xref: /openbmc/linux/fs/proc/base.c (revision a13f2ef1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/proc/base.c
4  *
5  *  Copyright (C) 1991, 1992 Linus Torvalds
6  *
7  *  proc base directory handling functions
8  *
9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10  *  Instead of using magical inumbers to determine the kind of object
11  *  we allocate and fill in-core inodes upon lookup. They don't even
12  *  go into icache. We cache the reference to task_struct upon lookup too.
13  *  Eventually it should become a filesystem in its own. We don't use the
14  *  rest of procfs anymore.
15  *
16  *
17  *  Changelog:
18  *  17-Jan-2005
19  *  Allan Bezerra
20  *  Bruna Moreira <bruna.moreira@indt.org.br>
21  *  Edjard Mota <edjard.mota@indt.org.br>
22  *  Ilias Biris <ilias.biris@indt.org.br>
23  *  Mauricio Lin <mauricio.lin@indt.org.br>
24  *
25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26  *
27  *  A new process specific entry (smaps) included in /proc. It shows the
28  *  size of rss for each memory area. The maps entry lacks information
29  *  about physical memory size (rss) for each mapped file, i.e.,
30  *  rss information for executables and library files.
31  *  This additional information is useful for any tools that need to know
32  *  about physical memory consumption for a process specific library.
33  *
34  *  Changelog:
35  *  21-Feb-2005
36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37  *  Pud inclusion in the page table walking.
38  *
39  *  ChangeLog:
40  *  10-Mar-2005
41  *  10LE Instituto Nokia de Tecnologia - INdT:
42  *  A better way to walks through the page table as suggested by Hugh Dickins.
43  *
44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45  *  Smaps information related to shared, private, clean and dirty pages.
46  *
47  *  Paul Mundt <paul.mundt@nokia.com>:
48  *  Overall revision about smaps.
49  */
50 
51 #include <linux/uaccess.h>
52 
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/generic-radix-tree.h>
63 #include <linux/string.h>
64 #include <linux/seq_file.h>
65 #include <linux/namei.h>
66 #include <linux/mnt_namespace.h>
67 #include <linux/mm.h>
68 #include <linux/swap.h>
69 #include <linux/rcupdate.h>
70 #include <linux/kallsyms.h>
71 #include <linux/stacktrace.h>
72 #include <linux/resource.h>
73 #include <linux/module.h>
74 #include <linux/mount.h>
75 #include <linux/security.h>
76 #include <linux/ptrace.h>
77 #include <linux/tracehook.h>
78 #include <linux/printk.h>
79 #include <linux/cache.h>
80 #include <linux/cgroup.h>
81 #include <linux/cpuset.h>
82 #include <linux/audit.h>
83 #include <linux/poll.h>
84 #include <linux/nsproxy.h>
85 #include <linux/oom.h>
86 #include <linux/elf.h>
87 #include <linux/pid_namespace.h>
88 #include <linux/user_namespace.h>
89 #include <linux/fs_struct.h>
90 #include <linux/slab.h>
91 #include <linux/sched/autogroup.h>
92 #include <linux/sched/mm.h>
93 #include <linux/sched/coredump.h>
94 #include <linux/sched/debug.h>
95 #include <linux/sched/stat.h>
96 #include <linux/posix-timers.h>
97 #include <linux/time_namespace.h>
98 #include <linux/resctrl.h>
99 #include <trace/events/oom.h>
100 #include "internal.h"
101 #include "fd.h"
102 
103 #include "../../lib/kstrtox.h"
104 
105 /* NOTE:
106  *	Implementing inode permission operations in /proc is almost
107  *	certainly an error.  Permission checks need to happen during
108  *	each system call not at open time.  The reason is that most of
109  *	what we wish to check for permissions in /proc varies at runtime.
110  *
111  *	The classic example of a problem is opening file descriptors
112  *	in /proc for a task before it execs a suid executable.
113  */
114 
115 static u8 nlink_tid __ro_after_init;
116 static u8 nlink_tgid __ro_after_init;
117 
118 struct pid_entry {
119 	const char *name;
120 	unsigned int len;
121 	umode_t mode;
122 	const struct inode_operations *iop;
123 	const struct file_operations *fop;
124 	union proc_op op;
125 };
126 
127 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
128 	.name = (NAME),					\
129 	.len  = sizeof(NAME) - 1,			\
130 	.mode = MODE,					\
131 	.iop  = IOP,					\
132 	.fop  = FOP,					\
133 	.op   = OP,					\
134 }
135 
136 #define DIR(NAME, MODE, iops, fops)	\
137 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
138 #define LNK(NAME, get_link)					\
139 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
140 		&proc_pid_link_inode_operations, NULL,		\
141 		{ .proc_get_link = get_link } )
142 #define REG(NAME, MODE, fops)				\
143 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
144 #define ONE(NAME, MODE, show)				\
145 	NOD(NAME, (S_IFREG|(MODE)),			\
146 		NULL, &proc_single_file_operations,	\
147 		{ .proc_show = show } )
148 #define ATTR(LSM, NAME, MODE)				\
149 	NOD(NAME, (S_IFREG|(MODE)),			\
150 		NULL, &proc_pid_attr_operations,	\
151 		{ .lsm = LSM })
152 
153 /*
154  * Count the number of hardlinks for the pid_entry table, excluding the .
155  * and .. links.
156  */
157 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
158 	unsigned int n)
159 {
160 	unsigned int i;
161 	unsigned int count;
162 
163 	count = 2;
164 	for (i = 0; i < n; ++i) {
165 		if (S_ISDIR(entries[i].mode))
166 			++count;
167 	}
168 
169 	return count;
170 }
171 
172 static int get_task_root(struct task_struct *task, struct path *root)
173 {
174 	int result = -ENOENT;
175 
176 	task_lock(task);
177 	if (task->fs) {
178 		get_fs_root(task->fs, root);
179 		result = 0;
180 	}
181 	task_unlock(task);
182 	return result;
183 }
184 
185 static int proc_cwd_link(struct dentry *dentry, struct path *path)
186 {
187 	struct task_struct *task = get_proc_task(d_inode(dentry));
188 	int result = -ENOENT;
189 
190 	if (task) {
191 		task_lock(task);
192 		if (task->fs) {
193 			get_fs_pwd(task->fs, path);
194 			result = 0;
195 		}
196 		task_unlock(task);
197 		put_task_struct(task);
198 	}
199 	return result;
200 }
201 
202 static int proc_root_link(struct dentry *dentry, struct path *path)
203 {
204 	struct task_struct *task = get_proc_task(d_inode(dentry));
205 	int result = -ENOENT;
206 
207 	if (task) {
208 		result = get_task_root(task, path);
209 		put_task_struct(task);
210 	}
211 	return result;
212 }
213 
214 /*
215  * If the user used setproctitle(), we just get the string from
216  * user space at arg_start, and limit it to a maximum of one page.
217  */
218 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
219 				size_t count, unsigned long pos,
220 				unsigned long arg_start)
221 {
222 	char *page;
223 	int ret, got;
224 
225 	if (pos >= PAGE_SIZE)
226 		return 0;
227 
228 	page = (char *)__get_free_page(GFP_KERNEL);
229 	if (!page)
230 		return -ENOMEM;
231 
232 	ret = 0;
233 	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
234 	if (got > 0) {
235 		int len = strnlen(page, got);
236 
237 		/* Include the NUL character if it was found */
238 		if (len < got)
239 			len++;
240 
241 		if (len > pos) {
242 			len -= pos;
243 			if (len > count)
244 				len = count;
245 			len -= copy_to_user(buf, page+pos, len);
246 			if (!len)
247 				len = -EFAULT;
248 			ret = len;
249 		}
250 	}
251 	free_page((unsigned long)page);
252 	return ret;
253 }
254 
255 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
256 			      size_t count, loff_t *ppos)
257 {
258 	unsigned long arg_start, arg_end, env_start, env_end;
259 	unsigned long pos, len;
260 	char *page, c;
261 
262 	/* Check if process spawned far enough to have cmdline. */
263 	if (!mm->env_end)
264 		return 0;
265 
266 	spin_lock(&mm->arg_lock);
267 	arg_start = mm->arg_start;
268 	arg_end = mm->arg_end;
269 	env_start = mm->env_start;
270 	env_end = mm->env_end;
271 	spin_unlock(&mm->arg_lock);
272 
273 	if (arg_start >= arg_end)
274 		return 0;
275 
276 	/*
277 	 * We allow setproctitle() to overwrite the argument
278 	 * strings, and overflow past the original end. But
279 	 * only when it overflows into the environment area.
280 	 */
281 	if (env_start != arg_end || env_end < env_start)
282 		env_start = env_end = arg_end;
283 	len = env_end - arg_start;
284 
285 	/* We're not going to care if "*ppos" has high bits set */
286 	pos = *ppos;
287 	if (pos >= len)
288 		return 0;
289 	if (count > len - pos)
290 		count = len - pos;
291 	if (!count)
292 		return 0;
293 
294 	/*
295 	 * Magical special case: if the argv[] end byte is not
296 	 * zero, the user has overwritten it with setproctitle(3).
297 	 *
298 	 * Possible future enhancement: do this only once when
299 	 * pos is 0, and set a flag in the 'struct file'.
300 	 */
301 	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
302 		return get_mm_proctitle(mm, buf, count, pos, arg_start);
303 
304 	/*
305 	 * For the non-setproctitle() case we limit things strictly
306 	 * to the [arg_start, arg_end[ range.
307 	 */
308 	pos += arg_start;
309 	if (pos < arg_start || pos >= arg_end)
310 		return 0;
311 	if (count > arg_end - pos)
312 		count = arg_end - pos;
313 
314 	page = (char *)__get_free_page(GFP_KERNEL);
315 	if (!page)
316 		return -ENOMEM;
317 
318 	len = 0;
319 	while (count) {
320 		int got;
321 		size_t size = min_t(size_t, PAGE_SIZE, count);
322 
323 		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
324 		if (got <= 0)
325 			break;
326 		got -= copy_to_user(buf, page, got);
327 		if (unlikely(!got)) {
328 			if (!len)
329 				len = -EFAULT;
330 			break;
331 		}
332 		pos += got;
333 		buf += got;
334 		len += got;
335 		count -= got;
336 	}
337 
338 	free_page((unsigned long)page);
339 	return len;
340 }
341 
342 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
343 				size_t count, loff_t *pos)
344 {
345 	struct mm_struct *mm;
346 	ssize_t ret;
347 
348 	mm = get_task_mm(tsk);
349 	if (!mm)
350 		return 0;
351 
352 	ret = get_mm_cmdline(mm, buf, count, pos);
353 	mmput(mm);
354 	return ret;
355 }
356 
357 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
358 				     size_t count, loff_t *pos)
359 {
360 	struct task_struct *tsk;
361 	ssize_t ret;
362 
363 	BUG_ON(*pos < 0);
364 
365 	tsk = get_proc_task(file_inode(file));
366 	if (!tsk)
367 		return -ESRCH;
368 	ret = get_task_cmdline(tsk, buf, count, pos);
369 	put_task_struct(tsk);
370 	if (ret > 0)
371 		*pos += ret;
372 	return ret;
373 }
374 
375 static const struct file_operations proc_pid_cmdline_ops = {
376 	.read	= proc_pid_cmdline_read,
377 	.llseek	= generic_file_llseek,
378 };
379 
380 #ifdef CONFIG_KALLSYMS
381 /*
382  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
383  * Returns the resolved symbol.  If that fails, simply return the address.
384  */
385 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
386 			  struct pid *pid, struct task_struct *task)
387 {
388 	unsigned long wchan;
389 	char symname[KSYM_NAME_LEN];
390 
391 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
392 		goto print0;
393 
394 	wchan = get_wchan(task);
395 	if (wchan && !lookup_symbol_name(wchan, symname)) {
396 		seq_puts(m, symname);
397 		return 0;
398 	}
399 
400 print0:
401 	seq_putc(m, '0');
402 	return 0;
403 }
404 #endif /* CONFIG_KALLSYMS */
405 
406 static int lock_trace(struct task_struct *task)
407 {
408 	int err = mutex_lock_killable(&task->signal->exec_update_mutex);
409 	if (err)
410 		return err;
411 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
412 		mutex_unlock(&task->signal->exec_update_mutex);
413 		return -EPERM;
414 	}
415 	return 0;
416 }
417 
418 static void unlock_trace(struct task_struct *task)
419 {
420 	mutex_unlock(&task->signal->exec_update_mutex);
421 }
422 
423 #ifdef CONFIG_STACKTRACE
424 
425 #define MAX_STACK_TRACE_DEPTH	64
426 
427 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
428 			  struct pid *pid, struct task_struct *task)
429 {
430 	unsigned long *entries;
431 	int err;
432 
433 	/*
434 	 * The ability to racily run the kernel stack unwinder on a running task
435 	 * and then observe the unwinder output is scary; while it is useful for
436 	 * debugging kernel issues, it can also allow an attacker to leak kernel
437 	 * stack contents.
438 	 * Doing this in a manner that is at least safe from races would require
439 	 * some work to ensure that the remote task can not be scheduled; and
440 	 * even then, this would still expose the unwinder as local attack
441 	 * surface.
442 	 * Therefore, this interface is restricted to root.
443 	 */
444 	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
445 		return -EACCES;
446 
447 	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
448 				GFP_KERNEL);
449 	if (!entries)
450 		return -ENOMEM;
451 
452 	err = lock_trace(task);
453 	if (!err) {
454 		unsigned int i, nr_entries;
455 
456 		nr_entries = stack_trace_save_tsk(task, entries,
457 						  MAX_STACK_TRACE_DEPTH, 0);
458 
459 		for (i = 0; i < nr_entries; i++) {
460 			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
461 		}
462 
463 		unlock_trace(task);
464 	}
465 	kfree(entries);
466 
467 	return err;
468 }
469 #endif
470 
471 #ifdef CONFIG_SCHED_INFO
472 /*
473  * Provides /proc/PID/schedstat
474  */
475 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
476 			      struct pid *pid, struct task_struct *task)
477 {
478 	if (unlikely(!sched_info_on()))
479 		seq_puts(m, "0 0 0\n");
480 	else
481 		seq_printf(m, "%llu %llu %lu\n",
482 		   (unsigned long long)task->se.sum_exec_runtime,
483 		   (unsigned long long)task->sched_info.run_delay,
484 		   task->sched_info.pcount);
485 
486 	return 0;
487 }
488 #endif
489 
490 #ifdef CONFIG_LATENCYTOP
491 static int lstats_show_proc(struct seq_file *m, void *v)
492 {
493 	int i;
494 	struct inode *inode = m->private;
495 	struct task_struct *task = get_proc_task(inode);
496 
497 	if (!task)
498 		return -ESRCH;
499 	seq_puts(m, "Latency Top version : v0.1\n");
500 	for (i = 0; i < LT_SAVECOUNT; i++) {
501 		struct latency_record *lr = &task->latency_record[i];
502 		if (lr->backtrace[0]) {
503 			int q;
504 			seq_printf(m, "%i %li %li",
505 				   lr->count, lr->time, lr->max);
506 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
507 				unsigned long bt = lr->backtrace[q];
508 
509 				if (!bt)
510 					break;
511 				seq_printf(m, " %ps", (void *)bt);
512 			}
513 			seq_putc(m, '\n');
514 		}
515 
516 	}
517 	put_task_struct(task);
518 	return 0;
519 }
520 
521 static int lstats_open(struct inode *inode, struct file *file)
522 {
523 	return single_open(file, lstats_show_proc, inode);
524 }
525 
526 static ssize_t lstats_write(struct file *file, const char __user *buf,
527 			    size_t count, loff_t *offs)
528 {
529 	struct task_struct *task = get_proc_task(file_inode(file));
530 
531 	if (!task)
532 		return -ESRCH;
533 	clear_tsk_latency_tracing(task);
534 	put_task_struct(task);
535 
536 	return count;
537 }
538 
539 static const struct file_operations proc_lstats_operations = {
540 	.open		= lstats_open,
541 	.read		= seq_read,
542 	.write		= lstats_write,
543 	.llseek		= seq_lseek,
544 	.release	= single_release,
545 };
546 
547 #endif
548 
549 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
550 			  struct pid *pid, struct task_struct *task)
551 {
552 	unsigned long totalpages = totalram_pages() + total_swap_pages;
553 	unsigned long points = 0;
554 
555 	points = oom_badness(task, totalpages) * 1000 / totalpages;
556 	seq_printf(m, "%lu\n", points);
557 
558 	return 0;
559 }
560 
561 struct limit_names {
562 	const char *name;
563 	const char *unit;
564 };
565 
566 static const struct limit_names lnames[RLIM_NLIMITS] = {
567 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
568 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
569 	[RLIMIT_DATA] = {"Max data size", "bytes"},
570 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
571 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
572 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
573 	[RLIMIT_NPROC] = {"Max processes", "processes"},
574 	[RLIMIT_NOFILE] = {"Max open files", "files"},
575 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
576 	[RLIMIT_AS] = {"Max address space", "bytes"},
577 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
578 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
579 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
580 	[RLIMIT_NICE] = {"Max nice priority", NULL},
581 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
582 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
583 };
584 
585 /* Display limits for a process */
586 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
587 			   struct pid *pid, struct task_struct *task)
588 {
589 	unsigned int i;
590 	unsigned long flags;
591 
592 	struct rlimit rlim[RLIM_NLIMITS];
593 
594 	if (!lock_task_sighand(task, &flags))
595 		return 0;
596 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
597 	unlock_task_sighand(task, &flags);
598 
599 	/*
600 	 * print the file header
601 	 */
602 	seq_puts(m, "Limit                     "
603 		"Soft Limit           "
604 		"Hard Limit           "
605 		"Units     \n");
606 
607 	for (i = 0; i < RLIM_NLIMITS; i++) {
608 		if (rlim[i].rlim_cur == RLIM_INFINITY)
609 			seq_printf(m, "%-25s %-20s ",
610 				   lnames[i].name, "unlimited");
611 		else
612 			seq_printf(m, "%-25s %-20lu ",
613 				   lnames[i].name, rlim[i].rlim_cur);
614 
615 		if (rlim[i].rlim_max == RLIM_INFINITY)
616 			seq_printf(m, "%-20s ", "unlimited");
617 		else
618 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
619 
620 		if (lnames[i].unit)
621 			seq_printf(m, "%-10s\n", lnames[i].unit);
622 		else
623 			seq_putc(m, '\n');
624 	}
625 
626 	return 0;
627 }
628 
629 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
630 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
631 			    struct pid *pid, struct task_struct *task)
632 {
633 	struct syscall_info info;
634 	u64 *args = &info.data.args[0];
635 	int res;
636 
637 	res = lock_trace(task);
638 	if (res)
639 		return res;
640 
641 	if (task_current_syscall(task, &info))
642 		seq_puts(m, "running\n");
643 	else if (info.data.nr < 0)
644 		seq_printf(m, "%d 0x%llx 0x%llx\n",
645 			   info.data.nr, info.sp, info.data.instruction_pointer);
646 	else
647 		seq_printf(m,
648 		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
649 		       info.data.nr,
650 		       args[0], args[1], args[2], args[3], args[4], args[5],
651 		       info.sp, info.data.instruction_pointer);
652 	unlock_trace(task);
653 
654 	return 0;
655 }
656 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
657 
658 /************************************************************************/
659 /*                       Here the fs part begins                        */
660 /************************************************************************/
661 
662 /* permission checks */
663 static int proc_fd_access_allowed(struct inode *inode)
664 {
665 	struct task_struct *task;
666 	int allowed = 0;
667 	/* Allow access to a task's file descriptors if it is us or we
668 	 * may use ptrace attach to the process and find out that
669 	 * information.
670 	 */
671 	task = get_proc_task(inode);
672 	if (task) {
673 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
674 		put_task_struct(task);
675 	}
676 	return allowed;
677 }
678 
679 int proc_setattr(struct dentry *dentry, struct iattr *attr)
680 {
681 	int error;
682 	struct inode *inode = d_inode(dentry);
683 
684 	if (attr->ia_valid & ATTR_MODE)
685 		return -EPERM;
686 
687 	error = setattr_prepare(dentry, attr);
688 	if (error)
689 		return error;
690 
691 	setattr_copy(inode, attr);
692 	mark_inode_dirty(inode);
693 	return 0;
694 }
695 
696 /*
697  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
698  * or euid/egid (for hide_pid_min=2)?
699  */
700 static bool has_pid_permissions(struct proc_fs_info *fs_info,
701 				 struct task_struct *task,
702 				 enum proc_hidepid hide_pid_min)
703 {
704 	/*
705 	 * If 'hidpid' mount option is set force a ptrace check,
706 	 * we indicate that we are using a filesystem syscall
707 	 * by passing PTRACE_MODE_READ_FSCREDS
708 	 */
709 	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
710 		return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
711 
712 	if (fs_info->hide_pid < hide_pid_min)
713 		return true;
714 	if (in_group_p(fs_info->pid_gid))
715 		return true;
716 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
717 }
718 
719 
720 static int proc_pid_permission(struct inode *inode, int mask)
721 {
722 	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
723 	struct task_struct *task;
724 	bool has_perms;
725 
726 	task = get_proc_task(inode);
727 	if (!task)
728 		return -ESRCH;
729 	has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
730 	put_task_struct(task);
731 
732 	if (!has_perms) {
733 		if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
734 			/*
735 			 * Let's make getdents(), stat(), and open()
736 			 * consistent with each other.  If a process
737 			 * may not stat() a file, it shouldn't be seen
738 			 * in procfs at all.
739 			 */
740 			return -ENOENT;
741 		}
742 
743 		return -EPERM;
744 	}
745 	return generic_permission(inode, mask);
746 }
747 
748 
749 
750 static const struct inode_operations proc_def_inode_operations = {
751 	.setattr	= proc_setattr,
752 };
753 
754 static int proc_single_show(struct seq_file *m, void *v)
755 {
756 	struct inode *inode = m->private;
757 	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
758 	struct pid *pid = proc_pid(inode);
759 	struct task_struct *task;
760 	int ret;
761 
762 	task = get_pid_task(pid, PIDTYPE_PID);
763 	if (!task)
764 		return -ESRCH;
765 
766 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
767 
768 	put_task_struct(task);
769 	return ret;
770 }
771 
772 static int proc_single_open(struct inode *inode, struct file *filp)
773 {
774 	return single_open(filp, proc_single_show, inode);
775 }
776 
777 static const struct file_operations proc_single_file_operations = {
778 	.open		= proc_single_open,
779 	.read		= seq_read,
780 	.llseek		= seq_lseek,
781 	.release	= single_release,
782 };
783 
784 
785 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
786 {
787 	struct task_struct *task = get_proc_task(inode);
788 	struct mm_struct *mm = ERR_PTR(-ESRCH);
789 
790 	if (task) {
791 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
792 		put_task_struct(task);
793 
794 		if (!IS_ERR_OR_NULL(mm)) {
795 			/* ensure this mm_struct can't be freed */
796 			mmgrab(mm);
797 			/* but do not pin its memory */
798 			mmput(mm);
799 		}
800 	}
801 
802 	return mm;
803 }
804 
805 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
806 {
807 	struct mm_struct *mm = proc_mem_open(inode, mode);
808 
809 	if (IS_ERR(mm))
810 		return PTR_ERR(mm);
811 
812 	file->private_data = mm;
813 	return 0;
814 }
815 
816 static int mem_open(struct inode *inode, struct file *file)
817 {
818 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
819 
820 	/* OK to pass negative loff_t, we can catch out-of-range */
821 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
822 
823 	return ret;
824 }
825 
826 static ssize_t mem_rw(struct file *file, char __user *buf,
827 			size_t count, loff_t *ppos, int write)
828 {
829 	struct mm_struct *mm = file->private_data;
830 	unsigned long addr = *ppos;
831 	ssize_t copied;
832 	char *page;
833 	unsigned int flags;
834 
835 	if (!mm)
836 		return 0;
837 
838 	page = (char *)__get_free_page(GFP_KERNEL);
839 	if (!page)
840 		return -ENOMEM;
841 
842 	copied = 0;
843 	if (!mmget_not_zero(mm))
844 		goto free;
845 
846 	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
847 
848 	while (count > 0) {
849 		int this_len = min_t(int, count, PAGE_SIZE);
850 
851 		if (write && copy_from_user(page, buf, this_len)) {
852 			copied = -EFAULT;
853 			break;
854 		}
855 
856 		this_len = access_remote_vm(mm, addr, page, this_len, flags);
857 		if (!this_len) {
858 			if (!copied)
859 				copied = -EIO;
860 			break;
861 		}
862 
863 		if (!write && copy_to_user(buf, page, this_len)) {
864 			copied = -EFAULT;
865 			break;
866 		}
867 
868 		buf += this_len;
869 		addr += this_len;
870 		copied += this_len;
871 		count -= this_len;
872 	}
873 	*ppos = addr;
874 
875 	mmput(mm);
876 free:
877 	free_page((unsigned long) page);
878 	return copied;
879 }
880 
881 static ssize_t mem_read(struct file *file, char __user *buf,
882 			size_t count, loff_t *ppos)
883 {
884 	return mem_rw(file, buf, count, ppos, 0);
885 }
886 
887 static ssize_t mem_write(struct file *file, const char __user *buf,
888 			 size_t count, loff_t *ppos)
889 {
890 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
891 }
892 
893 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
894 {
895 	switch (orig) {
896 	case 0:
897 		file->f_pos = offset;
898 		break;
899 	case 1:
900 		file->f_pos += offset;
901 		break;
902 	default:
903 		return -EINVAL;
904 	}
905 	force_successful_syscall_return();
906 	return file->f_pos;
907 }
908 
909 static int mem_release(struct inode *inode, struct file *file)
910 {
911 	struct mm_struct *mm = file->private_data;
912 	if (mm)
913 		mmdrop(mm);
914 	return 0;
915 }
916 
917 static const struct file_operations proc_mem_operations = {
918 	.llseek		= mem_lseek,
919 	.read		= mem_read,
920 	.write		= mem_write,
921 	.open		= mem_open,
922 	.release	= mem_release,
923 };
924 
925 static int environ_open(struct inode *inode, struct file *file)
926 {
927 	return __mem_open(inode, file, PTRACE_MODE_READ);
928 }
929 
930 static ssize_t environ_read(struct file *file, char __user *buf,
931 			size_t count, loff_t *ppos)
932 {
933 	char *page;
934 	unsigned long src = *ppos;
935 	int ret = 0;
936 	struct mm_struct *mm = file->private_data;
937 	unsigned long env_start, env_end;
938 
939 	/* Ensure the process spawned far enough to have an environment. */
940 	if (!mm || !mm->env_end)
941 		return 0;
942 
943 	page = (char *)__get_free_page(GFP_KERNEL);
944 	if (!page)
945 		return -ENOMEM;
946 
947 	ret = 0;
948 	if (!mmget_not_zero(mm))
949 		goto free;
950 
951 	spin_lock(&mm->arg_lock);
952 	env_start = mm->env_start;
953 	env_end = mm->env_end;
954 	spin_unlock(&mm->arg_lock);
955 
956 	while (count > 0) {
957 		size_t this_len, max_len;
958 		int retval;
959 
960 		if (src >= (env_end - env_start))
961 			break;
962 
963 		this_len = env_end - (env_start + src);
964 
965 		max_len = min_t(size_t, PAGE_SIZE, count);
966 		this_len = min(max_len, this_len);
967 
968 		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
969 
970 		if (retval <= 0) {
971 			ret = retval;
972 			break;
973 		}
974 
975 		if (copy_to_user(buf, page, retval)) {
976 			ret = -EFAULT;
977 			break;
978 		}
979 
980 		ret += retval;
981 		src += retval;
982 		buf += retval;
983 		count -= retval;
984 	}
985 	*ppos = src;
986 	mmput(mm);
987 
988 free:
989 	free_page((unsigned long) page);
990 	return ret;
991 }
992 
993 static const struct file_operations proc_environ_operations = {
994 	.open		= environ_open,
995 	.read		= environ_read,
996 	.llseek		= generic_file_llseek,
997 	.release	= mem_release,
998 };
999 
1000 static int auxv_open(struct inode *inode, struct file *file)
1001 {
1002 	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1003 }
1004 
1005 static ssize_t auxv_read(struct file *file, char __user *buf,
1006 			size_t count, loff_t *ppos)
1007 {
1008 	struct mm_struct *mm = file->private_data;
1009 	unsigned int nwords = 0;
1010 
1011 	if (!mm)
1012 		return 0;
1013 	do {
1014 		nwords += 2;
1015 	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1016 	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1017 				       nwords * sizeof(mm->saved_auxv[0]));
1018 }
1019 
1020 static const struct file_operations proc_auxv_operations = {
1021 	.open		= auxv_open,
1022 	.read		= auxv_read,
1023 	.llseek		= generic_file_llseek,
1024 	.release	= mem_release,
1025 };
1026 
1027 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1028 			    loff_t *ppos)
1029 {
1030 	struct task_struct *task = get_proc_task(file_inode(file));
1031 	char buffer[PROC_NUMBUF];
1032 	int oom_adj = OOM_ADJUST_MIN;
1033 	size_t len;
1034 
1035 	if (!task)
1036 		return -ESRCH;
1037 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1038 		oom_adj = OOM_ADJUST_MAX;
1039 	else
1040 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1041 			  OOM_SCORE_ADJ_MAX;
1042 	put_task_struct(task);
1043 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1044 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1045 }
1046 
1047 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1048 {
1049 	static DEFINE_MUTEX(oom_adj_mutex);
1050 	struct mm_struct *mm = NULL;
1051 	struct task_struct *task;
1052 	int err = 0;
1053 
1054 	task = get_proc_task(file_inode(file));
1055 	if (!task)
1056 		return -ESRCH;
1057 
1058 	mutex_lock(&oom_adj_mutex);
1059 	if (legacy) {
1060 		if (oom_adj < task->signal->oom_score_adj &&
1061 				!capable(CAP_SYS_RESOURCE)) {
1062 			err = -EACCES;
1063 			goto err_unlock;
1064 		}
1065 		/*
1066 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1067 		 * /proc/pid/oom_score_adj instead.
1068 		 */
1069 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1070 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1071 			  task_pid_nr(task));
1072 	} else {
1073 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1074 				!capable(CAP_SYS_RESOURCE)) {
1075 			err = -EACCES;
1076 			goto err_unlock;
1077 		}
1078 	}
1079 
1080 	/*
1081 	 * Make sure we will check other processes sharing the mm if this is
1082 	 * not vfrok which wants its own oom_score_adj.
1083 	 * pin the mm so it doesn't go away and get reused after task_unlock
1084 	 */
1085 	if (!task->vfork_done) {
1086 		struct task_struct *p = find_lock_task_mm(task);
1087 
1088 		if (p) {
1089 			if (atomic_read(&p->mm->mm_users) > 1) {
1090 				mm = p->mm;
1091 				mmgrab(mm);
1092 			}
1093 			task_unlock(p);
1094 		}
1095 	}
1096 
1097 	task->signal->oom_score_adj = oom_adj;
1098 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1099 		task->signal->oom_score_adj_min = (short)oom_adj;
1100 	trace_oom_score_adj_update(task);
1101 
1102 	if (mm) {
1103 		struct task_struct *p;
1104 
1105 		rcu_read_lock();
1106 		for_each_process(p) {
1107 			if (same_thread_group(task, p))
1108 				continue;
1109 
1110 			/* do not touch kernel threads or the global init */
1111 			if (p->flags & PF_KTHREAD || is_global_init(p))
1112 				continue;
1113 
1114 			task_lock(p);
1115 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1116 				p->signal->oom_score_adj = oom_adj;
1117 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1118 					p->signal->oom_score_adj_min = (short)oom_adj;
1119 			}
1120 			task_unlock(p);
1121 		}
1122 		rcu_read_unlock();
1123 		mmdrop(mm);
1124 	}
1125 err_unlock:
1126 	mutex_unlock(&oom_adj_mutex);
1127 	put_task_struct(task);
1128 	return err;
1129 }
1130 
1131 /*
1132  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1133  * kernels.  The effective policy is defined by oom_score_adj, which has a
1134  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1135  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1136  * Processes that become oom disabled via oom_adj will still be oom disabled
1137  * with this implementation.
1138  *
1139  * oom_adj cannot be removed since existing userspace binaries use it.
1140  */
1141 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1142 			     size_t count, loff_t *ppos)
1143 {
1144 	char buffer[PROC_NUMBUF];
1145 	int oom_adj;
1146 	int err;
1147 
1148 	memset(buffer, 0, sizeof(buffer));
1149 	if (count > sizeof(buffer) - 1)
1150 		count = sizeof(buffer) - 1;
1151 	if (copy_from_user(buffer, buf, count)) {
1152 		err = -EFAULT;
1153 		goto out;
1154 	}
1155 
1156 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1157 	if (err)
1158 		goto out;
1159 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1160 	     oom_adj != OOM_DISABLE) {
1161 		err = -EINVAL;
1162 		goto out;
1163 	}
1164 
1165 	/*
1166 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1167 	 * value is always attainable.
1168 	 */
1169 	if (oom_adj == OOM_ADJUST_MAX)
1170 		oom_adj = OOM_SCORE_ADJ_MAX;
1171 	else
1172 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1173 
1174 	err = __set_oom_adj(file, oom_adj, true);
1175 out:
1176 	return err < 0 ? err : count;
1177 }
1178 
1179 static const struct file_operations proc_oom_adj_operations = {
1180 	.read		= oom_adj_read,
1181 	.write		= oom_adj_write,
1182 	.llseek		= generic_file_llseek,
1183 };
1184 
1185 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1186 					size_t count, loff_t *ppos)
1187 {
1188 	struct task_struct *task = get_proc_task(file_inode(file));
1189 	char buffer[PROC_NUMBUF];
1190 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1191 	size_t len;
1192 
1193 	if (!task)
1194 		return -ESRCH;
1195 	oom_score_adj = task->signal->oom_score_adj;
1196 	put_task_struct(task);
1197 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1198 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1199 }
1200 
1201 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1202 					size_t count, loff_t *ppos)
1203 {
1204 	char buffer[PROC_NUMBUF];
1205 	int oom_score_adj;
1206 	int err;
1207 
1208 	memset(buffer, 0, sizeof(buffer));
1209 	if (count > sizeof(buffer) - 1)
1210 		count = sizeof(buffer) - 1;
1211 	if (copy_from_user(buffer, buf, count)) {
1212 		err = -EFAULT;
1213 		goto out;
1214 	}
1215 
1216 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1217 	if (err)
1218 		goto out;
1219 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1220 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1221 		err = -EINVAL;
1222 		goto out;
1223 	}
1224 
1225 	err = __set_oom_adj(file, oom_score_adj, false);
1226 out:
1227 	return err < 0 ? err : count;
1228 }
1229 
1230 static const struct file_operations proc_oom_score_adj_operations = {
1231 	.read		= oom_score_adj_read,
1232 	.write		= oom_score_adj_write,
1233 	.llseek		= default_llseek,
1234 };
1235 
1236 #ifdef CONFIG_AUDIT
1237 #define TMPBUFLEN 11
1238 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1239 				  size_t count, loff_t *ppos)
1240 {
1241 	struct inode * inode = file_inode(file);
1242 	struct task_struct *task = get_proc_task(inode);
1243 	ssize_t length;
1244 	char tmpbuf[TMPBUFLEN];
1245 
1246 	if (!task)
1247 		return -ESRCH;
1248 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1249 			   from_kuid(file->f_cred->user_ns,
1250 				     audit_get_loginuid(task)));
1251 	put_task_struct(task);
1252 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1253 }
1254 
1255 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1256 				   size_t count, loff_t *ppos)
1257 {
1258 	struct inode * inode = file_inode(file);
1259 	uid_t loginuid;
1260 	kuid_t kloginuid;
1261 	int rv;
1262 
1263 	rcu_read_lock();
1264 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1265 		rcu_read_unlock();
1266 		return -EPERM;
1267 	}
1268 	rcu_read_unlock();
1269 
1270 	if (*ppos != 0) {
1271 		/* No partial writes. */
1272 		return -EINVAL;
1273 	}
1274 
1275 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1276 	if (rv < 0)
1277 		return rv;
1278 
1279 	/* is userspace tring to explicitly UNSET the loginuid? */
1280 	if (loginuid == AUDIT_UID_UNSET) {
1281 		kloginuid = INVALID_UID;
1282 	} else {
1283 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1284 		if (!uid_valid(kloginuid))
1285 			return -EINVAL;
1286 	}
1287 
1288 	rv = audit_set_loginuid(kloginuid);
1289 	if (rv < 0)
1290 		return rv;
1291 	return count;
1292 }
1293 
1294 static const struct file_operations proc_loginuid_operations = {
1295 	.read		= proc_loginuid_read,
1296 	.write		= proc_loginuid_write,
1297 	.llseek		= generic_file_llseek,
1298 };
1299 
1300 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1301 				  size_t count, loff_t *ppos)
1302 {
1303 	struct inode * inode = file_inode(file);
1304 	struct task_struct *task = get_proc_task(inode);
1305 	ssize_t length;
1306 	char tmpbuf[TMPBUFLEN];
1307 
1308 	if (!task)
1309 		return -ESRCH;
1310 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1311 				audit_get_sessionid(task));
1312 	put_task_struct(task);
1313 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1314 }
1315 
1316 static const struct file_operations proc_sessionid_operations = {
1317 	.read		= proc_sessionid_read,
1318 	.llseek		= generic_file_llseek,
1319 };
1320 #endif
1321 
1322 #ifdef CONFIG_FAULT_INJECTION
1323 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1324 				      size_t count, loff_t *ppos)
1325 {
1326 	struct task_struct *task = get_proc_task(file_inode(file));
1327 	char buffer[PROC_NUMBUF];
1328 	size_t len;
1329 	int make_it_fail;
1330 
1331 	if (!task)
1332 		return -ESRCH;
1333 	make_it_fail = task->make_it_fail;
1334 	put_task_struct(task);
1335 
1336 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1337 
1338 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1339 }
1340 
1341 static ssize_t proc_fault_inject_write(struct file * file,
1342 			const char __user * buf, size_t count, loff_t *ppos)
1343 {
1344 	struct task_struct *task;
1345 	char buffer[PROC_NUMBUF];
1346 	int make_it_fail;
1347 	int rv;
1348 
1349 	if (!capable(CAP_SYS_RESOURCE))
1350 		return -EPERM;
1351 	memset(buffer, 0, sizeof(buffer));
1352 	if (count > sizeof(buffer) - 1)
1353 		count = sizeof(buffer) - 1;
1354 	if (copy_from_user(buffer, buf, count))
1355 		return -EFAULT;
1356 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1357 	if (rv < 0)
1358 		return rv;
1359 	if (make_it_fail < 0 || make_it_fail > 1)
1360 		return -EINVAL;
1361 
1362 	task = get_proc_task(file_inode(file));
1363 	if (!task)
1364 		return -ESRCH;
1365 	task->make_it_fail = make_it_fail;
1366 	put_task_struct(task);
1367 
1368 	return count;
1369 }
1370 
1371 static const struct file_operations proc_fault_inject_operations = {
1372 	.read		= proc_fault_inject_read,
1373 	.write		= proc_fault_inject_write,
1374 	.llseek		= generic_file_llseek,
1375 };
1376 
1377 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1378 				   size_t count, loff_t *ppos)
1379 {
1380 	struct task_struct *task;
1381 	int err;
1382 	unsigned int n;
1383 
1384 	err = kstrtouint_from_user(buf, count, 0, &n);
1385 	if (err)
1386 		return err;
1387 
1388 	task = get_proc_task(file_inode(file));
1389 	if (!task)
1390 		return -ESRCH;
1391 	task->fail_nth = n;
1392 	put_task_struct(task);
1393 
1394 	return count;
1395 }
1396 
1397 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1398 				  size_t count, loff_t *ppos)
1399 {
1400 	struct task_struct *task;
1401 	char numbuf[PROC_NUMBUF];
1402 	ssize_t len;
1403 
1404 	task = get_proc_task(file_inode(file));
1405 	if (!task)
1406 		return -ESRCH;
1407 	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1408 	put_task_struct(task);
1409 	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1410 }
1411 
1412 static const struct file_operations proc_fail_nth_operations = {
1413 	.read		= proc_fail_nth_read,
1414 	.write		= proc_fail_nth_write,
1415 };
1416 #endif
1417 
1418 
1419 #ifdef CONFIG_SCHED_DEBUG
1420 /*
1421  * Print out various scheduling related per-task fields:
1422  */
1423 static int sched_show(struct seq_file *m, void *v)
1424 {
1425 	struct inode *inode = m->private;
1426 	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1427 	struct task_struct *p;
1428 
1429 	p = get_proc_task(inode);
1430 	if (!p)
1431 		return -ESRCH;
1432 	proc_sched_show_task(p, ns, m);
1433 
1434 	put_task_struct(p);
1435 
1436 	return 0;
1437 }
1438 
1439 static ssize_t
1440 sched_write(struct file *file, const char __user *buf,
1441 	    size_t count, loff_t *offset)
1442 {
1443 	struct inode *inode = file_inode(file);
1444 	struct task_struct *p;
1445 
1446 	p = get_proc_task(inode);
1447 	if (!p)
1448 		return -ESRCH;
1449 	proc_sched_set_task(p);
1450 
1451 	put_task_struct(p);
1452 
1453 	return count;
1454 }
1455 
1456 static int sched_open(struct inode *inode, struct file *filp)
1457 {
1458 	return single_open(filp, sched_show, inode);
1459 }
1460 
1461 static const struct file_operations proc_pid_sched_operations = {
1462 	.open		= sched_open,
1463 	.read		= seq_read,
1464 	.write		= sched_write,
1465 	.llseek		= seq_lseek,
1466 	.release	= single_release,
1467 };
1468 
1469 #endif
1470 
1471 #ifdef CONFIG_SCHED_AUTOGROUP
1472 /*
1473  * Print out autogroup related information:
1474  */
1475 static int sched_autogroup_show(struct seq_file *m, void *v)
1476 {
1477 	struct inode *inode = m->private;
1478 	struct task_struct *p;
1479 
1480 	p = get_proc_task(inode);
1481 	if (!p)
1482 		return -ESRCH;
1483 	proc_sched_autogroup_show_task(p, m);
1484 
1485 	put_task_struct(p);
1486 
1487 	return 0;
1488 }
1489 
1490 static ssize_t
1491 sched_autogroup_write(struct file *file, const char __user *buf,
1492 	    size_t count, loff_t *offset)
1493 {
1494 	struct inode *inode = file_inode(file);
1495 	struct task_struct *p;
1496 	char buffer[PROC_NUMBUF];
1497 	int nice;
1498 	int err;
1499 
1500 	memset(buffer, 0, sizeof(buffer));
1501 	if (count > sizeof(buffer) - 1)
1502 		count = sizeof(buffer) - 1;
1503 	if (copy_from_user(buffer, buf, count))
1504 		return -EFAULT;
1505 
1506 	err = kstrtoint(strstrip(buffer), 0, &nice);
1507 	if (err < 0)
1508 		return err;
1509 
1510 	p = get_proc_task(inode);
1511 	if (!p)
1512 		return -ESRCH;
1513 
1514 	err = proc_sched_autogroup_set_nice(p, nice);
1515 	if (err)
1516 		count = err;
1517 
1518 	put_task_struct(p);
1519 
1520 	return count;
1521 }
1522 
1523 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1524 {
1525 	int ret;
1526 
1527 	ret = single_open(filp, sched_autogroup_show, NULL);
1528 	if (!ret) {
1529 		struct seq_file *m = filp->private_data;
1530 
1531 		m->private = inode;
1532 	}
1533 	return ret;
1534 }
1535 
1536 static const struct file_operations proc_pid_sched_autogroup_operations = {
1537 	.open		= sched_autogroup_open,
1538 	.read		= seq_read,
1539 	.write		= sched_autogroup_write,
1540 	.llseek		= seq_lseek,
1541 	.release	= single_release,
1542 };
1543 
1544 #endif /* CONFIG_SCHED_AUTOGROUP */
1545 
1546 #ifdef CONFIG_TIME_NS
1547 static int timens_offsets_show(struct seq_file *m, void *v)
1548 {
1549 	struct task_struct *p;
1550 
1551 	p = get_proc_task(file_inode(m->file));
1552 	if (!p)
1553 		return -ESRCH;
1554 	proc_timens_show_offsets(p, m);
1555 
1556 	put_task_struct(p);
1557 
1558 	return 0;
1559 }
1560 
1561 static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1562 				    size_t count, loff_t *ppos)
1563 {
1564 	struct inode *inode = file_inode(file);
1565 	struct proc_timens_offset offsets[2];
1566 	char *kbuf = NULL, *pos, *next_line;
1567 	struct task_struct *p;
1568 	int ret, noffsets;
1569 
1570 	/* Only allow < page size writes at the beginning of the file */
1571 	if ((*ppos != 0) || (count >= PAGE_SIZE))
1572 		return -EINVAL;
1573 
1574 	/* Slurp in the user data */
1575 	kbuf = memdup_user_nul(buf, count);
1576 	if (IS_ERR(kbuf))
1577 		return PTR_ERR(kbuf);
1578 
1579 	/* Parse the user data */
1580 	ret = -EINVAL;
1581 	noffsets = 0;
1582 	for (pos = kbuf; pos; pos = next_line) {
1583 		struct proc_timens_offset *off = &offsets[noffsets];
1584 		char clock[10];
1585 		int err;
1586 
1587 		/* Find the end of line and ensure we don't look past it */
1588 		next_line = strchr(pos, '\n');
1589 		if (next_line) {
1590 			*next_line = '\0';
1591 			next_line++;
1592 			if (*next_line == '\0')
1593 				next_line = NULL;
1594 		}
1595 
1596 		err = sscanf(pos, "%9s %lld %lu", clock,
1597 				&off->val.tv_sec, &off->val.tv_nsec);
1598 		if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1599 			goto out;
1600 
1601 		clock[sizeof(clock) - 1] = 0;
1602 		if (strcmp(clock, "monotonic") == 0 ||
1603 		    strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1604 			off->clockid = CLOCK_MONOTONIC;
1605 		else if (strcmp(clock, "boottime") == 0 ||
1606 			 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1607 			off->clockid = CLOCK_BOOTTIME;
1608 		else
1609 			goto out;
1610 
1611 		noffsets++;
1612 		if (noffsets == ARRAY_SIZE(offsets)) {
1613 			if (next_line)
1614 				count = next_line - kbuf;
1615 			break;
1616 		}
1617 	}
1618 
1619 	ret = -ESRCH;
1620 	p = get_proc_task(inode);
1621 	if (!p)
1622 		goto out;
1623 	ret = proc_timens_set_offset(file, p, offsets, noffsets);
1624 	put_task_struct(p);
1625 	if (ret)
1626 		goto out;
1627 
1628 	ret = count;
1629 out:
1630 	kfree(kbuf);
1631 	return ret;
1632 }
1633 
1634 static int timens_offsets_open(struct inode *inode, struct file *filp)
1635 {
1636 	return single_open(filp, timens_offsets_show, inode);
1637 }
1638 
1639 static const struct file_operations proc_timens_offsets_operations = {
1640 	.open		= timens_offsets_open,
1641 	.read		= seq_read,
1642 	.write		= timens_offsets_write,
1643 	.llseek		= seq_lseek,
1644 	.release	= single_release,
1645 };
1646 #endif /* CONFIG_TIME_NS */
1647 
1648 static ssize_t comm_write(struct file *file, const char __user *buf,
1649 				size_t count, loff_t *offset)
1650 {
1651 	struct inode *inode = file_inode(file);
1652 	struct task_struct *p;
1653 	char buffer[TASK_COMM_LEN];
1654 	const size_t maxlen = sizeof(buffer) - 1;
1655 
1656 	memset(buffer, 0, sizeof(buffer));
1657 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1658 		return -EFAULT;
1659 
1660 	p = get_proc_task(inode);
1661 	if (!p)
1662 		return -ESRCH;
1663 
1664 	if (same_thread_group(current, p))
1665 		set_task_comm(p, buffer);
1666 	else
1667 		count = -EINVAL;
1668 
1669 	put_task_struct(p);
1670 
1671 	return count;
1672 }
1673 
1674 static int comm_show(struct seq_file *m, void *v)
1675 {
1676 	struct inode *inode = m->private;
1677 	struct task_struct *p;
1678 
1679 	p = get_proc_task(inode);
1680 	if (!p)
1681 		return -ESRCH;
1682 
1683 	proc_task_name(m, p, false);
1684 	seq_putc(m, '\n');
1685 
1686 	put_task_struct(p);
1687 
1688 	return 0;
1689 }
1690 
1691 static int comm_open(struct inode *inode, struct file *filp)
1692 {
1693 	return single_open(filp, comm_show, inode);
1694 }
1695 
1696 static const struct file_operations proc_pid_set_comm_operations = {
1697 	.open		= comm_open,
1698 	.read		= seq_read,
1699 	.write		= comm_write,
1700 	.llseek		= seq_lseek,
1701 	.release	= single_release,
1702 };
1703 
1704 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1705 {
1706 	struct task_struct *task;
1707 	struct file *exe_file;
1708 
1709 	task = get_proc_task(d_inode(dentry));
1710 	if (!task)
1711 		return -ENOENT;
1712 	exe_file = get_task_exe_file(task);
1713 	put_task_struct(task);
1714 	if (exe_file) {
1715 		*exe_path = exe_file->f_path;
1716 		path_get(&exe_file->f_path);
1717 		fput(exe_file);
1718 		return 0;
1719 	} else
1720 		return -ENOENT;
1721 }
1722 
1723 static const char *proc_pid_get_link(struct dentry *dentry,
1724 				     struct inode *inode,
1725 				     struct delayed_call *done)
1726 {
1727 	struct path path;
1728 	int error = -EACCES;
1729 
1730 	if (!dentry)
1731 		return ERR_PTR(-ECHILD);
1732 
1733 	/* Are we allowed to snoop on the tasks file descriptors? */
1734 	if (!proc_fd_access_allowed(inode))
1735 		goto out;
1736 
1737 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1738 	if (error)
1739 		goto out;
1740 
1741 	error = nd_jump_link(&path);
1742 out:
1743 	return ERR_PTR(error);
1744 }
1745 
1746 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1747 {
1748 	char *tmp = (char *)__get_free_page(GFP_KERNEL);
1749 	char *pathname;
1750 	int len;
1751 
1752 	if (!tmp)
1753 		return -ENOMEM;
1754 
1755 	pathname = d_path(path, tmp, PAGE_SIZE);
1756 	len = PTR_ERR(pathname);
1757 	if (IS_ERR(pathname))
1758 		goto out;
1759 	len = tmp + PAGE_SIZE - 1 - pathname;
1760 
1761 	if (len > buflen)
1762 		len = buflen;
1763 	if (copy_to_user(buffer, pathname, len))
1764 		len = -EFAULT;
1765  out:
1766 	free_page((unsigned long)tmp);
1767 	return len;
1768 }
1769 
1770 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1771 {
1772 	int error = -EACCES;
1773 	struct inode *inode = d_inode(dentry);
1774 	struct path path;
1775 
1776 	/* Are we allowed to snoop on the tasks file descriptors? */
1777 	if (!proc_fd_access_allowed(inode))
1778 		goto out;
1779 
1780 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1781 	if (error)
1782 		goto out;
1783 
1784 	error = do_proc_readlink(&path, buffer, buflen);
1785 	path_put(&path);
1786 out:
1787 	return error;
1788 }
1789 
1790 const struct inode_operations proc_pid_link_inode_operations = {
1791 	.readlink	= proc_pid_readlink,
1792 	.get_link	= proc_pid_get_link,
1793 	.setattr	= proc_setattr,
1794 };
1795 
1796 
1797 /* building an inode */
1798 
1799 void task_dump_owner(struct task_struct *task, umode_t mode,
1800 		     kuid_t *ruid, kgid_t *rgid)
1801 {
1802 	/* Depending on the state of dumpable compute who should own a
1803 	 * proc file for a task.
1804 	 */
1805 	const struct cred *cred;
1806 	kuid_t uid;
1807 	kgid_t gid;
1808 
1809 	if (unlikely(task->flags & PF_KTHREAD)) {
1810 		*ruid = GLOBAL_ROOT_UID;
1811 		*rgid = GLOBAL_ROOT_GID;
1812 		return;
1813 	}
1814 
1815 	/* Default to the tasks effective ownership */
1816 	rcu_read_lock();
1817 	cred = __task_cred(task);
1818 	uid = cred->euid;
1819 	gid = cred->egid;
1820 	rcu_read_unlock();
1821 
1822 	/*
1823 	 * Before the /proc/pid/status file was created the only way to read
1824 	 * the effective uid of a /process was to stat /proc/pid.  Reading
1825 	 * /proc/pid/status is slow enough that procps and other packages
1826 	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1827 	 * made this apply to all per process world readable and executable
1828 	 * directories.
1829 	 */
1830 	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1831 		struct mm_struct *mm;
1832 		task_lock(task);
1833 		mm = task->mm;
1834 		/* Make non-dumpable tasks owned by some root */
1835 		if (mm) {
1836 			if (get_dumpable(mm) != SUID_DUMP_USER) {
1837 				struct user_namespace *user_ns = mm->user_ns;
1838 
1839 				uid = make_kuid(user_ns, 0);
1840 				if (!uid_valid(uid))
1841 					uid = GLOBAL_ROOT_UID;
1842 
1843 				gid = make_kgid(user_ns, 0);
1844 				if (!gid_valid(gid))
1845 					gid = GLOBAL_ROOT_GID;
1846 			}
1847 		} else {
1848 			uid = GLOBAL_ROOT_UID;
1849 			gid = GLOBAL_ROOT_GID;
1850 		}
1851 		task_unlock(task);
1852 	}
1853 	*ruid = uid;
1854 	*rgid = gid;
1855 }
1856 
1857 void proc_pid_evict_inode(struct proc_inode *ei)
1858 {
1859 	struct pid *pid = ei->pid;
1860 
1861 	if (S_ISDIR(ei->vfs_inode.i_mode)) {
1862 		spin_lock(&pid->lock);
1863 		hlist_del_init_rcu(&ei->sibling_inodes);
1864 		spin_unlock(&pid->lock);
1865 	}
1866 
1867 	put_pid(pid);
1868 }
1869 
1870 struct inode *proc_pid_make_inode(struct super_block * sb,
1871 				  struct task_struct *task, umode_t mode)
1872 {
1873 	struct inode * inode;
1874 	struct proc_inode *ei;
1875 	struct pid *pid;
1876 
1877 	/* We need a new inode */
1878 
1879 	inode = new_inode(sb);
1880 	if (!inode)
1881 		goto out;
1882 
1883 	/* Common stuff */
1884 	ei = PROC_I(inode);
1885 	inode->i_mode = mode;
1886 	inode->i_ino = get_next_ino();
1887 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1888 	inode->i_op = &proc_def_inode_operations;
1889 
1890 	/*
1891 	 * grab the reference to task.
1892 	 */
1893 	pid = get_task_pid(task, PIDTYPE_PID);
1894 	if (!pid)
1895 		goto out_unlock;
1896 
1897 	/* Let the pid remember us for quick removal */
1898 	ei->pid = pid;
1899 	if (S_ISDIR(mode)) {
1900 		spin_lock(&pid->lock);
1901 		hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1902 		spin_unlock(&pid->lock);
1903 	}
1904 
1905 	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1906 	security_task_to_inode(task, inode);
1907 
1908 out:
1909 	return inode;
1910 
1911 out_unlock:
1912 	iput(inode);
1913 	return NULL;
1914 }
1915 
1916 int pid_getattr(const struct path *path, struct kstat *stat,
1917 		u32 request_mask, unsigned int query_flags)
1918 {
1919 	struct inode *inode = d_inode(path->dentry);
1920 	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
1921 	struct task_struct *task;
1922 
1923 	generic_fillattr(inode, stat);
1924 
1925 	stat->uid = GLOBAL_ROOT_UID;
1926 	stat->gid = GLOBAL_ROOT_GID;
1927 	rcu_read_lock();
1928 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1929 	if (task) {
1930 		if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
1931 			rcu_read_unlock();
1932 			/*
1933 			 * This doesn't prevent learning whether PID exists,
1934 			 * it only makes getattr() consistent with readdir().
1935 			 */
1936 			return -ENOENT;
1937 		}
1938 		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1939 	}
1940 	rcu_read_unlock();
1941 	return 0;
1942 }
1943 
1944 /* dentry stuff */
1945 
1946 /*
1947  * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1948  */
1949 void pid_update_inode(struct task_struct *task, struct inode *inode)
1950 {
1951 	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1952 
1953 	inode->i_mode &= ~(S_ISUID | S_ISGID);
1954 	security_task_to_inode(task, inode);
1955 }
1956 
1957 /*
1958  * Rewrite the inode's ownerships here because the owning task may have
1959  * performed a setuid(), etc.
1960  *
1961  */
1962 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1963 {
1964 	struct inode *inode;
1965 	struct task_struct *task;
1966 
1967 	if (flags & LOOKUP_RCU)
1968 		return -ECHILD;
1969 
1970 	inode = d_inode(dentry);
1971 	task = get_proc_task(inode);
1972 
1973 	if (task) {
1974 		pid_update_inode(task, inode);
1975 		put_task_struct(task);
1976 		return 1;
1977 	}
1978 	return 0;
1979 }
1980 
1981 static inline bool proc_inode_is_dead(struct inode *inode)
1982 {
1983 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1984 }
1985 
1986 int pid_delete_dentry(const struct dentry *dentry)
1987 {
1988 	/* Is the task we represent dead?
1989 	 * If so, then don't put the dentry on the lru list,
1990 	 * kill it immediately.
1991 	 */
1992 	return proc_inode_is_dead(d_inode(dentry));
1993 }
1994 
1995 const struct dentry_operations pid_dentry_operations =
1996 {
1997 	.d_revalidate	= pid_revalidate,
1998 	.d_delete	= pid_delete_dentry,
1999 };
2000 
2001 /* Lookups */
2002 
2003 /*
2004  * Fill a directory entry.
2005  *
2006  * If possible create the dcache entry and derive our inode number and
2007  * file type from dcache entry.
2008  *
2009  * Since all of the proc inode numbers are dynamically generated, the inode
2010  * numbers do not exist until the inode is cache.  This means creating the
2011  * the dcache entry in readdir is necessary to keep the inode numbers
2012  * reported by readdir in sync with the inode numbers reported
2013  * by stat.
2014  */
2015 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2016 	const char *name, unsigned int len,
2017 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
2018 {
2019 	struct dentry *child, *dir = file->f_path.dentry;
2020 	struct qstr qname = QSTR_INIT(name, len);
2021 	struct inode *inode;
2022 	unsigned type = DT_UNKNOWN;
2023 	ino_t ino = 1;
2024 
2025 	child = d_hash_and_lookup(dir, &qname);
2026 	if (!child) {
2027 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2028 		child = d_alloc_parallel(dir, &qname, &wq);
2029 		if (IS_ERR(child))
2030 			goto end_instantiate;
2031 		if (d_in_lookup(child)) {
2032 			struct dentry *res;
2033 			res = instantiate(child, task, ptr);
2034 			d_lookup_done(child);
2035 			if (unlikely(res)) {
2036 				dput(child);
2037 				child = res;
2038 				if (IS_ERR(child))
2039 					goto end_instantiate;
2040 			}
2041 		}
2042 	}
2043 	inode = d_inode(child);
2044 	ino = inode->i_ino;
2045 	type = inode->i_mode >> 12;
2046 	dput(child);
2047 end_instantiate:
2048 	return dir_emit(ctx, name, len, ino, type);
2049 }
2050 
2051 /*
2052  * dname_to_vma_addr - maps a dentry name into two unsigned longs
2053  * which represent vma start and end addresses.
2054  */
2055 static int dname_to_vma_addr(struct dentry *dentry,
2056 			     unsigned long *start, unsigned long *end)
2057 {
2058 	const char *str = dentry->d_name.name;
2059 	unsigned long long sval, eval;
2060 	unsigned int len;
2061 
2062 	if (str[0] == '0' && str[1] != '-')
2063 		return -EINVAL;
2064 	len = _parse_integer(str, 16, &sval);
2065 	if (len & KSTRTOX_OVERFLOW)
2066 		return -EINVAL;
2067 	if (sval != (unsigned long)sval)
2068 		return -EINVAL;
2069 	str += len;
2070 
2071 	if (*str != '-')
2072 		return -EINVAL;
2073 	str++;
2074 
2075 	if (str[0] == '0' && str[1])
2076 		return -EINVAL;
2077 	len = _parse_integer(str, 16, &eval);
2078 	if (len & KSTRTOX_OVERFLOW)
2079 		return -EINVAL;
2080 	if (eval != (unsigned long)eval)
2081 		return -EINVAL;
2082 	str += len;
2083 
2084 	if (*str != '\0')
2085 		return -EINVAL;
2086 
2087 	*start = sval;
2088 	*end = eval;
2089 
2090 	return 0;
2091 }
2092 
2093 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2094 {
2095 	unsigned long vm_start, vm_end;
2096 	bool exact_vma_exists = false;
2097 	struct mm_struct *mm = NULL;
2098 	struct task_struct *task;
2099 	struct inode *inode;
2100 	int status = 0;
2101 
2102 	if (flags & LOOKUP_RCU)
2103 		return -ECHILD;
2104 
2105 	inode = d_inode(dentry);
2106 	task = get_proc_task(inode);
2107 	if (!task)
2108 		goto out_notask;
2109 
2110 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2111 	if (IS_ERR_OR_NULL(mm))
2112 		goto out;
2113 
2114 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2115 		status = mmap_read_lock_killable(mm);
2116 		if (!status) {
2117 			exact_vma_exists = !!find_exact_vma(mm, vm_start,
2118 							    vm_end);
2119 			mmap_read_unlock(mm);
2120 		}
2121 	}
2122 
2123 	mmput(mm);
2124 
2125 	if (exact_vma_exists) {
2126 		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2127 
2128 		security_task_to_inode(task, inode);
2129 		status = 1;
2130 	}
2131 
2132 out:
2133 	put_task_struct(task);
2134 
2135 out_notask:
2136 	return status;
2137 }
2138 
2139 static const struct dentry_operations tid_map_files_dentry_operations = {
2140 	.d_revalidate	= map_files_d_revalidate,
2141 	.d_delete	= pid_delete_dentry,
2142 };
2143 
2144 static int map_files_get_link(struct dentry *dentry, struct path *path)
2145 {
2146 	unsigned long vm_start, vm_end;
2147 	struct vm_area_struct *vma;
2148 	struct task_struct *task;
2149 	struct mm_struct *mm;
2150 	int rc;
2151 
2152 	rc = -ENOENT;
2153 	task = get_proc_task(d_inode(dentry));
2154 	if (!task)
2155 		goto out;
2156 
2157 	mm = get_task_mm(task);
2158 	put_task_struct(task);
2159 	if (!mm)
2160 		goto out;
2161 
2162 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2163 	if (rc)
2164 		goto out_mmput;
2165 
2166 	rc = mmap_read_lock_killable(mm);
2167 	if (rc)
2168 		goto out_mmput;
2169 
2170 	rc = -ENOENT;
2171 	vma = find_exact_vma(mm, vm_start, vm_end);
2172 	if (vma && vma->vm_file) {
2173 		*path = vma->vm_file->f_path;
2174 		path_get(path);
2175 		rc = 0;
2176 	}
2177 	mmap_read_unlock(mm);
2178 
2179 out_mmput:
2180 	mmput(mm);
2181 out:
2182 	return rc;
2183 }
2184 
2185 struct map_files_info {
2186 	unsigned long	start;
2187 	unsigned long	end;
2188 	fmode_t		mode;
2189 };
2190 
2191 /*
2192  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2193  * symlinks may be used to bypass permissions on ancestor directories in the
2194  * path to the file in question.
2195  */
2196 static const char *
2197 proc_map_files_get_link(struct dentry *dentry,
2198 			struct inode *inode,
2199 		        struct delayed_call *done)
2200 {
2201 	if (!capable(CAP_SYS_ADMIN))
2202 		return ERR_PTR(-EPERM);
2203 
2204 	return proc_pid_get_link(dentry, inode, done);
2205 }
2206 
2207 /*
2208  * Identical to proc_pid_link_inode_operations except for get_link()
2209  */
2210 static const struct inode_operations proc_map_files_link_inode_operations = {
2211 	.readlink	= proc_pid_readlink,
2212 	.get_link	= proc_map_files_get_link,
2213 	.setattr	= proc_setattr,
2214 };
2215 
2216 static struct dentry *
2217 proc_map_files_instantiate(struct dentry *dentry,
2218 			   struct task_struct *task, const void *ptr)
2219 {
2220 	fmode_t mode = (fmode_t)(unsigned long)ptr;
2221 	struct proc_inode *ei;
2222 	struct inode *inode;
2223 
2224 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2225 				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2226 				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2227 	if (!inode)
2228 		return ERR_PTR(-ENOENT);
2229 
2230 	ei = PROC_I(inode);
2231 	ei->op.proc_get_link = map_files_get_link;
2232 
2233 	inode->i_op = &proc_map_files_link_inode_operations;
2234 	inode->i_size = 64;
2235 
2236 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2237 	return d_splice_alias(inode, dentry);
2238 }
2239 
2240 static struct dentry *proc_map_files_lookup(struct inode *dir,
2241 		struct dentry *dentry, unsigned int flags)
2242 {
2243 	unsigned long vm_start, vm_end;
2244 	struct vm_area_struct *vma;
2245 	struct task_struct *task;
2246 	struct dentry *result;
2247 	struct mm_struct *mm;
2248 
2249 	result = ERR_PTR(-ENOENT);
2250 	task = get_proc_task(dir);
2251 	if (!task)
2252 		goto out;
2253 
2254 	result = ERR_PTR(-EACCES);
2255 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2256 		goto out_put_task;
2257 
2258 	result = ERR_PTR(-ENOENT);
2259 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2260 		goto out_put_task;
2261 
2262 	mm = get_task_mm(task);
2263 	if (!mm)
2264 		goto out_put_task;
2265 
2266 	result = ERR_PTR(-EINTR);
2267 	if (mmap_read_lock_killable(mm))
2268 		goto out_put_mm;
2269 
2270 	result = ERR_PTR(-ENOENT);
2271 	vma = find_exact_vma(mm, vm_start, vm_end);
2272 	if (!vma)
2273 		goto out_no_vma;
2274 
2275 	if (vma->vm_file)
2276 		result = proc_map_files_instantiate(dentry, task,
2277 				(void *)(unsigned long)vma->vm_file->f_mode);
2278 
2279 out_no_vma:
2280 	mmap_read_unlock(mm);
2281 out_put_mm:
2282 	mmput(mm);
2283 out_put_task:
2284 	put_task_struct(task);
2285 out:
2286 	return result;
2287 }
2288 
2289 static const struct inode_operations proc_map_files_inode_operations = {
2290 	.lookup		= proc_map_files_lookup,
2291 	.permission	= proc_fd_permission,
2292 	.setattr	= proc_setattr,
2293 };
2294 
2295 static int
2296 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2297 {
2298 	struct vm_area_struct *vma;
2299 	struct task_struct *task;
2300 	struct mm_struct *mm;
2301 	unsigned long nr_files, pos, i;
2302 	GENRADIX(struct map_files_info) fa;
2303 	struct map_files_info *p;
2304 	int ret;
2305 
2306 	genradix_init(&fa);
2307 
2308 	ret = -ENOENT;
2309 	task = get_proc_task(file_inode(file));
2310 	if (!task)
2311 		goto out;
2312 
2313 	ret = -EACCES;
2314 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2315 		goto out_put_task;
2316 
2317 	ret = 0;
2318 	if (!dir_emit_dots(file, ctx))
2319 		goto out_put_task;
2320 
2321 	mm = get_task_mm(task);
2322 	if (!mm)
2323 		goto out_put_task;
2324 
2325 	ret = mmap_read_lock_killable(mm);
2326 	if (ret) {
2327 		mmput(mm);
2328 		goto out_put_task;
2329 	}
2330 
2331 	nr_files = 0;
2332 
2333 	/*
2334 	 * We need two passes here:
2335 	 *
2336 	 *  1) Collect vmas of mapped files with mmap_lock taken
2337 	 *  2) Release mmap_lock and instantiate entries
2338 	 *
2339 	 * otherwise we get lockdep complained, since filldir()
2340 	 * routine might require mmap_lock taken in might_fault().
2341 	 */
2342 
2343 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2344 		if (!vma->vm_file)
2345 			continue;
2346 		if (++pos <= ctx->pos)
2347 			continue;
2348 
2349 		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2350 		if (!p) {
2351 			ret = -ENOMEM;
2352 			mmap_read_unlock(mm);
2353 			mmput(mm);
2354 			goto out_put_task;
2355 		}
2356 
2357 		p->start = vma->vm_start;
2358 		p->end = vma->vm_end;
2359 		p->mode = vma->vm_file->f_mode;
2360 	}
2361 	mmap_read_unlock(mm);
2362 	mmput(mm);
2363 
2364 	for (i = 0; i < nr_files; i++) {
2365 		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2366 		unsigned int len;
2367 
2368 		p = genradix_ptr(&fa, i);
2369 		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2370 		if (!proc_fill_cache(file, ctx,
2371 				      buf, len,
2372 				      proc_map_files_instantiate,
2373 				      task,
2374 				      (void *)(unsigned long)p->mode))
2375 			break;
2376 		ctx->pos++;
2377 	}
2378 
2379 out_put_task:
2380 	put_task_struct(task);
2381 out:
2382 	genradix_free(&fa);
2383 	return ret;
2384 }
2385 
2386 static const struct file_operations proc_map_files_operations = {
2387 	.read		= generic_read_dir,
2388 	.iterate_shared	= proc_map_files_readdir,
2389 	.llseek		= generic_file_llseek,
2390 };
2391 
2392 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2393 struct timers_private {
2394 	struct pid *pid;
2395 	struct task_struct *task;
2396 	struct sighand_struct *sighand;
2397 	struct pid_namespace *ns;
2398 	unsigned long flags;
2399 };
2400 
2401 static void *timers_start(struct seq_file *m, loff_t *pos)
2402 {
2403 	struct timers_private *tp = m->private;
2404 
2405 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2406 	if (!tp->task)
2407 		return ERR_PTR(-ESRCH);
2408 
2409 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2410 	if (!tp->sighand)
2411 		return ERR_PTR(-ESRCH);
2412 
2413 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2414 }
2415 
2416 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2417 {
2418 	struct timers_private *tp = m->private;
2419 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2420 }
2421 
2422 static void timers_stop(struct seq_file *m, void *v)
2423 {
2424 	struct timers_private *tp = m->private;
2425 
2426 	if (tp->sighand) {
2427 		unlock_task_sighand(tp->task, &tp->flags);
2428 		tp->sighand = NULL;
2429 	}
2430 
2431 	if (tp->task) {
2432 		put_task_struct(tp->task);
2433 		tp->task = NULL;
2434 	}
2435 }
2436 
2437 static int show_timer(struct seq_file *m, void *v)
2438 {
2439 	struct k_itimer *timer;
2440 	struct timers_private *tp = m->private;
2441 	int notify;
2442 	static const char * const nstr[] = {
2443 		[SIGEV_SIGNAL] = "signal",
2444 		[SIGEV_NONE] = "none",
2445 		[SIGEV_THREAD] = "thread",
2446 	};
2447 
2448 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2449 	notify = timer->it_sigev_notify;
2450 
2451 	seq_printf(m, "ID: %d\n", timer->it_id);
2452 	seq_printf(m, "signal: %d/%px\n",
2453 		   timer->sigq->info.si_signo,
2454 		   timer->sigq->info.si_value.sival_ptr);
2455 	seq_printf(m, "notify: %s/%s.%d\n",
2456 		   nstr[notify & ~SIGEV_THREAD_ID],
2457 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2458 		   pid_nr_ns(timer->it_pid, tp->ns));
2459 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2460 
2461 	return 0;
2462 }
2463 
2464 static const struct seq_operations proc_timers_seq_ops = {
2465 	.start	= timers_start,
2466 	.next	= timers_next,
2467 	.stop	= timers_stop,
2468 	.show	= show_timer,
2469 };
2470 
2471 static int proc_timers_open(struct inode *inode, struct file *file)
2472 {
2473 	struct timers_private *tp;
2474 
2475 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2476 			sizeof(struct timers_private));
2477 	if (!tp)
2478 		return -ENOMEM;
2479 
2480 	tp->pid = proc_pid(inode);
2481 	tp->ns = proc_pid_ns(inode->i_sb);
2482 	return 0;
2483 }
2484 
2485 static const struct file_operations proc_timers_operations = {
2486 	.open		= proc_timers_open,
2487 	.read		= seq_read,
2488 	.llseek		= seq_lseek,
2489 	.release	= seq_release_private,
2490 };
2491 #endif
2492 
2493 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2494 					size_t count, loff_t *offset)
2495 {
2496 	struct inode *inode = file_inode(file);
2497 	struct task_struct *p;
2498 	u64 slack_ns;
2499 	int err;
2500 
2501 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2502 	if (err < 0)
2503 		return err;
2504 
2505 	p = get_proc_task(inode);
2506 	if (!p)
2507 		return -ESRCH;
2508 
2509 	if (p != current) {
2510 		rcu_read_lock();
2511 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2512 			rcu_read_unlock();
2513 			count = -EPERM;
2514 			goto out;
2515 		}
2516 		rcu_read_unlock();
2517 
2518 		err = security_task_setscheduler(p);
2519 		if (err) {
2520 			count = err;
2521 			goto out;
2522 		}
2523 	}
2524 
2525 	task_lock(p);
2526 	if (slack_ns == 0)
2527 		p->timer_slack_ns = p->default_timer_slack_ns;
2528 	else
2529 		p->timer_slack_ns = slack_ns;
2530 	task_unlock(p);
2531 
2532 out:
2533 	put_task_struct(p);
2534 
2535 	return count;
2536 }
2537 
2538 static int timerslack_ns_show(struct seq_file *m, void *v)
2539 {
2540 	struct inode *inode = m->private;
2541 	struct task_struct *p;
2542 	int err = 0;
2543 
2544 	p = get_proc_task(inode);
2545 	if (!p)
2546 		return -ESRCH;
2547 
2548 	if (p != current) {
2549 		rcu_read_lock();
2550 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2551 			rcu_read_unlock();
2552 			err = -EPERM;
2553 			goto out;
2554 		}
2555 		rcu_read_unlock();
2556 
2557 		err = security_task_getscheduler(p);
2558 		if (err)
2559 			goto out;
2560 	}
2561 
2562 	task_lock(p);
2563 	seq_printf(m, "%llu\n", p->timer_slack_ns);
2564 	task_unlock(p);
2565 
2566 out:
2567 	put_task_struct(p);
2568 
2569 	return err;
2570 }
2571 
2572 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2573 {
2574 	return single_open(filp, timerslack_ns_show, inode);
2575 }
2576 
2577 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2578 	.open		= timerslack_ns_open,
2579 	.read		= seq_read,
2580 	.write		= timerslack_ns_write,
2581 	.llseek		= seq_lseek,
2582 	.release	= single_release,
2583 };
2584 
2585 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2586 	struct task_struct *task, const void *ptr)
2587 {
2588 	const struct pid_entry *p = ptr;
2589 	struct inode *inode;
2590 	struct proc_inode *ei;
2591 
2592 	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2593 	if (!inode)
2594 		return ERR_PTR(-ENOENT);
2595 
2596 	ei = PROC_I(inode);
2597 	if (S_ISDIR(inode->i_mode))
2598 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2599 	if (p->iop)
2600 		inode->i_op = p->iop;
2601 	if (p->fop)
2602 		inode->i_fop = p->fop;
2603 	ei->op = p->op;
2604 	pid_update_inode(task, inode);
2605 	d_set_d_op(dentry, &pid_dentry_operations);
2606 	return d_splice_alias(inode, dentry);
2607 }
2608 
2609 static struct dentry *proc_pident_lookup(struct inode *dir,
2610 					 struct dentry *dentry,
2611 					 const struct pid_entry *p,
2612 					 const struct pid_entry *end)
2613 {
2614 	struct task_struct *task = get_proc_task(dir);
2615 	struct dentry *res = ERR_PTR(-ENOENT);
2616 
2617 	if (!task)
2618 		goto out_no_task;
2619 
2620 	/*
2621 	 * Yes, it does not scale. And it should not. Don't add
2622 	 * new entries into /proc/<tgid>/ without very good reasons.
2623 	 */
2624 	for (; p < end; p++) {
2625 		if (p->len != dentry->d_name.len)
2626 			continue;
2627 		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2628 			res = proc_pident_instantiate(dentry, task, p);
2629 			break;
2630 		}
2631 	}
2632 	put_task_struct(task);
2633 out_no_task:
2634 	return res;
2635 }
2636 
2637 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2638 		const struct pid_entry *ents, unsigned int nents)
2639 {
2640 	struct task_struct *task = get_proc_task(file_inode(file));
2641 	const struct pid_entry *p;
2642 
2643 	if (!task)
2644 		return -ENOENT;
2645 
2646 	if (!dir_emit_dots(file, ctx))
2647 		goto out;
2648 
2649 	if (ctx->pos >= nents + 2)
2650 		goto out;
2651 
2652 	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2653 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2654 				proc_pident_instantiate, task, p))
2655 			break;
2656 		ctx->pos++;
2657 	}
2658 out:
2659 	put_task_struct(task);
2660 	return 0;
2661 }
2662 
2663 #ifdef CONFIG_SECURITY
2664 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2665 				  size_t count, loff_t *ppos)
2666 {
2667 	struct inode * inode = file_inode(file);
2668 	char *p = NULL;
2669 	ssize_t length;
2670 	struct task_struct *task = get_proc_task(inode);
2671 
2672 	if (!task)
2673 		return -ESRCH;
2674 
2675 	length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2676 				      (char*)file->f_path.dentry->d_name.name,
2677 				      &p);
2678 	put_task_struct(task);
2679 	if (length > 0)
2680 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2681 	kfree(p);
2682 	return length;
2683 }
2684 
2685 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2686 				   size_t count, loff_t *ppos)
2687 {
2688 	struct inode * inode = file_inode(file);
2689 	struct task_struct *task;
2690 	void *page;
2691 	int rv;
2692 
2693 	rcu_read_lock();
2694 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2695 	if (!task) {
2696 		rcu_read_unlock();
2697 		return -ESRCH;
2698 	}
2699 	/* A task may only write its own attributes. */
2700 	if (current != task) {
2701 		rcu_read_unlock();
2702 		return -EACCES;
2703 	}
2704 	/* Prevent changes to overridden credentials. */
2705 	if (current_cred() != current_real_cred()) {
2706 		rcu_read_unlock();
2707 		return -EBUSY;
2708 	}
2709 	rcu_read_unlock();
2710 
2711 	if (count > PAGE_SIZE)
2712 		count = PAGE_SIZE;
2713 
2714 	/* No partial writes. */
2715 	if (*ppos != 0)
2716 		return -EINVAL;
2717 
2718 	page = memdup_user(buf, count);
2719 	if (IS_ERR(page)) {
2720 		rv = PTR_ERR(page);
2721 		goto out;
2722 	}
2723 
2724 	/* Guard against adverse ptrace interaction */
2725 	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2726 	if (rv < 0)
2727 		goto out_free;
2728 
2729 	rv = security_setprocattr(PROC_I(inode)->op.lsm,
2730 				  file->f_path.dentry->d_name.name, page,
2731 				  count);
2732 	mutex_unlock(&current->signal->cred_guard_mutex);
2733 out_free:
2734 	kfree(page);
2735 out:
2736 	return rv;
2737 }
2738 
2739 static const struct file_operations proc_pid_attr_operations = {
2740 	.read		= proc_pid_attr_read,
2741 	.write		= proc_pid_attr_write,
2742 	.llseek		= generic_file_llseek,
2743 };
2744 
2745 #define LSM_DIR_OPS(LSM) \
2746 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2747 			     struct dir_context *ctx) \
2748 { \
2749 	return proc_pident_readdir(filp, ctx, \
2750 				   LSM##_attr_dir_stuff, \
2751 				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2752 } \
2753 \
2754 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2755 	.read		= generic_read_dir, \
2756 	.iterate	= proc_##LSM##_attr_dir_iterate, \
2757 	.llseek		= default_llseek, \
2758 }; \
2759 \
2760 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2761 				struct dentry *dentry, unsigned int flags) \
2762 { \
2763 	return proc_pident_lookup(dir, dentry, \
2764 				  LSM##_attr_dir_stuff, \
2765 				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2766 } \
2767 \
2768 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2769 	.lookup		= proc_##LSM##_attr_dir_lookup, \
2770 	.getattr	= pid_getattr, \
2771 	.setattr	= proc_setattr, \
2772 }
2773 
2774 #ifdef CONFIG_SECURITY_SMACK
2775 static const struct pid_entry smack_attr_dir_stuff[] = {
2776 	ATTR("smack", "current",	0666),
2777 };
2778 LSM_DIR_OPS(smack);
2779 #endif
2780 
2781 #ifdef CONFIG_SECURITY_APPARMOR
2782 static const struct pid_entry apparmor_attr_dir_stuff[] = {
2783 	ATTR("apparmor", "current",	0666),
2784 	ATTR("apparmor", "prev",	0444),
2785 	ATTR("apparmor", "exec",	0666),
2786 };
2787 LSM_DIR_OPS(apparmor);
2788 #endif
2789 
2790 static const struct pid_entry attr_dir_stuff[] = {
2791 	ATTR(NULL, "current",		0666),
2792 	ATTR(NULL, "prev",		0444),
2793 	ATTR(NULL, "exec",		0666),
2794 	ATTR(NULL, "fscreate",		0666),
2795 	ATTR(NULL, "keycreate",		0666),
2796 	ATTR(NULL, "sockcreate",	0666),
2797 #ifdef CONFIG_SECURITY_SMACK
2798 	DIR("smack",			0555,
2799 	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2800 #endif
2801 #ifdef CONFIG_SECURITY_APPARMOR
2802 	DIR("apparmor",			0555,
2803 	    proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2804 #endif
2805 };
2806 
2807 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2808 {
2809 	return proc_pident_readdir(file, ctx,
2810 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2811 }
2812 
2813 static const struct file_operations proc_attr_dir_operations = {
2814 	.read		= generic_read_dir,
2815 	.iterate_shared	= proc_attr_dir_readdir,
2816 	.llseek		= generic_file_llseek,
2817 };
2818 
2819 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2820 				struct dentry *dentry, unsigned int flags)
2821 {
2822 	return proc_pident_lookup(dir, dentry,
2823 				  attr_dir_stuff,
2824 				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2825 }
2826 
2827 static const struct inode_operations proc_attr_dir_inode_operations = {
2828 	.lookup		= proc_attr_dir_lookup,
2829 	.getattr	= pid_getattr,
2830 	.setattr	= proc_setattr,
2831 };
2832 
2833 #endif
2834 
2835 #ifdef CONFIG_ELF_CORE
2836 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2837 					 size_t count, loff_t *ppos)
2838 {
2839 	struct task_struct *task = get_proc_task(file_inode(file));
2840 	struct mm_struct *mm;
2841 	char buffer[PROC_NUMBUF];
2842 	size_t len;
2843 	int ret;
2844 
2845 	if (!task)
2846 		return -ESRCH;
2847 
2848 	ret = 0;
2849 	mm = get_task_mm(task);
2850 	if (mm) {
2851 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2852 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2853 				MMF_DUMP_FILTER_SHIFT));
2854 		mmput(mm);
2855 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2856 	}
2857 
2858 	put_task_struct(task);
2859 
2860 	return ret;
2861 }
2862 
2863 static ssize_t proc_coredump_filter_write(struct file *file,
2864 					  const char __user *buf,
2865 					  size_t count,
2866 					  loff_t *ppos)
2867 {
2868 	struct task_struct *task;
2869 	struct mm_struct *mm;
2870 	unsigned int val;
2871 	int ret;
2872 	int i;
2873 	unsigned long mask;
2874 
2875 	ret = kstrtouint_from_user(buf, count, 0, &val);
2876 	if (ret < 0)
2877 		return ret;
2878 
2879 	ret = -ESRCH;
2880 	task = get_proc_task(file_inode(file));
2881 	if (!task)
2882 		goto out_no_task;
2883 
2884 	mm = get_task_mm(task);
2885 	if (!mm)
2886 		goto out_no_mm;
2887 	ret = 0;
2888 
2889 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2890 		if (val & mask)
2891 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2892 		else
2893 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2894 	}
2895 
2896 	mmput(mm);
2897  out_no_mm:
2898 	put_task_struct(task);
2899  out_no_task:
2900 	if (ret < 0)
2901 		return ret;
2902 	return count;
2903 }
2904 
2905 static const struct file_operations proc_coredump_filter_operations = {
2906 	.read		= proc_coredump_filter_read,
2907 	.write		= proc_coredump_filter_write,
2908 	.llseek		= generic_file_llseek,
2909 };
2910 #endif
2911 
2912 #ifdef CONFIG_TASK_IO_ACCOUNTING
2913 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2914 {
2915 	struct task_io_accounting acct = task->ioac;
2916 	unsigned long flags;
2917 	int result;
2918 
2919 	result = mutex_lock_killable(&task->signal->exec_update_mutex);
2920 	if (result)
2921 		return result;
2922 
2923 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2924 		result = -EACCES;
2925 		goto out_unlock;
2926 	}
2927 
2928 	if (whole && lock_task_sighand(task, &flags)) {
2929 		struct task_struct *t = task;
2930 
2931 		task_io_accounting_add(&acct, &task->signal->ioac);
2932 		while_each_thread(task, t)
2933 			task_io_accounting_add(&acct, &t->ioac);
2934 
2935 		unlock_task_sighand(task, &flags);
2936 	}
2937 	seq_printf(m,
2938 		   "rchar: %llu\n"
2939 		   "wchar: %llu\n"
2940 		   "syscr: %llu\n"
2941 		   "syscw: %llu\n"
2942 		   "read_bytes: %llu\n"
2943 		   "write_bytes: %llu\n"
2944 		   "cancelled_write_bytes: %llu\n",
2945 		   (unsigned long long)acct.rchar,
2946 		   (unsigned long long)acct.wchar,
2947 		   (unsigned long long)acct.syscr,
2948 		   (unsigned long long)acct.syscw,
2949 		   (unsigned long long)acct.read_bytes,
2950 		   (unsigned long long)acct.write_bytes,
2951 		   (unsigned long long)acct.cancelled_write_bytes);
2952 	result = 0;
2953 
2954 out_unlock:
2955 	mutex_unlock(&task->signal->exec_update_mutex);
2956 	return result;
2957 }
2958 
2959 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2960 				  struct pid *pid, struct task_struct *task)
2961 {
2962 	return do_io_accounting(task, m, 0);
2963 }
2964 
2965 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2966 				   struct pid *pid, struct task_struct *task)
2967 {
2968 	return do_io_accounting(task, m, 1);
2969 }
2970 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2971 
2972 #ifdef CONFIG_USER_NS
2973 static int proc_id_map_open(struct inode *inode, struct file *file,
2974 	const struct seq_operations *seq_ops)
2975 {
2976 	struct user_namespace *ns = NULL;
2977 	struct task_struct *task;
2978 	struct seq_file *seq;
2979 	int ret = -EINVAL;
2980 
2981 	task = get_proc_task(inode);
2982 	if (task) {
2983 		rcu_read_lock();
2984 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2985 		rcu_read_unlock();
2986 		put_task_struct(task);
2987 	}
2988 	if (!ns)
2989 		goto err;
2990 
2991 	ret = seq_open(file, seq_ops);
2992 	if (ret)
2993 		goto err_put_ns;
2994 
2995 	seq = file->private_data;
2996 	seq->private = ns;
2997 
2998 	return 0;
2999 err_put_ns:
3000 	put_user_ns(ns);
3001 err:
3002 	return ret;
3003 }
3004 
3005 static int proc_id_map_release(struct inode *inode, struct file *file)
3006 {
3007 	struct seq_file *seq = file->private_data;
3008 	struct user_namespace *ns = seq->private;
3009 	put_user_ns(ns);
3010 	return seq_release(inode, file);
3011 }
3012 
3013 static int proc_uid_map_open(struct inode *inode, struct file *file)
3014 {
3015 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3016 }
3017 
3018 static int proc_gid_map_open(struct inode *inode, struct file *file)
3019 {
3020 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3021 }
3022 
3023 static int proc_projid_map_open(struct inode *inode, struct file *file)
3024 {
3025 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3026 }
3027 
3028 static const struct file_operations proc_uid_map_operations = {
3029 	.open		= proc_uid_map_open,
3030 	.write		= proc_uid_map_write,
3031 	.read		= seq_read,
3032 	.llseek		= seq_lseek,
3033 	.release	= proc_id_map_release,
3034 };
3035 
3036 static const struct file_operations proc_gid_map_operations = {
3037 	.open		= proc_gid_map_open,
3038 	.write		= proc_gid_map_write,
3039 	.read		= seq_read,
3040 	.llseek		= seq_lseek,
3041 	.release	= proc_id_map_release,
3042 };
3043 
3044 static const struct file_operations proc_projid_map_operations = {
3045 	.open		= proc_projid_map_open,
3046 	.write		= proc_projid_map_write,
3047 	.read		= seq_read,
3048 	.llseek		= seq_lseek,
3049 	.release	= proc_id_map_release,
3050 };
3051 
3052 static int proc_setgroups_open(struct inode *inode, struct file *file)
3053 {
3054 	struct user_namespace *ns = NULL;
3055 	struct task_struct *task;
3056 	int ret;
3057 
3058 	ret = -ESRCH;
3059 	task = get_proc_task(inode);
3060 	if (task) {
3061 		rcu_read_lock();
3062 		ns = get_user_ns(task_cred_xxx(task, user_ns));
3063 		rcu_read_unlock();
3064 		put_task_struct(task);
3065 	}
3066 	if (!ns)
3067 		goto err;
3068 
3069 	if (file->f_mode & FMODE_WRITE) {
3070 		ret = -EACCES;
3071 		if (!ns_capable(ns, CAP_SYS_ADMIN))
3072 			goto err_put_ns;
3073 	}
3074 
3075 	ret = single_open(file, &proc_setgroups_show, ns);
3076 	if (ret)
3077 		goto err_put_ns;
3078 
3079 	return 0;
3080 err_put_ns:
3081 	put_user_ns(ns);
3082 err:
3083 	return ret;
3084 }
3085 
3086 static int proc_setgroups_release(struct inode *inode, struct file *file)
3087 {
3088 	struct seq_file *seq = file->private_data;
3089 	struct user_namespace *ns = seq->private;
3090 	int ret = single_release(inode, file);
3091 	put_user_ns(ns);
3092 	return ret;
3093 }
3094 
3095 static const struct file_operations proc_setgroups_operations = {
3096 	.open		= proc_setgroups_open,
3097 	.write		= proc_setgroups_write,
3098 	.read		= seq_read,
3099 	.llseek		= seq_lseek,
3100 	.release	= proc_setgroups_release,
3101 };
3102 #endif /* CONFIG_USER_NS */
3103 
3104 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3105 				struct pid *pid, struct task_struct *task)
3106 {
3107 	int err = lock_trace(task);
3108 	if (!err) {
3109 		seq_printf(m, "%08x\n", task->personality);
3110 		unlock_trace(task);
3111 	}
3112 	return err;
3113 }
3114 
3115 #ifdef CONFIG_LIVEPATCH
3116 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3117 				struct pid *pid, struct task_struct *task)
3118 {
3119 	seq_printf(m, "%d\n", task->patch_state);
3120 	return 0;
3121 }
3122 #endif /* CONFIG_LIVEPATCH */
3123 
3124 #ifdef CONFIG_STACKLEAK_METRICS
3125 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3126 				struct pid *pid, struct task_struct *task)
3127 {
3128 	unsigned long prev_depth = THREAD_SIZE -
3129 				(task->prev_lowest_stack & (THREAD_SIZE - 1));
3130 	unsigned long depth = THREAD_SIZE -
3131 				(task->lowest_stack & (THREAD_SIZE - 1));
3132 
3133 	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3134 							prev_depth, depth);
3135 	return 0;
3136 }
3137 #endif /* CONFIG_STACKLEAK_METRICS */
3138 
3139 /*
3140  * Thread groups
3141  */
3142 static const struct file_operations proc_task_operations;
3143 static const struct inode_operations proc_task_inode_operations;
3144 
3145 static const struct pid_entry tgid_base_stuff[] = {
3146 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3147 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3148 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3149 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3150 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3151 #ifdef CONFIG_NET
3152 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3153 #endif
3154 	REG("environ",    S_IRUSR, proc_environ_operations),
3155 	REG("auxv",       S_IRUSR, proc_auxv_operations),
3156 	ONE("status",     S_IRUGO, proc_pid_status),
3157 	ONE("personality", S_IRUSR, proc_pid_personality),
3158 	ONE("limits",	  S_IRUGO, proc_pid_limits),
3159 #ifdef CONFIG_SCHED_DEBUG
3160 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3161 #endif
3162 #ifdef CONFIG_SCHED_AUTOGROUP
3163 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3164 #endif
3165 #ifdef CONFIG_TIME_NS
3166 	REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3167 #endif
3168 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3169 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3170 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3171 #endif
3172 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3173 	ONE("stat",       S_IRUGO, proc_tgid_stat),
3174 	ONE("statm",      S_IRUGO, proc_pid_statm),
3175 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3176 #ifdef CONFIG_NUMA
3177 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3178 #endif
3179 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3180 	LNK("cwd",        proc_cwd_link),
3181 	LNK("root",       proc_root_link),
3182 	LNK("exe",        proc_exe_link),
3183 	REG("mounts",     S_IRUGO, proc_mounts_operations),
3184 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3185 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3186 #ifdef CONFIG_PROC_PAGE_MONITOR
3187 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3188 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3189 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3190 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3191 #endif
3192 #ifdef CONFIG_SECURITY
3193 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3194 #endif
3195 #ifdef CONFIG_KALLSYMS
3196 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3197 #endif
3198 #ifdef CONFIG_STACKTRACE
3199 	ONE("stack",      S_IRUSR, proc_pid_stack),
3200 #endif
3201 #ifdef CONFIG_SCHED_INFO
3202 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3203 #endif
3204 #ifdef CONFIG_LATENCYTOP
3205 	REG("latency",  S_IRUGO, proc_lstats_operations),
3206 #endif
3207 #ifdef CONFIG_PROC_PID_CPUSET
3208 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3209 #endif
3210 #ifdef CONFIG_CGROUPS
3211 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3212 #endif
3213 #ifdef CONFIG_PROC_CPU_RESCTRL
3214 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3215 #endif
3216 	ONE("oom_score",  S_IRUGO, proc_oom_score),
3217 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3218 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3219 #ifdef CONFIG_AUDIT
3220 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3221 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3222 #endif
3223 #ifdef CONFIG_FAULT_INJECTION
3224 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3225 	REG("fail-nth", 0644, proc_fail_nth_operations),
3226 #endif
3227 #ifdef CONFIG_ELF_CORE
3228 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3229 #endif
3230 #ifdef CONFIG_TASK_IO_ACCOUNTING
3231 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3232 #endif
3233 #ifdef CONFIG_USER_NS
3234 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3235 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3236 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3237 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3238 #endif
3239 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3240 	REG("timers",	  S_IRUGO, proc_timers_operations),
3241 #endif
3242 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3243 #ifdef CONFIG_LIVEPATCH
3244 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3245 #endif
3246 #ifdef CONFIG_STACKLEAK_METRICS
3247 	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3248 #endif
3249 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3250 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3251 #endif
3252 };
3253 
3254 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3255 {
3256 	return proc_pident_readdir(file, ctx,
3257 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3258 }
3259 
3260 static const struct file_operations proc_tgid_base_operations = {
3261 	.read		= generic_read_dir,
3262 	.iterate_shared	= proc_tgid_base_readdir,
3263 	.llseek		= generic_file_llseek,
3264 };
3265 
3266 struct pid *tgid_pidfd_to_pid(const struct file *file)
3267 {
3268 	if (file->f_op != &proc_tgid_base_operations)
3269 		return ERR_PTR(-EBADF);
3270 
3271 	return proc_pid(file_inode(file));
3272 }
3273 
3274 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3275 {
3276 	return proc_pident_lookup(dir, dentry,
3277 				  tgid_base_stuff,
3278 				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3279 }
3280 
3281 static const struct inode_operations proc_tgid_base_inode_operations = {
3282 	.lookup		= proc_tgid_base_lookup,
3283 	.getattr	= pid_getattr,
3284 	.setattr	= proc_setattr,
3285 	.permission	= proc_pid_permission,
3286 };
3287 
3288 /**
3289  * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
3290  * @pid: pid that should be flushed.
3291  *
3292  * This function walks a list of inodes (that belong to any proc
3293  * filesystem) that are attached to the pid and flushes them from
3294  * the dentry cache.
3295  *
3296  * It is safe and reasonable to cache /proc entries for a task until
3297  * that task exits.  After that they just clog up the dcache with
3298  * useless entries, possibly causing useful dcache entries to be
3299  * flushed instead.  This routine is provided to flush those useless
3300  * dcache entries when a process is reaped.
3301  *
3302  * NOTE: This routine is just an optimization so it does not guarantee
3303  *       that no dcache entries will exist after a process is reaped
3304  *       it just makes it very unlikely that any will persist.
3305  */
3306 
3307 void proc_flush_pid(struct pid *pid)
3308 {
3309 	proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3310 }
3311 
3312 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3313 				   struct task_struct *task, const void *ptr)
3314 {
3315 	struct inode *inode;
3316 
3317 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3318 	if (!inode)
3319 		return ERR_PTR(-ENOENT);
3320 
3321 	inode->i_op = &proc_tgid_base_inode_operations;
3322 	inode->i_fop = &proc_tgid_base_operations;
3323 	inode->i_flags|=S_IMMUTABLE;
3324 
3325 	set_nlink(inode, nlink_tgid);
3326 	pid_update_inode(task, inode);
3327 
3328 	d_set_d_op(dentry, &pid_dentry_operations);
3329 	return d_splice_alias(inode, dentry);
3330 }
3331 
3332 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3333 {
3334 	struct task_struct *task;
3335 	unsigned tgid;
3336 	struct proc_fs_info *fs_info;
3337 	struct pid_namespace *ns;
3338 	struct dentry *result = ERR_PTR(-ENOENT);
3339 
3340 	tgid = name_to_int(&dentry->d_name);
3341 	if (tgid == ~0U)
3342 		goto out;
3343 
3344 	fs_info = proc_sb_info(dentry->d_sb);
3345 	ns = fs_info->pid_ns;
3346 	rcu_read_lock();
3347 	task = find_task_by_pid_ns(tgid, ns);
3348 	if (task)
3349 		get_task_struct(task);
3350 	rcu_read_unlock();
3351 	if (!task)
3352 		goto out;
3353 
3354 	/* Limit procfs to only ptraceable tasks */
3355 	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3356 		if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3357 			goto out_put_task;
3358 	}
3359 
3360 	result = proc_pid_instantiate(dentry, task, NULL);
3361 out_put_task:
3362 	put_task_struct(task);
3363 out:
3364 	return result;
3365 }
3366 
3367 /*
3368  * Find the first task with tgid >= tgid
3369  *
3370  */
3371 struct tgid_iter {
3372 	unsigned int tgid;
3373 	struct task_struct *task;
3374 };
3375 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3376 {
3377 	struct pid *pid;
3378 
3379 	if (iter.task)
3380 		put_task_struct(iter.task);
3381 	rcu_read_lock();
3382 retry:
3383 	iter.task = NULL;
3384 	pid = find_ge_pid(iter.tgid, ns);
3385 	if (pid) {
3386 		iter.tgid = pid_nr_ns(pid, ns);
3387 		iter.task = pid_task(pid, PIDTYPE_TGID);
3388 		if (!iter.task) {
3389 			iter.tgid += 1;
3390 			goto retry;
3391 		}
3392 		get_task_struct(iter.task);
3393 	}
3394 	rcu_read_unlock();
3395 	return iter;
3396 }
3397 
3398 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3399 
3400 /* for the /proc/ directory itself, after non-process stuff has been done */
3401 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3402 {
3403 	struct tgid_iter iter;
3404 	struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3405 	struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3406 	loff_t pos = ctx->pos;
3407 
3408 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3409 		return 0;
3410 
3411 	if (pos == TGID_OFFSET - 2) {
3412 		struct inode *inode = d_inode(fs_info->proc_self);
3413 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3414 			return 0;
3415 		ctx->pos = pos = pos + 1;
3416 	}
3417 	if (pos == TGID_OFFSET - 1) {
3418 		struct inode *inode = d_inode(fs_info->proc_thread_self);
3419 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3420 			return 0;
3421 		ctx->pos = pos = pos + 1;
3422 	}
3423 	iter.tgid = pos - TGID_OFFSET;
3424 	iter.task = NULL;
3425 	for (iter = next_tgid(ns, iter);
3426 	     iter.task;
3427 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3428 		char name[10 + 1];
3429 		unsigned int len;
3430 
3431 		cond_resched();
3432 		if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3433 			continue;
3434 
3435 		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3436 		ctx->pos = iter.tgid + TGID_OFFSET;
3437 		if (!proc_fill_cache(file, ctx, name, len,
3438 				     proc_pid_instantiate, iter.task, NULL)) {
3439 			put_task_struct(iter.task);
3440 			return 0;
3441 		}
3442 	}
3443 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3444 	return 0;
3445 }
3446 
3447 /*
3448  * proc_tid_comm_permission is a special permission function exclusively
3449  * used for the node /proc/<pid>/task/<tid>/comm.
3450  * It bypasses generic permission checks in the case where a task of the same
3451  * task group attempts to access the node.
3452  * The rationale behind this is that glibc and bionic access this node for
3453  * cross thread naming (pthread_set/getname_np(!self)). However, if
3454  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3455  * which locks out the cross thread naming implementation.
3456  * This function makes sure that the node is always accessible for members of
3457  * same thread group.
3458  */
3459 static int proc_tid_comm_permission(struct inode *inode, int mask)
3460 {
3461 	bool is_same_tgroup;
3462 	struct task_struct *task;
3463 
3464 	task = get_proc_task(inode);
3465 	if (!task)
3466 		return -ESRCH;
3467 	is_same_tgroup = same_thread_group(current, task);
3468 	put_task_struct(task);
3469 
3470 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3471 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3472 		 * read or written by the members of the corresponding
3473 		 * thread group.
3474 		 */
3475 		return 0;
3476 	}
3477 
3478 	return generic_permission(inode, mask);
3479 }
3480 
3481 static const struct inode_operations proc_tid_comm_inode_operations = {
3482 		.permission = proc_tid_comm_permission,
3483 };
3484 
3485 /*
3486  * Tasks
3487  */
3488 static const struct pid_entry tid_base_stuff[] = {
3489 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3490 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3491 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3492 #ifdef CONFIG_NET
3493 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3494 #endif
3495 	REG("environ",   S_IRUSR, proc_environ_operations),
3496 	REG("auxv",      S_IRUSR, proc_auxv_operations),
3497 	ONE("status",    S_IRUGO, proc_pid_status),
3498 	ONE("personality", S_IRUSR, proc_pid_personality),
3499 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3500 #ifdef CONFIG_SCHED_DEBUG
3501 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3502 #endif
3503 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3504 			 &proc_tid_comm_inode_operations,
3505 			 &proc_pid_set_comm_operations, {}),
3506 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3507 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3508 #endif
3509 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3510 	ONE("stat",      S_IRUGO, proc_tid_stat),
3511 	ONE("statm",     S_IRUGO, proc_pid_statm),
3512 	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3513 #ifdef CONFIG_PROC_CHILDREN
3514 	REG("children",  S_IRUGO, proc_tid_children_operations),
3515 #endif
3516 #ifdef CONFIG_NUMA
3517 	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3518 #endif
3519 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3520 	LNK("cwd",       proc_cwd_link),
3521 	LNK("root",      proc_root_link),
3522 	LNK("exe",       proc_exe_link),
3523 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3524 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3525 #ifdef CONFIG_PROC_PAGE_MONITOR
3526 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3527 	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3528 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3529 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3530 #endif
3531 #ifdef CONFIG_SECURITY
3532 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3533 #endif
3534 #ifdef CONFIG_KALLSYMS
3535 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3536 #endif
3537 #ifdef CONFIG_STACKTRACE
3538 	ONE("stack",      S_IRUSR, proc_pid_stack),
3539 #endif
3540 #ifdef CONFIG_SCHED_INFO
3541 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3542 #endif
3543 #ifdef CONFIG_LATENCYTOP
3544 	REG("latency",  S_IRUGO, proc_lstats_operations),
3545 #endif
3546 #ifdef CONFIG_PROC_PID_CPUSET
3547 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3548 #endif
3549 #ifdef CONFIG_CGROUPS
3550 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3551 #endif
3552 #ifdef CONFIG_PROC_CPU_RESCTRL
3553 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3554 #endif
3555 	ONE("oom_score", S_IRUGO, proc_oom_score),
3556 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3557 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3558 #ifdef CONFIG_AUDIT
3559 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3560 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3561 #endif
3562 #ifdef CONFIG_FAULT_INJECTION
3563 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3564 	REG("fail-nth", 0644, proc_fail_nth_operations),
3565 #endif
3566 #ifdef CONFIG_TASK_IO_ACCOUNTING
3567 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3568 #endif
3569 #ifdef CONFIG_USER_NS
3570 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3571 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3572 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3573 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3574 #endif
3575 #ifdef CONFIG_LIVEPATCH
3576 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3577 #endif
3578 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3579 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3580 #endif
3581 };
3582 
3583 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3584 {
3585 	return proc_pident_readdir(file, ctx,
3586 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3587 }
3588 
3589 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3590 {
3591 	return proc_pident_lookup(dir, dentry,
3592 				  tid_base_stuff,
3593 				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3594 }
3595 
3596 static const struct file_operations proc_tid_base_operations = {
3597 	.read		= generic_read_dir,
3598 	.iterate_shared	= proc_tid_base_readdir,
3599 	.llseek		= generic_file_llseek,
3600 };
3601 
3602 static const struct inode_operations proc_tid_base_inode_operations = {
3603 	.lookup		= proc_tid_base_lookup,
3604 	.getattr	= pid_getattr,
3605 	.setattr	= proc_setattr,
3606 };
3607 
3608 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3609 	struct task_struct *task, const void *ptr)
3610 {
3611 	struct inode *inode;
3612 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3613 	if (!inode)
3614 		return ERR_PTR(-ENOENT);
3615 
3616 	inode->i_op = &proc_tid_base_inode_operations;
3617 	inode->i_fop = &proc_tid_base_operations;
3618 	inode->i_flags |= S_IMMUTABLE;
3619 
3620 	set_nlink(inode, nlink_tid);
3621 	pid_update_inode(task, inode);
3622 
3623 	d_set_d_op(dentry, &pid_dentry_operations);
3624 	return d_splice_alias(inode, dentry);
3625 }
3626 
3627 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3628 {
3629 	struct task_struct *task;
3630 	struct task_struct *leader = get_proc_task(dir);
3631 	unsigned tid;
3632 	struct proc_fs_info *fs_info;
3633 	struct pid_namespace *ns;
3634 	struct dentry *result = ERR_PTR(-ENOENT);
3635 
3636 	if (!leader)
3637 		goto out_no_task;
3638 
3639 	tid = name_to_int(&dentry->d_name);
3640 	if (tid == ~0U)
3641 		goto out;
3642 
3643 	fs_info = proc_sb_info(dentry->d_sb);
3644 	ns = fs_info->pid_ns;
3645 	rcu_read_lock();
3646 	task = find_task_by_pid_ns(tid, ns);
3647 	if (task)
3648 		get_task_struct(task);
3649 	rcu_read_unlock();
3650 	if (!task)
3651 		goto out;
3652 	if (!same_thread_group(leader, task))
3653 		goto out_drop_task;
3654 
3655 	result = proc_task_instantiate(dentry, task, NULL);
3656 out_drop_task:
3657 	put_task_struct(task);
3658 out:
3659 	put_task_struct(leader);
3660 out_no_task:
3661 	return result;
3662 }
3663 
3664 /*
3665  * Find the first tid of a thread group to return to user space.
3666  *
3667  * Usually this is just the thread group leader, but if the users
3668  * buffer was too small or there was a seek into the middle of the
3669  * directory we have more work todo.
3670  *
3671  * In the case of a short read we start with find_task_by_pid.
3672  *
3673  * In the case of a seek we start with the leader and walk nr
3674  * threads past it.
3675  */
3676 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3677 					struct pid_namespace *ns)
3678 {
3679 	struct task_struct *pos, *task;
3680 	unsigned long nr = f_pos;
3681 
3682 	if (nr != f_pos)	/* 32bit overflow? */
3683 		return NULL;
3684 
3685 	rcu_read_lock();
3686 	task = pid_task(pid, PIDTYPE_PID);
3687 	if (!task)
3688 		goto fail;
3689 
3690 	/* Attempt to start with the tid of a thread */
3691 	if (tid && nr) {
3692 		pos = find_task_by_pid_ns(tid, ns);
3693 		if (pos && same_thread_group(pos, task))
3694 			goto found;
3695 	}
3696 
3697 	/* If nr exceeds the number of threads there is nothing todo */
3698 	if (nr >= get_nr_threads(task))
3699 		goto fail;
3700 
3701 	/* If we haven't found our starting place yet start
3702 	 * with the leader and walk nr threads forward.
3703 	 */
3704 	pos = task = task->group_leader;
3705 	do {
3706 		if (!nr--)
3707 			goto found;
3708 	} while_each_thread(task, pos);
3709 fail:
3710 	pos = NULL;
3711 	goto out;
3712 found:
3713 	get_task_struct(pos);
3714 out:
3715 	rcu_read_unlock();
3716 	return pos;
3717 }
3718 
3719 /*
3720  * Find the next thread in the thread list.
3721  * Return NULL if there is an error or no next thread.
3722  *
3723  * The reference to the input task_struct is released.
3724  */
3725 static struct task_struct *next_tid(struct task_struct *start)
3726 {
3727 	struct task_struct *pos = NULL;
3728 	rcu_read_lock();
3729 	if (pid_alive(start)) {
3730 		pos = next_thread(start);
3731 		if (thread_group_leader(pos))
3732 			pos = NULL;
3733 		else
3734 			get_task_struct(pos);
3735 	}
3736 	rcu_read_unlock();
3737 	put_task_struct(start);
3738 	return pos;
3739 }
3740 
3741 /* for the /proc/TGID/task/ directories */
3742 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3743 {
3744 	struct inode *inode = file_inode(file);
3745 	struct task_struct *task;
3746 	struct pid_namespace *ns;
3747 	int tid;
3748 
3749 	if (proc_inode_is_dead(inode))
3750 		return -ENOENT;
3751 
3752 	if (!dir_emit_dots(file, ctx))
3753 		return 0;
3754 
3755 	/* f_version caches the tgid value that the last readdir call couldn't
3756 	 * return. lseek aka telldir automagically resets f_version to 0.
3757 	 */
3758 	ns = proc_pid_ns(inode->i_sb);
3759 	tid = (int)file->f_version;
3760 	file->f_version = 0;
3761 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3762 	     task;
3763 	     task = next_tid(task), ctx->pos++) {
3764 		char name[10 + 1];
3765 		unsigned int len;
3766 		tid = task_pid_nr_ns(task, ns);
3767 		len = snprintf(name, sizeof(name), "%u", tid);
3768 		if (!proc_fill_cache(file, ctx, name, len,
3769 				proc_task_instantiate, task, NULL)) {
3770 			/* returning this tgid failed, save it as the first
3771 			 * pid for the next readir call */
3772 			file->f_version = (u64)tid;
3773 			put_task_struct(task);
3774 			break;
3775 		}
3776 	}
3777 
3778 	return 0;
3779 }
3780 
3781 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3782 			     u32 request_mask, unsigned int query_flags)
3783 {
3784 	struct inode *inode = d_inode(path->dentry);
3785 	struct task_struct *p = get_proc_task(inode);
3786 	generic_fillattr(inode, stat);
3787 
3788 	if (p) {
3789 		stat->nlink += get_nr_threads(p);
3790 		put_task_struct(p);
3791 	}
3792 
3793 	return 0;
3794 }
3795 
3796 static const struct inode_operations proc_task_inode_operations = {
3797 	.lookup		= proc_task_lookup,
3798 	.getattr	= proc_task_getattr,
3799 	.setattr	= proc_setattr,
3800 	.permission	= proc_pid_permission,
3801 };
3802 
3803 static const struct file_operations proc_task_operations = {
3804 	.read		= generic_read_dir,
3805 	.iterate_shared	= proc_task_readdir,
3806 	.llseek		= generic_file_llseek,
3807 };
3808 
3809 void __init set_proc_pid_nlink(void)
3810 {
3811 	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3812 	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3813 }
3814