xref: /openbmc/linux/fs/proc/base.c (revision a8b0ca17)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/fs_struct.h>
85 #include <linux/slab.h>
86 #ifdef CONFIG_HARDWALL
87 #include <asm/hardwall.h>
88 #endif
89 #include "internal.h"
90 
91 /* NOTE:
92  *	Implementing inode permission operations in /proc is almost
93  *	certainly an error.  Permission checks need to happen during
94  *	each system call not at open time.  The reason is that most of
95  *	what we wish to check for permissions in /proc varies at runtime.
96  *
97  *	The classic example of a problem is opening file descriptors
98  *	in /proc for a task before it execs a suid executable.
99  */
100 
101 struct pid_entry {
102 	char *name;
103 	int len;
104 	mode_t mode;
105 	const struct inode_operations *iop;
106 	const struct file_operations *fop;
107 	union proc_op op;
108 };
109 
110 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
111 	.name = (NAME),					\
112 	.len  = sizeof(NAME) - 1,			\
113 	.mode = MODE,					\
114 	.iop  = IOP,					\
115 	.fop  = FOP,					\
116 	.op   = OP,					\
117 }
118 
119 #define DIR(NAME, MODE, iops, fops)	\
120 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
121 #define LNK(NAME, get_link)					\
122 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
123 		&proc_pid_link_inode_operations, NULL,		\
124 		{ .proc_get_link = get_link } )
125 #define REG(NAME, MODE, fops)				\
126 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
127 #define INF(NAME, MODE, read)				\
128 	NOD(NAME, (S_IFREG|(MODE)), 			\
129 		NULL, &proc_info_file_operations,	\
130 		{ .proc_read = read } )
131 #define ONE(NAME, MODE, show)				\
132 	NOD(NAME, (S_IFREG|(MODE)), 			\
133 		NULL, &proc_single_file_operations,	\
134 		{ .proc_show = show } )
135 
136 /*
137  * Count the number of hardlinks for the pid_entry table, excluding the .
138  * and .. links.
139  */
140 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
141 	unsigned int n)
142 {
143 	unsigned int i;
144 	unsigned int count;
145 
146 	count = 0;
147 	for (i = 0; i < n; ++i) {
148 		if (S_ISDIR(entries[i].mode))
149 			++count;
150 	}
151 
152 	return count;
153 }
154 
155 static int get_task_root(struct task_struct *task, struct path *root)
156 {
157 	int result = -ENOENT;
158 
159 	task_lock(task);
160 	if (task->fs) {
161 		get_fs_root(task->fs, root);
162 		result = 0;
163 	}
164 	task_unlock(task);
165 	return result;
166 }
167 
168 static int proc_cwd_link(struct inode *inode, struct path *path)
169 {
170 	struct task_struct *task = get_proc_task(inode);
171 	int result = -ENOENT;
172 
173 	if (task) {
174 		task_lock(task);
175 		if (task->fs) {
176 			get_fs_pwd(task->fs, path);
177 			result = 0;
178 		}
179 		task_unlock(task);
180 		put_task_struct(task);
181 	}
182 	return result;
183 }
184 
185 static int proc_root_link(struct inode *inode, struct path *path)
186 {
187 	struct task_struct *task = get_proc_task(inode);
188 	int result = -ENOENT;
189 
190 	if (task) {
191 		result = get_task_root(task, path);
192 		put_task_struct(task);
193 	}
194 	return result;
195 }
196 
197 static struct mm_struct *__check_mem_permission(struct task_struct *task)
198 {
199 	struct mm_struct *mm;
200 
201 	mm = get_task_mm(task);
202 	if (!mm)
203 		return ERR_PTR(-EINVAL);
204 
205 	/*
206 	 * A task can always look at itself, in case it chooses
207 	 * to use system calls instead of load instructions.
208 	 */
209 	if (task == current)
210 		return mm;
211 
212 	/*
213 	 * If current is actively ptrace'ing, and would also be
214 	 * permitted to freshly attach with ptrace now, permit it.
215 	 */
216 	if (task_is_stopped_or_traced(task)) {
217 		int match;
218 		rcu_read_lock();
219 		match = (tracehook_tracer_task(task) == current);
220 		rcu_read_unlock();
221 		if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
222 			return mm;
223 	}
224 
225 	/*
226 	 * No one else is allowed.
227 	 */
228 	mmput(mm);
229 	return ERR_PTR(-EPERM);
230 }
231 
232 /*
233  * If current may access user memory in @task return a reference to the
234  * corresponding mm, otherwise ERR_PTR.
235  */
236 static struct mm_struct *check_mem_permission(struct task_struct *task)
237 {
238 	struct mm_struct *mm;
239 	int err;
240 
241 	/*
242 	 * Avoid racing if task exec's as we might get a new mm but validate
243 	 * against old credentials.
244 	 */
245 	err = mutex_lock_killable(&task->signal->cred_guard_mutex);
246 	if (err)
247 		return ERR_PTR(err);
248 
249 	mm = __check_mem_permission(task);
250 	mutex_unlock(&task->signal->cred_guard_mutex);
251 
252 	return mm;
253 }
254 
255 struct mm_struct *mm_for_maps(struct task_struct *task)
256 {
257 	struct mm_struct *mm;
258 	int err;
259 
260 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
261 	if (err)
262 		return ERR_PTR(err);
263 
264 	mm = get_task_mm(task);
265 	if (mm && mm != current->mm &&
266 			!ptrace_may_access(task, PTRACE_MODE_READ)) {
267 		mmput(mm);
268 		mm = ERR_PTR(-EACCES);
269 	}
270 	mutex_unlock(&task->signal->cred_guard_mutex);
271 
272 	return mm;
273 }
274 
275 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
276 {
277 	int res = 0;
278 	unsigned int len;
279 	struct mm_struct *mm = get_task_mm(task);
280 	if (!mm)
281 		goto out;
282 	if (!mm->arg_end)
283 		goto out_mm;	/* Shh! No looking before we're done */
284 
285  	len = mm->arg_end - mm->arg_start;
286 
287 	if (len > PAGE_SIZE)
288 		len = PAGE_SIZE;
289 
290 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
291 
292 	// If the nul at the end of args has been overwritten, then
293 	// assume application is using setproctitle(3).
294 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
295 		len = strnlen(buffer, res);
296 		if (len < res) {
297 		    res = len;
298 		} else {
299 			len = mm->env_end - mm->env_start;
300 			if (len > PAGE_SIZE - res)
301 				len = PAGE_SIZE - res;
302 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
303 			res = strnlen(buffer, res);
304 		}
305 	}
306 out_mm:
307 	mmput(mm);
308 out:
309 	return res;
310 }
311 
312 static int proc_pid_auxv(struct task_struct *task, char *buffer)
313 {
314 	struct mm_struct *mm = mm_for_maps(task);
315 	int res = PTR_ERR(mm);
316 	if (mm && !IS_ERR(mm)) {
317 		unsigned int nwords = 0;
318 		do {
319 			nwords += 2;
320 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
321 		res = nwords * sizeof(mm->saved_auxv[0]);
322 		if (res > PAGE_SIZE)
323 			res = PAGE_SIZE;
324 		memcpy(buffer, mm->saved_auxv, res);
325 		mmput(mm);
326 	}
327 	return res;
328 }
329 
330 
331 #ifdef CONFIG_KALLSYMS
332 /*
333  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
334  * Returns the resolved symbol.  If that fails, simply return the address.
335  */
336 static int proc_pid_wchan(struct task_struct *task, char *buffer)
337 {
338 	unsigned long wchan;
339 	char symname[KSYM_NAME_LEN];
340 
341 	wchan = get_wchan(task);
342 
343 	if (lookup_symbol_name(wchan, symname) < 0)
344 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
345 			return 0;
346 		else
347 			return sprintf(buffer, "%lu", wchan);
348 	else
349 		return sprintf(buffer, "%s", symname);
350 }
351 #endif /* CONFIG_KALLSYMS */
352 
353 static int lock_trace(struct task_struct *task)
354 {
355 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
356 	if (err)
357 		return err;
358 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
359 		mutex_unlock(&task->signal->cred_guard_mutex);
360 		return -EPERM;
361 	}
362 	return 0;
363 }
364 
365 static void unlock_trace(struct task_struct *task)
366 {
367 	mutex_unlock(&task->signal->cred_guard_mutex);
368 }
369 
370 #ifdef CONFIG_STACKTRACE
371 
372 #define MAX_STACK_TRACE_DEPTH	64
373 
374 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
375 			  struct pid *pid, struct task_struct *task)
376 {
377 	struct stack_trace trace;
378 	unsigned long *entries;
379 	int err;
380 	int i;
381 
382 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
383 	if (!entries)
384 		return -ENOMEM;
385 
386 	trace.nr_entries	= 0;
387 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
388 	trace.entries		= entries;
389 	trace.skip		= 0;
390 
391 	err = lock_trace(task);
392 	if (!err) {
393 		save_stack_trace_tsk(task, &trace);
394 
395 		for (i = 0; i < trace.nr_entries; i++) {
396 			seq_printf(m, "[<%pK>] %pS\n",
397 				   (void *)entries[i], (void *)entries[i]);
398 		}
399 		unlock_trace(task);
400 	}
401 	kfree(entries);
402 
403 	return err;
404 }
405 #endif
406 
407 #ifdef CONFIG_SCHEDSTATS
408 /*
409  * Provides /proc/PID/schedstat
410  */
411 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
412 {
413 	return sprintf(buffer, "%llu %llu %lu\n",
414 			(unsigned long long)task->se.sum_exec_runtime,
415 			(unsigned long long)task->sched_info.run_delay,
416 			task->sched_info.pcount);
417 }
418 #endif
419 
420 #ifdef CONFIG_LATENCYTOP
421 static int lstats_show_proc(struct seq_file *m, void *v)
422 {
423 	int i;
424 	struct inode *inode = m->private;
425 	struct task_struct *task = get_proc_task(inode);
426 
427 	if (!task)
428 		return -ESRCH;
429 	seq_puts(m, "Latency Top version : v0.1\n");
430 	for (i = 0; i < 32; i++) {
431 		struct latency_record *lr = &task->latency_record[i];
432 		if (lr->backtrace[0]) {
433 			int q;
434 			seq_printf(m, "%i %li %li",
435 				   lr->count, lr->time, lr->max);
436 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
437 				unsigned long bt = lr->backtrace[q];
438 				if (!bt)
439 					break;
440 				if (bt == ULONG_MAX)
441 					break;
442 				seq_printf(m, " %ps", (void *)bt);
443 			}
444 			seq_putc(m, '\n');
445 		}
446 
447 	}
448 	put_task_struct(task);
449 	return 0;
450 }
451 
452 static int lstats_open(struct inode *inode, struct file *file)
453 {
454 	return single_open(file, lstats_show_proc, inode);
455 }
456 
457 static ssize_t lstats_write(struct file *file, const char __user *buf,
458 			    size_t count, loff_t *offs)
459 {
460 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
461 
462 	if (!task)
463 		return -ESRCH;
464 	clear_all_latency_tracing(task);
465 	put_task_struct(task);
466 
467 	return count;
468 }
469 
470 static const struct file_operations proc_lstats_operations = {
471 	.open		= lstats_open,
472 	.read		= seq_read,
473 	.write		= lstats_write,
474 	.llseek		= seq_lseek,
475 	.release	= single_release,
476 };
477 
478 #endif
479 
480 static int proc_oom_score(struct task_struct *task, char *buffer)
481 {
482 	unsigned long points = 0;
483 
484 	read_lock(&tasklist_lock);
485 	if (pid_alive(task))
486 		points = oom_badness(task, NULL, NULL,
487 					totalram_pages + total_swap_pages);
488 	read_unlock(&tasklist_lock);
489 	return sprintf(buffer, "%lu\n", points);
490 }
491 
492 struct limit_names {
493 	char *name;
494 	char *unit;
495 };
496 
497 static const struct limit_names lnames[RLIM_NLIMITS] = {
498 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
499 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
500 	[RLIMIT_DATA] = {"Max data size", "bytes"},
501 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
502 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
503 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
504 	[RLIMIT_NPROC] = {"Max processes", "processes"},
505 	[RLIMIT_NOFILE] = {"Max open files", "files"},
506 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
507 	[RLIMIT_AS] = {"Max address space", "bytes"},
508 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
509 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
510 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
511 	[RLIMIT_NICE] = {"Max nice priority", NULL},
512 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
513 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
514 };
515 
516 /* Display limits for a process */
517 static int proc_pid_limits(struct task_struct *task, char *buffer)
518 {
519 	unsigned int i;
520 	int count = 0;
521 	unsigned long flags;
522 	char *bufptr = buffer;
523 
524 	struct rlimit rlim[RLIM_NLIMITS];
525 
526 	if (!lock_task_sighand(task, &flags))
527 		return 0;
528 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
529 	unlock_task_sighand(task, &flags);
530 
531 	/*
532 	 * print the file header
533 	 */
534 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
535 			"Limit", "Soft Limit", "Hard Limit", "Units");
536 
537 	for (i = 0; i < RLIM_NLIMITS; i++) {
538 		if (rlim[i].rlim_cur == RLIM_INFINITY)
539 			count += sprintf(&bufptr[count], "%-25s %-20s ",
540 					 lnames[i].name, "unlimited");
541 		else
542 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
543 					 lnames[i].name, rlim[i].rlim_cur);
544 
545 		if (rlim[i].rlim_max == RLIM_INFINITY)
546 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
547 		else
548 			count += sprintf(&bufptr[count], "%-20lu ",
549 					 rlim[i].rlim_max);
550 
551 		if (lnames[i].unit)
552 			count += sprintf(&bufptr[count], "%-10s\n",
553 					 lnames[i].unit);
554 		else
555 			count += sprintf(&bufptr[count], "\n");
556 	}
557 
558 	return count;
559 }
560 
561 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
562 static int proc_pid_syscall(struct task_struct *task, char *buffer)
563 {
564 	long nr;
565 	unsigned long args[6], sp, pc;
566 	int res = lock_trace(task);
567 	if (res)
568 		return res;
569 
570 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
571 		res = sprintf(buffer, "running\n");
572 	else if (nr < 0)
573 		res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
574 	else
575 		res = sprintf(buffer,
576 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
577 		       nr,
578 		       args[0], args[1], args[2], args[3], args[4], args[5],
579 		       sp, pc);
580 	unlock_trace(task);
581 	return res;
582 }
583 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
584 
585 /************************************************************************/
586 /*                       Here the fs part begins                        */
587 /************************************************************************/
588 
589 /* permission checks */
590 static int proc_fd_access_allowed(struct inode *inode)
591 {
592 	struct task_struct *task;
593 	int allowed = 0;
594 	/* Allow access to a task's file descriptors if it is us or we
595 	 * may use ptrace attach to the process and find out that
596 	 * information.
597 	 */
598 	task = get_proc_task(inode);
599 	if (task) {
600 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
601 		put_task_struct(task);
602 	}
603 	return allowed;
604 }
605 
606 int proc_setattr(struct dentry *dentry, struct iattr *attr)
607 {
608 	int error;
609 	struct inode *inode = dentry->d_inode;
610 
611 	if (attr->ia_valid & ATTR_MODE)
612 		return -EPERM;
613 
614 	error = inode_change_ok(inode, attr);
615 	if (error)
616 		return error;
617 
618 	if ((attr->ia_valid & ATTR_SIZE) &&
619 	    attr->ia_size != i_size_read(inode)) {
620 		error = vmtruncate(inode, attr->ia_size);
621 		if (error)
622 			return error;
623 	}
624 
625 	setattr_copy(inode, attr);
626 	mark_inode_dirty(inode);
627 	return 0;
628 }
629 
630 static const struct inode_operations proc_def_inode_operations = {
631 	.setattr	= proc_setattr,
632 };
633 
634 static int mounts_open_common(struct inode *inode, struct file *file,
635 			      const struct seq_operations *op)
636 {
637 	struct task_struct *task = get_proc_task(inode);
638 	struct nsproxy *nsp;
639 	struct mnt_namespace *ns = NULL;
640 	struct path root;
641 	struct proc_mounts *p;
642 	int ret = -EINVAL;
643 
644 	if (task) {
645 		rcu_read_lock();
646 		nsp = task_nsproxy(task);
647 		if (nsp) {
648 			ns = nsp->mnt_ns;
649 			if (ns)
650 				get_mnt_ns(ns);
651 		}
652 		rcu_read_unlock();
653 		if (ns && get_task_root(task, &root) == 0)
654 			ret = 0;
655 		put_task_struct(task);
656 	}
657 
658 	if (!ns)
659 		goto err;
660 	if (ret)
661 		goto err_put_ns;
662 
663 	ret = -ENOMEM;
664 	p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
665 	if (!p)
666 		goto err_put_path;
667 
668 	file->private_data = &p->m;
669 	ret = seq_open(file, op);
670 	if (ret)
671 		goto err_free;
672 
673 	p->m.private = p;
674 	p->ns = ns;
675 	p->root = root;
676 	p->event = ns->event;
677 
678 	return 0;
679 
680  err_free:
681 	kfree(p);
682  err_put_path:
683 	path_put(&root);
684  err_put_ns:
685 	put_mnt_ns(ns);
686  err:
687 	return ret;
688 }
689 
690 static int mounts_release(struct inode *inode, struct file *file)
691 {
692 	struct proc_mounts *p = file->private_data;
693 	path_put(&p->root);
694 	put_mnt_ns(p->ns);
695 	return seq_release(inode, file);
696 }
697 
698 static unsigned mounts_poll(struct file *file, poll_table *wait)
699 {
700 	struct proc_mounts *p = file->private_data;
701 	unsigned res = POLLIN | POLLRDNORM;
702 
703 	poll_wait(file, &p->ns->poll, wait);
704 	if (mnt_had_events(p))
705 		res |= POLLERR | POLLPRI;
706 
707 	return res;
708 }
709 
710 static int mounts_open(struct inode *inode, struct file *file)
711 {
712 	return mounts_open_common(inode, file, &mounts_op);
713 }
714 
715 static const struct file_operations proc_mounts_operations = {
716 	.open		= mounts_open,
717 	.read		= seq_read,
718 	.llseek		= seq_lseek,
719 	.release	= mounts_release,
720 	.poll		= mounts_poll,
721 };
722 
723 static int mountinfo_open(struct inode *inode, struct file *file)
724 {
725 	return mounts_open_common(inode, file, &mountinfo_op);
726 }
727 
728 static const struct file_operations proc_mountinfo_operations = {
729 	.open		= mountinfo_open,
730 	.read		= seq_read,
731 	.llseek		= seq_lseek,
732 	.release	= mounts_release,
733 	.poll		= mounts_poll,
734 };
735 
736 static int mountstats_open(struct inode *inode, struct file *file)
737 {
738 	return mounts_open_common(inode, file, &mountstats_op);
739 }
740 
741 static const struct file_operations proc_mountstats_operations = {
742 	.open		= mountstats_open,
743 	.read		= seq_read,
744 	.llseek		= seq_lseek,
745 	.release	= mounts_release,
746 };
747 
748 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
749 
750 static ssize_t proc_info_read(struct file * file, char __user * buf,
751 			  size_t count, loff_t *ppos)
752 {
753 	struct inode * inode = file->f_path.dentry->d_inode;
754 	unsigned long page;
755 	ssize_t length;
756 	struct task_struct *task = get_proc_task(inode);
757 
758 	length = -ESRCH;
759 	if (!task)
760 		goto out_no_task;
761 
762 	if (count > PROC_BLOCK_SIZE)
763 		count = PROC_BLOCK_SIZE;
764 
765 	length = -ENOMEM;
766 	if (!(page = __get_free_page(GFP_TEMPORARY)))
767 		goto out;
768 
769 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
770 
771 	if (length >= 0)
772 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
773 	free_page(page);
774 out:
775 	put_task_struct(task);
776 out_no_task:
777 	return length;
778 }
779 
780 static const struct file_operations proc_info_file_operations = {
781 	.read		= proc_info_read,
782 	.llseek		= generic_file_llseek,
783 };
784 
785 static int proc_single_show(struct seq_file *m, void *v)
786 {
787 	struct inode *inode = m->private;
788 	struct pid_namespace *ns;
789 	struct pid *pid;
790 	struct task_struct *task;
791 	int ret;
792 
793 	ns = inode->i_sb->s_fs_info;
794 	pid = proc_pid(inode);
795 	task = get_pid_task(pid, PIDTYPE_PID);
796 	if (!task)
797 		return -ESRCH;
798 
799 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
800 
801 	put_task_struct(task);
802 	return ret;
803 }
804 
805 static int proc_single_open(struct inode *inode, struct file *filp)
806 {
807 	return single_open(filp, proc_single_show, inode);
808 }
809 
810 static const struct file_operations proc_single_file_operations = {
811 	.open		= proc_single_open,
812 	.read		= seq_read,
813 	.llseek		= seq_lseek,
814 	.release	= single_release,
815 };
816 
817 static int mem_open(struct inode* inode, struct file* file)
818 {
819 	file->private_data = (void*)((long)current->self_exec_id);
820 	/* OK to pass negative loff_t, we can catch out-of-range */
821 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
822 	return 0;
823 }
824 
825 static ssize_t mem_read(struct file * file, char __user * buf,
826 			size_t count, loff_t *ppos)
827 {
828 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
829 	char *page;
830 	unsigned long src = *ppos;
831 	int ret = -ESRCH;
832 	struct mm_struct *mm;
833 
834 	if (!task)
835 		goto out_no_task;
836 
837 	ret = -ENOMEM;
838 	page = (char *)__get_free_page(GFP_TEMPORARY);
839 	if (!page)
840 		goto out;
841 
842 	mm = check_mem_permission(task);
843 	ret = PTR_ERR(mm);
844 	if (IS_ERR(mm))
845 		goto out_free;
846 
847 	ret = -EIO;
848 
849 	if (file->private_data != (void*)((long)current->self_exec_id))
850 		goto out_put;
851 
852 	ret = 0;
853 
854 	while (count > 0) {
855 		int this_len, retval;
856 
857 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
858 		retval = access_remote_vm(mm, src, page, this_len, 0);
859 		if (!retval) {
860 			if (!ret)
861 				ret = -EIO;
862 			break;
863 		}
864 
865 		if (copy_to_user(buf, page, retval)) {
866 			ret = -EFAULT;
867 			break;
868 		}
869 
870 		ret += retval;
871 		src += retval;
872 		buf += retval;
873 		count -= retval;
874 	}
875 	*ppos = src;
876 
877 out_put:
878 	mmput(mm);
879 out_free:
880 	free_page((unsigned long) page);
881 out:
882 	put_task_struct(task);
883 out_no_task:
884 	return ret;
885 }
886 
887 static ssize_t mem_write(struct file * file, const char __user *buf,
888 			 size_t count, loff_t *ppos)
889 {
890 	int copied;
891 	char *page;
892 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
893 	unsigned long dst = *ppos;
894 	struct mm_struct *mm;
895 
896 	copied = -ESRCH;
897 	if (!task)
898 		goto out_no_task;
899 
900 	copied = -ENOMEM;
901 	page = (char *)__get_free_page(GFP_TEMPORARY);
902 	if (!page)
903 		goto out_task;
904 
905 	mm = check_mem_permission(task);
906 	copied = PTR_ERR(mm);
907 	if (IS_ERR(mm))
908 		goto out_free;
909 
910 	copied = -EIO;
911 	if (file->private_data != (void *)((long)current->self_exec_id))
912 		goto out_mm;
913 
914 	copied = 0;
915 	while (count > 0) {
916 		int this_len, retval;
917 
918 		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
919 		if (copy_from_user(page, buf, this_len)) {
920 			copied = -EFAULT;
921 			break;
922 		}
923 		retval = access_remote_vm(mm, dst, page, this_len, 1);
924 		if (!retval) {
925 			if (!copied)
926 				copied = -EIO;
927 			break;
928 		}
929 		copied += retval;
930 		buf += retval;
931 		dst += retval;
932 		count -= retval;
933 	}
934 	*ppos = dst;
935 
936 out_mm:
937 	mmput(mm);
938 out_free:
939 	free_page((unsigned long) page);
940 out_task:
941 	put_task_struct(task);
942 out_no_task:
943 	return copied;
944 }
945 
946 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
947 {
948 	switch (orig) {
949 	case 0:
950 		file->f_pos = offset;
951 		break;
952 	case 1:
953 		file->f_pos += offset;
954 		break;
955 	default:
956 		return -EINVAL;
957 	}
958 	force_successful_syscall_return();
959 	return file->f_pos;
960 }
961 
962 static const struct file_operations proc_mem_operations = {
963 	.llseek		= mem_lseek,
964 	.read		= mem_read,
965 	.write		= mem_write,
966 	.open		= mem_open,
967 };
968 
969 static ssize_t environ_read(struct file *file, char __user *buf,
970 			size_t count, loff_t *ppos)
971 {
972 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
973 	char *page;
974 	unsigned long src = *ppos;
975 	int ret = -ESRCH;
976 	struct mm_struct *mm;
977 
978 	if (!task)
979 		goto out_no_task;
980 
981 	ret = -ENOMEM;
982 	page = (char *)__get_free_page(GFP_TEMPORARY);
983 	if (!page)
984 		goto out;
985 
986 
987 	mm = mm_for_maps(task);
988 	ret = PTR_ERR(mm);
989 	if (!mm || IS_ERR(mm))
990 		goto out_free;
991 
992 	ret = 0;
993 	while (count > 0) {
994 		int this_len, retval, max_len;
995 
996 		this_len = mm->env_end - (mm->env_start + src);
997 
998 		if (this_len <= 0)
999 			break;
1000 
1001 		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
1002 		this_len = (this_len > max_len) ? max_len : this_len;
1003 
1004 		retval = access_process_vm(task, (mm->env_start + src),
1005 			page, this_len, 0);
1006 
1007 		if (retval <= 0) {
1008 			ret = retval;
1009 			break;
1010 		}
1011 
1012 		if (copy_to_user(buf, page, retval)) {
1013 			ret = -EFAULT;
1014 			break;
1015 		}
1016 
1017 		ret += retval;
1018 		src += retval;
1019 		buf += retval;
1020 		count -= retval;
1021 	}
1022 	*ppos = src;
1023 
1024 	mmput(mm);
1025 out_free:
1026 	free_page((unsigned long) page);
1027 out:
1028 	put_task_struct(task);
1029 out_no_task:
1030 	return ret;
1031 }
1032 
1033 static const struct file_operations proc_environ_operations = {
1034 	.read		= environ_read,
1035 	.llseek		= generic_file_llseek,
1036 };
1037 
1038 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
1039 				size_t count, loff_t *ppos)
1040 {
1041 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1042 	char buffer[PROC_NUMBUF];
1043 	size_t len;
1044 	int oom_adjust = OOM_DISABLE;
1045 	unsigned long flags;
1046 
1047 	if (!task)
1048 		return -ESRCH;
1049 
1050 	if (lock_task_sighand(task, &flags)) {
1051 		oom_adjust = task->signal->oom_adj;
1052 		unlock_task_sighand(task, &flags);
1053 	}
1054 
1055 	put_task_struct(task);
1056 
1057 	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1058 
1059 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1060 }
1061 
1062 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1063 				size_t count, loff_t *ppos)
1064 {
1065 	struct task_struct *task;
1066 	char buffer[PROC_NUMBUF];
1067 	int oom_adjust;
1068 	unsigned long flags;
1069 	int err;
1070 
1071 	memset(buffer, 0, sizeof(buffer));
1072 	if (count > sizeof(buffer) - 1)
1073 		count = sizeof(buffer) - 1;
1074 	if (copy_from_user(buffer, buf, count)) {
1075 		err = -EFAULT;
1076 		goto out;
1077 	}
1078 
1079 	err = kstrtoint(strstrip(buffer), 0, &oom_adjust);
1080 	if (err)
1081 		goto out;
1082 	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1083 	     oom_adjust != OOM_DISABLE) {
1084 		err = -EINVAL;
1085 		goto out;
1086 	}
1087 
1088 	task = get_proc_task(file->f_path.dentry->d_inode);
1089 	if (!task) {
1090 		err = -ESRCH;
1091 		goto out;
1092 	}
1093 
1094 	task_lock(task);
1095 	if (!task->mm) {
1096 		err = -EINVAL;
1097 		goto err_task_lock;
1098 	}
1099 
1100 	if (!lock_task_sighand(task, &flags)) {
1101 		err = -ESRCH;
1102 		goto err_task_lock;
1103 	}
1104 
1105 	if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1106 		err = -EACCES;
1107 		goto err_sighand;
1108 	}
1109 
1110 	if (oom_adjust != task->signal->oom_adj) {
1111 		if (oom_adjust == OOM_DISABLE)
1112 			atomic_inc(&task->mm->oom_disable_count);
1113 		if (task->signal->oom_adj == OOM_DISABLE)
1114 			atomic_dec(&task->mm->oom_disable_count);
1115 	}
1116 
1117 	/*
1118 	 * Warn that /proc/pid/oom_adj is deprecated, see
1119 	 * Documentation/feature-removal-schedule.txt.
1120 	 */
1121 	printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, "
1122 			"please use /proc/%d/oom_score_adj instead.\n",
1123 			current->comm, task_pid_nr(current),
1124 			task_pid_nr(task), task_pid_nr(task));
1125 	task->signal->oom_adj = oom_adjust;
1126 	/*
1127 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1128 	 * value is always attainable.
1129 	 */
1130 	if (task->signal->oom_adj == OOM_ADJUST_MAX)
1131 		task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1132 	else
1133 		task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1134 								-OOM_DISABLE;
1135 err_sighand:
1136 	unlock_task_sighand(task, &flags);
1137 err_task_lock:
1138 	task_unlock(task);
1139 	put_task_struct(task);
1140 out:
1141 	return err < 0 ? err : count;
1142 }
1143 
1144 static const struct file_operations proc_oom_adjust_operations = {
1145 	.read		= oom_adjust_read,
1146 	.write		= oom_adjust_write,
1147 	.llseek		= generic_file_llseek,
1148 };
1149 
1150 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1151 					size_t count, loff_t *ppos)
1152 {
1153 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1154 	char buffer[PROC_NUMBUF];
1155 	int oom_score_adj = OOM_SCORE_ADJ_MIN;
1156 	unsigned long flags;
1157 	size_t len;
1158 
1159 	if (!task)
1160 		return -ESRCH;
1161 	if (lock_task_sighand(task, &flags)) {
1162 		oom_score_adj = task->signal->oom_score_adj;
1163 		unlock_task_sighand(task, &flags);
1164 	}
1165 	put_task_struct(task);
1166 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1167 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1168 }
1169 
1170 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1171 					size_t count, loff_t *ppos)
1172 {
1173 	struct task_struct *task;
1174 	char buffer[PROC_NUMBUF];
1175 	unsigned long flags;
1176 	int oom_score_adj;
1177 	int err;
1178 
1179 	memset(buffer, 0, sizeof(buffer));
1180 	if (count > sizeof(buffer) - 1)
1181 		count = sizeof(buffer) - 1;
1182 	if (copy_from_user(buffer, buf, count)) {
1183 		err = -EFAULT;
1184 		goto out;
1185 	}
1186 
1187 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1188 	if (err)
1189 		goto out;
1190 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1191 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1192 		err = -EINVAL;
1193 		goto out;
1194 	}
1195 
1196 	task = get_proc_task(file->f_path.dentry->d_inode);
1197 	if (!task) {
1198 		err = -ESRCH;
1199 		goto out;
1200 	}
1201 
1202 	task_lock(task);
1203 	if (!task->mm) {
1204 		err = -EINVAL;
1205 		goto err_task_lock;
1206 	}
1207 
1208 	if (!lock_task_sighand(task, &flags)) {
1209 		err = -ESRCH;
1210 		goto err_task_lock;
1211 	}
1212 
1213 	if (oom_score_adj < task->signal->oom_score_adj_min &&
1214 			!capable(CAP_SYS_RESOURCE)) {
1215 		err = -EACCES;
1216 		goto err_sighand;
1217 	}
1218 
1219 	if (oom_score_adj != task->signal->oom_score_adj) {
1220 		if (oom_score_adj == OOM_SCORE_ADJ_MIN)
1221 			atomic_inc(&task->mm->oom_disable_count);
1222 		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1223 			atomic_dec(&task->mm->oom_disable_count);
1224 	}
1225 	task->signal->oom_score_adj = oom_score_adj;
1226 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1227 		task->signal->oom_score_adj_min = oom_score_adj;
1228 	/*
1229 	 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1230 	 * always attainable.
1231 	 */
1232 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1233 		task->signal->oom_adj = OOM_DISABLE;
1234 	else
1235 		task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1236 							OOM_SCORE_ADJ_MAX;
1237 err_sighand:
1238 	unlock_task_sighand(task, &flags);
1239 err_task_lock:
1240 	task_unlock(task);
1241 	put_task_struct(task);
1242 out:
1243 	return err < 0 ? err : count;
1244 }
1245 
1246 static const struct file_operations proc_oom_score_adj_operations = {
1247 	.read		= oom_score_adj_read,
1248 	.write		= oom_score_adj_write,
1249 	.llseek		= default_llseek,
1250 };
1251 
1252 #ifdef CONFIG_AUDITSYSCALL
1253 #define TMPBUFLEN 21
1254 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1255 				  size_t count, loff_t *ppos)
1256 {
1257 	struct inode * inode = file->f_path.dentry->d_inode;
1258 	struct task_struct *task = get_proc_task(inode);
1259 	ssize_t length;
1260 	char tmpbuf[TMPBUFLEN];
1261 
1262 	if (!task)
1263 		return -ESRCH;
1264 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1265 				audit_get_loginuid(task));
1266 	put_task_struct(task);
1267 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1268 }
1269 
1270 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1271 				   size_t count, loff_t *ppos)
1272 {
1273 	struct inode * inode = file->f_path.dentry->d_inode;
1274 	char *page, *tmp;
1275 	ssize_t length;
1276 	uid_t loginuid;
1277 
1278 	if (!capable(CAP_AUDIT_CONTROL))
1279 		return -EPERM;
1280 
1281 	rcu_read_lock();
1282 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1283 		rcu_read_unlock();
1284 		return -EPERM;
1285 	}
1286 	rcu_read_unlock();
1287 
1288 	if (count >= PAGE_SIZE)
1289 		count = PAGE_SIZE - 1;
1290 
1291 	if (*ppos != 0) {
1292 		/* No partial writes. */
1293 		return -EINVAL;
1294 	}
1295 	page = (char*)__get_free_page(GFP_TEMPORARY);
1296 	if (!page)
1297 		return -ENOMEM;
1298 	length = -EFAULT;
1299 	if (copy_from_user(page, buf, count))
1300 		goto out_free_page;
1301 
1302 	page[count] = '\0';
1303 	loginuid = simple_strtoul(page, &tmp, 10);
1304 	if (tmp == page) {
1305 		length = -EINVAL;
1306 		goto out_free_page;
1307 
1308 	}
1309 	length = audit_set_loginuid(current, loginuid);
1310 	if (likely(length == 0))
1311 		length = count;
1312 
1313 out_free_page:
1314 	free_page((unsigned long) page);
1315 	return length;
1316 }
1317 
1318 static const struct file_operations proc_loginuid_operations = {
1319 	.read		= proc_loginuid_read,
1320 	.write		= proc_loginuid_write,
1321 	.llseek		= generic_file_llseek,
1322 };
1323 
1324 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1325 				  size_t count, loff_t *ppos)
1326 {
1327 	struct inode * inode = file->f_path.dentry->d_inode;
1328 	struct task_struct *task = get_proc_task(inode);
1329 	ssize_t length;
1330 	char tmpbuf[TMPBUFLEN];
1331 
1332 	if (!task)
1333 		return -ESRCH;
1334 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1335 				audit_get_sessionid(task));
1336 	put_task_struct(task);
1337 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1338 }
1339 
1340 static const struct file_operations proc_sessionid_operations = {
1341 	.read		= proc_sessionid_read,
1342 	.llseek		= generic_file_llseek,
1343 };
1344 #endif
1345 
1346 #ifdef CONFIG_FAULT_INJECTION
1347 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1348 				      size_t count, loff_t *ppos)
1349 {
1350 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1351 	char buffer[PROC_NUMBUF];
1352 	size_t len;
1353 	int make_it_fail;
1354 
1355 	if (!task)
1356 		return -ESRCH;
1357 	make_it_fail = task->make_it_fail;
1358 	put_task_struct(task);
1359 
1360 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1361 
1362 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1363 }
1364 
1365 static ssize_t proc_fault_inject_write(struct file * file,
1366 			const char __user * buf, size_t count, loff_t *ppos)
1367 {
1368 	struct task_struct *task;
1369 	char buffer[PROC_NUMBUF], *end;
1370 	int make_it_fail;
1371 
1372 	if (!capable(CAP_SYS_RESOURCE))
1373 		return -EPERM;
1374 	memset(buffer, 0, sizeof(buffer));
1375 	if (count > sizeof(buffer) - 1)
1376 		count = sizeof(buffer) - 1;
1377 	if (copy_from_user(buffer, buf, count))
1378 		return -EFAULT;
1379 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1380 	if (*end)
1381 		return -EINVAL;
1382 	task = get_proc_task(file->f_dentry->d_inode);
1383 	if (!task)
1384 		return -ESRCH;
1385 	task->make_it_fail = make_it_fail;
1386 	put_task_struct(task);
1387 
1388 	return count;
1389 }
1390 
1391 static const struct file_operations proc_fault_inject_operations = {
1392 	.read		= proc_fault_inject_read,
1393 	.write		= proc_fault_inject_write,
1394 	.llseek		= generic_file_llseek,
1395 };
1396 #endif
1397 
1398 
1399 #ifdef CONFIG_SCHED_DEBUG
1400 /*
1401  * Print out various scheduling related per-task fields:
1402  */
1403 static int sched_show(struct seq_file *m, void *v)
1404 {
1405 	struct inode *inode = m->private;
1406 	struct task_struct *p;
1407 
1408 	p = get_proc_task(inode);
1409 	if (!p)
1410 		return -ESRCH;
1411 	proc_sched_show_task(p, m);
1412 
1413 	put_task_struct(p);
1414 
1415 	return 0;
1416 }
1417 
1418 static ssize_t
1419 sched_write(struct file *file, const char __user *buf,
1420 	    size_t count, loff_t *offset)
1421 {
1422 	struct inode *inode = file->f_path.dentry->d_inode;
1423 	struct task_struct *p;
1424 
1425 	p = get_proc_task(inode);
1426 	if (!p)
1427 		return -ESRCH;
1428 	proc_sched_set_task(p);
1429 
1430 	put_task_struct(p);
1431 
1432 	return count;
1433 }
1434 
1435 static int sched_open(struct inode *inode, struct file *filp)
1436 {
1437 	return single_open(filp, sched_show, inode);
1438 }
1439 
1440 static const struct file_operations proc_pid_sched_operations = {
1441 	.open		= sched_open,
1442 	.read		= seq_read,
1443 	.write		= sched_write,
1444 	.llseek		= seq_lseek,
1445 	.release	= single_release,
1446 };
1447 
1448 #endif
1449 
1450 #ifdef CONFIG_SCHED_AUTOGROUP
1451 /*
1452  * Print out autogroup related information:
1453  */
1454 static int sched_autogroup_show(struct seq_file *m, void *v)
1455 {
1456 	struct inode *inode = m->private;
1457 	struct task_struct *p;
1458 
1459 	p = get_proc_task(inode);
1460 	if (!p)
1461 		return -ESRCH;
1462 	proc_sched_autogroup_show_task(p, m);
1463 
1464 	put_task_struct(p);
1465 
1466 	return 0;
1467 }
1468 
1469 static ssize_t
1470 sched_autogroup_write(struct file *file, const char __user *buf,
1471 	    size_t count, loff_t *offset)
1472 {
1473 	struct inode *inode = file->f_path.dentry->d_inode;
1474 	struct task_struct *p;
1475 	char buffer[PROC_NUMBUF];
1476 	int nice;
1477 	int err;
1478 
1479 	memset(buffer, 0, sizeof(buffer));
1480 	if (count > sizeof(buffer) - 1)
1481 		count = sizeof(buffer) - 1;
1482 	if (copy_from_user(buffer, buf, count))
1483 		return -EFAULT;
1484 
1485 	err = kstrtoint(strstrip(buffer), 0, &nice);
1486 	if (err < 0)
1487 		return err;
1488 
1489 	p = get_proc_task(inode);
1490 	if (!p)
1491 		return -ESRCH;
1492 
1493 	err = nice;
1494 	err = proc_sched_autogroup_set_nice(p, &err);
1495 	if (err)
1496 		count = err;
1497 
1498 	put_task_struct(p);
1499 
1500 	return count;
1501 }
1502 
1503 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1504 {
1505 	int ret;
1506 
1507 	ret = single_open(filp, sched_autogroup_show, NULL);
1508 	if (!ret) {
1509 		struct seq_file *m = filp->private_data;
1510 
1511 		m->private = inode;
1512 	}
1513 	return ret;
1514 }
1515 
1516 static const struct file_operations proc_pid_sched_autogroup_operations = {
1517 	.open		= sched_autogroup_open,
1518 	.read		= seq_read,
1519 	.write		= sched_autogroup_write,
1520 	.llseek		= seq_lseek,
1521 	.release	= single_release,
1522 };
1523 
1524 #endif /* CONFIG_SCHED_AUTOGROUP */
1525 
1526 static ssize_t comm_write(struct file *file, const char __user *buf,
1527 				size_t count, loff_t *offset)
1528 {
1529 	struct inode *inode = file->f_path.dentry->d_inode;
1530 	struct task_struct *p;
1531 	char buffer[TASK_COMM_LEN];
1532 
1533 	memset(buffer, 0, sizeof(buffer));
1534 	if (count > sizeof(buffer) - 1)
1535 		count = sizeof(buffer) - 1;
1536 	if (copy_from_user(buffer, buf, count))
1537 		return -EFAULT;
1538 
1539 	p = get_proc_task(inode);
1540 	if (!p)
1541 		return -ESRCH;
1542 
1543 	if (same_thread_group(current, p))
1544 		set_task_comm(p, buffer);
1545 	else
1546 		count = -EINVAL;
1547 
1548 	put_task_struct(p);
1549 
1550 	return count;
1551 }
1552 
1553 static int comm_show(struct seq_file *m, void *v)
1554 {
1555 	struct inode *inode = m->private;
1556 	struct task_struct *p;
1557 
1558 	p = get_proc_task(inode);
1559 	if (!p)
1560 		return -ESRCH;
1561 
1562 	task_lock(p);
1563 	seq_printf(m, "%s\n", p->comm);
1564 	task_unlock(p);
1565 
1566 	put_task_struct(p);
1567 
1568 	return 0;
1569 }
1570 
1571 static int comm_open(struct inode *inode, struct file *filp)
1572 {
1573 	return single_open(filp, comm_show, inode);
1574 }
1575 
1576 static const struct file_operations proc_pid_set_comm_operations = {
1577 	.open		= comm_open,
1578 	.read		= seq_read,
1579 	.write		= comm_write,
1580 	.llseek		= seq_lseek,
1581 	.release	= single_release,
1582 };
1583 
1584 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1585 {
1586 	struct task_struct *task;
1587 	struct mm_struct *mm;
1588 	struct file *exe_file;
1589 
1590 	task = get_proc_task(inode);
1591 	if (!task)
1592 		return -ENOENT;
1593 	mm = get_task_mm(task);
1594 	put_task_struct(task);
1595 	if (!mm)
1596 		return -ENOENT;
1597 	exe_file = get_mm_exe_file(mm);
1598 	mmput(mm);
1599 	if (exe_file) {
1600 		*exe_path = exe_file->f_path;
1601 		path_get(&exe_file->f_path);
1602 		fput(exe_file);
1603 		return 0;
1604 	} else
1605 		return -ENOENT;
1606 }
1607 
1608 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1609 {
1610 	struct inode *inode = dentry->d_inode;
1611 	int error = -EACCES;
1612 
1613 	/* We don't need a base pointer in the /proc filesystem */
1614 	path_put(&nd->path);
1615 
1616 	/* Are we allowed to snoop on the tasks file descriptors? */
1617 	if (!proc_fd_access_allowed(inode))
1618 		goto out;
1619 
1620 	error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1621 out:
1622 	return ERR_PTR(error);
1623 }
1624 
1625 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1626 {
1627 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1628 	char *pathname;
1629 	int len;
1630 
1631 	if (!tmp)
1632 		return -ENOMEM;
1633 
1634 	pathname = d_path(path, tmp, PAGE_SIZE);
1635 	len = PTR_ERR(pathname);
1636 	if (IS_ERR(pathname))
1637 		goto out;
1638 	len = tmp + PAGE_SIZE - 1 - pathname;
1639 
1640 	if (len > buflen)
1641 		len = buflen;
1642 	if (copy_to_user(buffer, pathname, len))
1643 		len = -EFAULT;
1644  out:
1645 	free_page((unsigned long)tmp);
1646 	return len;
1647 }
1648 
1649 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1650 {
1651 	int error = -EACCES;
1652 	struct inode *inode = dentry->d_inode;
1653 	struct path path;
1654 
1655 	/* Are we allowed to snoop on the tasks file descriptors? */
1656 	if (!proc_fd_access_allowed(inode))
1657 		goto out;
1658 
1659 	error = PROC_I(inode)->op.proc_get_link(inode, &path);
1660 	if (error)
1661 		goto out;
1662 
1663 	error = do_proc_readlink(&path, buffer, buflen);
1664 	path_put(&path);
1665 out:
1666 	return error;
1667 }
1668 
1669 static const struct inode_operations proc_pid_link_inode_operations = {
1670 	.readlink	= proc_pid_readlink,
1671 	.follow_link	= proc_pid_follow_link,
1672 	.setattr	= proc_setattr,
1673 };
1674 
1675 
1676 /* building an inode */
1677 
1678 static int task_dumpable(struct task_struct *task)
1679 {
1680 	int dumpable = 0;
1681 	struct mm_struct *mm;
1682 
1683 	task_lock(task);
1684 	mm = task->mm;
1685 	if (mm)
1686 		dumpable = get_dumpable(mm);
1687 	task_unlock(task);
1688 	if(dumpable == 1)
1689 		return 1;
1690 	return 0;
1691 }
1692 
1693 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1694 {
1695 	struct inode * inode;
1696 	struct proc_inode *ei;
1697 	const struct cred *cred;
1698 
1699 	/* We need a new inode */
1700 
1701 	inode = new_inode(sb);
1702 	if (!inode)
1703 		goto out;
1704 
1705 	/* Common stuff */
1706 	ei = PROC_I(inode);
1707 	inode->i_ino = get_next_ino();
1708 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1709 	inode->i_op = &proc_def_inode_operations;
1710 
1711 	/*
1712 	 * grab the reference to task.
1713 	 */
1714 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1715 	if (!ei->pid)
1716 		goto out_unlock;
1717 
1718 	if (task_dumpable(task)) {
1719 		rcu_read_lock();
1720 		cred = __task_cred(task);
1721 		inode->i_uid = cred->euid;
1722 		inode->i_gid = cred->egid;
1723 		rcu_read_unlock();
1724 	}
1725 	security_task_to_inode(task, inode);
1726 
1727 out:
1728 	return inode;
1729 
1730 out_unlock:
1731 	iput(inode);
1732 	return NULL;
1733 }
1734 
1735 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1736 {
1737 	struct inode *inode = dentry->d_inode;
1738 	struct task_struct *task;
1739 	const struct cred *cred;
1740 
1741 	generic_fillattr(inode, stat);
1742 
1743 	rcu_read_lock();
1744 	stat->uid = 0;
1745 	stat->gid = 0;
1746 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1747 	if (task) {
1748 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1749 		    task_dumpable(task)) {
1750 			cred = __task_cred(task);
1751 			stat->uid = cred->euid;
1752 			stat->gid = cred->egid;
1753 		}
1754 	}
1755 	rcu_read_unlock();
1756 	return 0;
1757 }
1758 
1759 /* dentry stuff */
1760 
1761 /*
1762  *	Exceptional case: normally we are not allowed to unhash a busy
1763  * directory. In this case, however, we can do it - no aliasing problems
1764  * due to the way we treat inodes.
1765  *
1766  * Rewrite the inode's ownerships here because the owning task may have
1767  * performed a setuid(), etc.
1768  *
1769  * Before the /proc/pid/status file was created the only way to read
1770  * the effective uid of a /process was to stat /proc/pid.  Reading
1771  * /proc/pid/status is slow enough that procps and other packages
1772  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1773  * made this apply to all per process world readable and executable
1774  * directories.
1775  */
1776 int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1777 {
1778 	struct inode *inode;
1779 	struct task_struct *task;
1780 	const struct cred *cred;
1781 
1782 	if (nd && nd->flags & LOOKUP_RCU)
1783 		return -ECHILD;
1784 
1785 	inode = dentry->d_inode;
1786 	task = get_proc_task(inode);
1787 
1788 	if (task) {
1789 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1790 		    task_dumpable(task)) {
1791 			rcu_read_lock();
1792 			cred = __task_cred(task);
1793 			inode->i_uid = cred->euid;
1794 			inode->i_gid = cred->egid;
1795 			rcu_read_unlock();
1796 		} else {
1797 			inode->i_uid = 0;
1798 			inode->i_gid = 0;
1799 		}
1800 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1801 		security_task_to_inode(task, inode);
1802 		put_task_struct(task);
1803 		return 1;
1804 	}
1805 	d_drop(dentry);
1806 	return 0;
1807 }
1808 
1809 static int pid_delete_dentry(const struct dentry * dentry)
1810 {
1811 	/* Is the task we represent dead?
1812 	 * If so, then don't put the dentry on the lru list,
1813 	 * kill it immediately.
1814 	 */
1815 	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1816 }
1817 
1818 const struct dentry_operations pid_dentry_operations =
1819 {
1820 	.d_revalidate	= pid_revalidate,
1821 	.d_delete	= pid_delete_dentry,
1822 };
1823 
1824 /* Lookups */
1825 
1826 /*
1827  * Fill a directory entry.
1828  *
1829  * If possible create the dcache entry and derive our inode number and
1830  * file type from dcache entry.
1831  *
1832  * Since all of the proc inode numbers are dynamically generated, the inode
1833  * numbers do not exist until the inode is cache.  This means creating the
1834  * the dcache entry in readdir is necessary to keep the inode numbers
1835  * reported by readdir in sync with the inode numbers reported
1836  * by stat.
1837  */
1838 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1839 	const char *name, int len,
1840 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1841 {
1842 	struct dentry *child, *dir = filp->f_path.dentry;
1843 	struct inode *inode;
1844 	struct qstr qname;
1845 	ino_t ino = 0;
1846 	unsigned type = DT_UNKNOWN;
1847 
1848 	qname.name = name;
1849 	qname.len  = len;
1850 	qname.hash = full_name_hash(name, len);
1851 
1852 	child = d_lookup(dir, &qname);
1853 	if (!child) {
1854 		struct dentry *new;
1855 		new = d_alloc(dir, &qname);
1856 		if (new) {
1857 			child = instantiate(dir->d_inode, new, task, ptr);
1858 			if (child)
1859 				dput(new);
1860 			else
1861 				child = new;
1862 		}
1863 	}
1864 	if (!child || IS_ERR(child) || !child->d_inode)
1865 		goto end_instantiate;
1866 	inode = child->d_inode;
1867 	if (inode) {
1868 		ino = inode->i_ino;
1869 		type = inode->i_mode >> 12;
1870 	}
1871 	dput(child);
1872 end_instantiate:
1873 	if (!ino)
1874 		ino = find_inode_number(dir, &qname);
1875 	if (!ino)
1876 		ino = 1;
1877 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1878 }
1879 
1880 static unsigned name_to_int(struct dentry *dentry)
1881 {
1882 	const char *name = dentry->d_name.name;
1883 	int len = dentry->d_name.len;
1884 	unsigned n = 0;
1885 
1886 	if (len > 1 && *name == '0')
1887 		goto out;
1888 	while (len-- > 0) {
1889 		unsigned c = *name++ - '0';
1890 		if (c > 9)
1891 			goto out;
1892 		if (n >= (~0U-9)/10)
1893 			goto out;
1894 		n *= 10;
1895 		n += c;
1896 	}
1897 	return n;
1898 out:
1899 	return ~0U;
1900 }
1901 
1902 #define PROC_FDINFO_MAX 64
1903 
1904 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1905 {
1906 	struct task_struct *task = get_proc_task(inode);
1907 	struct files_struct *files = NULL;
1908 	struct file *file;
1909 	int fd = proc_fd(inode);
1910 
1911 	if (task) {
1912 		files = get_files_struct(task);
1913 		put_task_struct(task);
1914 	}
1915 	if (files) {
1916 		/*
1917 		 * We are not taking a ref to the file structure, so we must
1918 		 * hold ->file_lock.
1919 		 */
1920 		spin_lock(&files->file_lock);
1921 		file = fcheck_files(files, fd);
1922 		if (file) {
1923 			if (path) {
1924 				*path = file->f_path;
1925 				path_get(&file->f_path);
1926 			}
1927 			if (info)
1928 				snprintf(info, PROC_FDINFO_MAX,
1929 					 "pos:\t%lli\n"
1930 					 "flags:\t0%o\n",
1931 					 (long long) file->f_pos,
1932 					 file->f_flags);
1933 			spin_unlock(&files->file_lock);
1934 			put_files_struct(files);
1935 			return 0;
1936 		}
1937 		spin_unlock(&files->file_lock);
1938 		put_files_struct(files);
1939 	}
1940 	return -ENOENT;
1941 }
1942 
1943 static int proc_fd_link(struct inode *inode, struct path *path)
1944 {
1945 	return proc_fd_info(inode, path, NULL);
1946 }
1947 
1948 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1949 {
1950 	struct inode *inode;
1951 	struct task_struct *task;
1952 	int fd;
1953 	struct files_struct *files;
1954 	const struct cred *cred;
1955 
1956 	if (nd && nd->flags & LOOKUP_RCU)
1957 		return -ECHILD;
1958 
1959 	inode = dentry->d_inode;
1960 	task = get_proc_task(inode);
1961 	fd = proc_fd(inode);
1962 
1963 	if (task) {
1964 		files = get_files_struct(task);
1965 		if (files) {
1966 			rcu_read_lock();
1967 			if (fcheck_files(files, fd)) {
1968 				rcu_read_unlock();
1969 				put_files_struct(files);
1970 				if (task_dumpable(task)) {
1971 					rcu_read_lock();
1972 					cred = __task_cred(task);
1973 					inode->i_uid = cred->euid;
1974 					inode->i_gid = cred->egid;
1975 					rcu_read_unlock();
1976 				} else {
1977 					inode->i_uid = 0;
1978 					inode->i_gid = 0;
1979 				}
1980 				inode->i_mode &= ~(S_ISUID | S_ISGID);
1981 				security_task_to_inode(task, inode);
1982 				put_task_struct(task);
1983 				return 1;
1984 			}
1985 			rcu_read_unlock();
1986 			put_files_struct(files);
1987 		}
1988 		put_task_struct(task);
1989 	}
1990 	d_drop(dentry);
1991 	return 0;
1992 }
1993 
1994 static const struct dentry_operations tid_fd_dentry_operations =
1995 {
1996 	.d_revalidate	= tid_fd_revalidate,
1997 	.d_delete	= pid_delete_dentry,
1998 };
1999 
2000 static struct dentry *proc_fd_instantiate(struct inode *dir,
2001 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2002 {
2003 	unsigned fd = *(const unsigned *)ptr;
2004 	struct file *file;
2005 	struct files_struct *files;
2006  	struct inode *inode;
2007  	struct proc_inode *ei;
2008 	struct dentry *error = ERR_PTR(-ENOENT);
2009 
2010 	inode = proc_pid_make_inode(dir->i_sb, task);
2011 	if (!inode)
2012 		goto out;
2013 	ei = PROC_I(inode);
2014 	ei->fd = fd;
2015 	files = get_files_struct(task);
2016 	if (!files)
2017 		goto out_iput;
2018 	inode->i_mode = S_IFLNK;
2019 
2020 	/*
2021 	 * We are not taking a ref to the file structure, so we must
2022 	 * hold ->file_lock.
2023 	 */
2024 	spin_lock(&files->file_lock);
2025 	file = fcheck_files(files, fd);
2026 	if (!file)
2027 		goto out_unlock;
2028 	if (file->f_mode & FMODE_READ)
2029 		inode->i_mode |= S_IRUSR | S_IXUSR;
2030 	if (file->f_mode & FMODE_WRITE)
2031 		inode->i_mode |= S_IWUSR | S_IXUSR;
2032 	spin_unlock(&files->file_lock);
2033 	put_files_struct(files);
2034 
2035 	inode->i_op = &proc_pid_link_inode_operations;
2036 	inode->i_size = 64;
2037 	ei->op.proc_get_link = proc_fd_link;
2038 	d_set_d_op(dentry, &tid_fd_dentry_operations);
2039 	d_add(dentry, inode);
2040 	/* Close the race of the process dying before we return the dentry */
2041 	if (tid_fd_revalidate(dentry, NULL))
2042 		error = NULL;
2043 
2044  out:
2045 	return error;
2046 out_unlock:
2047 	spin_unlock(&files->file_lock);
2048 	put_files_struct(files);
2049 out_iput:
2050 	iput(inode);
2051 	goto out;
2052 }
2053 
2054 static struct dentry *proc_lookupfd_common(struct inode *dir,
2055 					   struct dentry *dentry,
2056 					   instantiate_t instantiate)
2057 {
2058 	struct task_struct *task = get_proc_task(dir);
2059 	unsigned fd = name_to_int(dentry);
2060 	struct dentry *result = ERR_PTR(-ENOENT);
2061 
2062 	if (!task)
2063 		goto out_no_task;
2064 	if (fd == ~0U)
2065 		goto out;
2066 
2067 	result = instantiate(dir, dentry, task, &fd);
2068 out:
2069 	put_task_struct(task);
2070 out_no_task:
2071 	return result;
2072 }
2073 
2074 static int proc_readfd_common(struct file * filp, void * dirent,
2075 			      filldir_t filldir, instantiate_t instantiate)
2076 {
2077 	struct dentry *dentry = filp->f_path.dentry;
2078 	struct inode *inode = dentry->d_inode;
2079 	struct task_struct *p = get_proc_task(inode);
2080 	unsigned int fd, ino;
2081 	int retval;
2082 	struct files_struct * files;
2083 
2084 	retval = -ENOENT;
2085 	if (!p)
2086 		goto out_no_task;
2087 	retval = 0;
2088 
2089 	fd = filp->f_pos;
2090 	switch (fd) {
2091 		case 0:
2092 			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
2093 				goto out;
2094 			filp->f_pos++;
2095 		case 1:
2096 			ino = parent_ino(dentry);
2097 			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2098 				goto out;
2099 			filp->f_pos++;
2100 		default:
2101 			files = get_files_struct(p);
2102 			if (!files)
2103 				goto out;
2104 			rcu_read_lock();
2105 			for (fd = filp->f_pos-2;
2106 			     fd < files_fdtable(files)->max_fds;
2107 			     fd++, filp->f_pos++) {
2108 				char name[PROC_NUMBUF];
2109 				int len;
2110 
2111 				if (!fcheck_files(files, fd))
2112 					continue;
2113 				rcu_read_unlock();
2114 
2115 				len = snprintf(name, sizeof(name), "%d", fd);
2116 				if (proc_fill_cache(filp, dirent, filldir,
2117 						    name, len, instantiate,
2118 						    p, &fd) < 0) {
2119 					rcu_read_lock();
2120 					break;
2121 				}
2122 				rcu_read_lock();
2123 			}
2124 			rcu_read_unlock();
2125 			put_files_struct(files);
2126 	}
2127 out:
2128 	put_task_struct(p);
2129 out_no_task:
2130 	return retval;
2131 }
2132 
2133 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2134 				    struct nameidata *nd)
2135 {
2136 	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
2137 }
2138 
2139 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2140 {
2141 	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
2142 }
2143 
2144 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2145 				      size_t len, loff_t *ppos)
2146 {
2147 	char tmp[PROC_FDINFO_MAX];
2148 	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2149 	if (!err)
2150 		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2151 	return err;
2152 }
2153 
2154 static const struct file_operations proc_fdinfo_file_operations = {
2155 	.open           = nonseekable_open,
2156 	.read		= proc_fdinfo_read,
2157 	.llseek		= no_llseek,
2158 };
2159 
2160 static const struct file_operations proc_fd_operations = {
2161 	.read		= generic_read_dir,
2162 	.readdir	= proc_readfd,
2163 	.llseek		= default_llseek,
2164 };
2165 
2166 /*
2167  * /proc/pid/fd needs a special permission handler so that a process can still
2168  * access /proc/self/fd after it has executed a setuid().
2169  */
2170 static int proc_fd_permission(struct inode *inode, int mask, unsigned int flags)
2171 {
2172 	int rv = generic_permission(inode, mask, flags, NULL);
2173 	if (rv == 0)
2174 		return 0;
2175 	if (task_pid(current) == proc_pid(inode))
2176 		rv = 0;
2177 	return rv;
2178 }
2179 
2180 /*
2181  * proc directories can do almost nothing..
2182  */
2183 static const struct inode_operations proc_fd_inode_operations = {
2184 	.lookup		= proc_lookupfd,
2185 	.permission	= proc_fd_permission,
2186 	.setattr	= proc_setattr,
2187 };
2188 
2189 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2190 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2191 {
2192 	unsigned fd = *(unsigned *)ptr;
2193  	struct inode *inode;
2194  	struct proc_inode *ei;
2195 	struct dentry *error = ERR_PTR(-ENOENT);
2196 
2197 	inode = proc_pid_make_inode(dir->i_sb, task);
2198 	if (!inode)
2199 		goto out;
2200 	ei = PROC_I(inode);
2201 	ei->fd = fd;
2202 	inode->i_mode = S_IFREG | S_IRUSR;
2203 	inode->i_fop = &proc_fdinfo_file_operations;
2204 	d_set_d_op(dentry, &tid_fd_dentry_operations);
2205 	d_add(dentry, inode);
2206 	/* Close the race of the process dying before we return the dentry */
2207 	if (tid_fd_revalidate(dentry, NULL))
2208 		error = NULL;
2209 
2210  out:
2211 	return error;
2212 }
2213 
2214 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2215 					struct dentry *dentry,
2216 					struct nameidata *nd)
2217 {
2218 	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2219 }
2220 
2221 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2222 {
2223 	return proc_readfd_common(filp, dirent, filldir,
2224 				  proc_fdinfo_instantiate);
2225 }
2226 
2227 static const struct file_operations proc_fdinfo_operations = {
2228 	.read		= generic_read_dir,
2229 	.readdir	= proc_readfdinfo,
2230 	.llseek		= default_llseek,
2231 };
2232 
2233 /*
2234  * proc directories can do almost nothing..
2235  */
2236 static const struct inode_operations proc_fdinfo_inode_operations = {
2237 	.lookup		= proc_lookupfdinfo,
2238 	.setattr	= proc_setattr,
2239 };
2240 
2241 
2242 static struct dentry *proc_pident_instantiate(struct inode *dir,
2243 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2244 {
2245 	const struct pid_entry *p = ptr;
2246 	struct inode *inode;
2247 	struct proc_inode *ei;
2248 	struct dentry *error = ERR_PTR(-ENOENT);
2249 
2250 	inode = proc_pid_make_inode(dir->i_sb, task);
2251 	if (!inode)
2252 		goto out;
2253 
2254 	ei = PROC_I(inode);
2255 	inode->i_mode = p->mode;
2256 	if (S_ISDIR(inode->i_mode))
2257 		inode->i_nlink = 2;	/* Use getattr to fix if necessary */
2258 	if (p->iop)
2259 		inode->i_op = p->iop;
2260 	if (p->fop)
2261 		inode->i_fop = p->fop;
2262 	ei->op = p->op;
2263 	d_set_d_op(dentry, &pid_dentry_operations);
2264 	d_add(dentry, inode);
2265 	/* Close the race of the process dying before we return the dentry */
2266 	if (pid_revalidate(dentry, NULL))
2267 		error = NULL;
2268 out:
2269 	return error;
2270 }
2271 
2272 static struct dentry *proc_pident_lookup(struct inode *dir,
2273 					 struct dentry *dentry,
2274 					 const struct pid_entry *ents,
2275 					 unsigned int nents)
2276 {
2277 	struct dentry *error;
2278 	struct task_struct *task = get_proc_task(dir);
2279 	const struct pid_entry *p, *last;
2280 
2281 	error = ERR_PTR(-ENOENT);
2282 
2283 	if (!task)
2284 		goto out_no_task;
2285 
2286 	/*
2287 	 * Yes, it does not scale. And it should not. Don't add
2288 	 * new entries into /proc/<tgid>/ without very good reasons.
2289 	 */
2290 	last = &ents[nents - 1];
2291 	for (p = ents; p <= last; p++) {
2292 		if (p->len != dentry->d_name.len)
2293 			continue;
2294 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2295 			break;
2296 	}
2297 	if (p > last)
2298 		goto out;
2299 
2300 	error = proc_pident_instantiate(dir, dentry, task, p);
2301 out:
2302 	put_task_struct(task);
2303 out_no_task:
2304 	return error;
2305 }
2306 
2307 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2308 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2309 {
2310 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2311 				proc_pident_instantiate, task, p);
2312 }
2313 
2314 static int proc_pident_readdir(struct file *filp,
2315 		void *dirent, filldir_t filldir,
2316 		const struct pid_entry *ents, unsigned int nents)
2317 {
2318 	int i;
2319 	struct dentry *dentry = filp->f_path.dentry;
2320 	struct inode *inode = dentry->d_inode;
2321 	struct task_struct *task = get_proc_task(inode);
2322 	const struct pid_entry *p, *last;
2323 	ino_t ino;
2324 	int ret;
2325 
2326 	ret = -ENOENT;
2327 	if (!task)
2328 		goto out_no_task;
2329 
2330 	ret = 0;
2331 	i = filp->f_pos;
2332 	switch (i) {
2333 	case 0:
2334 		ino = inode->i_ino;
2335 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2336 			goto out;
2337 		i++;
2338 		filp->f_pos++;
2339 		/* fall through */
2340 	case 1:
2341 		ino = parent_ino(dentry);
2342 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2343 			goto out;
2344 		i++;
2345 		filp->f_pos++;
2346 		/* fall through */
2347 	default:
2348 		i -= 2;
2349 		if (i >= nents) {
2350 			ret = 1;
2351 			goto out;
2352 		}
2353 		p = ents + i;
2354 		last = &ents[nents - 1];
2355 		while (p <= last) {
2356 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2357 				goto out;
2358 			filp->f_pos++;
2359 			p++;
2360 		}
2361 	}
2362 
2363 	ret = 1;
2364 out:
2365 	put_task_struct(task);
2366 out_no_task:
2367 	return ret;
2368 }
2369 
2370 #ifdef CONFIG_SECURITY
2371 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2372 				  size_t count, loff_t *ppos)
2373 {
2374 	struct inode * inode = file->f_path.dentry->d_inode;
2375 	char *p = NULL;
2376 	ssize_t length;
2377 	struct task_struct *task = get_proc_task(inode);
2378 
2379 	if (!task)
2380 		return -ESRCH;
2381 
2382 	length = security_getprocattr(task,
2383 				      (char*)file->f_path.dentry->d_name.name,
2384 				      &p);
2385 	put_task_struct(task);
2386 	if (length > 0)
2387 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2388 	kfree(p);
2389 	return length;
2390 }
2391 
2392 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2393 				   size_t count, loff_t *ppos)
2394 {
2395 	struct inode * inode = file->f_path.dentry->d_inode;
2396 	char *page;
2397 	ssize_t length;
2398 	struct task_struct *task = get_proc_task(inode);
2399 
2400 	length = -ESRCH;
2401 	if (!task)
2402 		goto out_no_task;
2403 	if (count > PAGE_SIZE)
2404 		count = PAGE_SIZE;
2405 
2406 	/* No partial writes. */
2407 	length = -EINVAL;
2408 	if (*ppos != 0)
2409 		goto out;
2410 
2411 	length = -ENOMEM;
2412 	page = (char*)__get_free_page(GFP_TEMPORARY);
2413 	if (!page)
2414 		goto out;
2415 
2416 	length = -EFAULT;
2417 	if (copy_from_user(page, buf, count))
2418 		goto out_free;
2419 
2420 	/* Guard against adverse ptrace interaction */
2421 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2422 	if (length < 0)
2423 		goto out_free;
2424 
2425 	length = security_setprocattr(task,
2426 				      (char*)file->f_path.dentry->d_name.name,
2427 				      (void*)page, count);
2428 	mutex_unlock(&task->signal->cred_guard_mutex);
2429 out_free:
2430 	free_page((unsigned long) page);
2431 out:
2432 	put_task_struct(task);
2433 out_no_task:
2434 	return length;
2435 }
2436 
2437 static const struct file_operations proc_pid_attr_operations = {
2438 	.read		= proc_pid_attr_read,
2439 	.write		= proc_pid_attr_write,
2440 	.llseek		= generic_file_llseek,
2441 };
2442 
2443 static const struct pid_entry attr_dir_stuff[] = {
2444 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2445 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2446 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2447 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2448 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2449 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2450 };
2451 
2452 static int proc_attr_dir_readdir(struct file * filp,
2453 			     void * dirent, filldir_t filldir)
2454 {
2455 	return proc_pident_readdir(filp,dirent,filldir,
2456 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2457 }
2458 
2459 static const struct file_operations proc_attr_dir_operations = {
2460 	.read		= generic_read_dir,
2461 	.readdir	= proc_attr_dir_readdir,
2462 	.llseek		= default_llseek,
2463 };
2464 
2465 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2466 				struct dentry *dentry, struct nameidata *nd)
2467 {
2468 	return proc_pident_lookup(dir, dentry,
2469 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2470 }
2471 
2472 static const struct inode_operations proc_attr_dir_inode_operations = {
2473 	.lookup		= proc_attr_dir_lookup,
2474 	.getattr	= pid_getattr,
2475 	.setattr	= proc_setattr,
2476 };
2477 
2478 #endif
2479 
2480 #ifdef CONFIG_ELF_CORE
2481 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2482 					 size_t count, loff_t *ppos)
2483 {
2484 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2485 	struct mm_struct *mm;
2486 	char buffer[PROC_NUMBUF];
2487 	size_t len;
2488 	int ret;
2489 
2490 	if (!task)
2491 		return -ESRCH;
2492 
2493 	ret = 0;
2494 	mm = get_task_mm(task);
2495 	if (mm) {
2496 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2497 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2498 				MMF_DUMP_FILTER_SHIFT));
2499 		mmput(mm);
2500 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2501 	}
2502 
2503 	put_task_struct(task);
2504 
2505 	return ret;
2506 }
2507 
2508 static ssize_t proc_coredump_filter_write(struct file *file,
2509 					  const char __user *buf,
2510 					  size_t count,
2511 					  loff_t *ppos)
2512 {
2513 	struct task_struct *task;
2514 	struct mm_struct *mm;
2515 	char buffer[PROC_NUMBUF], *end;
2516 	unsigned int val;
2517 	int ret;
2518 	int i;
2519 	unsigned long mask;
2520 
2521 	ret = -EFAULT;
2522 	memset(buffer, 0, sizeof(buffer));
2523 	if (count > sizeof(buffer) - 1)
2524 		count = sizeof(buffer) - 1;
2525 	if (copy_from_user(buffer, buf, count))
2526 		goto out_no_task;
2527 
2528 	ret = -EINVAL;
2529 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2530 	if (*end == '\n')
2531 		end++;
2532 	if (end - buffer == 0)
2533 		goto out_no_task;
2534 
2535 	ret = -ESRCH;
2536 	task = get_proc_task(file->f_dentry->d_inode);
2537 	if (!task)
2538 		goto out_no_task;
2539 
2540 	ret = end - buffer;
2541 	mm = get_task_mm(task);
2542 	if (!mm)
2543 		goto out_no_mm;
2544 
2545 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2546 		if (val & mask)
2547 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2548 		else
2549 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2550 	}
2551 
2552 	mmput(mm);
2553  out_no_mm:
2554 	put_task_struct(task);
2555  out_no_task:
2556 	return ret;
2557 }
2558 
2559 static const struct file_operations proc_coredump_filter_operations = {
2560 	.read		= proc_coredump_filter_read,
2561 	.write		= proc_coredump_filter_write,
2562 	.llseek		= generic_file_llseek,
2563 };
2564 #endif
2565 
2566 /*
2567  * /proc/self:
2568  */
2569 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2570 			      int buflen)
2571 {
2572 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2573 	pid_t tgid = task_tgid_nr_ns(current, ns);
2574 	char tmp[PROC_NUMBUF];
2575 	if (!tgid)
2576 		return -ENOENT;
2577 	sprintf(tmp, "%d", tgid);
2578 	return vfs_readlink(dentry,buffer,buflen,tmp);
2579 }
2580 
2581 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2582 {
2583 	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2584 	pid_t tgid = task_tgid_nr_ns(current, ns);
2585 	char *name = ERR_PTR(-ENOENT);
2586 	if (tgid) {
2587 		name = __getname();
2588 		if (!name)
2589 			name = ERR_PTR(-ENOMEM);
2590 		else
2591 			sprintf(name, "%d", tgid);
2592 	}
2593 	nd_set_link(nd, name);
2594 	return NULL;
2595 }
2596 
2597 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2598 				void *cookie)
2599 {
2600 	char *s = nd_get_link(nd);
2601 	if (!IS_ERR(s))
2602 		__putname(s);
2603 }
2604 
2605 static const struct inode_operations proc_self_inode_operations = {
2606 	.readlink	= proc_self_readlink,
2607 	.follow_link	= proc_self_follow_link,
2608 	.put_link	= proc_self_put_link,
2609 };
2610 
2611 /*
2612  * proc base
2613  *
2614  * These are the directory entries in the root directory of /proc
2615  * that properly belong to the /proc filesystem, as they describe
2616  * describe something that is process related.
2617  */
2618 static const struct pid_entry proc_base_stuff[] = {
2619 	NOD("self", S_IFLNK|S_IRWXUGO,
2620 		&proc_self_inode_operations, NULL, {}),
2621 };
2622 
2623 static struct dentry *proc_base_instantiate(struct inode *dir,
2624 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2625 {
2626 	const struct pid_entry *p = ptr;
2627 	struct inode *inode;
2628 	struct proc_inode *ei;
2629 	struct dentry *error;
2630 
2631 	/* Allocate the inode */
2632 	error = ERR_PTR(-ENOMEM);
2633 	inode = new_inode(dir->i_sb);
2634 	if (!inode)
2635 		goto out;
2636 
2637 	/* Initialize the inode */
2638 	ei = PROC_I(inode);
2639 	inode->i_ino = get_next_ino();
2640 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2641 
2642 	/*
2643 	 * grab the reference to the task.
2644 	 */
2645 	ei->pid = get_task_pid(task, PIDTYPE_PID);
2646 	if (!ei->pid)
2647 		goto out_iput;
2648 
2649 	inode->i_mode = p->mode;
2650 	if (S_ISDIR(inode->i_mode))
2651 		inode->i_nlink = 2;
2652 	if (S_ISLNK(inode->i_mode))
2653 		inode->i_size = 64;
2654 	if (p->iop)
2655 		inode->i_op = p->iop;
2656 	if (p->fop)
2657 		inode->i_fop = p->fop;
2658 	ei->op = p->op;
2659 	d_add(dentry, inode);
2660 	error = NULL;
2661 out:
2662 	return error;
2663 out_iput:
2664 	iput(inode);
2665 	goto out;
2666 }
2667 
2668 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2669 {
2670 	struct dentry *error;
2671 	struct task_struct *task = get_proc_task(dir);
2672 	const struct pid_entry *p, *last;
2673 
2674 	error = ERR_PTR(-ENOENT);
2675 
2676 	if (!task)
2677 		goto out_no_task;
2678 
2679 	/* Lookup the directory entry */
2680 	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2681 	for (p = proc_base_stuff; p <= last; p++) {
2682 		if (p->len != dentry->d_name.len)
2683 			continue;
2684 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2685 			break;
2686 	}
2687 	if (p > last)
2688 		goto out;
2689 
2690 	error = proc_base_instantiate(dir, dentry, task, p);
2691 
2692 out:
2693 	put_task_struct(task);
2694 out_no_task:
2695 	return error;
2696 }
2697 
2698 static int proc_base_fill_cache(struct file *filp, void *dirent,
2699 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2700 {
2701 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2702 				proc_base_instantiate, task, p);
2703 }
2704 
2705 #ifdef CONFIG_TASK_IO_ACCOUNTING
2706 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2707 {
2708 	struct task_io_accounting acct = task->ioac;
2709 	unsigned long flags;
2710 
2711 	if (whole && lock_task_sighand(task, &flags)) {
2712 		struct task_struct *t = task;
2713 
2714 		task_io_accounting_add(&acct, &task->signal->ioac);
2715 		while_each_thread(task, t)
2716 			task_io_accounting_add(&acct, &t->ioac);
2717 
2718 		unlock_task_sighand(task, &flags);
2719 	}
2720 	return sprintf(buffer,
2721 			"rchar: %llu\n"
2722 			"wchar: %llu\n"
2723 			"syscr: %llu\n"
2724 			"syscw: %llu\n"
2725 			"read_bytes: %llu\n"
2726 			"write_bytes: %llu\n"
2727 			"cancelled_write_bytes: %llu\n",
2728 			(unsigned long long)acct.rchar,
2729 			(unsigned long long)acct.wchar,
2730 			(unsigned long long)acct.syscr,
2731 			(unsigned long long)acct.syscw,
2732 			(unsigned long long)acct.read_bytes,
2733 			(unsigned long long)acct.write_bytes,
2734 			(unsigned long long)acct.cancelled_write_bytes);
2735 }
2736 
2737 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2738 {
2739 	return do_io_accounting(task, buffer, 0);
2740 }
2741 
2742 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2743 {
2744 	return do_io_accounting(task, buffer, 1);
2745 }
2746 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2747 
2748 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2749 				struct pid *pid, struct task_struct *task)
2750 {
2751 	int err = lock_trace(task);
2752 	if (!err) {
2753 		seq_printf(m, "%08x\n", task->personality);
2754 		unlock_trace(task);
2755 	}
2756 	return err;
2757 }
2758 
2759 /*
2760  * Thread groups
2761  */
2762 static const struct file_operations proc_task_operations;
2763 static const struct inode_operations proc_task_inode_operations;
2764 
2765 static const struct pid_entry tgid_base_stuff[] = {
2766 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2767 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2768 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2769 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2770 #ifdef CONFIG_NET
2771 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2772 #endif
2773 	REG("environ",    S_IRUSR, proc_environ_operations),
2774 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2775 	ONE("status",     S_IRUGO, proc_pid_status),
2776 	ONE("personality", S_IRUGO, proc_pid_personality),
2777 	INF("limits",	  S_IRUGO, proc_pid_limits),
2778 #ifdef CONFIG_SCHED_DEBUG
2779 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2780 #endif
2781 #ifdef CONFIG_SCHED_AUTOGROUP
2782 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2783 #endif
2784 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2785 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2786 	INF("syscall",    S_IRUGO, proc_pid_syscall),
2787 #endif
2788 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2789 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2790 	ONE("statm",      S_IRUGO, proc_pid_statm),
2791 	REG("maps",       S_IRUGO, proc_maps_operations),
2792 #ifdef CONFIG_NUMA
2793 	REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2794 #endif
2795 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2796 	LNK("cwd",        proc_cwd_link),
2797 	LNK("root",       proc_root_link),
2798 	LNK("exe",        proc_exe_link),
2799 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2800 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2801 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2802 #ifdef CONFIG_PROC_PAGE_MONITOR
2803 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2804 	REG("smaps",      S_IRUGO, proc_smaps_operations),
2805 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
2806 #endif
2807 #ifdef CONFIG_SECURITY
2808 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2809 #endif
2810 #ifdef CONFIG_KALLSYMS
2811 	INF("wchan",      S_IRUGO, proc_pid_wchan),
2812 #endif
2813 #ifdef CONFIG_STACKTRACE
2814 	ONE("stack",      S_IRUGO, proc_pid_stack),
2815 #endif
2816 #ifdef CONFIG_SCHEDSTATS
2817 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2818 #endif
2819 #ifdef CONFIG_LATENCYTOP
2820 	REG("latency",  S_IRUGO, proc_lstats_operations),
2821 #endif
2822 #ifdef CONFIG_PROC_PID_CPUSET
2823 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2824 #endif
2825 #ifdef CONFIG_CGROUPS
2826 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2827 #endif
2828 	INF("oom_score",  S_IRUGO, proc_oom_score),
2829 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2830 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2831 #ifdef CONFIG_AUDITSYSCALL
2832 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2833 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2834 #endif
2835 #ifdef CONFIG_FAULT_INJECTION
2836 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2837 #endif
2838 #ifdef CONFIG_ELF_CORE
2839 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2840 #endif
2841 #ifdef CONFIG_TASK_IO_ACCOUNTING
2842 	INF("io",	S_IRUGO, proc_tgid_io_accounting),
2843 #endif
2844 #ifdef CONFIG_HARDWALL
2845 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
2846 #endif
2847 };
2848 
2849 static int proc_tgid_base_readdir(struct file * filp,
2850 			     void * dirent, filldir_t filldir)
2851 {
2852 	return proc_pident_readdir(filp,dirent,filldir,
2853 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2854 }
2855 
2856 static const struct file_operations proc_tgid_base_operations = {
2857 	.read		= generic_read_dir,
2858 	.readdir	= proc_tgid_base_readdir,
2859 	.llseek		= default_llseek,
2860 };
2861 
2862 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2863 	return proc_pident_lookup(dir, dentry,
2864 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2865 }
2866 
2867 static const struct inode_operations proc_tgid_base_inode_operations = {
2868 	.lookup		= proc_tgid_base_lookup,
2869 	.getattr	= pid_getattr,
2870 	.setattr	= proc_setattr,
2871 };
2872 
2873 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2874 {
2875 	struct dentry *dentry, *leader, *dir;
2876 	char buf[PROC_NUMBUF];
2877 	struct qstr name;
2878 
2879 	name.name = buf;
2880 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2881 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2882 	if (dentry) {
2883 		shrink_dcache_parent(dentry);
2884 		d_drop(dentry);
2885 		dput(dentry);
2886 	}
2887 
2888 	name.name = buf;
2889 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2890 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2891 	if (!leader)
2892 		goto out;
2893 
2894 	name.name = "task";
2895 	name.len = strlen(name.name);
2896 	dir = d_hash_and_lookup(leader, &name);
2897 	if (!dir)
2898 		goto out_put_leader;
2899 
2900 	name.name = buf;
2901 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2902 	dentry = d_hash_and_lookup(dir, &name);
2903 	if (dentry) {
2904 		shrink_dcache_parent(dentry);
2905 		d_drop(dentry);
2906 		dput(dentry);
2907 	}
2908 
2909 	dput(dir);
2910 out_put_leader:
2911 	dput(leader);
2912 out:
2913 	return;
2914 }
2915 
2916 /**
2917  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2918  * @task: task that should be flushed.
2919  *
2920  * When flushing dentries from proc, one needs to flush them from global
2921  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2922  * in. This call is supposed to do all of this job.
2923  *
2924  * Looks in the dcache for
2925  * /proc/@pid
2926  * /proc/@tgid/task/@pid
2927  * if either directory is present flushes it and all of it'ts children
2928  * from the dcache.
2929  *
2930  * It is safe and reasonable to cache /proc entries for a task until
2931  * that task exits.  After that they just clog up the dcache with
2932  * useless entries, possibly causing useful dcache entries to be
2933  * flushed instead.  This routine is proved to flush those useless
2934  * dcache entries at process exit time.
2935  *
2936  * NOTE: This routine is just an optimization so it does not guarantee
2937  *       that no dcache entries will exist at process exit time it
2938  *       just makes it very unlikely that any will persist.
2939  */
2940 
2941 void proc_flush_task(struct task_struct *task)
2942 {
2943 	int i;
2944 	struct pid *pid, *tgid;
2945 	struct upid *upid;
2946 
2947 	pid = task_pid(task);
2948 	tgid = task_tgid(task);
2949 
2950 	for (i = 0; i <= pid->level; i++) {
2951 		upid = &pid->numbers[i];
2952 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2953 					tgid->numbers[i].nr);
2954 	}
2955 
2956 	upid = &pid->numbers[pid->level];
2957 	if (upid->nr == 1)
2958 		pid_ns_release_proc(upid->ns);
2959 }
2960 
2961 static struct dentry *proc_pid_instantiate(struct inode *dir,
2962 					   struct dentry * dentry,
2963 					   struct task_struct *task, const void *ptr)
2964 {
2965 	struct dentry *error = ERR_PTR(-ENOENT);
2966 	struct inode *inode;
2967 
2968 	inode = proc_pid_make_inode(dir->i_sb, task);
2969 	if (!inode)
2970 		goto out;
2971 
2972 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2973 	inode->i_op = &proc_tgid_base_inode_operations;
2974 	inode->i_fop = &proc_tgid_base_operations;
2975 	inode->i_flags|=S_IMMUTABLE;
2976 
2977 	inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2978 		ARRAY_SIZE(tgid_base_stuff));
2979 
2980 	d_set_d_op(dentry, &pid_dentry_operations);
2981 
2982 	d_add(dentry, inode);
2983 	/* Close the race of the process dying before we return the dentry */
2984 	if (pid_revalidate(dentry, NULL))
2985 		error = NULL;
2986 out:
2987 	return error;
2988 }
2989 
2990 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2991 {
2992 	struct dentry *result;
2993 	struct task_struct *task;
2994 	unsigned tgid;
2995 	struct pid_namespace *ns;
2996 
2997 	result = proc_base_lookup(dir, dentry);
2998 	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2999 		goto out;
3000 
3001 	tgid = name_to_int(dentry);
3002 	if (tgid == ~0U)
3003 		goto out;
3004 
3005 	ns = dentry->d_sb->s_fs_info;
3006 	rcu_read_lock();
3007 	task = find_task_by_pid_ns(tgid, ns);
3008 	if (task)
3009 		get_task_struct(task);
3010 	rcu_read_unlock();
3011 	if (!task)
3012 		goto out;
3013 
3014 	result = proc_pid_instantiate(dir, dentry, task, NULL);
3015 	put_task_struct(task);
3016 out:
3017 	return result;
3018 }
3019 
3020 /*
3021  * Find the first task with tgid >= tgid
3022  *
3023  */
3024 struct tgid_iter {
3025 	unsigned int tgid;
3026 	struct task_struct *task;
3027 };
3028 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3029 {
3030 	struct pid *pid;
3031 
3032 	if (iter.task)
3033 		put_task_struct(iter.task);
3034 	rcu_read_lock();
3035 retry:
3036 	iter.task = NULL;
3037 	pid = find_ge_pid(iter.tgid, ns);
3038 	if (pid) {
3039 		iter.tgid = pid_nr_ns(pid, ns);
3040 		iter.task = pid_task(pid, PIDTYPE_PID);
3041 		/* What we to know is if the pid we have find is the
3042 		 * pid of a thread_group_leader.  Testing for task
3043 		 * being a thread_group_leader is the obvious thing
3044 		 * todo but there is a window when it fails, due to
3045 		 * the pid transfer logic in de_thread.
3046 		 *
3047 		 * So we perform the straight forward test of seeing
3048 		 * if the pid we have found is the pid of a thread
3049 		 * group leader, and don't worry if the task we have
3050 		 * found doesn't happen to be a thread group leader.
3051 		 * As we don't care in the case of readdir.
3052 		 */
3053 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3054 			iter.tgid += 1;
3055 			goto retry;
3056 		}
3057 		get_task_struct(iter.task);
3058 	}
3059 	rcu_read_unlock();
3060 	return iter;
3061 }
3062 
3063 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3064 
3065 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3066 	struct tgid_iter iter)
3067 {
3068 	char name[PROC_NUMBUF];
3069 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3070 	return proc_fill_cache(filp, dirent, filldir, name, len,
3071 				proc_pid_instantiate, iter.task, NULL);
3072 }
3073 
3074 /* for the /proc/ directory itself, after non-process stuff has been done */
3075 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3076 {
3077 	unsigned int nr;
3078 	struct task_struct *reaper;
3079 	struct tgid_iter iter;
3080 	struct pid_namespace *ns;
3081 
3082 	if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
3083 		goto out_no_task;
3084 	nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3085 
3086 	reaper = get_proc_task(filp->f_path.dentry->d_inode);
3087 	if (!reaper)
3088 		goto out_no_task;
3089 
3090 	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3091 		const struct pid_entry *p = &proc_base_stuff[nr];
3092 		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3093 			goto out;
3094 	}
3095 
3096 	ns = filp->f_dentry->d_sb->s_fs_info;
3097 	iter.task = NULL;
3098 	iter.tgid = filp->f_pos - TGID_OFFSET;
3099 	for (iter = next_tgid(ns, iter);
3100 	     iter.task;
3101 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3102 		filp->f_pos = iter.tgid + TGID_OFFSET;
3103 		if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
3104 			put_task_struct(iter.task);
3105 			goto out;
3106 		}
3107 	}
3108 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3109 out:
3110 	put_task_struct(reaper);
3111 out_no_task:
3112 	return 0;
3113 }
3114 
3115 /*
3116  * Tasks
3117  */
3118 static const struct pid_entry tid_base_stuff[] = {
3119 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3120 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3121 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3122 	REG("environ",   S_IRUSR, proc_environ_operations),
3123 	INF("auxv",      S_IRUSR, proc_pid_auxv),
3124 	ONE("status",    S_IRUGO, proc_pid_status),
3125 	ONE("personality", S_IRUGO, proc_pid_personality),
3126 	INF("limits",	 S_IRUGO, proc_pid_limits),
3127 #ifdef CONFIG_SCHED_DEBUG
3128 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3129 #endif
3130 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3131 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3132 	INF("syscall",   S_IRUGO, proc_pid_syscall),
3133 #endif
3134 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
3135 	ONE("stat",      S_IRUGO, proc_tid_stat),
3136 	ONE("statm",     S_IRUGO, proc_pid_statm),
3137 	REG("maps",      S_IRUGO, proc_maps_operations),
3138 #ifdef CONFIG_NUMA
3139 	REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3140 #endif
3141 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3142 	LNK("cwd",       proc_cwd_link),
3143 	LNK("root",      proc_root_link),
3144 	LNK("exe",       proc_exe_link),
3145 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3146 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3147 #ifdef CONFIG_PROC_PAGE_MONITOR
3148 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3149 	REG("smaps",     S_IRUGO, proc_smaps_operations),
3150 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
3151 #endif
3152 #ifdef CONFIG_SECURITY
3153 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3154 #endif
3155 #ifdef CONFIG_KALLSYMS
3156 	INF("wchan",     S_IRUGO, proc_pid_wchan),
3157 #endif
3158 #ifdef CONFIG_STACKTRACE
3159 	ONE("stack",      S_IRUGO, proc_pid_stack),
3160 #endif
3161 #ifdef CONFIG_SCHEDSTATS
3162 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
3163 #endif
3164 #ifdef CONFIG_LATENCYTOP
3165 	REG("latency",  S_IRUGO, proc_lstats_operations),
3166 #endif
3167 #ifdef CONFIG_PROC_PID_CPUSET
3168 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
3169 #endif
3170 #ifdef CONFIG_CGROUPS
3171 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3172 #endif
3173 	INF("oom_score", S_IRUGO, proc_oom_score),
3174 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3175 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3176 #ifdef CONFIG_AUDITSYSCALL
3177 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3178 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3179 #endif
3180 #ifdef CONFIG_FAULT_INJECTION
3181 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3182 #endif
3183 #ifdef CONFIG_TASK_IO_ACCOUNTING
3184 	INF("io",	S_IRUGO, proc_tid_io_accounting),
3185 #endif
3186 #ifdef CONFIG_HARDWALL
3187 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
3188 #endif
3189 };
3190 
3191 static int proc_tid_base_readdir(struct file * filp,
3192 			     void * dirent, filldir_t filldir)
3193 {
3194 	return proc_pident_readdir(filp,dirent,filldir,
3195 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3196 }
3197 
3198 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3199 	return proc_pident_lookup(dir, dentry,
3200 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3201 }
3202 
3203 static const struct file_operations proc_tid_base_operations = {
3204 	.read		= generic_read_dir,
3205 	.readdir	= proc_tid_base_readdir,
3206 	.llseek		= default_llseek,
3207 };
3208 
3209 static const struct inode_operations proc_tid_base_inode_operations = {
3210 	.lookup		= proc_tid_base_lookup,
3211 	.getattr	= pid_getattr,
3212 	.setattr	= proc_setattr,
3213 };
3214 
3215 static struct dentry *proc_task_instantiate(struct inode *dir,
3216 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3217 {
3218 	struct dentry *error = ERR_PTR(-ENOENT);
3219 	struct inode *inode;
3220 	inode = proc_pid_make_inode(dir->i_sb, task);
3221 
3222 	if (!inode)
3223 		goto out;
3224 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3225 	inode->i_op = &proc_tid_base_inode_operations;
3226 	inode->i_fop = &proc_tid_base_operations;
3227 	inode->i_flags|=S_IMMUTABLE;
3228 
3229 	inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3230 		ARRAY_SIZE(tid_base_stuff));
3231 
3232 	d_set_d_op(dentry, &pid_dentry_operations);
3233 
3234 	d_add(dentry, inode);
3235 	/* Close the race of the process dying before we return the dentry */
3236 	if (pid_revalidate(dentry, NULL))
3237 		error = NULL;
3238 out:
3239 	return error;
3240 }
3241 
3242 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3243 {
3244 	struct dentry *result = ERR_PTR(-ENOENT);
3245 	struct task_struct *task;
3246 	struct task_struct *leader = get_proc_task(dir);
3247 	unsigned tid;
3248 	struct pid_namespace *ns;
3249 
3250 	if (!leader)
3251 		goto out_no_task;
3252 
3253 	tid = name_to_int(dentry);
3254 	if (tid == ~0U)
3255 		goto out;
3256 
3257 	ns = dentry->d_sb->s_fs_info;
3258 	rcu_read_lock();
3259 	task = find_task_by_pid_ns(tid, ns);
3260 	if (task)
3261 		get_task_struct(task);
3262 	rcu_read_unlock();
3263 	if (!task)
3264 		goto out;
3265 	if (!same_thread_group(leader, task))
3266 		goto out_drop_task;
3267 
3268 	result = proc_task_instantiate(dir, dentry, task, NULL);
3269 out_drop_task:
3270 	put_task_struct(task);
3271 out:
3272 	put_task_struct(leader);
3273 out_no_task:
3274 	return result;
3275 }
3276 
3277 /*
3278  * Find the first tid of a thread group to return to user space.
3279  *
3280  * Usually this is just the thread group leader, but if the users
3281  * buffer was too small or there was a seek into the middle of the
3282  * directory we have more work todo.
3283  *
3284  * In the case of a short read we start with find_task_by_pid.
3285  *
3286  * In the case of a seek we start with the leader and walk nr
3287  * threads past it.
3288  */
3289 static struct task_struct *first_tid(struct task_struct *leader,
3290 		int tid, int nr, struct pid_namespace *ns)
3291 {
3292 	struct task_struct *pos;
3293 
3294 	rcu_read_lock();
3295 	/* Attempt to start with the pid of a thread */
3296 	if (tid && (nr > 0)) {
3297 		pos = find_task_by_pid_ns(tid, ns);
3298 		if (pos && (pos->group_leader == leader))
3299 			goto found;
3300 	}
3301 
3302 	/* If nr exceeds the number of threads there is nothing todo */
3303 	pos = NULL;
3304 	if (nr && nr >= get_nr_threads(leader))
3305 		goto out;
3306 
3307 	/* If we haven't found our starting place yet start
3308 	 * with the leader and walk nr threads forward.
3309 	 */
3310 	for (pos = leader; nr > 0; --nr) {
3311 		pos = next_thread(pos);
3312 		if (pos == leader) {
3313 			pos = NULL;
3314 			goto out;
3315 		}
3316 	}
3317 found:
3318 	get_task_struct(pos);
3319 out:
3320 	rcu_read_unlock();
3321 	return pos;
3322 }
3323 
3324 /*
3325  * Find the next thread in the thread list.
3326  * Return NULL if there is an error or no next thread.
3327  *
3328  * The reference to the input task_struct is released.
3329  */
3330 static struct task_struct *next_tid(struct task_struct *start)
3331 {
3332 	struct task_struct *pos = NULL;
3333 	rcu_read_lock();
3334 	if (pid_alive(start)) {
3335 		pos = next_thread(start);
3336 		if (thread_group_leader(pos))
3337 			pos = NULL;
3338 		else
3339 			get_task_struct(pos);
3340 	}
3341 	rcu_read_unlock();
3342 	put_task_struct(start);
3343 	return pos;
3344 }
3345 
3346 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3347 	struct task_struct *task, int tid)
3348 {
3349 	char name[PROC_NUMBUF];
3350 	int len = snprintf(name, sizeof(name), "%d", tid);
3351 	return proc_fill_cache(filp, dirent, filldir, name, len,
3352 				proc_task_instantiate, task, NULL);
3353 }
3354 
3355 /* for the /proc/TGID/task/ directories */
3356 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3357 {
3358 	struct dentry *dentry = filp->f_path.dentry;
3359 	struct inode *inode = dentry->d_inode;
3360 	struct task_struct *leader = NULL;
3361 	struct task_struct *task;
3362 	int retval = -ENOENT;
3363 	ino_t ino;
3364 	int tid;
3365 	struct pid_namespace *ns;
3366 
3367 	task = get_proc_task(inode);
3368 	if (!task)
3369 		goto out_no_task;
3370 	rcu_read_lock();
3371 	if (pid_alive(task)) {
3372 		leader = task->group_leader;
3373 		get_task_struct(leader);
3374 	}
3375 	rcu_read_unlock();
3376 	put_task_struct(task);
3377 	if (!leader)
3378 		goto out_no_task;
3379 	retval = 0;
3380 
3381 	switch ((unsigned long)filp->f_pos) {
3382 	case 0:
3383 		ino = inode->i_ino;
3384 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3385 			goto out;
3386 		filp->f_pos++;
3387 		/* fall through */
3388 	case 1:
3389 		ino = parent_ino(dentry);
3390 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3391 			goto out;
3392 		filp->f_pos++;
3393 		/* fall through */
3394 	}
3395 
3396 	/* f_version caches the tgid value that the last readdir call couldn't
3397 	 * return. lseek aka telldir automagically resets f_version to 0.
3398 	 */
3399 	ns = filp->f_dentry->d_sb->s_fs_info;
3400 	tid = (int)filp->f_version;
3401 	filp->f_version = 0;
3402 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3403 	     task;
3404 	     task = next_tid(task), filp->f_pos++) {
3405 		tid = task_pid_nr_ns(task, ns);
3406 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3407 			/* returning this tgid failed, save it as the first
3408 			 * pid for the next readir call */
3409 			filp->f_version = (u64)tid;
3410 			put_task_struct(task);
3411 			break;
3412 		}
3413 	}
3414 out:
3415 	put_task_struct(leader);
3416 out_no_task:
3417 	return retval;
3418 }
3419 
3420 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3421 {
3422 	struct inode *inode = dentry->d_inode;
3423 	struct task_struct *p = get_proc_task(inode);
3424 	generic_fillattr(inode, stat);
3425 
3426 	if (p) {
3427 		stat->nlink += get_nr_threads(p);
3428 		put_task_struct(p);
3429 	}
3430 
3431 	return 0;
3432 }
3433 
3434 static const struct inode_operations proc_task_inode_operations = {
3435 	.lookup		= proc_task_lookup,
3436 	.getattr	= proc_task_getattr,
3437 	.setattr	= proc_setattr,
3438 };
3439 
3440 static const struct file_operations proc_task_operations = {
3441 	.read		= generic_read_dir,
3442 	.readdir	= proc_task_readdir,
3443 	.llseek		= default_llseek,
3444 };
3445