xref: /openbmc/linux/fs/proc/base.c (revision a2cce7a9)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/flex_array.h>
89 #include <linux/posix-timers.h>
90 #ifdef CONFIG_HARDWALL
91 #include <asm/hardwall.h>
92 #endif
93 #include <trace/events/oom.h>
94 #include "internal.h"
95 #include "fd.h"
96 
97 /* NOTE:
98  *	Implementing inode permission operations in /proc is almost
99  *	certainly an error.  Permission checks need to happen during
100  *	each system call not at open time.  The reason is that most of
101  *	what we wish to check for permissions in /proc varies at runtime.
102  *
103  *	The classic example of a problem is opening file descriptors
104  *	in /proc for a task before it execs a suid executable.
105  */
106 
107 struct pid_entry {
108 	const char *name;
109 	int len;
110 	umode_t mode;
111 	const struct inode_operations *iop;
112 	const struct file_operations *fop;
113 	union proc_op op;
114 };
115 
116 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
117 	.name = (NAME),					\
118 	.len  = sizeof(NAME) - 1,			\
119 	.mode = MODE,					\
120 	.iop  = IOP,					\
121 	.fop  = FOP,					\
122 	.op   = OP,					\
123 }
124 
125 #define DIR(NAME, MODE, iops, fops)	\
126 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
127 #define LNK(NAME, get_link)					\
128 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
129 		&proc_pid_link_inode_operations, NULL,		\
130 		{ .proc_get_link = get_link } )
131 #define REG(NAME, MODE, fops)				\
132 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
133 #define ONE(NAME, MODE, show)				\
134 	NOD(NAME, (S_IFREG|(MODE)), 			\
135 		NULL, &proc_single_file_operations,	\
136 		{ .proc_show = show } )
137 
138 /*
139  * Count the number of hardlinks for the pid_entry table, excluding the .
140  * and .. links.
141  */
142 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
143 	unsigned int n)
144 {
145 	unsigned int i;
146 	unsigned int count;
147 
148 	count = 0;
149 	for (i = 0; i < n; ++i) {
150 		if (S_ISDIR(entries[i].mode))
151 			++count;
152 	}
153 
154 	return count;
155 }
156 
157 static int get_task_root(struct task_struct *task, struct path *root)
158 {
159 	int result = -ENOENT;
160 
161 	task_lock(task);
162 	if (task->fs) {
163 		get_fs_root(task->fs, root);
164 		result = 0;
165 	}
166 	task_unlock(task);
167 	return result;
168 }
169 
170 static int proc_cwd_link(struct dentry *dentry, struct path *path)
171 {
172 	struct task_struct *task = get_proc_task(d_inode(dentry));
173 	int result = -ENOENT;
174 
175 	if (task) {
176 		task_lock(task);
177 		if (task->fs) {
178 			get_fs_pwd(task->fs, path);
179 			result = 0;
180 		}
181 		task_unlock(task);
182 		put_task_struct(task);
183 	}
184 	return result;
185 }
186 
187 static int proc_root_link(struct dentry *dentry, struct path *path)
188 {
189 	struct task_struct *task = get_proc_task(d_inode(dentry));
190 	int result = -ENOENT;
191 
192 	if (task) {
193 		result = get_task_root(task, path);
194 		put_task_struct(task);
195 	}
196 	return result;
197 }
198 
199 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
200 				     size_t _count, loff_t *pos)
201 {
202 	struct task_struct *tsk;
203 	struct mm_struct *mm;
204 	char *page;
205 	unsigned long count = _count;
206 	unsigned long arg_start, arg_end, env_start, env_end;
207 	unsigned long len1, len2, len;
208 	unsigned long p;
209 	char c;
210 	ssize_t rv;
211 
212 	BUG_ON(*pos < 0);
213 
214 	tsk = get_proc_task(file_inode(file));
215 	if (!tsk)
216 		return -ESRCH;
217 	mm = get_task_mm(tsk);
218 	put_task_struct(tsk);
219 	if (!mm)
220 		return 0;
221 	/* Check if process spawned far enough to have cmdline. */
222 	if (!mm->env_end) {
223 		rv = 0;
224 		goto out_mmput;
225 	}
226 
227 	page = (char *)__get_free_page(GFP_TEMPORARY);
228 	if (!page) {
229 		rv = -ENOMEM;
230 		goto out_mmput;
231 	}
232 
233 	down_read(&mm->mmap_sem);
234 	arg_start = mm->arg_start;
235 	arg_end = mm->arg_end;
236 	env_start = mm->env_start;
237 	env_end = mm->env_end;
238 	up_read(&mm->mmap_sem);
239 
240 	BUG_ON(arg_start > arg_end);
241 	BUG_ON(env_start > env_end);
242 
243 	len1 = arg_end - arg_start;
244 	len2 = env_end - env_start;
245 
246 	/* Empty ARGV. */
247 	if (len1 == 0) {
248 		rv = 0;
249 		goto out_free_page;
250 	}
251 	/*
252 	 * Inherently racy -- command line shares address space
253 	 * with code and data.
254 	 */
255 	rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
256 	if (rv <= 0)
257 		goto out_free_page;
258 
259 	rv = 0;
260 
261 	if (c == '\0') {
262 		/* Command line (set of strings) occupies whole ARGV. */
263 		if (len1 <= *pos)
264 			goto out_free_page;
265 
266 		p = arg_start + *pos;
267 		len = len1 - *pos;
268 		while (count > 0 && len > 0) {
269 			unsigned int _count;
270 			int nr_read;
271 
272 			_count = min3(count, len, PAGE_SIZE);
273 			nr_read = access_remote_vm(mm, p, page, _count, 0);
274 			if (nr_read < 0)
275 				rv = nr_read;
276 			if (nr_read <= 0)
277 				goto out_free_page;
278 
279 			if (copy_to_user(buf, page, nr_read)) {
280 				rv = -EFAULT;
281 				goto out_free_page;
282 			}
283 
284 			p	+= nr_read;
285 			len	-= nr_read;
286 			buf	+= nr_read;
287 			count	-= nr_read;
288 			rv	+= nr_read;
289 		}
290 	} else {
291 		/*
292 		 * Command line (1 string) occupies ARGV and maybe
293 		 * extends into ENVP.
294 		 */
295 		if (len1 + len2 <= *pos)
296 			goto skip_argv_envp;
297 		if (len1 <= *pos)
298 			goto skip_argv;
299 
300 		p = arg_start + *pos;
301 		len = len1 - *pos;
302 		while (count > 0 && len > 0) {
303 			unsigned int _count, l;
304 			int nr_read;
305 			bool final;
306 
307 			_count = min3(count, len, PAGE_SIZE);
308 			nr_read = access_remote_vm(mm, p, page, _count, 0);
309 			if (nr_read < 0)
310 				rv = nr_read;
311 			if (nr_read <= 0)
312 				goto out_free_page;
313 
314 			/*
315 			 * Command line can be shorter than whole ARGV
316 			 * even if last "marker" byte says it is not.
317 			 */
318 			final = false;
319 			l = strnlen(page, nr_read);
320 			if (l < nr_read) {
321 				nr_read = l;
322 				final = true;
323 			}
324 
325 			if (copy_to_user(buf, page, nr_read)) {
326 				rv = -EFAULT;
327 				goto out_free_page;
328 			}
329 
330 			p	+= nr_read;
331 			len	-= nr_read;
332 			buf	+= nr_read;
333 			count	-= nr_read;
334 			rv	+= nr_read;
335 
336 			if (final)
337 				goto out_free_page;
338 		}
339 skip_argv:
340 		/*
341 		 * Command line (1 string) occupies ARGV and
342 		 * extends into ENVP.
343 		 */
344 		if (len1 <= *pos) {
345 			p = env_start + *pos - len1;
346 			len = len1 + len2 - *pos;
347 		} else {
348 			p = env_start;
349 			len = len2;
350 		}
351 		while (count > 0 && len > 0) {
352 			unsigned int _count, l;
353 			int nr_read;
354 			bool final;
355 
356 			_count = min3(count, len, PAGE_SIZE);
357 			nr_read = access_remote_vm(mm, p, page, _count, 0);
358 			if (nr_read < 0)
359 				rv = nr_read;
360 			if (nr_read <= 0)
361 				goto out_free_page;
362 
363 			/* Find EOS. */
364 			final = false;
365 			l = strnlen(page, nr_read);
366 			if (l < nr_read) {
367 				nr_read = l;
368 				final = true;
369 			}
370 
371 			if (copy_to_user(buf, page, nr_read)) {
372 				rv = -EFAULT;
373 				goto out_free_page;
374 			}
375 
376 			p	+= nr_read;
377 			len	-= nr_read;
378 			buf	+= nr_read;
379 			count	-= nr_read;
380 			rv	+= nr_read;
381 
382 			if (final)
383 				goto out_free_page;
384 		}
385 skip_argv_envp:
386 		;
387 	}
388 
389 out_free_page:
390 	free_page((unsigned long)page);
391 out_mmput:
392 	mmput(mm);
393 	if (rv > 0)
394 		*pos += rv;
395 	return rv;
396 }
397 
398 static const struct file_operations proc_pid_cmdline_ops = {
399 	.read	= proc_pid_cmdline_read,
400 	.llseek	= generic_file_llseek,
401 };
402 
403 static int proc_pid_auxv(struct seq_file *m, struct pid_namespace *ns,
404 			 struct pid *pid, struct task_struct *task)
405 {
406 	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
407 	if (mm && !IS_ERR(mm)) {
408 		unsigned int nwords = 0;
409 		do {
410 			nwords += 2;
411 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
412 		seq_write(m, mm->saved_auxv, nwords * sizeof(mm->saved_auxv[0]));
413 		mmput(mm);
414 		return 0;
415 	} else
416 		return PTR_ERR(mm);
417 }
418 
419 
420 #ifdef CONFIG_KALLSYMS
421 /*
422  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
423  * Returns the resolved symbol.  If that fails, simply return the address.
424  */
425 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
426 			  struct pid *pid, struct task_struct *task)
427 {
428 	unsigned long wchan;
429 	char symname[KSYM_NAME_LEN];
430 
431 	wchan = get_wchan(task);
432 
433 	if (lookup_symbol_name(wchan, symname) < 0) {
434 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
435 			return 0;
436 		seq_printf(m, "%lu", wchan);
437 	} else {
438 		seq_printf(m, "%s", symname);
439 	}
440 
441 	return 0;
442 }
443 #endif /* CONFIG_KALLSYMS */
444 
445 static int lock_trace(struct task_struct *task)
446 {
447 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
448 	if (err)
449 		return err;
450 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
451 		mutex_unlock(&task->signal->cred_guard_mutex);
452 		return -EPERM;
453 	}
454 	return 0;
455 }
456 
457 static void unlock_trace(struct task_struct *task)
458 {
459 	mutex_unlock(&task->signal->cred_guard_mutex);
460 }
461 
462 #ifdef CONFIG_STACKTRACE
463 
464 #define MAX_STACK_TRACE_DEPTH	64
465 
466 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
467 			  struct pid *pid, struct task_struct *task)
468 {
469 	struct stack_trace trace;
470 	unsigned long *entries;
471 	int err;
472 	int i;
473 
474 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
475 	if (!entries)
476 		return -ENOMEM;
477 
478 	trace.nr_entries	= 0;
479 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
480 	trace.entries		= entries;
481 	trace.skip		= 0;
482 
483 	err = lock_trace(task);
484 	if (!err) {
485 		save_stack_trace_tsk(task, &trace);
486 
487 		for (i = 0; i < trace.nr_entries; i++) {
488 			seq_printf(m, "[<%pK>] %pS\n",
489 				   (void *)entries[i], (void *)entries[i]);
490 		}
491 		unlock_trace(task);
492 	}
493 	kfree(entries);
494 
495 	return err;
496 }
497 #endif
498 
499 #ifdef CONFIG_SCHED_INFO
500 /*
501  * Provides /proc/PID/schedstat
502  */
503 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
504 			      struct pid *pid, struct task_struct *task)
505 {
506 	if (unlikely(!sched_info_on()))
507 		seq_printf(m, "0 0 0\n");
508 	else
509 		seq_printf(m, "%llu %llu %lu\n",
510 		   (unsigned long long)task->se.sum_exec_runtime,
511 		   (unsigned long long)task->sched_info.run_delay,
512 		   task->sched_info.pcount);
513 
514 	return 0;
515 }
516 #endif
517 
518 #ifdef CONFIG_LATENCYTOP
519 static int lstats_show_proc(struct seq_file *m, void *v)
520 {
521 	int i;
522 	struct inode *inode = m->private;
523 	struct task_struct *task = get_proc_task(inode);
524 
525 	if (!task)
526 		return -ESRCH;
527 	seq_puts(m, "Latency Top version : v0.1\n");
528 	for (i = 0; i < 32; i++) {
529 		struct latency_record *lr = &task->latency_record[i];
530 		if (lr->backtrace[0]) {
531 			int q;
532 			seq_printf(m, "%i %li %li",
533 				   lr->count, lr->time, lr->max);
534 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
535 				unsigned long bt = lr->backtrace[q];
536 				if (!bt)
537 					break;
538 				if (bt == ULONG_MAX)
539 					break;
540 				seq_printf(m, " %ps", (void *)bt);
541 			}
542 			seq_putc(m, '\n');
543 		}
544 
545 	}
546 	put_task_struct(task);
547 	return 0;
548 }
549 
550 static int lstats_open(struct inode *inode, struct file *file)
551 {
552 	return single_open(file, lstats_show_proc, inode);
553 }
554 
555 static ssize_t lstats_write(struct file *file, const char __user *buf,
556 			    size_t count, loff_t *offs)
557 {
558 	struct task_struct *task = get_proc_task(file_inode(file));
559 
560 	if (!task)
561 		return -ESRCH;
562 	clear_all_latency_tracing(task);
563 	put_task_struct(task);
564 
565 	return count;
566 }
567 
568 static const struct file_operations proc_lstats_operations = {
569 	.open		= lstats_open,
570 	.read		= seq_read,
571 	.write		= lstats_write,
572 	.llseek		= seq_lseek,
573 	.release	= single_release,
574 };
575 
576 #endif
577 
578 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
579 			  struct pid *pid, struct task_struct *task)
580 {
581 	unsigned long totalpages = totalram_pages + total_swap_pages;
582 	unsigned long points = 0;
583 
584 	read_lock(&tasklist_lock);
585 	if (pid_alive(task))
586 		points = oom_badness(task, NULL, NULL, totalpages) *
587 						1000 / totalpages;
588 	read_unlock(&tasklist_lock);
589 	seq_printf(m, "%lu\n", points);
590 
591 	return 0;
592 }
593 
594 struct limit_names {
595 	const char *name;
596 	const char *unit;
597 };
598 
599 static const struct limit_names lnames[RLIM_NLIMITS] = {
600 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
601 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
602 	[RLIMIT_DATA] = {"Max data size", "bytes"},
603 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
604 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
605 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
606 	[RLIMIT_NPROC] = {"Max processes", "processes"},
607 	[RLIMIT_NOFILE] = {"Max open files", "files"},
608 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
609 	[RLIMIT_AS] = {"Max address space", "bytes"},
610 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
611 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
612 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
613 	[RLIMIT_NICE] = {"Max nice priority", NULL},
614 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
615 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
616 };
617 
618 /* Display limits for a process */
619 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
620 			   struct pid *pid, struct task_struct *task)
621 {
622 	unsigned int i;
623 	unsigned long flags;
624 
625 	struct rlimit rlim[RLIM_NLIMITS];
626 
627 	if (!lock_task_sighand(task, &flags))
628 		return 0;
629 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
630 	unlock_task_sighand(task, &flags);
631 
632 	/*
633 	 * print the file header
634 	 */
635        seq_printf(m, "%-25s %-20s %-20s %-10s\n",
636 		  "Limit", "Soft Limit", "Hard Limit", "Units");
637 
638 	for (i = 0; i < RLIM_NLIMITS; i++) {
639 		if (rlim[i].rlim_cur == RLIM_INFINITY)
640 			seq_printf(m, "%-25s %-20s ",
641 				   lnames[i].name, "unlimited");
642 		else
643 			seq_printf(m, "%-25s %-20lu ",
644 				   lnames[i].name, rlim[i].rlim_cur);
645 
646 		if (rlim[i].rlim_max == RLIM_INFINITY)
647 			seq_printf(m, "%-20s ", "unlimited");
648 		else
649 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
650 
651 		if (lnames[i].unit)
652 			seq_printf(m, "%-10s\n", lnames[i].unit);
653 		else
654 			seq_putc(m, '\n');
655 	}
656 
657 	return 0;
658 }
659 
660 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
661 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
662 			    struct pid *pid, struct task_struct *task)
663 {
664 	long nr;
665 	unsigned long args[6], sp, pc;
666 	int res;
667 
668 	res = lock_trace(task);
669 	if (res)
670 		return res;
671 
672 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
673 		seq_puts(m, "running\n");
674 	else if (nr < 0)
675 		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
676 	else
677 		seq_printf(m,
678 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
679 		       nr,
680 		       args[0], args[1], args[2], args[3], args[4], args[5],
681 		       sp, pc);
682 	unlock_trace(task);
683 
684 	return 0;
685 }
686 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
687 
688 /************************************************************************/
689 /*                       Here the fs part begins                        */
690 /************************************************************************/
691 
692 /* permission checks */
693 static int proc_fd_access_allowed(struct inode *inode)
694 {
695 	struct task_struct *task;
696 	int allowed = 0;
697 	/* Allow access to a task's file descriptors if it is us or we
698 	 * may use ptrace attach to the process and find out that
699 	 * information.
700 	 */
701 	task = get_proc_task(inode);
702 	if (task) {
703 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
704 		put_task_struct(task);
705 	}
706 	return allowed;
707 }
708 
709 int proc_setattr(struct dentry *dentry, struct iattr *attr)
710 {
711 	int error;
712 	struct inode *inode = d_inode(dentry);
713 
714 	if (attr->ia_valid & ATTR_MODE)
715 		return -EPERM;
716 
717 	error = inode_change_ok(inode, attr);
718 	if (error)
719 		return error;
720 
721 	setattr_copy(inode, attr);
722 	mark_inode_dirty(inode);
723 	return 0;
724 }
725 
726 /*
727  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
728  * or euid/egid (for hide_pid_min=2)?
729  */
730 static bool has_pid_permissions(struct pid_namespace *pid,
731 				 struct task_struct *task,
732 				 int hide_pid_min)
733 {
734 	if (pid->hide_pid < hide_pid_min)
735 		return true;
736 	if (in_group_p(pid->pid_gid))
737 		return true;
738 	return ptrace_may_access(task, PTRACE_MODE_READ);
739 }
740 
741 
742 static int proc_pid_permission(struct inode *inode, int mask)
743 {
744 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
745 	struct task_struct *task;
746 	bool has_perms;
747 
748 	task = get_proc_task(inode);
749 	if (!task)
750 		return -ESRCH;
751 	has_perms = has_pid_permissions(pid, task, 1);
752 	put_task_struct(task);
753 
754 	if (!has_perms) {
755 		if (pid->hide_pid == 2) {
756 			/*
757 			 * Let's make getdents(), stat(), and open()
758 			 * consistent with each other.  If a process
759 			 * may not stat() a file, it shouldn't be seen
760 			 * in procfs at all.
761 			 */
762 			return -ENOENT;
763 		}
764 
765 		return -EPERM;
766 	}
767 	return generic_permission(inode, mask);
768 }
769 
770 
771 
772 static const struct inode_operations proc_def_inode_operations = {
773 	.setattr	= proc_setattr,
774 };
775 
776 static int proc_single_show(struct seq_file *m, void *v)
777 {
778 	struct inode *inode = m->private;
779 	struct pid_namespace *ns;
780 	struct pid *pid;
781 	struct task_struct *task;
782 	int ret;
783 
784 	ns = inode->i_sb->s_fs_info;
785 	pid = proc_pid(inode);
786 	task = get_pid_task(pid, PIDTYPE_PID);
787 	if (!task)
788 		return -ESRCH;
789 
790 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
791 
792 	put_task_struct(task);
793 	return ret;
794 }
795 
796 static int proc_single_open(struct inode *inode, struct file *filp)
797 {
798 	return single_open(filp, proc_single_show, inode);
799 }
800 
801 static const struct file_operations proc_single_file_operations = {
802 	.open		= proc_single_open,
803 	.read		= seq_read,
804 	.llseek		= seq_lseek,
805 	.release	= single_release,
806 };
807 
808 
809 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
810 {
811 	struct task_struct *task = get_proc_task(inode);
812 	struct mm_struct *mm = ERR_PTR(-ESRCH);
813 
814 	if (task) {
815 		mm = mm_access(task, mode);
816 		put_task_struct(task);
817 
818 		if (!IS_ERR_OR_NULL(mm)) {
819 			/* ensure this mm_struct can't be freed */
820 			atomic_inc(&mm->mm_count);
821 			/* but do not pin its memory */
822 			mmput(mm);
823 		}
824 	}
825 
826 	return mm;
827 }
828 
829 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
830 {
831 	struct mm_struct *mm = proc_mem_open(inode, mode);
832 
833 	if (IS_ERR(mm))
834 		return PTR_ERR(mm);
835 
836 	file->private_data = mm;
837 	return 0;
838 }
839 
840 static int mem_open(struct inode *inode, struct file *file)
841 {
842 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
843 
844 	/* OK to pass negative loff_t, we can catch out-of-range */
845 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
846 
847 	return ret;
848 }
849 
850 static ssize_t mem_rw(struct file *file, char __user *buf,
851 			size_t count, loff_t *ppos, int write)
852 {
853 	struct mm_struct *mm = file->private_data;
854 	unsigned long addr = *ppos;
855 	ssize_t copied;
856 	char *page;
857 
858 	if (!mm)
859 		return 0;
860 
861 	page = (char *)__get_free_page(GFP_TEMPORARY);
862 	if (!page)
863 		return -ENOMEM;
864 
865 	copied = 0;
866 	if (!atomic_inc_not_zero(&mm->mm_users))
867 		goto free;
868 
869 	while (count > 0) {
870 		int this_len = min_t(int, count, PAGE_SIZE);
871 
872 		if (write && copy_from_user(page, buf, this_len)) {
873 			copied = -EFAULT;
874 			break;
875 		}
876 
877 		this_len = access_remote_vm(mm, addr, page, this_len, write);
878 		if (!this_len) {
879 			if (!copied)
880 				copied = -EIO;
881 			break;
882 		}
883 
884 		if (!write && copy_to_user(buf, page, this_len)) {
885 			copied = -EFAULT;
886 			break;
887 		}
888 
889 		buf += this_len;
890 		addr += this_len;
891 		copied += this_len;
892 		count -= this_len;
893 	}
894 	*ppos = addr;
895 
896 	mmput(mm);
897 free:
898 	free_page((unsigned long) page);
899 	return copied;
900 }
901 
902 static ssize_t mem_read(struct file *file, char __user *buf,
903 			size_t count, loff_t *ppos)
904 {
905 	return mem_rw(file, buf, count, ppos, 0);
906 }
907 
908 static ssize_t mem_write(struct file *file, const char __user *buf,
909 			 size_t count, loff_t *ppos)
910 {
911 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
912 }
913 
914 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
915 {
916 	switch (orig) {
917 	case 0:
918 		file->f_pos = offset;
919 		break;
920 	case 1:
921 		file->f_pos += offset;
922 		break;
923 	default:
924 		return -EINVAL;
925 	}
926 	force_successful_syscall_return();
927 	return file->f_pos;
928 }
929 
930 static int mem_release(struct inode *inode, struct file *file)
931 {
932 	struct mm_struct *mm = file->private_data;
933 	if (mm)
934 		mmdrop(mm);
935 	return 0;
936 }
937 
938 static const struct file_operations proc_mem_operations = {
939 	.llseek		= mem_lseek,
940 	.read		= mem_read,
941 	.write		= mem_write,
942 	.open		= mem_open,
943 	.release	= mem_release,
944 };
945 
946 static int environ_open(struct inode *inode, struct file *file)
947 {
948 	return __mem_open(inode, file, PTRACE_MODE_READ);
949 }
950 
951 static ssize_t environ_read(struct file *file, char __user *buf,
952 			size_t count, loff_t *ppos)
953 {
954 	char *page;
955 	unsigned long src = *ppos;
956 	int ret = 0;
957 	struct mm_struct *mm = file->private_data;
958 
959 	if (!mm)
960 		return 0;
961 
962 	page = (char *)__get_free_page(GFP_TEMPORARY);
963 	if (!page)
964 		return -ENOMEM;
965 
966 	ret = 0;
967 	if (!atomic_inc_not_zero(&mm->mm_users))
968 		goto free;
969 	while (count > 0) {
970 		size_t this_len, max_len;
971 		int retval;
972 
973 		if (src >= (mm->env_end - mm->env_start))
974 			break;
975 
976 		this_len = mm->env_end - (mm->env_start + src);
977 
978 		max_len = min_t(size_t, PAGE_SIZE, count);
979 		this_len = min(max_len, this_len);
980 
981 		retval = access_remote_vm(mm, (mm->env_start + src),
982 			page, this_len, 0);
983 
984 		if (retval <= 0) {
985 			ret = retval;
986 			break;
987 		}
988 
989 		if (copy_to_user(buf, page, retval)) {
990 			ret = -EFAULT;
991 			break;
992 		}
993 
994 		ret += retval;
995 		src += retval;
996 		buf += retval;
997 		count -= retval;
998 	}
999 	*ppos = src;
1000 	mmput(mm);
1001 
1002 free:
1003 	free_page((unsigned long) page);
1004 	return ret;
1005 }
1006 
1007 static const struct file_operations proc_environ_operations = {
1008 	.open		= environ_open,
1009 	.read		= environ_read,
1010 	.llseek		= generic_file_llseek,
1011 	.release	= mem_release,
1012 };
1013 
1014 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1015 			    loff_t *ppos)
1016 {
1017 	struct task_struct *task = get_proc_task(file_inode(file));
1018 	char buffer[PROC_NUMBUF];
1019 	int oom_adj = OOM_ADJUST_MIN;
1020 	size_t len;
1021 	unsigned long flags;
1022 
1023 	if (!task)
1024 		return -ESRCH;
1025 	if (lock_task_sighand(task, &flags)) {
1026 		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1027 			oom_adj = OOM_ADJUST_MAX;
1028 		else
1029 			oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1030 				  OOM_SCORE_ADJ_MAX;
1031 		unlock_task_sighand(task, &flags);
1032 	}
1033 	put_task_struct(task);
1034 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1035 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1036 }
1037 
1038 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1039 			     size_t count, loff_t *ppos)
1040 {
1041 	struct task_struct *task;
1042 	char buffer[PROC_NUMBUF];
1043 	int oom_adj;
1044 	unsigned long flags;
1045 	int err;
1046 
1047 	memset(buffer, 0, sizeof(buffer));
1048 	if (count > sizeof(buffer) - 1)
1049 		count = sizeof(buffer) - 1;
1050 	if (copy_from_user(buffer, buf, count)) {
1051 		err = -EFAULT;
1052 		goto out;
1053 	}
1054 
1055 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1056 	if (err)
1057 		goto out;
1058 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1059 	     oom_adj != OOM_DISABLE) {
1060 		err = -EINVAL;
1061 		goto out;
1062 	}
1063 
1064 	task = get_proc_task(file_inode(file));
1065 	if (!task) {
1066 		err = -ESRCH;
1067 		goto out;
1068 	}
1069 
1070 	task_lock(task);
1071 	if (!task->mm) {
1072 		err = -EINVAL;
1073 		goto err_task_lock;
1074 	}
1075 
1076 	if (!lock_task_sighand(task, &flags)) {
1077 		err = -ESRCH;
1078 		goto err_task_lock;
1079 	}
1080 
1081 	/*
1082 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1083 	 * value is always attainable.
1084 	 */
1085 	if (oom_adj == OOM_ADJUST_MAX)
1086 		oom_adj = OOM_SCORE_ADJ_MAX;
1087 	else
1088 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1089 
1090 	if (oom_adj < task->signal->oom_score_adj &&
1091 	    !capable(CAP_SYS_RESOURCE)) {
1092 		err = -EACCES;
1093 		goto err_sighand;
1094 	}
1095 
1096 	/*
1097 	 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1098 	 * /proc/pid/oom_score_adj instead.
1099 	 */
1100 	pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1101 		  current->comm, task_pid_nr(current), task_pid_nr(task),
1102 		  task_pid_nr(task));
1103 
1104 	task->signal->oom_score_adj = oom_adj;
1105 	trace_oom_score_adj_update(task);
1106 err_sighand:
1107 	unlock_task_sighand(task, &flags);
1108 err_task_lock:
1109 	task_unlock(task);
1110 	put_task_struct(task);
1111 out:
1112 	return err < 0 ? err : count;
1113 }
1114 
1115 static const struct file_operations proc_oom_adj_operations = {
1116 	.read		= oom_adj_read,
1117 	.write		= oom_adj_write,
1118 	.llseek		= generic_file_llseek,
1119 };
1120 
1121 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1122 					size_t count, loff_t *ppos)
1123 {
1124 	struct task_struct *task = get_proc_task(file_inode(file));
1125 	char buffer[PROC_NUMBUF];
1126 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1127 	unsigned long flags;
1128 	size_t len;
1129 
1130 	if (!task)
1131 		return -ESRCH;
1132 	if (lock_task_sighand(task, &flags)) {
1133 		oom_score_adj = task->signal->oom_score_adj;
1134 		unlock_task_sighand(task, &flags);
1135 	}
1136 	put_task_struct(task);
1137 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1138 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1139 }
1140 
1141 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1142 					size_t count, loff_t *ppos)
1143 {
1144 	struct task_struct *task;
1145 	char buffer[PROC_NUMBUF];
1146 	unsigned long flags;
1147 	int oom_score_adj;
1148 	int err;
1149 
1150 	memset(buffer, 0, sizeof(buffer));
1151 	if (count > sizeof(buffer) - 1)
1152 		count = sizeof(buffer) - 1;
1153 	if (copy_from_user(buffer, buf, count)) {
1154 		err = -EFAULT;
1155 		goto out;
1156 	}
1157 
1158 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1159 	if (err)
1160 		goto out;
1161 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1162 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1163 		err = -EINVAL;
1164 		goto out;
1165 	}
1166 
1167 	task = get_proc_task(file_inode(file));
1168 	if (!task) {
1169 		err = -ESRCH;
1170 		goto out;
1171 	}
1172 
1173 	task_lock(task);
1174 	if (!task->mm) {
1175 		err = -EINVAL;
1176 		goto err_task_lock;
1177 	}
1178 
1179 	if (!lock_task_sighand(task, &flags)) {
1180 		err = -ESRCH;
1181 		goto err_task_lock;
1182 	}
1183 
1184 	if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1185 			!capable(CAP_SYS_RESOURCE)) {
1186 		err = -EACCES;
1187 		goto err_sighand;
1188 	}
1189 
1190 	task->signal->oom_score_adj = (short)oom_score_adj;
1191 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1192 		task->signal->oom_score_adj_min = (short)oom_score_adj;
1193 	trace_oom_score_adj_update(task);
1194 
1195 err_sighand:
1196 	unlock_task_sighand(task, &flags);
1197 err_task_lock:
1198 	task_unlock(task);
1199 	put_task_struct(task);
1200 out:
1201 	return err < 0 ? err : count;
1202 }
1203 
1204 static const struct file_operations proc_oom_score_adj_operations = {
1205 	.read		= oom_score_adj_read,
1206 	.write		= oom_score_adj_write,
1207 	.llseek		= default_llseek,
1208 };
1209 
1210 #ifdef CONFIG_AUDITSYSCALL
1211 #define TMPBUFLEN 21
1212 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1213 				  size_t count, loff_t *ppos)
1214 {
1215 	struct inode * inode = file_inode(file);
1216 	struct task_struct *task = get_proc_task(inode);
1217 	ssize_t length;
1218 	char tmpbuf[TMPBUFLEN];
1219 
1220 	if (!task)
1221 		return -ESRCH;
1222 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1223 			   from_kuid(file->f_cred->user_ns,
1224 				     audit_get_loginuid(task)));
1225 	put_task_struct(task);
1226 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1227 }
1228 
1229 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1230 				   size_t count, loff_t *ppos)
1231 {
1232 	struct inode * inode = file_inode(file);
1233 	uid_t loginuid;
1234 	kuid_t kloginuid;
1235 	int rv;
1236 
1237 	rcu_read_lock();
1238 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1239 		rcu_read_unlock();
1240 		return -EPERM;
1241 	}
1242 	rcu_read_unlock();
1243 
1244 	if (*ppos != 0) {
1245 		/* No partial writes. */
1246 		return -EINVAL;
1247 	}
1248 
1249 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1250 	if (rv < 0)
1251 		return rv;
1252 
1253 	/* is userspace tring to explicitly UNSET the loginuid? */
1254 	if (loginuid == AUDIT_UID_UNSET) {
1255 		kloginuid = INVALID_UID;
1256 	} else {
1257 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1258 		if (!uid_valid(kloginuid))
1259 			return -EINVAL;
1260 	}
1261 
1262 	rv = audit_set_loginuid(kloginuid);
1263 	if (rv < 0)
1264 		return rv;
1265 	return count;
1266 }
1267 
1268 static const struct file_operations proc_loginuid_operations = {
1269 	.read		= proc_loginuid_read,
1270 	.write		= proc_loginuid_write,
1271 	.llseek		= generic_file_llseek,
1272 };
1273 
1274 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1275 				  size_t count, loff_t *ppos)
1276 {
1277 	struct inode * inode = file_inode(file);
1278 	struct task_struct *task = get_proc_task(inode);
1279 	ssize_t length;
1280 	char tmpbuf[TMPBUFLEN];
1281 
1282 	if (!task)
1283 		return -ESRCH;
1284 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1285 				audit_get_sessionid(task));
1286 	put_task_struct(task);
1287 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1288 }
1289 
1290 static const struct file_operations proc_sessionid_operations = {
1291 	.read		= proc_sessionid_read,
1292 	.llseek		= generic_file_llseek,
1293 };
1294 #endif
1295 
1296 #ifdef CONFIG_FAULT_INJECTION
1297 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1298 				      size_t count, loff_t *ppos)
1299 {
1300 	struct task_struct *task = get_proc_task(file_inode(file));
1301 	char buffer[PROC_NUMBUF];
1302 	size_t len;
1303 	int make_it_fail;
1304 
1305 	if (!task)
1306 		return -ESRCH;
1307 	make_it_fail = task->make_it_fail;
1308 	put_task_struct(task);
1309 
1310 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1311 
1312 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1313 }
1314 
1315 static ssize_t proc_fault_inject_write(struct file * file,
1316 			const char __user * buf, size_t count, loff_t *ppos)
1317 {
1318 	struct task_struct *task;
1319 	char buffer[PROC_NUMBUF];
1320 	int make_it_fail;
1321 	int rv;
1322 
1323 	if (!capable(CAP_SYS_RESOURCE))
1324 		return -EPERM;
1325 	memset(buffer, 0, sizeof(buffer));
1326 	if (count > sizeof(buffer) - 1)
1327 		count = sizeof(buffer) - 1;
1328 	if (copy_from_user(buffer, buf, count))
1329 		return -EFAULT;
1330 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1331 	if (rv < 0)
1332 		return rv;
1333 	if (make_it_fail < 0 || make_it_fail > 1)
1334 		return -EINVAL;
1335 
1336 	task = get_proc_task(file_inode(file));
1337 	if (!task)
1338 		return -ESRCH;
1339 	task->make_it_fail = make_it_fail;
1340 	put_task_struct(task);
1341 
1342 	return count;
1343 }
1344 
1345 static const struct file_operations proc_fault_inject_operations = {
1346 	.read		= proc_fault_inject_read,
1347 	.write		= proc_fault_inject_write,
1348 	.llseek		= generic_file_llseek,
1349 };
1350 #endif
1351 
1352 
1353 #ifdef CONFIG_SCHED_DEBUG
1354 /*
1355  * Print out various scheduling related per-task fields:
1356  */
1357 static int sched_show(struct seq_file *m, void *v)
1358 {
1359 	struct inode *inode = m->private;
1360 	struct task_struct *p;
1361 
1362 	p = get_proc_task(inode);
1363 	if (!p)
1364 		return -ESRCH;
1365 	proc_sched_show_task(p, m);
1366 
1367 	put_task_struct(p);
1368 
1369 	return 0;
1370 }
1371 
1372 static ssize_t
1373 sched_write(struct file *file, const char __user *buf,
1374 	    size_t count, loff_t *offset)
1375 {
1376 	struct inode *inode = file_inode(file);
1377 	struct task_struct *p;
1378 
1379 	p = get_proc_task(inode);
1380 	if (!p)
1381 		return -ESRCH;
1382 	proc_sched_set_task(p);
1383 
1384 	put_task_struct(p);
1385 
1386 	return count;
1387 }
1388 
1389 static int sched_open(struct inode *inode, struct file *filp)
1390 {
1391 	return single_open(filp, sched_show, inode);
1392 }
1393 
1394 static const struct file_operations proc_pid_sched_operations = {
1395 	.open		= sched_open,
1396 	.read		= seq_read,
1397 	.write		= sched_write,
1398 	.llseek		= seq_lseek,
1399 	.release	= single_release,
1400 };
1401 
1402 #endif
1403 
1404 #ifdef CONFIG_SCHED_AUTOGROUP
1405 /*
1406  * Print out autogroup related information:
1407  */
1408 static int sched_autogroup_show(struct seq_file *m, void *v)
1409 {
1410 	struct inode *inode = m->private;
1411 	struct task_struct *p;
1412 
1413 	p = get_proc_task(inode);
1414 	if (!p)
1415 		return -ESRCH;
1416 	proc_sched_autogroup_show_task(p, m);
1417 
1418 	put_task_struct(p);
1419 
1420 	return 0;
1421 }
1422 
1423 static ssize_t
1424 sched_autogroup_write(struct file *file, const char __user *buf,
1425 	    size_t count, loff_t *offset)
1426 {
1427 	struct inode *inode = file_inode(file);
1428 	struct task_struct *p;
1429 	char buffer[PROC_NUMBUF];
1430 	int nice;
1431 	int err;
1432 
1433 	memset(buffer, 0, sizeof(buffer));
1434 	if (count > sizeof(buffer) - 1)
1435 		count = sizeof(buffer) - 1;
1436 	if (copy_from_user(buffer, buf, count))
1437 		return -EFAULT;
1438 
1439 	err = kstrtoint(strstrip(buffer), 0, &nice);
1440 	if (err < 0)
1441 		return err;
1442 
1443 	p = get_proc_task(inode);
1444 	if (!p)
1445 		return -ESRCH;
1446 
1447 	err = proc_sched_autogroup_set_nice(p, nice);
1448 	if (err)
1449 		count = err;
1450 
1451 	put_task_struct(p);
1452 
1453 	return count;
1454 }
1455 
1456 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1457 {
1458 	int ret;
1459 
1460 	ret = single_open(filp, sched_autogroup_show, NULL);
1461 	if (!ret) {
1462 		struct seq_file *m = filp->private_data;
1463 
1464 		m->private = inode;
1465 	}
1466 	return ret;
1467 }
1468 
1469 static const struct file_operations proc_pid_sched_autogroup_operations = {
1470 	.open		= sched_autogroup_open,
1471 	.read		= seq_read,
1472 	.write		= sched_autogroup_write,
1473 	.llseek		= seq_lseek,
1474 	.release	= single_release,
1475 };
1476 
1477 #endif /* CONFIG_SCHED_AUTOGROUP */
1478 
1479 static ssize_t comm_write(struct file *file, const char __user *buf,
1480 				size_t count, loff_t *offset)
1481 {
1482 	struct inode *inode = file_inode(file);
1483 	struct task_struct *p;
1484 	char buffer[TASK_COMM_LEN];
1485 	const size_t maxlen = sizeof(buffer) - 1;
1486 
1487 	memset(buffer, 0, sizeof(buffer));
1488 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1489 		return -EFAULT;
1490 
1491 	p = get_proc_task(inode);
1492 	if (!p)
1493 		return -ESRCH;
1494 
1495 	if (same_thread_group(current, p))
1496 		set_task_comm(p, buffer);
1497 	else
1498 		count = -EINVAL;
1499 
1500 	put_task_struct(p);
1501 
1502 	return count;
1503 }
1504 
1505 static int comm_show(struct seq_file *m, void *v)
1506 {
1507 	struct inode *inode = m->private;
1508 	struct task_struct *p;
1509 
1510 	p = get_proc_task(inode);
1511 	if (!p)
1512 		return -ESRCH;
1513 
1514 	task_lock(p);
1515 	seq_printf(m, "%s\n", p->comm);
1516 	task_unlock(p);
1517 
1518 	put_task_struct(p);
1519 
1520 	return 0;
1521 }
1522 
1523 static int comm_open(struct inode *inode, struct file *filp)
1524 {
1525 	return single_open(filp, comm_show, inode);
1526 }
1527 
1528 static const struct file_operations proc_pid_set_comm_operations = {
1529 	.open		= comm_open,
1530 	.read		= seq_read,
1531 	.write		= comm_write,
1532 	.llseek		= seq_lseek,
1533 	.release	= single_release,
1534 };
1535 
1536 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1537 {
1538 	struct task_struct *task;
1539 	struct mm_struct *mm;
1540 	struct file *exe_file;
1541 
1542 	task = get_proc_task(d_inode(dentry));
1543 	if (!task)
1544 		return -ENOENT;
1545 	mm = get_task_mm(task);
1546 	put_task_struct(task);
1547 	if (!mm)
1548 		return -ENOENT;
1549 	exe_file = get_mm_exe_file(mm);
1550 	mmput(mm);
1551 	if (exe_file) {
1552 		*exe_path = exe_file->f_path;
1553 		path_get(&exe_file->f_path);
1554 		fput(exe_file);
1555 		return 0;
1556 	} else
1557 		return -ENOENT;
1558 }
1559 
1560 static const char *proc_pid_follow_link(struct dentry *dentry, void **cookie)
1561 {
1562 	struct inode *inode = d_inode(dentry);
1563 	struct path path;
1564 	int error = -EACCES;
1565 
1566 	/* Are we allowed to snoop on the tasks file descriptors? */
1567 	if (!proc_fd_access_allowed(inode))
1568 		goto out;
1569 
1570 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1571 	if (error)
1572 		goto out;
1573 
1574 	nd_jump_link(&path);
1575 	return NULL;
1576 out:
1577 	return ERR_PTR(error);
1578 }
1579 
1580 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1581 {
1582 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1583 	char *pathname;
1584 	int len;
1585 
1586 	if (!tmp)
1587 		return -ENOMEM;
1588 
1589 	pathname = d_path(path, tmp, PAGE_SIZE);
1590 	len = PTR_ERR(pathname);
1591 	if (IS_ERR(pathname))
1592 		goto out;
1593 	len = tmp + PAGE_SIZE - 1 - pathname;
1594 
1595 	if (len > buflen)
1596 		len = buflen;
1597 	if (copy_to_user(buffer, pathname, len))
1598 		len = -EFAULT;
1599  out:
1600 	free_page((unsigned long)tmp);
1601 	return len;
1602 }
1603 
1604 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1605 {
1606 	int error = -EACCES;
1607 	struct inode *inode = d_inode(dentry);
1608 	struct path path;
1609 
1610 	/* Are we allowed to snoop on the tasks file descriptors? */
1611 	if (!proc_fd_access_allowed(inode))
1612 		goto out;
1613 
1614 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1615 	if (error)
1616 		goto out;
1617 
1618 	error = do_proc_readlink(&path, buffer, buflen);
1619 	path_put(&path);
1620 out:
1621 	return error;
1622 }
1623 
1624 const struct inode_operations proc_pid_link_inode_operations = {
1625 	.readlink	= proc_pid_readlink,
1626 	.follow_link	= proc_pid_follow_link,
1627 	.setattr	= proc_setattr,
1628 };
1629 
1630 
1631 /* building an inode */
1632 
1633 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1634 {
1635 	struct inode * inode;
1636 	struct proc_inode *ei;
1637 	const struct cred *cred;
1638 
1639 	/* We need a new inode */
1640 
1641 	inode = new_inode(sb);
1642 	if (!inode)
1643 		goto out;
1644 
1645 	/* Common stuff */
1646 	ei = PROC_I(inode);
1647 	inode->i_ino = get_next_ino();
1648 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1649 	inode->i_op = &proc_def_inode_operations;
1650 
1651 	/*
1652 	 * grab the reference to task.
1653 	 */
1654 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1655 	if (!ei->pid)
1656 		goto out_unlock;
1657 
1658 	if (task_dumpable(task)) {
1659 		rcu_read_lock();
1660 		cred = __task_cred(task);
1661 		inode->i_uid = cred->euid;
1662 		inode->i_gid = cred->egid;
1663 		rcu_read_unlock();
1664 	}
1665 	security_task_to_inode(task, inode);
1666 
1667 out:
1668 	return inode;
1669 
1670 out_unlock:
1671 	iput(inode);
1672 	return NULL;
1673 }
1674 
1675 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1676 {
1677 	struct inode *inode = d_inode(dentry);
1678 	struct task_struct *task;
1679 	const struct cred *cred;
1680 	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1681 
1682 	generic_fillattr(inode, stat);
1683 
1684 	rcu_read_lock();
1685 	stat->uid = GLOBAL_ROOT_UID;
1686 	stat->gid = GLOBAL_ROOT_GID;
1687 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1688 	if (task) {
1689 		if (!has_pid_permissions(pid, task, 2)) {
1690 			rcu_read_unlock();
1691 			/*
1692 			 * This doesn't prevent learning whether PID exists,
1693 			 * it only makes getattr() consistent with readdir().
1694 			 */
1695 			return -ENOENT;
1696 		}
1697 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1698 		    task_dumpable(task)) {
1699 			cred = __task_cred(task);
1700 			stat->uid = cred->euid;
1701 			stat->gid = cred->egid;
1702 		}
1703 	}
1704 	rcu_read_unlock();
1705 	return 0;
1706 }
1707 
1708 /* dentry stuff */
1709 
1710 /*
1711  *	Exceptional case: normally we are not allowed to unhash a busy
1712  * directory. In this case, however, we can do it - no aliasing problems
1713  * due to the way we treat inodes.
1714  *
1715  * Rewrite the inode's ownerships here because the owning task may have
1716  * performed a setuid(), etc.
1717  *
1718  * Before the /proc/pid/status file was created the only way to read
1719  * the effective uid of a /process was to stat /proc/pid.  Reading
1720  * /proc/pid/status is slow enough that procps and other packages
1721  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1722  * made this apply to all per process world readable and executable
1723  * directories.
1724  */
1725 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1726 {
1727 	struct inode *inode;
1728 	struct task_struct *task;
1729 	const struct cred *cred;
1730 
1731 	if (flags & LOOKUP_RCU)
1732 		return -ECHILD;
1733 
1734 	inode = d_inode(dentry);
1735 	task = get_proc_task(inode);
1736 
1737 	if (task) {
1738 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1739 		    task_dumpable(task)) {
1740 			rcu_read_lock();
1741 			cred = __task_cred(task);
1742 			inode->i_uid = cred->euid;
1743 			inode->i_gid = cred->egid;
1744 			rcu_read_unlock();
1745 		} else {
1746 			inode->i_uid = GLOBAL_ROOT_UID;
1747 			inode->i_gid = GLOBAL_ROOT_GID;
1748 		}
1749 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1750 		security_task_to_inode(task, inode);
1751 		put_task_struct(task);
1752 		return 1;
1753 	}
1754 	return 0;
1755 }
1756 
1757 static inline bool proc_inode_is_dead(struct inode *inode)
1758 {
1759 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1760 }
1761 
1762 int pid_delete_dentry(const struct dentry *dentry)
1763 {
1764 	/* Is the task we represent dead?
1765 	 * If so, then don't put the dentry on the lru list,
1766 	 * kill it immediately.
1767 	 */
1768 	return proc_inode_is_dead(d_inode(dentry));
1769 }
1770 
1771 const struct dentry_operations pid_dentry_operations =
1772 {
1773 	.d_revalidate	= pid_revalidate,
1774 	.d_delete	= pid_delete_dentry,
1775 };
1776 
1777 /* Lookups */
1778 
1779 /*
1780  * Fill a directory entry.
1781  *
1782  * If possible create the dcache entry and derive our inode number and
1783  * file type from dcache entry.
1784  *
1785  * Since all of the proc inode numbers are dynamically generated, the inode
1786  * numbers do not exist until the inode is cache.  This means creating the
1787  * the dcache entry in readdir is necessary to keep the inode numbers
1788  * reported by readdir in sync with the inode numbers reported
1789  * by stat.
1790  */
1791 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1792 	const char *name, int len,
1793 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1794 {
1795 	struct dentry *child, *dir = file->f_path.dentry;
1796 	struct qstr qname = QSTR_INIT(name, len);
1797 	struct inode *inode;
1798 	unsigned type;
1799 	ino_t ino;
1800 
1801 	child = d_hash_and_lookup(dir, &qname);
1802 	if (!child) {
1803 		child = d_alloc(dir, &qname);
1804 		if (!child)
1805 			goto end_instantiate;
1806 		if (instantiate(d_inode(dir), child, task, ptr) < 0) {
1807 			dput(child);
1808 			goto end_instantiate;
1809 		}
1810 	}
1811 	inode = d_inode(child);
1812 	ino = inode->i_ino;
1813 	type = inode->i_mode >> 12;
1814 	dput(child);
1815 	return dir_emit(ctx, name, len, ino, type);
1816 
1817 end_instantiate:
1818 	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1819 }
1820 
1821 /*
1822  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1823  * which represent vma start and end addresses.
1824  */
1825 static int dname_to_vma_addr(struct dentry *dentry,
1826 			     unsigned long *start, unsigned long *end)
1827 {
1828 	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1829 		return -EINVAL;
1830 
1831 	return 0;
1832 }
1833 
1834 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1835 {
1836 	unsigned long vm_start, vm_end;
1837 	bool exact_vma_exists = false;
1838 	struct mm_struct *mm = NULL;
1839 	struct task_struct *task;
1840 	const struct cred *cred;
1841 	struct inode *inode;
1842 	int status = 0;
1843 
1844 	if (flags & LOOKUP_RCU)
1845 		return -ECHILD;
1846 
1847 	inode = d_inode(dentry);
1848 	task = get_proc_task(inode);
1849 	if (!task)
1850 		goto out_notask;
1851 
1852 	mm = mm_access(task, PTRACE_MODE_READ);
1853 	if (IS_ERR_OR_NULL(mm))
1854 		goto out;
1855 
1856 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1857 		down_read(&mm->mmap_sem);
1858 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1859 		up_read(&mm->mmap_sem);
1860 	}
1861 
1862 	mmput(mm);
1863 
1864 	if (exact_vma_exists) {
1865 		if (task_dumpable(task)) {
1866 			rcu_read_lock();
1867 			cred = __task_cred(task);
1868 			inode->i_uid = cred->euid;
1869 			inode->i_gid = cred->egid;
1870 			rcu_read_unlock();
1871 		} else {
1872 			inode->i_uid = GLOBAL_ROOT_UID;
1873 			inode->i_gid = GLOBAL_ROOT_GID;
1874 		}
1875 		security_task_to_inode(task, inode);
1876 		status = 1;
1877 	}
1878 
1879 out:
1880 	put_task_struct(task);
1881 
1882 out_notask:
1883 	return status;
1884 }
1885 
1886 static const struct dentry_operations tid_map_files_dentry_operations = {
1887 	.d_revalidate	= map_files_d_revalidate,
1888 	.d_delete	= pid_delete_dentry,
1889 };
1890 
1891 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1892 {
1893 	unsigned long vm_start, vm_end;
1894 	struct vm_area_struct *vma;
1895 	struct task_struct *task;
1896 	struct mm_struct *mm;
1897 	int rc;
1898 
1899 	rc = -ENOENT;
1900 	task = get_proc_task(d_inode(dentry));
1901 	if (!task)
1902 		goto out;
1903 
1904 	mm = get_task_mm(task);
1905 	put_task_struct(task);
1906 	if (!mm)
1907 		goto out;
1908 
1909 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1910 	if (rc)
1911 		goto out_mmput;
1912 
1913 	rc = -ENOENT;
1914 	down_read(&mm->mmap_sem);
1915 	vma = find_exact_vma(mm, vm_start, vm_end);
1916 	if (vma && vma->vm_file) {
1917 		*path = vma->vm_file->f_path;
1918 		path_get(path);
1919 		rc = 0;
1920 	}
1921 	up_read(&mm->mmap_sem);
1922 
1923 out_mmput:
1924 	mmput(mm);
1925 out:
1926 	return rc;
1927 }
1928 
1929 struct map_files_info {
1930 	fmode_t		mode;
1931 	unsigned long	len;
1932 	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1933 };
1934 
1935 /*
1936  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1937  * symlinks may be used to bypass permissions on ancestor directories in the
1938  * path to the file in question.
1939  */
1940 static const char *
1941 proc_map_files_follow_link(struct dentry *dentry, void **cookie)
1942 {
1943 	if (!capable(CAP_SYS_ADMIN))
1944 		return ERR_PTR(-EPERM);
1945 
1946 	return proc_pid_follow_link(dentry, NULL);
1947 }
1948 
1949 /*
1950  * Identical to proc_pid_link_inode_operations except for follow_link()
1951  */
1952 static const struct inode_operations proc_map_files_link_inode_operations = {
1953 	.readlink	= proc_pid_readlink,
1954 	.follow_link	= proc_map_files_follow_link,
1955 	.setattr	= proc_setattr,
1956 };
1957 
1958 static int
1959 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1960 			   struct task_struct *task, const void *ptr)
1961 {
1962 	fmode_t mode = (fmode_t)(unsigned long)ptr;
1963 	struct proc_inode *ei;
1964 	struct inode *inode;
1965 
1966 	inode = proc_pid_make_inode(dir->i_sb, task);
1967 	if (!inode)
1968 		return -ENOENT;
1969 
1970 	ei = PROC_I(inode);
1971 	ei->op.proc_get_link = proc_map_files_get_link;
1972 
1973 	inode->i_op = &proc_map_files_link_inode_operations;
1974 	inode->i_size = 64;
1975 	inode->i_mode = S_IFLNK;
1976 
1977 	if (mode & FMODE_READ)
1978 		inode->i_mode |= S_IRUSR;
1979 	if (mode & FMODE_WRITE)
1980 		inode->i_mode |= S_IWUSR;
1981 
1982 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
1983 	d_add(dentry, inode);
1984 
1985 	return 0;
1986 }
1987 
1988 static struct dentry *proc_map_files_lookup(struct inode *dir,
1989 		struct dentry *dentry, unsigned int flags)
1990 {
1991 	unsigned long vm_start, vm_end;
1992 	struct vm_area_struct *vma;
1993 	struct task_struct *task;
1994 	int result;
1995 	struct mm_struct *mm;
1996 
1997 	result = -ENOENT;
1998 	task = get_proc_task(dir);
1999 	if (!task)
2000 		goto out;
2001 
2002 	result = -EACCES;
2003 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2004 		goto out_put_task;
2005 
2006 	result = -ENOENT;
2007 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2008 		goto out_put_task;
2009 
2010 	mm = get_task_mm(task);
2011 	if (!mm)
2012 		goto out_put_task;
2013 
2014 	down_read(&mm->mmap_sem);
2015 	vma = find_exact_vma(mm, vm_start, vm_end);
2016 	if (!vma)
2017 		goto out_no_vma;
2018 
2019 	if (vma->vm_file)
2020 		result = proc_map_files_instantiate(dir, dentry, task,
2021 				(void *)(unsigned long)vma->vm_file->f_mode);
2022 
2023 out_no_vma:
2024 	up_read(&mm->mmap_sem);
2025 	mmput(mm);
2026 out_put_task:
2027 	put_task_struct(task);
2028 out:
2029 	return ERR_PTR(result);
2030 }
2031 
2032 static const struct inode_operations proc_map_files_inode_operations = {
2033 	.lookup		= proc_map_files_lookup,
2034 	.permission	= proc_fd_permission,
2035 	.setattr	= proc_setattr,
2036 };
2037 
2038 static int
2039 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2040 {
2041 	struct vm_area_struct *vma;
2042 	struct task_struct *task;
2043 	struct mm_struct *mm;
2044 	unsigned long nr_files, pos, i;
2045 	struct flex_array *fa = NULL;
2046 	struct map_files_info info;
2047 	struct map_files_info *p;
2048 	int ret;
2049 
2050 	ret = -ENOENT;
2051 	task = get_proc_task(file_inode(file));
2052 	if (!task)
2053 		goto out;
2054 
2055 	ret = -EACCES;
2056 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2057 		goto out_put_task;
2058 
2059 	ret = 0;
2060 	if (!dir_emit_dots(file, ctx))
2061 		goto out_put_task;
2062 
2063 	mm = get_task_mm(task);
2064 	if (!mm)
2065 		goto out_put_task;
2066 	down_read(&mm->mmap_sem);
2067 
2068 	nr_files = 0;
2069 
2070 	/*
2071 	 * We need two passes here:
2072 	 *
2073 	 *  1) Collect vmas of mapped files with mmap_sem taken
2074 	 *  2) Release mmap_sem and instantiate entries
2075 	 *
2076 	 * otherwise we get lockdep complained, since filldir()
2077 	 * routine might require mmap_sem taken in might_fault().
2078 	 */
2079 
2080 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2081 		if (vma->vm_file && ++pos > ctx->pos)
2082 			nr_files++;
2083 	}
2084 
2085 	if (nr_files) {
2086 		fa = flex_array_alloc(sizeof(info), nr_files,
2087 					GFP_KERNEL);
2088 		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2089 						GFP_KERNEL)) {
2090 			ret = -ENOMEM;
2091 			if (fa)
2092 				flex_array_free(fa);
2093 			up_read(&mm->mmap_sem);
2094 			mmput(mm);
2095 			goto out_put_task;
2096 		}
2097 		for (i = 0, vma = mm->mmap, pos = 2; vma;
2098 				vma = vma->vm_next) {
2099 			if (!vma->vm_file)
2100 				continue;
2101 			if (++pos <= ctx->pos)
2102 				continue;
2103 
2104 			info.mode = vma->vm_file->f_mode;
2105 			info.len = snprintf(info.name,
2106 					sizeof(info.name), "%lx-%lx",
2107 					vma->vm_start, vma->vm_end);
2108 			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2109 				BUG();
2110 		}
2111 	}
2112 	up_read(&mm->mmap_sem);
2113 
2114 	for (i = 0; i < nr_files; i++) {
2115 		p = flex_array_get(fa, i);
2116 		if (!proc_fill_cache(file, ctx,
2117 				      p->name, p->len,
2118 				      proc_map_files_instantiate,
2119 				      task,
2120 				      (void *)(unsigned long)p->mode))
2121 			break;
2122 		ctx->pos++;
2123 	}
2124 	if (fa)
2125 		flex_array_free(fa);
2126 	mmput(mm);
2127 
2128 out_put_task:
2129 	put_task_struct(task);
2130 out:
2131 	return ret;
2132 }
2133 
2134 static const struct file_operations proc_map_files_operations = {
2135 	.read		= generic_read_dir,
2136 	.iterate	= proc_map_files_readdir,
2137 	.llseek		= default_llseek,
2138 };
2139 
2140 struct timers_private {
2141 	struct pid *pid;
2142 	struct task_struct *task;
2143 	struct sighand_struct *sighand;
2144 	struct pid_namespace *ns;
2145 	unsigned long flags;
2146 };
2147 
2148 static void *timers_start(struct seq_file *m, loff_t *pos)
2149 {
2150 	struct timers_private *tp = m->private;
2151 
2152 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2153 	if (!tp->task)
2154 		return ERR_PTR(-ESRCH);
2155 
2156 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2157 	if (!tp->sighand)
2158 		return ERR_PTR(-ESRCH);
2159 
2160 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2161 }
2162 
2163 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2164 {
2165 	struct timers_private *tp = m->private;
2166 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2167 }
2168 
2169 static void timers_stop(struct seq_file *m, void *v)
2170 {
2171 	struct timers_private *tp = m->private;
2172 
2173 	if (tp->sighand) {
2174 		unlock_task_sighand(tp->task, &tp->flags);
2175 		tp->sighand = NULL;
2176 	}
2177 
2178 	if (tp->task) {
2179 		put_task_struct(tp->task);
2180 		tp->task = NULL;
2181 	}
2182 }
2183 
2184 static int show_timer(struct seq_file *m, void *v)
2185 {
2186 	struct k_itimer *timer;
2187 	struct timers_private *tp = m->private;
2188 	int notify;
2189 	static const char * const nstr[] = {
2190 		[SIGEV_SIGNAL] = "signal",
2191 		[SIGEV_NONE] = "none",
2192 		[SIGEV_THREAD] = "thread",
2193 	};
2194 
2195 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2196 	notify = timer->it_sigev_notify;
2197 
2198 	seq_printf(m, "ID: %d\n", timer->it_id);
2199 	seq_printf(m, "signal: %d/%p\n",
2200 		   timer->sigq->info.si_signo,
2201 		   timer->sigq->info.si_value.sival_ptr);
2202 	seq_printf(m, "notify: %s/%s.%d\n",
2203 		   nstr[notify & ~SIGEV_THREAD_ID],
2204 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2205 		   pid_nr_ns(timer->it_pid, tp->ns));
2206 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2207 
2208 	return 0;
2209 }
2210 
2211 static const struct seq_operations proc_timers_seq_ops = {
2212 	.start	= timers_start,
2213 	.next	= timers_next,
2214 	.stop	= timers_stop,
2215 	.show	= show_timer,
2216 };
2217 
2218 static int proc_timers_open(struct inode *inode, struct file *file)
2219 {
2220 	struct timers_private *tp;
2221 
2222 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2223 			sizeof(struct timers_private));
2224 	if (!tp)
2225 		return -ENOMEM;
2226 
2227 	tp->pid = proc_pid(inode);
2228 	tp->ns = inode->i_sb->s_fs_info;
2229 	return 0;
2230 }
2231 
2232 static const struct file_operations proc_timers_operations = {
2233 	.open		= proc_timers_open,
2234 	.read		= seq_read,
2235 	.llseek		= seq_lseek,
2236 	.release	= seq_release_private,
2237 };
2238 
2239 static int proc_pident_instantiate(struct inode *dir,
2240 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2241 {
2242 	const struct pid_entry *p = ptr;
2243 	struct inode *inode;
2244 	struct proc_inode *ei;
2245 
2246 	inode = proc_pid_make_inode(dir->i_sb, task);
2247 	if (!inode)
2248 		goto out;
2249 
2250 	ei = PROC_I(inode);
2251 	inode->i_mode = p->mode;
2252 	if (S_ISDIR(inode->i_mode))
2253 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2254 	if (p->iop)
2255 		inode->i_op = p->iop;
2256 	if (p->fop)
2257 		inode->i_fop = p->fop;
2258 	ei->op = p->op;
2259 	d_set_d_op(dentry, &pid_dentry_operations);
2260 	d_add(dentry, inode);
2261 	/* Close the race of the process dying before we return the dentry */
2262 	if (pid_revalidate(dentry, 0))
2263 		return 0;
2264 out:
2265 	return -ENOENT;
2266 }
2267 
2268 static struct dentry *proc_pident_lookup(struct inode *dir,
2269 					 struct dentry *dentry,
2270 					 const struct pid_entry *ents,
2271 					 unsigned int nents)
2272 {
2273 	int error;
2274 	struct task_struct *task = get_proc_task(dir);
2275 	const struct pid_entry *p, *last;
2276 
2277 	error = -ENOENT;
2278 
2279 	if (!task)
2280 		goto out_no_task;
2281 
2282 	/*
2283 	 * Yes, it does not scale. And it should not. Don't add
2284 	 * new entries into /proc/<tgid>/ without very good reasons.
2285 	 */
2286 	last = &ents[nents - 1];
2287 	for (p = ents; p <= last; p++) {
2288 		if (p->len != dentry->d_name.len)
2289 			continue;
2290 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2291 			break;
2292 	}
2293 	if (p > last)
2294 		goto out;
2295 
2296 	error = proc_pident_instantiate(dir, dentry, task, p);
2297 out:
2298 	put_task_struct(task);
2299 out_no_task:
2300 	return ERR_PTR(error);
2301 }
2302 
2303 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2304 		const struct pid_entry *ents, unsigned int nents)
2305 {
2306 	struct task_struct *task = get_proc_task(file_inode(file));
2307 	const struct pid_entry *p;
2308 
2309 	if (!task)
2310 		return -ENOENT;
2311 
2312 	if (!dir_emit_dots(file, ctx))
2313 		goto out;
2314 
2315 	if (ctx->pos >= nents + 2)
2316 		goto out;
2317 
2318 	for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2319 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2320 				proc_pident_instantiate, task, p))
2321 			break;
2322 		ctx->pos++;
2323 	}
2324 out:
2325 	put_task_struct(task);
2326 	return 0;
2327 }
2328 
2329 #ifdef CONFIG_SECURITY
2330 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2331 				  size_t count, loff_t *ppos)
2332 {
2333 	struct inode * inode = file_inode(file);
2334 	char *p = NULL;
2335 	ssize_t length;
2336 	struct task_struct *task = get_proc_task(inode);
2337 
2338 	if (!task)
2339 		return -ESRCH;
2340 
2341 	length = security_getprocattr(task,
2342 				      (char*)file->f_path.dentry->d_name.name,
2343 				      &p);
2344 	put_task_struct(task);
2345 	if (length > 0)
2346 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2347 	kfree(p);
2348 	return length;
2349 }
2350 
2351 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2352 				   size_t count, loff_t *ppos)
2353 {
2354 	struct inode * inode = file_inode(file);
2355 	char *page;
2356 	ssize_t length;
2357 	struct task_struct *task = get_proc_task(inode);
2358 
2359 	length = -ESRCH;
2360 	if (!task)
2361 		goto out_no_task;
2362 	if (count > PAGE_SIZE)
2363 		count = PAGE_SIZE;
2364 
2365 	/* No partial writes. */
2366 	length = -EINVAL;
2367 	if (*ppos != 0)
2368 		goto out;
2369 
2370 	length = -ENOMEM;
2371 	page = (char*)__get_free_page(GFP_TEMPORARY);
2372 	if (!page)
2373 		goto out;
2374 
2375 	length = -EFAULT;
2376 	if (copy_from_user(page, buf, count))
2377 		goto out_free;
2378 
2379 	/* Guard against adverse ptrace interaction */
2380 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2381 	if (length < 0)
2382 		goto out_free;
2383 
2384 	length = security_setprocattr(task,
2385 				      (char*)file->f_path.dentry->d_name.name,
2386 				      (void*)page, count);
2387 	mutex_unlock(&task->signal->cred_guard_mutex);
2388 out_free:
2389 	free_page((unsigned long) page);
2390 out:
2391 	put_task_struct(task);
2392 out_no_task:
2393 	return length;
2394 }
2395 
2396 static const struct file_operations proc_pid_attr_operations = {
2397 	.read		= proc_pid_attr_read,
2398 	.write		= proc_pid_attr_write,
2399 	.llseek		= generic_file_llseek,
2400 };
2401 
2402 static const struct pid_entry attr_dir_stuff[] = {
2403 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2404 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2405 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2406 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2407 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2408 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2409 };
2410 
2411 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2412 {
2413 	return proc_pident_readdir(file, ctx,
2414 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2415 }
2416 
2417 static const struct file_operations proc_attr_dir_operations = {
2418 	.read		= generic_read_dir,
2419 	.iterate	= proc_attr_dir_readdir,
2420 	.llseek		= default_llseek,
2421 };
2422 
2423 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2424 				struct dentry *dentry, unsigned int flags)
2425 {
2426 	return proc_pident_lookup(dir, dentry,
2427 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2428 }
2429 
2430 static const struct inode_operations proc_attr_dir_inode_operations = {
2431 	.lookup		= proc_attr_dir_lookup,
2432 	.getattr	= pid_getattr,
2433 	.setattr	= proc_setattr,
2434 };
2435 
2436 #endif
2437 
2438 #ifdef CONFIG_ELF_CORE
2439 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2440 					 size_t count, loff_t *ppos)
2441 {
2442 	struct task_struct *task = get_proc_task(file_inode(file));
2443 	struct mm_struct *mm;
2444 	char buffer[PROC_NUMBUF];
2445 	size_t len;
2446 	int ret;
2447 
2448 	if (!task)
2449 		return -ESRCH;
2450 
2451 	ret = 0;
2452 	mm = get_task_mm(task);
2453 	if (mm) {
2454 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2455 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2456 				MMF_DUMP_FILTER_SHIFT));
2457 		mmput(mm);
2458 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2459 	}
2460 
2461 	put_task_struct(task);
2462 
2463 	return ret;
2464 }
2465 
2466 static ssize_t proc_coredump_filter_write(struct file *file,
2467 					  const char __user *buf,
2468 					  size_t count,
2469 					  loff_t *ppos)
2470 {
2471 	struct task_struct *task;
2472 	struct mm_struct *mm;
2473 	unsigned int val;
2474 	int ret;
2475 	int i;
2476 	unsigned long mask;
2477 
2478 	ret = kstrtouint_from_user(buf, count, 0, &val);
2479 	if (ret < 0)
2480 		return ret;
2481 
2482 	ret = -ESRCH;
2483 	task = get_proc_task(file_inode(file));
2484 	if (!task)
2485 		goto out_no_task;
2486 
2487 	mm = get_task_mm(task);
2488 	if (!mm)
2489 		goto out_no_mm;
2490 
2491 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2492 		if (val & mask)
2493 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2494 		else
2495 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2496 	}
2497 
2498 	mmput(mm);
2499  out_no_mm:
2500 	put_task_struct(task);
2501  out_no_task:
2502 	if (ret < 0)
2503 		return ret;
2504 	return count;
2505 }
2506 
2507 static const struct file_operations proc_coredump_filter_operations = {
2508 	.read		= proc_coredump_filter_read,
2509 	.write		= proc_coredump_filter_write,
2510 	.llseek		= generic_file_llseek,
2511 };
2512 #endif
2513 
2514 #ifdef CONFIG_TASK_IO_ACCOUNTING
2515 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2516 {
2517 	struct task_io_accounting acct = task->ioac;
2518 	unsigned long flags;
2519 	int result;
2520 
2521 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2522 	if (result)
2523 		return result;
2524 
2525 	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2526 		result = -EACCES;
2527 		goto out_unlock;
2528 	}
2529 
2530 	if (whole && lock_task_sighand(task, &flags)) {
2531 		struct task_struct *t = task;
2532 
2533 		task_io_accounting_add(&acct, &task->signal->ioac);
2534 		while_each_thread(task, t)
2535 			task_io_accounting_add(&acct, &t->ioac);
2536 
2537 		unlock_task_sighand(task, &flags);
2538 	}
2539 	seq_printf(m,
2540 		   "rchar: %llu\n"
2541 		   "wchar: %llu\n"
2542 		   "syscr: %llu\n"
2543 		   "syscw: %llu\n"
2544 		   "read_bytes: %llu\n"
2545 		   "write_bytes: %llu\n"
2546 		   "cancelled_write_bytes: %llu\n",
2547 		   (unsigned long long)acct.rchar,
2548 		   (unsigned long long)acct.wchar,
2549 		   (unsigned long long)acct.syscr,
2550 		   (unsigned long long)acct.syscw,
2551 		   (unsigned long long)acct.read_bytes,
2552 		   (unsigned long long)acct.write_bytes,
2553 		   (unsigned long long)acct.cancelled_write_bytes);
2554 	result = 0;
2555 
2556 out_unlock:
2557 	mutex_unlock(&task->signal->cred_guard_mutex);
2558 	return result;
2559 }
2560 
2561 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2562 				  struct pid *pid, struct task_struct *task)
2563 {
2564 	return do_io_accounting(task, m, 0);
2565 }
2566 
2567 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2568 				   struct pid *pid, struct task_struct *task)
2569 {
2570 	return do_io_accounting(task, m, 1);
2571 }
2572 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2573 
2574 #ifdef CONFIG_USER_NS
2575 static int proc_id_map_open(struct inode *inode, struct file *file,
2576 	const struct seq_operations *seq_ops)
2577 {
2578 	struct user_namespace *ns = NULL;
2579 	struct task_struct *task;
2580 	struct seq_file *seq;
2581 	int ret = -EINVAL;
2582 
2583 	task = get_proc_task(inode);
2584 	if (task) {
2585 		rcu_read_lock();
2586 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2587 		rcu_read_unlock();
2588 		put_task_struct(task);
2589 	}
2590 	if (!ns)
2591 		goto err;
2592 
2593 	ret = seq_open(file, seq_ops);
2594 	if (ret)
2595 		goto err_put_ns;
2596 
2597 	seq = file->private_data;
2598 	seq->private = ns;
2599 
2600 	return 0;
2601 err_put_ns:
2602 	put_user_ns(ns);
2603 err:
2604 	return ret;
2605 }
2606 
2607 static int proc_id_map_release(struct inode *inode, struct file *file)
2608 {
2609 	struct seq_file *seq = file->private_data;
2610 	struct user_namespace *ns = seq->private;
2611 	put_user_ns(ns);
2612 	return seq_release(inode, file);
2613 }
2614 
2615 static int proc_uid_map_open(struct inode *inode, struct file *file)
2616 {
2617 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2618 }
2619 
2620 static int proc_gid_map_open(struct inode *inode, struct file *file)
2621 {
2622 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2623 }
2624 
2625 static int proc_projid_map_open(struct inode *inode, struct file *file)
2626 {
2627 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2628 }
2629 
2630 static const struct file_operations proc_uid_map_operations = {
2631 	.open		= proc_uid_map_open,
2632 	.write		= proc_uid_map_write,
2633 	.read		= seq_read,
2634 	.llseek		= seq_lseek,
2635 	.release	= proc_id_map_release,
2636 };
2637 
2638 static const struct file_operations proc_gid_map_operations = {
2639 	.open		= proc_gid_map_open,
2640 	.write		= proc_gid_map_write,
2641 	.read		= seq_read,
2642 	.llseek		= seq_lseek,
2643 	.release	= proc_id_map_release,
2644 };
2645 
2646 static const struct file_operations proc_projid_map_operations = {
2647 	.open		= proc_projid_map_open,
2648 	.write		= proc_projid_map_write,
2649 	.read		= seq_read,
2650 	.llseek		= seq_lseek,
2651 	.release	= proc_id_map_release,
2652 };
2653 
2654 static int proc_setgroups_open(struct inode *inode, struct file *file)
2655 {
2656 	struct user_namespace *ns = NULL;
2657 	struct task_struct *task;
2658 	int ret;
2659 
2660 	ret = -ESRCH;
2661 	task = get_proc_task(inode);
2662 	if (task) {
2663 		rcu_read_lock();
2664 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2665 		rcu_read_unlock();
2666 		put_task_struct(task);
2667 	}
2668 	if (!ns)
2669 		goto err;
2670 
2671 	if (file->f_mode & FMODE_WRITE) {
2672 		ret = -EACCES;
2673 		if (!ns_capable(ns, CAP_SYS_ADMIN))
2674 			goto err_put_ns;
2675 	}
2676 
2677 	ret = single_open(file, &proc_setgroups_show, ns);
2678 	if (ret)
2679 		goto err_put_ns;
2680 
2681 	return 0;
2682 err_put_ns:
2683 	put_user_ns(ns);
2684 err:
2685 	return ret;
2686 }
2687 
2688 static int proc_setgroups_release(struct inode *inode, struct file *file)
2689 {
2690 	struct seq_file *seq = file->private_data;
2691 	struct user_namespace *ns = seq->private;
2692 	int ret = single_release(inode, file);
2693 	put_user_ns(ns);
2694 	return ret;
2695 }
2696 
2697 static const struct file_operations proc_setgroups_operations = {
2698 	.open		= proc_setgroups_open,
2699 	.write		= proc_setgroups_write,
2700 	.read		= seq_read,
2701 	.llseek		= seq_lseek,
2702 	.release	= proc_setgroups_release,
2703 };
2704 #endif /* CONFIG_USER_NS */
2705 
2706 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2707 				struct pid *pid, struct task_struct *task)
2708 {
2709 	int err = lock_trace(task);
2710 	if (!err) {
2711 		seq_printf(m, "%08x\n", task->personality);
2712 		unlock_trace(task);
2713 	}
2714 	return err;
2715 }
2716 
2717 /*
2718  * Thread groups
2719  */
2720 static const struct file_operations proc_task_operations;
2721 static const struct inode_operations proc_task_inode_operations;
2722 
2723 static const struct pid_entry tgid_base_stuff[] = {
2724 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2725 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2726 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2727 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2728 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2729 #ifdef CONFIG_NET
2730 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2731 #endif
2732 	REG("environ",    S_IRUSR, proc_environ_operations),
2733 	ONE("auxv",       S_IRUSR, proc_pid_auxv),
2734 	ONE("status",     S_IRUGO, proc_pid_status),
2735 	ONE("personality", S_IRUSR, proc_pid_personality),
2736 	ONE("limits",	  S_IRUGO, proc_pid_limits),
2737 #ifdef CONFIG_SCHED_DEBUG
2738 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2739 #endif
2740 #ifdef CONFIG_SCHED_AUTOGROUP
2741 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2742 #endif
2743 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2744 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2745 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2746 #endif
2747 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2748 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2749 	ONE("statm",      S_IRUGO, proc_pid_statm),
2750 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2751 #ifdef CONFIG_NUMA
2752 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2753 #endif
2754 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2755 	LNK("cwd",        proc_cwd_link),
2756 	LNK("root",       proc_root_link),
2757 	LNK("exe",        proc_exe_link),
2758 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2759 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2760 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2761 #ifdef CONFIG_PROC_PAGE_MONITOR
2762 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2763 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2764 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2765 #endif
2766 #ifdef CONFIG_SECURITY
2767 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2768 #endif
2769 #ifdef CONFIG_KALLSYMS
2770 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2771 #endif
2772 #ifdef CONFIG_STACKTRACE
2773 	ONE("stack",      S_IRUSR, proc_pid_stack),
2774 #endif
2775 #ifdef CONFIG_SCHED_INFO
2776 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2777 #endif
2778 #ifdef CONFIG_LATENCYTOP
2779 	REG("latency",  S_IRUGO, proc_lstats_operations),
2780 #endif
2781 #ifdef CONFIG_PROC_PID_CPUSET
2782 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2783 #endif
2784 #ifdef CONFIG_CGROUPS
2785 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2786 #endif
2787 	ONE("oom_score",  S_IRUGO, proc_oom_score),
2788 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2789 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2790 #ifdef CONFIG_AUDITSYSCALL
2791 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2792 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2793 #endif
2794 #ifdef CONFIG_FAULT_INJECTION
2795 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2796 #endif
2797 #ifdef CONFIG_ELF_CORE
2798 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2799 #endif
2800 #ifdef CONFIG_TASK_IO_ACCOUNTING
2801 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2802 #endif
2803 #ifdef CONFIG_HARDWALL
2804 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2805 #endif
2806 #ifdef CONFIG_USER_NS
2807 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2808 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2809 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2810 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2811 #endif
2812 #ifdef CONFIG_CHECKPOINT_RESTORE
2813 	REG("timers",	  S_IRUGO, proc_timers_operations),
2814 #endif
2815 };
2816 
2817 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2818 {
2819 	return proc_pident_readdir(file, ctx,
2820 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2821 }
2822 
2823 static const struct file_operations proc_tgid_base_operations = {
2824 	.read		= generic_read_dir,
2825 	.iterate	= proc_tgid_base_readdir,
2826 	.llseek		= default_llseek,
2827 };
2828 
2829 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2830 {
2831 	return proc_pident_lookup(dir, dentry,
2832 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2833 }
2834 
2835 static const struct inode_operations proc_tgid_base_inode_operations = {
2836 	.lookup		= proc_tgid_base_lookup,
2837 	.getattr	= pid_getattr,
2838 	.setattr	= proc_setattr,
2839 	.permission	= proc_pid_permission,
2840 };
2841 
2842 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2843 {
2844 	struct dentry *dentry, *leader, *dir;
2845 	char buf[PROC_NUMBUF];
2846 	struct qstr name;
2847 
2848 	name.name = buf;
2849 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2850 	/* no ->d_hash() rejects on procfs */
2851 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2852 	if (dentry) {
2853 		d_invalidate(dentry);
2854 		dput(dentry);
2855 	}
2856 
2857 	if (pid == tgid)
2858 		return;
2859 
2860 	name.name = buf;
2861 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2862 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2863 	if (!leader)
2864 		goto out;
2865 
2866 	name.name = "task";
2867 	name.len = strlen(name.name);
2868 	dir = d_hash_and_lookup(leader, &name);
2869 	if (!dir)
2870 		goto out_put_leader;
2871 
2872 	name.name = buf;
2873 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2874 	dentry = d_hash_and_lookup(dir, &name);
2875 	if (dentry) {
2876 		d_invalidate(dentry);
2877 		dput(dentry);
2878 	}
2879 
2880 	dput(dir);
2881 out_put_leader:
2882 	dput(leader);
2883 out:
2884 	return;
2885 }
2886 
2887 /**
2888  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2889  * @task: task that should be flushed.
2890  *
2891  * When flushing dentries from proc, one needs to flush them from global
2892  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2893  * in. This call is supposed to do all of this job.
2894  *
2895  * Looks in the dcache for
2896  * /proc/@pid
2897  * /proc/@tgid/task/@pid
2898  * if either directory is present flushes it and all of it'ts children
2899  * from the dcache.
2900  *
2901  * It is safe and reasonable to cache /proc entries for a task until
2902  * that task exits.  After that they just clog up the dcache with
2903  * useless entries, possibly causing useful dcache entries to be
2904  * flushed instead.  This routine is proved to flush those useless
2905  * dcache entries at process exit time.
2906  *
2907  * NOTE: This routine is just an optimization so it does not guarantee
2908  *       that no dcache entries will exist at process exit time it
2909  *       just makes it very unlikely that any will persist.
2910  */
2911 
2912 void proc_flush_task(struct task_struct *task)
2913 {
2914 	int i;
2915 	struct pid *pid, *tgid;
2916 	struct upid *upid;
2917 
2918 	pid = task_pid(task);
2919 	tgid = task_tgid(task);
2920 
2921 	for (i = 0; i <= pid->level; i++) {
2922 		upid = &pid->numbers[i];
2923 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2924 					tgid->numbers[i].nr);
2925 	}
2926 }
2927 
2928 static int proc_pid_instantiate(struct inode *dir,
2929 				   struct dentry * dentry,
2930 				   struct task_struct *task, const void *ptr)
2931 {
2932 	struct inode *inode;
2933 
2934 	inode = proc_pid_make_inode(dir->i_sb, task);
2935 	if (!inode)
2936 		goto out;
2937 
2938 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2939 	inode->i_op = &proc_tgid_base_inode_operations;
2940 	inode->i_fop = &proc_tgid_base_operations;
2941 	inode->i_flags|=S_IMMUTABLE;
2942 
2943 	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2944 						  ARRAY_SIZE(tgid_base_stuff)));
2945 
2946 	d_set_d_op(dentry, &pid_dentry_operations);
2947 
2948 	d_add(dentry, inode);
2949 	/* Close the race of the process dying before we return the dentry */
2950 	if (pid_revalidate(dentry, 0))
2951 		return 0;
2952 out:
2953 	return -ENOENT;
2954 }
2955 
2956 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2957 {
2958 	int result = -ENOENT;
2959 	struct task_struct *task;
2960 	unsigned tgid;
2961 	struct pid_namespace *ns;
2962 
2963 	tgid = name_to_int(&dentry->d_name);
2964 	if (tgid == ~0U)
2965 		goto out;
2966 
2967 	ns = dentry->d_sb->s_fs_info;
2968 	rcu_read_lock();
2969 	task = find_task_by_pid_ns(tgid, ns);
2970 	if (task)
2971 		get_task_struct(task);
2972 	rcu_read_unlock();
2973 	if (!task)
2974 		goto out;
2975 
2976 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2977 	put_task_struct(task);
2978 out:
2979 	return ERR_PTR(result);
2980 }
2981 
2982 /*
2983  * Find the first task with tgid >= tgid
2984  *
2985  */
2986 struct tgid_iter {
2987 	unsigned int tgid;
2988 	struct task_struct *task;
2989 };
2990 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2991 {
2992 	struct pid *pid;
2993 
2994 	if (iter.task)
2995 		put_task_struct(iter.task);
2996 	rcu_read_lock();
2997 retry:
2998 	iter.task = NULL;
2999 	pid = find_ge_pid(iter.tgid, ns);
3000 	if (pid) {
3001 		iter.tgid = pid_nr_ns(pid, ns);
3002 		iter.task = pid_task(pid, PIDTYPE_PID);
3003 		/* What we to know is if the pid we have find is the
3004 		 * pid of a thread_group_leader.  Testing for task
3005 		 * being a thread_group_leader is the obvious thing
3006 		 * todo but there is a window when it fails, due to
3007 		 * the pid transfer logic in de_thread.
3008 		 *
3009 		 * So we perform the straight forward test of seeing
3010 		 * if the pid we have found is the pid of a thread
3011 		 * group leader, and don't worry if the task we have
3012 		 * found doesn't happen to be a thread group leader.
3013 		 * As we don't care in the case of readdir.
3014 		 */
3015 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3016 			iter.tgid += 1;
3017 			goto retry;
3018 		}
3019 		get_task_struct(iter.task);
3020 	}
3021 	rcu_read_unlock();
3022 	return iter;
3023 }
3024 
3025 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3026 
3027 /* for the /proc/ directory itself, after non-process stuff has been done */
3028 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3029 {
3030 	struct tgid_iter iter;
3031 	struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3032 	loff_t pos = ctx->pos;
3033 
3034 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3035 		return 0;
3036 
3037 	if (pos == TGID_OFFSET - 2) {
3038 		struct inode *inode = d_inode(ns->proc_self);
3039 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3040 			return 0;
3041 		ctx->pos = pos = pos + 1;
3042 	}
3043 	if (pos == TGID_OFFSET - 1) {
3044 		struct inode *inode = d_inode(ns->proc_thread_self);
3045 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3046 			return 0;
3047 		ctx->pos = pos = pos + 1;
3048 	}
3049 	iter.tgid = pos - TGID_OFFSET;
3050 	iter.task = NULL;
3051 	for (iter = next_tgid(ns, iter);
3052 	     iter.task;
3053 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3054 		char name[PROC_NUMBUF];
3055 		int len;
3056 		if (!has_pid_permissions(ns, iter.task, 2))
3057 			continue;
3058 
3059 		len = snprintf(name, sizeof(name), "%d", iter.tgid);
3060 		ctx->pos = iter.tgid + TGID_OFFSET;
3061 		if (!proc_fill_cache(file, ctx, name, len,
3062 				     proc_pid_instantiate, iter.task, NULL)) {
3063 			put_task_struct(iter.task);
3064 			return 0;
3065 		}
3066 	}
3067 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3068 	return 0;
3069 }
3070 
3071 /*
3072  * Tasks
3073  */
3074 static const struct pid_entry tid_base_stuff[] = {
3075 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3076 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3077 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3078 #ifdef CONFIG_NET
3079 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3080 #endif
3081 	REG("environ",   S_IRUSR, proc_environ_operations),
3082 	ONE("auxv",      S_IRUSR, proc_pid_auxv),
3083 	ONE("status",    S_IRUGO, proc_pid_status),
3084 	ONE("personality", S_IRUSR, proc_pid_personality),
3085 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3086 #ifdef CONFIG_SCHED_DEBUG
3087 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3088 #endif
3089 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3090 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3091 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3092 #endif
3093 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3094 	ONE("stat",      S_IRUGO, proc_tid_stat),
3095 	ONE("statm",     S_IRUGO, proc_pid_statm),
3096 	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3097 #ifdef CONFIG_PROC_CHILDREN
3098 	REG("children",  S_IRUGO, proc_tid_children_operations),
3099 #endif
3100 #ifdef CONFIG_NUMA
3101 	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3102 #endif
3103 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3104 	LNK("cwd",       proc_cwd_link),
3105 	LNK("root",      proc_root_link),
3106 	LNK("exe",       proc_exe_link),
3107 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3108 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3109 #ifdef CONFIG_PROC_PAGE_MONITOR
3110 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3111 	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3112 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3113 #endif
3114 #ifdef CONFIG_SECURITY
3115 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3116 #endif
3117 #ifdef CONFIG_KALLSYMS
3118 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3119 #endif
3120 #ifdef CONFIG_STACKTRACE
3121 	ONE("stack",      S_IRUSR, proc_pid_stack),
3122 #endif
3123 #ifdef CONFIG_SCHED_INFO
3124 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3125 #endif
3126 #ifdef CONFIG_LATENCYTOP
3127 	REG("latency",  S_IRUGO, proc_lstats_operations),
3128 #endif
3129 #ifdef CONFIG_PROC_PID_CPUSET
3130 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3131 #endif
3132 #ifdef CONFIG_CGROUPS
3133 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3134 #endif
3135 	ONE("oom_score", S_IRUGO, proc_oom_score),
3136 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3137 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3138 #ifdef CONFIG_AUDITSYSCALL
3139 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3140 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3141 #endif
3142 #ifdef CONFIG_FAULT_INJECTION
3143 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3144 #endif
3145 #ifdef CONFIG_TASK_IO_ACCOUNTING
3146 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3147 #endif
3148 #ifdef CONFIG_HARDWALL
3149 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3150 #endif
3151 #ifdef CONFIG_USER_NS
3152 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3153 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3154 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3155 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3156 #endif
3157 };
3158 
3159 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3160 {
3161 	return proc_pident_readdir(file, ctx,
3162 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3163 }
3164 
3165 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3166 {
3167 	return proc_pident_lookup(dir, dentry,
3168 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3169 }
3170 
3171 static const struct file_operations proc_tid_base_operations = {
3172 	.read		= generic_read_dir,
3173 	.iterate	= proc_tid_base_readdir,
3174 	.llseek		= default_llseek,
3175 };
3176 
3177 static const struct inode_operations proc_tid_base_inode_operations = {
3178 	.lookup		= proc_tid_base_lookup,
3179 	.getattr	= pid_getattr,
3180 	.setattr	= proc_setattr,
3181 };
3182 
3183 static int proc_task_instantiate(struct inode *dir,
3184 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3185 {
3186 	struct inode *inode;
3187 	inode = proc_pid_make_inode(dir->i_sb, task);
3188 
3189 	if (!inode)
3190 		goto out;
3191 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3192 	inode->i_op = &proc_tid_base_inode_operations;
3193 	inode->i_fop = &proc_tid_base_operations;
3194 	inode->i_flags|=S_IMMUTABLE;
3195 
3196 	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3197 						  ARRAY_SIZE(tid_base_stuff)));
3198 
3199 	d_set_d_op(dentry, &pid_dentry_operations);
3200 
3201 	d_add(dentry, inode);
3202 	/* Close the race of the process dying before we return the dentry */
3203 	if (pid_revalidate(dentry, 0))
3204 		return 0;
3205 out:
3206 	return -ENOENT;
3207 }
3208 
3209 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3210 {
3211 	int result = -ENOENT;
3212 	struct task_struct *task;
3213 	struct task_struct *leader = get_proc_task(dir);
3214 	unsigned tid;
3215 	struct pid_namespace *ns;
3216 
3217 	if (!leader)
3218 		goto out_no_task;
3219 
3220 	tid = name_to_int(&dentry->d_name);
3221 	if (tid == ~0U)
3222 		goto out;
3223 
3224 	ns = dentry->d_sb->s_fs_info;
3225 	rcu_read_lock();
3226 	task = find_task_by_pid_ns(tid, ns);
3227 	if (task)
3228 		get_task_struct(task);
3229 	rcu_read_unlock();
3230 	if (!task)
3231 		goto out;
3232 	if (!same_thread_group(leader, task))
3233 		goto out_drop_task;
3234 
3235 	result = proc_task_instantiate(dir, dentry, task, NULL);
3236 out_drop_task:
3237 	put_task_struct(task);
3238 out:
3239 	put_task_struct(leader);
3240 out_no_task:
3241 	return ERR_PTR(result);
3242 }
3243 
3244 /*
3245  * Find the first tid of a thread group to return to user space.
3246  *
3247  * Usually this is just the thread group leader, but if the users
3248  * buffer was too small or there was a seek into the middle of the
3249  * directory we have more work todo.
3250  *
3251  * In the case of a short read we start with find_task_by_pid.
3252  *
3253  * In the case of a seek we start with the leader and walk nr
3254  * threads past it.
3255  */
3256 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3257 					struct pid_namespace *ns)
3258 {
3259 	struct task_struct *pos, *task;
3260 	unsigned long nr = f_pos;
3261 
3262 	if (nr != f_pos)	/* 32bit overflow? */
3263 		return NULL;
3264 
3265 	rcu_read_lock();
3266 	task = pid_task(pid, PIDTYPE_PID);
3267 	if (!task)
3268 		goto fail;
3269 
3270 	/* Attempt to start with the tid of a thread */
3271 	if (tid && nr) {
3272 		pos = find_task_by_pid_ns(tid, ns);
3273 		if (pos && same_thread_group(pos, task))
3274 			goto found;
3275 	}
3276 
3277 	/* If nr exceeds the number of threads there is nothing todo */
3278 	if (nr >= get_nr_threads(task))
3279 		goto fail;
3280 
3281 	/* If we haven't found our starting place yet start
3282 	 * with the leader and walk nr threads forward.
3283 	 */
3284 	pos = task = task->group_leader;
3285 	do {
3286 		if (!nr--)
3287 			goto found;
3288 	} while_each_thread(task, pos);
3289 fail:
3290 	pos = NULL;
3291 	goto out;
3292 found:
3293 	get_task_struct(pos);
3294 out:
3295 	rcu_read_unlock();
3296 	return pos;
3297 }
3298 
3299 /*
3300  * Find the next thread in the thread list.
3301  * Return NULL if there is an error or no next thread.
3302  *
3303  * The reference to the input task_struct is released.
3304  */
3305 static struct task_struct *next_tid(struct task_struct *start)
3306 {
3307 	struct task_struct *pos = NULL;
3308 	rcu_read_lock();
3309 	if (pid_alive(start)) {
3310 		pos = next_thread(start);
3311 		if (thread_group_leader(pos))
3312 			pos = NULL;
3313 		else
3314 			get_task_struct(pos);
3315 	}
3316 	rcu_read_unlock();
3317 	put_task_struct(start);
3318 	return pos;
3319 }
3320 
3321 /* for the /proc/TGID/task/ directories */
3322 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3323 {
3324 	struct inode *inode = file_inode(file);
3325 	struct task_struct *task;
3326 	struct pid_namespace *ns;
3327 	int tid;
3328 
3329 	if (proc_inode_is_dead(inode))
3330 		return -ENOENT;
3331 
3332 	if (!dir_emit_dots(file, ctx))
3333 		return 0;
3334 
3335 	/* f_version caches the tgid value that the last readdir call couldn't
3336 	 * return. lseek aka telldir automagically resets f_version to 0.
3337 	 */
3338 	ns = inode->i_sb->s_fs_info;
3339 	tid = (int)file->f_version;
3340 	file->f_version = 0;
3341 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3342 	     task;
3343 	     task = next_tid(task), ctx->pos++) {
3344 		char name[PROC_NUMBUF];
3345 		int len;
3346 		tid = task_pid_nr_ns(task, ns);
3347 		len = snprintf(name, sizeof(name), "%d", tid);
3348 		if (!proc_fill_cache(file, ctx, name, len,
3349 				proc_task_instantiate, task, NULL)) {
3350 			/* returning this tgid failed, save it as the first
3351 			 * pid for the next readir call */
3352 			file->f_version = (u64)tid;
3353 			put_task_struct(task);
3354 			break;
3355 		}
3356 	}
3357 
3358 	return 0;
3359 }
3360 
3361 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3362 {
3363 	struct inode *inode = d_inode(dentry);
3364 	struct task_struct *p = get_proc_task(inode);
3365 	generic_fillattr(inode, stat);
3366 
3367 	if (p) {
3368 		stat->nlink += get_nr_threads(p);
3369 		put_task_struct(p);
3370 	}
3371 
3372 	return 0;
3373 }
3374 
3375 static const struct inode_operations proc_task_inode_operations = {
3376 	.lookup		= proc_task_lookup,
3377 	.getattr	= proc_task_getattr,
3378 	.setattr	= proc_setattr,
3379 	.permission	= proc_pid_permission,
3380 };
3381 
3382 static const struct file_operations proc_task_operations = {
3383 	.read		= generic_read_dir,
3384 	.iterate	= proc_task_readdir,
3385 	.llseek		= default_llseek,
3386 };
3387