xref: /openbmc/linux/fs/proc/base.c (revision b04b4f78)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/rcupdate.h>
67 #include <linux/kallsyms.h>
68 #include <linux/stacktrace.h>
69 #include <linux/resource.h>
70 #include <linux/module.h>
71 #include <linux/mount.h>
72 #include <linux/security.h>
73 #include <linux/ptrace.h>
74 #include <linux/tracehook.h>
75 #include <linux/cgroup.h>
76 #include <linux/cpuset.h>
77 #include <linux/audit.h>
78 #include <linux/poll.h>
79 #include <linux/nsproxy.h>
80 #include <linux/oom.h>
81 #include <linux/elf.h>
82 #include <linux/pid_namespace.h>
83 #include <linux/fs_struct.h>
84 #include "internal.h"
85 
86 /* NOTE:
87  *	Implementing inode permission operations in /proc is almost
88  *	certainly an error.  Permission checks need to happen during
89  *	each system call not at open time.  The reason is that most of
90  *	what we wish to check for permissions in /proc varies at runtime.
91  *
92  *	The classic example of a problem is opening file descriptors
93  *	in /proc for a task before it execs a suid executable.
94  */
95 
96 struct pid_entry {
97 	char *name;
98 	int len;
99 	mode_t mode;
100 	const struct inode_operations *iop;
101 	const struct file_operations *fop;
102 	union proc_op op;
103 };
104 
105 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
106 	.name = (NAME),					\
107 	.len  = sizeof(NAME) - 1,			\
108 	.mode = MODE,					\
109 	.iop  = IOP,					\
110 	.fop  = FOP,					\
111 	.op   = OP,					\
112 }
113 
114 #define DIR(NAME, MODE, iops, fops)	\
115 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
116 #define LNK(NAME, get_link)					\
117 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
118 		&proc_pid_link_inode_operations, NULL,		\
119 		{ .proc_get_link = get_link } )
120 #define REG(NAME, MODE, fops)				\
121 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
122 #define INF(NAME, MODE, read)				\
123 	NOD(NAME, (S_IFREG|(MODE)), 			\
124 		NULL, &proc_info_file_operations,	\
125 		{ .proc_read = read } )
126 #define ONE(NAME, MODE, show)				\
127 	NOD(NAME, (S_IFREG|(MODE)), 			\
128 		NULL, &proc_single_file_operations,	\
129 		{ .proc_show = show } )
130 
131 /*
132  * Count the number of hardlinks for the pid_entry table, excluding the .
133  * and .. links.
134  */
135 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
136 	unsigned int n)
137 {
138 	unsigned int i;
139 	unsigned int count;
140 
141 	count = 0;
142 	for (i = 0; i < n; ++i) {
143 		if (S_ISDIR(entries[i].mode))
144 			++count;
145 	}
146 
147 	return count;
148 }
149 
150 static int get_fs_path(struct task_struct *task, struct path *path, bool root)
151 {
152 	struct fs_struct *fs;
153 	int result = -ENOENT;
154 
155 	task_lock(task);
156 	fs = task->fs;
157 	if (fs) {
158 		read_lock(&fs->lock);
159 		*path = root ? fs->root : fs->pwd;
160 		path_get(path);
161 		read_unlock(&fs->lock);
162 		result = 0;
163 	}
164 	task_unlock(task);
165 	return result;
166 }
167 
168 static int get_nr_threads(struct task_struct *tsk)
169 {
170 	unsigned long flags;
171 	int count = 0;
172 
173 	if (lock_task_sighand(tsk, &flags)) {
174 		count = atomic_read(&tsk->signal->count);
175 		unlock_task_sighand(tsk, &flags);
176 	}
177 	return count;
178 }
179 
180 static int proc_cwd_link(struct inode *inode, struct path *path)
181 {
182 	struct task_struct *task = get_proc_task(inode);
183 	int result = -ENOENT;
184 
185 	if (task) {
186 		result = get_fs_path(task, path, 0);
187 		put_task_struct(task);
188 	}
189 	return result;
190 }
191 
192 static int proc_root_link(struct inode *inode, struct path *path)
193 {
194 	struct task_struct *task = get_proc_task(inode);
195 	int result = -ENOENT;
196 
197 	if (task) {
198 		result = get_fs_path(task, path, 1);
199 		put_task_struct(task);
200 	}
201 	return result;
202 }
203 
204 /*
205  * Return zero if current may access user memory in @task, -error if not.
206  */
207 static int check_mem_permission(struct task_struct *task)
208 {
209 	/*
210 	 * A task can always look at itself, in case it chooses
211 	 * to use system calls instead of load instructions.
212 	 */
213 	if (task == current)
214 		return 0;
215 
216 	/*
217 	 * If current is actively ptrace'ing, and would also be
218 	 * permitted to freshly attach with ptrace now, permit it.
219 	 */
220 	if (task_is_stopped_or_traced(task)) {
221 		int match;
222 		rcu_read_lock();
223 		match = (tracehook_tracer_task(task) == current);
224 		rcu_read_unlock();
225 		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
226 			return 0;
227 	}
228 
229 	/*
230 	 * Noone else is allowed.
231 	 */
232 	return -EPERM;
233 }
234 
235 struct mm_struct *mm_for_maps(struct task_struct *task)
236 {
237 	struct mm_struct *mm = get_task_mm(task);
238 	if (!mm)
239 		return NULL;
240 	down_read(&mm->mmap_sem);
241 	task_lock(task);
242 	if (task->mm != mm)
243 		goto out;
244 	if (task->mm != current->mm &&
245 	    __ptrace_may_access(task, PTRACE_MODE_READ) < 0)
246 		goto out;
247 	task_unlock(task);
248 	return mm;
249 out:
250 	task_unlock(task);
251 	up_read(&mm->mmap_sem);
252 	mmput(mm);
253 	return NULL;
254 }
255 
256 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
257 {
258 	int res = 0;
259 	unsigned int len;
260 	struct mm_struct *mm = get_task_mm(task);
261 	if (!mm)
262 		goto out;
263 	if (!mm->arg_end)
264 		goto out_mm;	/* Shh! No looking before we're done */
265 
266  	len = mm->arg_end - mm->arg_start;
267 
268 	if (len > PAGE_SIZE)
269 		len = PAGE_SIZE;
270 
271 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
272 
273 	// If the nul at the end of args has been overwritten, then
274 	// assume application is using setproctitle(3).
275 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
276 		len = strnlen(buffer, res);
277 		if (len < res) {
278 		    res = len;
279 		} else {
280 			len = mm->env_end - mm->env_start;
281 			if (len > PAGE_SIZE - res)
282 				len = PAGE_SIZE - res;
283 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
284 			res = strnlen(buffer, res);
285 		}
286 	}
287 out_mm:
288 	mmput(mm);
289 out:
290 	return res;
291 }
292 
293 static int proc_pid_auxv(struct task_struct *task, char *buffer)
294 {
295 	int res = 0;
296 	struct mm_struct *mm = get_task_mm(task);
297 	if (mm) {
298 		unsigned int nwords = 0;
299 		do {
300 			nwords += 2;
301 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
302 		res = nwords * sizeof(mm->saved_auxv[0]);
303 		if (res > PAGE_SIZE)
304 			res = PAGE_SIZE;
305 		memcpy(buffer, mm->saved_auxv, res);
306 		mmput(mm);
307 	}
308 	return res;
309 }
310 
311 
312 #ifdef CONFIG_KALLSYMS
313 /*
314  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
315  * Returns the resolved symbol.  If that fails, simply return the address.
316  */
317 static int proc_pid_wchan(struct task_struct *task, char *buffer)
318 {
319 	unsigned long wchan;
320 	char symname[KSYM_NAME_LEN];
321 
322 	wchan = get_wchan(task);
323 
324 	if (lookup_symbol_name(wchan, symname) < 0)
325 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
326 			return 0;
327 		else
328 			return sprintf(buffer, "%lu", wchan);
329 	else
330 		return sprintf(buffer, "%s", symname);
331 }
332 #endif /* CONFIG_KALLSYMS */
333 
334 #ifdef CONFIG_STACKTRACE
335 
336 #define MAX_STACK_TRACE_DEPTH	64
337 
338 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
339 			  struct pid *pid, struct task_struct *task)
340 {
341 	struct stack_trace trace;
342 	unsigned long *entries;
343 	int i;
344 
345 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
346 	if (!entries)
347 		return -ENOMEM;
348 
349 	trace.nr_entries	= 0;
350 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
351 	trace.entries		= entries;
352 	trace.skip		= 0;
353 	save_stack_trace_tsk(task, &trace);
354 
355 	for (i = 0; i < trace.nr_entries; i++) {
356 		seq_printf(m, "[<%p>] %pS\n",
357 			   (void *)entries[i], (void *)entries[i]);
358 	}
359 	kfree(entries);
360 
361 	return 0;
362 }
363 #endif
364 
365 #ifdef CONFIG_SCHEDSTATS
366 /*
367  * Provides /proc/PID/schedstat
368  */
369 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
370 {
371 	return sprintf(buffer, "%llu %llu %lu\n",
372 			(unsigned long long)task->se.sum_exec_runtime,
373 			(unsigned long long)task->sched_info.run_delay,
374 			task->sched_info.pcount);
375 }
376 #endif
377 
378 #ifdef CONFIG_LATENCYTOP
379 static int lstats_show_proc(struct seq_file *m, void *v)
380 {
381 	int i;
382 	struct inode *inode = m->private;
383 	struct task_struct *task = get_proc_task(inode);
384 
385 	if (!task)
386 		return -ESRCH;
387 	seq_puts(m, "Latency Top version : v0.1\n");
388 	for (i = 0; i < 32; i++) {
389 		if (task->latency_record[i].backtrace[0]) {
390 			int q;
391 			seq_printf(m, "%i %li %li ",
392 				task->latency_record[i].count,
393 				task->latency_record[i].time,
394 				task->latency_record[i].max);
395 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
396 				char sym[KSYM_SYMBOL_LEN];
397 				char *c;
398 				if (!task->latency_record[i].backtrace[q])
399 					break;
400 				if (task->latency_record[i].backtrace[q] == ULONG_MAX)
401 					break;
402 				sprint_symbol(sym, task->latency_record[i].backtrace[q]);
403 				c = strchr(sym, '+');
404 				if (c)
405 					*c = 0;
406 				seq_printf(m, "%s ", sym);
407 			}
408 			seq_printf(m, "\n");
409 		}
410 
411 	}
412 	put_task_struct(task);
413 	return 0;
414 }
415 
416 static int lstats_open(struct inode *inode, struct file *file)
417 {
418 	return single_open(file, lstats_show_proc, inode);
419 }
420 
421 static ssize_t lstats_write(struct file *file, const char __user *buf,
422 			    size_t count, loff_t *offs)
423 {
424 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
425 
426 	if (!task)
427 		return -ESRCH;
428 	clear_all_latency_tracing(task);
429 	put_task_struct(task);
430 
431 	return count;
432 }
433 
434 static const struct file_operations proc_lstats_operations = {
435 	.open		= lstats_open,
436 	.read		= seq_read,
437 	.write		= lstats_write,
438 	.llseek		= seq_lseek,
439 	.release	= single_release,
440 };
441 
442 #endif
443 
444 /* The badness from the OOM killer */
445 unsigned long badness(struct task_struct *p, unsigned long uptime);
446 static int proc_oom_score(struct task_struct *task, char *buffer)
447 {
448 	unsigned long points;
449 	struct timespec uptime;
450 
451 	do_posix_clock_monotonic_gettime(&uptime);
452 	read_lock(&tasklist_lock);
453 	points = badness(task, uptime.tv_sec);
454 	read_unlock(&tasklist_lock);
455 	return sprintf(buffer, "%lu\n", points);
456 }
457 
458 struct limit_names {
459 	char *name;
460 	char *unit;
461 };
462 
463 static const struct limit_names lnames[RLIM_NLIMITS] = {
464 	[RLIMIT_CPU] = {"Max cpu time", "ms"},
465 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
466 	[RLIMIT_DATA] = {"Max data size", "bytes"},
467 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
468 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
469 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
470 	[RLIMIT_NPROC] = {"Max processes", "processes"},
471 	[RLIMIT_NOFILE] = {"Max open files", "files"},
472 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
473 	[RLIMIT_AS] = {"Max address space", "bytes"},
474 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
475 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
476 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
477 	[RLIMIT_NICE] = {"Max nice priority", NULL},
478 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
479 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
480 };
481 
482 /* Display limits for a process */
483 static int proc_pid_limits(struct task_struct *task, char *buffer)
484 {
485 	unsigned int i;
486 	int count = 0;
487 	unsigned long flags;
488 	char *bufptr = buffer;
489 
490 	struct rlimit rlim[RLIM_NLIMITS];
491 
492 	if (!lock_task_sighand(task, &flags))
493 		return 0;
494 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
495 	unlock_task_sighand(task, &flags);
496 
497 	/*
498 	 * print the file header
499 	 */
500 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
501 			"Limit", "Soft Limit", "Hard Limit", "Units");
502 
503 	for (i = 0; i < RLIM_NLIMITS; i++) {
504 		if (rlim[i].rlim_cur == RLIM_INFINITY)
505 			count += sprintf(&bufptr[count], "%-25s %-20s ",
506 					 lnames[i].name, "unlimited");
507 		else
508 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
509 					 lnames[i].name, rlim[i].rlim_cur);
510 
511 		if (rlim[i].rlim_max == RLIM_INFINITY)
512 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
513 		else
514 			count += sprintf(&bufptr[count], "%-20lu ",
515 					 rlim[i].rlim_max);
516 
517 		if (lnames[i].unit)
518 			count += sprintf(&bufptr[count], "%-10s\n",
519 					 lnames[i].unit);
520 		else
521 			count += sprintf(&bufptr[count], "\n");
522 	}
523 
524 	return count;
525 }
526 
527 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
528 static int proc_pid_syscall(struct task_struct *task, char *buffer)
529 {
530 	long nr;
531 	unsigned long args[6], sp, pc;
532 
533 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
534 		return sprintf(buffer, "running\n");
535 
536 	if (nr < 0)
537 		return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
538 
539 	return sprintf(buffer,
540 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
541 		       nr,
542 		       args[0], args[1], args[2], args[3], args[4], args[5],
543 		       sp, pc);
544 }
545 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
546 
547 /************************************************************************/
548 /*                       Here the fs part begins                        */
549 /************************************************************************/
550 
551 /* permission checks */
552 static int proc_fd_access_allowed(struct inode *inode)
553 {
554 	struct task_struct *task;
555 	int allowed = 0;
556 	/* Allow access to a task's file descriptors if it is us or we
557 	 * may use ptrace attach to the process and find out that
558 	 * information.
559 	 */
560 	task = get_proc_task(inode);
561 	if (task) {
562 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
563 		put_task_struct(task);
564 	}
565 	return allowed;
566 }
567 
568 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
569 {
570 	int error;
571 	struct inode *inode = dentry->d_inode;
572 
573 	if (attr->ia_valid & ATTR_MODE)
574 		return -EPERM;
575 
576 	error = inode_change_ok(inode, attr);
577 	if (!error)
578 		error = inode_setattr(inode, attr);
579 	return error;
580 }
581 
582 static const struct inode_operations proc_def_inode_operations = {
583 	.setattr	= proc_setattr,
584 };
585 
586 static int mounts_open_common(struct inode *inode, struct file *file,
587 			      const struct seq_operations *op)
588 {
589 	struct task_struct *task = get_proc_task(inode);
590 	struct nsproxy *nsp;
591 	struct mnt_namespace *ns = NULL;
592 	struct path root;
593 	struct proc_mounts *p;
594 	int ret = -EINVAL;
595 
596 	if (task) {
597 		rcu_read_lock();
598 		nsp = task_nsproxy(task);
599 		if (nsp) {
600 			ns = nsp->mnt_ns;
601 			if (ns)
602 				get_mnt_ns(ns);
603 		}
604 		rcu_read_unlock();
605 		if (ns && get_fs_path(task, &root, 1) == 0)
606 			ret = 0;
607 		put_task_struct(task);
608 	}
609 
610 	if (!ns)
611 		goto err;
612 	if (ret)
613 		goto err_put_ns;
614 
615 	ret = -ENOMEM;
616 	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
617 	if (!p)
618 		goto err_put_path;
619 
620 	file->private_data = &p->m;
621 	ret = seq_open(file, op);
622 	if (ret)
623 		goto err_free;
624 
625 	p->m.private = p;
626 	p->ns = ns;
627 	p->root = root;
628 	p->event = ns->event;
629 
630 	return 0;
631 
632  err_free:
633 	kfree(p);
634  err_put_path:
635 	path_put(&root);
636  err_put_ns:
637 	put_mnt_ns(ns);
638  err:
639 	return ret;
640 }
641 
642 static int mounts_release(struct inode *inode, struct file *file)
643 {
644 	struct proc_mounts *p = file->private_data;
645 	path_put(&p->root);
646 	put_mnt_ns(p->ns);
647 	return seq_release(inode, file);
648 }
649 
650 static unsigned mounts_poll(struct file *file, poll_table *wait)
651 {
652 	struct proc_mounts *p = file->private_data;
653 	struct mnt_namespace *ns = p->ns;
654 	unsigned res = POLLIN | POLLRDNORM;
655 
656 	poll_wait(file, &ns->poll, wait);
657 
658 	spin_lock(&vfsmount_lock);
659 	if (p->event != ns->event) {
660 		p->event = ns->event;
661 		res |= POLLERR | POLLPRI;
662 	}
663 	spin_unlock(&vfsmount_lock);
664 
665 	return res;
666 }
667 
668 static int mounts_open(struct inode *inode, struct file *file)
669 {
670 	return mounts_open_common(inode, file, &mounts_op);
671 }
672 
673 static const struct file_operations proc_mounts_operations = {
674 	.open		= mounts_open,
675 	.read		= seq_read,
676 	.llseek		= seq_lseek,
677 	.release	= mounts_release,
678 	.poll		= mounts_poll,
679 };
680 
681 static int mountinfo_open(struct inode *inode, struct file *file)
682 {
683 	return mounts_open_common(inode, file, &mountinfo_op);
684 }
685 
686 static const struct file_operations proc_mountinfo_operations = {
687 	.open		= mountinfo_open,
688 	.read		= seq_read,
689 	.llseek		= seq_lseek,
690 	.release	= mounts_release,
691 	.poll		= mounts_poll,
692 };
693 
694 static int mountstats_open(struct inode *inode, struct file *file)
695 {
696 	return mounts_open_common(inode, file, &mountstats_op);
697 }
698 
699 static const struct file_operations proc_mountstats_operations = {
700 	.open		= mountstats_open,
701 	.read		= seq_read,
702 	.llseek		= seq_lseek,
703 	.release	= mounts_release,
704 };
705 
706 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
707 
708 static ssize_t proc_info_read(struct file * file, char __user * buf,
709 			  size_t count, loff_t *ppos)
710 {
711 	struct inode * inode = file->f_path.dentry->d_inode;
712 	unsigned long page;
713 	ssize_t length;
714 	struct task_struct *task = get_proc_task(inode);
715 
716 	length = -ESRCH;
717 	if (!task)
718 		goto out_no_task;
719 
720 	if (count > PROC_BLOCK_SIZE)
721 		count = PROC_BLOCK_SIZE;
722 
723 	length = -ENOMEM;
724 	if (!(page = __get_free_page(GFP_TEMPORARY)))
725 		goto out;
726 
727 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
728 
729 	if (length >= 0)
730 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
731 	free_page(page);
732 out:
733 	put_task_struct(task);
734 out_no_task:
735 	return length;
736 }
737 
738 static const struct file_operations proc_info_file_operations = {
739 	.read		= proc_info_read,
740 };
741 
742 static int proc_single_show(struct seq_file *m, void *v)
743 {
744 	struct inode *inode = m->private;
745 	struct pid_namespace *ns;
746 	struct pid *pid;
747 	struct task_struct *task;
748 	int ret;
749 
750 	ns = inode->i_sb->s_fs_info;
751 	pid = proc_pid(inode);
752 	task = get_pid_task(pid, PIDTYPE_PID);
753 	if (!task)
754 		return -ESRCH;
755 
756 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
757 
758 	put_task_struct(task);
759 	return ret;
760 }
761 
762 static int proc_single_open(struct inode *inode, struct file *filp)
763 {
764 	int ret;
765 	ret = single_open(filp, proc_single_show, NULL);
766 	if (!ret) {
767 		struct seq_file *m = filp->private_data;
768 
769 		m->private = inode;
770 	}
771 	return ret;
772 }
773 
774 static const struct file_operations proc_single_file_operations = {
775 	.open		= proc_single_open,
776 	.read		= seq_read,
777 	.llseek		= seq_lseek,
778 	.release	= single_release,
779 };
780 
781 static int mem_open(struct inode* inode, struct file* file)
782 {
783 	file->private_data = (void*)((long)current->self_exec_id);
784 	return 0;
785 }
786 
787 static ssize_t mem_read(struct file * file, char __user * buf,
788 			size_t count, loff_t *ppos)
789 {
790 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
791 	char *page;
792 	unsigned long src = *ppos;
793 	int ret = -ESRCH;
794 	struct mm_struct *mm;
795 
796 	if (!task)
797 		goto out_no_task;
798 
799 	if (check_mem_permission(task))
800 		goto out;
801 
802 	ret = -ENOMEM;
803 	page = (char *)__get_free_page(GFP_TEMPORARY);
804 	if (!page)
805 		goto out;
806 
807 	ret = 0;
808 
809 	mm = get_task_mm(task);
810 	if (!mm)
811 		goto out_free;
812 
813 	ret = -EIO;
814 
815 	if (file->private_data != (void*)((long)current->self_exec_id))
816 		goto out_put;
817 
818 	ret = 0;
819 
820 	while (count > 0) {
821 		int this_len, retval;
822 
823 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
824 		retval = access_process_vm(task, src, page, this_len, 0);
825 		if (!retval || check_mem_permission(task)) {
826 			if (!ret)
827 				ret = -EIO;
828 			break;
829 		}
830 
831 		if (copy_to_user(buf, page, retval)) {
832 			ret = -EFAULT;
833 			break;
834 		}
835 
836 		ret += retval;
837 		src += retval;
838 		buf += retval;
839 		count -= retval;
840 	}
841 	*ppos = src;
842 
843 out_put:
844 	mmput(mm);
845 out_free:
846 	free_page((unsigned long) page);
847 out:
848 	put_task_struct(task);
849 out_no_task:
850 	return ret;
851 }
852 
853 #define mem_write NULL
854 
855 #ifndef mem_write
856 /* This is a security hazard */
857 static ssize_t mem_write(struct file * file, const char __user *buf,
858 			 size_t count, loff_t *ppos)
859 {
860 	int copied;
861 	char *page;
862 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
863 	unsigned long dst = *ppos;
864 
865 	copied = -ESRCH;
866 	if (!task)
867 		goto out_no_task;
868 
869 	if (check_mem_permission(task))
870 		goto out;
871 
872 	copied = -ENOMEM;
873 	page = (char *)__get_free_page(GFP_TEMPORARY);
874 	if (!page)
875 		goto out;
876 
877 	copied = 0;
878 	while (count > 0) {
879 		int this_len, retval;
880 
881 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
882 		if (copy_from_user(page, buf, this_len)) {
883 			copied = -EFAULT;
884 			break;
885 		}
886 		retval = access_process_vm(task, dst, page, this_len, 1);
887 		if (!retval) {
888 			if (!copied)
889 				copied = -EIO;
890 			break;
891 		}
892 		copied += retval;
893 		buf += retval;
894 		dst += retval;
895 		count -= retval;
896 	}
897 	*ppos = dst;
898 	free_page((unsigned long) page);
899 out:
900 	put_task_struct(task);
901 out_no_task:
902 	return copied;
903 }
904 #endif
905 
906 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
907 {
908 	switch (orig) {
909 	case 0:
910 		file->f_pos = offset;
911 		break;
912 	case 1:
913 		file->f_pos += offset;
914 		break;
915 	default:
916 		return -EINVAL;
917 	}
918 	force_successful_syscall_return();
919 	return file->f_pos;
920 }
921 
922 static const struct file_operations proc_mem_operations = {
923 	.llseek		= mem_lseek,
924 	.read		= mem_read,
925 	.write		= mem_write,
926 	.open		= mem_open,
927 };
928 
929 static ssize_t environ_read(struct file *file, char __user *buf,
930 			size_t count, loff_t *ppos)
931 {
932 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
933 	char *page;
934 	unsigned long src = *ppos;
935 	int ret = -ESRCH;
936 	struct mm_struct *mm;
937 
938 	if (!task)
939 		goto out_no_task;
940 
941 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
942 		goto out;
943 
944 	ret = -ENOMEM;
945 	page = (char *)__get_free_page(GFP_TEMPORARY);
946 	if (!page)
947 		goto out;
948 
949 	ret = 0;
950 
951 	mm = get_task_mm(task);
952 	if (!mm)
953 		goto out_free;
954 
955 	while (count > 0) {
956 		int this_len, retval, max_len;
957 
958 		this_len = mm->env_end - (mm->env_start + src);
959 
960 		if (this_len <= 0)
961 			break;
962 
963 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
964 		this_len = (this_len > max_len) ? max_len : this_len;
965 
966 		retval = access_process_vm(task, (mm->env_start + src),
967 			page, this_len, 0);
968 
969 		if (retval <= 0) {
970 			ret = retval;
971 			break;
972 		}
973 
974 		if (copy_to_user(buf, page, retval)) {
975 			ret = -EFAULT;
976 			break;
977 		}
978 
979 		ret += retval;
980 		src += retval;
981 		buf += retval;
982 		count -= retval;
983 	}
984 	*ppos = src;
985 
986 	mmput(mm);
987 out_free:
988 	free_page((unsigned long) page);
989 out:
990 	put_task_struct(task);
991 out_no_task:
992 	return ret;
993 }
994 
995 static const struct file_operations proc_environ_operations = {
996 	.read		= environ_read,
997 };
998 
999 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
1000 				size_t count, loff_t *ppos)
1001 {
1002 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1003 	char buffer[PROC_NUMBUF];
1004 	size_t len;
1005 	int oom_adjust;
1006 
1007 	if (!task)
1008 		return -ESRCH;
1009 	oom_adjust = task->oomkilladj;
1010 	put_task_struct(task);
1011 
1012 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1013 
1014 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1015 }
1016 
1017 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1018 				size_t count, loff_t *ppos)
1019 {
1020 	struct task_struct *task;
1021 	char buffer[PROC_NUMBUF], *end;
1022 	int oom_adjust;
1023 
1024 	memset(buffer, 0, sizeof(buffer));
1025 	if (count > sizeof(buffer) - 1)
1026 		count = sizeof(buffer) - 1;
1027 	if (copy_from_user(buffer, buf, count))
1028 		return -EFAULT;
1029 	oom_adjust = simple_strtol(buffer, &end, 0);
1030 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1031 	     oom_adjust != OOM_DISABLE)
1032 		return -EINVAL;
1033 	if (*end == '\n')
1034 		end++;
1035 	task = get_proc_task(file->f_path.dentry->d_inode);
1036 	if (!task)
1037 		return -ESRCH;
1038 	if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) {
1039 		put_task_struct(task);
1040 		return -EACCES;
1041 	}
1042 	task->oomkilladj = oom_adjust;
1043 	put_task_struct(task);
1044 	if (end - buffer == 0)
1045 		return -EIO;
1046 	return end - buffer;
1047 }
1048 
1049 static const struct file_operations proc_oom_adjust_operations = {
1050 	.read		= oom_adjust_read,
1051 	.write		= oom_adjust_write,
1052 };
1053 
1054 #ifdef CONFIG_AUDITSYSCALL
1055 #define TMPBUFLEN 21
1056 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1057 				  size_t count, loff_t *ppos)
1058 {
1059 	struct inode * inode = file->f_path.dentry->d_inode;
1060 	struct task_struct *task = get_proc_task(inode);
1061 	ssize_t length;
1062 	char tmpbuf[TMPBUFLEN];
1063 
1064 	if (!task)
1065 		return -ESRCH;
1066 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1067 				audit_get_loginuid(task));
1068 	put_task_struct(task);
1069 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1070 }
1071 
1072 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1073 				   size_t count, loff_t *ppos)
1074 {
1075 	struct inode * inode = file->f_path.dentry->d_inode;
1076 	char *page, *tmp;
1077 	ssize_t length;
1078 	uid_t loginuid;
1079 
1080 	if (!capable(CAP_AUDIT_CONTROL))
1081 		return -EPERM;
1082 
1083 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
1084 		return -EPERM;
1085 
1086 	if (count >= PAGE_SIZE)
1087 		count = PAGE_SIZE - 1;
1088 
1089 	if (*ppos != 0) {
1090 		/* No partial writes. */
1091 		return -EINVAL;
1092 	}
1093 	page = (char*)__get_free_page(GFP_TEMPORARY);
1094 	if (!page)
1095 		return -ENOMEM;
1096 	length = -EFAULT;
1097 	if (copy_from_user(page, buf, count))
1098 		goto out_free_page;
1099 
1100 	page[count] = '\0';
1101 	loginuid = simple_strtoul(page, &tmp, 10);
1102 	if (tmp == page) {
1103 		length = -EINVAL;
1104 		goto out_free_page;
1105 
1106 	}
1107 	length = audit_set_loginuid(current, loginuid);
1108 	if (likely(length == 0))
1109 		length = count;
1110 
1111 out_free_page:
1112 	free_page((unsigned long) page);
1113 	return length;
1114 }
1115 
1116 static const struct file_operations proc_loginuid_operations = {
1117 	.read		= proc_loginuid_read,
1118 	.write		= proc_loginuid_write,
1119 };
1120 
1121 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1122 				  size_t count, loff_t *ppos)
1123 {
1124 	struct inode * inode = file->f_path.dentry->d_inode;
1125 	struct task_struct *task = get_proc_task(inode);
1126 	ssize_t length;
1127 	char tmpbuf[TMPBUFLEN];
1128 
1129 	if (!task)
1130 		return -ESRCH;
1131 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1132 				audit_get_sessionid(task));
1133 	put_task_struct(task);
1134 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1135 }
1136 
1137 static const struct file_operations proc_sessionid_operations = {
1138 	.read		= proc_sessionid_read,
1139 };
1140 #endif
1141 
1142 #ifdef CONFIG_FAULT_INJECTION
1143 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1144 				      size_t count, loff_t *ppos)
1145 {
1146 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1147 	char buffer[PROC_NUMBUF];
1148 	size_t len;
1149 	int make_it_fail;
1150 
1151 	if (!task)
1152 		return -ESRCH;
1153 	make_it_fail = task->make_it_fail;
1154 	put_task_struct(task);
1155 
1156 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1157 
1158 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1159 }
1160 
1161 static ssize_t proc_fault_inject_write(struct file * file,
1162 			const char __user * buf, size_t count, loff_t *ppos)
1163 {
1164 	struct task_struct *task;
1165 	char buffer[PROC_NUMBUF], *end;
1166 	int make_it_fail;
1167 
1168 	if (!capable(CAP_SYS_RESOURCE))
1169 		return -EPERM;
1170 	memset(buffer, 0, sizeof(buffer));
1171 	if (count > sizeof(buffer) - 1)
1172 		count = sizeof(buffer) - 1;
1173 	if (copy_from_user(buffer, buf, count))
1174 		return -EFAULT;
1175 	make_it_fail = simple_strtol(buffer, &end, 0);
1176 	if (*end == '\n')
1177 		end++;
1178 	task = get_proc_task(file->f_dentry->d_inode);
1179 	if (!task)
1180 		return -ESRCH;
1181 	task->make_it_fail = make_it_fail;
1182 	put_task_struct(task);
1183 	if (end - buffer == 0)
1184 		return -EIO;
1185 	return end - buffer;
1186 }
1187 
1188 static const struct file_operations proc_fault_inject_operations = {
1189 	.read		= proc_fault_inject_read,
1190 	.write		= proc_fault_inject_write,
1191 };
1192 #endif
1193 
1194 
1195 #ifdef CONFIG_SCHED_DEBUG
1196 /*
1197  * Print out various scheduling related per-task fields:
1198  */
1199 static int sched_show(struct seq_file *m, void *v)
1200 {
1201 	struct inode *inode = m->private;
1202 	struct task_struct *p;
1203 
1204 	p = get_proc_task(inode);
1205 	if (!p)
1206 		return -ESRCH;
1207 	proc_sched_show_task(p, m);
1208 
1209 	put_task_struct(p);
1210 
1211 	return 0;
1212 }
1213 
1214 static ssize_t
1215 sched_write(struct file *file, const char __user *buf,
1216 	    size_t count, loff_t *offset)
1217 {
1218 	struct inode *inode = file->f_path.dentry->d_inode;
1219 	struct task_struct *p;
1220 
1221 	p = get_proc_task(inode);
1222 	if (!p)
1223 		return -ESRCH;
1224 	proc_sched_set_task(p);
1225 
1226 	put_task_struct(p);
1227 
1228 	return count;
1229 }
1230 
1231 static int sched_open(struct inode *inode, struct file *filp)
1232 {
1233 	int ret;
1234 
1235 	ret = single_open(filp, sched_show, NULL);
1236 	if (!ret) {
1237 		struct seq_file *m = filp->private_data;
1238 
1239 		m->private = inode;
1240 	}
1241 	return ret;
1242 }
1243 
1244 static const struct file_operations proc_pid_sched_operations = {
1245 	.open		= sched_open,
1246 	.read		= seq_read,
1247 	.write		= sched_write,
1248 	.llseek		= seq_lseek,
1249 	.release	= single_release,
1250 };
1251 
1252 #endif
1253 
1254 /*
1255  * We added or removed a vma mapping the executable. The vmas are only mapped
1256  * during exec and are not mapped with the mmap system call.
1257  * Callers must hold down_write() on the mm's mmap_sem for these
1258  */
1259 void added_exe_file_vma(struct mm_struct *mm)
1260 {
1261 	mm->num_exe_file_vmas++;
1262 }
1263 
1264 void removed_exe_file_vma(struct mm_struct *mm)
1265 {
1266 	mm->num_exe_file_vmas--;
1267 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1268 		fput(mm->exe_file);
1269 		mm->exe_file = NULL;
1270 	}
1271 
1272 }
1273 
1274 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1275 {
1276 	if (new_exe_file)
1277 		get_file(new_exe_file);
1278 	if (mm->exe_file)
1279 		fput(mm->exe_file);
1280 	mm->exe_file = new_exe_file;
1281 	mm->num_exe_file_vmas = 0;
1282 }
1283 
1284 struct file *get_mm_exe_file(struct mm_struct *mm)
1285 {
1286 	struct file *exe_file;
1287 
1288 	/* We need mmap_sem to protect against races with removal of
1289 	 * VM_EXECUTABLE vmas */
1290 	down_read(&mm->mmap_sem);
1291 	exe_file = mm->exe_file;
1292 	if (exe_file)
1293 		get_file(exe_file);
1294 	up_read(&mm->mmap_sem);
1295 	return exe_file;
1296 }
1297 
1298 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1299 {
1300 	/* It's safe to write the exe_file pointer without exe_file_lock because
1301 	 * this is called during fork when the task is not yet in /proc */
1302 	newmm->exe_file = get_mm_exe_file(oldmm);
1303 }
1304 
1305 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1306 {
1307 	struct task_struct *task;
1308 	struct mm_struct *mm;
1309 	struct file *exe_file;
1310 
1311 	task = get_proc_task(inode);
1312 	if (!task)
1313 		return -ENOENT;
1314 	mm = get_task_mm(task);
1315 	put_task_struct(task);
1316 	if (!mm)
1317 		return -ENOENT;
1318 	exe_file = get_mm_exe_file(mm);
1319 	mmput(mm);
1320 	if (exe_file) {
1321 		*exe_path = exe_file->f_path;
1322 		path_get(&exe_file->f_path);
1323 		fput(exe_file);
1324 		return 0;
1325 	} else
1326 		return -ENOENT;
1327 }
1328 
1329 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1330 {
1331 	struct inode *inode = dentry->d_inode;
1332 	int error = -EACCES;
1333 
1334 	/* We don't need a base pointer in the /proc filesystem */
1335 	path_put(&nd->path);
1336 
1337 	/* Are we allowed to snoop on the tasks file descriptors? */
1338 	if (!proc_fd_access_allowed(inode))
1339 		goto out;
1340 
1341 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1342 	nd->last_type = LAST_BIND;
1343 out:
1344 	return ERR_PTR(error);
1345 }
1346 
1347 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1348 {
1349 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1350 	char *pathname;
1351 	int len;
1352 
1353 	if (!tmp)
1354 		return -ENOMEM;
1355 
1356 	pathname = d_path(path, tmp, PAGE_SIZE);
1357 	len = PTR_ERR(pathname);
1358 	if (IS_ERR(pathname))
1359 		goto out;
1360 	len = tmp + PAGE_SIZE - 1 - pathname;
1361 
1362 	if (len > buflen)
1363 		len = buflen;
1364 	if (copy_to_user(buffer, pathname, len))
1365 		len = -EFAULT;
1366  out:
1367 	free_page((unsigned long)tmp);
1368 	return len;
1369 }
1370 
1371 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1372 {
1373 	int error = -EACCES;
1374 	struct inode *inode = dentry->d_inode;
1375 	struct path path;
1376 
1377 	/* Are we allowed to snoop on the tasks file descriptors? */
1378 	if (!proc_fd_access_allowed(inode))
1379 		goto out;
1380 
1381 	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1382 	if (error)
1383 		goto out;
1384 
1385 	error = do_proc_readlink(&path, buffer, buflen);
1386 	path_put(&path);
1387 out:
1388 	return error;
1389 }
1390 
1391 static const struct inode_operations proc_pid_link_inode_operations = {
1392 	.readlink	= proc_pid_readlink,
1393 	.follow_link	= proc_pid_follow_link,
1394 	.setattr	= proc_setattr,
1395 };
1396 
1397 
1398 /* building an inode */
1399 
1400 static int task_dumpable(struct task_struct *task)
1401 {
1402 	int dumpable = 0;
1403 	struct mm_struct *mm;
1404 
1405 	task_lock(task);
1406 	mm = task->mm;
1407 	if (mm)
1408 		dumpable = get_dumpable(mm);
1409 	task_unlock(task);
1410 	if(dumpable == 1)
1411 		return 1;
1412 	return 0;
1413 }
1414 
1415 
1416 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1417 {
1418 	struct inode * inode;
1419 	struct proc_inode *ei;
1420 	const struct cred *cred;
1421 
1422 	/* We need a new inode */
1423 
1424 	inode = new_inode(sb);
1425 	if (!inode)
1426 		goto out;
1427 
1428 	/* Common stuff */
1429 	ei = PROC_I(inode);
1430 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1431 	inode->i_op = &proc_def_inode_operations;
1432 
1433 	/*
1434 	 * grab the reference to task.
1435 	 */
1436 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1437 	if (!ei->pid)
1438 		goto out_unlock;
1439 
1440 	if (task_dumpable(task)) {
1441 		rcu_read_lock();
1442 		cred = __task_cred(task);
1443 		inode->i_uid = cred->euid;
1444 		inode->i_gid = cred->egid;
1445 		rcu_read_unlock();
1446 	}
1447 	security_task_to_inode(task, inode);
1448 
1449 out:
1450 	return inode;
1451 
1452 out_unlock:
1453 	iput(inode);
1454 	return NULL;
1455 }
1456 
1457 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1458 {
1459 	struct inode *inode = dentry->d_inode;
1460 	struct task_struct *task;
1461 	const struct cred *cred;
1462 
1463 	generic_fillattr(inode, stat);
1464 
1465 	rcu_read_lock();
1466 	stat->uid = 0;
1467 	stat->gid = 0;
1468 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1469 	if (task) {
1470 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1471 		    task_dumpable(task)) {
1472 			cred = __task_cred(task);
1473 			stat->uid = cred->euid;
1474 			stat->gid = cred->egid;
1475 		}
1476 	}
1477 	rcu_read_unlock();
1478 	return 0;
1479 }
1480 
1481 /* dentry stuff */
1482 
1483 /*
1484  *	Exceptional case: normally we are not allowed to unhash a busy
1485  * directory. In this case, however, we can do it - no aliasing problems
1486  * due to the way we treat inodes.
1487  *
1488  * Rewrite the inode's ownerships here because the owning task may have
1489  * performed a setuid(), etc.
1490  *
1491  * Before the /proc/pid/status file was created the only way to read
1492  * the effective uid of a /process was to stat /proc/pid.  Reading
1493  * /proc/pid/status is slow enough that procps and other packages
1494  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1495  * made this apply to all per process world readable and executable
1496  * directories.
1497  */
1498 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1499 {
1500 	struct inode *inode = dentry->d_inode;
1501 	struct task_struct *task = get_proc_task(inode);
1502 	const struct cred *cred;
1503 
1504 	if (task) {
1505 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1506 		    task_dumpable(task)) {
1507 			rcu_read_lock();
1508 			cred = __task_cred(task);
1509 			inode->i_uid = cred->euid;
1510 			inode->i_gid = cred->egid;
1511 			rcu_read_unlock();
1512 		} else {
1513 			inode->i_uid = 0;
1514 			inode->i_gid = 0;
1515 		}
1516 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1517 		security_task_to_inode(task, inode);
1518 		put_task_struct(task);
1519 		return 1;
1520 	}
1521 	d_drop(dentry);
1522 	return 0;
1523 }
1524 
1525 static int pid_delete_dentry(struct dentry * dentry)
1526 {
1527 	/* Is the task we represent dead?
1528 	 * If so, then don't put the dentry on the lru list,
1529 	 * kill it immediately.
1530 	 */
1531 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1532 }
1533 
1534 static const struct dentry_operations pid_dentry_operations =
1535 {
1536 	.d_revalidate	= pid_revalidate,
1537 	.d_delete	= pid_delete_dentry,
1538 };
1539 
1540 /* Lookups */
1541 
1542 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1543 				struct task_struct *, const void *);
1544 
1545 /*
1546  * Fill a directory entry.
1547  *
1548  * If possible create the dcache entry and derive our inode number and
1549  * file type from dcache entry.
1550  *
1551  * Since all of the proc inode numbers are dynamically generated, the inode
1552  * numbers do not exist until the inode is cache.  This means creating the
1553  * the dcache entry in readdir is necessary to keep the inode numbers
1554  * reported by readdir in sync with the inode numbers reported
1555  * by stat.
1556  */
1557 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1558 	char *name, int len,
1559 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1560 {
1561 	struct dentry *child, *dir = filp->f_path.dentry;
1562 	struct inode *inode;
1563 	struct qstr qname;
1564 	ino_t ino = 0;
1565 	unsigned type = DT_UNKNOWN;
1566 
1567 	qname.name = name;
1568 	qname.len  = len;
1569 	qname.hash = full_name_hash(name, len);
1570 
1571 	child = d_lookup(dir, &qname);
1572 	if (!child) {
1573 		struct dentry *new;
1574 		new = d_alloc(dir, &qname);
1575 		if (new) {
1576 			child = instantiate(dir->d_inode, new, task, ptr);
1577 			if (child)
1578 				dput(new);
1579 			else
1580 				child = new;
1581 		}
1582 	}
1583 	if (!child || IS_ERR(child) || !child->d_inode)
1584 		goto end_instantiate;
1585 	inode = child->d_inode;
1586 	if (inode) {
1587 		ino = inode->i_ino;
1588 		type = inode->i_mode >> 12;
1589 	}
1590 	dput(child);
1591 end_instantiate:
1592 	if (!ino)
1593 		ino = find_inode_number(dir, &qname);
1594 	if (!ino)
1595 		ino = 1;
1596 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1597 }
1598 
1599 static unsigned name_to_int(struct dentry *dentry)
1600 {
1601 	const char *name = dentry->d_name.name;
1602 	int len = dentry->d_name.len;
1603 	unsigned n = 0;
1604 
1605 	if (len > 1 && *name == '0')
1606 		goto out;
1607 	while (len-- > 0) {
1608 		unsigned c = *name++ - '0';
1609 		if (c > 9)
1610 			goto out;
1611 		if (n >= (~0U-9)/10)
1612 			goto out;
1613 		n *= 10;
1614 		n += c;
1615 	}
1616 	return n;
1617 out:
1618 	return ~0U;
1619 }
1620 
1621 #define PROC_FDINFO_MAX 64
1622 
1623 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1624 {
1625 	struct task_struct *task = get_proc_task(inode);
1626 	struct files_struct *files = NULL;
1627 	struct file *file;
1628 	int fd = proc_fd(inode);
1629 
1630 	if (task) {
1631 		files = get_files_struct(task);
1632 		put_task_struct(task);
1633 	}
1634 	if (files) {
1635 		/*
1636 		 * We are not taking a ref to the file structure, so we must
1637 		 * hold ->file_lock.
1638 		 */
1639 		spin_lock(&files->file_lock);
1640 		file = fcheck_files(files, fd);
1641 		if (file) {
1642 			if (path) {
1643 				*path = file->f_path;
1644 				path_get(&file->f_path);
1645 			}
1646 			if (info)
1647 				snprintf(info, PROC_FDINFO_MAX,
1648 					 "pos:\t%lli\n"
1649 					 "flags:\t0%o\n",
1650 					 (long long) file->f_pos,
1651 					 file->f_flags);
1652 			spin_unlock(&files->file_lock);
1653 			put_files_struct(files);
1654 			return 0;
1655 		}
1656 		spin_unlock(&files->file_lock);
1657 		put_files_struct(files);
1658 	}
1659 	return -ENOENT;
1660 }
1661 
1662 static int proc_fd_link(struct inode *inode, struct path *path)
1663 {
1664 	return proc_fd_info(inode, path, NULL);
1665 }
1666 
1667 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1668 {
1669 	struct inode *inode = dentry->d_inode;
1670 	struct task_struct *task = get_proc_task(inode);
1671 	int fd = proc_fd(inode);
1672 	struct files_struct *files;
1673 	const struct cred *cred;
1674 
1675 	if (task) {
1676 		files = get_files_struct(task);
1677 		if (files) {
1678 			rcu_read_lock();
1679 			if (fcheck_files(files, fd)) {
1680 				rcu_read_unlock();
1681 				put_files_struct(files);
1682 				if (task_dumpable(task)) {
1683 					rcu_read_lock();
1684 					cred = __task_cred(task);
1685 					inode->i_uid = cred->euid;
1686 					inode->i_gid = cred->egid;
1687 					rcu_read_unlock();
1688 				} else {
1689 					inode->i_uid = 0;
1690 					inode->i_gid = 0;
1691 				}
1692 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1693 				security_task_to_inode(task, inode);
1694 				put_task_struct(task);
1695 				return 1;
1696 			}
1697 			rcu_read_unlock();
1698 			put_files_struct(files);
1699 		}
1700 		put_task_struct(task);
1701 	}
1702 	d_drop(dentry);
1703 	return 0;
1704 }
1705 
1706 static const struct dentry_operations tid_fd_dentry_operations =
1707 {
1708 	.d_revalidate	= tid_fd_revalidate,
1709 	.d_delete	= pid_delete_dentry,
1710 };
1711 
1712 static struct dentry *proc_fd_instantiate(struct inode *dir,
1713 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1714 {
1715 	unsigned fd = *(const unsigned *)ptr;
1716 	struct file *file;
1717 	struct files_struct *files;
1718  	struct inode *inode;
1719  	struct proc_inode *ei;
1720 	struct dentry *error = ERR_PTR(-ENOENT);
1721 
1722 	inode = proc_pid_make_inode(dir->i_sb, task);
1723 	if (!inode)
1724 		goto out;
1725 	ei = PROC_I(inode);
1726 	ei->fd = fd;
1727 	files = get_files_struct(task);
1728 	if (!files)
1729 		goto out_iput;
1730 	inode->i_mode = S_IFLNK;
1731 
1732 	/*
1733 	 * We are not taking a ref to the file structure, so we must
1734 	 * hold ->file_lock.
1735 	 */
1736 	spin_lock(&files->file_lock);
1737 	file = fcheck_files(files, fd);
1738 	if (!file)
1739 		goto out_unlock;
1740 	if (file->f_mode & FMODE_READ)
1741 		inode->i_mode |= S_IRUSR | S_IXUSR;
1742 	if (file->f_mode & FMODE_WRITE)
1743 		inode->i_mode |= S_IWUSR | S_IXUSR;
1744 	spin_unlock(&files->file_lock);
1745 	put_files_struct(files);
1746 
1747 	inode->i_op = &proc_pid_link_inode_operations;
1748 	inode->i_size = 64;
1749 	ei->op.proc_get_link = proc_fd_link;
1750 	dentry->d_op = &tid_fd_dentry_operations;
1751 	d_add(dentry, inode);
1752 	/* Close the race of the process dying before we return the dentry */
1753 	if (tid_fd_revalidate(dentry, NULL))
1754 		error = NULL;
1755 
1756  out:
1757 	return error;
1758 out_unlock:
1759 	spin_unlock(&files->file_lock);
1760 	put_files_struct(files);
1761 out_iput:
1762 	iput(inode);
1763 	goto out;
1764 }
1765 
1766 static struct dentry *proc_lookupfd_common(struct inode *dir,
1767 					   struct dentry *dentry,
1768 					   instantiate_t instantiate)
1769 {
1770 	struct task_struct *task = get_proc_task(dir);
1771 	unsigned fd = name_to_int(dentry);
1772 	struct dentry *result = ERR_PTR(-ENOENT);
1773 
1774 	if (!task)
1775 		goto out_no_task;
1776 	if (fd == ~0U)
1777 		goto out;
1778 
1779 	result = instantiate(dir, dentry, task, &fd);
1780 out:
1781 	put_task_struct(task);
1782 out_no_task:
1783 	return result;
1784 }
1785 
1786 static int proc_readfd_common(struct file * filp, void * dirent,
1787 			      filldir_t filldir, instantiate_t instantiate)
1788 {
1789 	struct dentry *dentry = filp->f_path.dentry;
1790 	struct inode *inode = dentry->d_inode;
1791 	struct task_struct *p = get_proc_task(inode);
1792 	unsigned int fd, ino;
1793 	int retval;
1794 	struct files_struct * files;
1795 
1796 	retval = -ENOENT;
1797 	if (!p)
1798 		goto out_no_task;
1799 	retval = 0;
1800 
1801 	fd = filp->f_pos;
1802 	switch (fd) {
1803 		case 0:
1804 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1805 				goto out;
1806 			filp->f_pos++;
1807 		case 1:
1808 			ino = parent_ino(dentry);
1809 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1810 				goto out;
1811 			filp->f_pos++;
1812 		default:
1813 			files = get_files_struct(p);
1814 			if (!files)
1815 				goto out;
1816 			rcu_read_lock();
1817 			for (fd = filp->f_pos-2;
1818 			     fd < files_fdtable(files)->max_fds;
1819 			     fd++, filp->f_pos++) {
1820 				char name[PROC_NUMBUF];
1821 				int len;
1822 
1823 				if (!fcheck_files(files, fd))
1824 					continue;
1825 				rcu_read_unlock();
1826 
1827 				len = snprintf(name, sizeof(name), "%d", fd);
1828 				if (proc_fill_cache(filp, dirent, filldir,
1829 						    name, len, instantiate,
1830 						    p, &fd) < 0) {
1831 					rcu_read_lock();
1832 					break;
1833 				}
1834 				rcu_read_lock();
1835 			}
1836 			rcu_read_unlock();
1837 			put_files_struct(files);
1838 	}
1839 out:
1840 	put_task_struct(p);
1841 out_no_task:
1842 	return retval;
1843 }
1844 
1845 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1846 				    struct nameidata *nd)
1847 {
1848 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1849 }
1850 
1851 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1852 {
1853 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1854 }
1855 
1856 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1857 				      size_t len, loff_t *ppos)
1858 {
1859 	char tmp[PROC_FDINFO_MAX];
1860 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1861 	if (!err)
1862 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1863 	return err;
1864 }
1865 
1866 static const struct file_operations proc_fdinfo_file_operations = {
1867 	.open		= nonseekable_open,
1868 	.read		= proc_fdinfo_read,
1869 };
1870 
1871 static const struct file_operations proc_fd_operations = {
1872 	.read		= generic_read_dir,
1873 	.readdir	= proc_readfd,
1874 };
1875 
1876 /*
1877  * /proc/pid/fd needs a special permission handler so that a process can still
1878  * access /proc/self/fd after it has executed a setuid().
1879  */
1880 static int proc_fd_permission(struct inode *inode, int mask)
1881 {
1882 	int rv;
1883 
1884 	rv = generic_permission(inode, mask, NULL);
1885 	if (rv == 0)
1886 		return 0;
1887 	if (task_pid(current) == proc_pid(inode))
1888 		rv = 0;
1889 	return rv;
1890 }
1891 
1892 /*
1893  * proc directories can do almost nothing..
1894  */
1895 static const struct inode_operations proc_fd_inode_operations = {
1896 	.lookup		= proc_lookupfd,
1897 	.permission	= proc_fd_permission,
1898 	.setattr	= proc_setattr,
1899 };
1900 
1901 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1902 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1903 {
1904 	unsigned fd = *(unsigned *)ptr;
1905  	struct inode *inode;
1906  	struct proc_inode *ei;
1907 	struct dentry *error = ERR_PTR(-ENOENT);
1908 
1909 	inode = proc_pid_make_inode(dir->i_sb, task);
1910 	if (!inode)
1911 		goto out;
1912 	ei = PROC_I(inode);
1913 	ei->fd = fd;
1914 	inode->i_mode = S_IFREG | S_IRUSR;
1915 	inode->i_fop = &proc_fdinfo_file_operations;
1916 	dentry->d_op = &tid_fd_dentry_operations;
1917 	d_add(dentry, inode);
1918 	/* Close the race of the process dying before we return the dentry */
1919 	if (tid_fd_revalidate(dentry, NULL))
1920 		error = NULL;
1921 
1922  out:
1923 	return error;
1924 }
1925 
1926 static struct dentry *proc_lookupfdinfo(struct inode *dir,
1927 					struct dentry *dentry,
1928 					struct nameidata *nd)
1929 {
1930 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
1931 }
1932 
1933 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
1934 {
1935 	return proc_readfd_common(filp, dirent, filldir,
1936 				  proc_fdinfo_instantiate);
1937 }
1938 
1939 static const struct file_operations proc_fdinfo_operations = {
1940 	.read		= generic_read_dir,
1941 	.readdir	= proc_readfdinfo,
1942 };
1943 
1944 /*
1945  * proc directories can do almost nothing..
1946  */
1947 static const struct inode_operations proc_fdinfo_inode_operations = {
1948 	.lookup		= proc_lookupfdinfo,
1949 	.setattr	= proc_setattr,
1950 };
1951 
1952 
1953 static struct dentry *proc_pident_instantiate(struct inode *dir,
1954 	struct dentry *dentry, struct task_struct *task, const void *ptr)
1955 {
1956 	const struct pid_entry *p = ptr;
1957 	struct inode *inode;
1958 	struct proc_inode *ei;
1959 	struct dentry *error = ERR_PTR(-EINVAL);
1960 
1961 	inode = proc_pid_make_inode(dir->i_sb, task);
1962 	if (!inode)
1963 		goto out;
1964 
1965 	ei = PROC_I(inode);
1966 	inode->i_mode = p->mode;
1967 	if (S_ISDIR(inode->i_mode))
1968 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
1969 	if (p->iop)
1970 		inode->i_op = p->iop;
1971 	if (p->fop)
1972 		inode->i_fop = p->fop;
1973 	ei->op = p->op;
1974 	dentry->d_op = &pid_dentry_operations;
1975 	d_add(dentry, inode);
1976 	/* Close the race of the process dying before we return the dentry */
1977 	if (pid_revalidate(dentry, NULL))
1978 		error = NULL;
1979 out:
1980 	return error;
1981 }
1982 
1983 static struct dentry *proc_pident_lookup(struct inode *dir,
1984 					 struct dentry *dentry,
1985 					 const struct pid_entry *ents,
1986 					 unsigned int nents)
1987 {
1988 	struct dentry *error;
1989 	struct task_struct *task = get_proc_task(dir);
1990 	const struct pid_entry *p, *last;
1991 
1992 	error = ERR_PTR(-ENOENT);
1993 
1994 	if (!task)
1995 		goto out_no_task;
1996 
1997 	/*
1998 	 * Yes, it does not scale. And it should not. Don't add
1999 	 * new entries into /proc/<tgid>/ without very good reasons.
2000 	 */
2001 	last = &ents[nents - 1];
2002 	for (p = ents; p <= last; p++) {
2003 		if (p->len != dentry->d_name.len)
2004 			continue;
2005 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2006 			break;
2007 	}
2008 	if (p > last)
2009 		goto out;
2010 
2011 	error = proc_pident_instantiate(dir, dentry, task, p);
2012 out:
2013 	put_task_struct(task);
2014 out_no_task:
2015 	return error;
2016 }
2017 
2018 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2019 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2020 {
2021 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2022 				proc_pident_instantiate, task, p);
2023 }
2024 
2025 static int proc_pident_readdir(struct file *filp,
2026 		void *dirent, filldir_t filldir,
2027 		const struct pid_entry *ents, unsigned int nents)
2028 {
2029 	int i;
2030 	struct dentry *dentry = filp->f_path.dentry;
2031 	struct inode *inode = dentry->d_inode;
2032 	struct task_struct *task = get_proc_task(inode);
2033 	const struct pid_entry *p, *last;
2034 	ino_t ino;
2035 	int ret;
2036 
2037 	ret = -ENOENT;
2038 	if (!task)
2039 		goto out_no_task;
2040 
2041 	ret = 0;
2042 	i = filp->f_pos;
2043 	switch (i) {
2044 	case 0:
2045 		ino = inode->i_ino;
2046 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2047 			goto out;
2048 		i++;
2049 		filp->f_pos++;
2050 		/* fall through */
2051 	case 1:
2052 		ino = parent_ino(dentry);
2053 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2054 			goto out;
2055 		i++;
2056 		filp->f_pos++;
2057 		/* fall through */
2058 	default:
2059 		i -= 2;
2060 		if (i >= nents) {
2061 			ret = 1;
2062 			goto out;
2063 		}
2064 		p = ents + i;
2065 		last = &ents[nents - 1];
2066 		while (p <= last) {
2067 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2068 				goto out;
2069 			filp->f_pos++;
2070 			p++;
2071 		}
2072 	}
2073 
2074 	ret = 1;
2075 out:
2076 	put_task_struct(task);
2077 out_no_task:
2078 	return ret;
2079 }
2080 
2081 #ifdef CONFIG_SECURITY
2082 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2083 				  size_t count, loff_t *ppos)
2084 {
2085 	struct inode * inode = file->f_path.dentry->d_inode;
2086 	char *p = NULL;
2087 	ssize_t length;
2088 	struct task_struct *task = get_proc_task(inode);
2089 
2090 	if (!task)
2091 		return -ESRCH;
2092 
2093 	length = security_getprocattr(task,
2094 				      (char*)file->f_path.dentry->d_name.name,
2095 				      &p);
2096 	put_task_struct(task);
2097 	if (length > 0)
2098 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2099 	kfree(p);
2100 	return length;
2101 }
2102 
2103 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2104 				   size_t count, loff_t *ppos)
2105 {
2106 	struct inode * inode = file->f_path.dentry->d_inode;
2107 	char *page;
2108 	ssize_t length;
2109 	struct task_struct *task = get_proc_task(inode);
2110 
2111 	length = -ESRCH;
2112 	if (!task)
2113 		goto out_no_task;
2114 	if (count > PAGE_SIZE)
2115 		count = PAGE_SIZE;
2116 
2117 	/* No partial writes. */
2118 	length = -EINVAL;
2119 	if (*ppos != 0)
2120 		goto out;
2121 
2122 	length = -ENOMEM;
2123 	page = (char*)__get_free_page(GFP_TEMPORARY);
2124 	if (!page)
2125 		goto out;
2126 
2127 	length = -EFAULT;
2128 	if (copy_from_user(page, buf, count))
2129 		goto out_free;
2130 
2131 	length = security_setprocattr(task,
2132 				      (char*)file->f_path.dentry->d_name.name,
2133 				      (void*)page, count);
2134 out_free:
2135 	free_page((unsigned long) page);
2136 out:
2137 	put_task_struct(task);
2138 out_no_task:
2139 	return length;
2140 }
2141 
2142 static const struct file_operations proc_pid_attr_operations = {
2143 	.read		= proc_pid_attr_read,
2144 	.write		= proc_pid_attr_write,
2145 };
2146 
2147 static const struct pid_entry attr_dir_stuff[] = {
2148 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2149 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2150 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2151 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2152 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2153 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2154 };
2155 
2156 static int proc_attr_dir_readdir(struct file * filp,
2157 			     void * dirent, filldir_t filldir)
2158 {
2159 	return proc_pident_readdir(filp,dirent,filldir,
2160 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2161 }
2162 
2163 static const struct file_operations proc_attr_dir_operations = {
2164 	.read		= generic_read_dir,
2165 	.readdir	= proc_attr_dir_readdir,
2166 };
2167 
2168 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2169 				struct dentry *dentry, struct nameidata *nd)
2170 {
2171 	return proc_pident_lookup(dir, dentry,
2172 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2173 }
2174 
2175 static const struct inode_operations proc_attr_dir_inode_operations = {
2176 	.lookup		= proc_attr_dir_lookup,
2177 	.getattr	= pid_getattr,
2178 	.setattr	= proc_setattr,
2179 };
2180 
2181 #endif
2182 
2183 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2184 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2185 					 size_t count, loff_t *ppos)
2186 {
2187 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2188 	struct mm_struct *mm;
2189 	char buffer[PROC_NUMBUF];
2190 	size_t len;
2191 	int ret;
2192 
2193 	if (!task)
2194 		return -ESRCH;
2195 
2196 	ret = 0;
2197 	mm = get_task_mm(task);
2198 	if (mm) {
2199 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2200 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2201 				MMF_DUMP_FILTER_SHIFT));
2202 		mmput(mm);
2203 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2204 	}
2205 
2206 	put_task_struct(task);
2207 
2208 	return ret;
2209 }
2210 
2211 static ssize_t proc_coredump_filter_write(struct file *file,
2212 					  const char __user *buf,
2213 					  size_t count,
2214 					  loff_t *ppos)
2215 {
2216 	struct task_struct *task;
2217 	struct mm_struct *mm;
2218 	char buffer[PROC_NUMBUF], *end;
2219 	unsigned int val;
2220 	int ret;
2221 	int i;
2222 	unsigned long mask;
2223 
2224 	ret = -EFAULT;
2225 	memset(buffer, 0, sizeof(buffer));
2226 	if (count > sizeof(buffer) - 1)
2227 		count = sizeof(buffer) - 1;
2228 	if (copy_from_user(buffer, buf, count))
2229 		goto out_no_task;
2230 
2231 	ret = -EINVAL;
2232 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2233 	if (*end == '\n')
2234 		end++;
2235 	if (end - buffer == 0)
2236 		goto out_no_task;
2237 
2238 	ret = -ESRCH;
2239 	task = get_proc_task(file->f_dentry->d_inode);
2240 	if (!task)
2241 		goto out_no_task;
2242 
2243 	ret = end - buffer;
2244 	mm = get_task_mm(task);
2245 	if (!mm)
2246 		goto out_no_mm;
2247 
2248 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2249 		if (val & mask)
2250 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2251 		else
2252 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2253 	}
2254 
2255 	mmput(mm);
2256  out_no_mm:
2257 	put_task_struct(task);
2258  out_no_task:
2259 	return ret;
2260 }
2261 
2262 static const struct file_operations proc_coredump_filter_operations = {
2263 	.read		= proc_coredump_filter_read,
2264 	.write		= proc_coredump_filter_write,
2265 };
2266 #endif
2267 
2268 /*
2269  * /proc/self:
2270  */
2271 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2272 			      int buflen)
2273 {
2274 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2275 	pid_t tgid = task_tgid_nr_ns(current, ns);
2276 	char tmp[PROC_NUMBUF];
2277 	if (!tgid)
2278 		return -ENOENT;
2279 	sprintf(tmp, "%d", tgid);
2280 	return vfs_readlink(dentry,buffer,buflen,tmp);
2281 }
2282 
2283 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2284 {
2285 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2286 	pid_t tgid = task_tgid_nr_ns(current, ns);
2287 	char tmp[PROC_NUMBUF];
2288 	if (!tgid)
2289 		return ERR_PTR(-ENOENT);
2290 	sprintf(tmp, "%d", task_tgid_nr_ns(current, ns));
2291 	return ERR_PTR(vfs_follow_link(nd,tmp));
2292 }
2293 
2294 static const struct inode_operations proc_self_inode_operations = {
2295 	.readlink	= proc_self_readlink,
2296 	.follow_link	= proc_self_follow_link,
2297 };
2298 
2299 /*
2300  * proc base
2301  *
2302  * These are the directory entries in the root directory of /proc
2303  * that properly belong to the /proc filesystem, as they describe
2304  * describe something that is process related.
2305  */
2306 static const struct pid_entry proc_base_stuff[] = {
2307 	NOD("self", S_IFLNK|S_IRWXUGO,
2308 		&proc_self_inode_operations, NULL, {}),
2309 };
2310 
2311 /*
2312  *	Exceptional case: normally we are not allowed to unhash a busy
2313  * directory. In this case, however, we can do it - no aliasing problems
2314  * due to the way we treat inodes.
2315  */
2316 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2317 {
2318 	struct inode *inode = dentry->d_inode;
2319 	struct task_struct *task = get_proc_task(inode);
2320 	if (task) {
2321 		put_task_struct(task);
2322 		return 1;
2323 	}
2324 	d_drop(dentry);
2325 	return 0;
2326 }
2327 
2328 static const struct dentry_operations proc_base_dentry_operations =
2329 {
2330 	.d_revalidate	= proc_base_revalidate,
2331 	.d_delete	= pid_delete_dentry,
2332 };
2333 
2334 static struct dentry *proc_base_instantiate(struct inode *dir,
2335 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2336 {
2337 	const struct pid_entry *p = ptr;
2338 	struct inode *inode;
2339 	struct proc_inode *ei;
2340 	struct dentry *error = ERR_PTR(-EINVAL);
2341 
2342 	/* Allocate the inode */
2343 	error = ERR_PTR(-ENOMEM);
2344 	inode = new_inode(dir->i_sb);
2345 	if (!inode)
2346 		goto out;
2347 
2348 	/* Initialize the inode */
2349 	ei = PROC_I(inode);
2350 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2351 
2352 	/*
2353 	 * grab the reference to the task.
2354 	 */
2355 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2356 	if (!ei->pid)
2357 		goto out_iput;
2358 
2359 	inode->i_mode = p->mode;
2360 	if (S_ISDIR(inode->i_mode))
2361 		inode->i_nlink = 2;
2362 	if (S_ISLNK(inode->i_mode))
2363 		inode->i_size = 64;
2364 	if (p->iop)
2365 		inode->i_op = p->iop;
2366 	if (p->fop)
2367 		inode->i_fop = p->fop;
2368 	ei->op = p->op;
2369 	dentry->d_op = &proc_base_dentry_operations;
2370 	d_add(dentry, inode);
2371 	error = NULL;
2372 out:
2373 	return error;
2374 out_iput:
2375 	iput(inode);
2376 	goto out;
2377 }
2378 
2379 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2380 {
2381 	struct dentry *error;
2382 	struct task_struct *task = get_proc_task(dir);
2383 	const struct pid_entry *p, *last;
2384 
2385 	error = ERR_PTR(-ENOENT);
2386 
2387 	if (!task)
2388 		goto out_no_task;
2389 
2390 	/* Lookup the directory entry */
2391 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2392 	for (p = proc_base_stuff; p <= last; p++) {
2393 		if (p->len != dentry->d_name.len)
2394 			continue;
2395 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2396 			break;
2397 	}
2398 	if (p > last)
2399 		goto out;
2400 
2401 	error = proc_base_instantiate(dir, dentry, task, p);
2402 
2403 out:
2404 	put_task_struct(task);
2405 out_no_task:
2406 	return error;
2407 }
2408 
2409 static int proc_base_fill_cache(struct file *filp, void *dirent,
2410 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2411 {
2412 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2413 				proc_base_instantiate, task, p);
2414 }
2415 
2416 #ifdef CONFIG_TASK_IO_ACCOUNTING
2417 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2418 {
2419 	struct task_io_accounting acct = task->ioac;
2420 	unsigned long flags;
2421 
2422 	if (whole && lock_task_sighand(task, &flags)) {
2423 		struct task_struct *t = task;
2424 
2425 		task_io_accounting_add(&acct, &task->signal->ioac);
2426 		while_each_thread(task, t)
2427 			task_io_accounting_add(&acct, &t->ioac);
2428 
2429 		unlock_task_sighand(task, &flags);
2430 	}
2431 	return sprintf(buffer,
2432 			"rchar: %llu\n"
2433 			"wchar: %llu\n"
2434 			"syscr: %llu\n"
2435 			"syscw: %llu\n"
2436 			"read_bytes: %llu\n"
2437 			"write_bytes: %llu\n"
2438 			"cancelled_write_bytes: %llu\n",
2439 			(unsigned long long)acct.rchar,
2440 			(unsigned long long)acct.wchar,
2441 			(unsigned long long)acct.syscr,
2442 			(unsigned long long)acct.syscw,
2443 			(unsigned long long)acct.read_bytes,
2444 			(unsigned long long)acct.write_bytes,
2445 			(unsigned long long)acct.cancelled_write_bytes);
2446 }
2447 
2448 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2449 {
2450 	return do_io_accounting(task, buffer, 0);
2451 }
2452 
2453 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2454 {
2455 	return do_io_accounting(task, buffer, 1);
2456 }
2457 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2458 
2459 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2460 				struct pid *pid, struct task_struct *task)
2461 {
2462 	seq_printf(m, "%08x\n", task->personality);
2463 	return 0;
2464 }
2465 
2466 /*
2467  * Thread groups
2468  */
2469 static const struct file_operations proc_task_operations;
2470 static const struct inode_operations proc_task_inode_operations;
2471 
2472 static const struct pid_entry tgid_base_stuff[] = {
2473 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2474 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2475 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2476 #ifdef CONFIG_NET
2477 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2478 #endif
2479 	REG("environ",    S_IRUSR, proc_environ_operations),
2480 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2481 	ONE("status",     S_IRUGO, proc_pid_status),
2482 	ONE("personality", S_IRUSR, proc_pid_personality),
2483 	INF("limits",	  S_IRUSR, proc_pid_limits),
2484 #ifdef CONFIG_SCHED_DEBUG
2485 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2486 #endif
2487 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2488 	INF("syscall",    S_IRUSR, proc_pid_syscall),
2489 #endif
2490 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2491 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2492 	ONE("statm",      S_IRUGO, proc_pid_statm),
2493 	REG("maps",       S_IRUGO, proc_maps_operations),
2494 #ifdef CONFIG_NUMA
2495 	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2496 #endif
2497 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2498 	LNK("cwd",        proc_cwd_link),
2499 	LNK("root",       proc_root_link),
2500 	LNK("exe",        proc_exe_link),
2501 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2502 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2503 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2504 #ifdef CONFIG_PROC_PAGE_MONITOR
2505 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2506 	REG("smaps",      S_IRUGO, proc_smaps_operations),
2507 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2508 #endif
2509 #ifdef CONFIG_SECURITY
2510 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2511 #endif
2512 #ifdef CONFIG_KALLSYMS
2513 	INF("wchan",      S_IRUGO, proc_pid_wchan),
2514 #endif
2515 #ifdef CONFIG_STACKTRACE
2516 	ONE("stack",      S_IRUSR, proc_pid_stack),
2517 #endif
2518 #ifdef CONFIG_SCHEDSTATS
2519 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2520 #endif
2521 #ifdef CONFIG_LATENCYTOP
2522 	REG("latency",  S_IRUGO, proc_lstats_operations),
2523 #endif
2524 #ifdef CONFIG_PROC_PID_CPUSET
2525 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2526 #endif
2527 #ifdef CONFIG_CGROUPS
2528 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2529 #endif
2530 	INF("oom_score",  S_IRUGO, proc_oom_score),
2531 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2532 #ifdef CONFIG_AUDITSYSCALL
2533 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2534 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2535 #endif
2536 #ifdef CONFIG_FAULT_INJECTION
2537 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2538 #endif
2539 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
2540 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2541 #endif
2542 #ifdef CONFIG_TASK_IO_ACCOUNTING
2543 	INF("io",	S_IRUGO, proc_tgid_io_accounting),
2544 #endif
2545 };
2546 
2547 static int proc_tgid_base_readdir(struct file * filp,
2548 			     void * dirent, filldir_t filldir)
2549 {
2550 	return proc_pident_readdir(filp,dirent,filldir,
2551 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2552 }
2553 
2554 static const struct file_operations proc_tgid_base_operations = {
2555 	.read		= generic_read_dir,
2556 	.readdir	= proc_tgid_base_readdir,
2557 };
2558 
2559 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2560 	return proc_pident_lookup(dir, dentry,
2561 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2562 }
2563 
2564 static const struct inode_operations proc_tgid_base_inode_operations = {
2565 	.lookup		= proc_tgid_base_lookup,
2566 	.getattr	= pid_getattr,
2567 	.setattr	= proc_setattr,
2568 };
2569 
2570 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2571 {
2572 	struct dentry *dentry, *leader, *dir;
2573 	char buf[PROC_NUMBUF];
2574 	struct qstr name;
2575 
2576 	name.name = buf;
2577 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2578 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2579 	if (dentry) {
2580 		if (!(current->flags & PF_EXITING))
2581 			shrink_dcache_parent(dentry);
2582 		d_drop(dentry);
2583 		dput(dentry);
2584 	}
2585 
2586 	if (tgid == 0)
2587 		goto out;
2588 
2589 	name.name = buf;
2590 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2591 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2592 	if (!leader)
2593 		goto out;
2594 
2595 	name.name = "task";
2596 	name.len = strlen(name.name);
2597 	dir = d_hash_and_lookup(leader, &name);
2598 	if (!dir)
2599 		goto out_put_leader;
2600 
2601 	name.name = buf;
2602 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2603 	dentry = d_hash_and_lookup(dir, &name);
2604 	if (dentry) {
2605 		shrink_dcache_parent(dentry);
2606 		d_drop(dentry);
2607 		dput(dentry);
2608 	}
2609 
2610 	dput(dir);
2611 out_put_leader:
2612 	dput(leader);
2613 out:
2614 	return;
2615 }
2616 
2617 /**
2618  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2619  * @task: task that should be flushed.
2620  *
2621  * When flushing dentries from proc, one needs to flush them from global
2622  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2623  * in. This call is supposed to do all of this job.
2624  *
2625  * Looks in the dcache for
2626  * /proc/@pid
2627  * /proc/@tgid/task/@pid
2628  * if either directory is present flushes it and all of it'ts children
2629  * from the dcache.
2630  *
2631  * It is safe and reasonable to cache /proc entries for a task until
2632  * that task exits.  After that they just clog up the dcache with
2633  * useless entries, possibly causing useful dcache entries to be
2634  * flushed instead.  This routine is proved to flush those useless
2635  * dcache entries at process exit time.
2636  *
2637  * NOTE: This routine is just an optimization so it does not guarantee
2638  *       that no dcache entries will exist at process exit time it
2639  *       just makes it very unlikely that any will persist.
2640  */
2641 
2642 void proc_flush_task(struct task_struct *task)
2643 {
2644 	int i;
2645 	struct pid *pid, *tgid = NULL;
2646 	struct upid *upid;
2647 
2648 	pid = task_pid(task);
2649 	if (thread_group_leader(task))
2650 		tgid = task_tgid(task);
2651 
2652 	for (i = 0; i <= pid->level; i++) {
2653 		upid = &pid->numbers[i];
2654 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2655 			tgid ? tgid->numbers[i].nr : 0);
2656 	}
2657 
2658 	upid = &pid->numbers[pid->level];
2659 	if (upid->nr == 1)
2660 		pid_ns_release_proc(upid->ns);
2661 }
2662 
2663 static struct dentry *proc_pid_instantiate(struct inode *dir,
2664 					   struct dentry * dentry,
2665 					   struct task_struct *task, const void *ptr)
2666 {
2667 	struct dentry *error = ERR_PTR(-ENOENT);
2668 	struct inode *inode;
2669 
2670 	inode = proc_pid_make_inode(dir->i_sb, task);
2671 	if (!inode)
2672 		goto out;
2673 
2674 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2675 	inode->i_op = &proc_tgid_base_inode_operations;
2676 	inode->i_fop = &proc_tgid_base_operations;
2677 	inode->i_flags|=S_IMMUTABLE;
2678 
2679 	inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2680 		ARRAY_SIZE(tgid_base_stuff));
2681 
2682 	dentry->d_op = &pid_dentry_operations;
2683 
2684 	d_add(dentry, inode);
2685 	/* Close the race of the process dying before we return the dentry */
2686 	if (pid_revalidate(dentry, NULL))
2687 		error = NULL;
2688 out:
2689 	return error;
2690 }
2691 
2692 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2693 {
2694 	struct dentry *result = ERR_PTR(-ENOENT);
2695 	struct task_struct *task;
2696 	unsigned tgid;
2697 	struct pid_namespace *ns;
2698 
2699 	result = proc_base_lookup(dir, dentry);
2700 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2701 		goto out;
2702 
2703 	tgid = name_to_int(dentry);
2704 	if (tgid == ~0U)
2705 		goto out;
2706 
2707 	ns = dentry->d_sb->s_fs_info;
2708 	rcu_read_lock();
2709 	task = find_task_by_pid_ns(tgid, ns);
2710 	if (task)
2711 		get_task_struct(task);
2712 	rcu_read_unlock();
2713 	if (!task)
2714 		goto out;
2715 
2716 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2717 	put_task_struct(task);
2718 out:
2719 	return result;
2720 }
2721 
2722 /*
2723  * Find the first task with tgid >= tgid
2724  *
2725  */
2726 struct tgid_iter {
2727 	unsigned int tgid;
2728 	struct task_struct *task;
2729 };
2730 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2731 {
2732 	struct pid *pid;
2733 
2734 	if (iter.task)
2735 		put_task_struct(iter.task);
2736 	rcu_read_lock();
2737 retry:
2738 	iter.task = NULL;
2739 	pid = find_ge_pid(iter.tgid, ns);
2740 	if (pid) {
2741 		iter.tgid = pid_nr_ns(pid, ns);
2742 		iter.task = pid_task(pid, PIDTYPE_PID);
2743 		/* What we to know is if the pid we have find is the
2744 		 * pid of a thread_group_leader.  Testing for task
2745 		 * being a thread_group_leader is the obvious thing
2746 		 * todo but there is a window when it fails, due to
2747 		 * the pid transfer logic in de_thread.
2748 		 *
2749 		 * So we perform the straight forward test of seeing
2750 		 * if the pid we have found is the pid of a thread
2751 		 * group leader, and don't worry if the task we have
2752 		 * found doesn't happen to be a thread group leader.
2753 		 * As we don't care in the case of readdir.
2754 		 */
2755 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2756 			iter.tgid += 1;
2757 			goto retry;
2758 		}
2759 		get_task_struct(iter.task);
2760 	}
2761 	rcu_read_unlock();
2762 	return iter;
2763 }
2764 
2765 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2766 
2767 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2768 	struct tgid_iter iter)
2769 {
2770 	char name[PROC_NUMBUF];
2771 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2772 	return proc_fill_cache(filp, dirent, filldir, name, len,
2773 				proc_pid_instantiate, iter.task, NULL);
2774 }
2775 
2776 /* for the /proc/ directory itself, after non-process stuff has been done */
2777 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2778 {
2779 	unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2780 	struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2781 	struct tgid_iter iter;
2782 	struct pid_namespace *ns;
2783 
2784 	if (!reaper)
2785 		goto out_no_task;
2786 
2787 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2788 		const struct pid_entry *p = &proc_base_stuff[nr];
2789 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2790 			goto out;
2791 	}
2792 
2793 	ns = filp->f_dentry->d_sb->s_fs_info;
2794 	iter.task = NULL;
2795 	iter.tgid = filp->f_pos - TGID_OFFSET;
2796 	for (iter = next_tgid(ns, iter);
2797 	     iter.task;
2798 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2799 		filp->f_pos = iter.tgid + TGID_OFFSET;
2800 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2801 			put_task_struct(iter.task);
2802 			goto out;
2803 		}
2804 	}
2805 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2806 out:
2807 	put_task_struct(reaper);
2808 out_no_task:
2809 	return 0;
2810 }
2811 
2812 /*
2813  * Tasks
2814  */
2815 static const struct pid_entry tid_base_stuff[] = {
2816 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2817 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fd_operations),
2818 	REG("environ",   S_IRUSR, proc_environ_operations),
2819 	INF("auxv",      S_IRUSR, proc_pid_auxv),
2820 	ONE("status",    S_IRUGO, proc_pid_status),
2821 	ONE("personality", S_IRUSR, proc_pid_personality),
2822 	INF("limits",	 S_IRUSR, proc_pid_limits),
2823 #ifdef CONFIG_SCHED_DEBUG
2824 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2825 #endif
2826 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2827 	INF("syscall",   S_IRUSR, proc_pid_syscall),
2828 #endif
2829 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
2830 	ONE("stat",      S_IRUGO, proc_tid_stat),
2831 	ONE("statm",     S_IRUGO, proc_pid_statm),
2832 	REG("maps",      S_IRUGO, proc_maps_operations),
2833 #ifdef CONFIG_NUMA
2834 	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2835 #endif
2836 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
2837 	LNK("cwd",       proc_cwd_link),
2838 	LNK("root",      proc_root_link),
2839 	LNK("exe",       proc_exe_link),
2840 	REG("mounts",    S_IRUGO, proc_mounts_operations),
2841 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2842 #ifdef CONFIG_PROC_PAGE_MONITOR
2843 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2844 	REG("smaps",     S_IRUGO, proc_smaps_operations),
2845 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2846 #endif
2847 #ifdef CONFIG_SECURITY
2848 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2849 #endif
2850 #ifdef CONFIG_KALLSYMS
2851 	INF("wchan",     S_IRUGO, proc_pid_wchan),
2852 #endif
2853 #ifdef CONFIG_STACKTRACE
2854 	ONE("stack",      S_IRUSR, proc_pid_stack),
2855 #endif
2856 #ifdef CONFIG_SCHEDSTATS
2857 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
2858 #endif
2859 #ifdef CONFIG_LATENCYTOP
2860 	REG("latency",  S_IRUGO, proc_lstats_operations),
2861 #endif
2862 #ifdef CONFIG_PROC_PID_CPUSET
2863 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
2864 #endif
2865 #ifdef CONFIG_CGROUPS
2866 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2867 #endif
2868 	INF("oom_score", S_IRUGO, proc_oom_score),
2869 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2870 #ifdef CONFIG_AUDITSYSCALL
2871 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
2872 	REG("sessionid",  S_IRUSR, proc_sessionid_operations),
2873 #endif
2874 #ifdef CONFIG_FAULT_INJECTION
2875 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2876 #endif
2877 #ifdef CONFIG_TASK_IO_ACCOUNTING
2878 	INF("io",	S_IRUGO, proc_tid_io_accounting),
2879 #endif
2880 };
2881 
2882 static int proc_tid_base_readdir(struct file * filp,
2883 			     void * dirent, filldir_t filldir)
2884 {
2885 	return proc_pident_readdir(filp,dirent,filldir,
2886 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2887 }
2888 
2889 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2890 	return proc_pident_lookup(dir, dentry,
2891 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2892 }
2893 
2894 static const struct file_operations proc_tid_base_operations = {
2895 	.read		= generic_read_dir,
2896 	.readdir	= proc_tid_base_readdir,
2897 };
2898 
2899 static const struct inode_operations proc_tid_base_inode_operations = {
2900 	.lookup		= proc_tid_base_lookup,
2901 	.getattr	= pid_getattr,
2902 	.setattr	= proc_setattr,
2903 };
2904 
2905 static struct dentry *proc_task_instantiate(struct inode *dir,
2906 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2907 {
2908 	struct dentry *error = ERR_PTR(-ENOENT);
2909 	struct inode *inode;
2910 	inode = proc_pid_make_inode(dir->i_sb, task);
2911 
2912 	if (!inode)
2913 		goto out;
2914 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2915 	inode->i_op = &proc_tid_base_inode_operations;
2916 	inode->i_fop = &proc_tid_base_operations;
2917 	inode->i_flags|=S_IMMUTABLE;
2918 
2919 	inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
2920 		ARRAY_SIZE(tid_base_stuff));
2921 
2922 	dentry->d_op = &pid_dentry_operations;
2923 
2924 	d_add(dentry, inode);
2925 	/* Close the race of the process dying before we return the dentry */
2926 	if (pid_revalidate(dentry, NULL))
2927 		error = NULL;
2928 out:
2929 	return error;
2930 }
2931 
2932 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2933 {
2934 	struct dentry *result = ERR_PTR(-ENOENT);
2935 	struct task_struct *task;
2936 	struct task_struct *leader = get_proc_task(dir);
2937 	unsigned tid;
2938 	struct pid_namespace *ns;
2939 
2940 	if (!leader)
2941 		goto out_no_task;
2942 
2943 	tid = name_to_int(dentry);
2944 	if (tid == ~0U)
2945 		goto out;
2946 
2947 	ns = dentry->d_sb->s_fs_info;
2948 	rcu_read_lock();
2949 	task = find_task_by_pid_ns(tid, ns);
2950 	if (task)
2951 		get_task_struct(task);
2952 	rcu_read_unlock();
2953 	if (!task)
2954 		goto out;
2955 	if (!same_thread_group(leader, task))
2956 		goto out_drop_task;
2957 
2958 	result = proc_task_instantiate(dir, dentry, task, NULL);
2959 out_drop_task:
2960 	put_task_struct(task);
2961 out:
2962 	put_task_struct(leader);
2963 out_no_task:
2964 	return result;
2965 }
2966 
2967 /*
2968  * Find the first tid of a thread group to return to user space.
2969  *
2970  * Usually this is just the thread group leader, but if the users
2971  * buffer was too small or there was a seek into the middle of the
2972  * directory we have more work todo.
2973  *
2974  * In the case of a short read we start with find_task_by_pid.
2975  *
2976  * In the case of a seek we start with the leader and walk nr
2977  * threads past it.
2978  */
2979 static struct task_struct *first_tid(struct task_struct *leader,
2980 		int tid, int nr, struct pid_namespace *ns)
2981 {
2982 	struct task_struct *pos;
2983 
2984 	rcu_read_lock();
2985 	/* Attempt to start with the pid of a thread */
2986 	if (tid && (nr > 0)) {
2987 		pos = find_task_by_pid_ns(tid, ns);
2988 		if (pos && (pos->group_leader == leader))
2989 			goto found;
2990 	}
2991 
2992 	/* If nr exceeds the number of threads there is nothing todo */
2993 	pos = NULL;
2994 	if (nr && nr >= get_nr_threads(leader))
2995 		goto out;
2996 
2997 	/* If we haven't found our starting place yet start
2998 	 * with the leader and walk nr threads forward.
2999 	 */
3000 	for (pos = leader; nr > 0; --nr) {
3001 		pos = next_thread(pos);
3002 		if (pos == leader) {
3003 			pos = NULL;
3004 			goto out;
3005 		}
3006 	}
3007 found:
3008 	get_task_struct(pos);
3009 out:
3010 	rcu_read_unlock();
3011 	return pos;
3012 }
3013 
3014 /*
3015  * Find the next thread in the thread list.
3016  * Return NULL if there is an error or no next thread.
3017  *
3018  * The reference to the input task_struct is released.
3019  */
3020 static struct task_struct *next_tid(struct task_struct *start)
3021 {
3022 	struct task_struct *pos = NULL;
3023 	rcu_read_lock();
3024 	if (pid_alive(start)) {
3025 		pos = next_thread(start);
3026 		if (thread_group_leader(pos))
3027 			pos = NULL;
3028 		else
3029 			get_task_struct(pos);
3030 	}
3031 	rcu_read_unlock();
3032 	put_task_struct(start);
3033 	return pos;
3034 }
3035 
3036 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3037 	struct task_struct *task, int tid)
3038 {
3039 	char name[PROC_NUMBUF];
3040 	int len = snprintf(name, sizeof(name), "%d", tid);
3041 	return proc_fill_cache(filp, dirent, filldir, name, len,
3042 				proc_task_instantiate, task, NULL);
3043 }
3044 
3045 /* for the /proc/TGID/task/ directories */
3046 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3047 {
3048 	struct dentry *dentry = filp->f_path.dentry;
3049 	struct inode *inode = dentry->d_inode;
3050 	struct task_struct *leader = NULL;
3051 	struct task_struct *task;
3052 	int retval = -ENOENT;
3053 	ino_t ino;
3054 	int tid;
3055 	struct pid_namespace *ns;
3056 
3057 	task = get_proc_task(inode);
3058 	if (!task)
3059 		goto out_no_task;
3060 	rcu_read_lock();
3061 	if (pid_alive(task)) {
3062 		leader = task->group_leader;
3063 		get_task_struct(leader);
3064 	}
3065 	rcu_read_unlock();
3066 	put_task_struct(task);
3067 	if (!leader)
3068 		goto out_no_task;
3069 	retval = 0;
3070 
3071 	switch ((unsigned long)filp->f_pos) {
3072 	case 0:
3073 		ino = inode->i_ino;
3074 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3075 			goto out;
3076 		filp->f_pos++;
3077 		/* fall through */
3078 	case 1:
3079 		ino = parent_ino(dentry);
3080 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3081 			goto out;
3082 		filp->f_pos++;
3083 		/* fall through */
3084 	}
3085 
3086 	/* f_version caches the tgid value that the last readdir call couldn't
3087 	 * return. lseek aka telldir automagically resets f_version to 0.
3088 	 */
3089 	ns = filp->f_dentry->d_sb->s_fs_info;
3090 	tid = (int)filp->f_version;
3091 	filp->f_version = 0;
3092 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3093 	     task;
3094 	     task = next_tid(task), filp->f_pos++) {
3095 		tid = task_pid_nr_ns(task, ns);
3096 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3097 			/* returning this tgid failed, save it as the first
3098 			 * pid for the next readir call */
3099 			filp->f_version = (u64)tid;
3100 			put_task_struct(task);
3101 			break;
3102 		}
3103 	}
3104 out:
3105 	put_task_struct(leader);
3106 out_no_task:
3107 	return retval;
3108 }
3109 
3110 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3111 {
3112 	struct inode *inode = dentry->d_inode;
3113 	struct task_struct *p = get_proc_task(inode);
3114 	generic_fillattr(inode, stat);
3115 
3116 	if (p) {
3117 		stat->nlink += get_nr_threads(p);
3118 		put_task_struct(p);
3119 	}
3120 
3121 	return 0;
3122 }
3123 
3124 static const struct inode_operations proc_task_inode_operations = {
3125 	.lookup		= proc_task_lookup,
3126 	.getattr	= proc_task_getattr,
3127 	.setattr	= proc_setattr,
3128 };
3129 
3130 static const struct file_operations proc_task_operations = {
3131 	.read		= generic_read_dir,
3132 	.readdir	= proc_task_readdir,
3133 };
3134