xref: /openbmc/linux/fs/proc/base.c (revision af958a38)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/flex_array.h>
89 #include <linux/posix-timers.h>
90 #ifdef CONFIG_HARDWALL
91 #include <asm/hardwall.h>
92 #endif
93 #include <trace/events/oom.h>
94 #include "internal.h"
95 #include "fd.h"
96 
97 /* NOTE:
98  *	Implementing inode permission operations in /proc is almost
99  *	certainly an error.  Permission checks need to happen during
100  *	each system call not at open time.  The reason is that most of
101  *	what we wish to check for permissions in /proc varies at runtime.
102  *
103  *	The classic example of a problem is opening file descriptors
104  *	in /proc for a task before it execs a suid executable.
105  */
106 
107 struct pid_entry {
108 	const char *name;
109 	int len;
110 	umode_t mode;
111 	const struct inode_operations *iop;
112 	const struct file_operations *fop;
113 	union proc_op op;
114 };
115 
116 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
117 	.name = (NAME),					\
118 	.len  = sizeof(NAME) - 1,			\
119 	.mode = MODE,					\
120 	.iop  = IOP,					\
121 	.fop  = FOP,					\
122 	.op   = OP,					\
123 }
124 
125 #define DIR(NAME, MODE, iops, fops)	\
126 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
127 #define LNK(NAME, get_link)					\
128 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
129 		&proc_pid_link_inode_operations, NULL,		\
130 		{ .proc_get_link = get_link } )
131 #define REG(NAME, MODE, fops)				\
132 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
133 #define ONE(NAME, MODE, show)				\
134 	NOD(NAME, (S_IFREG|(MODE)), 			\
135 		NULL, &proc_single_file_operations,	\
136 		{ .proc_show = show } )
137 
138 /*
139  * Count the number of hardlinks for the pid_entry table, excluding the .
140  * and .. links.
141  */
142 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
143 	unsigned int n)
144 {
145 	unsigned int i;
146 	unsigned int count;
147 
148 	count = 0;
149 	for (i = 0; i < n; ++i) {
150 		if (S_ISDIR(entries[i].mode))
151 			++count;
152 	}
153 
154 	return count;
155 }
156 
157 static int get_task_root(struct task_struct *task, struct path *root)
158 {
159 	int result = -ENOENT;
160 
161 	task_lock(task);
162 	if (task->fs) {
163 		get_fs_root(task->fs, root);
164 		result = 0;
165 	}
166 	task_unlock(task);
167 	return result;
168 }
169 
170 static int proc_cwd_link(struct dentry *dentry, struct path *path)
171 {
172 	struct task_struct *task = get_proc_task(dentry->d_inode);
173 	int result = -ENOENT;
174 
175 	if (task) {
176 		task_lock(task);
177 		if (task->fs) {
178 			get_fs_pwd(task->fs, path);
179 			result = 0;
180 		}
181 		task_unlock(task);
182 		put_task_struct(task);
183 	}
184 	return result;
185 }
186 
187 static int proc_root_link(struct dentry *dentry, struct path *path)
188 {
189 	struct task_struct *task = get_proc_task(dentry->d_inode);
190 	int result = -ENOENT;
191 
192 	if (task) {
193 		result = get_task_root(task, path);
194 		put_task_struct(task);
195 	}
196 	return result;
197 }
198 
199 static int proc_pid_cmdline(struct seq_file *m, struct pid_namespace *ns,
200 			    struct pid *pid, struct task_struct *task)
201 {
202 	/*
203 	 * Rely on struct seq_operations::show() being called once
204 	 * per internal buffer allocation. See single_open(), traverse().
205 	 */
206 	BUG_ON(m->size < PAGE_SIZE);
207 	m->count += get_cmdline(task, m->buf, PAGE_SIZE);
208 	return 0;
209 }
210 
211 static int proc_pid_auxv(struct seq_file *m, struct pid_namespace *ns,
212 			 struct pid *pid, struct task_struct *task)
213 {
214 	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
215 	if (mm && !IS_ERR(mm)) {
216 		unsigned int nwords = 0;
217 		do {
218 			nwords += 2;
219 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
220 		seq_write(m, mm->saved_auxv, nwords * sizeof(mm->saved_auxv[0]));
221 		mmput(mm);
222 		return 0;
223 	} else
224 		return PTR_ERR(mm);
225 }
226 
227 
228 #ifdef CONFIG_KALLSYMS
229 /*
230  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
231  * Returns the resolved symbol.  If that fails, simply return the address.
232  */
233 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
234 			  struct pid *pid, struct task_struct *task)
235 {
236 	unsigned long wchan;
237 	char symname[KSYM_NAME_LEN];
238 
239 	wchan = get_wchan(task);
240 
241 	if (lookup_symbol_name(wchan, symname) < 0)
242 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
243 			return 0;
244 		else
245 			return seq_printf(m, "%lu", wchan);
246 	else
247 		return seq_printf(m, "%s", symname);
248 }
249 #endif /* CONFIG_KALLSYMS */
250 
251 static int lock_trace(struct task_struct *task)
252 {
253 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
254 	if (err)
255 		return err;
256 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
257 		mutex_unlock(&task->signal->cred_guard_mutex);
258 		return -EPERM;
259 	}
260 	return 0;
261 }
262 
263 static void unlock_trace(struct task_struct *task)
264 {
265 	mutex_unlock(&task->signal->cred_guard_mutex);
266 }
267 
268 #ifdef CONFIG_STACKTRACE
269 
270 #define MAX_STACK_TRACE_DEPTH	64
271 
272 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
273 			  struct pid *pid, struct task_struct *task)
274 {
275 	struct stack_trace trace;
276 	unsigned long *entries;
277 	int err;
278 	int i;
279 
280 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
281 	if (!entries)
282 		return -ENOMEM;
283 
284 	trace.nr_entries	= 0;
285 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
286 	trace.entries		= entries;
287 	trace.skip		= 0;
288 
289 	err = lock_trace(task);
290 	if (!err) {
291 		save_stack_trace_tsk(task, &trace);
292 
293 		for (i = 0; i < trace.nr_entries; i++) {
294 			seq_printf(m, "[<%pK>] %pS\n",
295 				   (void *)entries[i], (void *)entries[i]);
296 		}
297 		unlock_trace(task);
298 	}
299 	kfree(entries);
300 
301 	return err;
302 }
303 #endif
304 
305 #ifdef CONFIG_SCHEDSTATS
306 /*
307  * Provides /proc/PID/schedstat
308  */
309 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
310 			      struct pid *pid, struct task_struct *task)
311 {
312 	return seq_printf(m, "%llu %llu %lu\n",
313 			(unsigned long long)task->se.sum_exec_runtime,
314 			(unsigned long long)task->sched_info.run_delay,
315 			task->sched_info.pcount);
316 }
317 #endif
318 
319 #ifdef CONFIG_LATENCYTOP
320 static int lstats_show_proc(struct seq_file *m, void *v)
321 {
322 	int i;
323 	struct inode *inode = m->private;
324 	struct task_struct *task = get_proc_task(inode);
325 
326 	if (!task)
327 		return -ESRCH;
328 	seq_puts(m, "Latency Top version : v0.1\n");
329 	for (i = 0; i < 32; i++) {
330 		struct latency_record *lr = &task->latency_record[i];
331 		if (lr->backtrace[0]) {
332 			int q;
333 			seq_printf(m, "%i %li %li",
334 				   lr->count, lr->time, lr->max);
335 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
336 				unsigned long bt = lr->backtrace[q];
337 				if (!bt)
338 					break;
339 				if (bt == ULONG_MAX)
340 					break;
341 				seq_printf(m, " %ps", (void *)bt);
342 			}
343 			seq_putc(m, '\n');
344 		}
345 
346 	}
347 	put_task_struct(task);
348 	return 0;
349 }
350 
351 static int lstats_open(struct inode *inode, struct file *file)
352 {
353 	return single_open(file, lstats_show_proc, inode);
354 }
355 
356 static ssize_t lstats_write(struct file *file, const char __user *buf,
357 			    size_t count, loff_t *offs)
358 {
359 	struct task_struct *task = get_proc_task(file_inode(file));
360 
361 	if (!task)
362 		return -ESRCH;
363 	clear_all_latency_tracing(task);
364 	put_task_struct(task);
365 
366 	return count;
367 }
368 
369 static const struct file_operations proc_lstats_operations = {
370 	.open		= lstats_open,
371 	.read		= seq_read,
372 	.write		= lstats_write,
373 	.llseek		= seq_lseek,
374 	.release	= single_release,
375 };
376 
377 #endif
378 
379 #ifdef CONFIG_CGROUPS
380 static int cgroup_open(struct inode *inode, struct file *file)
381 {
382 	struct pid *pid = PROC_I(inode)->pid;
383 	return single_open(file, proc_cgroup_show, pid);
384 }
385 
386 static const struct file_operations proc_cgroup_operations = {
387 	.open		= cgroup_open,
388 	.read		= seq_read,
389 	.llseek		= seq_lseek,
390 	.release	= single_release,
391 };
392 #endif
393 
394 #ifdef CONFIG_PROC_PID_CPUSET
395 
396 static int cpuset_open(struct inode *inode, struct file *file)
397 {
398 	struct pid *pid = PROC_I(inode)->pid;
399 	return single_open(file, proc_cpuset_show, pid);
400 }
401 
402 static const struct file_operations proc_cpuset_operations = {
403 	.open		= cpuset_open,
404 	.read		= seq_read,
405 	.llseek		= seq_lseek,
406 	.release	= single_release,
407 };
408 #endif
409 
410 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
411 			  struct pid *pid, struct task_struct *task)
412 {
413 	unsigned long totalpages = totalram_pages + total_swap_pages;
414 	unsigned long points = 0;
415 
416 	read_lock(&tasklist_lock);
417 	if (pid_alive(task))
418 		points = oom_badness(task, NULL, NULL, totalpages) *
419 						1000 / totalpages;
420 	read_unlock(&tasklist_lock);
421 	return seq_printf(m, "%lu\n", points);
422 }
423 
424 struct limit_names {
425 	const char *name;
426 	const char *unit;
427 };
428 
429 static const struct limit_names lnames[RLIM_NLIMITS] = {
430 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
431 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
432 	[RLIMIT_DATA] = {"Max data size", "bytes"},
433 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
434 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
435 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
436 	[RLIMIT_NPROC] = {"Max processes", "processes"},
437 	[RLIMIT_NOFILE] = {"Max open files", "files"},
438 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
439 	[RLIMIT_AS] = {"Max address space", "bytes"},
440 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
441 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
442 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
443 	[RLIMIT_NICE] = {"Max nice priority", NULL},
444 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
445 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
446 };
447 
448 /* Display limits for a process */
449 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
450 			   struct pid *pid, struct task_struct *task)
451 {
452 	unsigned int i;
453 	unsigned long flags;
454 
455 	struct rlimit rlim[RLIM_NLIMITS];
456 
457 	if (!lock_task_sighand(task, &flags))
458 		return 0;
459 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
460 	unlock_task_sighand(task, &flags);
461 
462 	/*
463 	 * print the file header
464 	 */
465        seq_printf(m, "%-25s %-20s %-20s %-10s\n",
466 			"Limit", "Soft Limit", "Hard Limit", "Units");
467 
468 	for (i = 0; i < RLIM_NLIMITS; i++) {
469 		if (rlim[i].rlim_cur == RLIM_INFINITY)
470 			seq_printf(m, "%-25s %-20s ",
471 					 lnames[i].name, "unlimited");
472 		else
473 			seq_printf(m, "%-25s %-20lu ",
474 					 lnames[i].name, rlim[i].rlim_cur);
475 
476 		if (rlim[i].rlim_max == RLIM_INFINITY)
477 			seq_printf(m, "%-20s ", "unlimited");
478 		else
479 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
480 
481 		if (lnames[i].unit)
482 			seq_printf(m, "%-10s\n", lnames[i].unit);
483 		else
484 			seq_putc(m, '\n');
485 	}
486 
487 	return 0;
488 }
489 
490 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
491 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
492 			    struct pid *pid, struct task_struct *task)
493 {
494 	long nr;
495 	unsigned long args[6], sp, pc;
496 	int res = lock_trace(task);
497 	if (res)
498 		return res;
499 
500 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
501 		seq_puts(m, "running\n");
502 	else if (nr < 0)
503 		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
504 	else
505 		seq_printf(m,
506 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
507 		       nr,
508 		       args[0], args[1], args[2], args[3], args[4], args[5],
509 		       sp, pc);
510 	unlock_trace(task);
511 	return res;
512 }
513 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
514 
515 /************************************************************************/
516 /*                       Here the fs part begins                        */
517 /************************************************************************/
518 
519 /* permission checks */
520 static int proc_fd_access_allowed(struct inode *inode)
521 {
522 	struct task_struct *task;
523 	int allowed = 0;
524 	/* Allow access to a task's file descriptors if it is us or we
525 	 * may use ptrace attach to the process and find out that
526 	 * information.
527 	 */
528 	task = get_proc_task(inode);
529 	if (task) {
530 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
531 		put_task_struct(task);
532 	}
533 	return allowed;
534 }
535 
536 int proc_setattr(struct dentry *dentry, struct iattr *attr)
537 {
538 	int error;
539 	struct inode *inode = dentry->d_inode;
540 
541 	if (attr->ia_valid & ATTR_MODE)
542 		return -EPERM;
543 
544 	error = inode_change_ok(inode, attr);
545 	if (error)
546 		return error;
547 
548 	setattr_copy(inode, attr);
549 	mark_inode_dirty(inode);
550 	return 0;
551 }
552 
553 /*
554  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
555  * or euid/egid (for hide_pid_min=2)?
556  */
557 static bool has_pid_permissions(struct pid_namespace *pid,
558 				 struct task_struct *task,
559 				 int hide_pid_min)
560 {
561 	if (pid->hide_pid < hide_pid_min)
562 		return true;
563 	if (in_group_p(pid->pid_gid))
564 		return true;
565 	return ptrace_may_access(task, PTRACE_MODE_READ);
566 }
567 
568 
569 static int proc_pid_permission(struct inode *inode, int mask)
570 {
571 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
572 	struct task_struct *task;
573 	bool has_perms;
574 
575 	task = get_proc_task(inode);
576 	if (!task)
577 		return -ESRCH;
578 	has_perms = has_pid_permissions(pid, task, 1);
579 	put_task_struct(task);
580 
581 	if (!has_perms) {
582 		if (pid->hide_pid == 2) {
583 			/*
584 			 * Let's make getdents(), stat(), and open()
585 			 * consistent with each other.  If a process
586 			 * may not stat() a file, it shouldn't be seen
587 			 * in procfs at all.
588 			 */
589 			return -ENOENT;
590 		}
591 
592 		return -EPERM;
593 	}
594 	return generic_permission(inode, mask);
595 }
596 
597 
598 
599 static const struct inode_operations proc_def_inode_operations = {
600 	.setattr	= proc_setattr,
601 };
602 
603 static int proc_single_show(struct seq_file *m, void *v)
604 {
605 	struct inode *inode = m->private;
606 	struct pid_namespace *ns;
607 	struct pid *pid;
608 	struct task_struct *task;
609 	int ret;
610 
611 	ns = inode->i_sb->s_fs_info;
612 	pid = proc_pid(inode);
613 	task = get_pid_task(pid, PIDTYPE_PID);
614 	if (!task)
615 		return -ESRCH;
616 
617 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
618 
619 	put_task_struct(task);
620 	return ret;
621 }
622 
623 static int proc_single_open(struct inode *inode, struct file *filp)
624 {
625 	return single_open(filp, proc_single_show, inode);
626 }
627 
628 static const struct file_operations proc_single_file_operations = {
629 	.open		= proc_single_open,
630 	.read		= seq_read,
631 	.llseek		= seq_lseek,
632 	.release	= single_release,
633 };
634 
635 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
636 {
637 	struct task_struct *task = get_proc_task(file_inode(file));
638 	struct mm_struct *mm;
639 
640 	if (!task)
641 		return -ESRCH;
642 
643 	mm = mm_access(task, mode);
644 	put_task_struct(task);
645 
646 	if (IS_ERR(mm))
647 		return PTR_ERR(mm);
648 
649 	if (mm) {
650 		/* ensure this mm_struct can't be freed */
651 		atomic_inc(&mm->mm_count);
652 		/* but do not pin its memory */
653 		mmput(mm);
654 	}
655 
656 	file->private_data = mm;
657 
658 	return 0;
659 }
660 
661 static int mem_open(struct inode *inode, struct file *file)
662 {
663 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
664 
665 	/* OK to pass negative loff_t, we can catch out-of-range */
666 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
667 
668 	return ret;
669 }
670 
671 static ssize_t mem_rw(struct file *file, char __user *buf,
672 			size_t count, loff_t *ppos, int write)
673 {
674 	struct mm_struct *mm = file->private_data;
675 	unsigned long addr = *ppos;
676 	ssize_t copied;
677 	char *page;
678 
679 	if (!mm)
680 		return 0;
681 
682 	page = (char *)__get_free_page(GFP_TEMPORARY);
683 	if (!page)
684 		return -ENOMEM;
685 
686 	copied = 0;
687 	if (!atomic_inc_not_zero(&mm->mm_users))
688 		goto free;
689 
690 	while (count > 0) {
691 		int this_len = min_t(int, count, PAGE_SIZE);
692 
693 		if (write && copy_from_user(page, buf, this_len)) {
694 			copied = -EFAULT;
695 			break;
696 		}
697 
698 		this_len = access_remote_vm(mm, addr, page, this_len, write);
699 		if (!this_len) {
700 			if (!copied)
701 				copied = -EIO;
702 			break;
703 		}
704 
705 		if (!write && copy_to_user(buf, page, this_len)) {
706 			copied = -EFAULT;
707 			break;
708 		}
709 
710 		buf += this_len;
711 		addr += this_len;
712 		copied += this_len;
713 		count -= this_len;
714 	}
715 	*ppos = addr;
716 
717 	mmput(mm);
718 free:
719 	free_page((unsigned long) page);
720 	return copied;
721 }
722 
723 static ssize_t mem_read(struct file *file, char __user *buf,
724 			size_t count, loff_t *ppos)
725 {
726 	return mem_rw(file, buf, count, ppos, 0);
727 }
728 
729 static ssize_t mem_write(struct file *file, const char __user *buf,
730 			 size_t count, loff_t *ppos)
731 {
732 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
733 }
734 
735 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
736 {
737 	switch (orig) {
738 	case 0:
739 		file->f_pos = offset;
740 		break;
741 	case 1:
742 		file->f_pos += offset;
743 		break;
744 	default:
745 		return -EINVAL;
746 	}
747 	force_successful_syscall_return();
748 	return file->f_pos;
749 }
750 
751 static int mem_release(struct inode *inode, struct file *file)
752 {
753 	struct mm_struct *mm = file->private_data;
754 	if (mm)
755 		mmdrop(mm);
756 	return 0;
757 }
758 
759 static const struct file_operations proc_mem_operations = {
760 	.llseek		= mem_lseek,
761 	.read		= mem_read,
762 	.write		= mem_write,
763 	.open		= mem_open,
764 	.release	= mem_release,
765 };
766 
767 static int environ_open(struct inode *inode, struct file *file)
768 {
769 	return __mem_open(inode, file, PTRACE_MODE_READ);
770 }
771 
772 static ssize_t environ_read(struct file *file, char __user *buf,
773 			size_t count, loff_t *ppos)
774 {
775 	char *page;
776 	unsigned long src = *ppos;
777 	int ret = 0;
778 	struct mm_struct *mm = file->private_data;
779 
780 	if (!mm)
781 		return 0;
782 
783 	page = (char *)__get_free_page(GFP_TEMPORARY);
784 	if (!page)
785 		return -ENOMEM;
786 
787 	ret = 0;
788 	if (!atomic_inc_not_zero(&mm->mm_users))
789 		goto free;
790 	while (count > 0) {
791 		size_t this_len, max_len;
792 		int retval;
793 
794 		if (src >= (mm->env_end - mm->env_start))
795 			break;
796 
797 		this_len = mm->env_end - (mm->env_start + src);
798 
799 		max_len = min_t(size_t, PAGE_SIZE, count);
800 		this_len = min(max_len, this_len);
801 
802 		retval = access_remote_vm(mm, (mm->env_start + src),
803 			page, this_len, 0);
804 
805 		if (retval <= 0) {
806 			ret = retval;
807 			break;
808 		}
809 
810 		if (copy_to_user(buf, page, retval)) {
811 			ret = -EFAULT;
812 			break;
813 		}
814 
815 		ret += retval;
816 		src += retval;
817 		buf += retval;
818 		count -= retval;
819 	}
820 	*ppos = src;
821 	mmput(mm);
822 
823 free:
824 	free_page((unsigned long) page);
825 	return ret;
826 }
827 
828 static const struct file_operations proc_environ_operations = {
829 	.open		= environ_open,
830 	.read		= environ_read,
831 	.llseek		= generic_file_llseek,
832 	.release	= mem_release,
833 };
834 
835 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
836 			    loff_t *ppos)
837 {
838 	struct task_struct *task = get_proc_task(file_inode(file));
839 	char buffer[PROC_NUMBUF];
840 	int oom_adj = OOM_ADJUST_MIN;
841 	size_t len;
842 	unsigned long flags;
843 
844 	if (!task)
845 		return -ESRCH;
846 	if (lock_task_sighand(task, &flags)) {
847 		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
848 			oom_adj = OOM_ADJUST_MAX;
849 		else
850 			oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
851 				  OOM_SCORE_ADJ_MAX;
852 		unlock_task_sighand(task, &flags);
853 	}
854 	put_task_struct(task);
855 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
856 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
857 }
858 
859 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
860 			     size_t count, loff_t *ppos)
861 {
862 	struct task_struct *task;
863 	char buffer[PROC_NUMBUF];
864 	int oom_adj;
865 	unsigned long flags;
866 	int err;
867 
868 	memset(buffer, 0, sizeof(buffer));
869 	if (count > sizeof(buffer) - 1)
870 		count = sizeof(buffer) - 1;
871 	if (copy_from_user(buffer, buf, count)) {
872 		err = -EFAULT;
873 		goto out;
874 	}
875 
876 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
877 	if (err)
878 		goto out;
879 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
880 	     oom_adj != OOM_DISABLE) {
881 		err = -EINVAL;
882 		goto out;
883 	}
884 
885 	task = get_proc_task(file_inode(file));
886 	if (!task) {
887 		err = -ESRCH;
888 		goto out;
889 	}
890 
891 	task_lock(task);
892 	if (!task->mm) {
893 		err = -EINVAL;
894 		goto err_task_lock;
895 	}
896 
897 	if (!lock_task_sighand(task, &flags)) {
898 		err = -ESRCH;
899 		goto err_task_lock;
900 	}
901 
902 	/*
903 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
904 	 * value is always attainable.
905 	 */
906 	if (oom_adj == OOM_ADJUST_MAX)
907 		oom_adj = OOM_SCORE_ADJ_MAX;
908 	else
909 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
910 
911 	if (oom_adj < task->signal->oom_score_adj &&
912 	    !capable(CAP_SYS_RESOURCE)) {
913 		err = -EACCES;
914 		goto err_sighand;
915 	}
916 
917 	/*
918 	 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
919 	 * /proc/pid/oom_score_adj instead.
920 	 */
921 	pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
922 		  current->comm, task_pid_nr(current), task_pid_nr(task),
923 		  task_pid_nr(task));
924 
925 	task->signal->oom_score_adj = oom_adj;
926 	trace_oom_score_adj_update(task);
927 err_sighand:
928 	unlock_task_sighand(task, &flags);
929 err_task_lock:
930 	task_unlock(task);
931 	put_task_struct(task);
932 out:
933 	return err < 0 ? err : count;
934 }
935 
936 static const struct file_operations proc_oom_adj_operations = {
937 	.read		= oom_adj_read,
938 	.write		= oom_adj_write,
939 	.llseek		= generic_file_llseek,
940 };
941 
942 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
943 					size_t count, loff_t *ppos)
944 {
945 	struct task_struct *task = get_proc_task(file_inode(file));
946 	char buffer[PROC_NUMBUF];
947 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
948 	unsigned long flags;
949 	size_t len;
950 
951 	if (!task)
952 		return -ESRCH;
953 	if (lock_task_sighand(task, &flags)) {
954 		oom_score_adj = task->signal->oom_score_adj;
955 		unlock_task_sighand(task, &flags);
956 	}
957 	put_task_struct(task);
958 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
959 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
960 }
961 
962 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
963 					size_t count, loff_t *ppos)
964 {
965 	struct task_struct *task;
966 	char buffer[PROC_NUMBUF];
967 	unsigned long flags;
968 	int oom_score_adj;
969 	int err;
970 
971 	memset(buffer, 0, sizeof(buffer));
972 	if (count > sizeof(buffer) - 1)
973 		count = sizeof(buffer) - 1;
974 	if (copy_from_user(buffer, buf, count)) {
975 		err = -EFAULT;
976 		goto out;
977 	}
978 
979 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
980 	if (err)
981 		goto out;
982 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
983 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
984 		err = -EINVAL;
985 		goto out;
986 	}
987 
988 	task = get_proc_task(file_inode(file));
989 	if (!task) {
990 		err = -ESRCH;
991 		goto out;
992 	}
993 
994 	task_lock(task);
995 	if (!task->mm) {
996 		err = -EINVAL;
997 		goto err_task_lock;
998 	}
999 
1000 	if (!lock_task_sighand(task, &flags)) {
1001 		err = -ESRCH;
1002 		goto err_task_lock;
1003 	}
1004 
1005 	if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1006 			!capable(CAP_SYS_RESOURCE)) {
1007 		err = -EACCES;
1008 		goto err_sighand;
1009 	}
1010 
1011 	task->signal->oom_score_adj = (short)oom_score_adj;
1012 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1013 		task->signal->oom_score_adj_min = (short)oom_score_adj;
1014 	trace_oom_score_adj_update(task);
1015 
1016 err_sighand:
1017 	unlock_task_sighand(task, &flags);
1018 err_task_lock:
1019 	task_unlock(task);
1020 	put_task_struct(task);
1021 out:
1022 	return err < 0 ? err : count;
1023 }
1024 
1025 static const struct file_operations proc_oom_score_adj_operations = {
1026 	.read		= oom_score_adj_read,
1027 	.write		= oom_score_adj_write,
1028 	.llseek		= default_llseek,
1029 };
1030 
1031 #ifdef CONFIG_AUDITSYSCALL
1032 #define TMPBUFLEN 21
1033 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1034 				  size_t count, loff_t *ppos)
1035 {
1036 	struct inode * inode = file_inode(file);
1037 	struct task_struct *task = get_proc_task(inode);
1038 	ssize_t length;
1039 	char tmpbuf[TMPBUFLEN];
1040 
1041 	if (!task)
1042 		return -ESRCH;
1043 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1044 			   from_kuid(file->f_cred->user_ns,
1045 				     audit_get_loginuid(task)));
1046 	put_task_struct(task);
1047 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1048 }
1049 
1050 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1051 				   size_t count, loff_t *ppos)
1052 {
1053 	struct inode * inode = file_inode(file);
1054 	char *page, *tmp;
1055 	ssize_t length;
1056 	uid_t loginuid;
1057 	kuid_t kloginuid;
1058 
1059 	rcu_read_lock();
1060 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1061 		rcu_read_unlock();
1062 		return -EPERM;
1063 	}
1064 	rcu_read_unlock();
1065 
1066 	if (count >= PAGE_SIZE)
1067 		count = PAGE_SIZE - 1;
1068 
1069 	if (*ppos != 0) {
1070 		/* No partial writes. */
1071 		return -EINVAL;
1072 	}
1073 	page = (char*)__get_free_page(GFP_TEMPORARY);
1074 	if (!page)
1075 		return -ENOMEM;
1076 	length = -EFAULT;
1077 	if (copy_from_user(page, buf, count))
1078 		goto out_free_page;
1079 
1080 	page[count] = '\0';
1081 	loginuid = simple_strtoul(page, &tmp, 10);
1082 	if (tmp == page) {
1083 		length = -EINVAL;
1084 		goto out_free_page;
1085 
1086 	}
1087 
1088 	/* is userspace tring to explicitly UNSET the loginuid? */
1089 	if (loginuid == AUDIT_UID_UNSET) {
1090 		kloginuid = INVALID_UID;
1091 	} else {
1092 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1093 		if (!uid_valid(kloginuid)) {
1094 			length = -EINVAL;
1095 			goto out_free_page;
1096 		}
1097 	}
1098 
1099 	length = audit_set_loginuid(kloginuid);
1100 	if (likely(length == 0))
1101 		length = count;
1102 
1103 out_free_page:
1104 	free_page((unsigned long) page);
1105 	return length;
1106 }
1107 
1108 static const struct file_operations proc_loginuid_operations = {
1109 	.read		= proc_loginuid_read,
1110 	.write		= proc_loginuid_write,
1111 	.llseek		= generic_file_llseek,
1112 };
1113 
1114 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1115 				  size_t count, loff_t *ppos)
1116 {
1117 	struct inode * inode = file_inode(file);
1118 	struct task_struct *task = get_proc_task(inode);
1119 	ssize_t length;
1120 	char tmpbuf[TMPBUFLEN];
1121 
1122 	if (!task)
1123 		return -ESRCH;
1124 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1125 				audit_get_sessionid(task));
1126 	put_task_struct(task);
1127 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1128 }
1129 
1130 static const struct file_operations proc_sessionid_operations = {
1131 	.read		= proc_sessionid_read,
1132 	.llseek		= generic_file_llseek,
1133 };
1134 #endif
1135 
1136 #ifdef CONFIG_FAULT_INJECTION
1137 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1138 				      size_t count, loff_t *ppos)
1139 {
1140 	struct task_struct *task = get_proc_task(file_inode(file));
1141 	char buffer[PROC_NUMBUF];
1142 	size_t len;
1143 	int make_it_fail;
1144 
1145 	if (!task)
1146 		return -ESRCH;
1147 	make_it_fail = task->make_it_fail;
1148 	put_task_struct(task);
1149 
1150 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1151 
1152 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1153 }
1154 
1155 static ssize_t proc_fault_inject_write(struct file * file,
1156 			const char __user * buf, size_t count, loff_t *ppos)
1157 {
1158 	struct task_struct *task;
1159 	char buffer[PROC_NUMBUF], *end;
1160 	int make_it_fail;
1161 
1162 	if (!capable(CAP_SYS_RESOURCE))
1163 		return -EPERM;
1164 	memset(buffer, 0, sizeof(buffer));
1165 	if (count > sizeof(buffer) - 1)
1166 		count = sizeof(buffer) - 1;
1167 	if (copy_from_user(buffer, buf, count))
1168 		return -EFAULT;
1169 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1170 	if (*end)
1171 		return -EINVAL;
1172 	if (make_it_fail < 0 || make_it_fail > 1)
1173 		return -EINVAL;
1174 
1175 	task = get_proc_task(file_inode(file));
1176 	if (!task)
1177 		return -ESRCH;
1178 	task->make_it_fail = make_it_fail;
1179 	put_task_struct(task);
1180 
1181 	return count;
1182 }
1183 
1184 static const struct file_operations proc_fault_inject_operations = {
1185 	.read		= proc_fault_inject_read,
1186 	.write		= proc_fault_inject_write,
1187 	.llseek		= generic_file_llseek,
1188 };
1189 #endif
1190 
1191 
1192 #ifdef CONFIG_SCHED_DEBUG
1193 /*
1194  * Print out various scheduling related per-task fields:
1195  */
1196 static int sched_show(struct seq_file *m, void *v)
1197 {
1198 	struct inode *inode = m->private;
1199 	struct task_struct *p;
1200 
1201 	p = get_proc_task(inode);
1202 	if (!p)
1203 		return -ESRCH;
1204 	proc_sched_show_task(p, m);
1205 
1206 	put_task_struct(p);
1207 
1208 	return 0;
1209 }
1210 
1211 static ssize_t
1212 sched_write(struct file *file, const char __user *buf,
1213 	    size_t count, loff_t *offset)
1214 {
1215 	struct inode *inode = file_inode(file);
1216 	struct task_struct *p;
1217 
1218 	p = get_proc_task(inode);
1219 	if (!p)
1220 		return -ESRCH;
1221 	proc_sched_set_task(p);
1222 
1223 	put_task_struct(p);
1224 
1225 	return count;
1226 }
1227 
1228 static int sched_open(struct inode *inode, struct file *filp)
1229 {
1230 	return single_open(filp, sched_show, inode);
1231 }
1232 
1233 static const struct file_operations proc_pid_sched_operations = {
1234 	.open		= sched_open,
1235 	.read		= seq_read,
1236 	.write		= sched_write,
1237 	.llseek		= seq_lseek,
1238 	.release	= single_release,
1239 };
1240 
1241 #endif
1242 
1243 #ifdef CONFIG_SCHED_AUTOGROUP
1244 /*
1245  * Print out autogroup related information:
1246  */
1247 static int sched_autogroup_show(struct seq_file *m, void *v)
1248 {
1249 	struct inode *inode = m->private;
1250 	struct task_struct *p;
1251 
1252 	p = get_proc_task(inode);
1253 	if (!p)
1254 		return -ESRCH;
1255 	proc_sched_autogroup_show_task(p, m);
1256 
1257 	put_task_struct(p);
1258 
1259 	return 0;
1260 }
1261 
1262 static ssize_t
1263 sched_autogroup_write(struct file *file, const char __user *buf,
1264 	    size_t count, loff_t *offset)
1265 {
1266 	struct inode *inode = file_inode(file);
1267 	struct task_struct *p;
1268 	char buffer[PROC_NUMBUF];
1269 	int nice;
1270 	int err;
1271 
1272 	memset(buffer, 0, sizeof(buffer));
1273 	if (count > sizeof(buffer) - 1)
1274 		count = sizeof(buffer) - 1;
1275 	if (copy_from_user(buffer, buf, count))
1276 		return -EFAULT;
1277 
1278 	err = kstrtoint(strstrip(buffer), 0, &nice);
1279 	if (err < 0)
1280 		return err;
1281 
1282 	p = get_proc_task(inode);
1283 	if (!p)
1284 		return -ESRCH;
1285 
1286 	err = proc_sched_autogroup_set_nice(p, nice);
1287 	if (err)
1288 		count = err;
1289 
1290 	put_task_struct(p);
1291 
1292 	return count;
1293 }
1294 
1295 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1296 {
1297 	int ret;
1298 
1299 	ret = single_open(filp, sched_autogroup_show, NULL);
1300 	if (!ret) {
1301 		struct seq_file *m = filp->private_data;
1302 
1303 		m->private = inode;
1304 	}
1305 	return ret;
1306 }
1307 
1308 static const struct file_operations proc_pid_sched_autogroup_operations = {
1309 	.open		= sched_autogroup_open,
1310 	.read		= seq_read,
1311 	.write		= sched_autogroup_write,
1312 	.llseek		= seq_lseek,
1313 	.release	= single_release,
1314 };
1315 
1316 #endif /* CONFIG_SCHED_AUTOGROUP */
1317 
1318 static ssize_t comm_write(struct file *file, const char __user *buf,
1319 				size_t count, loff_t *offset)
1320 {
1321 	struct inode *inode = file_inode(file);
1322 	struct task_struct *p;
1323 	char buffer[TASK_COMM_LEN];
1324 	const size_t maxlen = sizeof(buffer) - 1;
1325 
1326 	memset(buffer, 0, sizeof(buffer));
1327 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1328 		return -EFAULT;
1329 
1330 	p = get_proc_task(inode);
1331 	if (!p)
1332 		return -ESRCH;
1333 
1334 	if (same_thread_group(current, p))
1335 		set_task_comm(p, buffer);
1336 	else
1337 		count = -EINVAL;
1338 
1339 	put_task_struct(p);
1340 
1341 	return count;
1342 }
1343 
1344 static int comm_show(struct seq_file *m, void *v)
1345 {
1346 	struct inode *inode = m->private;
1347 	struct task_struct *p;
1348 
1349 	p = get_proc_task(inode);
1350 	if (!p)
1351 		return -ESRCH;
1352 
1353 	task_lock(p);
1354 	seq_printf(m, "%s\n", p->comm);
1355 	task_unlock(p);
1356 
1357 	put_task_struct(p);
1358 
1359 	return 0;
1360 }
1361 
1362 static int comm_open(struct inode *inode, struct file *filp)
1363 {
1364 	return single_open(filp, comm_show, inode);
1365 }
1366 
1367 static const struct file_operations proc_pid_set_comm_operations = {
1368 	.open		= comm_open,
1369 	.read		= seq_read,
1370 	.write		= comm_write,
1371 	.llseek		= seq_lseek,
1372 	.release	= single_release,
1373 };
1374 
1375 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1376 {
1377 	struct task_struct *task;
1378 	struct mm_struct *mm;
1379 	struct file *exe_file;
1380 
1381 	task = get_proc_task(dentry->d_inode);
1382 	if (!task)
1383 		return -ENOENT;
1384 	mm = get_task_mm(task);
1385 	put_task_struct(task);
1386 	if (!mm)
1387 		return -ENOENT;
1388 	exe_file = get_mm_exe_file(mm);
1389 	mmput(mm);
1390 	if (exe_file) {
1391 		*exe_path = exe_file->f_path;
1392 		path_get(&exe_file->f_path);
1393 		fput(exe_file);
1394 		return 0;
1395 	} else
1396 		return -ENOENT;
1397 }
1398 
1399 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1400 {
1401 	struct inode *inode = dentry->d_inode;
1402 	struct path path;
1403 	int error = -EACCES;
1404 
1405 	/* Are we allowed to snoop on the tasks file descriptors? */
1406 	if (!proc_fd_access_allowed(inode))
1407 		goto out;
1408 
1409 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1410 	if (error)
1411 		goto out;
1412 
1413 	nd_jump_link(nd, &path);
1414 	return NULL;
1415 out:
1416 	return ERR_PTR(error);
1417 }
1418 
1419 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1420 {
1421 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1422 	char *pathname;
1423 	int len;
1424 
1425 	if (!tmp)
1426 		return -ENOMEM;
1427 
1428 	pathname = d_path(path, tmp, PAGE_SIZE);
1429 	len = PTR_ERR(pathname);
1430 	if (IS_ERR(pathname))
1431 		goto out;
1432 	len = tmp + PAGE_SIZE - 1 - pathname;
1433 
1434 	if (len > buflen)
1435 		len = buflen;
1436 	if (copy_to_user(buffer, pathname, len))
1437 		len = -EFAULT;
1438  out:
1439 	free_page((unsigned long)tmp);
1440 	return len;
1441 }
1442 
1443 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1444 {
1445 	int error = -EACCES;
1446 	struct inode *inode = dentry->d_inode;
1447 	struct path path;
1448 
1449 	/* Are we allowed to snoop on the tasks file descriptors? */
1450 	if (!proc_fd_access_allowed(inode))
1451 		goto out;
1452 
1453 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1454 	if (error)
1455 		goto out;
1456 
1457 	error = do_proc_readlink(&path, buffer, buflen);
1458 	path_put(&path);
1459 out:
1460 	return error;
1461 }
1462 
1463 const struct inode_operations proc_pid_link_inode_operations = {
1464 	.readlink	= proc_pid_readlink,
1465 	.follow_link	= proc_pid_follow_link,
1466 	.setattr	= proc_setattr,
1467 };
1468 
1469 
1470 /* building an inode */
1471 
1472 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1473 {
1474 	struct inode * inode;
1475 	struct proc_inode *ei;
1476 	const struct cred *cred;
1477 
1478 	/* We need a new inode */
1479 
1480 	inode = new_inode(sb);
1481 	if (!inode)
1482 		goto out;
1483 
1484 	/* Common stuff */
1485 	ei = PROC_I(inode);
1486 	inode->i_ino = get_next_ino();
1487 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1488 	inode->i_op = &proc_def_inode_operations;
1489 
1490 	/*
1491 	 * grab the reference to task.
1492 	 */
1493 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1494 	if (!ei->pid)
1495 		goto out_unlock;
1496 
1497 	if (task_dumpable(task)) {
1498 		rcu_read_lock();
1499 		cred = __task_cred(task);
1500 		inode->i_uid = cred->euid;
1501 		inode->i_gid = cred->egid;
1502 		rcu_read_unlock();
1503 	}
1504 	security_task_to_inode(task, inode);
1505 
1506 out:
1507 	return inode;
1508 
1509 out_unlock:
1510 	iput(inode);
1511 	return NULL;
1512 }
1513 
1514 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1515 {
1516 	struct inode *inode = dentry->d_inode;
1517 	struct task_struct *task;
1518 	const struct cred *cred;
1519 	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1520 
1521 	generic_fillattr(inode, stat);
1522 
1523 	rcu_read_lock();
1524 	stat->uid = GLOBAL_ROOT_UID;
1525 	stat->gid = GLOBAL_ROOT_GID;
1526 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1527 	if (task) {
1528 		if (!has_pid_permissions(pid, task, 2)) {
1529 			rcu_read_unlock();
1530 			/*
1531 			 * This doesn't prevent learning whether PID exists,
1532 			 * it only makes getattr() consistent with readdir().
1533 			 */
1534 			return -ENOENT;
1535 		}
1536 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1537 		    task_dumpable(task)) {
1538 			cred = __task_cred(task);
1539 			stat->uid = cred->euid;
1540 			stat->gid = cred->egid;
1541 		}
1542 	}
1543 	rcu_read_unlock();
1544 	return 0;
1545 }
1546 
1547 /* dentry stuff */
1548 
1549 /*
1550  *	Exceptional case: normally we are not allowed to unhash a busy
1551  * directory. In this case, however, we can do it - no aliasing problems
1552  * due to the way we treat inodes.
1553  *
1554  * Rewrite the inode's ownerships here because the owning task may have
1555  * performed a setuid(), etc.
1556  *
1557  * Before the /proc/pid/status file was created the only way to read
1558  * the effective uid of a /process was to stat /proc/pid.  Reading
1559  * /proc/pid/status is slow enough that procps and other packages
1560  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1561  * made this apply to all per process world readable and executable
1562  * directories.
1563  */
1564 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1565 {
1566 	struct inode *inode;
1567 	struct task_struct *task;
1568 	const struct cred *cred;
1569 
1570 	if (flags & LOOKUP_RCU)
1571 		return -ECHILD;
1572 
1573 	inode = dentry->d_inode;
1574 	task = get_proc_task(inode);
1575 
1576 	if (task) {
1577 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1578 		    task_dumpable(task)) {
1579 			rcu_read_lock();
1580 			cred = __task_cred(task);
1581 			inode->i_uid = cred->euid;
1582 			inode->i_gid = cred->egid;
1583 			rcu_read_unlock();
1584 		} else {
1585 			inode->i_uid = GLOBAL_ROOT_UID;
1586 			inode->i_gid = GLOBAL_ROOT_GID;
1587 		}
1588 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1589 		security_task_to_inode(task, inode);
1590 		put_task_struct(task);
1591 		return 1;
1592 	}
1593 	d_drop(dentry);
1594 	return 0;
1595 }
1596 
1597 static inline bool proc_inode_is_dead(struct inode *inode)
1598 {
1599 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1600 }
1601 
1602 int pid_delete_dentry(const struct dentry *dentry)
1603 {
1604 	/* Is the task we represent dead?
1605 	 * If so, then don't put the dentry on the lru list,
1606 	 * kill it immediately.
1607 	 */
1608 	return proc_inode_is_dead(dentry->d_inode);
1609 }
1610 
1611 const struct dentry_operations pid_dentry_operations =
1612 {
1613 	.d_revalidate	= pid_revalidate,
1614 	.d_delete	= pid_delete_dentry,
1615 };
1616 
1617 /* Lookups */
1618 
1619 /*
1620  * Fill a directory entry.
1621  *
1622  * If possible create the dcache entry and derive our inode number and
1623  * file type from dcache entry.
1624  *
1625  * Since all of the proc inode numbers are dynamically generated, the inode
1626  * numbers do not exist until the inode is cache.  This means creating the
1627  * the dcache entry in readdir is necessary to keep the inode numbers
1628  * reported by readdir in sync with the inode numbers reported
1629  * by stat.
1630  */
1631 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1632 	const char *name, int len,
1633 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1634 {
1635 	struct dentry *child, *dir = file->f_path.dentry;
1636 	struct qstr qname = QSTR_INIT(name, len);
1637 	struct inode *inode;
1638 	unsigned type;
1639 	ino_t ino;
1640 
1641 	child = d_hash_and_lookup(dir, &qname);
1642 	if (!child) {
1643 		child = d_alloc(dir, &qname);
1644 		if (!child)
1645 			goto end_instantiate;
1646 		if (instantiate(dir->d_inode, child, task, ptr) < 0) {
1647 			dput(child);
1648 			goto end_instantiate;
1649 		}
1650 	}
1651 	inode = child->d_inode;
1652 	ino = inode->i_ino;
1653 	type = inode->i_mode >> 12;
1654 	dput(child);
1655 	return dir_emit(ctx, name, len, ino, type);
1656 
1657 end_instantiate:
1658 	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1659 }
1660 
1661 #ifdef CONFIG_CHECKPOINT_RESTORE
1662 
1663 /*
1664  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1665  * which represent vma start and end addresses.
1666  */
1667 static int dname_to_vma_addr(struct dentry *dentry,
1668 			     unsigned long *start, unsigned long *end)
1669 {
1670 	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1671 		return -EINVAL;
1672 
1673 	return 0;
1674 }
1675 
1676 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1677 {
1678 	unsigned long vm_start, vm_end;
1679 	bool exact_vma_exists = false;
1680 	struct mm_struct *mm = NULL;
1681 	struct task_struct *task;
1682 	const struct cred *cred;
1683 	struct inode *inode;
1684 	int status = 0;
1685 
1686 	if (flags & LOOKUP_RCU)
1687 		return -ECHILD;
1688 
1689 	if (!capable(CAP_SYS_ADMIN)) {
1690 		status = -EPERM;
1691 		goto out_notask;
1692 	}
1693 
1694 	inode = dentry->d_inode;
1695 	task = get_proc_task(inode);
1696 	if (!task)
1697 		goto out_notask;
1698 
1699 	mm = mm_access(task, PTRACE_MODE_READ);
1700 	if (IS_ERR_OR_NULL(mm))
1701 		goto out;
1702 
1703 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1704 		down_read(&mm->mmap_sem);
1705 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1706 		up_read(&mm->mmap_sem);
1707 	}
1708 
1709 	mmput(mm);
1710 
1711 	if (exact_vma_exists) {
1712 		if (task_dumpable(task)) {
1713 			rcu_read_lock();
1714 			cred = __task_cred(task);
1715 			inode->i_uid = cred->euid;
1716 			inode->i_gid = cred->egid;
1717 			rcu_read_unlock();
1718 		} else {
1719 			inode->i_uid = GLOBAL_ROOT_UID;
1720 			inode->i_gid = GLOBAL_ROOT_GID;
1721 		}
1722 		security_task_to_inode(task, inode);
1723 		status = 1;
1724 	}
1725 
1726 out:
1727 	put_task_struct(task);
1728 
1729 out_notask:
1730 	if (status <= 0)
1731 		d_drop(dentry);
1732 
1733 	return status;
1734 }
1735 
1736 static const struct dentry_operations tid_map_files_dentry_operations = {
1737 	.d_revalidate	= map_files_d_revalidate,
1738 	.d_delete	= pid_delete_dentry,
1739 };
1740 
1741 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1742 {
1743 	unsigned long vm_start, vm_end;
1744 	struct vm_area_struct *vma;
1745 	struct task_struct *task;
1746 	struct mm_struct *mm;
1747 	int rc;
1748 
1749 	rc = -ENOENT;
1750 	task = get_proc_task(dentry->d_inode);
1751 	if (!task)
1752 		goto out;
1753 
1754 	mm = get_task_mm(task);
1755 	put_task_struct(task);
1756 	if (!mm)
1757 		goto out;
1758 
1759 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1760 	if (rc)
1761 		goto out_mmput;
1762 
1763 	rc = -ENOENT;
1764 	down_read(&mm->mmap_sem);
1765 	vma = find_exact_vma(mm, vm_start, vm_end);
1766 	if (vma && vma->vm_file) {
1767 		*path = vma->vm_file->f_path;
1768 		path_get(path);
1769 		rc = 0;
1770 	}
1771 	up_read(&mm->mmap_sem);
1772 
1773 out_mmput:
1774 	mmput(mm);
1775 out:
1776 	return rc;
1777 }
1778 
1779 struct map_files_info {
1780 	fmode_t		mode;
1781 	unsigned long	len;
1782 	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1783 };
1784 
1785 static int
1786 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1787 			   struct task_struct *task, const void *ptr)
1788 {
1789 	fmode_t mode = (fmode_t)(unsigned long)ptr;
1790 	struct proc_inode *ei;
1791 	struct inode *inode;
1792 
1793 	inode = proc_pid_make_inode(dir->i_sb, task);
1794 	if (!inode)
1795 		return -ENOENT;
1796 
1797 	ei = PROC_I(inode);
1798 	ei->op.proc_get_link = proc_map_files_get_link;
1799 
1800 	inode->i_op = &proc_pid_link_inode_operations;
1801 	inode->i_size = 64;
1802 	inode->i_mode = S_IFLNK;
1803 
1804 	if (mode & FMODE_READ)
1805 		inode->i_mode |= S_IRUSR;
1806 	if (mode & FMODE_WRITE)
1807 		inode->i_mode |= S_IWUSR;
1808 
1809 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
1810 	d_add(dentry, inode);
1811 
1812 	return 0;
1813 }
1814 
1815 static struct dentry *proc_map_files_lookup(struct inode *dir,
1816 		struct dentry *dentry, unsigned int flags)
1817 {
1818 	unsigned long vm_start, vm_end;
1819 	struct vm_area_struct *vma;
1820 	struct task_struct *task;
1821 	int result;
1822 	struct mm_struct *mm;
1823 
1824 	result = -EPERM;
1825 	if (!capable(CAP_SYS_ADMIN))
1826 		goto out;
1827 
1828 	result = -ENOENT;
1829 	task = get_proc_task(dir);
1830 	if (!task)
1831 		goto out;
1832 
1833 	result = -EACCES;
1834 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
1835 		goto out_put_task;
1836 
1837 	result = -ENOENT;
1838 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
1839 		goto out_put_task;
1840 
1841 	mm = get_task_mm(task);
1842 	if (!mm)
1843 		goto out_put_task;
1844 
1845 	down_read(&mm->mmap_sem);
1846 	vma = find_exact_vma(mm, vm_start, vm_end);
1847 	if (!vma)
1848 		goto out_no_vma;
1849 
1850 	if (vma->vm_file)
1851 		result = proc_map_files_instantiate(dir, dentry, task,
1852 				(void *)(unsigned long)vma->vm_file->f_mode);
1853 
1854 out_no_vma:
1855 	up_read(&mm->mmap_sem);
1856 	mmput(mm);
1857 out_put_task:
1858 	put_task_struct(task);
1859 out:
1860 	return ERR_PTR(result);
1861 }
1862 
1863 static const struct inode_operations proc_map_files_inode_operations = {
1864 	.lookup		= proc_map_files_lookup,
1865 	.permission	= proc_fd_permission,
1866 	.setattr	= proc_setattr,
1867 };
1868 
1869 static int
1870 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
1871 {
1872 	struct vm_area_struct *vma;
1873 	struct task_struct *task;
1874 	struct mm_struct *mm;
1875 	unsigned long nr_files, pos, i;
1876 	struct flex_array *fa = NULL;
1877 	struct map_files_info info;
1878 	struct map_files_info *p;
1879 	int ret;
1880 
1881 	ret = -EPERM;
1882 	if (!capable(CAP_SYS_ADMIN))
1883 		goto out;
1884 
1885 	ret = -ENOENT;
1886 	task = get_proc_task(file_inode(file));
1887 	if (!task)
1888 		goto out;
1889 
1890 	ret = -EACCES;
1891 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
1892 		goto out_put_task;
1893 
1894 	ret = 0;
1895 	if (!dir_emit_dots(file, ctx))
1896 		goto out_put_task;
1897 
1898 	mm = get_task_mm(task);
1899 	if (!mm)
1900 		goto out_put_task;
1901 	down_read(&mm->mmap_sem);
1902 
1903 	nr_files = 0;
1904 
1905 	/*
1906 	 * We need two passes here:
1907 	 *
1908 	 *  1) Collect vmas of mapped files with mmap_sem taken
1909 	 *  2) Release mmap_sem and instantiate entries
1910 	 *
1911 	 * otherwise we get lockdep complained, since filldir()
1912 	 * routine might require mmap_sem taken in might_fault().
1913 	 */
1914 
1915 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
1916 		if (vma->vm_file && ++pos > ctx->pos)
1917 			nr_files++;
1918 	}
1919 
1920 	if (nr_files) {
1921 		fa = flex_array_alloc(sizeof(info), nr_files,
1922 					GFP_KERNEL);
1923 		if (!fa || flex_array_prealloc(fa, 0, nr_files,
1924 						GFP_KERNEL)) {
1925 			ret = -ENOMEM;
1926 			if (fa)
1927 				flex_array_free(fa);
1928 			up_read(&mm->mmap_sem);
1929 			mmput(mm);
1930 			goto out_put_task;
1931 		}
1932 		for (i = 0, vma = mm->mmap, pos = 2; vma;
1933 				vma = vma->vm_next) {
1934 			if (!vma->vm_file)
1935 				continue;
1936 			if (++pos <= ctx->pos)
1937 				continue;
1938 
1939 			info.mode = vma->vm_file->f_mode;
1940 			info.len = snprintf(info.name,
1941 					sizeof(info.name), "%lx-%lx",
1942 					vma->vm_start, vma->vm_end);
1943 			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
1944 				BUG();
1945 		}
1946 	}
1947 	up_read(&mm->mmap_sem);
1948 
1949 	for (i = 0; i < nr_files; i++) {
1950 		p = flex_array_get(fa, i);
1951 		if (!proc_fill_cache(file, ctx,
1952 				      p->name, p->len,
1953 				      proc_map_files_instantiate,
1954 				      task,
1955 				      (void *)(unsigned long)p->mode))
1956 			break;
1957 		ctx->pos++;
1958 	}
1959 	if (fa)
1960 		flex_array_free(fa);
1961 	mmput(mm);
1962 
1963 out_put_task:
1964 	put_task_struct(task);
1965 out:
1966 	return ret;
1967 }
1968 
1969 static const struct file_operations proc_map_files_operations = {
1970 	.read		= generic_read_dir,
1971 	.iterate	= proc_map_files_readdir,
1972 	.llseek		= default_llseek,
1973 };
1974 
1975 struct timers_private {
1976 	struct pid *pid;
1977 	struct task_struct *task;
1978 	struct sighand_struct *sighand;
1979 	struct pid_namespace *ns;
1980 	unsigned long flags;
1981 };
1982 
1983 static void *timers_start(struct seq_file *m, loff_t *pos)
1984 {
1985 	struct timers_private *tp = m->private;
1986 
1987 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
1988 	if (!tp->task)
1989 		return ERR_PTR(-ESRCH);
1990 
1991 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
1992 	if (!tp->sighand)
1993 		return ERR_PTR(-ESRCH);
1994 
1995 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
1996 }
1997 
1998 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
1999 {
2000 	struct timers_private *tp = m->private;
2001 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2002 }
2003 
2004 static void timers_stop(struct seq_file *m, void *v)
2005 {
2006 	struct timers_private *tp = m->private;
2007 
2008 	if (tp->sighand) {
2009 		unlock_task_sighand(tp->task, &tp->flags);
2010 		tp->sighand = NULL;
2011 	}
2012 
2013 	if (tp->task) {
2014 		put_task_struct(tp->task);
2015 		tp->task = NULL;
2016 	}
2017 }
2018 
2019 static int show_timer(struct seq_file *m, void *v)
2020 {
2021 	struct k_itimer *timer;
2022 	struct timers_private *tp = m->private;
2023 	int notify;
2024 	static const char * const nstr[] = {
2025 		[SIGEV_SIGNAL] = "signal",
2026 		[SIGEV_NONE] = "none",
2027 		[SIGEV_THREAD] = "thread",
2028 	};
2029 
2030 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2031 	notify = timer->it_sigev_notify;
2032 
2033 	seq_printf(m, "ID: %d\n", timer->it_id);
2034 	seq_printf(m, "signal: %d/%p\n", timer->sigq->info.si_signo,
2035 			timer->sigq->info.si_value.sival_ptr);
2036 	seq_printf(m, "notify: %s/%s.%d\n",
2037 		nstr[notify & ~SIGEV_THREAD_ID],
2038 		(notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2039 		pid_nr_ns(timer->it_pid, tp->ns));
2040 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2041 
2042 	return 0;
2043 }
2044 
2045 static const struct seq_operations proc_timers_seq_ops = {
2046 	.start	= timers_start,
2047 	.next	= timers_next,
2048 	.stop	= timers_stop,
2049 	.show	= show_timer,
2050 };
2051 
2052 static int proc_timers_open(struct inode *inode, struct file *file)
2053 {
2054 	struct timers_private *tp;
2055 
2056 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2057 			sizeof(struct timers_private));
2058 	if (!tp)
2059 		return -ENOMEM;
2060 
2061 	tp->pid = proc_pid(inode);
2062 	tp->ns = inode->i_sb->s_fs_info;
2063 	return 0;
2064 }
2065 
2066 static const struct file_operations proc_timers_operations = {
2067 	.open		= proc_timers_open,
2068 	.read		= seq_read,
2069 	.llseek		= seq_lseek,
2070 	.release	= seq_release_private,
2071 };
2072 #endif /* CONFIG_CHECKPOINT_RESTORE */
2073 
2074 static int proc_pident_instantiate(struct inode *dir,
2075 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2076 {
2077 	const struct pid_entry *p = ptr;
2078 	struct inode *inode;
2079 	struct proc_inode *ei;
2080 
2081 	inode = proc_pid_make_inode(dir->i_sb, task);
2082 	if (!inode)
2083 		goto out;
2084 
2085 	ei = PROC_I(inode);
2086 	inode->i_mode = p->mode;
2087 	if (S_ISDIR(inode->i_mode))
2088 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2089 	if (p->iop)
2090 		inode->i_op = p->iop;
2091 	if (p->fop)
2092 		inode->i_fop = p->fop;
2093 	ei->op = p->op;
2094 	d_set_d_op(dentry, &pid_dentry_operations);
2095 	d_add(dentry, inode);
2096 	/* Close the race of the process dying before we return the dentry */
2097 	if (pid_revalidate(dentry, 0))
2098 		return 0;
2099 out:
2100 	return -ENOENT;
2101 }
2102 
2103 static struct dentry *proc_pident_lookup(struct inode *dir,
2104 					 struct dentry *dentry,
2105 					 const struct pid_entry *ents,
2106 					 unsigned int nents)
2107 {
2108 	int error;
2109 	struct task_struct *task = get_proc_task(dir);
2110 	const struct pid_entry *p, *last;
2111 
2112 	error = -ENOENT;
2113 
2114 	if (!task)
2115 		goto out_no_task;
2116 
2117 	/*
2118 	 * Yes, it does not scale. And it should not. Don't add
2119 	 * new entries into /proc/<tgid>/ without very good reasons.
2120 	 */
2121 	last = &ents[nents - 1];
2122 	for (p = ents; p <= last; p++) {
2123 		if (p->len != dentry->d_name.len)
2124 			continue;
2125 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2126 			break;
2127 	}
2128 	if (p > last)
2129 		goto out;
2130 
2131 	error = proc_pident_instantiate(dir, dentry, task, p);
2132 out:
2133 	put_task_struct(task);
2134 out_no_task:
2135 	return ERR_PTR(error);
2136 }
2137 
2138 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2139 		const struct pid_entry *ents, unsigned int nents)
2140 {
2141 	struct task_struct *task = get_proc_task(file_inode(file));
2142 	const struct pid_entry *p;
2143 
2144 	if (!task)
2145 		return -ENOENT;
2146 
2147 	if (!dir_emit_dots(file, ctx))
2148 		goto out;
2149 
2150 	if (ctx->pos >= nents + 2)
2151 		goto out;
2152 
2153 	for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2154 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2155 				proc_pident_instantiate, task, p))
2156 			break;
2157 		ctx->pos++;
2158 	}
2159 out:
2160 	put_task_struct(task);
2161 	return 0;
2162 }
2163 
2164 #ifdef CONFIG_SECURITY
2165 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2166 				  size_t count, loff_t *ppos)
2167 {
2168 	struct inode * inode = file_inode(file);
2169 	char *p = NULL;
2170 	ssize_t length;
2171 	struct task_struct *task = get_proc_task(inode);
2172 
2173 	if (!task)
2174 		return -ESRCH;
2175 
2176 	length = security_getprocattr(task,
2177 				      (char*)file->f_path.dentry->d_name.name,
2178 				      &p);
2179 	put_task_struct(task);
2180 	if (length > 0)
2181 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2182 	kfree(p);
2183 	return length;
2184 }
2185 
2186 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2187 				   size_t count, loff_t *ppos)
2188 {
2189 	struct inode * inode = file_inode(file);
2190 	char *page;
2191 	ssize_t length;
2192 	struct task_struct *task = get_proc_task(inode);
2193 
2194 	length = -ESRCH;
2195 	if (!task)
2196 		goto out_no_task;
2197 	if (count > PAGE_SIZE)
2198 		count = PAGE_SIZE;
2199 
2200 	/* No partial writes. */
2201 	length = -EINVAL;
2202 	if (*ppos != 0)
2203 		goto out;
2204 
2205 	length = -ENOMEM;
2206 	page = (char*)__get_free_page(GFP_TEMPORARY);
2207 	if (!page)
2208 		goto out;
2209 
2210 	length = -EFAULT;
2211 	if (copy_from_user(page, buf, count))
2212 		goto out_free;
2213 
2214 	/* Guard against adverse ptrace interaction */
2215 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2216 	if (length < 0)
2217 		goto out_free;
2218 
2219 	length = security_setprocattr(task,
2220 				      (char*)file->f_path.dentry->d_name.name,
2221 				      (void*)page, count);
2222 	mutex_unlock(&task->signal->cred_guard_mutex);
2223 out_free:
2224 	free_page((unsigned long) page);
2225 out:
2226 	put_task_struct(task);
2227 out_no_task:
2228 	return length;
2229 }
2230 
2231 static const struct file_operations proc_pid_attr_operations = {
2232 	.read		= proc_pid_attr_read,
2233 	.write		= proc_pid_attr_write,
2234 	.llseek		= generic_file_llseek,
2235 };
2236 
2237 static const struct pid_entry attr_dir_stuff[] = {
2238 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2239 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2240 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2241 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2242 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2243 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2244 };
2245 
2246 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2247 {
2248 	return proc_pident_readdir(file, ctx,
2249 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2250 }
2251 
2252 static const struct file_operations proc_attr_dir_operations = {
2253 	.read		= generic_read_dir,
2254 	.iterate	= proc_attr_dir_readdir,
2255 	.llseek		= default_llseek,
2256 };
2257 
2258 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2259 				struct dentry *dentry, unsigned int flags)
2260 {
2261 	return proc_pident_lookup(dir, dentry,
2262 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2263 }
2264 
2265 static const struct inode_operations proc_attr_dir_inode_operations = {
2266 	.lookup		= proc_attr_dir_lookup,
2267 	.getattr	= pid_getattr,
2268 	.setattr	= proc_setattr,
2269 };
2270 
2271 #endif
2272 
2273 #ifdef CONFIG_ELF_CORE
2274 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2275 					 size_t count, loff_t *ppos)
2276 {
2277 	struct task_struct *task = get_proc_task(file_inode(file));
2278 	struct mm_struct *mm;
2279 	char buffer[PROC_NUMBUF];
2280 	size_t len;
2281 	int ret;
2282 
2283 	if (!task)
2284 		return -ESRCH;
2285 
2286 	ret = 0;
2287 	mm = get_task_mm(task);
2288 	if (mm) {
2289 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2290 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2291 				MMF_DUMP_FILTER_SHIFT));
2292 		mmput(mm);
2293 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2294 	}
2295 
2296 	put_task_struct(task);
2297 
2298 	return ret;
2299 }
2300 
2301 static ssize_t proc_coredump_filter_write(struct file *file,
2302 					  const char __user *buf,
2303 					  size_t count,
2304 					  loff_t *ppos)
2305 {
2306 	struct task_struct *task;
2307 	struct mm_struct *mm;
2308 	char buffer[PROC_NUMBUF], *end;
2309 	unsigned int val;
2310 	int ret;
2311 	int i;
2312 	unsigned long mask;
2313 
2314 	ret = -EFAULT;
2315 	memset(buffer, 0, sizeof(buffer));
2316 	if (count > sizeof(buffer) - 1)
2317 		count = sizeof(buffer) - 1;
2318 	if (copy_from_user(buffer, buf, count))
2319 		goto out_no_task;
2320 
2321 	ret = -EINVAL;
2322 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2323 	if (*end == '\n')
2324 		end++;
2325 	if (end - buffer == 0)
2326 		goto out_no_task;
2327 
2328 	ret = -ESRCH;
2329 	task = get_proc_task(file_inode(file));
2330 	if (!task)
2331 		goto out_no_task;
2332 
2333 	ret = end - buffer;
2334 	mm = get_task_mm(task);
2335 	if (!mm)
2336 		goto out_no_mm;
2337 
2338 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2339 		if (val & mask)
2340 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2341 		else
2342 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2343 	}
2344 
2345 	mmput(mm);
2346  out_no_mm:
2347 	put_task_struct(task);
2348  out_no_task:
2349 	return ret;
2350 }
2351 
2352 static const struct file_operations proc_coredump_filter_operations = {
2353 	.read		= proc_coredump_filter_read,
2354 	.write		= proc_coredump_filter_write,
2355 	.llseek		= generic_file_llseek,
2356 };
2357 #endif
2358 
2359 #ifdef CONFIG_TASK_IO_ACCOUNTING
2360 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2361 {
2362 	struct task_io_accounting acct = task->ioac;
2363 	unsigned long flags;
2364 	int result;
2365 
2366 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2367 	if (result)
2368 		return result;
2369 
2370 	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2371 		result = -EACCES;
2372 		goto out_unlock;
2373 	}
2374 
2375 	if (whole && lock_task_sighand(task, &flags)) {
2376 		struct task_struct *t = task;
2377 
2378 		task_io_accounting_add(&acct, &task->signal->ioac);
2379 		while_each_thread(task, t)
2380 			task_io_accounting_add(&acct, &t->ioac);
2381 
2382 		unlock_task_sighand(task, &flags);
2383 	}
2384 	result = seq_printf(m,
2385 			"rchar: %llu\n"
2386 			"wchar: %llu\n"
2387 			"syscr: %llu\n"
2388 			"syscw: %llu\n"
2389 			"read_bytes: %llu\n"
2390 			"write_bytes: %llu\n"
2391 			"cancelled_write_bytes: %llu\n",
2392 			(unsigned long long)acct.rchar,
2393 			(unsigned long long)acct.wchar,
2394 			(unsigned long long)acct.syscr,
2395 			(unsigned long long)acct.syscw,
2396 			(unsigned long long)acct.read_bytes,
2397 			(unsigned long long)acct.write_bytes,
2398 			(unsigned long long)acct.cancelled_write_bytes);
2399 out_unlock:
2400 	mutex_unlock(&task->signal->cred_guard_mutex);
2401 	return result;
2402 }
2403 
2404 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2405 				  struct pid *pid, struct task_struct *task)
2406 {
2407 	return do_io_accounting(task, m, 0);
2408 }
2409 
2410 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2411 				   struct pid *pid, struct task_struct *task)
2412 {
2413 	return do_io_accounting(task, m, 1);
2414 }
2415 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2416 
2417 #ifdef CONFIG_USER_NS
2418 static int proc_id_map_open(struct inode *inode, struct file *file,
2419 	const struct seq_operations *seq_ops)
2420 {
2421 	struct user_namespace *ns = NULL;
2422 	struct task_struct *task;
2423 	struct seq_file *seq;
2424 	int ret = -EINVAL;
2425 
2426 	task = get_proc_task(inode);
2427 	if (task) {
2428 		rcu_read_lock();
2429 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2430 		rcu_read_unlock();
2431 		put_task_struct(task);
2432 	}
2433 	if (!ns)
2434 		goto err;
2435 
2436 	ret = seq_open(file, seq_ops);
2437 	if (ret)
2438 		goto err_put_ns;
2439 
2440 	seq = file->private_data;
2441 	seq->private = ns;
2442 
2443 	return 0;
2444 err_put_ns:
2445 	put_user_ns(ns);
2446 err:
2447 	return ret;
2448 }
2449 
2450 static int proc_id_map_release(struct inode *inode, struct file *file)
2451 {
2452 	struct seq_file *seq = file->private_data;
2453 	struct user_namespace *ns = seq->private;
2454 	put_user_ns(ns);
2455 	return seq_release(inode, file);
2456 }
2457 
2458 static int proc_uid_map_open(struct inode *inode, struct file *file)
2459 {
2460 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2461 }
2462 
2463 static int proc_gid_map_open(struct inode *inode, struct file *file)
2464 {
2465 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2466 }
2467 
2468 static int proc_projid_map_open(struct inode *inode, struct file *file)
2469 {
2470 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2471 }
2472 
2473 static const struct file_operations proc_uid_map_operations = {
2474 	.open		= proc_uid_map_open,
2475 	.write		= proc_uid_map_write,
2476 	.read		= seq_read,
2477 	.llseek		= seq_lseek,
2478 	.release	= proc_id_map_release,
2479 };
2480 
2481 static const struct file_operations proc_gid_map_operations = {
2482 	.open		= proc_gid_map_open,
2483 	.write		= proc_gid_map_write,
2484 	.read		= seq_read,
2485 	.llseek		= seq_lseek,
2486 	.release	= proc_id_map_release,
2487 };
2488 
2489 static const struct file_operations proc_projid_map_operations = {
2490 	.open		= proc_projid_map_open,
2491 	.write		= proc_projid_map_write,
2492 	.read		= seq_read,
2493 	.llseek		= seq_lseek,
2494 	.release	= proc_id_map_release,
2495 };
2496 #endif /* CONFIG_USER_NS */
2497 
2498 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2499 				struct pid *pid, struct task_struct *task)
2500 {
2501 	int err = lock_trace(task);
2502 	if (!err) {
2503 		seq_printf(m, "%08x\n", task->personality);
2504 		unlock_trace(task);
2505 	}
2506 	return err;
2507 }
2508 
2509 /*
2510  * Thread groups
2511  */
2512 static const struct file_operations proc_task_operations;
2513 static const struct inode_operations proc_task_inode_operations;
2514 
2515 static const struct pid_entry tgid_base_stuff[] = {
2516 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2517 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2518 #ifdef CONFIG_CHECKPOINT_RESTORE
2519 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2520 #endif
2521 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2522 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2523 #ifdef CONFIG_NET
2524 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2525 #endif
2526 	REG("environ",    S_IRUSR, proc_environ_operations),
2527 	ONE("auxv",       S_IRUSR, proc_pid_auxv),
2528 	ONE("status",     S_IRUGO, proc_pid_status),
2529 	ONE("personality", S_IRUSR, proc_pid_personality),
2530 	ONE("limits",	  S_IRUGO, proc_pid_limits),
2531 #ifdef CONFIG_SCHED_DEBUG
2532 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2533 #endif
2534 #ifdef CONFIG_SCHED_AUTOGROUP
2535 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2536 #endif
2537 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2538 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2539 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2540 #endif
2541 	ONE("cmdline",    S_IRUGO, proc_pid_cmdline),
2542 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2543 	ONE("statm",      S_IRUGO, proc_pid_statm),
2544 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2545 #ifdef CONFIG_NUMA
2546 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2547 #endif
2548 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2549 	LNK("cwd",        proc_cwd_link),
2550 	LNK("root",       proc_root_link),
2551 	LNK("exe",        proc_exe_link),
2552 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2553 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2554 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2555 #ifdef CONFIG_PROC_PAGE_MONITOR
2556 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2557 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2558 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2559 #endif
2560 #ifdef CONFIG_SECURITY
2561 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2562 #endif
2563 #ifdef CONFIG_KALLSYMS
2564 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2565 #endif
2566 #ifdef CONFIG_STACKTRACE
2567 	ONE("stack",      S_IRUSR, proc_pid_stack),
2568 #endif
2569 #ifdef CONFIG_SCHEDSTATS
2570 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2571 #endif
2572 #ifdef CONFIG_LATENCYTOP
2573 	REG("latency",  S_IRUGO, proc_lstats_operations),
2574 #endif
2575 #ifdef CONFIG_PROC_PID_CPUSET
2576 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2577 #endif
2578 #ifdef CONFIG_CGROUPS
2579 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2580 #endif
2581 	ONE("oom_score",  S_IRUGO, proc_oom_score),
2582 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2583 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2584 #ifdef CONFIG_AUDITSYSCALL
2585 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2586 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2587 #endif
2588 #ifdef CONFIG_FAULT_INJECTION
2589 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2590 #endif
2591 #ifdef CONFIG_ELF_CORE
2592 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2593 #endif
2594 #ifdef CONFIG_TASK_IO_ACCOUNTING
2595 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2596 #endif
2597 #ifdef CONFIG_HARDWALL
2598 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2599 #endif
2600 #ifdef CONFIG_USER_NS
2601 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2602 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2603 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2604 #endif
2605 #ifdef CONFIG_CHECKPOINT_RESTORE
2606 	REG("timers",	  S_IRUGO, proc_timers_operations),
2607 #endif
2608 };
2609 
2610 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2611 {
2612 	return proc_pident_readdir(file, ctx,
2613 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2614 }
2615 
2616 static const struct file_operations proc_tgid_base_operations = {
2617 	.read		= generic_read_dir,
2618 	.iterate	= proc_tgid_base_readdir,
2619 	.llseek		= default_llseek,
2620 };
2621 
2622 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2623 {
2624 	return proc_pident_lookup(dir, dentry,
2625 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2626 }
2627 
2628 static const struct inode_operations proc_tgid_base_inode_operations = {
2629 	.lookup		= proc_tgid_base_lookup,
2630 	.getattr	= pid_getattr,
2631 	.setattr	= proc_setattr,
2632 	.permission	= proc_pid_permission,
2633 };
2634 
2635 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2636 {
2637 	struct dentry *dentry, *leader, *dir;
2638 	char buf[PROC_NUMBUF];
2639 	struct qstr name;
2640 
2641 	name.name = buf;
2642 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2643 	/* no ->d_hash() rejects on procfs */
2644 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2645 	if (dentry) {
2646 		shrink_dcache_parent(dentry);
2647 		d_drop(dentry);
2648 		dput(dentry);
2649 	}
2650 
2651 	name.name = buf;
2652 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2653 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2654 	if (!leader)
2655 		goto out;
2656 
2657 	name.name = "task";
2658 	name.len = strlen(name.name);
2659 	dir = d_hash_and_lookup(leader, &name);
2660 	if (!dir)
2661 		goto out_put_leader;
2662 
2663 	name.name = buf;
2664 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2665 	dentry = d_hash_and_lookup(dir, &name);
2666 	if (dentry) {
2667 		shrink_dcache_parent(dentry);
2668 		d_drop(dentry);
2669 		dput(dentry);
2670 	}
2671 
2672 	dput(dir);
2673 out_put_leader:
2674 	dput(leader);
2675 out:
2676 	return;
2677 }
2678 
2679 /**
2680  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2681  * @task: task that should be flushed.
2682  *
2683  * When flushing dentries from proc, one needs to flush them from global
2684  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2685  * in. This call is supposed to do all of this job.
2686  *
2687  * Looks in the dcache for
2688  * /proc/@pid
2689  * /proc/@tgid/task/@pid
2690  * if either directory is present flushes it and all of it'ts children
2691  * from the dcache.
2692  *
2693  * It is safe and reasonable to cache /proc entries for a task until
2694  * that task exits.  After that they just clog up the dcache with
2695  * useless entries, possibly causing useful dcache entries to be
2696  * flushed instead.  This routine is proved to flush those useless
2697  * dcache entries at process exit time.
2698  *
2699  * NOTE: This routine is just an optimization so it does not guarantee
2700  *       that no dcache entries will exist at process exit time it
2701  *       just makes it very unlikely that any will persist.
2702  */
2703 
2704 void proc_flush_task(struct task_struct *task)
2705 {
2706 	int i;
2707 	struct pid *pid, *tgid;
2708 	struct upid *upid;
2709 
2710 	pid = task_pid(task);
2711 	tgid = task_tgid(task);
2712 
2713 	for (i = 0; i <= pid->level; i++) {
2714 		upid = &pid->numbers[i];
2715 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2716 					tgid->numbers[i].nr);
2717 	}
2718 }
2719 
2720 static int proc_pid_instantiate(struct inode *dir,
2721 				   struct dentry * dentry,
2722 				   struct task_struct *task, const void *ptr)
2723 {
2724 	struct inode *inode;
2725 
2726 	inode = proc_pid_make_inode(dir->i_sb, task);
2727 	if (!inode)
2728 		goto out;
2729 
2730 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2731 	inode->i_op = &proc_tgid_base_inode_operations;
2732 	inode->i_fop = &proc_tgid_base_operations;
2733 	inode->i_flags|=S_IMMUTABLE;
2734 
2735 	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2736 						  ARRAY_SIZE(tgid_base_stuff)));
2737 
2738 	d_set_d_op(dentry, &pid_dentry_operations);
2739 
2740 	d_add(dentry, inode);
2741 	/* Close the race of the process dying before we return the dentry */
2742 	if (pid_revalidate(dentry, 0))
2743 		return 0;
2744 out:
2745 	return -ENOENT;
2746 }
2747 
2748 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2749 {
2750 	int result = -ENOENT;
2751 	struct task_struct *task;
2752 	unsigned tgid;
2753 	struct pid_namespace *ns;
2754 
2755 	tgid = name_to_int(&dentry->d_name);
2756 	if (tgid == ~0U)
2757 		goto out;
2758 
2759 	ns = dentry->d_sb->s_fs_info;
2760 	rcu_read_lock();
2761 	task = find_task_by_pid_ns(tgid, ns);
2762 	if (task)
2763 		get_task_struct(task);
2764 	rcu_read_unlock();
2765 	if (!task)
2766 		goto out;
2767 
2768 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2769 	put_task_struct(task);
2770 out:
2771 	return ERR_PTR(result);
2772 }
2773 
2774 /*
2775  * Find the first task with tgid >= tgid
2776  *
2777  */
2778 struct tgid_iter {
2779 	unsigned int tgid;
2780 	struct task_struct *task;
2781 };
2782 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2783 {
2784 	struct pid *pid;
2785 
2786 	if (iter.task)
2787 		put_task_struct(iter.task);
2788 	rcu_read_lock();
2789 retry:
2790 	iter.task = NULL;
2791 	pid = find_ge_pid(iter.tgid, ns);
2792 	if (pid) {
2793 		iter.tgid = pid_nr_ns(pid, ns);
2794 		iter.task = pid_task(pid, PIDTYPE_PID);
2795 		/* What we to know is if the pid we have find is the
2796 		 * pid of a thread_group_leader.  Testing for task
2797 		 * being a thread_group_leader is the obvious thing
2798 		 * todo but there is a window when it fails, due to
2799 		 * the pid transfer logic in de_thread.
2800 		 *
2801 		 * So we perform the straight forward test of seeing
2802 		 * if the pid we have found is the pid of a thread
2803 		 * group leader, and don't worry if the task we have
2804 		 * found doesn't happen to be a thread group leader.
2805 		 * As we don't care in the case of readdir.
2806 		 */
2807 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2808 			iter.tgid += 1;
2809 			goto retry;
2810 		}
2811 		get_task_struct(iter.task);
2812 	}
2813 	rcu_read_unlock();
2814 	return iter;
2815 }
2816 
2817 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
2818 
2819 /* for the /proc/ directory itself, after non-process stuff has been done */
2820 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
2821 {
2822 	struct tgid_iter iter;
2823 	struct pid_namespace *ns = file->f_dentry->d_sb->s_fs_info;
2824 	loff_t pos = ctx->pos;
2825 
2826 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
2827 		return 0;
2828 
2829 	if (pos == TGID_OFFSET - 2) {
2830 		struct inode *inode = ns->proc_self->d_inode;
2831 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
2832 			return 0;
2833 		ctx->pos = pos = pos + 1;
2834 	}
2835 	if (pos == TGID_OFFSET - 1) {
2836 		struct inode *inode = ns->proc_thread_self->d_inode;
2837 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
2838 			return 0;
2839 		ctx->pos = pos = pos + 1;
2840 	}
2841 	iter.tgid = pos - TGID_OFFSET;
2842 	iter.task = NULL;
2843 	for (iter = next_tgid(ns, iter);
2844 	     iter.task;
2845 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2846 		char name[PROC_NUMBUF];
2847 		int len;
2848 		if (!has_pid_permissions(ns, iter.task, 2))
2849 			continue;
2850 
2851 		len = snprintf(name, sizeof(name), "%d", iter.tgid);
2852 		ctx->pos = iter.tgid + TGID_OFFSET;
2853 		if (!proc_fill_cache(file, ctx, name, len,
2854 				     proc_pid_instantiate, iter.task, NULL)) {
2855 			put_task_struct(iter.task);
2856 			return 0;
2857 		}
2858 	}
2859 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
2860 	return 0;
2861 }
2862 
2863 /*
2864  * Tasks
2865  */
2866 static const struct pid_entry tid_base_stuff[] = {
2867 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2868 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2869 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2870 #ifdef CONFIG_NET
2871 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2872 #endif
2873 	REG("environ",   S_IRUSR, proc_environ_operations),
2874 	ONE("auxv",      S_IRUSR, proc_pid_auxv),
2875 	ONE("status",    S_IRUGO, proc_pid_status),
2876 	ONE("personality", S_IRUSR, proc_pid_personality),
2877 	ONE("limits",	 S_IRUGO, proc_pid_limits),
2878 #ifdef CONFIG_SCHED_DEBUG
2879 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2880 #endif
2881 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2882 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2883 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
2884 #endif
2885 	ONE("cmdline",   S_IRUGO, proc_pid_cmdline),
2886 	ONE("stat",      S_IRUGO, proc_tid_stat),
2887 	ONE("statm",     S_IRUGO, proc_pid_statm),
2888 	REG("maps",      S_IRUGO, proc_tid_maps_operations),
2889 #ifdef CONFIG_CHECKPOINT_RESTORE
2890 	REG("children",  S_IRUGO, proc_tid_children_operations),
2891 #endif
2892 #ifdef CONFIG_NUMA
2893 	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
2894 #endif
2895 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
2896 	LNK("cwd",       proc_cwd_link),
2897 	LNK("root",      proc_root_link),
2898 	LNK("exe",       proc_exe_link),
2899 	REG("mounts",    S_IRUGO, proc_mounts_operations),
2900 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2901 #ifdef CONFIG_PROC_PAGE_MONITOR
2902 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2903 	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
2904 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2905 #endif
2906 #ifdef CONFIG_SECURITY
2907 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2908 #endif
2909 #ifdef CONFIG_KALLSYMS
2910 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
2911 #endif
2912 #ifdef CONFIG_STACKTRACE
2913 	ONE("stack",      S_IRUSR, proc_pid_stack),
2914 #endif
2915 #ifdef CONFIG_SCHEDSTATS
2916 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
2917 #endif
2918 #ifdef CONFIG_LATENCYTOP
2919 	REG("latency",  S_IRUGO, proc_lstats_operations),
2920 #endif
2921 #ifdef CONFIG_PROC_PID_CPUSET
2922 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
2923 #endif
2924 #ifdef CONFIG_CGROUPS
2925 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2926 #endif
2927 	ONE("oom_score", S_IRUGO, proc_oom_score),
2928 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2929 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2930 #ifdef CONFIG_AUDITSYSCALL
2931 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
2932 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2933 #endif
2934 #ifdef CONFIG_FAULT_INJECTION
2935 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2936 #endif
2937 #ifdef CONFIG_TASK_IO_ACCOUNTING
2938 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
2939 #endif
2940 #ifdef CONFIG_HARDWALL
2941 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2942 #endif
2943 #ifdef CONFIG_USER_NS
2944 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2945 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2946 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2947 #endif
2948 };
2949 
2950 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
2951 {
2952 	return proc_pident_readdir(file, ctx,
2953 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2954 }
2955 
2956 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2957 {
2958 	return proc_pident_lookup(dir, dentry,
2959 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2960 }
2961 
2962 static const struct file_operations proc_tid_base_operations = {
2963 	.read		= generic_read_dir,
2964 	.iterate	= proc_tid_base_readdir,
2965 	.llseek		= default_llseek,
2966 };
2967 
2968 static const struct inode_operations proc_tid_base_inode_operations = {
2969 	.lookup		= proc_tid_base_lookup,
2970 	.getattr	= pid_getattr,
2971 	.setattr	= proc_setattr,
2972 };
2973 
2974 static int proc_task_instantiate(struct inode *dir,
2975 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2976 {
2977 	struct inode *inode;
2978 	inode = proc_pid_make_inode(dir->i_sb, task);
2979 
2980 	if (!inode)
2981 		goto out;
2982 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2983 	inode->i_op = &proc_tid_base_inode_operations;
2984 	inode->i_fop = &proc_tid_base_operations;
2985 	inode->i_flags|=S_IMMUTABLE;
2986 
2987 	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
2988 						  ARRAY_SIZE(tid_base_stuff)));
2989 
2990 	d_set_d_op(dentry, &pid_dentry_operations);
2991 
2992 	d_add(dentry, inode);
2993 	/* Close the race of the process dying before we return the dentry */
2994 	if (pid_revalidate(dentry, 0))
2995 		return 0;
2996 out:
2997 	return -ENOENT;
2998 }
2999 
3000 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3001 {
3002 	int result = -ENOENT;
3003 	struct task_struct *task;
3004 	struct task_struct *leader = get_proc_task(dir);
3005 	unsigned tid;
3006 	struct pid_namespace *ns;
3007 
3008 	if (!leader)
3009 		goto out_no_task;
3010 
3011 	tid = name_to_int(&dentry->d_name);
3012 	if (tid == ~0U)
3013 		goto out;
3014 
3015 	ns = dentry->d_sb->s_fs_info;
3016 	rcu_read_lock();
3017 	task = find_task_by_pid_ns(tid, ns);
3018 	if (task)
3019 		get_task_struct(task);
3020 	rcu_read_unlock();
3021 	if (!task)
3022 		goto out;
3023 	if (!same_thread_group(leader, task))
3024 		goto out_drop_task;
3025 
3026 	result = proc_task_instantiate(dir, dentry, task, NULL);
3027 out_drop_task:
3028 	put_task_struct(task);
3029 out:
3030 	put_task_struct(leader);
3031 out_no_task:
3032 	return ERR_PTR(result);
3033 }
3034 
3035 /*
3036  * Find the first tid of a thread group to return to user space.
3037  *
3038  * Usually this is just the thread group leader, but if the users
3039  * buffer was too small or there was a seek into the middle of the
3040  * directory we have more work todo.
3041  *
3042  * In the case of a short read we start with find_task_by_pid.
3043  *
3044  * In the case of a seek we start with the leader and walk nr
3045  * threads past it.
3046  */
3047 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3048 					struct pid_namespace *ns)
3049 {
3050 	struct task_struct *pos, *task;
3051 	unsigned long nr = f_pos;
3052 
3053 	if (nr != f_pos)	/* 32bit overflow? */
3054 		return NULL;
3055 
3056 	rcu_read_lock();
3057 	task = pid_task(pid, PIDTYPE_PID);
3058 	if (!task)
3059 		goto fail;
3060 
3061 	/* Attempt to start with the tid of a thread */
3062 	if (tid && nr) {
3063 		pos = find_task_by_pid_ns(tid, ns);
3064 		if (pos && same_thread_group(pos, task))
3065 			goto found;
3066 	}
3067 
3068 	/* If nr exceeds the number of threads there is nothing todo */
3069 	if (nr >= get_nr_threads(task))
3070 		goto fail;
3071 
3072 	/* If we haven't found our starting place yet start
3073 	 * with the leader and walk nr threads forward.
3074 	 */
3075 	pos = task = task->group_leader;
3076 	do {
3077 		if (!nr--)
3078 			goto found;
3079 	} while_each_thread(task, pos);
3080 fail:
3081 	pos = NULL;
3082 	goto out;
3083 found:
3084 	get_task_struct(pos);
3085 out:
3086 	rcu_read_unlock();
3087 	return pos;
3088 }
3089 
3090 /*
3091  * Find the next thread in the thread list.
3092  * Return NULL if there is an error or no next thread.
3093  *
3094  * The reference to the input task_struct is released.
3095  */
3096 static struct task_struct *next_tid(struct task_struct *start)
3097 {
3098 	struct task_struct *pos = NULL;
3099 	rcu_read_lock();
3100 	if (pid_alive(start)) {
3101 		pos = next_thread(start);
3102 		if (thread_group_leader(pos))
3103 			pos = NULL;
3104 		else
3105 			get_task_struct(pos);
3106 	}
3107 	rcu_read_unlock();
3108 	put_task_struct(start);
3109 	return pos;
3110 }
3111 
3112 /* for the /proc/TGID/task/ directories */
3113 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3114 {
3115 	struct inode *inode = file_inode(file);
3116 	struct task_struct *task;
3117 	struct pid_namespace *ns;
3118 	int tid;
3119 
3120 	if (proc_inode_is_dead(inode))
3121 		return -ENOENT;
3122 
3123 	if (!dir_emit_dots(file, ctx))
3124 		return 0;
3125 
3126 	/* f_version caches the tgid value that the last readdir call couldn't
3127 	 * return. lseek aka telldir automagically resets f_version to 0.
3128 	 */
3129 	ns = file->f_dentry->d_sb->s_fs_info;
3130 	tid = (int)file->f_version;
3131 	file->f_version = 0;
3132 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3133 	     task;
3134 	     task = next_tid(task), ctx->pos++) {
3135 		char name[PROC_NUMBUF];
3136 		int len;
3137 		tid = task_pid_nr_ns(task, ns);
3138 		len = snprintf(name, sizeof(name), "%d", tid);
3139 		if (!proc_fill_cache(file, ctx, name, len,
3140 				proc_task_instantiate, task, NULL)) {
3141 			/* returning this tgid failed, save it as the first
3142 			 * pid for the next readir call */
3143 			file->f_version = (u64)tid;
3144 			put_task_struct(task);
3145 			break;
3146 		}
3147 	}
3148 
3149 	return 0;
3150 }
3151 
3152 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3153 {
3154 	struct inode *inode = dentry->d_inode;
3155 	struct task_struct *p = get_proc_task(inode);
3156 	generic_fillattr(inode, stat);
3157 
3158 	if (p) {
3159 		stat->nlink += get_nr_threads(p);
3160 		put_task_struct(p);
3161 	}
3162 
3163 	return 0;
3164 }
3165 
3166 static const struct inode_operations proc_task_inode_operations = {
3167 	.lookup		= proc_task_lookup,
3168 	.getattr	= proc_task_getattr,
3169 	.setattr	= proc_setattr,
3170 	.permission	= proc_pid_permission,
3171 };
3172 
3173 static const struct file_operations proc_task_operations = {
3174 	.read		= generic_read_dir,
3175 	.iterate	= proc_task_readdir,
3176 	.llseek		= default_llseek,
3177 };
3178