xref: /openbmc/linux/fs/proc/base.c (revision 9df839a711aee437390b16ee39cf0b5c1620be6a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/proc/base.c
4  *
5  *  Copyright (C) 1991, 1992 Linus Torvalds
6  *
7  *  proc base directory handling functions
8  *
9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10  *  Instead of using magical inumbers to determine the kind of object
11  *  we allocate and fill in-core inodes upon lookup. They don't even
12  *  go into icache. We cache the reference to task_struct upon lookup too.
13  *  Eventually it should become a filesystem in its own. We don't use the
14  *  rest of procfs anymore.
15  *
16  *
17  *  Changelog:
18  *  17-Jan-2005
19  *  Allan Bezerra
20  *  Bruna Moreira <bruna.moreira@indt.org.br>
21  *  Edjard Mota <edjard.mota@indt.org.br>
22  *  Ilias Biris <ilias.biris@indt.org.br>
23  *  Mauricio Lin <mauricio.lin@indt.org.br>
24  *
25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26  *
27  *  A new process specific entry (smaps) included in /proc. It shows the
28  *  size of rss for each memory area. The maps entry lacks information
29  *  about physical memory size (rss) for each mapped file, i.e.,
30  *  rss information for executables and library files.
31  *  This additional information is useful for any tools that need to know
32  *  about physical memory consumption for a process specific library.
33  *
34  *  Changelog:
35  *  21-Feb-2005
36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37  *  Pud inclusion in the page table walking.
38  *
39  *  ChangeLog:
40  *  10-Mar-2005
41  *  10LE Instituto Nokia de Tecnologia - INdT:
42  *  A better way to walks through the page table as suggested by Hugh Dickins.
43  *
44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45  *  Smaps information related to shared, private, clean and dirty pages.
46  *
47  *  Paul Mundt <paul.mundt@nokia.com>:
48  *  Overall revision about smaps.
49  */
50 
51 #include <linux/uaccess.h>
52 
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/generic-radix-tree.h>
63 #include <linux/string.h>
64 #include <linux/seq_file.h>
65 #include <linux/namei.h>
66 #include <linux/mnt_namespace.h>
67 #include <linux/mm.h>
68 #include <linux/swap.h>
69 #include <linux/rcupdate.h>
70 #include <linux/kallsyms.h>
71 #include <linux/stacktrace.h>
72 #include <linux/resource.h>
73 #include <linux/module.h>
74 #include <linux/mount.h>
75 #include <linux/security.h>
76 #include <linux/ptrace.h>
77 #include <linux/printk.h>
78 #include <linux/cache.h>
79 #include <linux/cgroup.h>
80 #include <linux/cpuset.h>
81 #include <linux/audit.h>
82 #include <linux/poll.h>
83 #include <linux/nsproxy.h>
84 #include <linux/oom.h>
85 #include <linux/elf.h>
86 #include <linux/pid_namespace.h>
87 #include <linux/user_namespace.h>
88 #include <linux/fs_struct.h>
89 #include <linux/slab.h>
90 #include <linux/sched/autogroup.h>
91 #include <linux/sched/mm.h>
92 #include <linux/sched/coredump.h>
93 #include <linux/sched/debug.h>
94 #include <linux/sched/stat.h>
95 #include <linux/posix-timers.h>
96 #include <linux/time_namespace.h>
97 #include <linux/resctrl.h>
98 #include <linux/cn_proc.h>
99 #include <trace/events/oom.h>
100 #include "internal.h"
101 #include "fd.h"
102 
103 #include "../../lib/kstrtox.h"
104 
105 /* NOTE:
106  *	Implementing inode permission operations in /proc is almost
107  *	certainly an error.  Permission checks need to happen during
108  *	each system call not at open time.  The reason is that most of
109  *	what we wish to check for permissions in /proc varies at runtime.
110  *
111  *	The classic example of a problem is opening file descriptors
112  *	in /proc for a task before it execs a suid executable.
113  */
114 
115 static u8 nlink_tid __ro_after_init;
116 static u8 nlink_tgid __ro_after_init;
117 
118 struct pid_entry {
119 	const char *name;
120 	unsigned int len;
121 	umode_t mode;
122 	const struct inode_operations *iop;
123 	const struct file_operations *fop;
124 	union proc_op op;
125 };
126 
127 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
128 	.name = (NAME),					\
129 	.len  = sizeof(NAME) - 1,			\
130 	.mode = MODE,					\
131 	.iop  = IOP,					\
132 	.fop  = FOP,					\
133 	.op   = OP,					\
134 }
135 
136 #define DIR(NAME, MODE, iops, fops)	\
137 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
138 #define LNK(NAME, get_link)					\
139 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
140 		&proc_pid_link_inode_operations, NULL,		\
141 		{ .proc_get_link = get_link } )
142 #define REG(NAME, MODE, fops)				\
143 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
144 #define ONE(NAME, MODE, show)				\
145 	NOD(NAME, (S_IFREG|(MODE)),			\
146 		NULL, &proc_single_file_operations,	\
147 		{ .proc_show = show } )
148 #define ATTR(LSM, NAME, MODE)				\
149 	NOD(NAME, (S_IFREG|(MODE)),			\
150 		NULL, &proc_pid_attr_operations,	\
151 		{ .lsm = LSM })
152 
153 /*
154  * Count the number of hardlinks for the pid_entry table, excluding the .
155  * and .. links.
156  */
157 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
158 	unsigned int n)
159 {
160 	unsigned int i;
161 	unsigned int count;
162 
163 	count = 2;
164 	for (i = 0; i < n; ++i) {
165 		if (S_ISDIR(entries[i].mode))
166 			++count;
167 	}
168 
169 	return count;
170 }
171 
172 static int get_task_root(struct task_struct *task, struct path *root)
173 {
174 	int result = -ENOENT;
175 
176 	task_lock(task);
177 	if (task->fs) {
178 		get_fs_root(task->fs, root);
179 		result = 0;
180 	}
181 	task_unlock(task);
182 	return result;
183 }
184 
185 static int proc_cwd_link(struct dentry *dentry, struct path *path)
186 {
187 	struct task_struct *task = get_proc_task(d_inode(dentry));
188 	int result = -ENOENT;
189 
190 	if (task) {
191 		task_lock(task);
192 		if (task->fs) {
193 			get_fs_pwd(task->fs, path);
194 			result = 0;
195 		}
196 		task_unlock(task);
197 		put_task_struct(task);
198 	}
199 	return result;
200 }
201 
202 static int proc_root_link(struct dentry *dentry, struct path *path)
203 {
204 	struct task_struct *task = get_proc_task(d_inode(dentry));
205 	int result = -ENOENT;
206 
207 	if (task) {
208 		result = get_task_root(task, path);
209 		put_task_struct(task);
210 	}
211 	return result;
212 }
213 
214 /*
215  * If the user used setproctitle(), we just get the string from
216  * user space at arg_start, and limit it to a maximum of one page.
217  */
218 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
219 				size_t count, unsigned long pos,
220 				unsigned long arg_start)
221 {
222 	char *page;
223 	int ret, got;
224 
225 	if (pos >= PAGE_SIZE)
226 		return 0;
227 
228 	page = (char *)__get_free_page(GFP_KERNEL);
229 	if (!page)
230 		return -ENOMEM;
231 
232 	ret = 0;
233 	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
234 	if (got > 0) {
235 		int len = strnlen(page, got);
236 
237 		/* Include the NUL character if it was found */
238 		if (len < got)
239 			len++;
240 
241 		if (len > pos) {
242 			len -= pos;
243 			if (len > count)
244 				len = count;
245 			len -= copy_to_user(buf, page+pos, len);
246 			if (!len)
247 				len = -EFAULT;
248 			ret = len;
249 		}
250 	}
251 	free_page((unsigned long)page);
252 	return ret;
253 }
254 
255 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
256 			      size_t count, loff_t *ppos)
257 {
258 	unsigned long arg_start, arg_end, env_start, env_end;
259 	unsigned long pos, len;
260 	char *page, c;
261 
262 	/* Check if process spawned far enough to have cmdline. */
263 	if (!mm->env_end)
264 		return 0;
265 
266 	spin_lock(&mm->arg_lock);
267 	arg_start = mm->arg_start;
268 	arg_end = mm->arg_end;
269 	env_start = mm->env_start;
270 	env_end = mm->env_end;
271 	spin_unlock(&mm->arg_lock);
272 
273 	if (arg_start >= arg_end)
274 		return 0;
275 
276 	/*
277 	 * We allow setproctitle() to overwrite the argument
278 	 * strings, and overflow past the original end. But
279 	 * only when it overflows into the environment area.
280 	 */
281 	if (env_start != arg_end || env_end < env_start)
282 		env_start = env_end = arg_end;
283 	len = env_end - arg_start;
284 
285 	/* We're not going to care if "*ppos" has high bits set */
286 	pos = *ppos;
287 	if (pos >= len)
288 		return 0;
289 	if (count > len - pos)
290 		count = len - pos;
291 	if (!count)
292 		return 0;
293 
294 	/*
295 	 * Magical special case: if the argv[] end byte is not
296 	 * zero, the user has overwritten it with setproctitle(3).
297 	 *
298 	 * Possible future enhancement: do this only once when
299 	 * pos is 0, and set a flag in the 'struct file'.
300 	 */
301 	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
302 		return get_mm_proctitle(mm, buf, count, pos, arg_start);
303 
304 	/*
305 	 * For the non-setproctitle() case we limit things strictly
306 	 * to the [arg_start, arg_end[ range.
307 	 */
308 	pos += arg_start;
309 	if (pos < arg_start || pos >= arg_end)
310 		return 0;
311 	if (count > arg_end - pos)
312 		count = arg_end - pos;
313 
314 	page = (char *)__get_free_page(GFP_KERNEL);
315 	if (!page)
316 		return -ENOMEM;
317 
318 	len = 0;
319 	while (count) {
320 		int got;
321 		size_t size = min_t(size_t, PAGE_SIZE, count);
322 
323 		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
324 		if (got <= 0)
325 			break;
326 		got -= copy_to_user(buf, page, got);
327 		if (unlikely(!got)) {
328 			if (!len)
329 				len = -EFAULT;
330 			break;
331 		}
332 		pos += got;
333 		buf += got;
334 		len += got;
335 		count -= got;
336 	}
337 
338 	free_page((unsigned long)page);
339 	return len;
340 }
341 
342 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
343 				size_t count, loff_t *pos)
344 {
345 	struct mm_struct *mm;
346 	ssize_t ret;
347 
348 	mm = get_task_mm(tsk);
349 	if (!mm)
350 		return 0;
351 
352 	ret = get_mm_cmdline(mm, buf, count, pos);
353 	mmput(mm);
354 	return ret;
355 }
356 
357 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
358 				     size_t count, loff_t *pos)
359 {
360 	struct task_struct *tsk;
361 	ssize_t ret;
362 
363 	BUG_ON(*pos < 0);
364 
365 	tsk = get_proc_task(file_inode(file));
366 	if (!tsk)
367 		return -ESRCH;
368 	ret = get_task_cmdline(tsk, buf, count, pos);
369 	put_task_struct(tsk);
370 	if (ret > 0)
371 		*pos += ret;
372 	return ret;
373 }
374 
375 static const struct file_operations proc_pid_cmdline_ops = {
376 	.read	= proc_pid_cmdline_read,
377 	.llseek	= generic_file_llseek,
378 };
379 
380 #ifdef CONFIG_KALLSYMS
381 /*
382  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
383  * Returns the resolved symbol.  If that fails, simply return the address.
384  */
385 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
386 			  struct pid *pid, struct task_struct *task)
387 {
388 	unsigned long wchan;
389 	char symname[KSYM_NAME_LEN];
390 
391 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
392 		goto print0;
393 
394 	wchan = get_wchan(task);
395 	if (wchan && !lookup_symbol_name(wchan, symname)) {
396 		seq_puts(m, symname);
397 		return 0;
398 	}
399 
400 print0:
401 	seq_putc(m, '0');
402 	return 0;
403 }
404 #endif /* CONFIG_KALLSYMS */
405 
406 static int lock_trace(struct task_struct *task)
407 {
408 	int err = down_read_killable(&task->signal->exec_update_lock);
409 	if (err)
410 		return err;
411 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
412 		up_read(&task->signal->exec_update_lock);
413 		return -EPERM;
414 	}
415 	return 0;
416 }
417 
418 static void unlock_trace(struct task_struct *task)
419 {
420 	up_read(&task->signal->exec_update_lock);
421 }
422 
423 #ifdef CONFIG_STACKTRACE
424 
425 #define MAX_STACK_TRACE_DEPTH	64
426 
427 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
428 			  struct pid *pid, struct task_struct *task)
429 {
430 	unsigned long *entries;
431 	int err;
432 
433 	/*
434 	 * The ability to racily run the kernel stack unwinder on a running task
435 	 * and then observe the unwinder output is scary; while it is useful for
436 	 * debugging kernel issues, it can also allow an attacker to leak kernel
437 	 * stack contents.
438 	 * Doing this in a manner that is at least safe from races would require
439 	 * some work to ensure that the remote task can not be scheduled; and
440 	 * even then, this would still expose the unwinder as local attack
441 	 * surface.
442 	 * Therefore, this interface is restricted to root.
443 	 */
444 	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
445 		return -EACCES;
446 
447 	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
448 				GFP_KERNEL);
449 	if (!entries)
450 		return -ENOMEM;
451 
452 	err = lock_trace(task);
453 	if (!err) {
454 		unsigned int i, nr_entries;
455 
456 		nr_entries = stack_trace_save_tsk(task, entries,
457 						  MAX_STACK_TRACE_DEPTH, 0);
458 
459 		for (i = 0; i < nr_entries; i++) {
460 			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
461 		}
462 
463 		unlock_trace(task);
464 	}
465 	kfree(entries);
466 
467 	return err;
468 }
469 #endif
470 
471 #ifdef CONFIG_SCHED_INFO
472 /*
473  * Provides /proc/PID/schedstat
474  */
475 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
476 			      struct pid *pid, struct task_struct *task)
477 {
478 	if (unlikely(!sched_info_on()))
479 		seq_puts(m, "0 0 0\n");
480 	else
481 		seq_printf(m, "%llu %llu %lu\n",
482 		   (unsigned long long)task->se.sum_exec_runtime,
483 		   (unsigned long long)task->sched_info.run_delay,
484 		   task->sched_info.pcount);
485 
486 	return 0;
487 }
488 #endif
489 
490 #ifdef CONFIG_LATENCYTOP
491 static int lstats_show_proc(struct seq_file *m, void *v)
492 {
493 	int i;
494 	struct inode *inode = m->private;
495 	struct task_struct *task = get_proc_task(inode);
496 
497 	if (!task)
498 		return -ESRCH;
499 	seq_puts(m, "Latency Top version : v0.1\n");
500 	for (i = 0; i < LT_SAVECOUNT; i++) {
501 		struct latency_record *lr = &task->latency_record[i];
502 		if (lr->backtrace[0]) {
503 			int q;
504 			seq_printf(m, "%i %li %li",
505 				   lr->count, lr->time, lr->max);
506 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
507 				unsigned long bt = lr->backtrace[q];
508 
509 				if (!bt)
510 					break;
511 				seq_printf(m, " %ps", (void *)bt);
512 			}
513 			seq_putc(m, '\n');
514 		}
515 
516 	}
517 	put_task_struct(task);
518 	return 0;
519 }
520 
521 static int lstats_open(struct inode *inode, struct file *file)
522 {
523 	return single_open(file, lstats_show_proc, inode);
524 }
525 
526 static ssize_t lstats_write(struct file *file, const char __user *buf,
527 			    size_t count, loff_t *offs)
528 {
529 	struct task_struct *task = get_proc_task(file_inode(file));
530 
531 	if (!task)
532 		return -ESRCH;
533 	clear_tsk_latency_tracing(task);
534 	put_task_struct(task);
535 
536 	return count;
537 }
538 
539 static const struct file_operations proc_lstats_operations = {
540 	.open		= lstats_open,
541 	.read		= seq_read,
542 	.write		= lstats_write,
543 	.llseek		= seq_lseek,
544 	.release	= single_release,
545 };
546 
547 #endif
548 
549 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
550 			  struct pid *pid, struct task_struct *task)
551 {
552 	unsigned long totalpages = totalram_pages() + total_swap_pages;
553 	unsigned long points = 0;
554 	long badness;
555 
556 	badness = oom_badness(task, totalpages);
557 	/*
558 	 * Special case OOM_SCORE_ADJ_MIN for all others scale the
559 	 * badness value into [0, 2000] range which we have been
560 	 * exporting for a long time so userspace might depend on it.
561 	 */
562 	if (badness != LONG_MIN)
563 		points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
564 
565 	seq_printf(m, "%lu\n", points);
566 
567 	return 0;
568 }
569 
570 struct limit_names {
571 	const char *name;
572 	const char *unit;
573 };
574 
575 static const struct limit_names lnames[RLIM_NLIMITS] = {
576 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
577 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
578 	[RLIMIT_DATA] = {"Max data size", "bytes"},
579 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
580 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
581 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
582 	[RLIMIT_NPROC] = {"Max processes", "processes"},
583 	[RLIMIT_NOFILE] = {"Max open files", "files"},
584 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
585 	[RLIMIT_AS] = {"Max address space", "bytes"},
586 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
587 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
588 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
589 	[RLIMIT_NICE] = {"Max nice priority", NULL},
590 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
591 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
592 };
593 
594 /* Display limits for a process */
595 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
596 			   struct pid *pid, struct task_struct *task)
597 {
598 	unsigned int i;
599 	unsigned long flags;
600 
601 	struct rlimit rlim[RLIM_NLIMITS];
602 
603 	if (!lock_task_sighand(task, &flags))
604 		return 0;
605 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
606 	unlock_task_sighand(task, &flags);
607 
608 	/*
609 	 * print the file header
610 	 */
611 	seq_puts(m, "Limit                     "
612 		"Soft Limit           "
613 		"Hard Limit           "
614 		"Units     \n");
615 
616 	for (i = 0; i < RLIM_NLIMITS; i++) {
617 		if (rlim[i].rlim_cur == RLIM_INFINITY)
618 			seq_printf(m, "%-25s %-20s ",
619 				   lnames[i].name, "unlimited");
620 		else
621 			seq_printf(m, "%-25s %-20lu ",
622 				   lnames[i].name, rlim[i].rlim_cur);
623 
624 		if (rlim[i].rlim_max == RLIM_INFINITY)
625 			seq_printf(m, "%-20s ", "unlimited");
626 		else
627 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
628 
629 		if (lnames[i].unit)
630 			seq_printf(m, "%-10s\n", lnames[i].unit);
631 		else
632 			seq_putc(m, '\n');
633 	}
634 
635 	return 0;
636 }
637 
638 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
639 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
640 			    struct pid *pid, struct task_struct *task)
641 {
642 	struct syscall_info info;
643 	u64 *args = &info.data.args[0];
644 	int res;
645 
646 	res = lock_trace(task);
647 	if (res)
648 		return res;
649 
650 	if (task_current_syscall(task, &info))
651 		seq_puts(m, "running\n");
652 	else if (info.data.nr < 0)
653 		seq_printf(m, "%d 0x%llx 0x%llx\n",
654 			   info.data.nr, info.sp, info.data.instruction_pointer);
655 	else
656 		seq_printf(m,
657 		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
658 		       info.data.nr,
659 		       args[0], args[1], args[2], args[3], args[4], args[5],
660 		       info.sp, info.data.instruction_pointer);
661 	unlock_trace(task);
662 
663 	return 0;
664 }
665 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
666 
667 /************************************************************************/
668 /*                       Here the fs part begins                        */
669 /************************************************************************/
670 
671 /* permission checks */
672 static bool proc_fd_access_allowed(struct inode *inode)
673 {
674 	struct task_struct *task;
675 	bool allowed = false;
676 	/* Allow access to a task's file descriptors if it is us or we
677 	 * may use ptrace attach to the process and find out that
678 	 * information.
679 	 */
680 	task = get_proc_task(inode);
681 	if (task) {
682 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
683 		put_task_struct(task);
684 	}
685 	return allowed;
686 }
687 
688 int proc_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
689 		 struct iattr *attr)
690 {
691 	int error;
692 	struct inode *inode = d_inode(dentry);
693 
694 	if (attr->ia_valid & ATTR_MODE)
695 		return -EPERM;
696 
697 	error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
698 	if (error)
699 		return error;
700 
701 	setattr_copy(&nop_mnt_idmap, inode, attr);
702 	mark_inode_dirty(inode);
703 	return 0;
704 }
705 
706 /*
707  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
708  * or euid/egid (for hide_pid_min=2)?
709  */
710 static bool has_pid_permissions(struct proc_fs_info *fs_info,
711 				 struct task_struct *task,
712 				 enum proc_hidepid hide_pid_min)
713 {
714 	/*
715 	 * If 'hidpid' mount option is set force a ptrace check,
716 	 * we indicate that we are using a filesystem syscall
717 	 * by passing PTRACE_MODE_READ_FSCREDS
718 	 */
719 	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
720 		return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
721 
722 	if (fs_info->hide_pid < hide_pid_min)
723 		return true;
724 	if (in_group_p(fs_info->pid_gid))
725 		return true;
726 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
727 }
728 
729 
730 static int proc_pid_permission(struct mnt_idmap *idmap,
731 			       struct inode *inode, int mask)
732 {
733 	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
734 	struct task_struct *task;
735 	bool has_perms;
736 
737 	task = get_proc_task(inode);
738 	if (!task)
739 		return -ESRCH;
740 	has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
741 	put_task_struct(task);
742 
743 	if (!has_perms) {
744 		if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
745 			/*
746 			 * Let's make getdents(), stat(), and open()
747 			 * consistent with each other.  If a process
748 			 * may not stat() a file, it shouldn't be seen
749 			 * in procfs at all.
750 			 */
751 			return -ENOENT;
752 		}
753 
754 		return -EPERM;
755 	}
756 	return generic_permission(&nop_mnt_idmap, inode, mask);
757 }
758 
759 
760 
761 static const struct inode_operations proc_def_inode_operations = {
762 	.setattr	= proc_setattr,
763 };
764 
765 static int proc_single_show(struct seq_file *m, void *v)
766 {
767 	struct inode *inode = m->private;
768 	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
769 	struct pid *pid = proc_pid(inode);
770 	struct task_struct *task;
771 	int ret;
772 
773 	task = get_pid_task(pid, PIDTYPE_PID);
774 	if (!task)
775 		return -ESRCH;
776 
777 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
778 
779 	put_task_struct(task);
780 	return ret;
781 }
782 
783 static int proc_single_open(struct inode *inode, struct file *filp)
784 {
785 	return single_open(filp, proc_single_show, inode);
786 }
787 
788 static const struct file_operations proc_single_file_operations = {
789 	.open		= proc_single_open,
790 	.read		= seq_read,
791 	.llseek		= seq_lseek,
792 	.release	= single_release,
793 };
794 
795 
796 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
797 {
798 	struct task_struct *task = get_proc_task(inode);
799 	struct mm_struct *mm = ERR_PTR(-ESRCH);
800 
801 	if (task) {
802 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
803 		put_task_struct(task);
804 
805 		if (!IS_ERR_OR_NULL(mm)) {
806 			/* ensure this mm_struct can't be freed */
807 			mmgrab(mm);
808 			/* but do not pin its memory */
809 			mmput(mm);
810 		}
811 	}
812 
813 	return mm;
814 }
815 
816 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
817 {
818 	struct mm_struct *mm = proc_mem_open(inode, mode);
819 
820 	if (IS_ERR(mm))
821 		return PTR_ERR(mm);
822 
823 	file->private_data = mm;
824 	return 0;
825 }
826 
827 static int mem_open(struct inode *inode, struct file *file)
828 {
829 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
830 
831 	/* OK to pass negative loff_t, we can catch out-of-range */
832 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
833 
834 	return ret;
835 }
836 
837 static ssize_t mem_rw(struct file *file, char __user *buf,
838 			size_t count, loff_t *ppos, int write)
839 {
840 	struct mm_struct *mm = file->private_data;
841 	unsigned long addr = *ppos;
842 	ssize_t copied;
843 	char *page;
844 	unsigned int flags;
845 
846 	if (!mm)
847 		return 0;
848 
849 	page = (char *)__get_free_page(GFP_KERNEL);
850 	if (!page)
851 		return -ENOMEM;
852 
853 	copied = 0;
854 	if (!mmget_not_zero(mm))
855 		goto free;
856 
857 	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
858 
859 	while (count > 0) {
860 		size_t this_len = min_t(size_t, count, PAGE_SIZE);
861 
862 		if (write && copy_from_user(page, buf, this_len)) {
863 			copied = -EFAULT;
864 			break;
865 		}
866 
867 		this_len = access_remote_vm(mm, addr, page, this_len, flags);
868 		if (!this_len) {
869 			if (!copied)
870 				copied = -EIO;
871 			break;
872 		}
873 
874 		if (!write && copy_to_user(buf, page, this_len)) {
875 			copied = -EFAULT;
876 			break;
877 		}
878 
879 		buf += this_len;
880 		addr += this_len;
881 		copied += this_len;
882 		count -= this_len;
883 	}
884 	*ppos = addr;
885 
886 	mmput(mm);
887 free:
888 	free_page((unsigned long) page);
889 	return copied;
890 }
891 
892 static ssize_t mem_read(struct file *file, char __user *buf,
893 			size_t count, loff_t *ppos)
894 {
895 	return mem_rw(file, buf, count, ppos, 0);
896 }
897 
898 static ssize_t mem_write(struct file *file, const char __user *buf,
899 			 size_t count, loff_t *ppos)
900 {
901 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
902 }
903 
904 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
905 {
906 	switch (orig) {
907 	case 0:
908 		file->f_pos = offset;
909 		break;
910 	case 1:
911 		file->f_pos += offset;
912 		break;
913 	default:
914 		return -EINVAL;
915 	}
916 	force_successful_syscall_return();
917 	return file->f_pos;
918 }
919 
920 static int mem_release(struct inode *inode, struct file *file)
921 {
922 	struct mm_struct *mm = file->private_data;
923 	if (mm)
924 		mmdrop(mm);
925 	return 0;
926 }
927 
928 static const struct file_operations proc_mem_operations = {
929 	.llseek		= mem_lseek,
930 	.read		= mem_read,
931 	.write		= mem_write,
932 	.open		= mem_open,
933 	.release	= mem_release,
934 };
935 
936 static int environ_open(struct inode *inode, struct file *file)
937 {
938 	return __mem_open(inode, file, PTRACE_MODE_READ);
939 }
940 
941 static ssize_t environ_read(struct file *file, char __user *buf,
942 			size_t count, loff_t *ppos)
943 {
944 	char *page;
945 	unsigned long src = *ppos;
946 	int ret = 0;
947 	struct mm_struct *mm = file->private_data;
948 	unsigned long env_start, env_end;
949 
950 	/* Ensure the process spawned far enough to have an environment. */
951 	if (!mm || !mm->env_end)
952 		return 0;
953 
954 	page = (char *)__get_free_page(GFP_KERNEL);
955 	if (!page)
956 		return -ENOMEM;
957 
958 	ret = 0;
959 	if (!mmget_not_zero(mm))
960 		goto free;
961 
962 	spin_lock(&mm->arg_lock);
963 	env_start = mm->env_start;
964 	env_end = mm->env_end;
965 	spin_unlock(&mm->arg_lock);
966 
967 	while (count > 0) {
968 		size_t this_len, max_len;
969 		int retval;
970 
971 		if (src >= (env_end - env_start))
972 			break;
973 
974 		this_len = env_end - (env_start + src);
975 
976 		max_len = min_t(size_t, PAGE_SIZE, count);
977 		this_len = min(max_len, this_len);
978 
979 		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
980 
981 		if (retval <= 0) {
982 			ret = retval;
983 			break;
984 		}
985 
986 		if (copy_to_user(buf, page, retval)) {
987 			ret = -EFAULT;
988 			break;
989 		}
990 
991 		ret += retval;
992 		src += retval;
993 		buf += retval;
994 		count -= retval;
995 	}
996 	*ppos = src;
997 	mmput(mm);
998 
999 free:
1000 	free_page((unsigned long) page);
1001 	return ret;
1002 }
1003 
1004 static const struct file_operations proc_environ_operations = {
1005 	.open		= environ_open,
1006 	.read		= environ_read,
1007 	.llseek		= generic_file_llseek,
1008 	.release	= mem_release,
1009 };
1010 
1011 static int auxv_open(struct inode *inode, struct file *file)
1012 {
1013 	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1014 }
1015 
1016 static ssize_t auxv_read(struct file *file, char __user *buf,
1017 			size_t count, loff_t *ppos)
1018 {
1019 	struct mm_struct *mm = file->private_data;
1020 	unsigned int nwords = 0;
1021 
1022 	if (!mm)
1023 		return 0;
1024 	do {
1025 		nwords += 2;
1026 	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1027 	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1028 				       nwords * sizeof(mm->saved_auxv[0]));
1029 }
1030 
1031 static const struct file_operations proc_auxv_operations = {
1032 	.open		= auxv_open,
1033 	.read		= auxv_read,
1034 	.llseek		= generic_file_llseek,
1035 	.release	= mem_release,
1036 };
1037 
1038 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1039 			    loff_t *ppos)
1040 {
1041 	struct task_struct *task = get_proc_task(file_inode(file));
1042 	char buffer[PROC_NUMBUF];
1043 	int oom_adj = OOM_ADJUST_MIN;
1044 	size_t len;
1045 
1046 	if (!task)
1047 		return -ESRCH;
1048 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1049 		oom_adj = OOM_ADJUST_MAX;
1050 	else
1051 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1052 			  OOM_SCORE_ADJ_MAX;
1053 	put_task_struct(task);
1054 	if (oom_adj > OOM_ADJUST_MAX)
1055 		oom_adj = OOM_ADJUST_MAX;
1056 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1057 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1058 }
1059 
1060 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1061 {
1062 	struct mm_struct *mm = NULL;
1063 	struct task_struct *task;
1064 	int err = 0;
1065 
1066 	task = get_proc_task(file_inode(file));
1067 	if (!task)
1068 		return -ESRCH;
1069 
1070 	mutex_lock(&oom_adj_mutex);
1071 	if (legacy) {
1072 		if (oom_adj < task->signal->oom_score_adj &&
1073 				!capable(CAP_SYS_RESOURCE)) {
1074 			err = -EACCES;
1075 			goto err_unlock;
1076 		}
1077 		/*
1078 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1079 		 * /proc/pid/oom_score_adj instead.
1080 		 */
1081 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1082 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1083 			  task_pid_nr(task));
1084 	} else {
1085 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1086 				!capable(CAP_SYS_RESOURCE)) {
1087 			err = -EACCES;
1088 			goto err_unlock;
1089 		}
1090 	}
1091 
1092 	/*
1093 	 * Make sure we will check other processes sharing the mm if this is
1094 	 * not vfrok which wants its own oom_score_adj.
1095 	 * pin the mm so it doesn't go away and get reused after task_unlock
1096 	 */
1097 	if (!task->vfork_done) {
1098 		struct task_struct *p = find_lock_task_mm(task);
1099 
1100 		if (p) {
1101 			if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1102 				mm = p->mm;
1103 				mmgrab(mm);
1104 			}
1105 			task_unlock(p);
1106 		}
1107 	}
1108 
1109 	task->signal->oom_score_adj = oom_adj;
1110 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1111 		task->signal->oom_score_adj_min = (short)oom_adj;
1112 	trace_oom_score_adj_update(task);
1113 
1114 	if (mm) {
1115 		struct task_struct *p;
1116 
1117 		rcu_read_lock();
1118 		for_each_process(p) {
1119 			if (same_thread_group(task, p))
1120 				continue;
1121 
1122 			/* do not touch kernel threads or the global init */
1123 			if (p->flags & PF_KTHREAD || is_global_init(p))
1124 				continue;
1125 
1126 			task_lock(p);
1127 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1128 				p->signal->oom_score_adj = oom_adj;
1129 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1130 					p->signal->oom_score_adj_min = (short)oom_adj;
1131 			}
1132 			task_unlock(p);
1133 		}
1134 		rcu_read_unlock();
1135 		mmdrop(mm);
1136 	}
1137 err_unlock:
1138 	mutex_unlock(&oom_adj_mutex);
1139 	put_task_struct(task);
1140 	return err;
1141 }
1142 
1143 /*
1144  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1145  * kernels.  The effective policy is defined by oom_score_adj, which has a
1146  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1147  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1148  * Processes that become oom disabled via oom_adj will still be oom disabled
1149  * with this implementation.
1150  *
1151  * oom_adj cannot be removed since existing userspace binaries use it.
1152  */
1153 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1154 			     size_t count, loff_t *ppos)
1155 {
1156 	char buffer[PROC_NUMBUF];
1157 	int oom_adj;
1158 	int err;
1159 
1160 	memset(buffer, 0, sizeof(buffer));
1161 	if (count > sizeof(buffer) - 1)
1162 		count = sizeof(buffer) - 1;
1163 	if (copy_from_user(buffer, buf, count)) {
1164 		err = -EFAULT;
1165 		goto out;
1166 	}
1167 
1168 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1169 	if (err)
1170 		goto out;
1171 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1172 	     oom_adj != OOM_DISABLE) {
1173 		err = -EINVAL;
1174 		goto out;
1175 	}
1176 
1177 	/*
1178 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1179 	 * value is always attainable.
1180 	 */
1181 	if (oom_adj == OOM_ADJUST_MAX)
1182 		oom_adj = OOM_SCORE_ADJ_MAX;
1183 	else
1184 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1185 
1186 	err = __set_oom_adj(file, oom_adj, true);
1187 out:
1188 	return err < 0 ? err : count;
1189 }
1190 
1191 static const struct file_operations proc_oom_adj_operations = {
1192 	.read		= oom_adj_read,
1193 	.write		= oom_adj_write,
1194 	.llseek		= generic_file_llseek,
1195 };
1196 
1197 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1198 					size_t count, loff_t *ppos)
1199 {
1200 	struct task_struct *task = get_proc_task(file_inode(file));
1201 	char buffer[PROC_NUMBUF];
1202 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1203 	size_t len;
1204 
1205 	if (!task)
1206 		return -ESRCH;
1207 	oom_score_adj = task->signal->oom_score_adj;
1208 	put_task_struct(task);
1209 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1210 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1211 }
1212 
1213 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1214 					size_t count, loff_t *ppos)
1215 {
1216 	char buffer[PROC_NUMBUF];
1217 	int oom_score_adj;
1218 	int err;
1219 
1220 	memset(buffer, 0, sizeof(buffer));
1221 	if (count > sizeof(buffer) - 1)
1222 		count = sizeof(buffer) - 1;
1223 	if (copy_from_user(buffer, buf, count)) {
1224 		err = -EFAULT;
1225 		goto out;
1226 	}
1227 
1228 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1229 	if (err)
1230 		goto out;
1231 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1232 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1233 		err = -EINVAL;
1234 		goto out;
1235 	}
1236 
1237 	err = __set_oom_adj(file, oom_score_adj, false);
1238 out:
1239 	return err < 0 ? err : count;
1240 }
1241 
1242 static const struct file_operations proc_oom_score_adj_operations = {
1243 	.read		= oom_score_adj_read,
1244 	.write		= oom_score_adj_write,
1245 	.llseek		= default_llseek,
1246 };
1247 
1248 #ifdef CONFIG_AUDIT
1249 #define TMPBUFLEN 11
1250 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1251 				  size_t count, loff_t *ppos)
1252 {
1253 	struct inode * inode = file_inode(file);
1254 	struct task_struct *task = get_proc_task(inode);
1255 	ssize_t length;
1256 	char tmpbuf[TMPBUFLEN];
1257 
1258 	if (!task)
1259 		return -ESRCH;
1260 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1261 			   from_kuid(file->f_cred->user_ns,
1262 				     audit_get_loginuid(task)));
1263 	put_task_struct(task);
1264 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1265 }
1266 
1267 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1268 				   size_t count, loff_t *ppos)
1269 {
1270 	struct inode * inode = file_inode(file);
1271 	uid_t loginuid;
1272 	kuid_t kloginuid;
1273 	int rv;
1274 
1275 	/* Don't let kthreads write their own loginuid */
1276 	if (current->flags & PF_KTHREAD)
1277 		return -EPERM;
1278 
1279 	rcu_read_lock();
1280 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1281 		rcu_read_unlock();
1282 		return -EPERM;
1283 	}
1284 	rcu_read_unlock();
1285 
1286 	if (*ppos != 0) {
1287 		/* No partial writes. */
1288 		return -EINVAL;
1289 	}
1290 
1291 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1292 	if (rv < 0)
1293 		return rv;
1294 
1295 	/* is userspace tring to explicitly UNSET the loginuid? */
1296 	if (loginuid == AUDIT_UID_UNSET) {
1297 		kloginuid = INVALID_UID;
1298 	} else {
1299 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1300 		if (!uid_valid(kloginuid))
1301 			return -EINVAL;
1302 	}
1303 
1304 	rv = audit_set_loginuid(kloginuid);
1305 	if (rv < 0)
1306 		return rv;
1307 	return count;
1308 }
1309 
1310 static const struct file_operations proc_loginuid_operations = {
1311 	.read		= proc_loginuid_read,
1312 	.write		= proc_loginuid_write,
1313 	.llseek		= generic_file_llseek,
1314 };
1315 
1316 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1317 				  size_t count, loff_t *ppos)
1318 {
1319 	struct inode * inode = file_inode(file);
1320 	struct task_struct *task = get_proc_task(inode);
1321 	ssize_t length;
1322 	char tmpbuf[TMPBUFLEN];
1323 
1324 	if (!task)
1325 		return -ESRCH;
1326 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1327 				audit_get_sessionid(task));
1328 	put_task_struct(task);
1329 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1330 }
1331 
1332 static const struct file_operations proc_sessionid_operations = {
1333 	.read		= proc_sessionid_read,
1334 	.llseek		= generic_file_llseek,
1335 };
1336 #endif
1337 
1338 #ifdef CONFIG_FAULT_INJECTION
1339 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1340 				      size_t count, loff_t *ppos)
1341 {
1342 	struct task_struct *task = get_proc_task(file_inode(file));
1343 	char buffer[PROC_NUMBUF];
1344 	size_t len;
1345 	int make_it_fail;
1346 
1347 	if (!task)
1348 		return -ESRCH;
1349 	make_it_fail = task->make_it_fail;
1350 	put_task_struct(task);
1351 
1352 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1353 
1354 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1355 }
1356 
1357 static ssize_t proc_fault_inject_write(struct file * file,
1358 			const char __user * buf, size_t count, loff_t *ppos)
1359 {
1360 	struct task_struct *task;
1361 	char buffer[PROC_NUMBUF];
1362 	int make_it_fail;
1363 	int rv;
1364 
1365 	if (!capable(CAP_SYS_RESOURCE))
1366 		return -EPERM;
1367 	memset(buffer, 0, sizeof(buffer));
1368 	if (count > sizeof(buffer) - 1)
1369 		count = sizeof(buffer) - 1;
1370 	if (copy_from_user(buffer, buf, count))
1371 		return -EFAULT;
1372 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1373 	if (rv < 0)
1374 		return rv;
1375 	if (make_it_fail < 0 || make_it_fail > 1)
1376 		return -EINVAL;
1377 
1378 	task = get_proc_task(file_inode(file));
1379 	if (!task)
1380 		return -ESRCH;
1381 	task->make_it_fail = make_it_fail;
1382 	put_task_struct(task);
1383 
1384 	return count;
1385 }
1386 
1387 static const struct file_operations proc_fault_inject_operations = {
1388 	.read		= proc_fault_inject_read,
1389 	.write		= proc_fault_inject_write,
1390 	.llseek		= generic_file_llseek,
1391 };
1392 
1393 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1394 				   size_t count, loff_t *ppos)
1395 {
1396 	struct task_struct *task;
1397 	int err;
1398 	unsigned int n;
1399 
1400 	err = kstrtouint_from_user(buf, count, 0, &n);
1401 	if (err)
1402 		return err;
1403 
1404 	task = get_proc_task(file_inode(file));
1405 	if (!task)
1406 		return -ESRCH;
1407 	task->fail_nth = n;
1408 	put_task_struct(task);
1409 
1410 	return count;
1411 }
1412 
1413 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1414 				  size_t count, loff_t *ppos)
1415 {
1416 	struct task_struct *task;
1417 	char numbuf[PROC_NUMBUF];
1418 	ssize_t len;
1419 
1420 	task = get_proc_task(file_inode(file));
1421 	if (!task)
1422 		return -ESRCH;
1423 	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1424 	put_task_struct(task);
1425 	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1426 }
1427 
1428 static const struct file_operations proc_fail_nth_operations = {
1429 	.read		= proc_fail_nth_read,
1430 	.write		= proc_fail_nth_write,
1431 };
1432 #endif
1433 
1434 
1435 #ifdef CONFIG_SCHED_DEBUG
1436 /*
1437  * Print out various scheduling related per-task fields:
1438  */
1439 static int sched_show(struct seq_file *m, void *v)
1440 {
1441 	struct inode *inode = m->private;
1442 	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1443 	struct task_struct *p;
1444 
1445 	p = get_proc_task(inode);
1446 	if (!p)
1447 		return -ESRCH;
1448 	proc_sched_show_task(p, ns, m);
1449 
1450 	put_task_struct(p);
1451 
1452 	return 0;
1453 }
1454 
1455 static ssize_t
1456 sched_write(struct file *file, const char __user *buf,
1457 	    size_t count, loff_t *offset)
1458 {
1459 	struct inode *inode = file_inode(file);
1460 	struct task_struct *p;
1461 
1462 	p = get_proc_task(inode);
1463 	if (!p)
1464 		return -ESRCH;
1465 	proc_sched_set_task(p);
1466 
1467 	put_task_struct(p);
1468 
1469 	return count;
1470 }
1471 
1472 static int sched_open(struct inode *inode, struct file *filp)
1473 {
1474 	return single_open(filp, sched_show, inode);
1475 }
1476 
1477 static const struct file_operations proc_pid_sched_operations = {
1478 	.open		= sched_open,
1479 	.read		= seq_read,
1480 	.write		= sched_write,
1481 	.llseek		= seq_lseek,
1482 	.release	= single_release,
1483 };
1484 
1485 #endif
1486 
1487 #ifdef CONFIG_SCHED_AUTOGROUP
1488 /*
1489  * Print out autogroup related information:
1490  */
1491 static int sched_autogroup_show(struct seq_file *m, void *v)
1492 {
1493 	struct inode *inode = m->private;
1494 	struct task_struct *p;
1495 
1496 	p = get_proc_task(inode);
1497 	if (!p)
1498 		return -ESRCH;
1499 	proc_sched_autogroup_show_task(p, m);
1500 
1501 	put_task_struct(p);
1502 
1503 	return 0;
1504 }
1505 
1506 static ssize_t
1507 sched_autogroup_write(struct file *file, const char __user *buf,
1508 	    size_t count, loff_t *offset)
1509 {
1510 	struct inode *inode = file_inode(file);
1511 	struct task_struct *p;
1512 	char buffer[PROC_NUMBUF];
1513 	int nice;
1514 	int err;
1515 
1516 	memset(buffer, 0, sizeof(buffer));
1517 	if (count > sizeof(buffer) - 1)
1518 		count = sizeof(buffer) - 1;
1519 	if (copy_from_user(buffer, buf, count))
1520 		return -EFAULT;
1521 
1522 	err = kstrtoint(strstrip(buffer), 0, &nice);
1523 	if (err < 0)
1524 		return err;
1525 
1526 	p = get_proc_task(inode);
1527 	if (!p)
1528 		return -ESRCH;
1529 
1530 	err = proc_sched_autogroup_set_nice(p, nice);
1531 	if (err)
1532 		count = err;
1533 
1534 	put_task_struct(p);
1535 
1536 	return count;
1537 }
1538 
1539 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1540 {
1541 	int ret;
1542 
1543 	ret = single_open(filp, sched_autogroup_show, NULL);
1544 	if (!ret) {
1545 		struct seq_file *m = filp->private_data;
1546 
1547 		m->private = inode;
1548 	}
1549 	return ret;
1550 }
1551 
1552 static const struct file_operations proc_pid_sched_autogroup_operations = {
1553 	.open		= sched_autogroup_open,
1554 	.read		= seq_read,
1555 	.write		= sched_autogroup_write,
1556 	.llseek		= seq_lseek,
1557 	.release	= single_release,
1558 };
1559 
1560 #endif /* CONFIG_SCHED_AUTOGROUP */
1561 
1562 #ifdef CONFIG_TIME_NS
1563 static int timens_offsets_show(struct seq_file *m, void *v)
1564 {
1565 	struct task_struct *p;
1566 
1567 	p = get_proc_task(file_inode(m->file));
1568 	if (!p)
1569 		return -ESRCH;
1570 	proc_timens_show_offsets(p, m);
1571 
1572 	put_task_struct(p);
1573 
1574 	return 0;
1575 }
1576 
1577 static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1578 				    size_t count, loff_t *ppos)
1579 {
1580 	struct inode *inode = file_inode(file);
1581 	struct proc_timens_offset offsets[2];
1582 	char *kbuf = NULL, *pos, *next_line;
1583 	struct task_struct *p;
1584 	int ret, noffsets;
1585 
1586 	/* Only allow < page size writes at the beginning of the file */
1587 	if ((*ppos != 0) || (count >= PAGE_SIZE))
1588 		return -EINVAL;
1589 
1590 	/* Slurp in the user data */
1591 	kbuf = memdup_user_nul(buf, count);
1592 	if (IS_ERR(kbuf))
1593 		return PTR_ERR(kbuf);
1594 
1595 	/* Parse the user data */
1596 	ret = -EINVAL;
1597 	noffsets = 0;
1598 	for (pos = kbuf; pos; pos = next_line) {
1599 		struct proc_timens_offset *off = &offsets[noffsets];
1600 		char clock[10];
1601 		int err;
1602 
1603 		/* Find the end of line and ensure we don't look past it */
1604 		next_line = strchr(pos, '\n');
1605 		if (next_line) {
1606 			*next_line = '\0';
1607 			next_line++;
1608 			if (*next_line == '\0')
1609 				next_line = NULL;
1610 		}
1611 
1612 		err = sscanf(pos, "%9s %lld %lu", clock,
1613 				&off->val.tv_sec, &off->val.tv_nsec);
1614 		if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1615 			goto out;
1616 
1617 		clock[sizeof(clock) - 1] = 0;
1618 		if (strcmp(clock, "monotonic") == 0 ||
1619 		    strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1620 			off->clockid = CLOCK_MONOTONIC;
1621 		else if (strcmp(clock, "boottime") == 0 ||
1622 			 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1623 			off->clockid = CLOCK_BOOTTIME;
1624 		else
1625 			goto out;
1626 
1627 		noffsets++;
1628 		if (noffsets == ARRAY_SIZE(offsets)) {
1629 			if (next_line)
1630 				count = next_line - kbuf;
1631 			break;
1632 		}
1633 	}
1634 
1635 	ret = -ESRCH;
1636 	p = get_proc_task(inode);
1637 	if (!p)
1638 		goto out;
1639 	ret = proc_timens_set_offset(file, p, offsets, noffsets);
1640 	put_task_struct(p);
1641 	if (ret)
1642 		goto out;
1643 
1644 	ret = count;
1645 out:
1646 	kfree(kbuf);
1647 	return ret;
1648 }
1649 
1650 static int timens_offsets_open(struct inode *inode, struct file *filp)
1651 {
1652 	return single_open(filp, timens_offsets_show, inode);
1653 }
1654 
1655 static const struct file_operations proc_timens_offsets_operations = {
1656 	.open		= timens_offsets_open,
1657 	.read		= seq_read,
1658 	.write		= timens_offsets_write,
1659 	.llseek		= seq_lseek,
1660 	.release	= single_release,
1661 };
1662 #endif /* CONFIG_TIME_NS */
1663 
1664 static ssize_t comm_write(struct file *file, const char __user *buf,
1665 				size_t count, loff_t *offset)
1666 {
1667 	struct inode *inode = file_inode(file);
1668 	struct task_struct *p;
1669 	char buffer[TASK_COMM_LEN];
1670 	const size_t maxlen = sizeof(buffer) - 1;
1671 
1672 	memset(buffer, 0, sizeof(buffer));
1673 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1674 		return -EFAULT;
1675 
1676 	p = get_proc_task(inode);
1677 	if (!p)
1678 		return -ESRCH;
1679 
1680 	if (same_thread_group(current, p)) {
1681 		set_task_comm(p, buffer);
1682 		proc_comm_connector(p);
1683 	}
1684 	else
1685 		count = -EINVAL;
1686 
1687 	put_task_struct(p);
1688 
1689 	return count;
1690 }
1691 
1692 static int comm_show(struct seq_file *m, void *v)
1693 {
1694 	struct inode *inode = m->private;
1695 	struct task_struct *p;
1696 
1697 	p = get_proc_task(inode);
1698 	if (!p)
1699 		return -ESRCH;
1700 
1701 	proc_task_name(m, p, false);
1702 	seq_putc(m, '\n');
1703 
1704 	put_task_struct(p);
1705 
1706 	return 0;
1707 }
1708 
1709 static int comm_open(struct inode *inode, struct file *filp)
1710 {
1711 	return single_open(filp, comm_show, inode);
1712 }
1713 
1714 static const struct file_operations proc_pid_set_comm_operations = {
1715 	.open		= comm_open,
1716 	.read		= seq_read,
1717 	.write		= comm_write,
1718 	.llseek		= seq_lseek,
1719 	.release	= single_release,
1720 };
1721 
1722 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1723 {
1724 	struct task_struct *task;
1725 	struct file *exe_file;
1726 
1727 	task = get_proc_task(d_inode(dentry));
1728 	if (!task)
1729 		return -ENOENT;
1730 	exe_file = get_task_exe_file(task);
1731 	put_task_struct(task);
1732 	if (exe_file) {
1733 		*exe_path = exe_file->f_path;
1734 		path_get(&exe_file->f_path);
1735 		fput(exe_file);
1736 		return 0;
1737 	} else
1738 		return -ENOENT;
1739 }
1740 
1741 static const char *proc_pid_get_link(struct dentry *dentry,
1742 				     struct inode *inode,
1743 				     struct delayed_call *done)
1744 {
1745 	struct path path;
1746 	int error = -EACCES;
1747 
1748 	if (!dentry)
1749 		return ERR_PTR(-ECHILD);
1750 
1751 	/* Are we allowed to snoop on the tasks file descriptors? */
1752 	if (!proc_fd_access_allowed(inode))
1753 		goto out;
1754 
1755 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1756 	if (error)
1757 		goto out;
1758 
1759 	error = nd_jump_link(&path);
1760 out:
1761 	return ERR_PTR(error);
1762 }
1763 
1764 static int do_proc_readlink(const struct path *path, char __user *buffer, int buflen)
1765 {
1766 	char *tmp = kmalloc(PATH_MAX, GFP_KERNEL);
1767 	char *pathname;
1768 	int len;
1769 
1770 	if (!tmp)
1771 		return -ENOMEM;
1772 
1773 	pathname = d_path(path, tmp, PATH_MAX);
1774 	len = PTR_ERR(pathname);
1775 	if (IS_ERR(pathname))
1776 		goto out;
1777 	len = tmp + PATH_MAX - 1 - pathname;
1778 
1779 	if (len > buflen)
1780 		len = buflen;
1781 	if (copy_to_user(buffer, pathname, len))
1782 		len = -EFAULT;
1783  out:
1784 	kfree(tmp);
1785 	return len;
1786 }
1787 
1788 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1789 {
1790 	int error = -EACCES;
1791 	struct inode *inode = d_inode(dentry);
1792 	struct path path;
1793 
1794 	/* Are we allowed to snoop on the tasks file descriptors? */
1795 	if (!proc_fd_access_allowed(inode))
1796 		goto out;
1797 
1798 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1799 	if (error)
1800 		goto out;
1801 
1802 	error = do_proc_readlink(&path, buffer, buflen);
1803 	path_put(&path);
1804 out:
1805 	return error;
1806 }
1807 
1808 const struct inode_operations proc_pid_link_inode_operations = {
1809 	.readlink	= proc_pid_readlink,
1810 	.get_link	= proc_pid_get_link,
1811 	.setattr	= proc_setattr,
1812 };
1813 
1814 
1815 /* building an inode */
1816 
1817 void task_dump_owner(struct task_struct *task, umode_t mode,
1818 		     kuid_t *ruid, kgid_t *rgid)
1819 {
1820 	/* Depending on the state of dumpable compute who should own a
1821 	 * proc file for a task.
1822 	 */
1823 	const struct cred *cred;
1824 	kuid_t uid;
1825 	kgid_t gid;
1826 
1827 	if (unlikely(task->flags & PF_KTHREAD)) {
1828 		*ruid = GLOBAL_ROOT_UID;
1829 		*rgid = GLOBAL_ROOT_GID;
1830 		return;
1831 	}
1832 
1833 	/* Default to the tasks effective ownership */
1834 	rcu_read_lock();
1835 	cred = __task_cred(task);
1836 	uid = cred->euid;
1837 	gid = cred->egid;
1838 	rcu_read_unlock();
1839 
1840 	/*
1841 	 * Before the /proc/pid/status file was created the only way to read
1842 	 * the effective uid of a /process was to stat /proc/pid.  Reading
1843 	 * /proc/pid/status is slow enough that procps and other packages
1844 	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1845 	 * made this apply to all per process world readable and executable
1846 	 * directories.
1847 	 */
1848 	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1849 		struct mm_struct *mm;
1850 		task_lock(task);
1851 		mm = task->mm;
1852 		/* Make non-dumpable tasks owned by some root */
1853 		if (mm) {
1854 			if (get_dumpable(mm) != SUID_DUMP_USER) {
1855 				struct user_namespace *user_ns = mm->user_ns;
1856 
1857 				uid = make_kuid(user_ns, 0);
1858 				if (!uid_valid(uid))
1859 					uid = GLOBAL_ROOT_UID;
1860 
1861 				gid = make_kgid(user_ns, 0);
1862 				if (!gid_valid(gid))
1863 					gid = GLOBAL_ROOT_GID;
1864 			}
1865 		} else {
1866 			uid = GLOBAL_ROOT_UID;
1867 			gid = GLOBAL_ROOT_GID;
1868 		}
1869 		task_unlock(task);
1870 	}
1871 	*ruid = uid;
1872 	*rgid = gid;
1873 }
1874 
1875 void proc_pid_evict_inode(struct proc_inode *ei)
1876 {
1877 	struct pid *pid = ei->pid;
1878 
1879 	if (S_ISDIR(ei->vfs_inode.i_mode)) {
1880 		spin_lock(&pid->lock);
1881 		hlist_del_init_rcu(&ei->sibling_inodes);
1882 		spin_unlock(&pid->lock);
1883 	}
1884 
1885 	put_pid(pid);
1886 }
1887 
1888 struct inode *proc_pid_make_inode(struct super_block *sb,
1889 				  struct task_struct *task, umode_t mode)
1890 {
1891 	struct inode * inode;
1892 	struct proc_inode *ei;
1893 	struct pid *pid;
1894 
1895 	/* We need a new inode */
1896 
1897 	inode = new_inode(sb);
1898 	if (!inode)
1899 		goto out;
1900 
1901 	/* Common stuff */
1902 	ei = PROC_I(inode);
1903 	inode->i_mode = mode;
1904 	inode->i_ino = get_next_ino();
1905 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1906 	inode->i_op = &proc_def_inode_operations;
1907 
1908 	/*
1909 	 * grab the reference to task.
1910 	 */
1911 	pid = get_task_pid(task, PIDTYPE_PID);
1912 	if (!pid)
1913 		goto out_unlock;
1914 
1915 	/* Let the pid remember us for quick removal */
1916 	ei->pid = pid;
1917 
1918 	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1919 	security_task_to_inode(task, inode);
1920 
1921 out:
1922 	return inode;
1923 
1924 out_unlock:
1925 	iput(inode);
1926 	return NULL;
1927 }
1928 
1929 /*
1930  * Generating an inode and adding it into @pid->inodes, so that task will
1931  * invalidate inode's dentry before being released.
1932  *
1933  * This helper is used for creating dir-type entries under '/proc' and
1934  * '/proc/<tgid>/task'. Other entries(eg. fd, stat) under '/proc/<tgid>'
1935  * can be released by invalidating '/proc/<tgid>' dentry.
1936  * In theory, dentries under '/proc/<tgid>/task' can also be released by
1937  * invalidating '/proc/<tgid>' dentry, we reserve it to handle single
1938  * thread exiting situation: Any one of threads should invalidate its
1939  * '/proc/<tgid>/task/<pid>' dentry before released.
1940  */
1941 static struct inode *proc_pid_make_base_inode(struct super_block *sb,
1942 				struct task_struct *task, umode_t mode)
1943 {
1944 	struct inode *inode;
1945 	struct proc_inode *ei;
1946 	struct pid *pid;
1947 
1948 	inode = proc_pid_make_inode(sb, task, mode);
1949 	if (!inode)
1950 		return NULL;
1951 
1952 	/* Let proc_flush_pid find this directory inode */
1953 	ei = PROC_I(inode);
1954 	pid = ei->pid;
1955 	spin_lock(&pid->lock);
1956 	hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1957 	spin_unlock(&pid->lock);
1958 
1959 	return inode;
1960 }
1961 
1962 int pid_getattr(struct mnt_idmap *idmap, const struct path *path,
1963 		struct kstat *stat, u32 request_mask, unsigned int query_flags)
1964 {
1965 	struct inode *inode = d_inode(path->dentry);
1966 	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
1967 	struct task_struct *task;
1968 
1969 	generic_fillattr(&nop_mnt_idmap, inode, stat);
1970 
1971 	stat->uid = GLOBAL_ROOT_UID;
1972 	stat->gid = GLOBAL_ROOT_GID;
1973 	rcu_read_lock();
1974 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1975 	if (task) {
1976 		if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
1977 			rcu_read_unlock();
1978 			/*
1979 			 * This doesn't prevent learning whether PID exists,
1980 			 * it only makes getattr() consistent with readdir().
1981 			 */
1982 			return -ENOENT;
1983 		}
1984 		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1985 	}
1986 	rcu_read_unlock();
1987 	return 0;
1988 }
1989 
1990 /* dentry stuff */
1991 
1992 /*
1993  * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1994  */
1995 void pid_update_inode(struct task_struct *task, struct inode *inode)
1996 {
1997 	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1998 
1999 	inode->i_mode &= ~(S_ISUID | S_ISGID);
2000 	security_task_to_inode(task, inode);
2001 }
2002 
2003 /*
2004  * Rewrite the inode's ownerships here because the owning task may have
2005  * performed a setuid(), etc.
2006  *
2007  */
2008 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
2009 {
2010 	struct inode *inode;
2011 	struct task_struct *task;
2012 	int ret = 0;
2013 
2014 	rcu_read_lock();
2015 	inode = d_inode_rcu(dentry);
2016 	if (!inode)
2017 		goto out;
2018 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2019 
2020 	if (task) {
2021 		pid_update_inode(task, inode);
2022 		ret = 1;
2023 	}
2024 out:
2025 	rcu_read_unlock();
2026 	return ret;
2027 }
2028 
2029 static inline bool proc_inode_is_dead(struct inode *inode)
2030 {
2031 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2032 }
2033 
2034 int pid_delete_dentry(const struct dentry *dentry)
2035 {
2036 	/* Is the task we represent dead?
2037 	 * If so, then don't put the dentry on the lru list,
2038 	 * kill it immediately.
2039 	 */
2040 	return proc_inode_is_dead(d_inode(dentry));
2041 }
2042 
2043 const struct dentry_operations pid_dentry_operations =
2044 {
2045 	.d_revalidate	= pid_revalidate,
2046 	.d_delete	= pid_delete_dentry,
2047 };
2048 
2049 /* Lookups */
2050 
2051 /*
2052  * Fill a directory entry.
2053  *
2054  * If possible create the dcache entry and derive our inode number and
2055  * file type from dcache entry.
2056  *
2057  * Since all of the proc inode numbers are dynamically generated, the inode
2058  * numbers do not exist until the inode is cache.  This means creating
2059  * the dcache entry in readdir is necessary to keep the inode numbers
2060  * reported by readdir in sync with the inode numbers reported
2061  * by stat.
2062  */
2063 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2064 	const char *name, unsigned int len,
2065 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
2066 {
2067 	struct dentry *child, *dir = file->f_path.dentry;
2068 	struct qstr qname = QSTR_INIT(name, len);
2069 	struct inode *inode;
2070 	unsigned type = DT_UNKNOWN;
2071 	ino_t ino = 1;
2072 
2073 	child = d_hash_and_lookup(dir, &qname);
2074 	if (!child) {
2075 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2076 		child = d_alloc_parallel(dir, &qname, &wq);
2077 		if (IS_ERR(child))
2078 			goto end_instantiate;
2079 		if (d_in_lookup(child)) {
2080 			struct dentry *res;
2081 			res = instantiate(child, task, ptr);
2082 			d_lookup_done(child);
2083 			if (unlikely(res)) {
2084 				dput(child);
2085 				child = res;
2086 				if (IS_ERR(child))
2087 					goto end_instantiate;
2088 			}
2089 		}
2090 	}
2091 	inode = d_inode(child);
2092 	ino = inode->i_ino;
2093 	type = inode->i_mode >> 12;
2094 	dput(child);
2095 end_instantiate:
2096 	return dir_emit(ctx, name, len, ino, type);
2097 }
2098 
2099 /*
2100  * dname_to_vma_addr - maps a dentry name into two unsigned longs
2101  * which represent vma start and end addresses.
2102  */
2103 static int dname_to_vma_addr(struct dentry *dentry,
2104 			     unsigned long *start, unsigned long *end)
2105 {
2106 	const char *str = dentry->d_name.name;
2107 	unsigned long long sval, eval;
2108 	unsigned int len;
2109 
2110 	if (str[0] == '0' && str[1] != '-')
2111 		return -EINVAL;
2112 	len = _parse_integer(str, 16, &sval);
2113 	if (len & KSTRTOX_OVERFLOW)
2114 		return -EINVAL;
2115 	if (sval != (unsigned long)sval)
2116 		return -EINVAL;
2117 	str += len;
2118 
2119 	if (*str != '-')
2120 		return -EINVAL;
2121 	str++;
2122 
2123 	if (str[0] == '0' && str[1])
2124 		return -EINVAL;
2125 	len = _parse_integer(str, 16, &eval);
2126 	if (len & KSTRTOX_OVERFLOW)
2127 		return -EINVAL;
2128 	if (eval != (unsigned long)eval)
2129 		return -EINVAL;
2130 	str += len;
2131 
2132 	if (*str != '\0')
2133 		return -EINVAL;
2134 
2135 	*start = sval;
2136 	*end = eval;
2137 
2138 	return 0;
2139 }
2140 
2141 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2142 {
2143 	unsigned long vm_start, vm_end;
2144 	bool exact_vma_exists = false;
2145 	struct mm_struct *mm = NULL;
2146 	struct task_struct *task;
2147 	struct inode *inode;
2148 	int status = 0;
2149 
2150 	if (flags & LOOKUP_RCU)
2151 		return -ECHILD;
2152 
2153 	inode = d_inode(dentry);
2154 	task = get_proc_task(inode);
2155 	if (!task)
2156 		goto out_notask;
2157 
2158 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2159 	if (IS_ERR_OR_NULL(mm))
2160 		goto out;
2161 
2162 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2163 		status = mmap_read_lock_killable(mm);
2164 		if (!status) {
2165 			exact_vma_exists = !!find_exact_vma(mm, vm_start,
2166 							    vm_end);
2167 			mmap_read_unlock(mm);
2168 		}
2169 	}
2170 
2171 	mmput(mm);
2172 
2173 	if (exact_vma_exists) {
2174 		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2175 
2176 		security_task_to_inode(task, inode);
2177 		status = 1;
2178 	}
2179 
2180 out:
2181 	put_task_struct(task);
2182 
2183 out_notask:
2184 	return status;
2185 }
2186 
2187 static const struct dentry_operations tid_map_files_dentry_operations = {
2188 	.d_revalidate	= map_files_d_revalidate,
2189 	.d_delete	= pid_delete_dentry,
2190 };
2191 
2192 static int map_files_get_link(struct dentry *dentry, struct path *path)
2193 {
2194 	unsigned long vm_start, vm_end;
2195 	struct vm_area_struct *vma;
2196 	struct task_struct *task;
2197 	struct mm_struct *mm;
2198 	int rc;
2199 
2200 	rc = -ENOENT;
2201 	task = get_proc_task(d_inode(dentry));
2202 	if (!task)
2203 		goto out;
2204 
2205 	mm = get_task_mm(task);
2206 	put_task_struct(task);
2207 	if (!mm)
2208 		goto out;
2209 
2210 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2211 	if (rc)
2212 		goto out_mmput;
2213 
2214 	rc = mmap_read_lock_killable(mm);
2215 	if (rc)
2216 		goto out_mmput;
2217 
2218 	rc = -ENOENT;
2219 	vma = find_exact_vma(mm, vm_start, vm_end);
2220 	if (vma && vma->vm_file) {
2221 		*path = vma->vm_file->f_path;
2222 		path_get(path);
2223 		rc = 0;
2224 	}
2225 	mmap_read_unlock(mm);
2226 
2227 out_mmput:
2228 	mmput(mm);
2229 out:
2230 	return rc;
2231 }
2232 
2233 struct map_files_info {
2234 	unsigned long	start;
2235 	unsigned long	end;
2236 	fmode_t		mode;
2237 };
2238 
2239 /*
2240  * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2241  * to concerns about how the symlinks may be used to bypass permissions on
2242  * ancestor directories in the path to the file in question.
2243  */
2244 static const char *
2245 proc_map_files_get_link(struct dentry *dentry,
2246 			struct inode *inode,
2247 		        struct delayed_call *done)
2248 {
2249 	if (!checkpoint_restore_ns_capable(&init_user_ns))
2250 		return ERR_PTR(-EPERM);
2251 
2252 	return proc_pid_get_link(dentry, inode, done);
2253 }
2254 
2255 /*
2256  * Identical to proc_pid_link_inode_operations except for get_link()
2257  */
2258 static const struct inode_operations proc_map_files_link_inode_operations = {
2259 	.readlink	= proc_pid_readlink,
2260 	.get_link	= proc_map_files_get_link,
2261 	.setattr	= proc_setattr,
2262 };
2263 
2264 static struct dentry *
2265 proc_map_files_instantiate(struct dentry *dentry,
2266 			   struct task_struct *task, const void *ptr)
2267 {
2268 	fmode_t mode = (fmode_t)(unsigned long)ptr;
2269 	struct proc_inode *ei;
2270 	struct inode *inode;
2271 
2272 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2273 				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2274 				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2275 	if (!inode)
2276 		return ERR_PTR(-ENOENT);
2277 
2278 	ei = PROC_I(inode);
2279 	ei->op.proc_get_link = map_files_get_link;
2280 
2281 	inode->i_op = &proc_map_files_link_inode_operations;
2282 	inode->i_size = 64;
2283 
2284 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2285 	return d_splice_alias(inode, dentry);
2286 }
2287 
2288 static struct dentry *proc_map_files_lookup(struct inode *dir,
2289 		struct dentry *dentry, unsigned int flags)
2290 {
2291 	unsigned long vm_start, vm_end;
2292 	struct vm_area_struct *vma;
2293 	struct task_struct *task;
2294 	struct dentry *result;
2295 	struct mm_struct *mm;
2296 
2297 	result = ERR_PTR(-ENOENT);
2298 	task = get_proc_task(dir);
2299 	if (!task)
2300 		goto out;
2301 
2302 	result = ERR_PTR(-EACCES);
2303 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2304 		goto out_put_task;
2305 
2306 	result = ERR_PTR(-ENOENT);
2307 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2308 		goto out_put_task;
2309 
2310 	mm = get_task_mm(task);
2311 	if (!mm)
2312 		goto out_put_task;
2313 
2314 	result = ERR_PTR(-EINTR);
2315 	if (mmap_read_lock_killable(mm))
2316 		goto out_put_mm;
2317 
2318 	result = ERR_PTR(-ENOENT);
2319 	vma = find_exact_vma(mm, vm_start, vm_end);
2320 	if (!vma)
2321 		goto out_no_vma;
2322 
2323 	if (vma->vm_file)
2324 		result = proc_map_files_instantiate(dentry, task,
2325 				(void *)(unsigned long)vma->vm_file->f_mode);
2326 
2327 out_no_vma:
2328 	mmap_read_unlock(mm);
2329 out_put_mm:
2330 	mmput(mm);
2331 out_put_task:
2332 	put_task_struct(task);
2333 out:
2334 	return result;
2335 }
2336 
2337 static const struct inode_operations proc_map_files_inode_operations = {
2338 	.lookup		= proc_map_files_lookup,
2339 	.permission	= proc_fd_permission,
2340 	.setattr	= proc_setattr,
2341 };
2342 
2343 static int
2344 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2345 {
2346 	struct vm_area_struct *vma;
2347 	struct task_struct *task;
2348 	struct mm_struct *mm;
2349 	unsigned long nr_files, pos, i;
2350 	GENRADIX(struct map_files_info) fa;
2351 	struct map_files_info *p;
2352 	int ret;
2353 	struct vma_iterator vmi;
2354 
2355 	genradix_init(&fa);
2356 
2357 	ret = -ENOENT;
2358 	task = get_proc_task(file_inode(file));
2359 	if (!task)
2360 		goto out;
2361 
2362 	ret = -EACCES;
2363 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2364 		goto out_put_task;
2365 
2366 	ret = 0;
2367 	if (!dir_emit_dots(file, ctx))
2368 		goto out_put_task;
2369 
2370 	mm = get_task_mm(task);
2371 	if (!mm)
2372 		goto out_put_task;
2373 
2374 	ret = mmap_read_lock_killable(mm);
2375 	if (ret) {
2376 		mmput(mm);
2377 		goto out_put_task;
2378 	}
2379 
2380 	nr_files = 0;
2381 
2382 	/*
2383 	 * We need two passes here:
2384 	 *
2385 	 *  1) Collect vmas of mapped files with mmap_lock taken
2386 	 *  2) Release mmap_lock and instantiate entries
2387 	 *
2388 	 * otherwise we get lockdep complained, since filldir()
2389 	 * routine might require mmap_lock taken in might_fault().
2390 	 */
2391 
2392 	pos = 2;
2393 	vma_iter_init(&vmi, mm, 0);
2394 	for_each_vma(vmi, vma) {
2395 		if (!vma->vm_file)
2396 			continue;
2397 		if (++pos <= ctx->pos)
2398 			continue;
2399 
2400 		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2401 		if (!p) {
2402 			ret = -ENOMEM;
2403 			mmap_read_unlock(mm);
2404 			mmput(mm);
2405 			goto out_put_task;
2406 		}
2407 
2408 		p->start = vma->vm_start;
2409 		p->end = vma->vm_end;
2410 		p->mode = vma->vm_file->f_mode;
2411 	}
2412 	mmap_read_unlock(mm);
2413 	mmput(mm);
2414 
2415 	for (i = 0; i < nr_files; i++) {
2416 		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2417 		unsigned int len;
2418 
2419 		p = genradix_ptr(&fa, i);
2420 		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2421 		if (!proc_fill_cache(file, ctx,
2422 				      buf, len,
2423 				      proc_map_files_instantiate,
2424 				      task,
2425 				      (void *)(unsigned long)p->mode))
2426 			break;
2427 		ctx->pos++;
2428 	}
2429 
2430 out_put_task:
2431 	put_task_struct(task);
2432 out:
2433 	genradix_free(&fa);
2434 	return ret;
2435 }
2436 
2437 static const struct file_operations proc_map_files_operations = {
2438 	.read		= generic_read_dir,
2439 	.iterate_shared	= proc_map_files_readdir,
2440 	.llseek		= generic_file_llseek,
2441 };
2442 
2443 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2444 struct timers_private {
2445 	struct pid *pid;
2446 	struct task_struct *task;
2447 	struct sighand_struct *sighand;
2448 	struct pid_namespace *ns;
2449 	unsigned long flags;
2450 };
2451 
2452 static void *timers_start(struct seq_file *m, loff_t *pos)
2453 {
2454 	struct timers_private *tp = m->private;
2455 
2456 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2457 	if (!tp->task)
2458 		return ERR_PTR(-ESRCH);
2459 
2460 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2461 	if (!tp->sighand)
2462 		return ERR_PTR(-ESRCH);
2463 
2464 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2465 }
2466 
2467 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2468 {
2469 	struct timers_private *tp = m->private;
2470 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2471 }
2472 
2473 static void timers_stop(struct seq_file *m, void *v)
2474 {
2475 	struct timers_private *tp = m->private;
2476 
2477 	if (tp->sighand) {
2478 		unlock_task_sighand(tp->task, &tp->flags);
2479 		tp->sighand = NULL;
2480 	}
2481 
2482 	if (tp->task) {
2483 		put_task_struct(tp->task);
2484 		tp->task = NULL;
2485 	}
2486 }
2487 
2488 static int show_timer(struct seq_file *m, void *v)
2489 {
2490 	struct k_itimer *timer;
2491 	struct timers_private *tp = m->private;
2492 	int notify;
2493 	static const char * const nstr[] = {
2494 		[SIGEV_SIGNAL] = "signal",
2495 		[SIGEV_NONE] = "none",
2496 		[SIGEV_THREAD] = "thread",
2497 	};
2498 
2499 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2500 	notify = timer->it_sigev_notify;
2501 
2502 	seq_printf(m, "ID: %d\n", timer->it_id);
2503 	seq_printf(m, "signal: %d/%px\n",
2504 		   timer->sigq->info.si_signo,
2505 		   timer->sigq->info.si_value.sival_ptr);
2506 	seq_printf(m, "notify: %s/%s.%d\n",
2507 		   nstr[notify & ~SIGEV_THREAD_ID],
2508 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2509 		   pid_nr_ns(timer->it_pid, tp->ns));
2510 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2511 
2512 	return 0;
2513 }
2514 
2515 static const struct seq_operations proc_timers_seq_ops = {
2516 	.start	= timers_start,
2517 	.next	= timers_next,
2518 	.stop	= timers_stop,
2519 	.show	= show_timer,
2520 };
2521 
2522 static int proc_timers_open(struct inode *inode, struct file *file)
2523 {
2524 	struct timers_private *tp;
2525 
2526 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2527 			sizeof(struct timers_private));
2528 	if (!tp)
2529 		return -ENOMEM;
2530 
2531 	tp->pid = proc_pid(inode);
2532 	tp->ns = proc_pid_ns(inode->i_sb);
2533 	return 0;
2534 }
2535 
2536 static const struct file_operations proc_timers_operations = {
2537 	.open		= proc_timers_open,
2538 	.read		= seq_read,
2539 	.llseek		= seq_lseek,
2540 	.release	= seq_release_private,
2541 };
2542 #endif
2543 
2544 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2545 					size_t count, loff_t *offset)
2546 {
2547 	struct inode *inode = file_inode(file);
2548 	struct task_struct *p;
2549 	u64 slack_ns;
2550 	int err;
2551 
2552 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2553 	if (err < 0)
2554 		return err;
2555 
2556 	p = get_proc_task(inode);
2557 	if (!p)
2558 		return -ESRCH;
2559 
2560 	if (p != current) {
2561 		rcu_read_lock();
2562 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2563 			rcu_read_unlock();
2564 			count = -EPERM;
2565 			goto out;
2566 		}
2567 		rcu_read_unlock();
2568 
2569 		err = security_task_setscheduler(p);
2570 		if (err) {
2571 			count = err;
2572 			goto out;
2573 		}
2574 	}
2575 
2576 	task_lock(p);
2577 	if (slack_ns == 0)
2578 		p->timer_slack_ns = p->default_timer_slack_ns;
2579 	else
2580 		p->timer_slack_ns = slack_ns;
2581 	task_unlock(p);
2582 
2583 out:
2584 	put_task_struct(p);
2585 
2586 	return count;
2587 }
2588 
2589 static int timerslack_ns_show(struct seq_file *m, void *v)
2590 {
2591 	struct inode *inode = m->private;
2592 	struct task_struct *p;
2593 	int err = 0;
2594 
2595 	p = get_proc_task(inode);
2596 	if (!p)
2597 		return -ESRCH;
2598 
2599 	if (p != current) {
2600 		rcu_read_lock();
2601 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2602 			rcu_read_unlock();
2603 			err = -EPERM;
2604 			goto out;
2605 		}
2606 		rcu_read_unlock();
2607 
2608 		err = security_task_getscheduler(p);
2609 		if (err)
2610 			goto out;
2611 	}
2612 
2613 	task_lock(p);
2614 	seq_printf(m, "%llu\n", p->timer_slack_ns);
2615 	task_unlock(p);
2616 
2617 out:
2618 	put_task_struct(p);
2619 
2620 	return err;
2621 }
2622 
2623 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2624 {
2625 	return single_open(filp, timerslack_ns_show, inode);
2626 }
2627 
2628 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2629 	.open		= timerslack_ns_open,
2630 	.read		= seq_read,
2631 	.write		= timerslack_ns_write,
2632 	.llseek		= seq_lseek,
2633 	.release	= single_release,
2634 };
2635 
2636 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2637 	struct task_struct *task, const void *ptr)
2638 {
2639 	const struct pid_entry *p = ptr;
2640 	struct inode *inode;
2641 	struct proc_inode *ei;
2642 
2643 	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2644 	if (!inode)
2645 		return ERR_PTR(-ENOENT);
2646 
2647 	ei = PROC_I(inode);
2648 	if (S_ISDIR(inode->i_mode))
2649 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2650 	if (p->iop)
2651 		inode->i_op = p->iop;
2652 	if (p->fop)
2653 		inode->i_fop = p->fop;
2654 	ei->op = p->op;
2655 	pid_update_inode(task, inode);
2656 	d_set_d_op(dentry, &pid_dentry_operations);
2657 	return d_splice_alias(inode, dentry);
2658 }
2659 
2660 static struct dentry *proc_pident_lookup(struct inode *dir,
2661 					 struct dentry *dentry,
2662 					 const struct pid_entry *p,
2663 					 const struct pid_entry *end)
2664 {
2665 	struct task_struct *task = get_proc_task(dir);
2666 	struct dentry *res = ERR_PTR(-ENOENT);
2667 
2668 	if (!task)
2669 		goto out_no_task;
2670 
2671 	/*
2672 	 * Yes, it does not scale. And it should not. Don't add
2673 	 * new entries into /proc/<tgid>/ without very good reasons.
2674 	 */
2675 	for (; p < end; p++) {
2676 		if (p->len != dentry->d_name.len)
2677 			continue;
2678 		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2679 			res = proc_pident_instantiate(dentry, task, p);
2680 			break;
2681 		}
2682 	}
2683 	put_task_struct(task);
2684 out_no_task:
2685 	return res;
2686 }
2687 
2688 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2689 		const struct pid_entry *ents, unsigned int nents)
2690 {
2691 	struct task_struct *task = get_proc_task(file_inode(file));
2692 	const struct pid_entry *p;
2693 
2694 	if (!task)
2695 		return -ENOENT;
2696 
2697 	if (!dir_emit_dots(file, ctx))
2698 		goto out;
2699 
2700 	if (ctx->pos >= nents + 2)
2701 		goto out;
2702 
2703 	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2704 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2705 				proc_pident_instantiate, task, p))
2706 			break;
2707 		ctx->pos++;
2708 	}
2709 out:
2710 	put_task_struct(task);
2711 	return 0;
2712 }
2713 
2714 #ifdef CONFIG_SECURITY
2715 static int proc_pid_attr_open(struct inode *inode, struct file *file)
2716 {
2717 	file->private_data = NULL;
2718 	__mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2719 	return 0;
2720 }
2721 
2722 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2723 				  size_t count, loff_t *ppos)
2724 {
2725 	struct inode * inode = file_inode(file);
2726 	char *p = NULL;
2727 	ssize_t length;
2728 	struct task_struct *task = get_proc_task(inode);
2729 
2730 	if (!task)
2731 		return -ESRCH;
2732 
2733 	length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2734 				      file->f_path.dentry->d_name.name,
2735 				      &p);
2736 	put_task_struct(task);
2737 	if (length > 0)
2738 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2739 	kfree(p);
2740 	return length;
2741 }
2742 
2743 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2744 				   size_t count, loff_t *ppos)
2745 {
2746 	struct inode * inode = file_inode(file);
2747 	struct task_struct *task;
2748 	void *page;
2749 	int rv;
2750 
2751 	/* A task may only write when it was the opener. */
2752 	if (file->private_data != current->mm)
2753 		return -EPERM;
2754 
2755 	rcu_read_lock();
2756 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2757 	if (!task) {
2758 		rcu_read_unlock();
2759 		return -ESRCH;
2760 	}
2761 	/* A task may only write its own attributes. */
2762 	if (current != task) {
2763 		rcu_read_unlock();
2764 		return -EACCES;
2765 	}
2766 	/* Prevent changes to overridden credentials. */
2767 	if (current_cred() != current_real_cred()) {
2768 		rcu_read_unlock();
2769 		return -EBUSY;
2770 	}
2771 	rcu_read_unlock();
2772 
2773 	if (count > PAGE_SIZE)
2774 		count = PAGE_SIZE;
2775 
2776 	/* No partial writes. */
2777 	if (*ppos != 0)
2778 		return -EINVAL;
2779 
2780 	page = memdup_user(buf, count);
2781 	if (IS_ERR(page)) {
2782 		rv = PTR_ERR(page);
2783 		goto out;
2784 	}
2785 
2786 	/* Guard against adverse ptrace interaction */
2787 	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2788 	if (rv < 0)
2789 		goto out_free;
2790 
2791 	rv = security_setprocattr(PROC_I(inode)->op.lsm,
2792 				  file->f_path.dentry->d_name.name, page,
2793 				  count);
2794 	mutex_unlock(&current->signal->cred_guard_mutex);
2795 out_free:
2796 	kfree(page);
2797 out:
2798 	return rv;
2799 }
2800 
2801 static const struct file_operations proc_pid_attr_operations = {
2802 	.open		= proc_pid_attr_open,
2803 	.read		= proc_pid_attr_read,
2804 	.write		= proc_pid_attr_write,
2805 	.llseek		= generic_file_llseek,
2806 	.release	= mem_release,
2807 };
2808 
2809 #define LSM_DIR_OPS(LSM) \
2810 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2811 			     struct dir_context *ctx) \
2812 { \
2813 	return proc_pident_readdir(filp, ctx, \
2814 				   LSM##_attr_dir_stuff, \
2815 				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2816 } \
2817 \
2818 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2819 	.read		= generic_read_dir, \
2820 	.iterate	= proc_##LSM##_attr_dir_iterate, \
2821 	.llseek		= default_llseek, \
2822 }; \
2823 \
2824 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2825 				struct dentry *dentry, unsigned int flags) \
2826 { \
2827 	return proc_pident_lookup(dir, dentry, \
2828 				  LSM##_attr_dir_stuff, \
2829 				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2830 } \
2831 \
2832 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2833 	.lookup		= proc_##LSM##_attr_dir_lookup, \
2834 	.getattr	= pid_getattr, \
2835 	.setattr	= proc_setattr, \
2836 }
2837 
2838 #ifdef CONFIG_SECURITY_SMACK
2839 static const struct pid_entry smack_attr_dir_stuff[] = {
2840 	ATTR("smack", "current",	0666),
2841 };
2842 LSM_DIR_OPS(smack);
2843 #endif
2844 
2845 #ifdef CONFIG_SECURITY_APPARMOR
2846 static const struct pid_entry apparmor_attr_dir_stuff[] = {
2847 	ATTR("apparmor", "current",	0666),
2848 	ATTR("apparmor", "prev",	0444),
2849 	ATTR("apparmor", "exec",	0666),
2850 };
2851 LSM_DIR_OPS(apparmor);
2852 #endif
2853 
2854 static const struct pid_entry attr_dir_stuff[] = {
2855 	ATTR(NULL, "current",		0666),
2856 	ATTR(NULL, "prev",		0444),
2857 	ATTR(NULL, "exec",		0666),
2858 	ATTR(NULL, "fscreate",		0666),
2859 	ATTR(NULL, "keycreate",		0666),
2860 	ATTR(NULL, "sockcreate",	0666),
2861 #ifdef CONFIG_SECURITY_SMACK
2862 	DIR("smack",			0555,
2863 	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2864 #endif
2865 #ifdef CONFIG_SECURITY_APPARMOR
2866 	DIR("apparmor",			0555,
2867 	    proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2868 #endif
2869 };
2870 
2871 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2872 {
2873 	return proc_pident_readdir(file, ctx,
2874 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2875 }
2876 
2877 static const struct file_operations proc_attr_dir_operations = {
2878 	.read		= generic_read_dir,
2879 	.iterate_shared	= proc_attr_dir_readdir,
2880 	.llseek		= generic_file_llseek,
2881 };
2882 
2883 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2884 				struct dentry *dentry, unsigned int flags)
2885 {
2886 	return proc_pident_lookup(dir, dentry,
2887 				  attr_dir_stuff,
2888 				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2889 }
2890 
2891 static const struct inode_operations proc_attr_dir_inode_operations = {
2892 	.lookup		= proc_attr_dir_lookup,
2893 	.getattr	= pid_getattr,
2894 	.setattr	= proc_setattr,
2895 };
2896 
2897 #endif
2898 
2899 #ifdef CONFIG_ELF_CORE
2900 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2901 					 size_t count, loff_t *ppos)
2902 {
2903 	struct task_struct *task = get_proc_task(file_inode(file));
2904 	struct mm_struct *mm;
2905 	char buffer[PROC_NUMBUF];
2906 	size_t len;
2907 	int ret;
2908 
2909 	if (!task)
2910 		return -ESRCH;
2911 
2912 	ret = 0;
2913 	mm = get_task_mm(task);
2914 	if (mm) {
2915 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2916 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2917 				MMF_DUMP_FILTER_SHIFT));
2918 		mmput(mm);
2919 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2920 	}
2921 
2922 	put_task_struct(task);
2923 
2924 	return ret;
2925 }
2926 
2927 static ssize_t proc_coredump_filter_write(struct file *file,
2928 					  const char __user *buf,
2929 					  size_t count,
2930 					  loff_t *ppos)
2931 {
2932 	struct task_struct *task;
2933 	struct mm_struct *mm;
2934 	unsigned int val;
2935 	int ret;
2936 	int i;
2937 	unsigned long mask;
2938 
2939 	ret = kstrtouint_from_user(buf, count, 0, &val);
2940 	if (ret < 0)
2941 		return ret;
2942 
2943 	ret = -ESRCH;
2944 	task = get_proc_task(file_inode(file));
2945 	if (!task)
2946 		goto out_no_task;
2947 
2948 	mm = get_task_mm(task);
2949 	if (!mm)
2950 		goto out_no_mm;
2951 	ret = 0;
2952 
2953 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2954 		if (val & mask)
2955 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2956 		else
2957 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2958 	}
2959 
2960 	mmput(mm);
2961  out_no_mm:
2962 	put_task_struct(task);
2963  out_no_task:
2964 	if (ret < 0)
2965 		return ret;
2966 	return count;
2967 }
2968 
2969 static const struct file_operations proc_coredump_filter_operations = {
2970 	.read		= proc_coredump_filter_read,
2971 	.write		= proc_coredump_filter_write,
2972 	.llseek		= generic_file_llseek,
2973 };
2974 #endif
2975 
2976 #ifdef CONFIG_TASK_IO_ACCOUNTING
2977 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2978 {
2979 	struct task_io_accounting acct = task->ioac;
2980 	unsigned long flags;
2981 	int result;
2982 
2983 	result = down_read_killable(&task->signal->exec_update_lock);
2984 	if (result)
2985 		return result;
2986 
2987 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2988 		result = -EACCES;
2989 		goto out_unlock;
2990 	}
2991 
2992 	if (whole && lock_task_sighand(task, &flags)) {
2993 		struct task_struct *t = task;
2994 
2995 		task_io_accounting_add(&acct, &task->signal->ioac);
2996 		while_each_thread(task, t)
2997 			task_io_accounting_add(&acct, &t->ioac);
2998 
2999 		unlock_task_sighand(task, &flags);
3000 	}
3001 	seq_printf(m,
3002 		   "rchar: %llu\n"
3003 		   "wchar: %llu\n"
3004 		   "syscr: %llu\n"
3005 		   "syscw: %llu\n"
3006 		   "read_bytes: %llu\n"
3007 		   "write_bytes: %llu\n"
3008 		   "cancelled_write_bytes: %llu\n",
3009 		   (unsigned long long)acct.rchar,
3010 		   (unsigned long long)acct.wchar,
3011 		   (unsigned long long)acct.syscr,
3012 		   (unsigned long long)acct.syscw,
3013 		   (unsigned long long)acct.read_bytes,
3014 		   (unsigned long long)acct.write_bytes,
3015 		   (unsigned long long)acct.cancelled_write_bytes);
3016 	result = 0;
3017 
3018 out_unlock:
3019 	up_read(&task->signal->exec_update_lock);
3020 	return result;
3021 }
3022 
3023 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3024 				  struct pid *pid, struct task_struct *task)
3025 {
3026 	return do_io_accounting(task, m, 0);
3027 }
3028 
3029 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3030 				   struct pid *pid, struct task_struct *task)
3031 {
3032 	return do_io_accounting(task, m, 1);
3033 }
3034 #endif /* CONFIG_TASK_IO_ACCOUNTING */
3035 
3036 #ifdef CONFIG_USER_NS
3037 static int proc_id_map_open(struct inode *inode, struct file *file,
3038 	const struct seq_operations *seq_ops)
3039 {
3040 	struct user_namespace *ns = NULL;
3041 	struct task_struct *task;
3042 	struct seq_file *seq;
3043 	int ret = -EINVAL;
3044 
3045 	task = get_proc_task(inode);
3046 	if (task) {
3047 		rcu_read_lock();
3048 		ns = get_user_ns(task_cred_xxx(task, user_ns));
3049 		rcu_read_unlock();
3050 		put_task_struct(task);
3051 	}
3052 	if (!ns)
3053 		goto err;
3054 
3055 	ret = seq_open(file, seq_ops);
3056 	if (ret)
3057 		goto err_put_ns;
3058 
3059 	seq = file->private_data;
3060 	seq->private = ns;
3061 
3062 	return 0;
3063 err_put_ns:
3064 	put_user_ns(ns);
3065 err:
3066 	return ret;
3067 }
3068 
3069 static int proc_id_map_release(struct inode *inode, struct file *file)
3070 {
3071 	struct seq_file *seq = file->private_data;
3072 	struct user_namespace *ns = seq->private;
3073 	put_user_ns(ns);
3074 	return seq_release(inode, file);
3075 }
3076 
3077 static int proc_uid_map_open(struct inode *inode, struct file *file)
3078 {
3079 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3080 }
3081 
3082 static int proc_gid_map_open(struct inode *inode, struct file *file)
3083 {
3084 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3085 }
3086 
3087 static int proc_projid_map_open(struct inode *inode, struct file *file)
3088 {
3089 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3090 }
3091 
3092 static const struct file_operations proc_uid_map_operations = {
3093 	.open		= proc_uid_map_open,
3094 	.write		= proc_uid_map_write,
3095 	.read		= seq_read,
3096 	.llseek		= seq_lseek,
3097 	.release	= proc_id_map_release,
3098 };
3099 
3100 static const struct file_operations proc_gid_map_operations = {
3101 	.open		= proc_gid_map_open,
3102 	.write		= proc_gid_map_write,
3103 	.read		= seq_read,
3104 	.llseek		= seq_lseek,
3105 	.release	= proc_id_map_release,
3106 };
3107 
3108 static const struct file_operations proc_projid_map_operations = {
3109 	.open		= proc_projid_map_open,
3110 	.write		= proc_projid_map_write,
3111 	.read		= seq_read,
3112 	.llseek		= seq_lseek,
3113 	.release	= proc_id_map_release,
3114 };
3115 
3116 static int proc_setgroups_open(struct inode *inode, struct file *file)
3117 {
3118 	struct user_namespace *ns = NULL;
3119 	struct task_struct *task;
3120 	int ret;
3121 
3122 	ret = -ESRCH;
3123 	task = get_proc_task(inode);
3124 	if (task) {
3125 		rcu_read_lock();
3126 		ns = get_user_ns(task_cred_xxx(task, user_ns));
3127 		rcu_read_unlock();
3128 		put_task_struct(task);
3129 	}
3130 	if (!ns)
3131 		goto err;
3132 
3133 	if (file->f_mode & FMODE_WRITE) {
3134 		ret = -EACCES;
3135 		if (!ns_capable(ns, CAP_SYS_ADMIN))
3136 			goto err_put_ns;
3137 	}
3138 
3139 	ret = single_open(file, &proc_setgroups_show, ns);
3140 	if (ret)
3141 		goto err_put_ns;
3142 
3143 	return 0;
3144 err_put_ns:
3145 	put_user_ns(ns);
3146 err:
3147 	return ret;
3148 }
3149 
3150 static int proc_setgroups_release(struct inode *inode, struct file *file)
3151 {
3152 	struct seq_file *seq = file->private_data;
3153 	struct user_namespace *ns = seq->private;
3154 	int ret = single_release(inode, file);
3155 	put_user_ns(ns);
3156 	return ret;
3157 }
3158 
3159 static const struct file_operations proc_setgroups_operations = {
3160 	.open		= proc_setgroups_open,
3161 	.write		= proc_setgroups_write,
3162 	.read		= seq_read,
3163 	.llseek		= seq_lseek,
3164 	.release	= proc_setgroups_release,
3165 };
3166 #endif /* CONFIG_USER_NS */
3167 
3168 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3169 				struct pid *pid, struct task_struct *task)
3170 {
3171 	int err = lock_trace(task);
3172 	if (!err) {
3173 		seq_printf(m, "%08x\n", task->personality);
3174 		unlock_trace(task);
3175 	}
3176 	return err;
3177 }
3178 
3179 #ifdef CONFIG_LIVEPATCH
3180 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3181 				struct pid *pid, struct task_struct *task)
3182 {
3183 	seq_printf(m, "%d\n", task->patch_state);
3184 	return 0;
3185 }
3186 #endif /* CONFIG_LIVEPATCH */
3187 
3188 #ifdef CONFIG_KSM
3189 static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns,
3190 				struct pid *pid, struct task_struct *task)
3191 {
3192 	struct mm_struct *mm;
3193 
3194 	mm = get_task_mm(task);
3195 	if (mm) {
3196 		seq_printf(m, "%lu\n", mm->ksm_merging_pages);
3197 		mmput(mm);
3198 	}
3199 
3200 	return 0;
3201 }
3202 static int proc_pid_ksm_stat(struct seq_file *m, struct pid_namespace *ns,
3203 				struct pid *pid, struct task_struct *task)
3204 {
3205 	struct mm_struct *mm;
3206 
3207 	mm = get_task_mm(task);
3208 	if (mm) {
3209 		seq_printf(m, "ksm_rmap_items %lu\n", mm->ksm_rmap_items);
3210 		mmput(mm);
3211 	}
3212 
3213 	return 0;
3214 }
3215 #endif /* CONFIG_KSM */
3216 
3217 #ifdef CONFIG_STACKLEAK_METRICS
3218 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3219 				struct pid *pid, struct task_struct *task)
3220 {
3221 	unsigned long prev_depth = THREAD_SIZE -
3222 				(task->prev_lowest_stack & (THREAD_SIZE - 1));
3223 	unsigned long depth = THREAD_SIZE -
3224 				(task->lowest_stack & (THREAD_SIZE - 1));
3225 
3226 	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3227 							prev_depth, depth);
3228 	return 0;
3229 }
3230 #endif /* CONFIG_STACKLEAK_METRICS */
3231 
3232 /*
3233  * Thread groups
3234  */
3235 static const struct file_operations proc_task_operations;
3236 static const struct inode_operations proc_task_inode_operations;
3237 
3238 static const struct pid_entry tgid_base_stuff[] = {
3239 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3240 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3241 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3242 	DIR("fdinfo",     S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3243 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3244 #ifdef CONFIG_NET
3245 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3246 #endif
3247 	REG("environ",    S_IRUSR, proc_environ_operations),
3248 	REG("auxv",       S_IRUSR, proc_auxv_operations),
3249 	ONE("status",     S_IRUGO, proc_pid_status),
3250 	ONE("personality", S_IRUSR, proc_pid_personality),
3251 	ONE("limits",	  S_IRUGO, proc_pid_limits),
3252 #ifdef CONFIG_SCHED_DEBUG
3253 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3254 #endif
3255 #ifdef CONFIG_SCHED_AUTOGROUP
3256 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3257 #endif
3258 #ifdef CONFIG_TIME_NS
3259 	REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3260 #endif
3261 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3262 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3263 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3264 #endif
3265 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3266 	ONE("stat",       S_IRUGO, proc_tgid_stat),
3267 	ONE("statm",      S_IRUGO, proc_pid_statm),
3268 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3269 #ifdef CONFIG_NUMA
3270 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3271 #endif
3272 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3273 	LNK("cwd",        proc_cwd_link),
3274 	LNK("root",       proc_root_link),
3275 	LNK("exe",        proc_exe_link),
3276 	REG("mounts",     S_IRUGO, proc_mounts_operations),
3277 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3278 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3279 #ifdef CONFIG_PROC_PAGE_MONITOR
3280 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3281 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3282 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3283 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3284 #endif
3285 #ifdef CONFIG_SECURITY
3286 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3287 #endif
3288 #ifdef CONFIG_KALLSYMS
3289 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3290 #endif
3291 #ifdef CONFIG_STACKTRACE
3292 	ONE("stack",      S_IRUSR, proc_pid_stack),
3293 #endif
3294 #ifdef CONFIG_SCHED_INFO
3295 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3296 #endif
3297 #ifdef CONFIG_LATENCYTOP
3298 	REG("latency",  S_IRUGO, proc_lstats_operations),
3299 #endif
3300 #ifdef CONFIG_PROC_PID_CPUSET
3301 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3302 #endif
3303 #ifdef CONFIG_CGROUPS
3304 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3305 #endif
3306 #ifdef CONFIG_PROC_CPU_RESCTRL
3307 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3308 #endif
3309 	ONE("oom_score",  S_IRUGO, proc_oom_score),
3310 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3311 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3312 #ifdef CONFIG_AUDIT
3313 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3314 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3315 #endif
3316 #ifdef CONFIG_FAULT_INJECTION
3317 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3318 	REG("fail-nth", 0644, proc_fail_nth_operations),
3319 #endif
3320 #ifdef CONFIG_ELF_CORE
3321 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3322 #endif
3323 #ifdef CONFIG_TASK_IO_ACCOUNTING
3324 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3325 #endif
3326 #ifdef CONFIG_USER_NS
3327 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3328 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3329 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3330 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3331 #endif
3332 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3333 	REG("timers",	  S_IRUGO, proc_timers_operations),
3334 #endif
3335 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3336 #ifdef CONFIG_LIVEPATCH
3337 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3338 #endif
3339 #ifdef CONFIG_STACKLEAK_METRICS
3340 	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3341 #endif
3342 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3343 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3344 #endif
3345 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
3346 	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3347 #endif
3348 #ifdef CONFIG_KSM
3349 	ONE("ksm_merging_pages",  S_IRUSR, proc_pid_ksm_merging_pages),
3350 	ONE("ksm_stat",  S_IRUSR, proc_pid_ksm_stat),
3351 #endif
3352 };
3353 
3354 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3355 {
3356 	return proc_pident_readdir(file, ctx,
3357 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3358 }
3359 
3360 static const struct file_operations proc_tgid_base_operations = {
3361 	.read		= generic_read_dir,
3362 	.iterate_shared	= proc_tgid_base_readdir,
3363 	.llseek		= generic_file_llseek,
3364 };
3365 
3366 struct pid *tgid_pidfd_to_pid(const struct file *file)
3367 {
3368 	if (file->f_op != &proc_tgid_base_operations)
3369 		return ERR_PTR(-EBADF);
3370 
3371 	return proc_pid(file_inode(file));
3372 }
3373 
3374 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3375 {
3376 	return proc_pident_lookup(dir, dentry,
3377 				  tgid_base_stuff,
3378 				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3379 }
3380 
3381 static const struct inode_operations proc_tgid_base_inode_operations = {
3382 	.lookup		= proc_tgid_base_lookup,
3383 	.getattr	= pid_getattr,
3384 	.setattr	= proc_setattr,
3385 	.permission	= proc_pid_permission,
3386 };
3387 
3388 /**
3389  * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
3390  * @pid: pid that should be flushed.
3391  *
3392  * This function walks a list of inodes (that belong to any proc
3393  * filesystem) that are attached to the pid and flushes them from
3394  * the dentry cache.
3395  *
3396  * It is safe and reasonable to cache /proc entries for a task until
3397  * that task exits.  After that they just clog up the dcache with
3398  * useless entries, possibly causing useful dcache entries to be
3399  * flushed instead.  This routine is provided to flush those useless
3400  * dcache entries when a process is reaped.
3401  *
3402  * NOTE: This routine is just an optimization so it does not guarantee
3403  *       that no dcache entries will exist after a process is reaped
3404  *       it just makes it very unlikely that any will persist.
3405  */
3406 
3407 void proc_flush_pid(struct pid *pid)
3408 {
3409 	proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3410 }
3411 
3412 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3413 				   struct task_struct *task, const void *ptr)
3414 {
3415 	struct inode *inode;
3416 
3417 	inode = proc_pid_make_base_inode(dentry->d_sb, task,
3418 					 S_IFDIR | S_IRUGO | S_IXUGO);
3419 	if (!inode)
3420 		return ERR_PTR(-ENOENT);
3421 
3422 	inode->i_op = &proc_tgid_base_inode_operations;
3423 	inode->i_fop = &proc_tgid_base_operations;
3424 	inode->i_flags|=S_IMMUTABLE;
3425 
3426 	set_nlink(inode, nlink_tgid);
3427 	pid_update_inode(task, inode);
3428 
3429 	d_set_d_op(dentry, &pid_dentry_operations);
3430 	return d_splice_alias(inode, dentry);
3431 }
3432 
3433 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3434 {
3435 	struct task_struct *task;
3436 	unsigned tgid;
3437 	struct proc_fs_info *fs_info;
3438 	struct pid_namespace *ns;
3439 	struct dentry *result = ERR_PTR(-ENOENT);
3440 
3441 	tgid = name_to_int(&dentry->d_name);
3442 	if (tgid == ~0U)
3443 		goto out;
3444 
3445 	fs_info = proc_sb_info(dentry->d_sb);
3446 	ns = fs_info->pid_ns;
3447 	rcu_read_lock();
3448 	task = find_task_by_pid_ns(tgid, ns);
3449 	if (task)
3450 		get_task_struct(task);
3451 	rcu_read_unlock();
3452 	if (!task)
3453 		goto out;
3454 
3455 	/* Limit procfs to only ptraceable tasks */
3456 	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3457 		if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3458 			goto out_put_task;
3459 	}
3460 
3461 	result = proc_pid_instantiate(dentry, task, NULL);
3462 out_put_task:
3463 	put_task_struct(task);
3464 out:
3465 	return result;
3466 }
3467 
3468 /*
3469  * Find the first task with tgid >= tgid
3470  *
3471  */
3472 struct tgid_iter {
3473 	unsigned int tgid;
3474 	struct task_struct *task;
3475 };
3476 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3477 {
3478 	struct pid *pid;
3479 
3480 	if (iter.task)
3481 		put_task_struct(iter.task);
3482 	rcu_read_lock();
3483 retry:
3484 	iter.task = NULL;
3485 	pid = find_ge_pid(iter.tgid, ns);
3486 	if (pid) {
3487 		iter.tgid = pid_nr_ns(pid, ns);
3488 		iter.task = pid_task(pid, PIDTYPE_TGID);
3489 		if (!iter.task) {
3490 			iter.tgid += 1;
3491 			goto retry;
3492 		}
3493 		get_task_struct(iter.task);
3494 	}
3495 	rcu_read_unlock();
3496 	return iter;
3497 }
3498 
3499 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3500 
3501 /* for the /proc/ directory itself, after non-process stuff has been done */
3502 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3503 {
3504 	struct tgid_iter iter;
3505 	struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3506 	struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3507 	loff_t pos = ctx->pos;
3508 
3509 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3510 		return 0;
3511 
3512 	if (pos == TGID_OFFSET - 2) {
3513 		struct inode *inode = d_inode(fs_info->proc_self);
3514 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3515 			return 0;
3516 		ctx->pos = pos = pos + 1;
3517 	}
3518 	if (pos == TGID_OFFSET - 1) {
3519 		struct inode *inode = d_inode(fs_info->proc_thread_self);
3520 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3521 			return 0;
3522 		ctx->pos = pos = pos + 1;
3523 	}
3524 	iter.tgid = pos - TGID_OFFSET;
3525 	iter.task = NULL;
3526 	for (iter = next_tgid(ns, iter);
3527 	     iter.task;
3528 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3529 		char name[10 + 1];
3530 		unsigned int len;
3531 
3532 		cond_resched();
3533 		if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3534 			continue;
3535 
3536 		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3537 		ctx->pos = iter.tgid + TGID_OFFSET;
3538 		if (!proc_fill_cache(file, ctx, name, len,
3539 				     proc_pid_instantiate, iter.task, NULL)) {
3540 			put_task_struct(iter.task);
3541 			return 0;
3542 		}
3543 	}
3544 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3545 	return 0;
3546 }
3547 
3548 /*
3549  * proc_tid_comm_permission is a special permission function exclusively
3550  * used for the node /proc/<pid>/task/<tid>/comm.
3551  * It bypasses generic permission checks in the case where a task of the same
3552  * task group attempts to access the node.
3553  * The rationale behind this is that glibc and bionic access this node for
3554  * cross thread naming (pthread_set/getname_np(!self)). However, if
3555  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3556  * which locks out the cross thread naming implementation.
3557  * This function makes sure that the node is always accessible for members of
3558  * same thread group.
3559  */
3560 static int proc_tid_comm_permission(struct mnt_idmap *idmap,
3561 				    struct inode *inode, int mask)
3562 {
3563 	bool is_same_tgroup;
3564 	struct task_struct *task;
3565 
3566 	task = get_proc_task(inode);
3567 	if (!task)
3568 		return -ESRCH;
3569 	is_same_tgroup = same_thread_group(current, task);
3570 	put_task_struct(task);
3571 
3572 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3573 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3574 		 * read or written by the members of the corresponding
3575 		 * thread group.
3576 		 */
3577 		return 0;
3578 	}
3579 
3580 	return generic_permission(&nop_mnt_idmap, inode, mask);
3581 }
3582 
3583 static const struct inode_operations proc_tid_comm_inode_operations = {
3584 		.permission = proc_tid_comm_permission,
3585 };
3586 
3587 /*
3588  * Tasks
3589  */
3590 static const struct pid_entry tid_base_stuff[] = {
3591 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3592 	DIR("fdinfo",    S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3593 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3594 #ifdef CONFIG_NET
3595 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3596 #endif
3597 	REG("environ",   S_IRUSR, proc_environ_operations),
3598 	REG("auxv",      S_IRUSR, proc_auxv_operations),
3599 	ONE("status",    S_IRUGO, proc_pid_status),
3600 	ONE("personality", S_IRUSR, proc_pid_personality),
3601 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3602 #ifdef CONFIG_SCHED_DEBUG
3603 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3604 #endif
3605 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3606 			 &proc_tid_comm_inode_operations,
3607 			 &proc_pid_set_comm_operations, {}),
3608 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3609 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3610 #endif
3611 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3612 	ONE("stat",      S_IRUGO, proc_tid_stat),
3613 	ONE("statm",     S_IRUGO, proc_pid_statm),
3614 	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3615 #ifdef CONFIG_PROC_CHILDREN
3616 	REG("children",  S_IRUGO, proc_tid_children_operations),
3617 #endif
3618 #ifdef CONFIG_NUMA
3619 	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3620 #endif
3621 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3622 	LNK("cwd",       proc_cwd_link),
3623 	LNK("root",      proc_root_link),
3624 	LNK("exe",       proc_exe_link),
3625 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3626 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3627 #ifdef CONFIG_PROC_PAGE_MONITOR
3628 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3629 	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3630 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3631 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3632 #endif
3633 #ifdef CONFIG_SECURITY
3634 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3635 #endif
3636 #ifdef CONFIG_KALLSYMS
3637 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3638 #endif
3639 #ifdef CONFIG_STACKTRACE
3640 	ONE("stack",      S_IRUSR, proc_pid_stack),
3641 #endif
3642 #ifdef CONFIG_SCHED_INFO
3643 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3644 #endif
3645 #ifdef CONFIG_LATENCYTOP
3646 	REG("latency",  S_IRUGO, proc_lstats_operations),
3647 #endif
3648 #ifdef CONFIG_PROC_PID_CPUSET
3649 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3650 #endif
3651 #ifdef CONFIG_CGROUPS
3652 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3653 #endif
3654 #ifdef CONFIG_PROC_CPU_RESCTRL
3655 	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3656 #endif
3657 	ONE("oom_score", S_IRUGO, proc_oom_score),
3658 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3659 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3660 #ifdef CONFIG_AUDIT
3661 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3662 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3663 #endif
3664 #ifdef CONFIG_FAULT_INJECTION
3665 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3666 	REG("fail-nth", 0644, proc_fail_nth_operations),
3667 #endif
3668 #ifdef CONFIG_TASK_IO_ACCOUNTING
3669 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3670 #endif
3671 #ifdef CONFIG_USER_NS
3672 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3673 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3674 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3675 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3676 #endif
3677 #ifdef CONFIG_LIVEPATCH
3678 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3679 #endif
3680 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3681 	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3682 #endif
3683 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
3684 	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3685 #endif
3686 #ifdef CONFIG_KSM
3687 	ONE("ksm_merging_pages",  S_IRUSR, proc_pid_ksm_merging_pages),
3688 	ONE("ksm_stat",  S_IRUSR, proc_pid_ksm_stat),
3689 #endif
3690 };
3691 
3692 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3693 {
3694 	return proc_pident_readdir(file, ctx,
3695 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3696 }
3697 
3698 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3699 {
3700 	return proc_pident_lookup(dir, dentry,
3701 				  tid_base_stuff,
3702 				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3703 }
3704 
3705 static const struct file_operations proc_tid_base_operations = {
3706 	.read		= generic_read_dir,
3707 	.iterate_shared	= proc_tid_base_readdir,
3708 	.llseek		= generic_file_llseek,
3709 };
3710 
3711 static const struct inode_operations proc_tid_base_inode_operations = {
3712 	.lookup		= proc_tid_base_lookup,
3713 	.getattr	= pid_getattr,
3714 	.setattr	= proc_setattr,
3715 };
3716 
3717 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3718 	struct task_struct *task, const void *ptr)
3719 {
3720 	struct inode *inode;
3721 	inode = proc_pid_make_base_inode(dentry->d_sb, task,
3722 					 S_IFDIR | S_IRUGO | S_IXUGO);
3723 	if (!inode)
3724 		return ERR_PTR(-ENOENT);
3725 
3726 	inode->i_op = &proc_tid_base_inode_operations;
3727 	inode->i_fop = &proc_tid_base_operations;
3728 	inode->i_flags |= S_IMMUTABLE;
3729 
3730 	set_nlink(inode, nlink_tid);
3731 	pid_update_inode(task, inode);
3732 
3733 	d_set_d_op(dentry, &pid_dentry_operations);
3734 	return d_splice_alias(inode, dentry);
3735 }
3736 
3737 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3738 {
3739 	struct task_struct *task;
3740 	struct task_struct *leader = get_proc_task(dir);
3741 	unsigned tid;
3742 	struct proc_fs_info *fs_info;
3743 	struct pid_namespace *ns;
3744 	struct dentry *result = ERR_PTR(-ENOENT);
3745 
3746 	if (!leader)
3747 		goto out_no_task;
3748 
3749 	tid = name_to_int(&dentry->d_name);
3750 	if (tid == ~0U)
3751 		goto out;
3752 
3753 	fs_info = proc_sb_info(dentry->d_sb);
3754 	ns = fs_info->pid_ns;
3755 	rcu_read_lock();
3756 	task = find_task_by_pid_ns(tid, ns);
3757 	if (task)
3758 		get_task_struct(task);
3759 	rcu_read_unlock();
3760 	if (!task)
3761 		goto out;
3762 	if (!same_thread_group(leader, task))
3763 		goto out_drop_task;
3764 
3765 	result = proc_task_instantiate(dentry, task, NULL);
3766 out_drop_task:
3767 	put_task_struct(task);
3768 out:
3769 	put_task_struct(leader);
3770 out_no_task:
3771 	return result;
3772 }
3773 
3774 /*
3775  * Find the first tid of a thread group to return to user space.
3776  *
3777  * Usually this is just the thread group leader, but if the users
3778  * buffer was too small or there was a seek into the middle of the
3779  * directory we have more work todo.
3780  *
3781  * In the case of a short read we start with find_task_by_pid.
3782  *
3783  * In the case of a seek we start with the leader and walk nr
3784  * threads past it.
3785  */
3786 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3787 					struct pid_namespace *ns)
3788 {
3789 	struct task_struct *pos, *task;
3790 	unsigned long nr = f_pos;
3791 
3792 	if (nr != f_pos)	/* 32bit overflow? */
3793 		return NULL;
3794 
3795 	rcu_read_lock();
3796 	task = pid_task(pid, PIDTYPE_PID);
3797 	if (!task)
3798 		goto fail;
3799 
3800 	/* Attempt to start with the tid of a thread */
3801 	if (tid && nr) {
3802 		pos = find_task_by_pid_ns(tid, ns);
3803 		if (pos && same_thread_group(pos, task))
3804 			goto found;
3805 	}
3806 
3807 	/* If nr exceeds the number of threads there is nothing todo */
3808 	if (nr >= get_nr_threads(task))
3809 		goto fail;
3810 
3811 	/* If we haven't found our starting place yet start
3812 	 * with the leader and walk nr threads forward.
3813 	 */
3814 	pos = task = task->group_leader;
3815 	do {
3816 		if (!nr--)
3817 			goto found;
3818 	} while_each_thread(task, pos);
3819 fail:
3820 	pos = NULL;
3821 	goto out;
3822 found:
3823 	get_task_struct(pos);
3824 out:
3825 	rcu_read_unlock();
3826 	return pos;
3827 }
3828 
3829 /*
3830  * Find the next thread in the thread list.
3831  * Return NULL if there is an error or no next thread.
3832  *
3833  * The reference to the input task_struct is released.
3834  */
3835 static struct task_struct *next_tid(struct task_struct *start)
3836 {
3837 	struct task_struct *pos = NULL;
3838 	rcu_read_lock();
3839 	if (pid_alive(start)) {
3840 		pos = next_thread(start);
3841 		if (thread_group_leader(pos))
3842 			pos = NULL;
3843 		else
3844 			get_task_struct(pos);
3845 	}
3846 	rcu_read_unlock();
3847 	put_task_struct(start);
3848 	return pos;
3849 }
3850 
3851 /* for the /proc/TGID/task/ directories */
3852 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3853 {
3854 	struct inode *inode = file_inode(file);
3855 	struct task_struct *task;
3856 	struct pid_namespace *ns;
3857 	int tid;
3858 
3859 	if (proc_inode_is_dead(inode))
3860 		return -ENOENT;
3861 
3862 	if (!dir_emit_dots(file, ctx))
3863 		return 0;
3864 
3865 	/* f_version caches the tgid value that the last readdir call couldn't
3866 	 * return. lseek aka telldir automagically resets f_version to 0.
3867 	 */
3868 	ns = proc_pid_ns(inode->i_sb);
3869 	tid = (int)file->f_version;
3870 	file->f_version = 0;
3871 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3872 	     task;
3873 	     task = next_tid(task), ctx->pos++) {
3874 		char name[10 + 1];
3875 		unsigned int len;
3876 
3877 		tid = task_pid_nr_ns(task, ns);
3878 		if (!tid)
3879 			continue;	/* The task has just exited. */
3880 		len = snprintf(name, sizeof(name), "%u", tid);
3881 		if (!proc_fill_cache(file, ctx, name, len,
3882 				proc_task_instantiate, task, NULL)) {
3883 			/* returning this tgid failed, save it as the first
3884 			 * pid for the next readir call */
3885 			file->f_version = (u64)tid;
3886 			put_task_struct(task);
3887 			break;
3888 		}
3889 	}
3890 
3891 	return 0;
3892 }
3893 
3894 static int proc_task_getattr(struct mnt_idmap *idmap,
3895 			     const struct path *path, struct kstat *stat,
3896 			     u32 request_mask, unsigned int query_flags)
3897 {
3898 	struct inode *inode = d_inode(path->dentry);
3899 	struct task_struct *p = get_proc_task(inode);
3900 	generic_fillattr(&nop_mnt_idmap, inode, stat);
3901 
3902 	if (p) {
3903 		stat->nlink += get_nr_threads(p);
3904 		put_task_struct(p);
3905 	}
3906 
3907 	return 0;
3908 }
3909 
3910 static const struct inode_operations proc_task_inode_operations = {
3911 	.lookup		= proc_task_lookup,
3912 	.getattr	= proc_task_getattr,
3913 	.setattr	= proc_setattr,
3914 	.permission	= proc_pid_permission,
3915 };
3916 
3917 static const struct file_operations proc_task_operations = {
3918 	.read		= generic_read_dir,
3919 	.iterate_shared	= proc_task_readdir,
3920 	.llseek		= generic_file_llseek,
3921 };
3922 
3923 void __init set_proc_pid_nlink(void)
3924 {
3925 	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3926 	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3927 }
3928