xref: /openbmc/linux/fs/proc/base.c (revision a01822e94ee53e8ebc9632fe2764048b81921254)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/proc/base.c
4  *
5  *  Copyright (C) 1991, 1992 Linus Torvalds
6  *
7  *  proc base directory handling functions
8  *
9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10  *  Instead of using magical inumbers to determine the kind of object
11  *  we allocate and fill in-core inodes upon lookup. They don't even
12  *  go into icache. We cache the reference to task_struct upon lookup too.
13  *  Eventually it should become a filesystem in its own. We don't use the
14  *  rest of procfs anymore.
15  *
16  *
17  *  Changelog:
18  *  17-Jan-2005
19  *  Allan Bezerra
20  *  Bruna Moreira <bruna.moreira@indt.org.br>
21  *  Edjard Mota <edjard.mota@indt.org.br>
22  *  Ilias Biris <ilias.biris@indt.org.br>
23  *  Mauricio Lin <mauricio.lin@indt.org.br>
24  *
25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26  *
27  *  A new process specific entry (smaps) included in /proc. It shows the
28  *  size of rss for each memory area. The maps entry lacks information
29  *  about physical memory size (rss) for each mapped file, i.e.,
30  *  rss information for executables and library files.
31  *  This additional information is useful for any tools that need to know
32  *  about physical memory consumption for a process specific library.
33  *
34  *  Changelog:
35  *  21-Feb-2005
36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37  *  Pud inclusion in the page table walking.
38  *
39  *  ChangeLog:
40  *  10-Mar-2005
41  *  10LE Instituto Nokia de Tecnologia - INdT:
42  *  A better way to walks through the page table as suggested by Hugh Dickins.
43  *
44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45  *  Smaps information related to shared, private, clean and dirty pages.
46  *
47  *  Paul Mundt <paul.mundt@nokia.com>:
48  *  Overall revision about smaps.
49  */
50 
51 #include <linux/uaccess.h>
52 
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/generic-radix-tree.h>
63 #include <linux/string.h>
64 #include <linux/seq_file.h>
65 #include <linux/namei.h>
66 #include <linux/mnt_namespace.h>
67 #include <linux/mm.h>
68 #include <linux/swap.h>
69 #include <linux/rcupdate.h>
70 #include <linux/kallsyms.h>
71 #include <linux/stacktrace.h>
72 #include <linux/resource.h>
73 #include <linux/module.h>
74 #include <linux/mount.h>
75 #include <linux/security.h>
76 #include <linux/ptrace.h>
77 #include <linux/tracehook.h>
78 #include <linux/printk.h>
79 #include <linux/cache.h>
80 #include <linux/cgroup.h>
81 #include <linux/cpuset.h>
82 #include <linux/audit.h>
83 #include <linux/poll.h>
84 #include <linux/nsproxy.h>
85 #include <linux/oom.h>
86 #include <linux/elf.h>
87 #include <linux/pid_namespace.h>
88 #include <linux/user_namespace.h>
89 #include <linux/fs_struct.h>
90 #include <linux/slab.h>
91 #include <linux/sched/autogroup.h>
92 #include <linux/sched/mm.h>
93 #include <linux/sched/coredump.h>
94 #include <linux/sched/debug.h>
95 #include <linux/sched/stat.h>
96 #include <linux/posix-timers.h>
97 #include <linux/time_namespace.h>
98 #include <linux/resctrl.h>
99 #include <trace/events/oom.h>
100 #include "internal.h"
101 #include "fd.h"
102 
103 #include "../../lib/kstrtox.h"
104 
105 /* NOTE:
106  *	Implementing inode permission operations in /proc is almost
107  *	certainly an error.  Permission checks need to happen during
108  *	each system call not at open time.  The reason is that most of
109  *	what we wish to check for permissions in /proc varies at runtime.
110  *
111  *	The classic example of a problem is opening file descriptors
112  *	in /proc for a task before it execs a suid executable.
113  */
114 
115 static u8 nlink_tid __ro_after_init;
116 static u8 nlink_tgid __ro_after_init;
117 
118 struct pid_entry {
119 	const char *name;
120 	unsigned int len;
121 	umode_t mode;
122 	const struct inode_operations *iop;
123 	const struct file_operations *fop;
124 	union proc_op op;
125 };
126 
127 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
128 	.name = (NAME),					\
129 	.len  = sizeof(NAME) - 1,			\
130 	.mode = MODE,					\
131 	.iop  = IOP,					\
132 	.fop  = FOP,					\
133 	.op   = OP,					\
134 }
135 
136 #define DIR(NAME, MODE, iops, fops)	\
137 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
138 #define LNK(NAME, get_link)					\
139 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
140 		&proc_pid_link_inode_operations, NULL,		\
141 		{ .proc_get_link = get_link } )
142 #define REG(NAME, MODE, fops)				\
143 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
144 #define ONE(NAME, MODE, show)				\
145 	NOD(NAME, (S_IFREG|(MODE)),			\
146 		NULL, &proc_single_file_operations,	\
147 		{ .proc_show = show } )
148 #define ATTR(LSM, NAME, MODE)				\
149 	NOD(NAME, (S_IFREG|(MODE)),			\
150 		NULL, &proc_pid_attr_operations,	\
151 		{ .lsm = LSM })
152 
153 /*
154  * Count the number of hardlinks for the pid_entry table, excluding the .
155  * and .. links.
156  */
157 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
158 	unsigned int n)
159 {
160 	unsigned int i;
161 	unsigned int count;
162 
163 	count = 2;
164 	for (i = 0; i < n; ++i) {
165 		if (S_ISDIR(entries[i].mode))
166 			++count;
167 	}
168 
169 	return count;
170 }
171 
172 static int get_task_root(struct task_struct *task, struct path *root)
173 {
174 	int result = -ENOENT;
175 
176 	task_lock(task);
177 	if (task->fs) {
178 		get_fs_root(task->fs, root);
179 		result = 0;
180 	}
181 	task_unlock(task);
182 	return result;
183 }
184 
185 static int proc_cwd_link(struct dentry *dentry, struct path *path)
186 {
187 	struct task_struct *task = get_proc_task(d_inode(dentry));
188 	int result = -ENOENT;
189 
190 	if (task) {
191 		task_lock(task);
192 		if (task->fs) {
193 			get_fs_pwd(task->fs, path);
194 			result = 0;
195 		}
196 		task_unlock(task);
197 		put_task_struct(task);
198 	}
199 	return result;
200 }
201 
202 static int proc_root_link(struct dentry *dentry, struct path *path)
203 {
204 	struct task_struct *task = get_proc_task(d_inode(dentry));
205 	int result = -ENOENT;
206 
207 	if (task) {
208 		result = get_task_root(task, path);
209 		put_task_struct(task);
210 	}
211 	return result;
212 }
213 
214 /*
215  * If the user used setproctitle(), we just get the string from
216  * user space at arg_start, and limit it to a maximum of one page.
217  */
218 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
219 				size_t count, unsigned long pos,
220 				unsigned long arg_start)
221 {
222 	char *page;
223 	int ret, got;
224 
225 	if (pos >= PAGE_SIZE)
226 		return 0;
227 
228 	page = (char *)__get_free_page(GFP_KERNEL);
229 	if (!page)
230 		return -ENOMEM;
231 
232 	ret = 0;
233 	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
234 	if (got > 0) {
235 		int len = strnlen(page, got);
236 
237 		/* Include the NUL character if it was found */
238 		if (len < got)
239 			len++;
240 
241 		if (len > pos) {
242 			len -= pos;
243 			if (len > count)
244 				len = count;
245 			len -= copy_to_user(buf, page+pos, len);
246 			if (!len)
247 				len = -EFAULT;
248 			ret = len;
249 		}
250 	}
251 	free_page((unsigned long)page);
252 	return ret;
253 }
254 
255 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
256 			      size_t count, loff_t *ppos)
257 {
258 	unsigned long arg_start, arg_end, env_start, env_end;
259 	unsigned long pos, len;
260 	char *page, c;
261 
262 	/* Check if process spawned far enough to have cmdline. */
263 	if (!mm->env_end)
264 		return 0;
265 
266 	spin_lock(&mm->arg_lock);
267 	arg_start = mm->arg_start;
268 	arg_end = mm->arg_end;
269 	env_start = mm->env_start;
270 	env_end = mm->env_end;
271 	spin_unlock(&mm->arg_lock);
272 
273 	if (arg_start >= arg_end)
274 		return 0;
275 
276 	/*
277 	 * We allow setproctitle() to overwrite the argument
278 	 * strings, and overflow past the original end. But
279 	 * only when it overflows into the environment area.
280 	 */
281 	if (env_start != arg_end || env_end < env_start)
282 		env_start = env_end = arg_end;
283 	len = env_end - arg_start;
284 
285 	/* We're not going to care if "*ppos" has high bits set */
286 	pos = *ppos;
287 	if (pos >= len)
288 		return 0;
289 	if (count > len - pos)
290 		count = len - pos;
291 	if (!count)
292 		return 0;
293 
294 	/*
295 	 * Magical special case: if the argv[] end byte is not
296 	 * zero, the user has overwritten it with setproctitle(3).
297 	 *
298 	 * Possible future enhancement: do this only once when
299 	 * pos is 0, and set a flag in the 'struct file'.
300 	 */
301 	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
302 		return get_mm_proctitle(mm, buf, count, pos, arg_start);
303 
304 	/*
305 	 * For the non-setproctitle() case we limit things strictly
306 	 * to the [arg_start, arg_end[ range.
307 	 */
308 	pos += arg_start;
309 	if (pos < arg_start || pos >= arg_end)
310 		return 0;
311 	if (count > arg_end - pos)
312 		count = arg_end - pos;
313 
314 	page = (char *)__get_free_page(GFP_KERNEL);
315 	if (!page)
316 		return -ENOMEM;
317 
318 	len = 0;
319 	while (count) {
320 		int got;
321 		size_t size = min_t(size_t, PAGE_SIZE, count);
322 
323 		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
324 		if (got <= 0)
325 			break;
326 		got -= copy_to_user(buf, page, got);
327 		if (unlikely(!got)) {
328 			if (!len)
329 				len = -EFAULT;
330 			break;
331 		}
332 		pos += got;
333 		buf += got;
334 		len += got;
335 		count -= got;
336 	}
337 
338 	free_page((unsigned long)page);
339 	return len;
340 }
341 
342 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
343 				size_t count, loff_t *pos)
344 {
345 	struct mm_struct *mm;
346 	ssize_t ret;
347 
348 	mm = get_task_mm(tsk);
349 	if (!mm)
350 		return 0;
351 
352 	ret = get_mm_cmdline(mm, buf, count, pos);
353 	mmput(mm);
354 	return ret;
355 }
356 
357 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
358 				     size_t count, loff_t *pos)
359 {
360 	struct task_struct *tsk;
361 	ssize_t ret;
362 
363 	BUG_ON(*pos < 0);
364 
365 	tsk = get_proc_task(file_inode(file));
366 	if (!tsk)
367 		return -ESRCH;
368 	ret = get_task_cmdline(tsk, buf, count, pos);
369 	put_task_struct(tsk);
370 	if (ret > 0)
371 		*pos += ret;
372 	return ret;
373 }
374 
375 static const struct file_operations proc_pid_cmdline_ops = {
376 	.read	= proc_pid_cmdline_read,
377 	.llseek	= generic_file_llseek,
378 };
379 
380 #ifdef CONFIG_KALLSYMS
381 /*
382  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
383  * Returns the resolved symbol.  If that fails, simply return the address.
384  */
385 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
386 			  struct pid *pid, struct task_struct *task)
387 {
388 	unsigned long wchan;
389 	char symname[KSYM_NAME_LEN];
390 
391 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
392 		goto print0;
393 
394 	wchan = get_wchan(task);
395 	if (wchan && !lookup_symbol_name(wchan, symname)) {
396 		seq_puts(m, symname);
397 		return 0;
398 	}
399 
400 print0:
401 	seq_putc(m, '0');
402 	return 0;
403 }
404 #endif /* CONFIG_KALLSYMS */
405 
406 static int lock_trace(struct task_struct *task)
407 {
408 	int err = mutex_lock_killable(&task->signal->exec_update_mutex);
409 	if (err)
410 		return err;
411 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
412 		mutex_unlock(&task->signal->exec_update_mutex);
413 		return -EPERM;
414 	}
415 	return 0;
416 }
417 
418 static void unlock_trace(struct task_struct *task)
419 {
420 	mutex_unlock(&task->signal->exec_update_mutex);
421 }
422 
423 #ifdef CONFIG_STACKTRACE
424 
425 #define MAX_STACK_TRACE_DEPTH	64
426 
427 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
428 			  struct pid *pid, struct task_struct *task)
429 {
430 	unsigned long *entries;
431 	int err;
432 
433 	/*
434 	 * The ability to racily run the kernel stack unwinder on a running task
435 	 * and then observe the unwinder output is scary; while it is useful for
436 	 * debugging kernel issues, it can also allow an attacker to leak kernel
437 	 * stack contents.
438 	 * Doing this in a manner that is at least safe from races would require
439 	 * some work to ensure that the remote task can not be scheduled; and
440 	 * even then, this would still expose the unwinder as local attack
441 	 * surface.
442 	 * Therefore, this interface is restricted to root.
443 	 */
444 	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
445 		return -EACCES;
446 
447 	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
448 				GFP_KERNEL);
449 	if (!entries)
450 		return -ENOMEM;
451 
452 	err = lock_trace(task);
453 	if (!err) {
454 		unsigned int i, nr_entries;
455 
456 		nr_entries = stack_trace_save_tsk(task, entries,
457 						  MAX_STACK_TRACE_DEPTH, 0);
458 
459 		for (i = 0; i < nr_entries; i++) {
460 			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
461 		}
462 
463 		unlock_trace(task);
464 	}
465 	kfree(entries);
466 
467 	return err;
468 }
469 #endif
470 
471 #ifdef CONFIG_SCHED_INFO
472 /*
473  * Provides /proc/PID/schedstat
474  */
475 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
476 			      struct pid *pid, struct task_struct *task)
477 {
478 	if (unlikely(!sched_info_on()))
479 		seq_puts(m, "0 0 0\n");
480 	else
481 		seq_printf(m, "%llu %llu %lu\n",
482 		   (unsigned long long)task->se.sum_exec_runtime,
483 		   (unsigned long long)task->sched_info.run_delay,
484 		   task->sched_info.pcount);
485 
486 	return 0;
487 }
488 #endif
489 
490 #ifdef CONFIG_LATENCYTOP
491 static int lstats_show_proc(struct seq_file *m, void *v)
492 {
493 	int i;
494 	struct inode *inode = m->private;
495 	struct task_struct *task = get_proc_task(inode);
496 
497 	if (!task)
498 		return -ESRCH;
499 	seq_puts(m, "Latency Top version : v0.1\n");
500 	for (i = 0; i < LT_SAVECOUNT; i++) {
501 		struct latency_record *lr = &task->latency_record[i];
502 		if (lr->backtrace[0]) {
503 			int q;
504 			seq_printf(m, "%i %li %li",
505 				   lr->count, lr->time, lr->max);
506 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
507 				unsigned long bt = lr->backtrace[q];
508 
509 				if (!bt)
510 					break;
511 				seq_printf(m, " %ps", (void *)bt);
512 			}
513 			seq_putc(m, '\n');
514 		}
515 
516 	}
517 	put_task_struct(task);
518 	return 0;
519 }
520 
521 static int lstats_open(struct inode *inode, struct file *file)
522 {
523 	return single_open(file, lstats_show_proc, inode);
524 }
525 
526 static ssize_t lstats_write(struct file *file, const char __user *buf,
527 			    size_t count, loff_t *offs)
528 {
529 	struct task_struct *task = get_proc_task(file_inode(file));
530 
531 	if (!task)
532 		return -ESRCH;
533 	clear_tsk_latency_tracing(task);
534 	put_task_struct(task);
535 
536 	return count;
537 }
538 
539 static const struct file_operations proc_lstats_operations = {
540 	.open		= lstats_open,
541 	.read		= seq_read,
542 	.write		= lstats_write,
543 	.llseek		= seq_lseek,
544 	.release	= single_release,
545 };
546 
547 #endif
548 
549 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
550 			  struct pid *pid, struct task_struct *task)
551 {
552 	unsigned long totalpages = totalram_pages() + total_swap_pages;
553 	unsigned long points = 0;
554 
555 	points = oom_badness(task, totalpages) * 1000 / totalpages;
556 	seq_printf(m, "%lu\n", points);
557 
558 	return 0;
559 }
560 
561 struct limit_names {
562 	const char *name;
563 	const char *unit;
564 };
565 
566 static const struct limit_names lnames[RLIM_NLIMITS] = {
567 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
568 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
569 	[RLIMIT_DATA] = {"Max data size", "bytes"},
570 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
571 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
572 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
573 	[RLIMIT_NPROC] = {"Max processes", "processes"},
574 	[RLIMIT_NOFILE] = {"Max open files", "files"},
575 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
576 	[RLIMIT_AS] = {"Max address space", "bytes"},
577 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
578 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
579 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
580 	[RLIMIT_NICE] = {"Max nice priority", NULL},
581 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
582 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
583 };
584 
585 /* Display limits for a process */
586 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
587 			   struct pid *pid, struct task_struct *task)
588 {
589 	unsigned int i;
590 	unsigned long flags;
591 
592 	struct rlimit rlim[RLIM_NLIMITS];
593 
594 	if (!lock_task_sighand(task, &flags))
595 		return 0;
596 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
597 	unlock_task_sighand(task, &flags);
598 
599 	/*
600 	 * print the file header
601 	 */
602 	seq_puts(m, "Limit                     "
603 		"Soft Limit           "
604 		"Hard Limit           "
605 		"Units     \n");
606 
607 	for (i = 0; i < RLIM_NLIMITS; i++) {
608 		if (rlim[i].rlim_cur == RLIM_INFINITY)
609 			seq_printf(m, "%-25s %-20s ",
610 				   lnames[i].name, "unlimited");
611 		else
612 			seq_printf(m, "%-25s %-20lu ",
613 				   lnames[i].name, rlim[i].rlim_cur);
614 
615 		if (rlim[i].rlim_max == RLIM_INFINITY)
616 			seq_printf(m, "%-20s ", "unlimited");
617 		else
618 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
619 
620 		if (lnames[i].unit)
621 			seq_printf(m, "%-10s\n", lnames[i].unit);
622 		else
623 			seq_putc(m, '\n');
624 	}
625 
626 	return 0;
627 }
628 
629 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
630 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
631 			    struct pid *pid, struct task_struct *task)
632 {
633 	struct syscall_info info;
634 	u64 *args = &info.data.args[0];
635 	int res;
636 
637 	res = lock_trace(task);
638 	if (res)
639 		return res;
640 
641 	if (task_current_syscall(task, &info))
642 		seq_puts(m, "running\n");
643 	else if (info.data.nr < 0)
644 		seq_printf(m, "%d 0x%llx 0x%llx\n",
645 			   info.data.nr, info.sp, info.data.instruction_pointer);
646 	else
647 		seq_printf(m,
648 		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
649 		       info.data.nr,
650 		       args[0], args[1], args[2], args[3], args[4], args[5],
651 		       info.sp, info.data.instruction_pointer);
652 	unlock_trace(task);
653 
654 	return 0;
655 }
656 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
657 
658 /************************************************************************/
659 /*                       Here the fs part begins                        */
660 /************************************************************************/
661 
662 /* permission checks */
663 static int proc_fd_access_allowed(struct inode *inode)
664 {
665 	struct task_struct *task;
666 	int allowed = 0;
667 	/* Allow access to a task's file descriptors if it is us or we
668 	 * may use ptrace attach to the process and find out that
669 	 * information.
670 	 */
671 	task = get_proc_task(inode);
672 	if (task) {
673 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
674 		put_task_struct(task);
675 	}
676 	return allowed;
677 }
678 
679 int proc_setattr(struct dentry *dentry, struct iattr *attr)
680 {
681 	int error;
682 	struct inode *inode = d_inode(dentry);
683 
684 	if (attr->ia_valid & ATTR_MODE)
685 		return -EPERM;
686 
687 	error = setattr_prepare(dentry, attr);
688 	if (error)
689 		return error;
690 
691 	setattr_copy(inode, attr);
692 	mark_inode_dirty(inode);
693 	return 0;
694 }
695 
696 /*
697  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
698  * or euid/egid (for hide_pid_min=2)?
699  */
700 static bool has_pid_permissions(struct pid_namespace *pid,
701 				 struct task_struct *task,
702 				 int hide_pid_min)
703 {
704 	if (pid->hide_pid < hide_pid_min)
705 		return true;
706 	if (in_group_p(pid->pid_gid))
707 		return true;
708 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
709 }
710 
711 
712 static int proc_pid_permission(struct inode *inode, int mask)
713 {
714 	struct pid_namespace *pid = proc_pid_ns(inode);
715 	struct task_struct *task;
716 	bool has_perms;
717 
718 	task = get_proc_task(inode);
719 	if (!task)
720 		return -ESRCH;
721 	has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
722 	put_task_struct(task);
723 
724 	if (!has_perms) {
725 		if (pid->hide_pid == HIDEPID_INVISIBLE) {
726 			/*
727 			 * Let's make getdents(), stat(), and open()
728 			 * consistent with each other.  If a process
729 			 * may not stat() a file, it shouldn't be seen
730 			 * in procfs at all.
731 			 */
732 			return -ENOENT;
733 		}
734 
735 		return -EPERM;
736 	}
737 	return generic_permission(inode, mask);
738 }
739 
740 
741 
742 static const struct inode_operations proc_def_inode_operations = {
743 	.setattr	= proc_setattr,
744 };
745 
746 static int proc_single_show(struct seq_file *m, void *v)
747 {
748 	struct inode *inode = m->private;
749 	struct pid_namespace *ns = proc_pid_ns(inode);
750 	struct pid *pid = proc_pid(inode);
751 	struct task_struct *task;
752 	int ret;
753 
754 	task = get_pid_task(pid, PIDTYPE_PID);
755 	if (!task)
756 		return -ESRCH;
757 
758 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
759 
760 	put_task_struct(task);
761 	return ret;
762 }
763 
764 static int proc_single_open(struct inode *inode, struct file *filp)
765 {
766 	return single_open(filp, proc_single_show, inode);
767 }
768 
769 static const struct file_operations proc_single_file_operations = {
770 	.open		= proc_single_open,
771 	.read		= seq_read,
772 	.llseek		= seq_lseek,
773 	.release	= single_release,
774 };
775 
776 
777 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
778 {
779 	struct task_struct *task = get_proc_task(inode);
780 	struct mm_struct *mm = ERR_PTR(-ESRCH);
781 
782 	if (task) {
783 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
784 		put_task_struct(task);
785 
786 		if (!IS_ERR_OR_NULL(mm)) {
787 			/* ensure this mm_struct can't be freed */
788 			mmgrab(mm);
789 			/* but do not pin its memory */
790 			mmput(mm);
791 		}
792 	}
793 
794 	return mm;
795 }
796 
797 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
798 {
799 	struct mm_struct *mm = proc_mem_open(inode, mode);
800 
801 	if (IS_ERR(mm))
802 		return PTR_ERR(mm);
803 
804 	file->private_data = mm;
805 	return 0;
806 }
807 
808 static int mem_open(struct inode *inode, struct file *file)
809 {
810 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
811 
812 	/* OK to pass negative loff_t, we can catch out-of-range */
813 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
814 
815 	return ret;
816 }
817 
818 static ssize_t mem_rw(struct file *file, char __user *buf,
819 			size_t count, loff_t *ppos, int write)
820 {
821 	struct mm_struct *mm = file->private_data;
822 	unsigned long addr = *ppos;
823 	ssize_t copied;
824 	char *page;
825 	unsigned int flags;
826 
827 	if (!mm)
828 		return 0;
829 
830 	page = (char *)__get_free_page(GFP_KERNEL);
831 	if (!page)
832 		return -ENOMEM;
833 
834 	copied = 0;
835 	if (!mmget_not_zero(mm))
836 		goto free;
837 
838 	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
839 
840 	while (count > 0) {
841 		int this_len = min_t(int, count, PAGE_SIZE);
842 
843 		if (write && copy_from_user(page, buf, this_len)) {
844 			copied = -EFAULT;
845 			break;
846 		}
847 
848 		this_len = access_remote_vm(mm, addr, page, this_len, flags);
849 		if (!this_len) {
850 			if (!copied)
851 				copied = -EIO;
852 			break;
853 		}
854 
855 		if (!write && copy_to_user(buf, page, this_len)) {
856 			copied = -EFAULT;
857 			break;
858 		}
859 
860 		buf += this_len;
861 		addr += this_len;
862 		copied += this_len;
863 		count -= this_len;
864 	}
865 	*ppos = addr;
866 
867 	mmput(mm);
868 free:
869 	free_page((unsigned long) page);
870 	return copied;
871 }
872 
873 static ssize_t mem_read(struct file *file, char __user *buf,
874 			size_t count, loff_t *ppos)
875 {
876 	return mem_rw(file, buf, count, ppos, 0);
877 }
878 
879 static ssize_t mem_write(struct file *file, const char __user *buf,
880 			 size_t count, loff_t *ppos)
881 {
882 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
883 }
884 
885 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
886 {
887 	switch (orig) {
888 	case 0:
889 		file->f_pos = offset;
890 		break;
891 	case 1:
892 		file->f_pos += offset;
893 		break;
894 	default:
895 		return -EINVAL;
896 	}
897 	force_successful_syscall_return();
898 	return file->f_pos;
899 }
900 
901 static int mem_release(struct inode *inode, struct file *file)
902 {
903 	struct mm_struct *mm = file->private_data;
904 	if (mm)
905 		mmdrop(mm);
906 	return 0;
907 }
908 
909 static const struct file_operations proc_mem_operations = {
910 	.llseek		= mem_lseek,
911 	.read		= mem_read,
912 	.write		= mem_write,
913 	.open		= mem_open,
914 	.release	= mem_release,
915 };
916 
917 static int environ_open(struct inode *inode, struct file *file)
918 {
919 	return __mem_open(inode, file, PTRACE_MODE_READ);
920 }
921 
922 static ssize_t environ_read(struct file *file, char __user *buf,
923 			size_t count, loff_t *ppos)
924 {
925 	char *page;
926 	unsigned long src = *ppos;
927 	int ret = 0;
928 	struct mm_struct *mm = file->private_data;
929 	unsigned long env_start, env_end;
930 
931 	/* Ensure the process spawned far enough to have an environment. */
932 	if (!mm || !mm->env_end)
933 		return 0;
934 
935 	page = (char *)__get_free_page(GFP_KERNEL);
936 	if (!page)
937 		return -ENOMEM;
938 
939 	ret = 0;
940 	if (!mmget_not_zero(mm))
941 		goto free;
942 
943 	spin_lock(&mm->arg_lock);
944 	env_start = mm->env_start;
945 	env_end = mm->env_end;
946 	spin_unlock(&mm->arg_lock);
947 
948 	while (count > 0) {
949 		size_t this_len, max_len;
950 		int retval;
951 
952 		if (src >= (env_end - env_start))
953 			break;
954 
955 		this_len = env_end - (env_start + src);
956 
957 		max_len = min_t(size_t, PAGE_SIZE, count);
958 		this_len = min(max_len, this_len);
959 
960 		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
961 
962 		if (retval <= 0) {
963 			ret = retval;
964 			break;
965 		}
966 
967 		if (copy_to_user(buf, page, retval)) {
968 			ret = -EFAULT;
969 			break;
970 		}
971 
972 		ret += retval;
973 		src += retval;
974 		buf += retval;
975 		count -= retval;
976 	}
977 	*ppos = src;
978 	mmput(mm);
979 
980 free:
981 	free_page((unsigned long) page);
982 	return ret;
983 }
984 
985 static const struct file_operations proc_environ_operations = {
986 	.open		= environ_open,
987 	.read		= environ_read,
988 	.llseek		= generic_file_llseek,
989 	.release	= mem_release,
990 };
991 
992 static int auxv_open(struct inode *inode, struct file *file)
993 {
994 	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
995 }
996 
997 static ssize_t auxv_read(struct file *file, char __user *buf,
998 			size_t count, loff_t *ppos)
999 {
1000 	struct mm_struct *mm = file->private_data;
1001 	unsigned int nwords = 0;
1002 
1003 	if (!mm)
1004 		return 0;
1005 	do {
1006 		nwords += 2;
1007 	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1008 	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1009 				       nwords * sizeof(mm->saved_auxv[0]));
1010 }
1011 
1012 static const struct file_operations proc_auxv_operations = {
1013 	.open		= auxv_open,
1014 	.read		= auxv_read,
1015 	.llseek		= generic_file_llseek,
1016 	.release	= mem_release,
1017 };
1018 
1019 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1020 			    loff_t *ppos)
1021 {
1022 	struct task_struct *task = get_proc_task(file_inode(file));
1023 	char buffer[PROC_NUMBUF];
1024 	int oom_adj = OOM_ADJUST_MIN;
1025 	size_t len;
1026 
1027 	if (!task)
1028 		return -ESRCH;
1029 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1030 		oom_adj = OOM_ADJUST_MAX;
1031 	else
1032 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1033 			  OOM_SCORE_ADJ_MAX;
1034 	put_task_struct(task);
1035 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1036 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1037 }
1038 
1039 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1040 {
1041 	static DEFINE_MUTEX(oom_adj_mutex);
1042 	struct mm_struct *mm = NULL;
1043 	struct task_struct *task;
1044 	int err = 0;
1045 
1046 	task = get_proc_task(file_inode(file));
1047 	if (!task)
1048 		return -ESRCH;
1049 
1050 	mutex_lock(&oom_adj_mutex);
1051 	if (legacy) {
1052 		if (oom_adj < task->signal->oom_score_adj &&
1053 				!capable(CAP_SYS_RESOURCE)) {
1054 			err = -EACCES;
1055 			goto err_unlock;
1056 		}
1057 		/*
1058 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1059 		 * /proc/pid/oom_score_adj instead.
1060 		 */
1061 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1062 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1063 			  task_pid_nr(task));
1064 	} else {
1065 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1066 				!capable(CAP_SYS_RESOURCE)) {
1067 			err = -EACCES;
1068 			goto err_unlock;
1069 		}
1070 	}
1071 
1072 	/*
1073 	 * Make sure we will check other processes sharing the mm if this is
1074 	 * not vfrok which wants its own oom_score_adj.
1075 	 * pin the mm so it doesn't go away and get reused after task_unlock
1076 	 */
1077 	if (!task->vfork_done) {
1078 		struct task_struct *p = find_lock_task_mm(task);
1079 
1080 		if (p) {
1081 			if (atomic_read(&p->mm->mm_users) > 1) {
1082 				mm = p->mm;
1083 				mmgrab(mm);
1084 			}
1085 			task_unlock(p);
1086 		}
1087 	}
1088 
1089 	task->signal->oom_score_adj = oom_adj;
1090 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1091 		task->signal->oom_score_adj_min = (short)oom_adj;
1092 	trace_oom_score_adj_update(task);
1093 
1094 	if (mm) {
1095 		struct task_struct *p;
1096 
1097 		rcu_read_lock();
1098 		for_each_process(p) {
1099 			if (same_thread_group(task, p))
1100 				continue;
1101 
1102 			/* do not touch kernel threads or the global init */
1103 			if (p->flags & PF_KTHREAD || is_global_init(p))
1104 				continue;
1105 
1106 			task_lock(p);
1107 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1108 				p->signal->oom_score_adj = oom_adj;
1109 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1110 					p->signal->oom_score_adj_min = (short)oom_adj;
1111 			}
1112 			task_unlock(p);
1113 		}
1114 		rcu_read_unlock();
1115 		mmdrop(mm);
1116 	}
1117 err_unlock:
1118 	mutex_unlock(&oom_adj_mutex);
1119 	put_task_struct(task);
1120 	return err;
1121 }
1122 
1123 /*
1124  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1125  * kernels.  The effective policy is defined by oom_score_adj, which has a
1126  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1127  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1128  * Processes that become oom disabled via oom_adj will still be oom disabled
1129  * with this implementation.
1130  *
1131  * oom_adj cannot be removed since existing userspace binaries use it.
1132  */
1133 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1134 			     size_t count, loff_t *ppos)
1135 {
1136 	char buffer[PROC_NUMBUF];
1137 	int oom_adj;
1138 	int err;
1139 
1140 	memset(buffer, 0, sizeof(buffer));
1141 	if (count > sizeof(buffer) - 1)
1142 		count = sizeof(buffer) - 1;
1143 	if (copy_from_user(buffer, buf, count)) {
1144 		err = -EFAULT;
1145 		goto out;
1146 	}
1147 
1148 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1149 	if (err)
1150 		goto out;
1151 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1152 	     oom_adj != OOM_DISABLE) {
1153 		err = -EINVAL;
1154 		goto out;
1155 	}
1156 
1157 	/*
1158 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1159 	 * value is always attainable.
1160 	 */
1161 	if (oom_adj == OOM_ADJUST_MAX)
1162 		oom_adj = OOM_SCORE_ADJ_MAX;
1163 	else
1164 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1165 
1166 	err = __set_oom_adj(file, oom_adj, true);
1167 out:
1168 	return err < 0 ? err : count;
1169 }
1170 
1171 static const struct file_operations proc_oom_adj_operations = {
1172 	.read		= oom_adj_read,
1173 	.write		= oom_adj_write,
1174 	.llseek		= generic_file_llseek,
1175 };
1176 
1177 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1178 					size_t count, loff_t *ppos)
1179 {
1180 	struct task_struct *task = get_proc_task(file_inode(file));
1181 	char buffer[PROC_NUMBUF];
1182 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1183 	size_t len;
1184 
1185 	if (!task)
1186 		return -ESRCH;
1187 	oom_score_adj = task->signal->oom_score_adj;
1188 	put_task_struct(task);
1189 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1190 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1191 }
1192 
1193 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1194 					size_t count, loff_t *ppos)
1195 {
1196 	char buffer[PROC_NUMBUF];
1197 	int oom_score_adj;
1198 	int err;
1199 
1200 	memset(buffer, 0, sizeof(buffer));
1201 	if (count > sizeof(buffer) - 1)
1202 		count = sizeof(buffer) - 1;
1203 	if (copy_from_user(buffer, buf, count)) {
1204 		err = -EFAULT;
1205 		goto out;
1206 	}
1207 
1208 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1209 	if (err)
1210 		goto out;
1211 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1212 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1213 		err = -EINVAL;
1214 		goto out;
1215 	}
1216 
1217 	err = __set_oom_adj(file, oom_score_adj, false);
1218 out:
1219 	return err < 0 ? err : count;
1220 }
1221 
1222 static const struct file_operations proc_oom_score_adj_operations = {
1223 	.read		= oom_score_adj_read,
1224 	.write		= oom_score_adj_write,
1225 	.llseek		= default_llseek,
1226 };
1227 
1228 #ifdef CONFIG_AUDIT
1229 #define TMPBUFLEN 11
1230 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1231 				  size_t count, loff_t *ppos)
1232 {
1233 	struct inode * inode = file_inode(file);
1234 	struct task_struct *task = get_proc_task(inode);
1235 	ssize_t length;
1236 	char tmpbuf[TMPBUFLEN];
1237 
1238 	if (!task)
1239 		return -ESRCH;
1240 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1241 			   from_kuid(file->f_cred->user_ns,
1242 				     audit_get_loginuid(task)));
1243 	put_task_struct(task);
1244 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1245 }
1246 
1247 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1248 				   size_t count, loff_t *ppos)
1249 {
1250 	struct inode * inode = file_inode(file);
1251 	uid_t loginuid;
1252 	kuid_t kloginuid;
1253 	int rv;
1254 
1255 	rcu_read_lock();
1256 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1257 		rcu_read_unlock();
1258 		return -EPERM;
1259 	}
1260 	rcu_read_unlock();
1261 
1262 	if (*ppos != 0) {
1263 		/* No partial writes. */
1264 		return -EINVAL;
1265 	}
1266 
1267 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1268 	if (rv < 0)
1269 		return rv;
1270 
1271 	/* is userspace tring to explicitly UNSET the loginuid? */
1272 	if (loginuid == AUDIT_UID_UNSET) {
1273 		kloginuid = INVALID_UID;
1274 	} else {
1275 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1276 		if (!uid_valid(kloginuid))
1277 			return -EINVAL;
1278 	}
1279 
1280 	rv = audit_set_loginuid(kloginuid);
1281 	if (rv < 0)
1282 		return rv;
1283 	return count;
1284 }
1285 
1286 static const struct file_operations proc_loginuid_operations = {
1287 	.read		= proc_loginuid_read,
1288 	.write		= proc_loginuid_write,
1289 	.llseek		= generic_file_llseek,
1290 };
1291 
1292 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1293 				  size_t count, loff_t *ppos)
1294 {
1295 	struct inode * inode = file_inode(file);
1296 	struct task_struct *task = get_proc_task(inode);
1297 	ssize_t length;
1298 	char tmpbuf[TMPBUFLEN];
1299 
1300 	if (!task)
1301 		return -ESRCH;
1302 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1303 				audit_get_sessionid(task));
1304 	put_task_struct(task);
1305 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1306 }
1307 
1308 static const struct file_operations proc_sessionid_operations = {
1309 	.read		= proc_sessionid_read,
1310 	.llseek		= generic_file_llseek,
1311 };
1312 #endif
1313 
1314 #ifdef CONFIG_FAULT_INJECTION
1315 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1316 				      size_t count, loff_t *ppos)
1317 {
1318 	struct task_struct *task = get_proc_task(file_inode(file));
1319 	char buffer[PROC_NUMBUF];
1320 	size_t len;
1321 	int make_it_fail;
1322 
1323 	if (!task)
1324 		return -ESRCH;
1325 	make_it_fail = task->make_it_fail;
1326 	put_task_struct(task);
1327 
1328 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1329 
1330 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1331 }
1332 
1333 static ssize_t proc_fault_inject_write(struct file * file,
1334 			const char __user * buf, size_t count, loff_t *ppos)
1335 {
1336 	struct task_struct *task;
1337 	char buffer[PROC_NUMBUF];
1338 	int make_it_fail;
1339 	int rv;
1340 
1341 	if (!capable(CAP_SYS_RESOURCE))
1342 		return -EPERM;
1343 	memset(buffer, 0, sizeof(buffer));
1344 	if (count > sizeof(buffer) - 1)
1345 		count = sizeof(buffer) - 1;
1346 	if (copy_from_user(buffer, buf, count))
1347 		return -EFAULT;
1348 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1349 	if (rv < 0)
1350 		return rv;
1351 	if (make_it_fail < 0 || make_it_fail > 1)
1352 		return -EINVAL;
1353 
1354 	task = get_proc_task(file_inode(file));
1355 	if (!task)
1356 		return -ESRCH;
1357 	task->make_it_fail = make_it_fail;
1358 	put_task_struct(task);
1359 
1360 	return count;
1361 }
1362 
1363 static const struct file_operations proc_fault_inject_operations = {
1364 	.read		= proc_fault_inject_read,
1365 	.write		= proc_fault_inject_write,
1366 	.llseek		= generic_file_llseek,
1367 };
1368 
1369 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1370 				   size_t count, loff_t *ppos)
1371 {
1372 	struct task_struct *task;
1373 	int err;
1374 	unsigned int n;
1375 
1376 	err = kstrtouint_from_user(buf, count, 0, &n);
1377 	if (err)
1378 		return err;
1379 
1380 	task = get_proc_task(file_inode(file));
1381 	if (!task)
1382 		return -ESRCH;
1383 	task->fail_nth = n;
1384 	put_task_struct(task);
1385 
1386 	return count;
1387 }
1388 
1389 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1390 				  size_t count, loff_t *ppos)
1391 {
1392 	struct task_struct *task;
1393 	char numbuf[PROC_NUMBUF];
1394 	ssize_t len;
1395 
1396 	task = get_proc_task(file_inode(file));
1397 	if (!task)
1398 		return -ESRCH;
1399 	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1400 	put_task_struct(task);
1401 	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1402 }
1403 
1404 static const struct file_operations proc_fail_nth_operations = {
1405 	.read		= proc_fail_nth_read,
1406 	.write		= proc_fail_nth_write,
1407 };
1408 #endif
1409 
1410 
1411 #ifdef CONFIG_SCHED_DEBUG
1412 /*
1413  * Print out various scheduling related per-task fields:
1414  */
1415 static int sched_show(struct seq_file *m, void *v)
1416 {
1417 	struct inode *inode = m->private;
1418 	struct pid_namespace *ns = proc_pid_ns(inode);
1419 	struct task_struct *p;
1420 
1421 	p = get_proc_task(inode);
1422 	if (!p)
1423 		return -ESRCH;
1424 	proc_sched_show_task(p, ns, m);
1425 
1426 	put_task_struct(p);
1427 
1428 	return 0;
1429 }
1430 
1431 static ssize_t
1432 sched_write(struct file *file, const char __user *buf,
1433 	    size_t count, loff_t *offset)
1434 {
1435 	struct inode *inode = file_inode(file);
1436 	struct task_struct *p;
1437 
1438 	p = get_proc_task(inode);
1439 	if (!p)
1440 		return -ESRCH;
1441 	proc_sched_set_task(p);
1442 
1443 	put_task_struct(p);
1444 
1445 	return count;
1446 }
1447 
1448 static int sched_open(struct inode *inode, struct file *filp)
1449 {
1450 	return single_open(filp, sched_show, inode);
1451 }
1452 
1453 static const struct file_operations proc_pid_sched_operations = {
1454 	.open		= sched_open,
1455 	.read		= seq_read,
1456 	.write		= sched_write,
1457 	.llseek		= seq_lseek,
1458 	.release	= single_release,
1459 };
1460 
1461 #endif
1462 
1463 #ifdef CONFIG_SCHED_AUTOGROUP
1464 /*
1465  * Print out autogroup related information:
1466  */
1467 static int sched_autogroup_show(struct seq_file *m, void *v)
1468 {
1469 	struct inode *inode = m->private;
1470 	struct task_struct *p;
1471 
1472 	p = get_proc_task(inode);
1473 	if (!p)
1474 		return -ESRCH;
1475 	proc_sched_autogroup_show_task(p, m);
1476 
1477 	put_task_struct(p);
1478 
1479 	return 0;
1480 }
1481 
1482 static ssize_t
1483 sched_autogroup_write(struct file *file, const char __user *buf,
1484 	    size_t count, loff_t *offset)
1485 {
1486 	struct inode *inode = file_inode(file);
1487 	struct task_struct *p;
1488 	char buffer[PROC_NUMBUF];
1489 	int nice;
1490 	int err;
1491 
1492 	memset(buffer, 0, sizeof(buffer));
1493 	if (count > sizeof(buffer) - 1)
1494 		count = sizeof(buffer) - 1;
1495 	if (copy_from_user(buffer, buf, count))
1496 		return -EFAULT;
1497 
1498 	err = kstrtoint(strstrip(buffer), 0, &nice);
1499 	if (err < 0)
1500 		return err;
1501 
1502 	p = get_proc_task(inode);
1503 	if (!p)
1504 		return -ESRCH;
1505 
1506 	err = proc_sched_autogroup_set_nice(p, nice);
1507 	if (err)
1508 		count = err;
1509 
1510 	put_task_struct(p);
1511 
1512 	return count;
1513 }
1514 
1515 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1516 {
1517 	int ret;
1518 
1519 	ret = single_open(filp, sched_autogroup_show, NULL);
1520 	if (!ret) {
1521 		struct seq_file *m = filp->private_data;
1522 
1523 		m->private = inode;
1524 	}
1525 	return ret;
1526 }
1527 
1528 static const struct file_operations proc_pid_sched_autogroup_operations = {
1529 	.open		= sched_autogroup_open,
1530 	.read		= seq_read,
1531 	.write		= sched_autogroup_write,
1532 	.llseek		= seq_lseek,
1533 	.release	= single_release,
1534 };
1535 
1536 #endif /* CONFIG_SCHED_AUTOGROUP */
1537 
1538 #ifdef CONFIG_TIME_NS
1539 static int timens_offsets_show(struct seq_file *m, void *v)
1540 {
1541 	struct task_struct *p;
1542 
1543 	p = get_proc_task(file_inode(m->file));
1544 	if (!p)
1545 		return -ESRCH;
1546 	proc_timens_show_offsets(p, m);
1547 
1548 	put_task_struct(p);
1549 
1550 	return 0;
1551 }
1552 
1553 static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1554 				    size_t count, loff_t *ppos)
1555 {
1556 	struct inode *inode = file_inode(file);
1557 	struct proc_timens_offset offsets[2];
1558 	char *kbuf = NULL, *pos, *next_line;
1559 	struct task_struct *p;
1560 	int ret, noffsets;
1561 
1562 	/* Only allow < page size writes at the beginning of the file */
1563 	if ((*ppos != 0) || (count >= PAGE_SIZE))
1564 		return -EINVAL;
1565 
1566 	/* Slurp in the user data */
1567 	kbuf = memdup_user_nul(buf, count);
1568 	if (IS_ERR(kbuf))
1569 		return PTR_ERR(kbuf);
1570 
1571 	/* Parse the user data */
1572 	ret = -EINVAL;
1573 	noffsets = 0;
1574 	for (pos = kbuf; pos; pos = next_line) {
1575 		struct proc_timens_offset *off = &offsets[noffsets];
1576 		char clock[10];
1577 		int err;
1578 
1579 		/* Find the end of line and ensure we don't look past it */
1580 		next_line = strchr(pos, '\n');
1581 		if (next_line) {
1582 			*next_line = '\0';
1583 			next_line++;
1584 			if (*next_line == '\0')
1585 				next_line = NULL;
1586 		}
1587 
1588 		err = sscanf(pos, "%9s %lld %lu", clock,
1589 				&off->val.tv_sec, &off->val.tv_nsec);
1590 		if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1591 			goto out;
1592 
1593 		clock[sizeof(clock) - 1] = 0;
1594 		if (strcmp(clock, "monotonic") == 0 ||
1595 		    strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1596 			off->clockid = CLOCK_MONOTONIC;
1597 		else if (strcmp(clock, "boottime") == 0 ||
1598 			 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1599 			off->clockid = CLOCK_BOOTTIME;
1600 		else
1601 			goto out;
1602 
1603 		noffsets++;
1604 		if (noffsets == ARRAY_SIZE(offsets)) {
1605 			if (next_line)
1606 				count = next_line - kbuf;
1607 			break;
1608 		}
1609 	}
1610 
1611 	ret = -ESRCH;
1612 	p = get_proc_task(inode);
1613 	if (!p)
1614 		goto out;
1615 	ret = proc_timens_set_offset(file, p, offsets, noffsets);
1616 	put_task_struct(p);
1617 	if (ret)
1618 		goto out;
1619 
1620 	ret = count;
1621 out:
1622 	kfree(kbuf);
1623 	return ret;
1624 }
1625 
1626 static int timens_offsets_open(struct inode *inode, struct file *filp)
1627 {
1628 	return single_open(filp, timens_offsets_show, inode);
1629 }
1630 
1631 static const struct file_operations proc_timens_offsets_operations = {
1632 	.open		= timens_offsets_open,
1633 	.read		= seq_read,
1634 	.write		= timens_offsets_write,
1635 	.llseek		= seq_lseek,
1636 	.release	= single_release,
1637 };
1638 #endif /* CONFIG_TIME_NS */
1639 
1640 static ssize_t comm_write(struct file *file, const char __user *buf,
1641 				size_t count, loff_t *offset)
1642 {
1643 	struct inode *inode = file_inode(file);
1644 	struct task_struct *p;
1645 	char buffer[TASK_COMM_LEN];
1646 	const size_t maxlen = sizeof(buffer) - 1;
1647 
1648 	memset(buffer, 0, sizeof(buffer));
1649 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1650 		return -EFAULT;
1651 
1652 	p = get_proc_task(inode);
1653 	if (!p)
1654 		return -ESRCH;
1655 
1656 	if (same_thread_group(current, p))
1657 		set_task_comm(p, buffer);
1658 	else
1659 		count = -EINVAL;
1660 
1661 	put_task_struct(p);
1662 
1663 	return count;
1664 }
1665 
1666 static int comm_show(struct seq_file *m, void *v)
1667 {
1668 	struct inode *inode = m->private;
1669 	struct task_struct *p;
1670 
1671 	p = get_proc_task(inode);
1672 	if (!p)
1673 		return -ESRCH;
1674 
1675 	proc_task_name(m, p, false);
1676 	seq_putc(m, '\n');
1677 
1678 	put_task_struct(p);
1679 
1680 	return 0;
1681 }
1682 
1683 static int comm_open(struct inode *inode, struct file *filp)
1684 {
1685 	return single_open(filp, comm_show, inode);
1686 }
1687 
1688 static const struct file_operations proc_pid_set_comm_operations = {
1689 	.open		= comm_open,
1690 	.read		= seq_read,
1691 	.write		= comm_write,
1692 	.llseek		= seq_lseek,
1693 	.release	= single_release,
1694 };
1695 
1696 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1697 {
1698 	struct task_struct *task;
1699 	struct file *exe_file;
1700 
1701 	task = get_proc_task(d_inode(dentry));
1702 	if (!task)
1703 		return -ENOENT;
1704 	exe_file = get_task_exe_file(task);
1705 	put_task_struct(task);
1706 	if (exe_file) {
1707 		*exe_path = exe_file->f_path;
1708 		path_get(&exe_file->f_path);
1709 		fput(exe_file);
1710 		return 0;
1711 	} else
1712 		return -ENOENT;
1713 }
1714 
1715 static const char *proc_pid_get_link(struct dentry *dentry,
1716 				     struct inode *inode,
1717 				     struct delayed_call *done)
1718 {
1719 	struct path path;
1720 	int error = -EACCES;
1721 
1722 	if (!dentry)
1723 		return ERR_PTR(-ECHILD);
1724 
1725 	/* Are we allowed to snoop on the tasks file descriptors? */
1726 	if (!proc_fd_access_allowed(inode))
1727 		goto out;
1728 
1729 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1730 	if (error)
1731 		goto out;
1732 
1733 	error = nd_jump_link(&path);
1734 out:
1735 	return ERR_PTR(error);
1736 }
1737 
1738 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1739 {
1740 	char *tmp = (char *)__get_free_page(GFP_KERNEL);
1741 	char *pathname;
1742 	int len;
1743 
1744 	if (!tmp)
1745 		return -ENOMEM;
1746 
1747 	pathname = d_path(path, tmp, PAGE_SIZE);
1748 	len = PTR_ERR(pathname);
1749 	if (IS_ERR(pathname))
1750 		goto out;
1751 	len = tmp + PAGE_SIZE - 1 - pathname;
1752 
1753 	if (len > buflen)
1754 		len = buflen;
1755 	if (copy_to_user(buffer, pathname, len))
1756 		len = -EFAULT;
1757  out:
1758 	free_page((unsigned long)tmp);
1759 	return len;
1760 }
1761 
1762 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1763 {
1764 	int error = -EACCES;
1765 	struct inode *inode = d_inode(dentry);
1766 	struct path path;
1767 
1768 	/* Are we allowed to snoop on the tasks file descriptors? */
1769 	if (!proc_fd_access_allowed(inode))
1770 		goto out;
1771 
1772 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1773 	if (error)
1774 		goto out;
1775 
1776 	error = do_proc_readlink(&path, buffer, buflen);
1777 	path_put(&path);
1778 out:
1779 	return error;
1780 }
1781 
1782 const struct inode_operations proc_pid_link_inode_operations = {
1783 	.readlink	= proc_pid_readlink,
1784 	.get_link	= proc_pid_get_link,
1785 	.setattr	= proc_setattr,
1786 };
1787 
1788 
1789 /* building an inode */
1790 
1791 void task_dump_owner(struct task_struct *task, umode_t mode,
1792 		     kuid_t *ruid, kgid_t *rgid)
1793 {
1794 	/* Depending on the state of dumpable compute who should own a
1795 	 * proc file for a task.
1796 	 */
1797 	const struct cred *cred;
1798 	kuid_t uid;
1799 	kgid_t gid;
1800 
1801 	if (unlikely(task->flags & PF_KTHREAD)) {
1802 		*ruid = GLOBAL_ROOT_UID;
1803 		*rgid = GLOBAL_ROOT_GID;
1804 		return;
1805 	}
1806 
1807 	/* Default to the tasks effective ownership */
1808 	rcu_read_lock();
1809 	cred = __task_cred(task);
1810 	uid = cred->euid;
1811 	gid = cred->egid;
1812 	rcu_read_unlock();
1813 
1814 	/*
1815 	 * Before the /proc/pid/status file was created the only way to read
1816 	 * the effective uid of a /process was to stat /proc/pid.  Reading
1817 	 * /proc/pid/status is slow enough that procps and other packages
1818 	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1819 	 * made this apply to all per process world readable and executable
1820 	 * directories.
1821 	 */
1822 	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1823 		struct mm_struct *mm;
1824 		task_lock(task);
1825 		mm = task->mm;
1826 		/* Make non-dumpable tasks owned by some root */
1827 		if (mm) {
1828 			if (get_dumpable(mm) != SUID_DUMP_USER) {
1829 				struct user_namespace *user_ns = mm->user_ns;
1830 
1831 				uid = make_kuid(user_ns, 0);
1832 				if (!uid_valid(uid))
1833 					uid = GLOBAL_ROOT_UID;
1834 
1835 				gid = make_kgid(user_ns, 0);
1836 				if (!gid_valid(gid))
1837 					gid = GLOBAL_ROOT_GID;
1838 			}
1839 		} else {
1840 			uid = GLOBAL_ROOT_UID;
1841 			gid = GLOBAL_ROOT_GID;
1842 		}
1843 		task_unlock(task);
1844 	}
1845 	*ruid = uid;
1846 	*rgid = gid;
1847 }
1848 
1849 void proc_pid_evict_inode(struct proc_inode *ei)
1850 {
1851 	struct pid *pid = ei->pid;
1852 
1853 	if (S_ISDIR(ei->vfs_inode.i_mode)) {
1854 		spin_lock(&pid->lock);
1855 		hlist_del_init_rcu(&ei->sibling_inodes);
1856 		spin_unlock(&pid->lock);
1857 	}
1858 
1859 	put_pid(pid);
1860 }
1861 
1862 struct inode *proc_pid_make_inode(struct super_block * sb,
1863 				  struct task_struct *task, umode_t mode)
1864 {
1865 	struct inode * inode;
1866 	struct proc_inode *ei;
1867 	struct pid *pid;
1868 
1869 	/* We need a new inode */
1870 
1871 	inode = new_inode(sb);
1872 	if (!inode)
1873 		goto out;
1874 
1875 	/* Common stuff */
1876 	ei = PROC_I(inode);
1877 	inode->i_mode = mode;
1878 	inode->i_ino = get_next_ino();
1879 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1880 	inode->i_op = &proc_def_inode_operations;
1881 
1882 	/*
1883 	 * grab the reference to task.
1884 	 */
1885 	pid = get_task_pid(task, PIDTYPE_PID);
1886 	if (!pid)
1887 		goto out_unlock;
1888 
1889 	/* Let the pid remember us for quick removal */
1890 	ei->pid = pid;
1891 	if (S_ISDIR(mode)) {
1892 		spin_lock(&pid->lock);
1893 		hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1894 		spin_unlock(&pid->lock);
1895 	}
1896 
1897 	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1898 	security_task_to_inode(task, inode);
1899 
1900 out:
1901 	return inode;
1902 
1903 out_unlock:
1904 	iput(inode);
1905 	return NULL;
1906 }
1907 
1908 int pid_getattr(const struct path *path, struct kstat *stat,
1909 		u32 request_mask, unsigned int query_flags)
1910 {
1911 	struct inode *inode = d_inode(path->dentry);
1912 	struct pid_namespace *pid = proc_pid_ns(inode);
1913 	struct task_struct *task;
1914 
1915 	generic_fillattr(inode, stat);
1916 
1917 	stat->uid = GLOBAL_ROOT_UID;
1918 	stat->gid = GLOBAL_ROOT_GID;
1919 	rcu_read_lock();
1920 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1921 	if (task) {
1922 		if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1923 			rcu_read_unlock();
1924 			/*
1925 			 * This doesn't prevent learning whether PID exists,
1926 			 * it only makes getattr() consistent with readdir().
1927 			 */
1928 			return -ENOENT;
1929 		}
1930 		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1931 	}
1932 	rcu_read_unlock();
1933 	return 0;
1934 }
1935 
1936 /* dentry stuff */
1937 
1938 /*
1939  * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1940  */
1941 void pid_update_inode(struct task_struct *task, struct inode *inode)
1942 {
1943 	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1944 
1945 	inode->i_mode &= ~(S_ISUID | S_ISGID);
1946 	security_task_to_inode(task, inode);
1947 }
1948 
1949 /*
1950  * Rewrite the inode's ownerships here because the owning task may have
1951  * performed a setuid(), etc.
1952  *
1953  */
1954 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1955 {
1956 	struct inode *inode;
1957 	struct task_struct *task;
1958 
1959 	if (flags & LOOKUP_RCU)
1960 		return -ECHILD;
1961 
1962 	inode = d_inode(dentry);
1963 	task = get_proc_task(inode);
1964 
1965 	if (task) {
1966 		pid_update_inode(task, inode);
1967 		put_task_struct(task);
1968 		return 1;
1969 	}
1970 	return 0;
1971 }
1972 
1973 static inline bool proc_inode_is_dead(struct inode *inode)
1974 {
1975 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1976 }
1977 
1978 int pid_delete_dentry(const struct dentry *dentry)
1979 {
1980 	/* Is the task we represent dead?
1981 	 * If so, then don't put the dentry on the lru list,
1982 	 * kill it immediately.
1983 	 */
1984 	return proc_inode_is_dead(d_inode(dentry));
1985 }
1986 
1987 const struct dentry_operations pid_dentry_operations =
1988 {
1989 	.d_revalidate	= pid_revalidate,
1990 	.d_delete	= pid_delete_dentry,
1991 };
1992 
1993 /* Lookups */
1994 
1995 /*
1996  * Fill a directory entry.
1997  *
1998  * If possible create the dcache entry and derive our inode number and
1999  * file type from dcache entry.
2000  *
2001  * Since all of the proc inode numbers are dynamically generated, the inode
2002  * numbers do not exist until the inode is cache.  This means creating the
2003  * the dcache entry in readdir is necessary to keep the inode numbers
2004  * reported by readdir in sync with the inode numbers reported
2005  * by stat.
2006  */
2007 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2008 	const char *name, unsigned int len,
2009 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
2010 {
2011 	struct dentry *child, *dir = file->f_path.dentry;
2012 	struct qstr qname = QSTR_INIT(name, len);
2013 	struct inode *inode;
2014 	unsigned type = DT_UNKNOWN;
2015 	ino_t ino = 1;
2016 
2017 	child = d_hash_and_lookup(dir, &qname);
2018 	if (!child) {
2019 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2020 		child = d_alloc_parallel(dir, &qname, &wq);
2021 		if (IS_ERR(child))
2022 			goto end_instantiate;
2023 		if (d_in_lookup(child)) {
2024 			struct dentry *res;
2025 			res = instantiate(child, task, ptr);
2026 			d_lookup_done(child);
2027 			if (unlikely(res)) {
2028 				dput(child);
2029 				child = res;
2030 				if (IS_ERR(child))
2031 					goto end_instantiate;
2032 			}
2033 		}
2034 	}
2035 	inode = d_inode(child);
2036 	ino = inode->i_ino;
2037 	type = inode->i_mode >> 12;
2038 	dput(child);
2039 end_instantiate:
2040 	return dir_emit(ctx, name, len, ino, type);
2041 }
2042 
2043 /*
2044  * dname_to_vma_addr - maps a dentry name into two unsigned longs
2045  * which represent vma start and end addresses.
2046  */
2047 static int dname_to_vma_addr(struct dentry *dentry,
2048 			     unsigned long *start, unsigned long *end)
2049 {
2050 	const char *str = dentry->d_name.name;
2051 	unsigned long long sval, eval;
2052 	unsigned int len;
2053 
2054 	if (str[0] == '0' && str[1] != '-')
2055 		return -EINVAL;
2056 	len = _parse_integer(str, 16, &sval);
2057 	if (len & KSTRTOX_OVERFLOW)
2058 		return -EINVAL;
2059 	if (sval != (unsigned long)sval)
2060 		return -EINVAL;
2061 	str += len;
2062 
2063 	if (*str != '-')
2064 		return -EINVAL;
2065 	str++;
2066 
2067 	if (str[0] == '0' && str[1])
2068 		return -EINVAL;
2069 	len = _parse_integer(str, 16, &eval);
2070 	if (len & KSTRTOX_OVERFLOW)
2071 		return -EINVAL;
2072 	if (eval != (unsigned long)eval)
2073 		return -EINVAL;
2074 	str += len;
2075 
2076 	if (*str != '\0')
2077 		return -EINVAL;
2078 
2079 	*start = sval;
2080 	*end = eval;
2081 
2082 	return 0;
2083 }
2084 
2085 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2086 {
2087 	unsigned long vm_start, vm_end;
2088 	bool exact_vma_exists = false;
2089 	struct mm_struct *mm = NULL;
2090 	struct task_struct *task;
2091 	struct inode *inode;
2092 	int status = 0;
2093 
2094 	if (flags & LOOKUP_RCU)
2095 		return -ECHILD;
2096 
2097 	inode = d_inode(dentry);
2098 	task = get_proc_task(inode);
2099 	if (!task)
2100 		goto out_notask;
2101 
2102 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2103 	if (IS_ERR_OR_NULL(mm))
2104 		goto out;
2105 
2106 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2107 		status = down_read_killable(&mm->mmap_sem);
2108 		if (!status) {
2109 			exact_vma_exists = !!find_exact_vma(mm, vm_start,
2110 							    vm_end);
2111 			up_read(&mm->mmap_sem);
2112 		}
2113 	}
2114 
2115 	mmput(mm);
2116 
2117 	if (exact_vma_exists) {
2118 		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2119 
2120 		security_task_to_inode(task, inode);
2121 		status = 1;
2122 	}
2123 
2124 out:
2125 	put_task_struct(task);
2126 
2127 out_notask:
2128 	return status;
2129 }
2130 
2131 static const struct dentry_operations tid_map_files_dentry_operations = {
2132 	.d_revalidate	= map_files_d_revalidate,
2133 	.d_delete	= pid_delete_dentry,
2134 };
2135 
2136 static int map_files_get_link(struct dentry *dentry, struct path *path)
2137 {
2138 	unsigned long vm_start, vm_end;
2139 	struct vm_area_struct *vma;
2140 	struct task_struct *task;
2141 	struct mm_struct *mm;
2142 	int rc;
2143 
2144 	rc = -ENOENT;
2145 	task = get_proc_task(d_inode(dentry));
2146 	if (!task)
2147 		goto out;
2148 
2149 	mm = get_task_mm(task);
2150 	put_task_struct(task);
2151 	if (!mm)
2152 		goto out;
2153 
2154 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2155 	if (rc)
2156 		goto out_mmput;
2157 
2158 	rc = down_read_killable(&mm->mmap_sem);
2159 	if (rc)
2160 		goto out_mmput;
2161 
2162 	rc = -ENOENT;
2163 	vma = find_exact_vma(mm, vm_start, vm_end);
2164 	if (vma && vma->vm_file) {
2165 		*path = vma->vm_file->f_path;
2166 		path_get(path);
2167 		rc = 0;
2168 	}
2169 	up_read(&mm->mmap_sem);
2170 
2171 out_mmput:
2172 	mmput(mm);
2173 out:
2174 	return rc;
2175 }
2176 
2177 struct map_files_info {
2178 	unsigned long	start;
2179 	unsigned long	end;
2180 	fmode_t		mode;
2181 };
2182 
2183 /*
2184  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2185  * symlinks may be used to bypass permissions on ancestor directories in the
2186  * path to the file in question.
2187  */
2188 static const char *
2189 proc_map_files_get_link(struct dentry *dentry,
2190 			struct inode *inode,
2191 		        struct delayed_call *done)
2192 {
2193 	if (!capable(CAP_SYS_ADMIN))
2194 		return ERR_PTR(-EPERM);
2195 
2196 	return proc_pid_get_link(dentry, inode, done);
2197 }
2198 
2199 /*
2200  * Identical to proc_pid_link_inode_operations except for get_link()
2201  */
2202 static const struct inode_operations proc_map_files_link_inode_operations = {
2203 	.readlink	= proc_pid_readlink,
2204 	.get_link	= proc_map_files_get_link,
2205 	.setattr	= proc_setattr,
2206 };
2207 
2208 static struct dentry *
2209 proc_map_files_instantiate(struct dentry *dentry,
2210 			   struct task_struct *task, const void *ptr)
2211 {
2212 	fmode_t mode = (fmode_t)(unsigned long)ptr;
2213 	struct proc_inode *ei;
2214 	struct inode *inode;
2215 
2216 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2217 				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2218 				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2219 	if (!inode)
2220 		return ERR_PTR(-ENOENT);
2221 
2222 	ei = PROC_I(inode);
2223 	ei->op.proc_get_link = map_files_get_link;
2224 
2225 	inode->i_op = &proc_map_files_link_inode_operations;
2226 	inode->i_size = 64;
2227 
2228 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2229 	return d_splice_alias(inode, dentry);
2230 }
2231 
2232 static struct dentry *proc_map_files_lookup(struct inode *dir,
2233 		struct dentry *dentry, unsigned int flags)
2234 {
2235 	unsigned long vm_start, vm_end;
2236 	struct vm_area_struct *vma;
2237 	struct task_struct *task;
2238 	struct dentry *result;
2239 	struct mm_struct *mm;
2240 
2241 	result = ERR_PTR(-ENOENT);
2242 	task = get_proc_task(dir);
2243 	if (!task)
2244 		goto out;
2245 
2246 	result = ERR_PTR(-EACCES);
2247 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2248 		goto out_put_task;
2249 
2250 	result = ERR_PTR(-ENOENT);
2251 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2252 		goto out_put_task;
2253 
2254 	mm = get_task_mm(task);
2255 	if (!mm)
2256 		goto out_put_task;
2257 
2258 	result = ERR_PTR(-EINTR);
2259 	if (down_read_killable(&mm->mmap_sem))
2260 		goto out_put_mm;
2261 
2262 	result = ERR_PTR(-ENOENT);
2263 	vma = find_exact_vma(mm, vm_start, vm_end);
2264 	if (!vma)
2265 		goto out_no_vma;
2266 
2267 	if (vma->vm_file)
2268 		result = proc_map_files_instantiate(dentry, task,
2269 				(void *)(unsigned long)vma->vm_file->f_mode);
2270 
2271 out_no_vma:
2272 	up_read(&mm->mmap_sem);
2273 out_put_mm:
2274 	mmput(mm);
2275 out_put_task:
2276 	put_task_struct(task);
2277 out:
2278 	return result;
2279 }
2280 
2281 static const struct inode_operations proc_map_files_inode_operations = {
2282 	.lookup		= proc_map_files_lookup,
2283 	.permission	= proc_fd_permission,
2284 	.setattr	= proc_setattr,
2285 };
2286 
2287 static int
2288 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2289 {
2290 	struct vm_area_struct *vma;
2291 	struct task_struct *task;
2292 	struct mm_struct *mm;
2293 	unsigned long nr_files, pos, i;
2294 	GENRADIX(struct map_files_info) fa;
2295 	struct map_files_info *p;
2296 	int ret;
2297 
2298 	genradix_init(&fa);
2299 
2300 	ret = -ENOENT;
2301 	task = get_proc_task(file_inode(file));
2302 	if (!task)
2303 		goto out;
2304 
2305 	ret = -EACCES;
2306 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2307 		goto out_put_task;
2308 
2309 	ret = 0;
2310 	if (!dir_emit_dots(file, ctx))
2311 		goto out_put_task;
2312 
2313 	mm = get_task_mm(task);
2314 	if (!mm)
2315 		goto out_put_task;
2316 
2317 	ret = down_read_killable(&mm->mmap_sem);
2318 	if (ret) {
2319 		mmput(mm);
2320 		goto out_put_task;
2321 	}
2322 
2323 	nr_files = 0;
2324 
2325 	/*
2326 	 * We need two passes here:
2327 	 *
2328 	 *  1) Collect vmas of mapped files with mmap_sem taken
2329 	 *  2) Release mmap_sem and instantiate entries
2330 	 *
2331 	 * otherwise we get lockdep complained, since filldir()
2332 	 * routine might require mmap_sem taken in might_fault().
2333 	 */
2334 
2335 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2336 		if (!vma->vm_file)
2337 			continue;
2338 		if (++pos <= ctx->pos)
2339 			continue;
2340 
2341 		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2342 		if (!p) {
2343 			ret = -ENOMEM;
2344 			up_read(&mm->mmap_sem);
2345 			mmput(mm);
2346 			goto out_put_task;
2347 		}
2348 
2349 		p->start = vma->vm_start;
2350 		p->end = vma->vm_end;
2351 		p->mode = vma->vm_file->f_mode;
2352 	}
2353 	up_read(&mm->mmap_sem);
2354 	mmput(mm);
2355 
2356 	for (i = 0; i < nr_files; i++) {
2357 		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2358 		unsigned int len;
2359 
2360 		p = genradix_ptr(&fa, i);
2361 		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2362 		if (!proc_fill_cache(file, ctx,
2363 				      buf, len,
2364 				      proc_map_files_instantiate,
2365 				      task,
2366 				      (void *)(unsigned long)p->mode))
2367 			break;
2368 		ctx->pos++;
2369 	}
2370 
2371 out_put_task:
2372 	put_task_struct(task);
2373 out:
2374 	genradix_free(&fa);
2375 	return ret;
2376 }
2377 
2378 static const struct file_operations proc_map_files_operations = {
2379 	.read		= generic_read_dir,
2380 	.iterate_shared	= proc_map_files_readdir,
2381 	.llseek		= generic_file_llseek,
2382 };
2383 
2384 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2385 struct timers_private {
2386 	struct pid *pid;
2387 	struct task_struct *task;
2388 	struct sighand_struct *sighand;
2389 	struct pid_namespace *ns;
2390 	unsigned long flags;
2391 };
2392 
2393 static void *timers_start(struct seq_file *m, loff_t *pos)
2394 {
2395 	struct timers_private *tp = m->private;
2396 
2397 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2398 	if (!tp->task)
2399 		return ERR_PTR(-ESRCH);
2400 
2401 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2402 	if (!tp->sighand)
2403 		return ERR_PTR(-ESRCH);
2404 
2405 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2406 }
2407 
2408 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2409 {
2410 	struct timers_private *tp = m->private;
2411 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2412 }
2413 
2414 static void timers_stop(struct seq_file *m, void *v)
2415 {
2416 	struct timers_private *tp = m->private;
2417 
2418 	if (tp->sighand) {
2419 		unlock_task_sighand(tp->task, &tp->flags);
2420 		tp->sighand = NULL;
2421 	}
2422 
2423 	if (tp->task) {
2424 		put_task_struct(tp->task);
2425 		tp->task = NULL;
2426 	}
2427 }
2428 
2429 static int show_timer(struct seq_file *m, void *v)
2430 {
2431 	struct k_itimer *timer;
2432 	struct timers_private *tp = m->private;
2433 	int notify;
2434 	static const char * const nstr[] = {
2435 		[SIGEV_SIGNAL] = "signal",
2436 		[SIGEV_NONE] = "none",
2437 		[SIGEV_THREAD] = "thread",
2438 	};
2439 
2440 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2441 	notify = timer->it_sigev_notify;
2442 
2443 	seq_printf(m, "ID: %d\n", timer->it_id);
2444 	seq_printf(m, "signal: %d/%px\n",
2445 		   timer->sigq->info.si_signo,
2446 		   timer->sigq->info.si_value.sival_ptr);
2447 	seq_printf(m, "notify: %s/%s.%d\n",
2448 		   nstr[notify & ~SIGEV_THREAD_ID],
2449 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2450 		   pid_nr_ns(timer->it_pid, tp->ns));
2451 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2452 
2453 	return 0;
2454 }
2455 
2456 static const struct seq_operations proc_timers_seq_ops = {
2457 	.start	= timers_start,
2458 	.next	= timers_next,
2459 	.stop	= timers_stop,
2460 	.show	= show_timer,
2461 };
2462 
2463 static int proc_timers_open(struct inode *inode, struct file *file)
2464 {
2465 	struct timers_private *tp;
2466 
2467 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2468 			sizeof(struct timers_private));
2469 	if (!tp)
2470 		return -ENOMEM;
2471 
2472 	tp->pid = proc_pid(inode);
2473 	tp->ns = proc_pid_ns(inode);
2474 	return 0;
2475 }
2476 
2477 static const struct file_operations proc_timers_operations = {
2478 	.open		= proc_timers_open,
2479 	.read		= seq_read,
2480 	.llseek		= seq_lseek,
2481 	.release	= seq_release_private,
2482 };
2483 #endif
2484 
2485 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2486 					size_t count, loff_t *offset)
2487 {
2488 	struct inode *inode = file_inode(file);
2489 	struct task_struct *p;
2490 	u64 slack_ns;
2491 	int err;
2492 
2493 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2494 	if (err < 0)
2495 		return err;
2496 
2497 	p = get_proc_task(inode);
2498 	if (!p)
2499 		return -ESRCH;
2500 
2501 	if (p != current) {
2502 		rcu_read_lock();
2503 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2504 			rcu_read_unlock();
2505 			count = -EPERM;
2506 			goto out;
2507 		}
2508 		rcu_read_unlock();
2509 
2510 		err = security_task_setscheduler(p);
2511 		if (err) {
2512 			count = err;
2513 			goto out;
2514 		}
2515 	}
2516 
2517 	task_lock(p);
2518 	if (slack_ns == 0)
2519 		p->timer_slack_ns = p->default_timer_slack_ns;
2520 	else
2521 		p->timer_slack_ns = slack_ns;
2522 	task_unlock(p);
2523 
2524 out:
2525 	put_task_struct(p);
2526 
2527 	return count;
2528 }
2529 
2530 static int timerslack_ns_show(struct seq_file *m, void *v)
2531 {
2532 	struct inode *inode = m->private;
2533 	struct task_struct *p;
2534 	int err = 0;
2535 
2536 	p = get_proc_task(inode);
2537 	if (!p)
2538 		return -ESRCH;
2539 
2540 	if (p != current) {
2541 		rcu_read_lock();
2542 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2543 			rcu_read_unlock();
2544 			err = -EPERM;
2545 			goto out;
2546 		}
2547 		rcu_read_unlock();
2548 
2549 		err = security_task_getscheduler(p);
2550 		if (err)
2551 			goto out;
2552 	}
2553 
2554 	task_lock(p);
2555 	seq_printf(m, "%llu\n", p->timer_slack_ns);
2556 	task_unlock(p);
2557 
2558 out:
2559 	put_task_struct(p);
2560 
2561 	return err;
2562 }
2563 
2564 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2565 {
2566 	return single_open(filp, timerslack_ns_show, inode);
2567 }
2568 
2569 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2570 	.open		= timerslack_ns_open,
2571 	.read		= seq_read,
2572 	.write		= timerslack_ns_write,
2573 	.llseek		= seq_lseek,
2574 	.release	= single_release,
2575 };
2576 
2577 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2578 	struct task_struct *task, const void *ptr)
2579 {
2580 	const struct pid_entry *p = ptr;
2581 	struct inode *inode;
2582 	struct proc_inode *ei;
2583 
2584 	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2585 	if (!inode)
2586 		return ERR_PTR(-ENOENT);
2587 
2588 	ei = PROC_I(inode);
2589 	if (S_ISDIR(inode->i_mode))
2590 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2591 	if (p->iop)
2592 		inode->i_op = p->iop;
2593 	if (p->fop)
2594 		inode->i_fop = p->fop;
2595 	ei->op = p->op;
2596 	pid_update_inode(task, inode);
2597 	d_set_d_op(dentry, &pid_dentry_operations);
2598 	return d_splice_alias(inode, dentry);
2599 }
2600 
2601 static struct dentry *proc_pident_lookup(struct inode *dir,
2602 					 struct dentry *dentry,
2603 					 const struct pid_entry *p,
2604 					 const struct pid_entry *end)
2605 {
2606 	struct task_struct *task = get_proc_task(dir);
2607 	struct dentry *res = ERR_PTR(-ENOENT);
2608 
2609 	if (!task)
2610 		goto out_no_task;
2611 
2612 	/*
2613 	 * Yes, it does not scale. And it should not. Don't add
2614 	 * new entries into /proc/<tgid>/ without very good reasons.
2615 	 */
2616 	for (; p < end; p++) {
2617 		if (p->len != dentry->d_name.len)
2618 			continue;
2619 		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2620 			res = proc_pident_instantiate(dentry, task, p);
2621 			break;
2622 		}
2623 	}
2624 	put_task_struct(task);
2625 out_no_task:
2626 	return res;
2627 }
2628 
2629 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2630 		const struct pid_entry *ents, unsigned int nents)
2631 {
2632 	struct task_struct *task = get_proc_task(file_inode(file));
2633 	const struct pid_entry *p;
2634 
2635 	if (!task)
2636 		return -ENOENT;
2637 
2638 	if (!dir_emit_dots(file, ctx))
2639 		goto out;
2640 
2641 	if (ctx->pos >= nents + 2)
2642 		goto out;
2643 
2644 	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2645 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2646 				proc_pident_instantiate, task, p))
2647 			break;
2648 		ctx->pos++;
2649 	}
2650 out:
2651 	put_task_struct(task);
2652 	return 0;
2653 }
2654 
2655 #ifdef CONFIG_SECURITY
2656 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2657 				  size_t count, loff_t *ppos)
2658 {
2659 	struct inode * inode = file_inode(file);
2660 	char *p = NULL;
2661 	ssize_t length;
2662 	struct task_struct *task = get_proc_task(inode);
2663 
2664 	if (!task)
2665 		return -ESRCH;
2666 
2667 	length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2668 				      (char*)file->f_path.dentry->d_name.name,
2669 				      &p);
2670 	put_task_struct(task);
2671 	if (length > 0)
2672 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2673 	kfree(p);
2674 	return length;
2675 }
2676 
2677 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2678 				   size_t count, loff_t *ppos)
2679 {
2680 	struct inode * inode = file_inode(file);
2681 	struct task_struct *task;
2682 	void *page;
2683 	int rv;
2684 
2685 	rcu_read_lock();
2686 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2687 	if (!task) {
2688 		rcu_read_unlock();
2689 		return -ESRCH;
2690 	}
2691 	/* A task may only write its own attributes. */
2692 	if (current != task) {
2693 		rcu_read_unlock();
2694 		return -EACCES;
2695 	}
2696 	/* Prevent changes to overridden credentials. */
2697 	if (current_cred() != current_real_cred()) {
2698 		rcu_read_unlock();
2699 		return -EBUSY;
2700 	}
2701 	rcu_read_unlock();
2702 
2703 	if (count > PAGE_SIZE)
2704 		count = PAGE_SIZE;
2705 
2706 	/* No partial writes. */
2707 	if (*ppos != 0)
2708 		return -EINVAL;
2709 
2710 	page = memdup_user(buf, count);
2711 	if (IS_ERR(page)) {
2712 		rv = PTR_ERR(page);
2713 		goto out;
2714 	}
2715 
2716 	/* Guard against adverse ptrace interaction */
2717 	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2718 	if (rv < 0)
2719 		goto out_free;
2720 
2721 	rv = security_setprocattr(PROC_I(inode)->op.lsm,
2722 				  file->f_path.dentry->d_name.name, page,
2723 				  count);
2724 	mutex_unlock(&current->signal->cred_guard_mutex);
2725 out_free:
2726 	kfree(page);
2727 out:
2728 	return rv;
2729 }
2730 
2731 static const struct file_operations proc_pid_attr_operations = {
2732 	.read		= proc_pid_attr_read,
2733 	.write		= proc_pid_attr_write,
2734 	.llseek		= generic_file_llseek,
2735 };
2736 
2737 #define LSM_DIR_OPS(LSM) \
2738 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2739 			     struct dir_context *ctx) \
2740 { \
2741 	return proc_pident_readdir(filp, ctx, \
2742 				   LSM##_attr_dir_stuff, \
2743 				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2744 } \
2745 \
2746 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2747 	.read		= generic_read_dir, \
2748 	.iterate	= proc_##LSM##_attr_dir_iterate, \
2749 	.llseek		= default_llseek, \
2750 }; \
2751 \
2752 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2753 				struct dentry *dentry, unsigned int flags) \
2754 { \
2755 	return proc_pident_lookup(dir, dentry, \
2756 				  LSM##_attr_dir_stuff, \
2757 				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2758 } \
2759 \
2760 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2761 	.lookup		= proc_##LSM##_attr_dir_lookup, \
2762 	.getattr	= pid_getattr, \
2763 	.setattr	= proc_setattr, \
2764 }
2765 
2766 #ifdef CONFIG_SECURITY_SMACK
2767 static const struct pid_entry smack_attr_dir_stuff[] = {
2768 	ATTR("smack", "current",	0666),
2769 };
2770 LSM_DIR_OPS(smack);
2771 #endif
2772 
2773 static const struct pid_entry attr_dir_stuff[] = {
2774 	ATTR(NULL, "current",		0666),
2775 	ATTR(NULL, "prev",		0444),
2776 	ATTR(NULL, "exec",		0666),
2777 	ATTR(NULL, "fscreate",		0666),
2778 	ATTR(NULL, "keycreate",		0666),
2779 	ATTR(NULL, "sockcreate",	0666),
2780 #ifdef CONFIG_SECURITY_SMACK
2781 	DIR("smack",			0555,
2782 	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2783 #endif
2784 };
2785 
2786 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2787 {
2788 	return proc_pident_readdir(file, ctx,
2789 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2790 }
2791 
2792 static const struct file_operations proc_attr_dir_operations = {
2793 	.read		= generic_read_dir,
2794 	.iterate_shared	= proc_attr_dir_readdir,
2795 	.llseek		= generic_file_llseek,
2796 };
2797 
2798 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2799 				struct dentry *dentry, unsigned int flags)
2800 {
2801 	return proc_pident_lookup(dir, dentry,
2802 				  attr_dir_stuff,
2803 				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2804 }
2805 
2806 static const struct inode_operations proc_attr_dir_inode_operations = {
2807 	.lookup		= proc_attr_dir_lookup,
2808 	.getattr	= pid_getattr,
2809 	.setattr	= proc_setattr,
2810 };
2811 
2812 #endif
2813 
2814 #ifdef CONFIG_ELF_CORE
2815 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2816 					 size_t count, loff_t *ppos)
2817 {
2818 	struct task_struct *task = get_proc_task(file_inode(file));
2819 	struct mm_struct *mm;
2820 	char buffer[PROC_NUMBUF];
2821 	size_t len;
2822 	int ret;
2823 
2824 	if (!task)
2825 		return -ESRCH;
2826 
2827 	ret = 0;
2828 	mm = get_task_mm(task);
2829 	if (mm) {
2830 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2831 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2832 				MMF_DUMP_FILTER_SHIFT));
2833 		mmput(mm);
2834 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2835 	}
2836 
2837 	put_task_struct(task);
2838 
2839 	return ret;
2840 }
2841 
2842 static ssize_t proc_coredump_filter_write(struct file *file,
2843 					  const char __user *buf,
2844 					  size_t count,
2845 					  loff_t *ppos)
2846 {
2847 	struct task_struct *task;
2848 	struct mm_struct *mm;
2849 	unsigned int val;
2850 	int ret;
2851 	int i;
2852 	unsigned long mask;
2853 
2854 	ret = kstrtouint_from_user(buf, count, 0, &val);
2855 	if (ret < 0)
2856 		return ret;
2857 
2858 	ret = -ESRCH;
2859 	task = get_proc_task(file_inode(file));
2860 	if (!task)
2861 		goto out_no_task;
2862 
2863 	mm = get_task_mm(task);
2864 	if (!mm)
2865 		goto out_no_mm;
2866 	ret = 0;
2867 
2868 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2869 		if (val & mask)
2870 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2871 		else
2872 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2873 	}
2874 
2875 	mmput(mm);
2876  out_no_mm:
2877 	put_task_struct(task);
2878  out_no_task:
2879 	if (ret < 0)
2880 		return ret;
2881 	return count;
2882 }
2883 
2884 static const struct file_operations proc_coredump_filter_operations = {
2885 	.read		= proc_coredump_filter_read,
2886 	.write		= proc_coredump_filter_write,
2887 	.llseek		= generic_file_llseek,
2888 };
2889 #endif
2890 
2891 #ifdef CONFIG_TASK_IO_ACCOUNTING
2892 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2893 {
2894 	struct task_io_accounting acct = task->ioac;
2895 	unsigned long flags;
2896 	int result;
2897 
2898 	result = mutex_lock_killable(&task->signal->exec_update_mutex);
2899 	if (result)
2900 		return result;
2901 
2902 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2903 		result = -EACCES;
2904 		goto out_unlock;
2905 	}
2906 
2907 	if (whole && lock_task_sighand(task, &flags)) {
2908 		struct task_struct *t = task;
2909 
2910 		task_io_accounting_add(&acct, &task->signal->ioac);
2911 		while_each_thread(task, t)
2912 			task_io_accounting_add(&acct, &t->ioac);
2913 
2914 		unlock_task_sighand(task, &flags);
2915 	}
2916 	seq_printf(m,
2917 		   "rchar: %llu\n"
2918 		   "wchar: %llu\n"
2919 		   "syscr: %llu\n"
2920 		   "syscw: %llu\n"
2921 		   "read_bytes: %llu\n"
2922 		   "write_bytes: %llu\n"
2923 		   "cancelled_write_bytes: %llu\n",
2924 		   (unsigned long long)acct.rchar,
2925 		   (unsigned long long)acct.wchar,
2926 		   (unsigned long long)acct.syscr,
2927 		   (unsigned long long)acct.syscw,
2928 		   (unsigned long long)acct.read_bytes,
2929 		   (unsigned long long)acct.write_bytes,
2930 		   (unsigned long long)acct.cancelled_write_bytes);
2931 	result = 0;
2932 
2933 out_unlock:
2934 	mutex_unlock(&task->signal->exec_update_mutex);
2935 	return result;
2936 }
2937 
2938 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2939 				  struct pid *pid, struct task_struct *task)
2940 {
2941 	return do_io_accounting(task, m, 0);
2942 }
2943 
2944 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2945 				   struct pid *pid, struct task_struct *task)
2946 {
2947 	return do_io_accounting(task, m, 1);
2948 }
2949 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2950 
2951 #ifdef CONFIG_USER_NS
2952 static int proc_id_map_open(struct inode *inode, struct file *file,
2953 	const struct seq_operations *seq_ops)
2954 {
2955 	struct user_namespace *ns = NULL;
2956 	struct task_struct *task;
2957 	struct seq_file *seq;
2958 	int ret = -EINVAL;
2959 
2960 	task = get_proc_task(inode);
2961 	if (task) {
2962 		rcu_read_lock();
2963 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2964 		rcu_read_unlock();
2965 		put_task_struct(task);
2966 	}
2967 	if (!ns)
2968 		goto err;
2969 
2970 	ret = seq_open(file, seq_ops);
2971 	if (ret)
2972 		goto err_put_ns;
2973 
2974 	seq = file->private_data;
2975 	seq->private = ns;
2976 
2977 	return 0;
2978 err_put_ns:
2979 	put_user_ns(ns);
2980 err:
2981 	return ret;
2982 }
2983 
2984 static int proc_id_map_release(struct inode *inode, struct file *file)
2985 {
2986 	struct seq_file *seq = file->private_data;
2987 	struct user_namespace *ns = seq->private;
2988 	put_user_ns(ns);
2989 	return seq_release(inode, file);
2990 }
2991 
2992 static int proc_uid_map_open(struct inode *inode, struct file *file)
2993 {
2994 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2995 }
2996 
2997 static int proc_gid_map_open(struct inode *inode, struct file *file)
2998 {
2999 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3000 }
3001 
3002 static int proc_projid_map_open(struct inode *inode, struct file *file)
3003 {
3004 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3005 }
3006 
3007 static const struct file_operations proc_uid_map_operations = {
3008 	.open		= proc_uid_map_open,
3009 	.write		= proc_uid_map_write,
3010 	.read		= seq_read,
3011 	.llseek		= seq_lseek,
3012 	.release	= proc_id_map_release,
3013 };
3014 
3015 static const struct file_operations proc_gid_map_operations = {
3016 	.open		= proc_gid_map_open,
3017 	.write		= proc_gid_map_write,
3018 	.read		= seq_read,
3019 	.llseek		= seq_lseek,
3020 	.release	= proc_id_map_release,
3021 };
3022 
3023 static const struct file_operations proc_projid_map_operations = {
3024 	.open		= proc_projid_map_open,
3025 	.write		= proc_projid_map_write,
3026 	.read		= seq_read,
3027 	.llseek		= seq_lseek,
3028 	.release	= proc_id_map_release,
3029 };
3030 
3031 static int proc_setgroups_open(struct inode *inode, struct file *file)
3032 {
3033 	struct user_namespace *ns = NULL;
3034 	struct task_struct *task;
3035 	int ret;
3036 
3037 	ret = -ESRCH;
3038 	task = get_proc_task(inode);
3039 	if (task) {
3040 		rcu_read_lock();
3041 		ns = get_user_ns(task_cred_xxx(task, user_ns));
3042 		rcu_read_unlock();
3043 		put_task_struct(task);
3044 	}
3045 	if (!ns)
3046 		goto err;
3047 
3048 	if (file->f_mode & FMODE_WRITE) {
3049 		ret = -EACCES;
3050 		if (!ns_capable(ns, CAP_SYS_ADMIN))
3051 			goto err_put_ns;
3052 	}
3053 
3054 	ret = single_open(file, &proc_setgroups_show, ns);
3055 	if (ret)
3056 		goto err_put_ns;
3057 
3058 	return 0;
3059 err_put_ns:
3060 	put_user_ns(ns);
3061 err:
3062 	return ret;
3063 }
3064 
3065 static int proc_setgroups_release(struct inode *inode, struct file *file)
3066 {
3067 	struct seq_file *seq = file->private_data;
3068 	struct user_namespace *ns = seq->private;
3069 	int ret = single_release(inode, file);
3070 	put_user_ns(ns);
3071 	return ret;
3072 }
3073 
3074 static const struct file_operations proc_setgroups_operations = {
3075 	.open		= proc_setgroups_open,
3076 	.write		= proc_setgroups_write,
3077 	.read		= seq_read,
3078 	.llseek		= seq_lseek,
3079 	.release	= proc_setgroups_release,
3080 };
3081 #endif /* CONFIG_USER_NS */
3082 
3083 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3084 				struct pid *pid, struct task_struct *task)
3085 {
3086 	int err = lock_trace(task);
3087 	if (!err) {
3088 		seq_printf(m, "%08x\n", task->personality);
3089 		unlock_trace(task);
3090 	}
3091 	return err;
3092 }
3093 
3094 #ifdef CONFIG_LIVEPATCH
3095 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3096 				struct pid *pid, struct task_struct *task)
3097 {
3098 	seq_printf(m, "%d\n", task->patch_state);
3099 	return 0;
3100 }
3101 #endif /* CONFIG_LIVEPATCH */
3102 
3103 #ifdef CONFIG_STACKLEAK_METRICS
3104 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3105 				struct pid *pid, struct task_struct *task)
3106 {
3107 	unsigned long prev_depth = THREAD_SIZE -
3108 				(task->prev_lowest_stack & (THREAD_SIZE - 1));
3109 	unsigned long depth = THREAD_SIZE -
3110 				(task->lowest_stack & (THREAD_SIZE - 1));
3111 
3112 	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3113 							prev_depth, depth);
3114 	return 0;
3115 }
3116 #endif /* CONFIG_STACKLEAK_METRICS */
3117 
3118 /*
3119  * Thread groups
3120  */
3121 static const struct file_operations proc_task_operations;
3122 static const struct inode_operations proc_task_inode_operations;
3123 
3124 static const struct pid_entry tgid_base_stuff[] = {
3125 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3126 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3127 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3128 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3129 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3130 #ifdef CONFIG_NET
3131 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3132 #endif
3133 	REG("environ",    S_IRUSR, proc_environ_operations),
3134 	REG("auxv",       S_IRUSR, proc_auxv_operations),
3135 	ONE("status",     S_IRUGO, proc_pid_status),
3136 	ONE("personality", S_IRUSR, proc_pid_personality),
3137 	ONE("limits",	  S_IRUGO, proc_pid_limits),
3138 #ifdef CONFIG_SCHED_DEBUG
3139 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3140 #endif
3141 #ifdef CONFIG_SCHED_AUTOGROUP
3142 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3143 #endif
3144 #ifdef CONFIG_TIME_NS
3145 	REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3146 #endif
3147 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3148 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3149 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3150 #endif
3151 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3152 	ONE("stat",       S_IRUGO, proc_tgid_stat),
3153 	ONE("statm",      S_IRUGO, proc_pid_statm),
3154 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3155 #ifdef CONFIG_NUMA
3156 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3157 #endif
3158 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3159 	LNK("cwd",        proc_cwd_link),
3160 	LNK("root",       proc_root_link),
3161 	LNK("exe",        proc_exe_link),
3162 	REG("mounts",     S_IRUGO, proc_mounts_operations),
3163 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3164 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3165 #ifdef CONFIG_PROC_PAGE_MONITOR
3166 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3167 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3168 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3169 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3170 #endif
3171 #ifdef CONFIG_SECURITY
3172 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3173 #endif
3174 #ifdef CONFIG_KALLSYMS
3175 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3176 #endif
3177 #ifdef CONFIG_STACKTRACE
3178 	ONE("stack",      S_IRUSR, proc_pid_stack),
3179 #endif
3180 #ifdef CONFIG_SCHED_INFO
3181 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3182 #endif
3183 #ifdef CONFIG_LATENCYTOP
3184 	REG("latency",  S_IRUGO, proc_lstats_operations),
3185 #endif
3186 #ifdef CONFIG_PROC_PID_CPUSET
3187 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3188 #endif
3189 #ifdef CONFIG_CGROUPS
3190 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3191 #endif
3192 #ifdef CONFIG_PROC_CPU_RESCTRL
3193 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3194 #endif
3195 	ONE("oom_score",  S_IRUGO, proc_oom_score),
3196 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3197 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3198 #ifdef CONFIG_AUDIT
3199 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3200 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3201 #endif
3202 #ifdef CONFIG_FAULT_INJECTION
3203 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3204 	REG("fail-nth", 0644, proc_fail_nth_operations),
3205 #endif
3206 #ifdef CONFIG_ELF_CORE
3207 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3208 #endif
3209 #ifdef CONFIG_TASK_IO_ACCOUNTING
3210 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3211 #endif
3212 #ifdef CONFIG_USER_NS
3213 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3214 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3215 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3216 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3217 #endif
3218 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3219 	REG("timers",	  S_IRUGO, proc_timers_operations),
3220 #endif
3221 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3222 #ifdef CONFIG_LIVEPATCH
3223 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3224 #endif
3225 #ifdef CONFIG_STACKLEAK_METRICS
3226 	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3227 #endif
3228 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3229 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3230 #endif
3231 };
3232 
3233 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3234 {
3235 	return proc_pident_readdir(file, ctx,
3236 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3237 }
3238 
3239 static const struct file_operations proc_tgid_base_operations = {
3240 	.read		= generic_read_dir,
3241 	.iterate_shared	= proc_tgid_base_readdir,
3242 	.llseek		= generic_file_llseek,
3243 };
3244 
3245 struct pid *tgid_pidfd_to_pid(const struct file *file)
3246 {
3247 	if (file->f_op != &proc_tgid_base_operations)
3248 		return ERR_PTR(-EBADF);
3249 
3250 	return proc_pid(file_inode(file));
3251 }
3252 
3253 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3254 {
3255 	return proc_pident_lookup(dir, dentry,
3256 				  tgid_base_stuff,
3257 				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3258 }
3259 
3260 static const struct inode_operations proc_tgid_base_inode_operations = {
3261 	.lookup		= proc_tgid_base_lookup,
3262 	.getattr	= pid_getattr,
3263 	.setattr	= proc_setattr,
3264 	.permission	= proc_pid_permission,
3265 };
3266 
3267 /**
3268  * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
3269  * @pid: pid that should be flushed.
3270  *
3271  * This function walks a list of inodes (that belong to any proc
3272  * filesystem) that are attached to the pid and flushes them from
3273  * the dentry cache.
3274  *
3275  * It is safe and reasonable to cache /proc entries for a task until
3276  * that task exits.  After that they just clog up the dcache with
3277  * useless entries, possibly causing useful dcache entries to be
3278  * flushed instead.  This routine is provided to flush those useless
3279  * dcache entries when a process is reaped.
3280  *
3281  * NOTE: This routine is just an optimization so it does not guarantee
3282  *       that no dcache entries will exist after a process is reaped
3283  *       it just makes it very unlikely that any will persist.
3284  */
3285 
3286 void proc_flush_pid(struct pid *pid)
3287 {
3288 	proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3289 }
3290 
3291 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3292 				   struct task_struct *task, const void *ptr)
3293 {
3294 	struct inode *inode;
3295 
3296 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3297 	if (!inode)
3298 		return ERR_PTR(-ENOENT);
3299 
3300 	inode->i_op = &proc_tgid_base_inode_operations;
3301 	inode->i_fop = &proc_tgid_base_operations;
3302 	inode->i_flags|=S_IMMUTABLE;
3303 
3304 	set_nlink(inode, nlink_tgid);
3305 	pid_update_inode(task, inode);
3306 
3307 	d_set_d_op(dentry, &pid_dentry_operations);
3308 	return d_splice_alias(inode, dentry);
3309 }
3310 
3311 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3312 {
3313 	struct task_struct *task;
3314 	unsigned tgid;
3315 	struct pid_namespace *ns;
3316 	struct dentry *result = ERR_PTR(-ENOENT);
3317 
3318 	tgid = name_to_int(&dentry->d_name);
3319 	if (tgid == ~0U)
3320 		goto out;
3321 
3322 	ns = dentry->d_sb->s_fs_info;
3323 	rcu_read_lock();
3324 	task = find_task_by_pid_ns(tgid, ns);
3325 	if (task)
3326 		get_task_struct(task);
3327 	rcu_read_unlock();
3328 	if (!task)
3329 		goto out;
3330 
3331 	result = proc_pid_instantiate(dentry, task, NULL);
3332 	put_task_struct(task);
3333 out:
3334 	return result;
3335 }
3336 
3337 /*
3338  * Find the first task with tgid >= tgid
3339  *
3340  */
3341 struct tgid_iter {
3342 	unsigned int tgid;
3343 	struct task_struct *task;
3344 };
3345 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3346 {
3347 	struct pid *pid;
3348 
3349 	if (iter.task)
3350 		put_task_struct(iter.task);
3351 	rcu_read_lock();
3352 retry:
3353 	iter.task = NULL;
3354 	pid = find_ge_pid(iter.tgid, ns);
3355 	if (pid) {
3356 		iter.tgid = pid_nr_ns(pid, ns);
3357 		iter.task = pid_task(pid, PIDTYPE_PID);
3358 		/* What we to know is if the pid we have find is the
3359 		 * pid of a thread_group_leader.  Testing for task
3360 		 * being a thread_group_leader is the obvious thing
3361 		 * todo but there is a window when it fails, due to
3362 		 * the pid transfer logic in de_thread.
3363 		 *
3364 		 * So we perform the straight forward test of seeing
3365 		 * if the pid we have found is the pid of a thread
3366 		 * group leader, and don't worry if the task we have
3367 		 * found doesn't happen to be a thread group leader.
3368 		 * As we don't care in the case of readdir.
3369 		 */
3370 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3371 			iter.tgid += 1;
3372 			goto retry;
3373 		}
3374 		get_task_struct(iter.task);
3375 	}
3376 	rcu_read_unlock();
3377 	return iter;
3378 }
3379 
3380 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3381 
3382 /* for the /proc/ directory itself, after non-process stuff has been done */
3383 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3384 {
3385 	struct tgid_iter iter;
3386 	struct pid_namespace *ns = proc_pid_ns(file_inode(file));
3387 	loff_t pos = ctx->pos;
3388 
3389 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3390 		return 0;
3391 
3392 	if (pos == TGID_OFFSET - 2) {
3393 		struct inode *inode = d_inode(ns->proc_self);
3394 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3395 			return 0;
3396 		ctx->pos = pos = pos + 1;
3397 	}
3398 	if (pos == TGID_OFFSET - 1) {
3399 		struct inode *inode = d_inode(ns->proc_thread_self);
3400 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3401 			return 0;
3402 		ctx->pos = pos = pos + 1;
3403 	}
3404 	iter.tgid = pos - TGID_OFFSET;
3405 	iter.task = NULL;
3406 	for (iter = next_tgid(ns, iter);
3407 	     iter.task;
3408 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3409 		char name[10 + 1];
3410 		unsigned int len;
3411 
3412 		cond_resched();
3413 		if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3414 			continue;
3415 
3416 		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3417 		ctx->pos = iter.tgid + TGID_OFFSET;
3418 		if (!proc_fill_cache(file, ctx, name, len,
3419 				     proc_pid_instantiate, iter.task, NULL)) {
3420 			put_task_struct(iter.task);
3421 			return 0;
3422 		}
3423 	}
3424 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3425 	return 0;
3426 }
3427 
3428 /*
3429  * proc_tid_comm_permission is a special permission function exclusively
3430  * used for the node /proc/<pid>/task/<tid>/comm.
3431  * It bypasses generic permission checks in the case where a task of the same
3432  * task group attempts to access the node.
3433  * The rationale behind this is that glibc and bionic access this node for
3434  * cross thread naming (pthread_set/getname_np(!self)). However, if
3435  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3436  * which locks out the cross thread naming implementation.
3437  * This function makes sure that the node is always accessible for members of
3438  * same thread group.
3439  */
3440 static int proc_tid_comm_permission(struct inode *inode, int mask)
3441 {
3442 	bool is_same_tgroup;
3443 	struct task_struct *task;
3444 
3445 	task = get_proc_task(inode);
3446 	if (!task)
3447 		return -ESRCH;
3448 	is_same_tgroup = same_thread_group(current, task);
3449 	put_task_struct(task);
3450 
3451 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3452 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3453 		 * read or written by the members of the corresponding
3454 		 * thread group.
3455 		 */
3456 		return 0;
3457 	}
3458 
3459 	return generic_permission(inode, mask);
3460 }
3461 
3462 static const struct inode_operations proc_tid_comm_inode_operations = {
3463 		.permission = proc_tid_comm_permission,
3464 };
3465 
3466 /*
3467  * Tasks
3468  */
3469 static const struct pid_entry tid_base_stuff[] = {
3470 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3471 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3472 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3473 #ifdef CONFIG_NET
3474 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3475 #endif
3476 	REG("environ",   S_IRUSR, proc_environ_operations),
3477 	REG("auxv",      S_IRUSR, proc_auxv_operations),
3478 	ONE("status",    S_IRUGO, proc_pid_status),
3479 	ONE("personality", S_IRUSR, proc_pid_personality),
3480 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3481 #ifdef CONFIG_SCHED_DEBUG
3482 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3483 #endif
3484 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3485 			 &proc_tid_comm_inode_operations,
3486 			 &proc_pid_set_comm_operations, {}),
3487 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3488 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3489 #endif
3490 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3491 	ONE("stat",      S_IRUGO, proc_tid_stat),
3492 	ONE("statm",     S_IRUGO, proc_pid_statm),
3493 	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3494 #ifdef CONFIG_PROC_CHILDREN
3495 	REG("children",  S_IRUGO, proc_tid_children_operations),
3496 #endif
3497 #ifdef CONFIG_NUMA
3498 	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3499 #endif
3500 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3501 	LNK("cwd",       proc_cwd_link),
3502 	LNK("root",      proc_root_link),
3503 	LNK("exe",       proc_exe_link),
3504 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3505 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3506 #ifdef CONFIG_PROC_PAGE_MONITOR
3507 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3508 	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3509 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3510 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3511 #endif
3512 #ifdef CONFIG_SECURITY
3513 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3514 #endif
3515 #ifdef CONFIG_KALLSYMS
3516 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3517 #endif
3518 #ifdef CONFIG_STACKTRACE
3519 	ONE("stack",      S_IRUSR, proc_pid_stack),
3520 #endif
3521 #ifdef CONFIG_SCHED_INFO
3522 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3523 #endif
3524 #ifdef CONFIG_LATENCYTOP
3525 	REG("latency",  S_IRUGO, proc_lstats_operations),
3526 #endif
3527 #ifdef CONFIG_PROC_PID_CPUSET
3528 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3529 #endif
3530 #ifdef CONFIG_CGROUPS
3531 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3532 #endif
3533 #ifdef CONFIG_PROC_CPU_RESCTRL
3534 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3535 #endif
3536 	ONE("oom_score", S_IRUGO, proc_oom_score),
3537 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3538 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3539 #ifdef CONFIG_AUDIT
3540 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3541 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3542 #endif
3543 #ifdef CONFIG_FAULT_INJECTION
3544 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3545 	REG("fail-nth", 0644, proc_fail_nth_operations),
3546 #endif
3547 #ifdef CONFIG_TASK_IO_ACCOUNTING
3548 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3549 #endif
3550 #ifdef CONFIG_USER_NS
3551 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3552 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3553 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3554 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3555 #endif
3556 #ifdef CONFIG_LIVEPATCH
3557 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3558 #endif
3559 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3560 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3561 #endif
3562 };
3563 
3564 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3565 {
3566 	return proc_pident_readdir(file, ctx,
3567 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3568 }
3569 
3570 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3571 {
3572 	return proc_pident_lookup(dir, dentry,
3573 				  tid_base_stuff,
3574 				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3575 }
3576 
3577 static const struct file_operations proc_tid_base_operations = {
3578 	.read		= generic_read_dir,
3579 	.iterate_shared	= proc_tid_base_readdir,
3580 	.llseek		= generic_file_llseek,
3581 };
3582 
3583 static const struct inode_operations proc_tid_base_inode_operations = {
3584 	.lookup		= proc_tid_base_lookup,
3585 	.getattr	= pid_getattr,
3586 	.setattr	= proc_setattr,
3587 };
3588 
3589 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3590 	struct task_struct *task, const void *ptr)
3591 {
3592 	struct inode *inode;
3593 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3594 	if (!inode)
3595 		return ERR_PTR(-ENOENT);
3596 
3597 	inode->i_op = &proc_tid_base_inode_operations;
3598 	inode->i_fop = &proc_tid_base_operations;
3599 	inode->i_flags |= S_IMMUTABLE;
3600 
3601 	set_nlink(inode, nlink_tid);
3602 	pid_update_inode(task, inode);
3603 
3604 	d_set_d_op(dentry, &pid_dentry_operations);
3605 	return d_splice_alias(inode, dentry);
3606 }
3607 
3608 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3609 {
3610 	struct task_struct *task;
3611 	struct task_struct *leader = get_proc_task(dir);
3612 	unsigned tid;
3613 	struct pid_namespace *ns;
3614 	struct dentry *result = ERR_PTR(-ENOENT);
3615 
3616 	if (!leader)
3617 		goto out_no_task;
3618 
3619 	tid = name_to_int(&dentry->d_name);
3620 	if (tid == ~0U)
3621 		goto out;
3622 
3623 	ns = dentry->d_sb->s_fs_info;
3624 	rcu_read_lock();
3625 	task = find_task_by_pid_ns(tid, ns);
3626 	if (task)
3627 		get_task_struct(task);
3628 	rcu_read_unlock();
3629 	if (!task)
3630 		goto out;
3631 	if (!same_thread_group(leader, task))
3632 		goto out_drop_task;
3633 
3634 	result = proc_task_instantiate(dentry, task, NULL);
3635 out_drop_task:
3636 	put_task_struct(task);
3637 out:
3638 	put_task_struct(leader);
3639 out_no_task:
3640 	return result;
3641 }
3642 
3643 /*
3644  * Find the first tid of a thread group to return to user space.
3645  *
3646  * Usually this is just the thread group leader, but if the users
3647  * buffer was too small or there was a seek into the middle of the
3648  * directory we have more work todo.
3649  *
3650  * In the case of a short read we start with find_task_by_pid.
3651  *
3652  * In the case of a seek we start with the leader and walk nr
3653  * threads past it.
3654  */
3655 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3656 					struct pid_namespace *ns)
3657 {
3658 	struct task_struct *pos, *task;
3659 	unsigned long nr = f_pos;
3660 
3661 	if (nr != f_pos)	/* 32bit overflow? */
3662 		return NULL;
3663 
3664 	rcu_read_lock();
3665 	task = pid_task(pid, PIDTYPE_PID);
3666 	if (!task)
3667 		goto fail;
3668 
3669 	/* Attempt to start with the tid of a thread */
3670 	if (tid && nr) {
3671 		pos = find_task_by_pid_ns(tid, ns);
3672 		if (pos && same_thread_group(pos, task))
3673 			goto found;
3674 	}
3675 
3676 	/* If nr exceeds the number of threads there is nothing todo */
3677 	if (nr >= get_nr_threads(task))
3678 		goto fail;
3679 
3680 	/* If we haven't found our starting place yet start
3681 	 * with the leader and walk nr threads forward.
3682 	 */
3683 	pos = task = task->group_leader;
3684 	do {
3685 		if (!nr--)
3686 			goto found;
3687 	} while_each_thread(task, pos);
3688 fail:
3689 	pos = NULL;
3690 	goto out;
3691 found:
3692 	get_task_struct(pos);
3693 out:
3694 	rcu_read_unlock();
3695 	return pos;
3696 }
3697 
3698 /*
3699  * Find the next thread in the thread list.
3700  * Return NULL if there is an error or no next thread.
3701  *
3702  * The reference to the input task_struct is released.
3703  */
3704 static struct task_struct *next_tid(struct task_struct *start)
3705 {
3706 	struct task_struct *pos = NULL;
3707 	rcu_read_lock();
3708 	if (pid_alive(start)) {
3709 		pos = next_thread(start);
3710 		if (thread_group_leader(pos))
3711 			pos = NULL;
3712 		else
3713 			get_task_struct(pos);
3714 	}
3715 	rcu_read_unlock();
3716 	put_task_struct(start);
3717 	return pos;
3718 }
3719 
3720 /* for the /proc/TGID/task/ directories */
3721 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3722 {
3723 	struct inode *inode = file_inode(file);
3724 	struct task_struct *task;
3725 	struct pid_namespace *ns;
3726 	int tid;
3727 
3728 	if (proc_inode_is_dead(inode))
3729 		return -ENOENT;
3730 
3731 	if (!dir_emit_dots(file, ctx))
3732 		return 0;
3733 
3734 	/* f_version caches the tgid value that the last readdir call couldn't
3735 	 * return. lseek aka telldir automagically resets f_version to 0.
3736 	 */
3737 	ns = proc_pid_ns(inode);
3738 	tid = (int)file->f_version;
3739 	file->f_version = 0;
3740 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3741 	     task;
3742 	     task = next_tid(task), ctx->pos++) {
3743 		char name[10 + 1];
3744 		unsigned int len;
3745 		tid = task_pid_nr_ns(task, ns);
3746 		len = snprintf(name, sizeof(name), "%u", tid);
3747 		if (!proc_fill_cache(file, ctx, name, len,
3748 				proc_task_instantiate, task, NULL)) {
3749 			/* returning this tgid failed, save it as the first
3750 			 * pid for the next readir call */
3751 			file->f_version = (u64)tid;
3752 			put_task_struct(task);
3753 			break;
3754 		}
3755 	}
3756 
3757 	return 0;
3758 }
3759 
3760 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3761 			     u32 request_mask, unsigned int query_flags)
3762 {
3763 	struct inode *inode = d_inode(path->dentry);
3764 	struct task_struct *p = get_proc_task(inode);
3765 	generic_fillattr(inode, stat);
3766 
3767 	if (p) {
3768 		stat->nlink += get_nr_threads(p);
3769 		put_task_struct(p);
3770 	}
3771 
3772 	return 0;
3773 }
3774 
3775 static const struct inode_operations proc_task_inode_operations = {
3776 	.lookup		= proc_task_lookup,
3777 	.getattr	= proc_task_getattr,
3778 	.setattr	= proc_setattr,
3779 	.permission	= proc_pid_permission,
3780 };
3781 
3782 static const struct file_operations proc_task_operations = {
3783 	.read		= generic_read_dir,
3784 	.iterate_shared	= proc_task_readdir,
3785 	.llseek		= generic_file_llseek,
3786 };
3787 
3788 void __init set_proc_pid_nlink(void)
3789 {
3790 	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3791 	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3792 }
3793