GFP_TEMPORARY);
228 	if (!page) {
229 		rv = -ENOMEM;
230 		goto out_mmput;
231 	}
232 
233 	down_read(&mm->mmap_sem);
234 	arg_start = mm->arg_start;
235 	arg_end = mm->arg_end;
236 	env_start = mm->env_start;
237 	env_end = mm->env_end;
238 	up_read(&mm->mmap_sem);
239 
240 	BUG_ON(arg_start > arg_end);
241 	BUG_ON(env_start > env_end);
242 
243 	len1 = arg_end - arg_start;
244 	len2 = env_end - env_start;
245 
246 	/* Empty ARGV. */
247 	if (len1 == 0) {
248 		rv = 0;
249 		goto out_free_page;
250 	}
251 	/*
252 	 * Inherently racy -- command line shares address space
253 	 * with code and data.
254 	 */
255 	rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
256 	if (rv <= 0)
257 		goto out_free_page;
258 
259 	rv = 0;
260 
261 	if (c == '\0') {
262 		/* Command line (set of strings) occupies whole ARGV. */
263 		if (len1 <= *pos)
264 			goto out_free_page;
265 
266 		p = arg_start + *pos;
267 		len = len1 - *pos;
268 		while (count > 0 && len > 0) {
269 			unsigned int _count;
270 			int nr_read;
271 
272 			_count = min3(count, len, PAGE_SIZE);
273 			nr_read = access_remote_vm(mm, p, page, _count, 0);
274 			if (nr_read < 0)
275 				rv = nr_read;
276 			if (nr_read <= 0)
277 				goto out_free_page;
278 
279 			if (copy_to_user(buf, page, nr_read)) {
280 				rv = -EFAULT;
281 				goto out_free_page;
282 			}
283 
284 			p	+= nr_read;
285 			len	-= nr_read;
286 			buf	+= nr_read;
287 			count	-= nr_read;
288 			rv	+= nr_read;
289 		}
290 	} else {
291 		/*
292 		 * Command line (1 string) occupies ARGV and maybe
293 		 * extends into ENVP.
294 		 */
295 		if (len1 + len2 <= *pos)
296 			goto skip_argv_envp;
297 		if (len1 <= *pos)
298 			goto skip_argv;
299 
300 		p = arg_start + *pos;
301 		len = len1 - *pos;
302 		while (count > 0 && len > 0) {
303 			unsigned int _count, l;
304 			int nr_read;
305 			bool final;
306 
307 			_count = min3(count, len, PAGE_SIZE);
308 			nr_read = access_remote_vm(mm, p, page, _count, 0);
309 			if (nr_read < 0)
310 				rv = nr_read;
311 			if (nr_read <= 0)
312 				goto out_free_page;
313 
314 			/*
315 			 * Command line can be shorter than whole ARGV
316 			 * even if last "marker" byte says it is not.
317 			 */
318 			final = false;
319 			l = strnlen(page, nr_read);
320 			if (l < nr_read) {
321 				nr_read = l;
322 				final = true;
323 			}
324 
325 			if (copy_to_user(buf, page, nr_read)) {
326 				rv = -EFAULT;
327 				goto out_free_page;
328 			}
329 
330 			p	+= nr_read;
331 			len	-= nr_read;
332 			buf	+= nr_read;
333 			count	-= nr_read;
334 			rv	+= nr_read;
335 
336 			if (final)
337 				goto out_free_page;
338 		}
339 skip_argv:
340 		/*
341 		 * Command line (1 string) occupies ARGV and
342 		 * extends into ENVP.
343 		 */
344 		if (len1 <= *pos) {
345 			p = env_start + *pos - len1;
346 			len = len1 + len2 - *pos;
347 		} else {
348 			p = env_start;
349 			len = len2;
350 		}
351 		while (count > 0 && len > 0) {
352 			unsigned int _count, l;
353 			int nr_read;
354 			bool final;
355 
356 			_count = min3(count, len, PAGE_SIZE);
357 			nr_read = access_remote_vm(mm, p, page, _count, 0);
358 			if (nr_read < 0)
359 				rv = nr_read;
360 			if (nr_read <= 0)
361 				goto out_free_page;
362 
363 			/* Find EOS. */
364 			final = false;
365 			l = strnlen(page, nr_read);
366 			if (l < nr_read) {
367 				nr_read = l;
368 				final = true;
369 			}
370 
371 			if (copy_to_user(buf, page, nr_read)) {
372 				rv = -EFAULT;
373 				goto out_free_page;
374 			}
375 
376 			p	+= nr_read;
377 			len	-= nr_read;
378 			buf	+= nr_read;
379 			count	-= nr_read;
380 			rv	+= nr_read;
381 
382 			if (final)
383 				goto out_free_page;
384 		}
385 skip_argv_envp:
386 		;
387 	}
388 
389 out_free_page:
390 	free_page((unsigned long)page);
391 out_mmput:
392 	mmput(mm);
393 	if (rv > 0)
394 		*pos += rv;
395 	return rv;
396 }
397 
398 static const struct file_operations proc_pid_cmdline_ops = {
399 	.read	= proc_pid_cmdline_read,
400 	.llseek	= generic_file_llseek,
401 };
402 
403 static int proc_pid_auxv(struct seq_file *m, struct pid_namespace *ns,
404 			 struct pid *pid, struct task_struct *task)
405 {
406 	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
407 	if (mm && !IS_ERR(mm)) {
408 		unsigned int nwords = 0;
409 		do {
410 			nwords += 2;
411 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
412 		seq_write(m, mm->saved_auxv, nwords * sizeof(mm->saved_auxv[0]));
413 		mmput(mm);
414 		return 0;
415 	} else
416 		return PTR_ERR(mm);
417 }
418 
419 
420 #ifdef CONFIG_KALLSYMS
421 /*
422  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
423  * Returns the resolved symbol.  If that fails, simply return the address.
424  */
425 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
426 			  struct pid *pid, struct task_struct *task)
427 {
428 	unsigned long wchan;
429 	char symname[KSYM_NAME_LEN];
430 
431 	wchan = get_wchan(task);
432 
433 	if (wchan && ptrace_may_access(task, PTRACE_MODE_READ) && !lookup_symbol_name(wchan, symname))
434 		seq_printf(m, "%s", symname);
435 	else
436 		seq_putc(m, '0');
437 
438 	return 0;
439 }
440 #endif /* CONFIG_KALLSYMS */
441 
442 static int lock_trace(struct task_struct *task)
443 {
444 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
445 	if (err)
446 		return err;
447 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
448 		mutex_unlock(&task->signal->cred_guard_mutex);
449 		return -EPERM;
450 	}
451 	return 0;
452 }
453 
454 static void unlock_trace(struct task_struct *task)
455 {
456 	mutex_unlock(&task->signal->cred_guard_mutex);
457 }
458 
459 #ifdef CONFIG_STACKTRACE
460 
461 #define MAX_STACK_TRACE_DEPTH	64
462 
463 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
464 			  struct pid *pid, struct task_struct *task)
465 {
466 	struct stack_trace trace;
467 	unsigned long *entries;
468 	int err;
469 	int i;
470 
471 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
472 	if (!entries)
473 		return -ENOMEM;
474 
475 	trace.nr_entries	= 0;
476 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
477 	trace.entries		= entries;
478 	trace.skip		= 0;
479 
480 	err = lock_trace(task);
481 	if (!err) {
482 		save_stack_trace_tsk(task, &trace);
483 
484 		for (i = 0; i < trace.nr_entries; i++) {
485 			seq_printf(m, "[<%pK>] %pS\n",
486 				   (void *)entries[i], (void *)entries[i]);
487 		}
488 		unlock_trace(task);
489 	}
490 	kfree(entries);
491 
492 	return err;
493 }
494 #endif
495 
496 #ifdef CONFIG_SCHED_INFO
497 /*
498  * Provides /proc/PID/schedstat
499  */
500 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
501 			      struct pid *pid, struct task_struct *task)
502 {
503 	if (unlikely(!sched_info_on()))
504 		seq_printf(m, "0 0 0\n");
505 	else
506 		seq_printf(m, "%llu %llu %lu\n",
507 		   (unsigned long long)task->se.sum_exec_runtime,
508 		   (unsigned long long)task->sched_info.run_delay,
509 		   task->sched_info.pcount);
510 
511 	return 0;
512 }
513 #endif
514 
515 #ifdef CONFIG_LATENCYTOP
516 static int lstats_show_proc(struct seq_file *m, void *v)
517 {
518 	int i;
519 	struct inode *inode = m->private;
520 	struct task_struct *task = get_proc_task(inode);
521 
522 	if (!task)
523 		return -ESRCH;
524 	seq_puts(m, "Latency Top version : v0.1\n");
525 	for (i = 0; i < 32; i++) {
526 		struct latency_record *lr = &task->latency_record[i];
527 		if (lr->backtrace[0]) {
528 			int q;
529 			seq_printf(m, "%i %li %li",
530 				   lr->count, lr->time, lr->max);
531 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
532 				unsigned long bt = lr->backtrace[q];
533 				if (!bt)
534 					break;
535 				if (bt == ULONG_MAX)
536 					break;
537 				seq_printf(m, " %ps", (void *)bt);
538 			}
539 			seq_putc(m, '\n');
540 		}
541 
542 	}
543 	put_task_struct(task);
544 	return 0;
545 }
546 
547 static int lstats_open(struct inode *inode, struct file *file)
548 {
549 	return single_open(file, lstats_show_proc, inode);
550 }
551 
552 static ssize_t lstats_write(struct file *file, const char __user *buf,
553 			    size_t count, loff_t *offs)
554 {
555 	struct task_struct *task = get_proc_task(file_inode(file));
556 
557 	if (!task)
558 		return -ESRCH;
559 	clear_all_latency_tracing(task);
560 	put_task_struct(task);
561 
562 	return count;
563 }
564 
565 static const struct file_operations proc_lstats_operations = {
566 	.open		= lstats_open,
567 	.read		= seq_read,
568 	.write		= lstats_write,
569 	.llseek		= seq_lseek,
570 	.release	= single_release,
571 };
572 
573 #endif
574 
575 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
576 			  struct pid *pid, struct task_struct *task)
577 {
578 	unsigned long totalpages = totalram_pages + total_swap_pages;
579 	unsigned long points = 0;
580 
581 	read_lock(&tasklist_lock);
582 	if (pid_alive(task))
583 		points = oom_badness(task, NULL, NULL, totalpages) *
584 						1000 / totalpages;
585 	read_unlock(&tasklist_lock);
586 	seq_printf(m, "%lu\n", points);
587 
588 	return 0;
589 }
590 
591 struct limit_names {
592 	const char *name;
593 	const char *unit;
594 };
595 
596 static const struct limit_names lnames[RLIM_NLIMITS] = {
597 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
598 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
599 	[RLIMIT_DATA] = {"Max data size", "bytes"},
600 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
601 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
602 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
603 	[RLIMIT_NPROC] = {"Max processes", "processes"},
604 	[RLIMIT_NOFILE] = {"Max open files", "files"},
605 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
606 	[RLIMIT_AS] = {"Max address space", "bytes"},
607 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
608 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
609 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
610 	[RLIMIT_NICE] = {"Max nice priority", NULL},
611 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
612 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
613 };
614 
615 /* Display limits for a process */
616 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
617 			   struct pid *pid, struct task_struct *task)
618 {
619 	unsigned int i;
620 	unsigned long flags;
621 
622 	struct rlimit rlim[RLIM_NLIMITS];
623 
624 	if (!lock_task_sighand(task, &flags))
625 		return 0;
626 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
627 	unlock_task_sighand(task, &flags);
628 
629 	/*
630 	 * print the file header
631 	 */
632        seq_printf(m, "%-25s %-20s %-20s %-10s\n",
633 		  "Limit", "Soft Limit", "Hard Limit", "Units");
634 
635 	for (i = 0; i < RLIM_NLIMITS; i++) {
636 		if (rlim[i].rlim_cur == RLIM_INFINITY)
637 			seq_printf(m, "%-25s %-20s ",
638 				   lnames[i].name, "unlimited");
639 		else
640 			seq_printf(m, "%-25s %-20lu ",
641 				   lnames[i].name, rlim[i].rlim_cur);
642 
643 		if (rlim[i].rlim_max == RLIM_INFINITY)
644 			seq_printf(m, "%-20s ", "unlimited");
645 		else
646 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
647 
648 		if (lnames[i].unit)
649 			seq_printf(m, "%-10s\n", lnames[i].unit);
650 		else
651 			seq_putc(m, '\n');
652 	}
653 
654 	return 0;
655 }
656 
657 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
658 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
659 			    struct pid *pid, struct task_struct *task)
660 {
661 	long nr;
662 	unsigned long args[6], sp, pc;
663 	int res;
664 
665 	res = lock_trace(task);
666 	if (res)
667 		return res;
668 
669 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
670 		seq_puts(m, "running\n");
671 	else if (nr < 0)
672 		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
673 	else
674 		seq_printf(m,
675 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
676 		       nr,
677 		       args[0], args[1], args[2], args[3], args[4], args[5],
678 		       sp, pc);
679 	unlock_trace(task);
680 
681 	return 0;
682 }
683 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
684 
685 /************************************************************************/
686 /*                       Here the fs part begins                        */
687 /************************************************************************/
688 
689 /* permission checks */
690 static int proc_fd_access_allowed(struct inode *inode)
691 {
692 	struct task_struct *task;
693 	int allowed = 0;
694 	/* Allow access to a task's file descriptors if it is us or we
695 	 * may use ptrace attach to the process and find out that
696 	 * information.
697 	 */
698 	task = get_proc_task(inode);
699 	if (task) {
700 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
701 		put_task_struct(task);
702 	}
703 	return allowed;
704 }
705 
706 int proc_setattr(struct dentry *dentry, struct iattr *attr)
707 {
708 	int error;
709 	struct inode *inode = d_inode(dentry);
710 
711 	if (attr->ia_valid & ATTR_MODE)
712 		return -EPERM;
713 
714 	error = inode_change_ok(inode, attr);
715 	if (error)
716 		return error;
717 
718 	setattr_copy(inode, attr);
719 	mark_inode_dirty(inode);
720 	return 0;
721 }
722 
723 /*
724  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
725  * or euid/egid (for hide_pid_min=2)?
726  */
727 static bool has_pid_permissions(struct pid_namespace *pid,
728 				 struct task_struct *task,
729 				 int hide_pid_min)
730 {
731 	if (pid->hide_pid < hide_pid_min)
732 		return true;
733 	if (in_group_p(pid->pid_gid))
734 		return true;
735 	return ptrace_may_access(task, PTRACE_MODE_READ);
736 }
737 
738 
739 static int proc_pid_permission(struct inode *inode, int mask)
740 {
741 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
742 	struct task_struct *task;
743 	bool has_perms;
744 
745 	task = get_proc_task(inode);
746 	if (!task)
747 		return -ESRCH;
748 	has_perms = has_pid_permissions(pid, task, 1);
749 	put_task_struct(task);
750 
751 	if (!has_perms) {
752 		if (pid->hide_pid == 2) {
753 			/*
754 			 * Let's make getdents(), stat(), and open()
755 			 * consistent with each other.  If a process
756 			 * may not stat() a file, it shouldn't be seen
757 			 * in procfs at all.
758 			 */
759 			return -ENOENT;
760 		}
761 
762 		return -EPERM;
763 	}
764 	return generic_permission(inode, mask);
765 }
766 
767 
768 
769 static const struct inode_operations proc_def_inode_operations = {
770 	.setattr	= proc_setattr,
771 };
772 
773 static int proc_single_show(struct seq_file *m, void *v)
774 {
775 	struct inode *inode = m->private;
776 	struct pid_namespace *ns;
777 	struct pid *pid;
778 	struct task_struct *task;
779 	int ret;
780 
781 	ns = inode->i_sb->s_fs_info;
782 	pid = proc_pid(inode);
783 	task = get_pid_task(pid, PIDTYPE_PID);
784 	if (!task)
785 		return -ESRCH;
786 
787 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
788 
789 	put_task_struct(task);
790 	return ret;
791 }
792 
793 static int proc_single_open(struct inode *inode, struct file *filp)
794 {
795 	return single_open(filp, proc_single_show, inode);
796 }
797 
798 static const struct file_operations proc_single_file_operations = {
799 	.open		= proc_single_open,
800 	.read		= seq_read,
801 	.llseek		= seq_lseek,
802 	.release	= single_release,
803 };
804 
805 
806 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
807 {
808 	struct task_struct *task = get_proc_task(inode);
809 	struct mm_struct *mm = ERR_PTR(-ESRCH);
810 
811 	if (task) {
812 		mm = mm_access(task, mode);
813 		put_task_struct(task);
814 
815 		if (!IS_ERR_OR_NULL(mm)) {
816 			/* ensure this mm_struct can't be freed */
817 			atomic_inc(&mm->mm_count);
818 			/* but do not pin its memory */
819 			mmput(mm);
820 		}
821 	}
822 
823 	return mm;
824 }
825 
826 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
827 {
828 	struct mm_struct *mm = proc_mem_open(inode, mode);
829 
830 	if (IS_ERR(mm))
831 		return PTR_ERR(mm);
832 
833 	file->private_data = mm;
834 	return 0;
835 }
836 
837 static int mem_open(struct inode *inode, struct file *file)
838 {
839 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
840 
841 	/* OK to pass negative loff_t, we can catch out-of-range */
842 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
843 
844 	return ret;
845 }
846 
847 static ssize_t mem_rw(struct file *file, char __user *buf,
848 			size_t count, loff_t *ppos, int write)
849 {
850 	struct mm_struct *mm = file->private_data;
851 	unsigned long addr = *ppos;
852 	ssize_t copied;
853 	char *page;
854 
855 	if (!mm)
856 		return 0;
857 
858 	page = (char *)__get_free_page(GFP_TEMPORARY);
859 	if (!page)
860 		return -ENOMEM;
861 
862 	copied = 0;
863 	if (!atomic_inc_not_zero(&mm->mm_users))
864 		goto free;
865 
866 	while (count > 0) {
867 		int this_len = min_t(int, count, PAGE_SIZE);
868 
869 		if (write && copy_from_user(page, buf, this_len)) {
870 			copied = -EFAULT;
871 			break;
872 		}
873 
874 		this_len = access_remote_vm(mm, addr, page, this_len, write);
875 		if (!this_len) {
876 			if (!copied)
877 				copied = -EIO;
878 			break;
879 		}
880 
881 		if (!write && copy_to_user(buf, page, this_len)) {
882 			copied = -EFAULT;
883 			break;
884 		}
885 
886 		buf += this_len;
887 		addr += this_len;
888 		copied += this_len;
889 		count -= this_len;
890 	}
891 	*ppos = addr;
892 
893 	mmput(mm);
894 free:
895 	free_page((unsigned long) page);
896 	return copied;
897 }
898 
899 static ssize_t mem_read(struct file *file, char __user *buf,
900 			size_t count, loff_t *ppos)
901 {
902 	return mem_rw(file, buf, count, ppos, 0);
903 }
904 
905 static ssize_t mem_write(struct file *file, const char __user *buf,
906 			 size_t count, loff_t *ppos)
907 {
908 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
909 }
910 
911 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
912 {
913 	switch (orig) {
914 	case 0:
915 		file->f_pos = offset;
916 		break;
917 	case 1:
918 		file->f_pos += offset;
919 		break;
920 	default:
921 		return -EINVAL;
922 	}
923 	force_successful_syscall_return();
924 	return file->f_pos;
925 }
926 
927 static int mem_release(struct inode *inode, struct file *file)
928 {
929 	struct mm_struct *mm = file->private_data;
930 	if (mm)
931 		mmdrop(mm);
932 	return 0;
933 }
934 
935 static const struct file_operations proc_mem_operations = {
936 	.llseek		= mem_lseek,
937 	.read		= mem_read,
938 	.write		= mem_write,
939 	.open		= mem_open,
940 	.release	= mem_release,
941 };
942 
943 static int environ_open(struct inode *inode, struct file *file)
944 {
945 	return __mem_open(inode, file, PTRACE_MODE_READ);
946 }
947 
948 static ssize_t environ_read(struct file *file, char __user *buf,
949 			size_t count, loff_t *ppos)
950 {
951 	char *page;
952 	unsigned long src = *ppos;
953 	int ret = 0;
954 	struct mm_struct *mm = file->private_data;
955 
956 	if (!mm)
957 		return 0;
958 
959 	page = (char *)__get_free_page(GFP_TEMPORARY);
960 	if (!page)
961 		return -ENOMEM;
962 
963 	ret = 0;
964 	if (!atomic_inc_not_zero(&mm->mm_users))
965 		goto free;
966 	while (count > 0) {
967 		size_t this_len, max_len;
968 		int retval;
969 
970 		if (src >= (mm->env_end - mm->env_start))
971 			break;
972 
973 		this_len = mm->env_end - (mm->env_start + src);
974 
975 		max_len = min_t(size_t, PAGE_SIZE, count);
976 		this_len = min(max_len, this_len);
977 
978 		retval = access_remote_vm(mm, (mm->env_start + src),
979 			page, this_len, 0);
980 
981 		if (retval <= 0) {
982 			ret = retval;
983 			break;
984 		}
985 
986 		if (copy_to_user(buf, page, retval)) {
987 			ret = -EFAULT;
988 			break;
989 		}
990 
991 		ret += retval;
992 		src += retval;
993 		buf += retval;
994 		count -= retval;
995 	}
996 	*ppos = src;
997 	mmput(mm);
998 
999 free:
1000 	free_page((unsigned long) page);
1001 	return ret;
1002 }
1003 
1004 static const struct file_operations proc_environ_operations = {
1005 	.open		= environ_open,
1006 	.read		= environ_read,
1007 	.llseek		= generic_file_llseek,
1008 	.release	= mem_release,
1009 };
1010 
1011 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1012 			    loff_t *ppos)
1013 {
1014 	struct task_struct *task = get_proc_task(file_inode(file));
1015 	char buffer[PROC_NUMBUF];
1016 	int oom_adj = OOM_ADJUST_MIN;
1017 	size_t len;
1018 	unsigned long flags;
1019 
1020 	if (!task)
1021 		return -ESRCH;
1022 	if (lock_task_sighand(task, &flags)) {
1023 		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1024 			oom_adj = OOM_ADJUST_MAX;
1025 		else
1026 			oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1027 				  OOM_SCORE_ADJ_MAX;
1028 		unlock_task_sighand(task, &flags);
1029 	}
1030 	put_task_struct(task);
1031 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1032 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1033 }
1034 
1035 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1036 			     size_t count, loff_t *ppos)
1037 {
1038 	struct task_struct *task;
1039 	char buffer[PROC_NUMBUF];
1040 	int oom_adj;
1041 	unsigned long flags;
1042 	int err;
1043 
1044 	memset(buffer, 0, sizeof(buffer));
1045 	if (count > sizeof(buffer) - 1)
1046 		count = sizeof(buffer) - 1;
1047 	if (copy_from_user(buffer, buf, count)) {
1048 		err = -EFAULT;
1049 		goto out;
1050 	}
1051 
1052 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1053 	if (err)
1054 		goto out;
1055 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1056 	     oom_adj != OOM_DISABLE) {
1057 		err = -EINVAL;
1058 		goto out;
1059 	}
1060 
1061 	task = get_proc_task(file_inode(file));
1062 	if (!task) {
1063 		err = -ESRCH;
1064 		goto out;
1065 	}
1066 
1067 	task_lock(task);
1068 	if (!task->mm) {
1069 		err = -EINVAL;
1070 		goto err_task_lock;
1071 	}
1072 
1073 	if (!lock_task_sighand(task, &flags)) {
1074 		err = -ESRCH;
1075 		goto err_task_lock;
1076 	}
1077 
1078 	/*
1079 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1080 	 * value is always attainable.
1081 	 */
1082 	if (oom_adj == OOM_ADJUST_MAX)
1083 		oom_adj = OOM_SCORE_ADJ_MAX;
1084 	else
1085 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1086 
1087 	if (oom_adj < task->signal->oom_score_adj &&
1088 	    !capable(CAP_SYS_RESOURCE)) {
1089 		err = -EACCES;
1090 		goto err_sighand;
1091 	}
1092 
1093 	/*
1094 	 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1095 	 * /proc/pid/oom_score_adj instead.
1096 	 */
1097 	pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1098 		  current->comm, task_pid_nr(current), task_pid_nr(task),
1099 		  task_pid_nr(task));
1100 
1101 	task->signal->oom_score_adj = oom_adj;
1102 	trace_oom_score_adj_update(task);
1103 err_sighand:
1104 	unlock_task_sighand(task, &flags);
1105 err_task_lock:
1106 	task_unlock(task);
1107 	put_task_struct(task);
1108 out:
1109 	return err < 0 ? err : count;
1110 }
1111 
1112 static const struct file_operations proc_oom_adj_operations = {
1113 	.read		= oom_adj_read,
1114 	.write		= oom_adj_write,
1115 	.llseek		= generic_file_llseek,
1116 };
1117 
1118 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1119 					size_t count, loff_t *ppos)
1120 {
1121 	struct task_struct *task = get_proc_task(file_inode(file));
1122 	char buffer[PROC_NUMBUF];
1123 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1124 	unsigned long flags;
1125 	size_t len;
1126 
1127 	if (!task)
1128 		return -ESRCH;
1129 	if (lock_task_sighand(task, &flags)) {
1130 		oom_score_adj = task->signal->oom_score_adj;
1131 		unlock_task_sighand(task, &flags);
1132 	}
1133 	put_task_struct(task);
1134 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1135 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1136 }
1137 
1138 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1139 					size_t count, loff_t *ppos)
1140 {
1141 	struct task_struct *task;
1142 	char buffer[PROC_NUMBUF];
1143 	unsigned long flags;
1144 	int oom_score_adj;
1145 	int err;
1146 
1147 	memset(buffer, 0, sizeof(buffer));
1148 	if (count > sizeof(buffer) - 1)
1149 		count = sizeof(buffer) - 1;
1150 	if (copy_from_user(buffer, buf, count)) {
1151 		err = -EFAULT;
1152 		goto out;
1153 	}
1154 
1155 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1156 	if (err)
1157 		goto out;
1158 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1159 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1160 		err = -EINVAL;
1161 		goto out;
1162 	}
1163 
1164 	task = get_proc_task(file_inode(file));
1165 	if (!task) {
1166 		err = -ESRCH;
1167 		goto out;
1168 	}
1169 
1170 	task_lock(task);
1171 	if (!task->mm) {
1172 		err = -EINVAL;
1173 		goto err_task_lock;
1174 	}
1175 
1176 	if (!lock_task_sighand(task, &flags)) {
1177 		err = -ESRCH;
1178 		goto err_task_lock;
1179 	}
1180 
1181 	if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1182 			!capable(CAP_SYS_RESOURCE)) {
1183 		err = -EACCES;
1184 		goto err_sighand;
1185 	}
1186 
1187 	task->signal->oom_score_adj = (short)oom_score_adj;
1188 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1189 		task->signal->oom_score_adj_min = (short)oom_score_adj;
1190 	trace_oom_score_adj_update(task);
1191 
1192 err_sighand:
1193 	unlock_task_sighand(task, &flags);
1194 err_task_lock:
1195 	task_unlock(task);
1196 	put_task_struct(task);
1197 out:
1198 	return err < 0 ? err : count;
1199 }
1200 
1201 static const struct file_operations proc_oom_score_adj_operations = {
1202 	.read		= oom_score_adj_read,
1203 	.write		= oom_score_adj_write,
1204 	.llseek		= default_llseek,
1205 };
1206 
1207 #ifdef CONFIG_AUDITSYSCALL
1208 #define TMPBUFLEN 21
1209 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1210 				  size_t count, loff_t *ppos)
1211 {
1212 	struct inode * inode = file_inode(file);
1213 	struct task_struct *task = get_proc_task(inode);
1214 	ssize_t length;
1215 	char tmpbuf[TMPBUFLEN];
1216 
1217 	if (!task)
1218 		return -ESRCH;
1219 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1220 			   from_kuid(file->f_cred->user_ns,
1221 				     audit_get_loginuid(task)));
1222 	put_task_struct(task);
1223 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1224 }
1225 
1226 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1227 				   size_t count, loff_t *ppos)
1228 {
1229 	struct inode * inode = file_inode(file);
1230 	uid_t loginuid;
1231 	kuid_t kloginuid;
1232 	int rv;
1233 
1234 	rcu_read_lock();
1235 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1236 		rcu_read_unlock();
1237 		return -EPERM;
1238 	}
1239 	rcu_read_unlock();
1240 
1241 	if (*ppos != 0) {
1242 		/* No partial writes. */
1243 		return -EINVAL;
1244 	}
1245 
1246 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1247 	if (rv < 0)
1248 		return rv;
1249 
1250 	/* is userspace tring to explicitly UNSET the loginuid? */
1251 	if (loginuid == AUDIT_UID_UNSET) {
1252 		kloginuid = INVALID_UID;
1253 	} else {
1254 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1255 		if (!uid_valid(kloginuid))
1256 			return -EINVAL;
1257 	}
1258 
1259 	rv = audit_set_loginuid(kloginuid);
1260 	if (rv < 0)
1261 		return rv;
1262 	return count;
1263 }
1264 
1265 static const struct file_operations proc_loginuid_operations = {
1266 	.read		= proc_loginuid_read,
1267 	.write		= proc_loginuid_write,
1268 	.llseek		= generic_file_llseek,
1269 };
1270 
1271 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1272 				  size_t count, loff_t *ppos)
1273 {
1274 	struct inode * inode = file_inode(file);
1275 	struct task_struct *task = get_proc_task(inode);
1276 	ssize_t length;
1277 	char tmpbuf[TMPBUFLEN];
1278 
1279 	if (!task)
1280 		return -ESRCH;
1281 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1282 				audit_get_sessionid(task));
1283 	put_task_struct(task);
1284 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1285 }
1286 
1287 static const struct file_operations proc_sessionid_operations = {
1288 	.read		= proc_sessionid_read,
1289 	.llseek		= generic_file_llseek,
1290 };
1291 #endif
1292 
1293 #ifdef CONFIG_FAULT_INJECTION
1294 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1295 				      size_t count, loff_t *ppos)
1296 {
1297 	struct task_struct *task = get_proc_task(file_inode(file));
1298 	char buffer[PROC_NUMBUF];
1299 	size_t len;
1300 	int make_it_fail;
1301 
1302 	if (!task)
1303 		return -ESRCH;
1304 	make_it_fail = task->make_it_fail;
1305 	put_task_struct(task);
1306 
1307 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1308 
1309 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1310 }
1311 
1312 static ssize_t proc_fault_inject_write(struct file * file,
1313 			const char __user * buf, size_t count, loff_t *ppos)
1314 {
1315 	struct task_struct *task;
1316 	char buffer[PROC_NUMBUF];
1317 	int make_it_fail;
1318 	int rv;
1319 
1320 	if (!capable(CAP_SYS_RESOURCE))
1321 		return -EPERM;
1322 	memset(buffer, 0, sizeof(buffer));
1323 	if (count > sizeof(buffer) - 1)
1324 		count = sizeof(buffer) - 1;
1325 	if (copy_from_user(buffer, buf, count))
1326 		return -EFAULT;
1327 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1328 	if (rv < 0)
1329 		return rv;
1330 	if (make_it_fail < 0 || make_it_fail > 1)
1331 		return -EINVAL;
1332 
1333 	task = get_proc_task(file_inode(file));
1334 	if (!task)
1335 		return -ESRCH;
1336 	task->make_it_fail = make_it_fail;
1337 	put_task_struct(task);
1338 
1339 	return count;
1340 }
1341 
1342 static const struct file_operations proc_fault_inject_operations = {
1343 	.read		= proc_fault_inject_read,
1344 	.write		= proc_fault_inject_write,
1345 	.llseek		= generic_file_llseek,
1346 };
1347 #endif
1348 
1349 
1350 #ifdef CONFIG_SCHED_DEBUG
1351 /*
1352  * Print out various scheduling related per-task fields:
1353  */
1354 static int sched_show(struct seq_file *m, void *v)
1355 {
1356 	struct inode *inode = m->private;
1357 	struct task_struct *p;
1358 
1359 	p = get_proc_task(inode);
1360 	if (!p)
1361 		return -ESRCH;
1362 	proc_sched_show_task(p, m);
1363 
1364 	put_task_struct(p);
1365 
1366 	return 0;
1367 }
1368 
1369 static ssize_t
1370 sched_write(struct file *file, const char __user *buf,
1371 	    size_t count, loff_t *offset)
1372 {
1373 	struct inode *inode = file_inode(file);
1374 	struct task_struct *p;
1375 
1376 	p = get_proc_task(inode);
1377 	if (!p)
1378 		return -ESRCH;
1379 	proc_sched_set_task(p);
1380 
1381 	put_task_struct(p);
1382 
1383 	return count;
1384 }
1385 
1386 static int sched_open(struct inode *inode, struct file *filp)
1387 {
1388 	return single_open(filp, sched_show, inode);
1389 }
1390 
1391 static const struct file_operations proc_pid_sched_operations = {
1392 	.open		= sched_open,
1393 	.read		= seq_read,
1394 	.write		= sched_write,
1395 	.llseek		= seq_lseek,
1396 	.release	= single_release,
1397 };
1398 
1399 #endif
1400 
1401 #ifdef CONFIG_SCHED_AUTOGROUP
1402 /*
1403  * Print out autogroup related information:
1404  */
1405 static int sched_autogroup_show(struct seq_file *m, void *v)
1406 {
1407 	struct inode *inode = m->private;
1408 	struct task_struct *p;
1409 
1410 	p = get_proc_task(inode);
1411 	if (!p)
1412 		return -ESRCH;
1413 	proc_sched_autogroup_show_task(p, m);
1414 
1415 	put_task_struct(p);
1416 
1417 	return 0;
1418 }
1419 
1420 static ssize_t
1421 sched_autogroup_write(struct file *file, const char __user *buf,
1422 	    size_t count, loff_t *offset)
1423 {
1424 	struct inode *inode = file_inode(file);
1425 	struct task_struct *p;
1426 	char buffer[PROC_NUMBUF];
1427 	int nice;
1428 	int err;
1429 
1430 	memset(buffer, 0, sizeof(buffer));
1431 	if (count > sizeof(buffer) - 1)
1432 		count = sizeof(buffer) - 1;
1433 	if (copy_from_user(buffer, buf, count))
1434 		return -EFAULT;
1435 
1436 	err = kstrtoint(strstrip(buffer), 0, &nice);
1437 	if (err < 0)
1438 		return err;
1439 
1440 	p = get_proc_task(inode);
1441 	if (!p)
1442 		return -ESRCH;
1443 
1444 	err = proc_sched_autogroup_set_nice(p, nice);
1445 	if (err)
1446 		count = err;
1447 
1448 	put_task_struct(p);
1449 
1450 	return count;
1451 }
1452 
1453 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1454 {
1455 	int ret;
1456 
1457 	ret = single_open(filp, sched_autogroup_show, NULL);
1458 	if (!ret) {
1459 		struct seq_file *m = filp->private_data;
1460 
1461 		m->private = inode;
1462 	}
1463 	return ret;
1464 }
1465 
1466 static const struct file_operations proc_pid_sched_autogroup_operations = {
1467 	.open		= sched_autogroup_open,
1468 	.read		= seq_read,
1469 	.write		= sched_autogroup_write,
1470 	.llseek		= seq_lseek,
1471 	.release	= single_release,
1472 };
1473 
1474 #endif /* CONFIG_SCHED_AUTOGROUP */
1475 
1476 static ssize_t comm_write(struct file *file, const char __user *buf,
1477 				size_t count, loff_t *offset)
1478 {
1479 	struct inode *inode = file_inode(file);
1480 	struct task_struct *p;
1481 	char buffer[TASK_COMM_LEN];
1482 	const size_t maxlen = sizeof(buffer) - 1;
1483 
1484 	memset(buffer, 0, sizeof(buffer));
1485 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1486 		return -EFAULT;
1487 
1488 	p = get_proc_task(inode);
1489 	if (!p)
1490 		return -ESRCH;
1491 
1492 	if (same_thread_group(current, p))
1493 		set_task_comm(p, buffer);
1494 	else
1495 		count = -EINVAL;
1496 
1497 	put_task_struct(p);
1498 
1499 	return count;
1500 }
1501 
1502 static int comm_show(struct seq_file *m, void *v)
1503 {
1504 	struct inode *inode = m->private;
1505 	struct task_struct *p;
1506 
1507 	p = get_proc_task(inode);
1508 	if (!p)
1509 		return -ESRCH;
1510 
1511 	task_lock(p);
1512 	seq_printf(m, "%s\n", p->comm);
1513 	task_unlock(p);
1514 
1515 	put_task_struct(p);
1516 
1517 	return 0;
1518 }
1519 
1520 static int comm_open(struct inode *inode, struct file *filp)
1521 {
1522 	return single_open(filp, comm_show, inode);
1523 }
1524 
1525 static const struct file_operations proc_pid_set_comm_operations = {
1526 	.open		= comm_open,
1527 	.read		= seq_read,
1528 	.write		= comm_write,
1529 	.llseek		= seq_lseek,
1530 	.release	= single_release,
1531 };
1532 
1533 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1534 {
1535 	struct task_struct *task;
1536 	struct mm_struct *mm;
1537 	struct file *exe_file;
1538 
1539 	task = get_proc_task(d_inode(dentry));
1540 	if (!task)
1541 		return -ENOENT;
1542 	mm = get_task_mm(task);
1543 	put_task_struct(task);
1544 	if (!mm)
1545 		return -ENOENT;
1546 	exe_file = get_mm_exe_file(mm);
1547 	mmput(mm);
1548 	if (exe_file) {
1549 		*exe_path = exe_file->f_path;
1550 		path_get(&exe_file->f_path);
1551 		fput(exe_file);
1552 		return 0;
1553 	} else
1554 		return -ENOENT;
1555 }
1556 
1557 static const char *proc_pid_follow_link(struct dentry *dentry, void **cookie)
1558 {
1559 	struct inode *inode = d_inode(dentry);
1560 	struct path path;
1561 	int error = -EACCES;
1562 
1563 	/* Are we allowed to snoop on the tasks file descriptors? */
1564 	if (!proc_fd_access_allowed(inode))
1565 		goto out;
1566 
1567 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1568 	if (error)
1569 		goto out;
1570 
1571 	nd_jump_link(&path);
1572 	return NULL;
1573 out:
1574 	return ERR_PTR(error);
1575 }
1576 
1577 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1578 {
1579 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1580 	char *pathname;
1581 	int len;
1582 
1583 	if (!tmp)
1584 		return -ENOMEM;
1585 
1586 	pathname = d_path(path, tmp, PAGE_SIZE);
1587 	len = PTR_ERR(pathname);
1588 	if (IS_ERR(pathname))
1589 		goto out;
1590 	len = tmp + PAGE_SIZE - 1 - pathname;
1591 
1592 	if (len > buflen)
1593 		len = buflen;
1594 	if (copy_to_user(buffer, pathname, len))
1595 		len = -EFAULT;
1596  out:
1597 	free_page((unsigned long)tmp);
1598 	return len;
1599 }
1600 
1601 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1602 {
1603 	int error = -EACCES;
1604 	struct inode *inode = d_inode(dentry);
1605 	struct path path;
1606 
1607 	/* Are we allowed to snoop on the tasks file descriptors? */
1608 	if (!proc_fd_access_allowed(inode))
1609 		goto out;
1610 
1611 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1612 	if (error)
1613 		goto out;
1614 
1615 	error = do_proc_readlink(&path, buffer, buflen);
1616 	path_put(&path);
1617 out:
1618 	return error;
1619 }
1620 
1621 const struct inode_operations proc_pid_link_inode_operations = {
1622 	.readlink	= proc_pid_readlink,
1623 	.follow_link	= proc_pid_follow_link,
1624 	.setattr	= proc_setattr,
1625 };
1626 
1627 
1628 /* building an inode */
1629 
1630 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1631 {
1632 	struct inode * inode;
1633 	struct proc_inode *ei;
1634 	const struct cred *cred;
1635 
1636 	/* We need a new inode */
1637 
1638 	inode = new_inode(sb);
1639 	if (!inode)
1640 		goto out;
1641 
1642 	/* Common stuff */
1643 	ei = PROC_I(inode);
1644 	inode->i_ino = get_next_ino();
1645 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1646 	inode->i_op = &proc_def_inode_operations;
1647 
1648 	/*
1649 	 * grab the reference to task.
1650 	 */
1651 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1652 	if (!ei->pid)
1653 		goto out_unlock;
1654 
1655 	if (task_dumpable(task)) {
1656 		rcu_read_lock();
1657 		cred = __task_cred(task);
1658 		inode->i_uid = cred->euid;
1659 		inode->i_gid = cred->egid;
1660 		rcu_read_unlock();
1661 	}
1662 	security_task_to_inode(task, inode);
1663 
1664 out:
1665 	return inode;
1666 
1667 out_unlock:
1668 	iput(inode);
1669 	return NULL;
1670 }
1671 
1672 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1673 {
1674 	struct inode *inode = d_inode(dentry);
1675 	struct task_struct *task;
1676 	const struct cred *cred;
1677 	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1678 
1679 	generic_fillattr(inode, stat);
1680 
1681 	rcu_read_lock();
1682 	stat->uid = GLOBAL_ROOT_UID;
1683 	stat->gid = GLOBAL_ROOT_GID;
1684 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1685 	if (task) {
1686 		if (!has_pid_permissions(pid, task, 2)) {
1687 			rcu_read_unlock();
1688 			/*
1689 			 * This doesn't prevent learning whether PID exists,
1690 			 * it only makes getattr() consistent with readdir().
1691 			 */
1692 			return -ENOENT;
1693 		}
1694 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1695 		    task_dumpable(task)) {
1696 			cred = __task_cred(task);
1697 			stat->uid = cred->euid;
1698 			stat->gid = cred->egid;
1699 		}
1700 	}
1701 	rcu_read_unlock();
1702 	return 0;
1703 }
1704 
1705 /* dentry stuff */
1706 
1707 /*
1708  *	Exceptional case: normally we are not allowed to unhash a busy
1709  * directory. In this case, however, we can do it - no aliasing problems
1710  * due to the way we treat inodes.
1711  *
1712  * Rewrite the inode's ownerships here because the owning task may have
1713  * performed a setuid(), etc.
1714  *
1715  * Before the /proc/pid/status file was created the only way to read
1716  * the effective uid of a /process was to stat /proc/pid.  Reading
1717  * /proc/pid/status is slow enough that procps and other packages
1718  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1719  * made this apply to all per process world readable and executable
1720  * directories.
1721  */
1722 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1723 {
1724 	struct inode *inode;
1725 	struct task_struct *task;
1726 	const struct cred *cred;
1727 
1728 	if (flags & LOOKUP_RCU)
1729 		return -ECHILD;
1730 
1731 	inode = d_inode(dentry);
1732 	task = get_proc_task(inode);
1733 
1734 	if (task) {
1735 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1736 		    task_dumpable(task)) {
1737 			rcu_read_lock();
1738 			cred = __task_cred(task);
1739 			inode->i_uid = cred->euid;
1740 			inode->i_gid = cred->egid;
1741 			rcu_read_unlock();
1742 		} else {
1743 			inode->i_uid = GLOBAL_ROOT_UID;
1744 			inode->i_gid = GLOBAL_ROOT_GID;
1745 		}
1746 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1747 		security_task_to_inode(task, inode);
1748 		put_task_struct(task);
1749 		return 1;
1750 	}
1751 	return 0;
1752 }
1753 
1754 static inline bool proc_inode_is_dead(struct inode *inode)
1755 {
1756 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1757 }
1758 
1759 int pid_delete_dentry(const struct dentry *dentry)
1760 {
1761 	/* Is the task we represent dead?
1762 	 * If so, then don't put the dentry on the lru list,
1763 	 * kill it immediately.
1764 	 */
1765 	return proc_inode_is_dead(d_inode(dentry));
1766 }
1767 
1768 const struct dentry_operations pid_dentry_operations =
1769 {
1770 	.d_revalidate	= pid_revalidate,
1771 	.d_delete	= pid_delete_dentry,
1772 };
1773 
1774 /* Lookups */
1775 
1776 /*
1777  * Fill a directory entry.
1778  *
1779  * If possible create the dcache entry and derive our inode number and
1780  * file type from dcache entry.
1781  *
1782  * Since all of the proc inode numbers are dynamically generated, the inode
1783  * numbers do not exist until the inode is cache.  This means creating the
1784  * the dcache entry in readdir is necessary to keep the inode numbers
1785  * reported by readdir in sync with the inode numbers reported
1786  * by stat.
1787  */
1788 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1789 	const char *name, int len,
1790 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1791 {
1792 	struct dentry *child, *dir = file->f_path.dentry;
1793 	struct qstr qname = QSTR_INIT(name, len);
1794 	struct inode *inode;
1795 	unsigned type;
1796 	ino_t ino;
1797 
1798 	child = d_hash_and_lookup(dir, &qname);
1799 	if (!child) {
1800 		child = d_alloc(dir, &qname);
1801 		if (!child)
1802 			goto end_instantiate;
1803 		if (instantiate(d_inode(dir), child, task, ptr) < 0) {
1804 			dput(child);
1805 			goto end_instantiate;
1806 		}
1807 	}
1808 	inode = d_inode(child);
1809 	ino = inode->i_ino;
1810 	type = inode->i_mode >> 12;
1811 	dput(child);
1812 	return dir_emit(ctx, name, len, ino, type);
1813 
1814 end_instantiate:
1815 	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1816 }
1817 
1818 /*
1819  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1820  * which represent vma start and end addresses.
1821  */
1822 static int dname_to_vma_addr(struct dentry *dentry,
1823 			     unsigned long *start, unsigned long *end)
1824 {
1825 	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1826 		return -EINVAL;
1827 
1828 	return 0;
1829 }
1830 
1831 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1832 {
1833 	unsigned long vm_start, vm_end;
1834 	bool exact_vma_exists = false;
1835 	struct mm_struct *mm = NULL;
1836 	struct task_struct *task;
1837 	const struct cred *cred;
1838 	struct inode *inode;
1839 	int status = 0;
1840 
1841 	if (flags & LOOKUP_RCU)
1842 		return -ECHILD;
1843 
1844 	inode = d_inode(dentry);
1845 	task = get_proc_task(inode);
1846 	if (!task)
1847 		goto out_notask;
1848 
1849 	mm = mm_access(task, PTRACE_MODE_READ);
1850 	if (IS_ERR_OR_NULL(mm))
1851 		goto out;
1852 
1853 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1854 		down_read(&mm->mmap_sem);
1855 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1856 		up_read(&mm->mmap_sem);
1857 	}
1858 
1859 	mmput(mm);
1860 
1861 	if (exact_vma_exists) {
1862 		if (task_dumpable(task)) {
1863 			rcu_read_lock();
1864 			cred = __task_cred(task);
1865 			inode->i_uid = cred->euid;
1866 			inode->i_gid = cred->egid;
1867 			rcu_read_unlock();
1868 		} else {
1869 			inode->i_uid = GLOBAL_ROOT_UID;
1870 			inode->i_gid = GLOBAL_ROOT_GID;
1871 		}
1872 		security_task_to_inode(task, inode);
1873 		status = 1;
1874 	}
1875 
1876 out:
1877 	put_task_struct(task);
1878 
1879 out_notask:
1880 	return status;
1881 }
1882 
1883 static const struct dentry_operations tid_map_files_dentry_operations = {
1884 	.d_revalidate	= map_files_d_revalidate,
1885 	.d_delete	= pid_delete_dentry,
1886 };
1887 
1888 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1889 {
1890 	unsigned long vm_start, vm_end;
1891 	struct vm_area_struct *vma;
1892 	struct task_struct *task;
1893 	struct mm_struct *mm;
1894 	int rc;
1895 
1896 	rc = -ENOENT;
1897 	task = get_proc_task(d_inode(dentry));
1898 	if (!task)
1899 		goto out;
1900 
1901 	mm = get_task_mm(task);
1902 	put_task_struct(task);
1903 	if (!mm)
1904 		goto out;
1905 
1906 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1907 	if (rc)
1908 		goto out_mmput;
1909 
1910 	rc = -ENOENT;
1911 	down_read(&mm->mmap_sem);
1912 	vma = find_exact_vma(mm, vm_start, vm_end);
1913 	if (vma && vma->vm_file) {
1914 		*path = vma->vm_file->f_path;
1915 		path_get(path);
1916 		rc = 0;
1917 	}
1918 	up_read(&mm->mmap_sem);
1919 
1920 out_mmput:
1921 	mmput(mm);
1922 out:
1923 	return rc;
1924 }
1925 
1926 struct map_files_info {
1927 	fmode_t		mode;
1928 	unsigned long	len;
1929 	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1930 };
1931 
1932 /*
1933  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1934  * symlinks may be used to bypass permissions on ancestor directories in the
1935  * path to the file in question.
1936  */
1937 static const char *
1938 proc_map_files_follow_link(struct dentry *dentry, void **cookie)
1939 {
1940 	if (!capable(CAP_SYS_ADMIN))
1941 		return ERR_PTR(-EPERM);
1942 
1943 	return proc_pid_follow_link(dentry, NULL);
1944 }
1945 
1946 /*
1947  * Identical to proc_pid_link_inode_operations except for follow_link()
1948  */
1949 static const struct inode_operations proc_map_files_link_inode_operations = {
1950 	.readlink	= proc_pid_readlink,
1951 	.follow_link	= proc_map_files_follow_link,
1952 	.setattr	= proc_setattr,
1953 };
1954 
1955 static int
1956 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1957 			   struct task_struct *task, const void *ptr)
1958 {
1959 	fmode_t mode = (fmode_t)(unsigned long)ptr;
1960 	struct proc_inode *ei;
1961 	struct inode *inode;
1962 
1963 	inode = proc_pid_make_inode(dir->i_sb, task);
1964 	if (!inode)
1965 		return -ENOENT;
1966 
1967 	ei = PROC_I(inode);
1968 	ei->op.proc_get_link = proc_map_files_get_link;
1969 
1970 	inode->i_op = &proc_map_files_link_inode_operations;
1971 	inode->i_size = 64;
1972 	inode->i_mode = S_IFLNK;
1973 
1974 	if (mode & FMODE_READ)
1975 		inode->i_mode |= S_IRUSR;
1976 	if (mode & FMODE_WRITE)
1977 		inode->i_mode |= S_IWUSR;
1978 
1979 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
1980 	d_add(dentry, inode);
1981 
1982 	return 0;
1983 }
1984 
1985 static struct dentry *proc_map_files_lookup(struct inode *dir,
1986 		struct dentry *dentry, unsigned int flags)
1987 {
1988 	unsigned long vm_start, vm_end;
1989 	struct vm_area_struct *vma;
1990 	struct task_struct *task;
1991 	int result;
1992 	struct mm_struct *mm;
1993 
1994 	result = -ENOENT;
1995 	task = get_proc_task(dir);
1996 	if (!task)
1997 		goto out;
1998 
1999 	result = -EACCES;
2000 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2001 		goto out_put_task;
2002 
2003 	result = -ENOENT;
2004 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2005 		goto out_put_task;
2006 
2007 	mm = get_task_mm(task);
2008 	if (!mm)
2009 		goto out_put_task;
2010 
2011 	down_read(&mm->mmap_sem);
2012 	vma = find_exact_vma(mm, vm_start, vm_end);
2013 	if (!vma)
2014 		goto out_no_vma;
2015 
2016 	if (vma->vm_file)
2017 		result = proc_map_files_instantiate(dir, dentry, task,
2018 				(void *)(unsigned long)vma->vm_file->f_mode);
2019 
2020 out_no_vma:
2021 	up_read(&mm->mmap_sem);
2022 	mmput(mm);
2023 out_put_task:
2024 	put_task_struct(task);
2025 out:
2026 	return ERR_PTR(result);
2027 }
2028 
2029 static const struct inode_operations proc_map_files_inode_operations = {
2030 	.lookup		= proc_map_files_lookup,
2031 	.permission	= proc_fd_permission,
2032 	.setattr	= proc_setattr,
2033 };
2034 
2035 static int
2036 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2037 {
2038 	struct vm_area_struct *vma;
2039 	struct task_struct *task;
2040 	struct mm_struct *mm;
2041 	unsigned long nr_files, pos, i;
2042 	struct flex_array *fa = NULL;
2043 	struct map_files_info info;
2044 	struct map_files_info *p;
2045 	int ret;
2046 
2047 	ret = -ENOENT;
2048 	task = get_proc_task(file_inode(file));
2049 	if (!task)
2050 		goto out;
2051 
2052 	ret = -EACCES;
2053 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2054 		goto out_put_task;
2055 
2056 	ret = 0;
2057 	if (!dir_emit_dots(file, ctx))
2058 		goto out_put_task;
2059 
2060 	mm = get_task_mm(task);
2061 	if (!mm)
2062 		goto out_put_task;
2063 	down_read(&mm->mmap_sem);
2064 
2065 	nr_files = 0;
2066 
2067 	/*
2068 	 * We need two passes here:
2069 	 *
2070 	 *  1) Collect vmas of mapped files with mmap_sem taken
2071 	 *  2) Release mmap_sem and instantiate entries
2072 	 *
2073 	 * otherwise we get lockdep complained, since filldir()
2074 	 * routine might require mmap_sem taken in might_fault().
2075 	 */
2076 
2077 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2078 		if (vma->vm_file && ++pos > ctx->pos)
2079 			nr_files++;
2080 	}
2081 
2082 	if (nr_files) {
2083 		fa = flex_array_alloc(sizeof(info), nr_files,
2084 					GFP_KERNEL);
2085 		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2086 						GFP_KERNEL)) {
2087 			ret = -ENOMEM;
2088 			if (fa)
2089 				flex_array_free(fa);
2090 			up_read(&mm->mmap_sem);
2091 			mmput(mm);
2092 			goto out_put_task;
2093 		}
2094 		for (i = 0, vma = mm->mmap, pos = 2; vma;
2095 				vma = vma->vm_next) {
2096 			if (!vma->vm_file)
2097 				continue;
2098 			if (++pos <= ctx->pos)
2099 				continue;
2100 
2101 			info.mode = vma->vm_file->f_mode;
2102 			info.len = snprintf(info.name,
2103 					sizeof(info.name), "%lx-%lx",
2104 					vma->vm_start, vma->vm_end);
2105 			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2106 				BUG();
2107 		}
2108 	}
2109 	up_read(&mm->mmap_sem);
2110 
2111 	for (i = 0; i < nr_files; i++) {
2112 		p = flex_array_get(fa, i);
2113 		if (!proc_fill_cache(file, ctx,
2114 				      p->name, p->len,
2115 				      proc_map_files_instantiate,
2116 				      task,
2117 				      (void *)(unsigned long)p->mode))
2118 			break;
2119 		ctx->pos++;
2120 	}
2121 	if (fa)
2122 		flex_array_free(fa);
2123 	mmput(mm);
2124 
2125 out_put_task:
2126 	put_task_struct(task);
2127 out:
2128 	return ret;
2129 }
2130 
2131 static const struct file_operations proc_map_files_operations = {
2132 	.read		= generic_read_dir,
2133 	.iterate	= proc_map_files_readdir,
2134 	.llseek		= default_llseek,
2135 };
2136 
2137 struct timers_private {
2138 	struct pid *pid;
2139 	struct task_struct *task;
2140 	struct sighand_struct *sighand;
2141 	struct pid_namespace *ns;
2142 	unsigned long flags;
2143 };
2144 
2145 static void *timers_start(struct seq_file *m, loff_t *pos)
2146 {
2147 	struct timers_private *tp = m->private;
2148 
2149 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2150 	if (!tp->task)
2151 		return ERR_PTR(-ESRCH);
2152 
2153 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2154 	if (!tp->sighand)
2155 		return ERR_PTR(-ESRCH);
2156 
2157 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2158 }
2159 
2160 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2161 {
2162 	struct timers_private *tp = m->private;
2163 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2164 }
2165 
2166 static void timers_stop(struct seq_file *m, void *v)
2167 {
2168 	struct timers_private *tp = m->private;
2169 
2170 	if (tp->sighand) {
2171 		unlock_task_sighand(tp->task, &tp->flags);
2172 		tp->sighand = NULL;
2173 	}
2174 
2175 	if (tp->task) {
2176 		put_task_struct(tp->task);
2177 		tp->task = NULL;
2178 	}
2179 }
2180 
2181 static int show_timer(struct seq_file *m, void *v)
2182 {
2183 	struct k_itimer *timer;
2184 	struct timers_private *tp = m->private;
2185 	int notify;
2186 	static const char * const nstr[] = {
2187 		[SIGEV_SIGNAL] = "signal",
2188 		[SIGEV_NONE] = "none",
2189 		[SIGEV_THREAD] = "thread",
2190 	};
2191 
2192 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2193 	notify = timer->it_sigev_notify;
2194 
2195 	seq_printf(m, "ID: %d\n", timer->it_id);
2196 	seq_printf(m, "signal: %d/%p\n",
2197 		   timer->sigq->info.si_signo,
2198 		   timer->sigq->info.si_value.sival_ptr);
2199 	seq_printf(m, "notify: %s/%s.%d\n",
2200 		   nstr[notify & ~SIGEV_THREAD_ID],
2201 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2202 		   pid_nr_ns(timer->it_pid, tp->ns));
2203 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2204 
2205 	return 0;
2206 }
2207 
2208 static const struct seq_operations proc_timers_seq_ops = {
2209 	.start	= timers_start,
2210 	.next	= timers_next,
2211 	.stop	= timers_stop,
2212 	.show	= show_timer,
2213 };
2214 
2215 static int proc_timers_open(struct inode *inode, struct file *file)
2216 {
2217 	struct timers_private *tp;
2218 
2219 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2220 			sizeof(struct timers_private));
2221 	if (!tp)
2222 		return -ENOMEM;
2223 
2224 	tp->pid = proc_pid(inode);
2225 	tp->ns = inode->i_sb->s_fs_info;
2226 	return 0;
2227 }
2228 
2229 static const struct file_operations proc_timers_operations = {
2230 	.open		= proc_timers_open,
2231 	.read		= seq_read,
2232 	.llseek		= seq_lseek,
2233 	.release	= seq_release_private,
2234 };
2235 
2236 static int proc_pident_instantiate(struct inode *dir,
2237 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2238 {
2239 	const struct pid_entry *p = ptr;
2240 	struct inode *inode;
2241 	struct proc_inode *ei;
2242 
2243 	inode = proc_pid_make_inode(dir->i_sb, task);
2244 	if (!inode)
2245 		goto out;
2246 
2247 	ei = PROC_I(inode);
2248 	inode->i_mode = p->mode;
2249 	if (S_ISDIR(inode->i_mode))
2250 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2251 	if (p->iop)
2252 		inode->i_op = p->iop;
2253 	if (p->fop)
2254 		inode->i_fop = p->fop;
2255 	ei->op = p->op;
2256 	d_set_d_op(dentry, &pid_dentry_operations);
2257 	d_add(dentry, inode);
2258 	/* Close the race of the process dying before we return the dentry */
2259 	if (pid_revalidate(dentry, 0))
2260 		return 0;
2261 out:
2262 	return -ENOENT;
2263 }
2264 
2265 static struct dentry *proc_pident_lookup(struct inode *dir,
2266 					 struct dentry *dentry,
2267 					 const struct pid_entry *ents,
2268 					 unsigned int nents)
2269 {
2270 	int error;
2271 	struct task_struct *task = get_proc_task(dir);
2272 	const struct pid_entry *p, *last;
2273 
2274 	error = -ENOENT;
2275 
2276 	if (!task)
2277 		goto out_no_task;
2278 
2279 	/*
2280 	 * Yes, it does not scale. And it should not. Don't add
2281 	 * new entries into /proc/<tgid>/ without very good reasons.
2282 	 */
2283 	last = &ents[nents - 1];
2284 	for (p = ents; p <= last; p++) {
2285 		if (p->len != dentry->d_name.len)
2286 			continue;
2287 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2288 			break;
2289 	}
2290 	if (p > last)
2291 		goto out;
2292 
2293 	error = proc_pident_instantiate(dir, dentry, task, p);
2294 out:
2295 	put_task_struct(task);
2296 out_no_task:
2297 	return ERR_PTR(error);
2298 }
2299 
2300 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2301 		const struct pid_entry *ents, unsigned int nents)
2302 {
2303 	struct task_struct *task = get_proc_task(file_inode(file));
2304 	const struct pid_entry *p;
2305 
2306 	if (!task)
2307 		return -ENOENT;
2308 
2309 	if (!dir_emit_dots(file, ctx))
2310 		goto out;
2311 
2312 	if (ctx->pos >= nents + 2)
2313 		goto out;
2314 
2315 	for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2316 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2317 				proc_pident_instantiate, task, p))
2318 			break;
2319 		ctx->pos++;
2320 	}
2321 out:
2322 	put_task_struct(task);
2323 	return 0;
2324 }
2325 
2326 #ifdef CONFIG_SECURITY
2327 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2328 				  size_t count, loff_t *ppos)
2329 {
2330 	struct inode * inode = file_inode(file);
2331 	char *p = NULL;
2332 	ssize_t length;
2333 	struct task_struct *task = get_proc_task(inode);
2334 
2335 	if (!task)
2336 		return -ESRCH;
2337 
2338 	length = security_getprocattr(task,
2339 				      (char*)file->f_path.dentry->d_name.name,
2340 				      &p);
2341 	put_task_struct(task);
2342 	if (length > 0)
2343 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2344 	kfree(p);
2345 	return length;
2346 }
2347 
2348 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2349 				   size_t count, loff_t *ppos)
2350 {
2351 	struct inode * inode = file_inode(file);
2352 	char *page;
2353 	ssize_t length;
2354 	struct task_struct *task = get_proc_task(inode);
2355 
2356 	length = -ESRCH;
2357 	if (!task)
2358 		goto out_no_task;
2359 	if (count > PAGE_SIZE)
2360 		count = PAGE_SIZE;
2361 
2362 	/* No partial writes. */
2363 	length = -EINVAL;
2364 	if (*ppos != 0)
2365 		goto out;
2366 
2367 	length = -ENOMEM;
2368 	page = (char*)__get_free_page(GFP_TEMPORARY);
2369 	if (!page)
2370 		goto out;
2371 
2372 	length = -EFAULT;
2373 	if (copy_from_user(page, buf, count))
2374 		goto out_free;
2375 
2376 	/* Guard against adverse ptrace interaction */
2377 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2378 	if (length < 0)
2379 		goto out_free;
2380 
2381 	length = security_setprocattr(task,
2382 				      (char*)file->f_path.dentry->d_name.name,
2383 				      (void*)page, count);
2384 	mutex_unlock(&task->signal->cred_guard_mutex);
2385 out_free:
2386 	free_page((unsigned long) page);
2387 out:
2388 	put_task_struct(task);
2389 out_no_task:
2390 	return length;
2391 }
2392 
2393 static const struct file_operations proc_pid_attr_operations = {
2394 	.read		= proc_pid_attr_read,
2395 	.write		= proc_pid_attr_write,
2396 	.llseek		= generic_file_llseek,
2397 };
2398 
2399 static const struct pid_entry attr_dir_stuff[] = {
2400 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2401 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2402 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2403 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2404 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2405 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2406 };
2407 
2408 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2409 {
2410 	return proc_pident_readdir(file, ctx,
2411 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2412 }
2413 
2414 static const struct file_operations proc_attr_dir_operations = {
2415 	.read		= generic_read_dir,
2416 	.iterate	= proc_attr_dir_readdir,
2417 	.llseek		= default_llseek,
2418 };
2419 
2420 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2421 				struct dentry *dentry, unsigned int flags)
2422 {
2423 	return proc_pident_lookup(dir, dentry,
2424 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2425 }
2426 
2427 static const struct inode_operations proc_attr_dir_inode_operations = {
2428 	.lookup		= proc_attr_dir_lookup,
2429 	.getattr	= pid_getattr,
2430 	.setattr	= proc_setattr,
2431 };
2432 
2433 #endif
2434 
2435 #ifdef CONFIG_ELF_CORE
2436 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2437 					 size_t count, loff_t *ppos)
2438 {
2439 	struct task_struct *task = get_proc_task(file_inode(file));
2440 	struct mm_struct *mm;
2441 	char buffer[PROC_NUMBUF];
2442 	size_t len;
2443 	int ret;
2444 
2445 	if (!task)
2446 		return -ESRCH;
2447 
2448 	ret = 0;
2449 	mm = get_task_mm(task);
2450 	if (mm) {
2451 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2452 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2453 				MMF_DUMP_FILTER_SHIFT));
2454 		mmput(mm);
2455 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2456 	}
2457 
2458 	put_task_struct(task);
2459 
2460 	return ret;
2461 }
2462 
2463 static ssize_t proc_coredump_filter_write(struct file *file,
2464 					  const char __user *buf,
2465 					  size_t count,
2466 					  loff_t *ppos)
2467 {
2468 	struct task_struct *task;
2469 	struct mm_struct *mm;
2470 	unsigned int val;
2471 	int ret;
2472 	int i;
2473 	unsigned long mask;
2474 
2475 	ret = kstrtouint_from_user(buf, count, 0, &val);
2476 	if (ret < 0)
2477 		return ret;
2478 
2479 	ret = -ESRCH;
2480 	task = get_proc_task(file_inode(file));
2481 	if (!task)
2482 		goto out_no_task;
2483 
2484 	mm = get_task_mm(task);
2485 	if (!mm)
2486 		goto out_no_mm;
2487 
2488 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2489 		if (val & mask)
2490 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2491 		else
2492 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2493 	}
2494 
2495 	mmput(mm);
2496  out_no_mm:
2497 	put_task_struct(task);
2498  out_no_task:
2499 	if (ret < 0)
2500 		return ret;
2501 	return count;
2502 }
2503 
2504 static const struct file_operations proc_coredump_filter_operations = {
2505 	.read		= proc_coredump_filter_read,
2506 	.write		= proc_coredump_filter_write,
2507 	.llseek		= generic_file_llseek,
2508 };
2509 #endif
2510 
2511 #ifdef CONFIG_TASK_IO_ACCOUNTING
2512 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2513 {
2514 	struct task_io_accounting acct = task->ioac;
2515 	unsigned long flags;
2516 	int result;
2517 
2518 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2519 	if (result)
2520 		return result;
2521 
2522 	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2523 		result = -EACCES;
2524 		goto out_unlock;
2525 	}
2526 
2527 	if (whole && lock_task_sighand(task, &flags)) {
2528 		struct task_struct *t = task;
2529 
2530 		task_io_accounting_add(&acct, &task->signal->ioac);
2531 		while_each_thread(task, t)
2532 			task_io_accounting_add(&acct, &t->ioac);
2533 
2534 		unlock_task_sighand(task, &flags);
2535 	}
2536 	seq_printf(m,
2537 		   "rchar: %llu\n"
2538 		   "wchar: %llu\n"
2539 		   "syscr: %llu\n"
2540 		   "syscw: %llu\n"
2541 		   "read_bytes: %llu\n"
2542 		   "write_bytes: %llu\n"
2543 		   "cancelled_write_bytes: %llu\n",
2544 		   (unsigned long long)acct.rchar,
2545 		   (unsigned long long)acct.wchar,
2546 		   (unsigned long long)acct.syscr,
2547 		   (unsigned long long)acct.syscw,
2548 		   (unsigned long long)acct.read_bytes,
2549 		   (unsigned long long)acct.write_bytes,
2550 		   (unsigned long long)acct.cancelled_write_bytes);
2551 	result = 0;
2552 
2553 out_unlock:
2554 	mutex_unlock(&task->signal->cred_guard_mutex);
2555 	return result;
2556 }
2557 
2558 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2559 				  struct pid *pid, struct task_struct *task)
2560 {
2561 	return do_io_accounting(task, m, 0);
2562 }
2563 
2564 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2565 				   struct pid *pid, struct task_struct *task)
2566 {
2567 	return do_io_accounting(task, m, 1);
2568 }
2569 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2570 
2571 #ifdef CONFIG_USER_NS
2572 static int proc_id_map_open(struct inode *inode, struct file *file,
2573 	const struct seq_operations *seq_ops)
2574 {
2575 	struct user_namespace *ns = NULL;
2576 	struct task_struct *task;
2577 	struct seq_file *seq;
2578 	int ret = -EINVAL;
2579 
2580 	task = get_proc_task(inode);
2581 	if (task) {
2582 		rcu_read_lock();
2583 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2584 		rcu_read_unlock();
2585 		put_task_struct(task);
2586 	}
2587 	if (!ns)
2588 		goto err;
2589 
2590 	ret = seq_open(file, seq_ops);
2591 	if (ret)
2592 		goto err_put_ns;
2593 
2594 	seq = file->private_data;
2595 	seq->private = ns;
2596 
2597 	return 0;
2598 err_put_ns:
2599 	put_user_ns(ns);
2600 err:
2601 	return ret;
2602 }
2603 
2604 static int proc_id_map_release(struct inode *inode, struct file *file)
2605 {
2606 	struct seq_file *seq = file->private_data;
2607 	struct user_namespace *ns = seq->private;
2608 	put_user_ns(ns);
2609 	return seq_release(inode, file);
2610 }
2611 
2612 static int proc_uid_map_open(struct inode *inode, struct file *file)
2613 {
2614 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2615 }
2616 
2617 static int proc_gid_map_open(struct inode *inode, struct file *file)
2618 {
2619 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2620 }
2621 
2622 static int proc_projid_map_open(struct inode *inode, struct file *file)
2623 {
2624 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2625 }
2626 
2627 static const struct file_operations proc_uid_map_operations = {
2628 	.open		= proc_uid_map_open,
2629 	.write		= proc_uid_map_write,
2630 	.read		= seq_read,
2631 	.llseek		= seq_lseek,
2632 	.release	= proc_id_map_release,
2633 };
2634 
2635 static const struct file_operations proc_gid_map_operations = {
2636 	.open		= proc_gid_map_open,
2637 	.write		= proc_gid_map_write,
2638 	.read		= seq_read,
2639 	.llseek		= seq_lseek,
2640 	.release	= proc_id_map_release,
2641 };
2642 
2643 static const struct file_operations proc_projid_map_operations = {
2644 	.open		= proc_projid_map_open,
2645 	.write		= proc_projid_map_write,
2646 	.read		= seq_read,
2647 	.llseek		= seq_lseek,
2648 	.release	= proc_id_map_release,
2649 };
2650 
2651 static int proc_setgroups_open(struct inode *inode, struct file *file)
2652 {
2653 	struct user_namespace *ns = NULL;
2654 	struct task_struct *task;
2655 	int ret;
2656 
2657 	ret = -ESRCH;
2658 	task = get_proc_task(inode);
2659 	if (task) {
2660 		rcu_read_lock();
2661 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2662 		rcu_read_unlock();
2663 		put_task_struct(task);
2664 	}
2665 	if (!ns)
2666 		goto err;
2667 
2668 	if (file->f_mode & FMODE_WRITE) {
2669 		ret = -EACCES;
2670 		if (!ns_capable(ns, CAP_SYS_ADMIN))
2671 			goto err_put_ns;
2672 	}
2673 
2674 	ret = single_open(file, &proc_setgroups_show, ns);
2675 	if (ret)
2676 		goto err_put_ns;
2677 
2678 	return 0;
2679 err_put_ns:
2680 	put_user_ns(ns);
2681 err:
2682 	return ret;
2683 }
2684 
2685 static int proc_setgroups_release(struct inode *inode, struct file *file)
2686 {
2687 	struct seq_file *seq = file->private_data;
2688 	struct user_namespace *ns = seq->private;
2689 	int ret = single_release(inode, file);
2690 	put_user_ns(ns);
2691 	return ret;
2692 }
2693 
2694 static const struct file_operations proc_setgroups_operations = {
2695 	.open		= proc_setgroups_open,
2696 	.write		= proc_setgroups_write,
2697 	.read		= seq_read,
2698 	.llseek		= seq_lseek,
2699 	.release	= proc_setgroups_release,
2700 };
2701 #endif /* CONFIG_USER_NS */
2702 
2703 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2704 				struct pid *pid, struct task_struct *task)
2705 {
2706 	int err = lock_trace(task);
2707 	if (!err) {
2708 		seq_printf(m, "%08x\n", task->personality);
2709 		unlock_trace(task);
2710 	}
2711 	return err;
2712 }
2713 
2714 /*
2715  * Thread groups
2716  */
2717 static const struct file_operations proc_task_operations;
2718 static const struct inode_operations proc_task_inode_operations;
2719 
2720 static const struct pid_entry tgid_base_stuff[] = {
2721 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2722 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2723 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2724 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2725 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2726 #ifdef CONFIG_NET
2727 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2728 #endif
2729 	REG("environ",    S_IRUSR, proc_environ_operations),
2730 	ONE("auxv",       S_IRUSR, proc_pid_auxv),
2731 	ONE("status",     S_IRUGO, proc_pid_status),
2732 	ONE("personality", S_IRUSR, proc_pid_personality),
2733 	ONE("limits",	  S_IRUGO, proc_pid_limits),
2734 #ifdef CONFIG_SCHED_DEBUG
2735 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2736 #endif
2737 #ifdef CONFIG_SCHED_AUTOGROUP
2738 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2739 #endif
2740 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2741 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2742 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2743 #endif
2744 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2745 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2746 	ONE("statm",      S_IRUGO, proc_pid_statm),
2747 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2748 #ifdef CONFIG_NUMA
2749 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2750 #endif
2751 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2752 	LNK("cwd",        proc_cwd_link),
2753 	LNK("root",       proc_root_link),
2754 	LNK("exe",        proc_exe_link),
2755 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2756 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2757 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2758 #ifdef CONFIG_PROC_PAGE_MONITOR
2759 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2760 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2761 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2762 #endif
2763 #ifdef CONFIG_SECURITY
2764 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2765 #endif
2766 #ifdef CONFIG_KALLSYMS
2767 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2768 #endif
2769 #ifdef CONFIG_STACKTRACE
2770 	ONE("stack",      S_IRUSR, proc_pid_stack),
2771 #endif
2772 #ifdef CONFIG_SCHED_INFO
2773 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2774 #endif
2775 #ifdef CONFIG_LATENCYTOP
2776 	REG("latency",  S_IRUGO, proc_lstats_operations),
2777 #endif
2778 #ifdef CONFIG_PROC_PID_CPUSET
2779 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2780 #endif
2781 #ifdef CONFIG_CGROUPS
2782 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2783 #endif
2784 	ONE("oom_score",  S_IRUGO, proc_oom_score),
2785 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2786 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2787 #ifdef CONFIG_AUDITSYSCALL
2788 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2789 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2790 #endif
2791 #ifdef CONFIG_FAULT_INJECTION
2792 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2793 #endif
2794 #ifdef CONFIG_ELF_CORE
2795 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2796 #endif
2797 #ifdef CONFIG_TASK_IO_ACCOUNTING
2798 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2799 #endif
2800 #ifdef CONFIG_HARDWALL
2801 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2802 #endif
2803 #ifdef CONFIG_USER_NS
2804 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2805 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2806 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2807 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2808 #endif
2809 #ifdef CONFIG_CHECKPOINT_RESTORE
2810 	REG("timers",	  S_IRUGO, proc_timers_operations),
2811 #endif
2812 };
2813 
2814 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2815 {
2816 	return proc_pident_readdir(file, ctx,
2817 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2818 }
2819 
2820 static const struct file_operations proc_tgid_base_operations = {
2821 	.read		= generic_read_dir,
2822 	.iterate	= proc_tgid_base_readdir,
2823 	.llseek		= default_llseek,
2824 };
2825 
2826 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2827 {
2828 	return proc_pident_lookup(dir, dentry,
2829 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2830 }
2831 
2832 static const struct inode_operations proc_tgid_base_inode_operations = {
2833 	.lookup		= proc_tgid_base_lookup,
2834 	.getattr	= pid_getattr,
2835 	.setattr	= proc_setattr,
2836 	.permission	= proc_pid_permission,
2837 };
2838 
2839 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2840 {
2841 	struct dentry *dentry, *leader, *dir;
2842 	char buf[PROC_NUMBUF];
2843 	struct qstr name;
2844 
2845 	name.name = buf;
2846 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2847 	/* no ->d_hash() rejects on procfs */
2848 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2849 	if (dentry) {
2850 		d_invalidate(dentry);
2851 		dput(dentry);
2852 	}
2853 
2854 	if (pid == tgid)
2855 		return;
2856 
2857 	name.name = buf;
2858 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2859 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2860 	if (!leader)
2861 		goto out;
2862 
2863 	name.name = "task";
2864 	name.len = strlen(name.name);
2865 	dir = d_hash_and_lookup(leader, &name);
2866 	if (!dir)
2867 		goto out_put_leader;
2868 
2869 	name.name = buf;
2870 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2871 	dentry = d_hash_and_lookup(dir, &name);
2872 	if (dentry) {
2873 		d_invalidate(dentry);
2874 		dput(dentry);
2875 	}
2876 
2877 	dput(dir);
2878 out_put_leader:
2879 	dput(leader);
2880 out:
2881 	return;
2882 }
2883 
2884 /**
2885  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2886  * @task: task that should be flushed.
2887  *
2888  * When flushing dentries from proc, one needs to flush them from global
2889  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2890  * in. This call is supposed to do all of this job.
2891  *
2892  * Looks in the dcache for
2893  * /proc/@pid
2894  * /proc/@tgid/task/@pid
2895  * if either directory is present flushes it and all of it'ts children
2896  * from the dcache.
2897  *
2898  * It is safe and reasonable to cache /proc entries for a task until
2899  * that task exits.  After that they just clog up the dcache with
2900  * useless entries, possibly causing useful dcache entries to be
2901  * flushed instead.  This routine is proved to flush those useless
2902  * dcache entries at process exit time.
2903  *
2904  * NOTE: This routine is just an optimization so it does not guarantee
2905  *       that no dcache entries will exist at process exit time it
2906  *       just makes it very unlikely that any will persist.
2907  */
2908 
2909 void proc_flush_task(struct task_struct *task)
2910 {
2911 	int i;
2912 	struct pid *pid, *tgid;
2913 	struct upid *upid;
2914 
2915 	pid = task_pid(task);
2916 	tgid = task_tgid(task);
2917 
2918 	for (i = 0; i <= pid->level; i++) {
2919 		upid = &pid->numbers[i];
2920 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2921 					tgid->numbers[i].nr);
2922 	}
2923 }
2924 
2925 static int proc_pid_instantiate(struct inode *dir,
2926 				   struct dentry * dentry,
2927 				   struct task_struct *task, const void *ptr)
2928 {
2929 	struct inode *inode;
2930 
2931 	inode = proc_pid_make_inode(dir->i_sb, task);
2932 	if (!inode)
2933 		goto out;
2934 
2935 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2936 	inode->i_op = &proc_tgid_base_inode_operations;
2937 	inode->i_fop = &proc_tgid_base_operations;
2938 	inode->i_flags|=S_IMMUTABLE;
2939 
2940 	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2941 						  ARRAY_SIZE(tgid_base_stuff)));
2942 
2943 	d_set_d_op(dentry, &pid_dentry_operations);
2944 
2945 	d_add(dentry, inode);
2946 	/* Close the race of the process dying before we return the dentry */
2947 	if (pid_revalidate(dentry, 0))
2948 		return 0;
2949 out:
2950 	return -ENOENT;
2951 }
2952 
2953 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2954 {
2955 	int result = -ENOENT;
2956 	struct task_struct *task;
2957 	unsigned tgid;
2958 	struct pid_namespace *ns;
2959 
2960 	tgid = name_to_int(&dentry->d_name);
2961 	if (tgid == ~0U)
2962 		goto out;
2963 
2964 	ns = dentry->d_sb->s_fs_info;
2965 	rcu_read_lock();
2966 	task = find_task_by_pid_ns(tgid, ns);
2967 	if (task)
2968 		get_task_struct(task);
2969 	rcu_read_unlock();
2970 	if (!task)
2971 		goto out;
2972 
2973 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2974 	put_task_struct(task);
2975 out:
2976 	return ERR_PTR(result);
2977 }
2978 
2979 /*
2980  * Find the first task with tgid >= tgid
2981  *
2982  */
2983 struct tgid_iter {
2984 	unsigned int tgid;
2985 	struct task_struct *task;
2986 };
2987 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2988 {
2989 	struct pid *pid;
2990 
2991 	if (iter.task)
2992 		put_task_struct(iter.task);
2993 	rcu_read_lock();
2994 retry:
2995 	iter.task = NULL;
2996 	pid = find_ge_pid(iter.tgid, ns);
2997 	if (pid) {
2998 		iter.tgid = pid_nr_ns(pid, ns);
2999 		iter.task = pid_task(pid, PIDTYPE_PID);
3000 		/* What we to know is if the pid we have find is the
3001 		 * pid of a thread_group_leader.  Testing for task
3002 		 * being a thread_group_leader is the obvious thing
3003 		 * todo but there is a window when it fails, due to
3004 		 * the pid transfer logic in de_thread.
3005 		 *
3006 		 * So we perform the straight forward test of seeing
3007 		 * if the pid we have found is the pid of a thread
3008 		 * group leader, and don't worry if the task we have
3009 		 * found doesn't happen to be a thread group leader.
3010 		 * As we don't care in the case of readdir.
3011 		 */
3012 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3013 			iter.tgid += 1;
3014 			goto retry;
3015 		}
3016 		get_task_struct(iter.task);
3017 	}
3018 	rcu_read_unlock();
3019 	return iter;
3020 }
3021 
3022 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3023 
3024 /* for the /proc/ directory itself, after non-process stuff has been done */
3025 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3026 {
3027 	struct tgid_iter iter;
3028 	struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3029 	loff_t pos = ctx->pos;
3030 
3031 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3032 		return 0;
3033 
3034 	if (pos == TGID_OFFSET - 2) {
3035 		struct inode *inode = d_inode(ns->proc_self);
3036 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3037 			return 0;
3038 		ctx->pos = pos = pos + 1;
3039 	}
3040 	if (pos == TGID_OFFSET - 1) {
3041 		struct inode *inode = d_inode(ns->proc_thread_self);
3042 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3043 			return 0;
3044 		ctx->pos = pos = pos + 1;
3045 	}
3046 	iter.tgid = pos - TGID_OFFSET;
3047 	iter.task = NULL;
3048 	for (iter = next_tgid(ns, iter);
3049 	     iter.task;
3050 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3051 		char name[PROC_NUMBUF];
3052 		int len;
3053 		if (!has_pid_permissions(ns, iter.task, 2))
3054 			continue;
3055 
3056 		len = snprintf(name, sizeof(name), "%d", iter.tgid);
3057 		ctx->pos = iter.tgid + TGID_OFFSET;
3058 		if (!proc_fill_cache(file, ctx, name, len,
3059 				     proc_pid_instantiate, iter.task, NULL)) {
3060 			put_task_struct(iter.task);
3061 			return 0;
3062 		}
3063 	}
3064 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3065 	return 0;
3066 }
3067 
3068 /*
3069  * Tasks
3070  */
3071 static const struct pid_entry tid_base_stuff[] = {
3072 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3073 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3074 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3075 #ifdef CONFIG_NET
3076 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3077 #endif
3078 	REG("environ",   S_IRUSR, proc_environ_operations),
3079 	ONE("auxv",      S_IRUSR, proc_pid_auxv),
3080 	ONE("status",    S_IRUGO, proc_pid_status),
3081 	ONE("personality", S_IRUSR, proc_pid_personality),
3082 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3083 #ifdef CONFIG_SCHED_DEBUG
3084 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3085 #endif
3086 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3087 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3088 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3089 #endif
3090 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3091 	ONE("stat",      S_IRUGO, proc_tid_stat),
3092 	ONE("statm",     S_IRUGO, proc_pid_statm),
3093 	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3094 #ifdef CONFIG_PROC_CHILDREN
3095 	REG("children",  S_IRUGO, proc_tid_children_operations),
3096 #endif
3097 #ifdef CONFIG_NUMA
3098 	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3099 #endif
3100 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3101 	LNK("cwd",       proc_cwd_link),
3102 	LNK("root",      proc_root_link),
3103 	LNK("exe",       proc_exe_link),
3104 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3105 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3106 #ifdef CONFIG_PROC_PAGE_MONITOR
3107 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3108 	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3109 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3110 #endif
3111 #ifdef CONFIG_SECURITY
3112 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3113 #endif
3114 #ifdef CONFIG_KALLSYMS
3115 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3116 #endif
3117 #ifdef CONFIG_STACKTRACE
3118 	ONE("stack",      S_IRUSR, proc_pid_stack),
3119 #endif
3120 #ifdef CONFIG_SCHED_INFO
3121 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3122 #endif
3123 #ifdef CONFIG_LATENCYTOP
3124 	REG("latency",  S_IRUGO, proc_lstats_operations),
3125 #endif
3126 #ifdef CONFIG_PROC_PID_CPUSET
3127 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3128 #endif
3129 #ifdef CONFIG_CGROUPS
3130 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3131 #endif
3132 	ONE("oom_score", S_IRUGO, proc_oom_score),
3133 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3134 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3135 #ifdef CONFIG_AUDITSYSCALL
3136 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3137 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3138 #endif
3139 #ifdef CONFIG_FAULT_INJECTION
3140 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3141 #endif
3142 #ifdef CONFIG_TASK_IO_ACCOUNTING
3143 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3144 #endif
3145 #ifdef CONFIG_HARDWALL
3146 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3147 #endif
3148 #ifdef CONFIG_USER_NS
3149 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3150 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3151 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3152 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3153 #endif
3154 };
3155 
3156 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3157 {
3158 	return proc_pident_readdir(file, ctx,
3159 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3160 }
3161 
3162 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3163 {
3164 	return proc_pident_lookup(dir, dentry,
3165 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3166 }
3167 
3168 static const struct file_operations proc_tid_base_operations = {
3169 	.read		= generic_read_dir,
3170 	.iterate	= proc_tid_base_readdir,
3171 	.llseek		= default_llseek,
3172 };
3173 
3174 static const struct inode_operations proc_tid_base_inode_operations = {
3175 	.lookup		= proc_tid_base_lookup,
3176 	.getattr	= pid_getattr,
3177 	.setattr	= proc_setattr,
3178 };
3179 
3180 static int proc_task_instantiate(struct inode *dir,
3181 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3182 {
3183 	struct inode *inode;
3184 	inode = proc_pid_make_inode(dir->i_sb, task);
3185 
3186 	if (!inode)
3187 		goto out;
3188 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3189 	inode->i_op = &proc_tid_base_inode_operations;
3190 	inode->i_fop = &proc_tid_base_operations;
3191 	inode->i_flags|=S_IMMUTABLE;
3192 
3193 	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3194 						  ARRAY_SIZE(tid_base_stuff)));
3195 
3196 	d_set_d_op(dentry, &pid_dentry_operations);
3197 
3198 	d_add(dentry, inode);
3199 	/* Close the race of the process dying before we return the dentry */
3200 	if (pid_revalidate(dentry, 0))
3201 		return 0;
3202 out:
3203 	return -ENOENT;
3204 }
3205 
3206 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3207 {
3208 	int result = -ENOENT;
3209 	struct task_struct *task;
3210 	struct task_struct *leader = get_proc_task(dir);
3211 	unsigned tid;
3212 	struct pid_namespace *ns;
3213 
3214 	if (!leader)
3215 		goto out_no_task;
3216 
3217 	tid = name_to_int(&dentry->d_name);
3218 	if (tid == ~0U)
3219 		goto out;
3220 
3221 	ns = dentry->d_sb->s_fs_info;
3222 	rcu_read_lock();
3223 	task = find_task_by_pid_ns(tid, ns);
3224 	if (task)
3225 		get_task_struct(task);
3226 	rcu_read_unlock();
3227 	if (!task)
3228 		goto out;
3229 	if (!same_thread_group(leader, task))
3230 		goto out_drop_task;
3231 
3232 	result = proc_task_instantiate(dir, dentry, task, NULL);
3233 out_drop_task:
3234 	put_task_struct(task);
3235 out:
3236 	put_task_struct(leader);
3237 out_no_task:
3238 	return ERR_PTR(result);
3239 }
3240 
3241 /*
3242  * Find the first tid of a thread group to return to user space.
3243  *
3244  * Usually this is just the thread group leader, but if the users
3245  * buffer was too small or there was a seek into the middle of the
3246  * directory we have more work todo.
3247  *
3248  * In the case of a short read we start with find_task_by_pid.
3249  *
3250  * In the case of a seek we start with the leader and walk nr
3251  * threads past it.
3252  */
3253 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3254 					struct pid_namespace *ns)
3255 {
3256 	struct task_struct *pos, *task;
3257 	unsigned long nr = f_pos;
3258 
3259 	if (nr != f_pos)	/* 32bit overflow? */
3260 		return NULL;
3261 
3262 	rcu_read_lock();
3263 	task = pid_task(pid, PIDTYPE_PID);
3264 	if (!task)
3265 		goto fail;
3266 
3267 	/* Attempt to start with the tid of a thread */
3268 	if (tid && nr) {
3269 		pos = find_task_by_pid_ns(tid, ns);
3270 		if (pos && same_thread_group(pos, task))
3271 			goto found;
3272 	}
3273 
3274 	/* If nr exceeds the number of threads there is nothing todo */
3275 	if (nr >= get_nr_threads(task))
3276 		goto fail;
3277 
3278 	/* If we haven't found our starting place yet start
3279 	 * with the leader and walk nr threads forward.
3280 	 */
3281 	pos = task = task->group_leader;
3282 	do {
3283 		if (!nr--)
3284 			goto found;
3285 	} while_each_thread(task, pos);
3286 fail:
3287 	pos = NULL;
3288 	goto out;
3289 found:
3290 	get_task_struct(pos);
3291 out:
3292 	rcu_read_unlock();
3293 	return pos;
3294 }
3295 
3296 /*
3297  * Find the next thread in the thread list.
3298  * Return NULL if there is an error or no next thread.
3299  *
3300  * The reference to the input task_struct is released.
3301  */
3302 static struct task_struct *next_tid(struct task_struct *start)
3303 {
3304 	struct task_struct *pos = NULL;
3305 	rcu_read_lock();
3306 	if (pid_alive(start)) {
3307 		pos = next_thread(start);
3308 		if (thread_group_leader(pos))
3309 			pos = NULL;
3310 		else
3311 			get_task_struct(pos);
3312 	}
3313 	rcu_read_unlock();
3314 	put_task_struct(start);
3315 	return pos;
3316 }
3317 
3318 /* for the /proc/TGID/task/ directories */
3319 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3320 {
3321 	struct inode *inode = file_inode(file);
3322 	struct task_struct *task;
3323 	struct pid_namespace *ns;
3324 	int tid;
3325 
3326 	if (proc_inode_is_dead(inode))
3327 		return -ENOENT;
3328 
3329 	if (!dir_emit_dots(file, ctx))
3330 		return 0;
3331 
3332 	/* f_version caches the tgid value that the last readdir call couldn't
3333 	 * return. lseek aka telldir automagically resets f_version to 0.
3334 	 */
3335 	ns = inode->i_sb->s_fs_info;
3336 	tid = (int)file->f_version;
3337 	file->f_version = 0;
3338 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3339 	     task;
3340 	     task = next_tid(task), ctx->pos++) {
3341 		char name[PROC_NUMBUF];
3342 		int len;
3343 		tid = task_pid_nr_ns(task, ns);
3344 		len = snprintf(name, sizeof(name), "%d", tid);
3345 		if (!proc_fill_cache(file, ctx, name, len,
3346 				proc_task_instantiate, task, NULL)) {
3347 			/* returning this tgid failed, save it as the first
3348 			 * pid for the next readir call */
3349 			file->f_version = (u64)tid;
3350 			put_task_struct(task);
3351 			break;
3352 		}
3353 	}
3354 
3355 	return 0;
3356 }
3357 
3358 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3359 {
3360 	struct inode *inode = d_inode(dentry);
3361 	struct task_struct *p = get_proc_task(inode);
3362 	generic_fillattr(inode, stat);
3363 
3364 	if (p) {
3365 		stat->nlink += get_nr_threads(p);
3366 		put_task_struct(p);
3367 	}
3368 
3369 	return 0;
3370 }
3371 
3372 static const struct inode_operations proc_task_inode_operations = {
3373 	.lookup		= proc_task_lookup,
3374 	.getattr	= proc_task_getattr,
3375 	.setattr	= proc_setattr,
3376 	.permission	= proc_pid_permission,
3377 };
3378 
3379 static const struct file_operations proc_task_operations = {
3380 	.read		= generic_read_dir,
3381 	.iterate	= proc_task_readdir,
3382 	.llseek		= default_llseek,
3383 };
3384