xref: /openbmc/linux/fs/proc/base.c (revision 9d749629)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/user_namespace.h>
85 #include <linux/fs_struct.h>
86 #include <linux/slab.h>
87 #include <linux/flex_array.h>
88 #ifdef CONFIG_HARDWALL
89 #include <asm/hardwall.h>
90 #endif
91 #include <trace/events/oom.h>
92 #include "internal.h"
93 #include "fd.h"
94 
95 /* NOTE:
96  *	Implementing inode permission operations in /proc is almost
97  *	certainly an error.  Permission checks need to happen during
98  *	each system call not at open time.  The reason is that most of
99  *	what we wish to check for permissions in /proc varies at runtime.
100  *
101  *	The classic example of a problem is opening file descriptors
102  *	in /proc for a task before it execs a suid executable.
103  */
104 
105 struct pid_entry {
106 	char *name;
107 	int len;
108 	umode_t mode;
109 	const struct inode_operations *iop;
110 	const struct file_operations *fop;
111 	union proc_op op;
112 };
113 
114 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
115 	.name = (NAME),					\
116 	.len  = sizeof(NAME) - 1,			\
117 	.mode = MODE,					\
118 	.iop  = IOP,					\
119 	.fop  = FOP,					\
120 	.op   = OP,					\
121 }
122 
123 #define DIR(NAME, MODE, iops, fops)	\
124 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
125 #define LNK(NAME, get_link)					\
126 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
127 		&proc_pid_link_inode_operations, NULL,		\
128 		{ .proc_get_link = get_link } )
129 #define REG(NAME, MODE, fops)				\
130 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
131 #define INF(NAME, MODE, read)				\
132 	NOD(NAME, (S_IFREG|(MODE)), 			\
133 		NULL, &proc_info_file_operations,	\
134 		{ .proc_read = read } )
135 #define ONE(NAME, MODE, show)				\
136 	NOD(NAME, (S_IFREG|(MODE)), 			\
137 		NULL, &proc_single_file_operations,	\
138 		{ .proc_show = show } )
139 
140 /*
141  * Count the number of hardlinks for the pid_entry table, excluding the .
142  * and .. links.
143  */
144 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
145 	unsigned int n)
146 {
147 	unsigned int i;
148 	unsigned int count;
149 
150 	count = 0;
151 	for (i = 0; i < n; ++i) {
152 		if (S_ISDIR(entries[i].mode))
153 			++count;
154 	}
155 
156 	return count;
157 }
158 
159 static int get_task_root(struct task_struct *task, struct path *root)
160 {
161 	int result = -ENOENT;
162 
163 	task_lock(task);
164 	if (task->fs) {
165 		get_fs_root(task->fs, root);
166 		result = 0;
167 	}
168 	task_unlock(task);
169 	return result;
170 }
171 
172 static int proc_cwd_link(struct dentry *dentry, struct path *path)
173 {
174 	struct task_struct *task = get_proc_task(dentry->d_inode);
175 	int result = -ENOENT;
176 
177 	if (task) {
178 		task_lock(task);
179 		if (task->fs) {
180 			get_fs_pwd(task->fs, path);
181 			result = 0;
182 		}
183 		task_unlock(task);
184 		put_task_struct(task);
185 	}
186 	return result;
187 }
188 
189 static int proc_root_link(struct dentry *dentry, struct path *path)
190 {
191 	struct task_struct *task = get_proc_task(dentry->d_inode);
192 	int result = -ENOENT;
193 
194 	if (task) {
195 		result = get_task_root(task, path);
196 		put_task_struct(task);
197 	}
198 	return result;
199 }
200 
201 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
202 {
203 	int res = 0;
204 	unsigned int len;
205 	struct mm_struct *mm = get_task_mm(task);
206 	if (!mm)
207 		goto out;
208 	if (!mm->arg_end)
209 		goto out_mm;	/* Shh! No looking before we're done */
210 
211  	len = mm->arg_end - mm->arg_start;
212 
213 	if (len > PAGE_SIZE)
214 		len = PAGE_SIZE;
215 
216 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
217 
218 	// If the nul at the end of args has been overwritten, then
219 	// assume application is using setproctitle(3).
220 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
221 		len = strnlen(buffer, res);
222 		if (len < res) {
223 		    res = len;
224 		} else {
225 			len = mm->env_end - mm->env_start;
226 			if (len > PAGE_SIZE - res)
227 				len = PAGE_SIZE - res;
228 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
229 			res = strnlen(buffer, res);
230 		}
231 	}
232 out_mm:
233 	mmput(mm);
234 out:
235 	return res;
236 }
237 
238 static int proc_pid_auxv(struct task_struct *task, char *buffer)
239 {
240 	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
241 	int res = PTR_ERR(mm);
242 	if (mm && !IS_ERR(mm)) {
243 		unsigned int nwords = 0;
244 		do {
245 			nwords += 2;
246 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
247 		res = nwords * sizeof(mm->saved_auxv[0]);
248 		if (res > PAGE_SIZE)
249 			res = PAGE_SIZE;
250 		memcpy(buffer, mm->saved_auxv, res);
251 		mmput(mm);
252 	}
253 	return res;
254 }
255 
256 
257 #ifdef CONFIG_KALLSYMS
258 /*
259  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
260  * Returns the resolved symbol.  If that fails, simply return the address.
261  */
262 static int proc_pid_wchan(struct task_struct *task, char *buffer)
263 {
264 	unsigned long wchan;
265 	char symname[KSYM_NAME_LEN];
266 
267 	wchan = get_wchan(task);
268 
269 	if (lookup_symbol_name(wchan, symname) < 0)
270 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
271 			return 0;
272 		else
273 			return sprintf(buffer, "%lu", wchan);
274 	else
275 		return sprintf(buffer, "%s", symname);
276 }
277 #endif /* CONFIG_KALLSYMS */
278 
279 static int lock_trace(struct task_struct *task)
280 {
281 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
282 	if (err)
283 		return err;
284 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
285 		mutex_unlock(&task->signal->cred_guard_mutex);
286 		return -EPERM;
287 	}
288 	return 0;
289 }
290 
291 static void unlock_trace(struct task_struct *task)
292 {
293 	mutex_unlock(&task->signal->cred_guard_mutex);
294 }
295 
296 #ifdef CONFIG_STACKTRACE
297 
298 #define MAX_STACK_TRACE_DEPTH	64
299 
300 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
301 			  struct pid *pid, struct task_struct *task)
302 {
303 	struct stack_trace trace;
304 	unsigned long *entries;
305 	int err;
306 	int i;
307 
308 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
309 	if (!entries)
310 		return -ENOMEM;
311 
312 	trace.nr_entries	= 0;
313 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
314 	trace.entries		= entries;
315 	trace.skip		= 0;
316 
317 	err = lock_trace(task);
318 	if (!err) {
319 		save_stack_trace_tsk(task, &trace);
320 
321 		for (i = 0; i < trace.nr_entries; i++) {
322 			seq_printf(m, "[<%pK>] %pS\n",
323 				   (void *)entries[i], (void *)entries[i]);
324 		}
325 		unlock_trace(task);
326 	}
327 	kfree(entries);
328 
329 	return err;
330 }
331 #endif
332 
333 #ifdef CONFIG_SCHEDSTATS
334 /*
335  * Provides /proc/PID/schedstat
336  */
337 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
338 {
339 	return sprintf(buffer, "%llu %llu %lu\n",
340 			(unsigned long long)task->se.sum_exec_runtime,
341 			(unsigned long long)task->sched_info.run_delay,
342 			task->sched_info.pcount);
343 }
344 #endif
345 
346 #ifdef CONFIG_LATENCYTOP
347 static int lstats_show_proc(struct seq_file *m, void *v)
348 {
349 	int i;
350 	struct inode *inode = m->private;
351 	struct task_struct *task = get_proc_task(inode);
352 
353 	if (!task)
354 		return -ESRCH;
355 	seq_puts(m, "Latency Top version : v0.1\n");
356 	for (i = 0; i < 32; i++) {
357 		struct latency_record *lr = &task->latency_record[i];
358 		if (lr->backtrace[0]) {
359 			int q;
360 			seq_printf(m, "%i %li %li",
361 				   lr->count, lr->time, lr->max);
362 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
363 				unsigned long bt = lr->backtrace[q];
364 				if (!bt)
365 					break;
366 				if (bt == ULONG_MAX)
367 					break;
368 				seq_printf(m, " %ps", (void *)bt);
369 			}
370 			seq_putc(m, '\n');
371 		}
372 
373 	}
374 	put_task_struct(task);
375 	return 0;
376 }
377 
378 static int lstats_open(struct inode *inode, struct file *file)
379 {
380 	return single_open(file, lstats_show_proc, inode);
381 }
382 
383 static ssize_t lstats_write(struct file *file, const char __user *buf,
384 			    size_t count, loff_t *offs)
385 {
386 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
387 
388 	if (!task)
389 		return -ESRCH;
390 	clear_all_latency_tracing(task);
391 	put_task_struct(task);
392 
393 	return count;
394 }
395 
396 static const struct file_operations proc_lstats_operations = {
397 	.open		= lstats_open,
398 	.read		= seq_read,
399 	.write		= lstats_write,
400 	.llseek		= seq_lseek,
401 	.release	= single_release,
402 };
403 
404 #endif
405 
406 static int proc_oom_score(struct task_struct *task, char *buffer)
407 {
408 	unsigned long totalpages = totalram_pages + total_swap_pages;
409 	unsigned long points = 0;
410 
411 	read_lock(&tasklist_lock);
412 	if (pid_alive(task))
413 		points = oom_badness(task, NULL, NULL, totalpages) *
414 						1000 / totalpages;
415 	read_unlock(&tasklist_lock);
416 	return sprintf(buffer, "%lu\n", points);
417 }
418 
419 struct limit_names {
420 	char *name;
421 	char *unit;
422 };
423 
424 static const struct limit_names lnames[RLIM_NLIMITS] = {
425 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
426 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
427 	[RLIMIT_DATA] = {"Max data size", "bytes"},
428 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
429 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
430 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
431 	[RLIMIT_NPROC] = {"Max processes", "processes"},
432 	[RLIMIT_NOFILE] = {"Max open files", "files"},
433 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
434 	[RLIMIT_AS] = {"Max address space", "bytes"},
435 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
436 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
437 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
438 	[RLIMIT_NICE] = {"Max nice priority", NULL},
439 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
440 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
441 };
442 
443 /* Display limits for a process */
444 static int proc_pid_limits(struct task_struct *task, char *buffer)
445 {
446 	unsigned int i;
447 	int count = 0;
448 	unsigned long flags;
449 	char *bufptr = buffer;
450 
451 	struct rlimit rlim[RLIM_NLIMITS];
452 
453 	if (!lock_task_sighand(task, &flags))
454 		return 0;
455 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
456 	unlock_task_sighand(task, &flags);
457 
458 	/*
459 	 * print the file header
460 	 */
461 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
462 			"Limit", "Soft Limit", "Hard Limit", "Units");
463 
464 	for (i = 0; i < RLIM_NLIMITS; i++) {
465 		if (rlim[i].rlim_cur == RLIM_INFINITY)
466 			count += sprintf(&bufptr[count], "%-25s %-20s ",
467 					 lnames[i].name, "unlimited");
468 		else
469 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
470 					 lnames[i].name, rlim[i].rlim_cur);
471 
472 		if (rlim[i].rlim_max == RLIM_INFINITY)
473 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
474 		else
475 			count += sprintf(&bufptr[count], "%-20lu ",
476 					 rlim[i].rlim_max);
477 
478 		if (lnames[i].unit)
479 			count += sprintf(&bufptr[count], "%-10s\n",
480 					 lnames[i].unit);
481 		else
482 			count += sprintf(&bufptr[count], "\n");
483 	}
484 
485 	return count;
486 }
487 
488 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
489 static int proc_pid_syscall(struct task_struct *task, char *buffer)
490 {
491 	long nr;
492 	unsigned long args[6], sp, pc;
493 	int res = lock_trace(task);
494 	if (res)
495 		return res;
496 
497 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
498 		res = sprintf(buffer, "running\n");
499 	else if (nr < 0)
500 		res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
501 	else
502 		res = sprintf(buffer,
503 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
504 		       nr,
505 		       args[0], args[1], args[2], args[3], args[4], args[5],
506 		       sp, pc);
507 	unlock_trace(task);
508 	return res;
509 }
510 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
511 
512 /************************************************************************/
513 /*                       Here the fs part begins                        */
514 /************************************************************************/
515 
516 /* permission checks */
517 static int proc_fd_access_allowed(struct inode *inode)
518 {
519 	struct task_struct *task;
520 	int allowed = 0;
521 	/* Allow access to a task's file descriptors if it is us or we
522 	 * may use ptrace attach to the process and find out that
523 	 * information.
524 	 */
525 	task = get_proc_task(inode);
526 	if (task) {
527 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
528 		put_task_struct(task);
529 	}
530 	return allowed;
531 }
532 
533 int proc_setattr(struct dentry *dentry, struct iattr *attr)
534 {
535 	int error;
536 	struct inode *inode = dentry->d_inode;
537 
538 	if (attr->ia_valid & ATTR_MODE)
539 		return -EPERM;
540 
541 	error = inode_change_ok(inode, attr);
542 	if (error)
543 		return error;
544 
545 	setattr_copy(inode, attr);
546 	mark_inode_dirty(inode);
547 	return 0;
548 }
549 
550 /*
551  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
552  * or euid/egid (for hide_pid_min=2)?
553  */
554 static bool has_pid_permissions(struct pid_namespace *pid,
555 				 struct task_struct *task,
556 				 int hide_pid_min)
557 {
558 	if (pid->hide_pid < hide_pid_min)
559 		return true;
560 	if (in_group_p(pid->pid_gid))
561 		return true;
562 	return ptrace_may_access(task, PTRACE_MODE_READ);
563 }
564 
565 
566 static int proc_pid_permission(struct inode *inode, int mask)
567 {
568 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
569 	struct task_struct *task;
570 	bool has_perms;
571 
572 	task = get_proc_task(inode);
573 	if (!task)
574 		return -ESRCH;
575 	has_perms = has_pid_permissions(pid, task, 1);
576 	put_task_struct(task);
577 
578 	if (!has_perms) {
579 		if (pid->hide_pid == 2) {
580 			/*
581 			 * Let's make getdents(), stat(), and open()
582 			 * consistent with each other.  If a process
583 			 * may not stat() a file, it shouldn't be seen
584 			 * in procfs at all.
585 			 */
586 			return -ENOENT;
587 		}
588 
589 		return -EPERM;
590 	}
591 	return generic_permission(inode, mask);
592 }
593 
594 
595 
596 static const struct inode_operations proc_def_inode_operations = {
597 	.setattr	= proc_setattr,
598 };
599 
600 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
601 
602 static ssize_t proc_info_read(struct file * file, char __user * buf,
603 			  size_t count, loff_t *ppos)
604 {
605 	struct inode * inode = file->f_path.dentry->d_inode;
606 	unsigned long page;
607 	ssize_t length;
608 	struct task_struct *task = get_proc_task(inode);
609 
610 	length = -ESRCH;
611 	if (!task)
612 		goto out_no_task;
613 
614 	if (count > PROC_BLOCK_SIZE)
615 		count = PROC_BLOCK_SIZE;
616 
617 	length = -ENOMEM;
618 	if (!(page = __get_free_page(GFP_TEMPORARY)))
619 		goto out;
620 
621 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
622 
623 	if (length >= 0)
624 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
625 	free_page(page);
626 out:
627 	put_task_struct(task);
628 out_no_task:
629 	return length;
630 }
631 
632 static const struct file_operations proc_info_file_operations = {
633 	.read		= proc_info_read,
634 	.llseek		= generic_file_llseek,
635 };
636 
637 static int proc_single_show(struct seq_file *m, void *v)
638 {
639 	struct inode *inode = m->private;
640 	struct pid_namespace *ns;
641 	struct pid *pid;
642 	struct task_struct *task;
643 	int ret;
644 
645 	ns = inode->i_sb->s_fs_info;
646 	pid = proc_pid(inode);
647 	task = get_pid_task(pid, PIDTYPE_PID);
648 	if (!task)
649 		return -ESRCH;
650 
651 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
652 
653 	put_task_struct(task);
654 	return ret;
655 }
656 
657 static int proc_single_open(struct inode *inode, struct file *filp)
658 {
659 	return single_open(filp, proc_single_show, inode);
660 }
661 
662 static const struct file_operations proc_single_file_operations = {
663 	.open		= proc_single_open,
664 	.read		= seq_read,
665 	.llseek		= seq_lseek,
666 	.release	= single_release,
667 };
668 
669 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
670 {
671 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
672 	struct mm_struct *mm;
673 
674 	if (!task)
675 		return -ESRCH;
676 
677 	mm = mm_access(task, mode);
678 	put_task_struct(task);
679 
680 	if (IS_ERR(mm))
681 		return PTR_ERR(mm);
682 
683 	if (mm) {
684 		/* ensure this mm_struct can't be freed */
685 		atomic_inc(&mm->mm_count);
686 		/* but do not pin its memory */
687 		mmput(mm);
688 	}
689 
690 	file->private_data = mm;
691 
692 	return 0;
693 }
694 
695 static int mem_open(struct inode *inode, struct file *file)
696 {
697 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
698 
699 	/* OK to pass negative loff_t, we can catch out-of-range */
700 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
701 
702 	return ret;
703 }
704 
705 static ssize_t mem_rw(struct file *file, char __user *buf,
706 			size_t count, loff_t *ppos, int write)
707 {
708 	struct mm_struct *mm = file->private_data;
709 	unsigned long addr = *ppos;
710 	ssize_t copied;
711 	char *page;
712 
713 	if (!mm)
714 		return 0;
715 
716 	page = (char *)__get_free_page(GFP_TEMPORARY);
717 	if (!page)
718 		return -ENOMEM;
719 
720 	copied = 0;
721 	if (!atomic_inc_not_zero(&mm->mm_users))
722 		goto free;
723 
724 	while (count > 0) {
725 		int this_len = min_t(int, count, PAGE_SIZE);
726 
727 		if (write && copy_from_user(page, buf, this_len)) {
728 			copied = -EFAULT;
729 			break;
730 		}
731 
732 		this_len = access_remote_vm(mm, addr, page, this_len, write);
733 		if (!this_len) {
734 			if (!copied)
735 				copied = -EIO;
736 			break;
737 		}
738 
739 		if (!write && copy_to_user(buf, page, this_len)) {
740 			copied = -EFAULT;
741 			break;
742 		}
743 
744 		buf += this_len;
745 		addr += this_len;
746 		copied += this_len;
747 		count -= this_len;
748 	}
749 	*ppos = addr;
750 
751 	mmput(mm);
752 free:
753 	free_page((unsigned long) page);
754 	return copied;
755 }
756 
757 static ssize_t mem_read(struct file *file, char __user *buf,
758 			size_t count, loff_t *ppos)
759 {
760 	return mem_rw(file, buf, count, ppos, 0);
761 }
762 
763 static ssize_t mem_write(struct file *file, const char __user *buf,
764 			 size_t count, loff_t *ppos)
765 {
766 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
767 }
768 
769 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
770 {
771 	switch (orig) {
772 	case 0:
773 		file->f_pos = offset;
774 		break;
775 	case 1:
776 		file->f_pos += offset;
777 		break;
778 	default:
779 		return -EINVAL;
780 	}
781 	force_successful_syscall_return();
782 	return file->f_pos;
783 }
784 
785 static int mem_release(struct inode *inode, struct file *file)
786 {
787 	struct mm_struct *mm = file->private_data;
788 	if (mm)
789 		mmdrop(mm);
790 	return 0;
791 }
792 
793 static const struct file_operations proc_mem_operations = {
794 	.llseek		= mem_lseek,
795 	.read		= mem_read,
796 	.write		= mem_write,
797 	.open		= mem_open,
798 	.release	= mem_release,
799 };
800 
801 static int environ_open(struct inode *inode, struct file *file)
802 {
803 	return __mem_open(inode, file, PTRACE_MODE_READ);
804 }
805 
806 static ssize_t environ_read(struct file *file, char __user *buf,
807 			size_t count, loff_t *ppos)
808 {
809 	char *page;
810 	unsigned long src = *ppos;
811 	int ret = 0;
812 	struct mm_struct *mm = file->private_data;
813 
814 	if (!mm)
815 		return 0;
816 
817 	page = (char *)__get_free_page(GFP_TEMPORARY);
818 	if (!page)
819 		return -ENOMEM;
820 
821 	ret = 0;
822 	if (!atomic_inc_not_zero(&mm->mm_users))
823 		goto free;
824 	while (count > 0) {
825 		size_t this_len, max_len;
826 		int retval;
827 
828 		if (src >= (mm->env_end - mm->env_start))
829 			break;
830 
831 		this_len = mm->env_end - (mm->env_start + src);
832 
833 		max_len = min_t(size_t, PAGE_SIZE, count);
834 		this_len = min(max_len, this_len);
835 
836 		retval = access_remote_vm(mm, (mm->env_start + src),
837 			page, this_len, 0);
838 
839 		if (retval <= 0) {
840 			ret = retval;
841 			break;
842 		}
843 
844 		if (copy_to_user(buf, page, retval)) {
845 			ret = -EFAULT;
846 			break;
847 		}
848 
849 		ret += retval;
850 		src += retval;
851 		buf += retval;
852 		count -= retval;
853 	}
854 	*ppos = src;
855 	mmput(mm);
856 
857 free:
858 	free_page((unsigned long) page);
859 	return ret;
860 }
861 
862 static const struct file_operations proc_environ_operations = {
863 	.open		= environ_open,
864 	.read		= environ_read,
865 	.llseek		= generic_file_llseek,
866 	.release	= mem_release,
867 };
868 
869 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
870 			    loff_t *ppos)
871 {
872 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
873 	char buffer[PROC_NUMBUF];
874 	int oom_adj = OOM_ADJUST_MIN;
875 	size_t len;
876 	unsigned long flags;
877 
878 	if (!task)
879 		return -ESRCH;
880 	if (lock_task_sighand(task, &flags)) {
881 		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
882 			oom_adj = OOM_ADJUST_MAX;
883 		else
884 			oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
885 				  OOM_SCORE_ADJ_MAX;
886 		unlock_task_sighand(task, &flags);
887 	}
888 	put_task_struct(task);
889 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
890 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
891 }
892 
893 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
894 			     size_t count, loff_t *ppos)
895 {
896 	struct task_struct *task;
897 	char buffer[PROC_NUMBUF];
898 	int oom_adj;
899 	unsigned long flags;
900 	int err;
901 
902 	memset(buffer, 0, sizeof(buffer));
903 	if (count > sizeof(buffer) - 1)
904 		count = sizeof(buffer) - 1;
905 	if (copy_from_user(buffer, buf, count)) {
906 		err = -EFAULT;
907 		goto out;
908 	}
909 
910 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
911 	if (err)
912 		goto out;
913 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
914 	     oom_adj != OOM_DISABLE) {
915 		err = -EINVAL;
916 		goto out;
917 	}
918 
919 	task = get_proc_task(file->f_path.dentry->d_inode);
920 	if (!task) {
921 		err = -ESRCH;
922 		goto out;
923 	}
924 
925 	task_lock(task);
926 	if (!task->mm) {
927 		err = -EINVAL;
928 		goto err_task_lock;
929 	}
930 
931 	if (!lock_task_sighand(task, &flags)) {
932 		err = -ESRCH;
933 		goto err_task_lock;
934 	}
935 
936 	/*
937 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
938 	 * value is always attainable.
939 	 */
940 	if (oom_adj == OOM_ADJUST_MAX)
941 		oom_adj = OOM_SCORE_ADJ_MAX;
942 	else
943 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
944 
945 	if (oom_adj < task->signal->oom_score_adj &&
946 	    !capable(CAP_SYS_RESOURCE)) {
947 		err = -EACCES;
948 		goto err_sighand;
949 	}
950 
951 	/*
952 	 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
953 	 * /proc/pid/oom_score_adj instead.
954 	 */
955 	printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
956 		  current->comm, task_pid_nr(current), task_pid_nr(task),
957 		  task_pid_nr(task));
958 
959 	task->signal->oom_score_adj = oom_adj;
960 	trace_oom_score_adj_update(task);
961 err_sighand:
962 	unlock_task_sighand(task, &flags);
963 err_task_lock:
964 	task_unlock(task);
965 	put_task_struct(task);
966 out:
967 	return err < 0 ? err : count;
968 }
969 
970 static const struct file_operations proc_oom_adj_operations = {
971 	.read		= oom_adj_read,
972 	.write		= oom_adj_write,
973 	.llseek		= generic_file_llseek,
974 };
975 
976 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
977 					size_t count, loff_t *ppos)
978 {
979 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
980 	char buffer[PROC_NUMBUF];
981 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
982 	unsigned long flags;
983 	size_t len;
984 
985 	if (!task)
986 		return -ESRCH;
987 	if (lock_task_sighand(task, &flags)) {
988 		oom_score_adj = task->signal->oom_score_adj;
989 		unlock_task_sighand(task, &flags);
990 	}
991 	put_task_struct(task);
992 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
993 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
994 }
995 
996 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
997 					size_t count, loff_t *ppos)
998 {
999 	struct task_struct *task;
1000 	char buffer[PROC_NUMBUF];
1001 	unsigned long flags;
1002 	int oom_score_adj;
1003 	int err;
1004 
1005 	memset(buffer, 0, sizeof(buffer));
1006 	if (count > sizeof(buffer) - 1)
1007 		count = sizeof(buffer) - 1;
1008 	if (copy_from_user(buffer, buf, count)) {
1009 		err = -EFAULT;
1010 		goto out;
1011 	}
1012 
1013 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1014 	if (err)
1015 		goto out;
1016 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1017 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1018 		err = -EINVAL;
1019 		goto out;
1020 	}
1021 
1022 	task = get_proc_task(file->f_path.dentry->d_inode);
1023 	if (!task) {
1024 		err = -ESRCH;
1025 		goto out;
1026 	}
1027 
1028 	task_lock(task);
1029 	if (!task->mm) {
1030 		err = -EINVAL;
1031 		goto err_task_lock;
1032 	}
1033 
1034 	if (!lock_task_sighand(task, &flags)) {
1035 		err = -ESRCH;
1036 		goto err_task_lock;
1037 	}
1038 
1039 	if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1040 			!capable(CAP_SYS_RESOURCE)) {
1041 		err = -EACCES;
1042 		goto err_sighand;
1043 	}
1044 
1045 	task->signal->oom_score_adj = (short)oom_score_adj;
1046 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1047 		task->signal->oom_score_adj_min = (short)oom_score_adj;
1048 	trace_oom_score_adj_update(task);
1049 
1050 err_sighand:
1051 	unlock_task_sighand(task, &flags);
1052 err_task_lock:
1053 	task_unlock(task);
1054 	put_task_struct(task);
1055 out:
1056 	return err < 0 ? err : count;
1057 }
1058 
1059 static const struct file_operations proc_oom_score_adj_operations = {
1060 	.read		= oom_score_adj_read,
1061 	.write		= oom_score_adj_write,
1062 	.llseek		= default_llseek,
1063 };
1064 
1065 #ifdef CONFIG_AUDITSYSCALL
1066 #define TMPBUFLEN 21
1067 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1068 				  size_t count, loff_t *ppos)
1069 {
1070 	struct inode * inode = file->f_path.dentry->d_inode;
1071 	struct task_struct *task = get_proc_task(inode);
1072 	ssize_t length;
1073 	char tmpbuf[TMPBUFLEN];
1074 
1075 	if (!task)
1076 		return -ESRCH;
1077 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1078 			   from_kuid(file->f_cred->user_ns,
1079 				     audit_get_loginuid(task)));
1080 	put_task_struct(task);
1081 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1082 }
1083 
1084 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1085 				   size_t count, loff_t *ppos)
1086 {
1087 	struct inode * inode = file->f_path.dentry->d_inode;
1088 	char *page, *tmp;
1089 	ssize_t length;
1090 	uid_t loginuid;
1091 	kuid_t kloginuid;
1092 
1093 	rcu_read_lock();
1094 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1095 		rcu_read_unlock();
1096 		return -EPERM;
1097 	}
1098 	rcu_read_unlock();
1099 
1100 	if (count >= PAGE_SIZE)
1101 		count = PAGE_SIZE - 1;
1102 
1103 	if (*ppos != 0) {
1104 		/* No partial writes. */
1105 		return -EINVAL;
1106 	}
1107 	page = (char*)__get_free_page(GFP_TEMPORARY);
1108 	if (!page)
1109 		return -ENOMEM;
1110 	length = -EFAULT;
1111 	if (copy_from_user(page, buf, count))
1112 		goto out_free_page;
1113 
1114 	page[count] = '\0';
1115 	loginuid = simple_strtoul(page, &tmp, 10);
1116 	if (tmp == page) {
1117 		length = -EINVAL;
1118 		goto out_free_page;
1119 
1120 	}
1121 	kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1122 	if (!uid_valid(kloginuid)) {
1123 		length = -EINVAL;
1124 		goto out_free_page;
1125 	}
1126 
1127 	length = audit_set_loginuid(kloginuid);
1128 	if (likely(length == 0))
1129 		length = count;
1130 
1131 out_free_page:
1132 	free_page((unsigned long) page);
1133 	return length;
1134 }
1135 
1136 static const struct file_operations proc_loginuid_operations = {
1137 	.read		= proc_loginuid_read,
1138 	.write		= proc_loginuid_write,
1139 	.llseek		= generic_file_llseek,
1140 };
1141 
1142 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1143 				  size_t count, loff_t *ppos)
1144 {
1145 	struct inode * inode = file->f_path.dentry->d_inode;
1146 	struct task_struct *task = get_proc_task(inode);
1147 	ssize_t length;
1148 	char tmpbuf[TMPBUFLEN];
1149 
1150 	if (!task)
1151 		return -ESRCH;
1152 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1153 				audit_get_sessionid(task));
1154 	put_task_struct(task);
1155 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1156 }
1157 
1158 static const struct file_operations proc_sessionid_operations = {
1159 	.read		= proc_sessionid_read,
1160 	.llseek		= generic_file_llseek,
1161 };
1162 #endif
1163 
1164 #ifdef CONFIG_FAULT_INJECTION
1165 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1166 				      size_t count, loff_t *ppos)
1167 {
1168 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1169 	char buffer[PROC_NUMBUF];
1170 	size_t len;
1171 	int make_it_fail;
1172 
1173 	if (!task)
1174 		return -ESRCH;
1175 	make_it_fail = task->make_it_fail;
1176 	put_task_struct(task);
1177 
1178 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1179 
1180 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1181 }
1182 
1183 static ssize_t proc_fault_inject_write(struct file * file,
1184 			const char __user * buf, size_t count, loff_t *ppos)
1185 {
1186 	struct task_struct *task;
1187 	char buffer[PROC_NUMBUF], *end;
1188 	int make_it_fail;
1189 
1190 	if (!capable(CAP_SYS_RESOURCE))
1191 		return -EPERM;
1192 	memset(buffer, 0, sizeof(buffer));
1193 	if (count > sizeof(buffer) - 1)
1194 		count = sizeof(buffer) - 1;
1195 	if (copy_from_user(buffer, buf, count))
1196 		return -EFAULT;
1197 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1198 	if (*end)
1199 		return -EINVAL;
1200 	task = get_proc_task(file->f_dentry->d_inode);
1201 	if (!task)
1202 		return -ESRCH;
1203 	task->make_it_fail = make_it_fail;
1204 	put_task_struct(task);
1205 
1206 	return count;
1207 }
1208 
1209 static const struct file_operations proc_fault_inject_operations = {
1210 	.read		= proc_fault_inject_read,
1211 	.write		= proc_fault_inject_write,
1212 	.llseek		= generic_file_llseek,
1213 };
1214 #endif
1215 
1216 
1217 #ifdef CONFIG_SCHED_DEBUG
1218 /*
1219  * Print out various scheduling related per-task fields:
1220  */
1221 static int sched_show(struct seq_file *m, void *v)
1222 {
1223 	struct inode *inode = m->private;
1224 	struct task_struct *p;
1225 
1226 	p = get_proc_task(inode);
1227 	if (!p)
1228 		return -ESRCH;
1229 	proc_sched_show_task(p, m);
1230 
1231 	put_task_struct(p);
1232 
1233 	return 0;
1234 }
1235 
1236 static ssize_t
1237 sched_write(struct file *file, const char __user *buf,
1238 	    size_t count, loff_t *offset)
1239 {
1240 	struct inode *inode = file->f_path.dentry->d_inode;
1241 	struct task_struct *p;
1242 
1243 	p = get_proc_task(inode);
1244 	if (!p)
1245 		return -ESRCH;
1246 	proc_sched_set_task(p);
1247 
1248 	put_task_struct(p);
1249 
1250 	return count;
1251 }
1252 
1253 static int sched_open(struct inode *inode, struct file *filp)
1254 {
1255 	return single_open(filp, sched_show, inode);
1256 }
1257 
1258 static const struct file_operations proc_pid_sched_operations = {
1259 	.open		= sched_open,
1260 	.read		= seq_read,
1261 	.write		= sched_write,
1262 	.llseek		= seq_lseek,
1263 	.release	= single_release,
1264 };
1265 
1266 #endif
1267 
1268 #ifdef CONFIG_SCHED_AUTOGROUP
1269 /*
1270  * Print out autogroup related information:
1271  */
1272 static int sched_autogroup_show(struct seq_file *m, void *v)
1273 {
1274 	struct inode *inode = m->private;
1275 	struct task_struct *p;
1276 
1277 	p = get_proc_task(inode);
1278 	if (!p)
1279 		return -ESRCH;
1280 	proc_sched_autogroup_show_task(p, m);
1281 
1282 	put_task_struct(p);
1283 
1284 	return 0;
1285 }
1286 
1287 static ssize_t
1288 sched_autogroup_write(struct file *file, const char __user *buf,
1289 	    size_t count, loff_t *offset)
1290 {
1291 	struct inode *inode = file->f_path.dentry->d_inode;
1292 	struct task_struct *p;
1293 	char buffer[PROC_NUMBUF];
1294 	int nice;
1295 	int err;
1296 
1297 	memset(buffer, 0, sizeof(buffer));
1298 	if (count > sizeof(buffer) - 1)
1299 		count = sizeof(buffer) - 1;
1300 	if (copy_from_user(buffer, buf, count))
1301 		return -EFAULT;
1302 
1303 	err = kstrtoint(strstrip(buffer), 0, &nice);
1304 	if (err < 0)
1305 		return err;
1306 
1307 	p = get_proc_task(inode);
1308 	if (!p)
1309 		return -ESRCH;
1310 
1311 	err = proc_sched_autogroup_set_nice(p, nice);
1312 	if (err)
1313 		count = err;
1314 
1315 	put_task_struct(p);
1316 
1317 	return count;
1318 }
1319 
1320 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1321 {
1322 	int ret;
1323 
1324 	ret = single_open(filp, sched_autogroup_show, NULL);
1325 	if (!ret) {
1326 		struct seq_file *m = filp->private_data;
1327 
1328 		m->private = inode;
1329 	}
1330 	return ret;
1331 }
1332 
1333 static const struct file_operations proc_pid_sched_autogroup_operations = {
1334 	.open		= sched_autogroup_open,
1335 	.read		= seq_read,
1336 	.write		= sched_autogroup_write,
1337 	.llseek		= seq_lseek,
1338 	.release	= single_release,
1339 };
1340 
1341 #endif /* CONFIG_SCHED_AUTOGROUP */
1342 
1343 static ssize_t comm_write(struct file *file, const char __user *buf,
1344 				size_t count, loff_t *offset)
1345 {
1346 	struct inode *inode = file->f_path.dentry->d_inode;
1347 	struct task_struct *p;
1348 	char buffer[TASK_COMM_LEN];
1349 
1350 	memset(buffer, 0, sizeof(buffer));
1351 	if (count > sizeof(buffer) - 1)
1352 		count = sizeof(buffer) - 1;
1353 	if (copy_from_user(buffer, buf, count))
1354 		return -EFAULT;
1355 
1356 	p = get_proc_task(inode);
1357 	if (!p)
1358 		return -ESRCH;
1359 
1360 	if (same_thread_group(current, p))
1361 		set_task_comm(p, buffer);
1362 	else
1363 		count = -EINVAL;
1364 
1365 	put_task_struct(p);
1366 
1367 	return count;
1368 }
1369 
1370 static int comm_show(struct seq_file *m, void *v)
1371 {
1372 	struct inode *inode = m->private;
1373 	struct task_struct *p;
1374 
1375 	p = get_proc_task(inode);
1376 	if (!p)
1377 		return -ESRCH;
1378 
1379 	task_lock(p);
1380 	seq_printf(m, "%s\n", p->comm);
1381 	task_unlock(p);
1382 
1383 	put_task_struct(p);
1384 
1385 	return 0;
1386 }
1387 
1388 static int comm_open(struct inode *inode, struct file *filp)
1389 {
1390 	return single_open(filp, comm_show, inode);
1391 }
1392 
1393 static const struct file_operations proc_pid_set_comm_operations = {
1394 	.open		= comm_open,
1395 	.read		= seq_read,
1396 	.write		= comm_write,
1397 	.llseek		= seq_lseek,
1398 	.release	= single_release,
1399 };
1400 
1401 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1402 {
1403 	struct task_struct *task;
1404 	struct mm_struct *mm;
1405 	struct file *exe_file;
1406 
1407 	task = get_proc_task(dentry->d_inode);
1408 	if (!task)
1409 		return -ENOENT;
1410 	mm = get_task_mm(task);
1411 	put_task_struct(task);
1412 	if (!mm)
1413 		return -ENOENT;
1414 	exe_file = get_mm_exe_file(mm);
1415 	mmput(mm);
1416 	if (exe_file) {
1417 		*exe_path = exe_file->f_path;
1418 		path_get(&exe_file->f_path);
1419 		fput(exe_file);
1420 		return 0;
1421 	} else
1422 		return -ENOENT;
1423 }
1424 
1425 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1426 {
1427 	struct inode *inode = dentry->d_inode;
1428 	struct path path;
1429 	int error = -EACCES;
1430 
1431 	/* Are we allowed to snoop on the tasks file descriptors? */
1432 	if (!proc_fd_access_allowed(inode))
1433 		goto out;
1434 
1435 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1436 	if (error)
1437 		goto out;
1438 
1439 	nd_jump_link(nd, &path);
1440 	return NULL;
1441 out:
1442 	return ERR_PTR(error);
1443 }
1444 
1445 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1446 {
1447 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1448 	char *pathname;
1449 	int len;
1450 
1451 	if (!tmp)
1452 		return -ENOMEM;
1453 
1454 	pathname = d_path(path, tmp, PAGE_SIZE);
1455 	len = PTR_ERR(pathname);
1456 	if (IS_ERR(pathname))
1457 		goto out;
1458 	len = tmp + PAGE_SIZE - 1 - pathname;
1459 
1460 	if (len > buflen)
1461 		len = buflen;
1462 	if (copy_to_user(buffer, pathname, len))
1463 		len = -EFAULT;
1464  out:
1465 	free_page((unsigned long)tmp);
1466 	return len;
1467 }
1468 
1469 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1470 {
1471 	int error = -EACCES;
1472 	struct inode *inode = dentry->d_inode;
1473 	struct path path;
1474 
1475 	/* Are we allowed to snoop on the tasks file descriptors? */
1476 	if (!proc_fd_access_allowed(inode))
1477 		goto out;
1478 
1479 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1480 	if (error)
1481 		goto out;
1482 
1483 	error = do_proc_readlink(&path, buffer, buflen);
1484 	path_put(&path);
1485 out:
1486 	return error;
1487 }
1488 
1489 const struct inode_operations proc_pid_link_inode_operations = {
1490 	.readlink	= proc_pid_readlink,
1491 	.follow_link	= proc_pid_follow_link,
1492 	.setattr	= proc_setattr,
1493 };
1494 
1495 
1496 /* building an inode */
1497 
1498 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1499 {
1500 	struct inode * inode;
1501 	struct proc_inode *ei;
1502 	const struct cred *cred;
1503 
1504 	/* We need a new inode */
1505 
1506 	inode = new_inode(sb);
1507 	if (!inode)
1508 		goto out;
1509 
1510 	/* Common stuff */
1511 	ei = PROC_I(inode);
1512 	inode->i_ino = get_next_ino();
1513 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1514 	inode->i_op = &proc_def_inode_operations;
1515 
1516 	/*
1517 	 * grab the reference to task.
1518 	 */
1519 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1520 	if (!ei->pid)
1521 		goto out_unlock;
1522 
1523 	if (task_dumpable(task)) {
1524 		rcu_read_lock();
1525 		cred = __task_cred(task);
1526 		inode->i_uid = cred->euid;
1527 		inode->i_gid = cred->egid;
1528 		rcu_read_unlock();
1529 	}
1530 	security_task_to_inode(task, inode);
1531 
1532 out:
1533 	return inode;
1534 
1535 out_unlock:
1536 	iput(inode);
1537 	return NULL;
1538 }
1539 
1540 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1541 {
1542 	struct inode *inode = dentry->d_inode;
1543 	struct task_struct *task;
1544 	const struct cred *cred;
1545 	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1546 
1547 	generic_fillattr(inode, stat);
1548 
1549 	rcu_read_lock();
1550 	stat->uid = GLOBAL_ROOT_UID;
1551 	stat->gid = GLOBAL_ROOT_GID;
1552 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1553 	if (task) {
1554 		if (!has_pid_permissions(pid, task, 2)) {
1555 			rcu_read_unlock();
1556 			/*
1557 			 * This doesn't prevent learning whether PID exists,
1558 			 * it only makes getattr() consistent with readdir().
1559 			 */
1560 			return -ENOENT;
1561 		}
1562 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1563 		    task_dumpable(task)) {
1564 			cred = __task_cred(task);
1565 			stat->uid = cred->euid;
1566 			stat->gid = cred->egid;
1567 		}
1568 	}
1569 	rcu_read_unlock();
1570 	return 0;
1571 }
1572 
1573 /* dentry stuff */
1574 
1575 /*
1576  *	Exceptional case: normally we are not allowed to unhash a busy
1577  * directory. In this case, however, we can do it - no aliasing problems
1578  * due to the way we treat inodes.
1579  *
1580  * Rewrite the inode's ownerships here because the owning task may have
1581  * performed a setuid(), etc.
1582  *
1583  * Before the /proc/pid/status file was created the only way to read
1584  * the effective uid of a /process was to stat /proc/pid.  Reading
1585  * /proc/pid/status is slow enough that procps and other packages
1586  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1587  * made this apply to all per process world readable and executable
1588  * directories.
1589  */
1590 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1591 {
1592 	struct inode *inode;
1593 	struct task_struct *task;
1594 	const struct cred *cred;
1595 
1596 	if (flags & LOOKUP_RCU)
1597 		return -ECHILD;
1598 
1599 	inode = dentry->d_inode;
1600 	task = get_proc_task(inode);
1601 
1602 	if (task) {
1603 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1604 		    task_dumpable(task)) {
1605 			rcu_read_lock();
1606 			cred = __task_cred(task);
1607 			inode->i_uid = cred->euid;
1608 			inode->i_gid = cred->egid;
1609 			rcu_read_unlock();
1610 		} else {
1611 			inode->i_uid = GLOBAL_ROOT_UID;
1612 			inode->i_gid = GLOBAL_ROOT_GID;
1613 		}
1614 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1615 		security_task_to_inode(task, inode);
1616 		put_task_struct(task);
1617 		return 1;
1618 	}
1619 	d_drop(dentry);
1620 	return 0;
1621 }
1622 
1623 const struct dentry_operations pid_dentry_operations =
1624 {
1625 	.d_revalidate	= pid_revalidate,
1626 	.d_delete	= pid_delete_dentry,
1627 };
1628 
1629 /* Lookups */
1630 
1631 /*
1632  * Fill a directory entry.
1633  *
1634  * If possible create the dcache entry and derive our inode number and
1635  * file type from dcache entry.
1636  *
1637  * Since all of the proc inode numbers are dynamically generated, the inode
1638  * numbers do not exist until the inode is cache.  This means creating the
1639  * the dcache entry in readdir is necessary to keep the inode numbers
1640  * reported by readdir in sync with the inode numbers reported
1641  * by stat.
1642  */
1643 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1644 	const char *name, int len,
1645 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1646 {
1647 	struct dentry *child, *dir = filp->f_path.dentry;
1648 	struct inode *inode;
1649 	struct qstr qname;
1650 	ino_t ino = 0;
1651 	unsigned type = DT_UNKNOWN;
1652 
1653 	qname.name = name;
1654 	qname.len  = len;
1655 	qname.hash = full_name_hash(name, len);
1656 
1657 	child = d_lookup(dir, &qname);
1658 	if (!child) {
1659 		struct dentry *new;
1660 		new = d_alloc(dir, &qname);
1661 		if (new) {
1662 			child = instantiate(dir->d_inode, new, task, ptr);
1663 			if (child)
1664 				dput(new);
1665 			else
1666 				child = new;
1667 		}
1668 	}
1669 	if (!child || IS_ERR(child) || !child->d_inode)
1670 		goto end_instantiate;
1671 	inode = child->d_inode;
1672 	if (inode) {
1673 		ino = inode->i_ino;
1674 		type = inode->i_mode >> 12;
1675 	}
1676 	dput(child);
1677 end_instantiate:
1678 	if (!ino)
1679 		ino = find_inode_number(dir, &qname);
1680 	if (!ino)
1681 		ino = 1;
1682 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1683 }
1684 
1685 #ifdef CONFIG_CHECKPOINT_RESTORE
1686 
1687 /*
1688  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1689  * which represent vma start and end addresses.
1690  */
1691 static int dname_to_vma_addr(struct dentry *dentry,
1692 			     unsigned long *start, unsigned long *end)
1693 {
1694 	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1695 		return -EINVAL;
1696 
1697 	return 0;
1698 }
1699 
1700 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1701 {
1702 	unsigned long vm_start, vm_end;
1703 	bool exact_vma_exists = false;
1704 	struct mm_struct *mm = NULL;
1705 	struct task_struct *task;
1706 	const struct cred *cred;
1707 	struct inode *inode;
1708 	int status = 0;
1709 
1710 	if (flags & LOOKUP_RCU)
1711 		return -ECHILD;
1712 
1713 	if (!capable(CAP_SYS_ADMIN)) {
1714 		status = -EACCES;
1715 		goto out_notask;
1716 	}
1717 
1718 	inode = dentry->d_inode;
1719 	task = get_proc_task(inode);
1720 	if (!task)
1721 		goto out_notask;
1722 
1723 	mm = mm_access(task, PTRACE_MODE_READ);
1724 	if (IS_ERR_OR_NULL(mm))
1725 		goto out;
1726 
1727 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1728 		down_read(&mm->mmap_sem);
1729 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1730 		up_read(&mm->mmap_sem);
1731 	}
1732 
1733 	mmput(mm);
1734 
1735 	if (exact_vma_exists) {
1736 		if (task_dumpable(task)) {
1737 			rcu_read_lock();
1738 			cred = __task_cred(task);
1739 			inode->i_uid = cred->euid;
1740 			inode->i_gid = cred->egid;
1741 			rcu_read_unlock();
1742 		} else {
1743 			inode->i_uid = GLOBAL_ROOT_UID;
1744 			inode->i_gid = GLOBAL_ROOT_GID;
1745 		}
1746 		security_task_to_inode(task, inode);
1747 		status = 1;
1748 	}
1749 
1750 out:
1751 	put_task_struct(task);
1752 
1753 out_notask:
1754 	if (status <= 0)
1755 		d_drop(dentry);
1756 
1757 	return status;
1758 }
1759 
1760 static const struct dentry_operations tid_map_files_dentry_operations = {
1761 	.d_revalidate	= map_files_d_revalidate,
1762 	.d_delete	= pid_delete_dentry,
1763 };
1764 
1765 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1766 {
1767 	unsigned long vm_start, vm_end;
1768 	struct vm_area_struct *vma;
1769 	struct task_struct *task;
1770 	struct mm_struct *mm;
1771 	int rc;
1772 
1773 	rc = -ENOENT;
1774 	task = get_proc_task(dentry->d_inode);
1775 	if (!task)
1776 		goto out;
1777 
1778 	mm = get_task_mm(task);
1779 	put_task_struct(task);
1780 	if (!mm)
1781 		goto out;
1782 
1783 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1784 	if (rc)
1785 		goto out_mmput;
1786 
1787 	down_read(&mm->mmap_sem);
1788 	vma = find_exact_vma(mm, vm_start, vm_end);
1789 	if (vma && vma->vm_file) {
1790 		*path = vma->vm_file->f_path;
1791 		path_get(path);
1792 		rc = 0;
1793 	}
1794 	up_read(&mm->mmap_sem);
1795 
1796 out_mmput:
1797 	mmput(mm);
1798 out:
1799 	return rc;
1800 }
1801 
1802 struct map_files_info {
1803 	fmode_t		mode;
1804 	unsigned long	len;
1805 	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1806 };
1807 
1808 static struct dentry *
1809 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1810 			   struct task_struct *task, const void *ptr)
1811 {
1812 	fmode_t mode = (fmode_t)(unsigned long)ptr;
1813 	struct proc_inode *ei;
1814 	struct inode *inode;
1815 
1816 	inode = proc_pid_make_inode(dir->i_sb, task);
1817 	if (!inode)
1818 		return ERR_PTR(-ENOENT);
1819 
1820 	ei = PROC_I(inode);
1821 	ei->op.proc_get_link = proc_map_files_get_link;
1822 
1823 	inode->i_op = &proc_pid_link_inode_operations;
1824 	inode->i_size = 64;
1825 	inode->i_mode = S_IFLNK;
1826 
1827 	if (mode & FMODE_READ)
1828 		inode->i_mode |= S_IRUSR;
1829 	if (mode & FMODE_WRITE)
1830 		inode->i_mode |= S_IWUSR;
1831 
1832 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
1833 	d_add(dentry, inode);
1834 
1835 	return NULL;
1836 }
1837 
1838 static struct dentry *proc_map_files_lookup(struct inode *dir,
1839 		struct dentry *dentry, unsigned int flags)
1840 {
1841 	unsigned long vm_start, vm_end;
1842 	struct vm_area_struct *vma;
1843 	struct task_struct *task;
1844 	struct dentry *result;
1845 	struct mm_struct *mm;
1846 
1847 	result = ERR_PTR(-EACCES);
1848 	if (!capable(CAP_SYS_ADMIN))
1849 		goto out;
1850 
1851 	result = ERR_PTR(-ENOENT);
1852 	task = get_proc_task(dir);
1853 	if (!task)
1854 		goto out;
1855 
1856 	result = ERR_PTR(-EACCES);
1857 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
1858 		goto out_put_task;
1859 
1860 	result = ERR_PTR(-ENOENT);
1861 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
1862 		goto out_put_task;
1863 
1864 	mm = get_task_mm(task);
1865 	if (!mm)
1866 		goto out_put_task;
1867 
1868 	down_read(&mm->mmap_sem);
1869 	vma = find_exact_vma(mm, vm_start, vm_end);
1870 	if (!vma)
1871 		goto out_no_vma;
1872 
1873 	if (vma->vm_file)
1874 		result = proc_map_files_instantiate(dir, dentry, task,
1875 				(void *)(unsigned long)vma->vm_file->f_mode);
1876 
1877 out_no_vma:
1878 	up_read(&mm->mmap_sem);
1879 	mmput(mm);
1880 out_put_task:
1881 	put_task_struct(task);
1882 out:
1883 	return result;
1884 }
1885 
1886 static const struct inode_operations proc_map_files_inode_operations = {
1887 	.lookup		= proc_map_files_lookup,
1888 	.permission	= proc_fd_permission,
1889 	.setattr	= proc_setattr,
1890 };
1891 
1892 static int
1893 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir)
1894 {
1895 	struct dentry *dentry = filp->f_path.dentry;
1896 	struct inode *inode = dentry->d_inode;
1897 	struct vm_area_struct *vma;
1898 	struct task_struct *task;
1899 	struct mm_struct *mm;
1900 	ino_t ino;
1901 	int ret;
1902 
1903 	ret = -EACCES;
1904 	if (!capable(CAP_SYS_ADMIN))
1905 		goto out;
1906 
1907 	ret = -ENOENT;
1908 	task = get_proc_task(inode);
1909 	if (!task)
1910 		goto out;
1911 
1912 	ret = -EACCES;
1913 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
1914 		goto out_put_task;
1915 
1916 	ret = 0;
1917 	switch (filp->f_pos) {
1918 	case 0:
1919 		ino = inode->i_ino;
1920 		if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0)
1921 			goto out_put_task;
1922 		filp->f_pos++;
1923 	case 1:
1924 		ino = parent_ino(dentry);
1925 		if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1926 			goto out_put_task;
1927 		filp->f_pos++;
1928 	default:
1929 	{
1930 		unsigned long nr_files, pos, i;
1931 		struct flex_array *fa = NULL;
1932 		struct map_files_info info;
1933 		struct map_files_info *p;
1934 
1935 		mm = get_task_mm(task);
1936 		if (!mm)
1937 			goto out_put_task;
1938 		down_read(&mm->mmap_sem);
1939 
1940 		nr_files = 0;
1941 
1942 		/*
1943 		 * We need two passes here:
1944 		 *
1945 		 *  1) Collect vmas of mapped files with mmap_sem taken
1946 		 *  2) Release mmap_sem and instantiate entries
1947 		 *
1948 		 * otherwise we get lockdep complained, since filldir()
1949 		 * routine might require mmap_sem taken in might_fault().
1950 		 */
1951 
1952 		for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
1953 			if (vma->vm_file && ++pos > filp->f_pos)
1954 				nr_files++;
1955 		}
1956 
1957 		if (nr_files) {
1958 			fa = flex_array_alloc(sizeof(info), nr_files,
1959 						GFP_KERNEL);
1960 			if (!fa || flex_array_prealloc(fa, 0, nr_files,
1961 							GFP_KERNEL)) {
1962 				ret = -ENOMEM;
1963 				if (fa)
1964 					flex_array_free(fa);
1965 				up_read(&mm->mmap_sem);
1966 				mmput(mm);
1967 				goto out_put_task;
1968 			}
1969 			for (i = 0, vma = mm->mmap, pos = 2; vma;
1970 					vma = vma->vm_next) {
1971 				if (!vma->vm_file)
1972 					continue;
1973 				if (++pos <= filp->f_pos)
1974 					continue;
1975 
1976 				info.mode = vma->vm_file->f_mode;
1977 				info.len = snprintf(info.name,
1978 						sizeof(info.name), "%lx-%lx",
1979 						vma->vm_start, vma->vm_end);
1980 				if (flex_array_put(fa, i++, &info, GFP_KERNEL))
1981 					BUG();
1982 			}
1983 		}
1984 		up_read(&mm->mmap_sem);
1985 
1986 		for (i = 0; i < nr_files; i++) {
1987 			p = flex_array_get(fa, i);
1988 			ret = proc_fill_cache(filp, dirent, filldir,
1989 					      p->name, p->len,
1990 					      proc_map_files_instantiate,
1991 					      task,
1992 					      (void *)(unsigned long)p->mode);
1993 			if (ret)
1994 				break;
1995 			filp->f_pos++;
1996 		}
1997 		if (fa)
1998 			flex_array_free(fa);
1999 		mmput(mm);
2000 	}
2001 	}
2002 
2003 out_put_task:
2004 	put_task_struct(task);
2005 out:
2006 	return ret;
2007 }
2008 
2009 static const struct file_operations proc_map_files_operations = {
2010 	.read		= generic_read_dir,
2011 	.readdir	= proc_map_files_readdir,
2012 	.llseek		= default_llseek,
2013 };
2014 
2015 #endif /* CONFIG_CHECKPOINT_RESTORE */
2016 
2017 static struct dentry *proc_pident_instantiate(struct inode *dir,
2018 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2019 {
2020 	const struct pid_entry *p = ptr;
2021 	struct inode *inode;
2022 	struct proc_inode *ei;
2023 	struct dentry *error = ERR_PTR(-ENOENT);
2024 
2025 	inode = proc_pid_make_inode(dir->i_sb, task);
2026 	if (!inode)
2027 		goto out;
2028 
2029 	ei = PROC_I(inode);
2030 	inode->i_mode = p->mode;
2031 	if (S_ISDIR(inode->i_mode))
2032 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2033 	if (p->iop)
2034 		inode->i_op = p->iop;
2035 	if (p->fop)
2036 		inode->i_fop = p->fop;
2037 	ei->op = p->op;
2038 	d_set_d_op(dentry, &pid_dentry_operations);
2039 	d_add(dentry, inode);
2040 	/* Close the race of the process dying before we return the dentry */
2041 	if (pid_revalidate(dentry, 0))
2042 		error = NULL;
2043 out:
2044 	return error;
2045 }
2046 
2047 static struct dentry *proc_pident_lookup(struct inode *dir,
2048 					 struct dentry *dentry,
2049 					 const struct pid_entry *ents,
2050 					 unsigned int nents)
2051 {
2052 	struct dentry *error;
2053 	struct task_struct *task = get_proc_task(dir);
2054 	const struct pid_entry *p, *last;
2055 
2056 	error = ERR_PTR(-ENOENT);
2057 
2058 	if (!task)
2059 		goto out_no_task;
2060 
2061 	/*
2062 	 * Yes, it does not scale. And it should not. Don't add
2063 	 * new entries into /proc/<tgid>/ without very good reasons.
2064 	 */
2065 	last = &ents[nents - 1];
2066 	for (p = ents; p <= last; p++) {
2067 		if (p->len != dentry->d_name.len)
2068 			continue;
2069 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2070 			break;
2071 	}
2072 	if (p > last)
2073 		goto out;
2074 
2075 	error = proc_pident_instantiate(dir, dentry, task, p);
2076 out:
2077 	put_task_struct(task);
2078 out_no_task:
2079 	return error;
2080 }
2081 
2082 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2083 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2084 {
2085 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2086 				proc_pident_instantiate, task, p);
2087 }
2088 
2089 static int proc_pident_readdir(struct file *filp,
2090 		void *dirent, filldir_t filldir,
2091 		const struct pid_entry *ents, unsigned int nents)
2092 {
2093 	int i;
2094 	struct dentry *dentry = filp->f_path.dentry;
2095 	struct inode *inode = dentry->d_inode;
2096 	struct task_struct *task = get_proc_task(inode);
2097 	const struct pid_entry *p, *last;
2098 	ino_t ino;
2099 	int ret;
2100 
2101 	ret = -ENOENT;
2102 	if (!task)
2103 		goto out_no_task;
2104 
2105 	ret = 0;
2106 	i = filp->f_pos;
2107 	switch (i) {
2108 	case 0:
2109 		ino = inode->i_ino;
2110 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2111 			goto out;
2112 		i++;
2113 		filp->f_pos++;
2114 		/* fall through */
2115 	case 1:
2116 		ino = parent_ino(dentry);
2117 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2118 			goto out;
2119 		i++;
2120 		filp->f_pos++;
2121 		/* fall through */
2122 	default:
2123 		i -= 2;
2124 		if (i >= nents) {
2125 			ret = 1;
2126 			goto out;
2127 		}
2128 		p = ents + i;
2129 		last = &ents[nents - 1];
2130 		while (p <= last) {
2131 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2132 				goto out;
2133 			filp->f_pos++;
2134 			p++;
2135 		}
2136 	}
2137 
2138 	ret = 1;
2139 out:
2140 	put_task_struct(task);
2141 out_no_task:
2142 	return ret;
2143 }
2144 
2145 #ifdef CONFIG_SECURITY
2146 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2147 				  size_t count, loff_t *ppos)
2148 {
2149 	struct inode * inode = file->f_path.dentry->d_inode;
2150 	char *p = NULL;
2151 	ssize_t length;
2152 	struct task_struct *task = get_proc_task(inode);
2153 
2154 	if (!task)
2155 		return -ESRCH;
2156 
2157 	length = security_getprocattr(task,
2158 				      (char*)file->f_path.dentry->d_name.name,
2159 				      &p);
2160 	put_task_struct(task);
2161 	if (length > 0)
2162 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2163 	kfree(p);
2164 	return length;
2165 }
2166 
2167 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2168 				   size_t count, loff_t *ppos)
2169 {
2170 	struct inode * inode = file->f_path.dentry->d_inode;
2171 	char *page;
2172 	ssize_t length;
2173 	struct task_struct *task = get_proc_task(inode);
2174 
2175 	length = -ESRCH;
2176 	if (!task)
2177 		goto out_no_task;
2178 	if (count > PAGE_SIZE)
2179 		count = PAGE_SIZE;
2180 
2181 	/* No partial writes. */
2182 	length = -EINVAL;
2183 	if (*ppos != 0)
2184 		goto out;
2185 
2186 	length = -ENOMEM;
2187 	page = (char*)__get_free_page(GFP_TEMPORARY);
2188 	if (!page)
2189 		goto out;
2190 
2191 	length = -EFAULT;
2192 	if (copy_from_user(page, buf, count))
2193 		goto out_free;
2194 
2195 	/* Guard against adverse ptrace interaction */
2196 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2197 	if (length < 0)
2198 		goto out_free;
2199 
2200 	length = security_setprocattr(task,
2201 				      (char*)file->f_path.dentry->d_name.name,
2202 				      (void*)page, count);
2203 	mutex_unlock(&task->signal->cred_guard_mutex);
2204 out_free:
2205 	free_page((unsigned long) page);
2206 out:
2207 	put_task_struct(task);
2208 out_no_task:
2209 	return length;
2210 }
2211 
2212 static const struct file_operations proc_pid_attr_operations = {
2213 	.read		= proc_pid_attr_read,
2214 	.write		= proc_pid_attr_write,
2215 	.llseek		= generic_file_llseek,
2216 };
2217 
2218 static const struct pid_entry attr_dir_stuff[] = {
2219 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2220 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2221 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2222 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2223 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2224 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2225 };
2226 
2227 static int proc_attr_dir_readdir(struct file * filp,
2228 			     void * dirent, filldir_t filldir)
2229 {
2230 	return proc_pident_readdir(filp,dirent,filldir,
2231 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2232 }
2233 
2234 static const struct file_operations proc_attr_dir_operations = {
2235 	.read		= generic_read_dir,
2236 	.readdir	= proc_attr_dir_readdir,
2237 	.llseek		= default_llseek,
2238 };
2239 
2240 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2241 				struct dentry *dentry, unsigned int flags)
2242 {
2243 	return proc_pident_lookup(dir, dentry,
2244 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2245 }
2246 
2247 static const struct inode_operations proc_attr_dir_inode_operations = {
2248 	.lookup		= proc_attr_dir_lookup,
2249 	.getattr	= pid_getattr,
2250 	.setattr	= proc_setattr,
2251 };
2252 
2253 #endif
2254 
2255 #ifdef CONFIG_ELF_CORE
2256 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2257 					 size_t count, loff_t *ppos)
2258 {
2259 	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2260 	struct mm_struct *mm;
2261 	char buffer[PROC_NUMBUF];
2262 	size_t len;
2263 	int ret;
2264 
2265 	if (!task)
2266 		return -ESRCH;
2267 
2268 	ret = 0;
2269 	mm = get_task_mm(task);
2270 	if (mm) {
2271 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2272 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2273 				MMF_DUMP_FILTER_SHIFT));
2274 		mmput(mm);
2275 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2276 	}
2277 
2278 	put_task_struct(task);
2279 
2280 	return ret;
2281 }
2282 
2283 static ssize_t proc_coredump_filter_write(struct file *file,
2284 					  const char __user *buf,
2285 					  size_t count,
2286 					  loff_t *ppos)
2287 {
2288 	struct task_struct *task;
2289 	struct mm_struct *mm;
2290 	char buffer[PROC_NUMBUF], *end;
2291 	unsigned int val;
2292 	int ret;
2293 	int i;
2294 	unsigned long mask;
2295 
2296 	ret = -EFAULT;
2297 	memset(buffer, 0, sizeof(buffer));
2298 	if (count > sizeof(buffer) - 1)
2299 		count = sizeof(buffer) - 1;
2300 	if (copy_from_user(buffer, buf, count))
2301 		goto out_no_task;
2302 
2303 	ret = -EINVAL;
2304 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2305 	if (*end == '\n')
2306 		end++;
2307 	if (end - buffer == 0)
2308 		goto out_no_task;
2309 
2310 	ret = -ESRCH;
2311 	task = get_proc_task(file->f_dentry->d_inode);
2312 	if (!task)
2313 		goto out_no_task;
2314 
2315 	ret = end - buffer;
2316 	mm = get_task_mm(task);
2317 	if (!mm)
2318 		goto out_no_mm;
2319 
2320 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2321 		if (val & mask)
2322 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2323 		else
2324 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2325 	}
2326 
2327 	mmput(mm);
2328  out_no_mm:
2329 	put_task_struct(task);
2330  out_no_task:
2331 	return ret;
2332 }
2333 
2334 static const struct file_operations proc_coredump_filter_operations = {
2335 	.read		= proc_coredump_filter_read,
2336 	.write		= proc_coredump_filter_write,
2337 	.llseek		= generic_file_llseek,
2338 };
2339 #endif
2340 
2341 #ifdef CONFIG_TASK_IO_ACCOUNTING
2342 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2343 {
2344 	struct task_io_accounting acct = task->ioac;
2345 	unsigned long flags;
2346 	int result;
2347 
2348 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2349 	if (result)
2350 		return result;
2351 
2352 	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2353 		result = -EACCES;
2354 		goto out_unlock;
2355 	}
2356 
2357 	if (whole && lock_task_sighand(task, &flags)) {
2358 		struct task_struct *t = task;
2359 
2360 		task_io_accounting_add(&acct, &task->signal->ioac);
2361 		while_each_thread(task, t)
2362 			task_io_accounting_add(&acct, &t->ioac);
2363 
2364 		unlock_task_sighand(task, &flags);
2365 	}
2366 	result = sprintf(buffer,
2367 			"rchar: %llu\n"
2368 			"wchar: %llu\n"
2369 			"syscr: %llu\n"
2370 			"syscw: %llu\n"
2371 			"read_bytes: %llu\n"
2372 			"write_bytes: %llu\n"
2373 			"cancelled_write_bytes: %llu\n",
2374 			(unsigned long long)acct.rchar,
2375 			(unsigned long long)acct.wchar,
2376 			(unsigned long long)acct.syscr,
2377 			(unsigned long long)acct.syscw,
2378 			(unsigned long long)acct.read_bytes,
2379 			(unsigned long long)acct.write_bytes,
2380 			(unsigned long long)acct.cancelled_write_bytes);
2381 out_unlock:
2382 	mutex_unlock(&task->signal->cred_guard_mutex);
2383 	return result;
2384 }
2385 
2386 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2387 {
2388 	return do_io_accounting(task, buffer, 0);
2389 }
2390 
2391 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2392 {
2393 	return do_io_accounting(task, buffer, 1);
2394 }
2395 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2396 
2397 #ifdef CONFIG_USER_NS
2398 static int proc_id_map_open(struct inode *inode, struct file *file,
2399 	struct seq_operations *seq_ops)
2400 {
2401 	struct user_namespace *ns = NULL;
2402 	struct task_struct *task;
2403 	struct seq_file *seq;
2404 	int ret = -EINVAL;
2405 
2406 	task = get_proc_task(inode);
2407 	if (task) {
2408 		rcu_read_lock();
2409 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2410 		rcu_read_unlock();
2411 		put_task_struct(task);
2412 	}
2413 	if (!ns)
2414 		goto err;
2415 
2416 	ret = seq_open(file, seq_ops);
2417 	if (ret)
2418 		goto err_put_ns;
2419 
2420 	seq = file->private_data;
2421 	seq->private = ns;
2422 
2423 	return 0;
2424 err_put_ns:
2425 	put_user_ns(ns);
2426 err:
2427 	return ret;
2428 }
2429 
2430 static int proc_id_map_release(struct inode *inode, struct file *file)
2431 {
2432 	struct seq_file *seq = file->private_data;
2433 	struct user_namespace *ns = seq->private;
2434 	put_user_ns(ns);
2435 	return seq_release(inode, file);
2436 }
2437 
2438 static int proc_uid_map_open(struct inode *inode, struct file *file)
2439 {
2440 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2441 }
2442 
2443 static int proc_gid_map_open(struct inode *inode, struct file *file)
2444 {
2445 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2446 }
2447 
2448 static int proc_projid_map_open(struct inode *inode, struct file *file)
2449 {
2450 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2451 }
2452 
2453 static const struct file_operations proc_uid_map_operations = {
2454 	.open		= proc_uid_map_open,
2455 	.write		= proc_uid_map_write,
2456 	.read		= seq_read,
2457 	.llseek		= seq_lseek,
2458 	.release	= proc_id_map_release,
2459 };
2460 
2461 static const struct file_operations proc_gid_map_operations = {
2462 	.open		= proc_gid_map_open,
2463 	.write		= proc_gid_map_write,
2464 	.read		= seq_read,
2465 	.llseek		= seq_lseek,
2466 	.release	= proc_id_map_release,
2467 };
2468 
2469 static const struct file_operations proc_projid_map_operations = {
2470 	.open		= proc_projid_map_open,
2471 	.write		= proc_projid_map_write,
2472 	.read		= seq_read,
2473 	.llseek		= seq_lseek,
2474 	.release	= proc_id_map_release,
2475 };
2476 #endif /* CONFIG_USER_NS */
2477 
2478 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2479 				struct pid *pid, struct task_struct *task)
2480 {
2481 	int err = lock_trace(task);
2482 	if (!err) {
2483 		seq_printf(m, "%08x\n", task->personality);
2484 		unlock_trace(task);
2485 	}
2486 	return err;
2487 }
2488 
2489 /*
2490  * Thread groups
2491  */
2492 static const struct file_operations proc_task_operations;
2493 static const struct inode_operations proc_task_inode_operations;
2494 
2495 static const struct pid_entry tgid_base_stuff[] = {
2496 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2497 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2498 #ifdef CONFIG_CHECKPOINT_RESTORE
2499 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2500 #endif
2501 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2502 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2503 #ifdef CONFIG_NET
2504 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2505 #endif
2506 	REG("environ",    S_IRUSR, proc_environ_operations),
2507 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2508 	ONE("status",     S_IRUGO, proc_pid_status),
2509 	ONE("personality", S_IRUGO, proc_pid_personality),
2510 	INF("limits",	  S_IRUGO, proc_pid_limits),
2511 #ifdef CONFIG_SCHED_DEBUG
2512 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2513 #endif
2514 #ifdef CONFIG_SCHED_AUTOGROUP
2515 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2516 #endif
2517 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2518 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2519 	INF("syscall",    S_IRUGO, proc_pid_syscall),
2520 #endif
2521 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2522 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2523 	ONE("statm",      S_IRUGO, proc_pid_statm),
2524 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2525 #ifdef CONFIG_NUMA
2526 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2527 #endif
2528 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2529 	LNK("cwd",        proc_cwd_link),
2530 	LNK("root",       proc_root_link),
2531 	LNK("exe",        proc_exe_link),
2532 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2533 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2534 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2535 #ifdef CONFIG_PROC_PAGE_MONITOR
2536 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2537 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2538 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
2539 #endif
2540 #ifdef CONFIG_SECURITY
2541 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2542 #endif
2543 #ifdef CONFIG_KALLSYMS
2544 	INF("wchan",      S_IRUGO, proc_pid_wchan),
2545 #endif
2546 #ifdef CONFIG_STACKTRACE
2547 	ONE("stack",      S_IRUGO, proc_pid_stack),
2548 #endif
2549 #ifdef CONFIG_SCHEDSTATS
2550 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2551 #endif
2552 #ifdef CONFIG_LATENCYTOP
2553 	REG("latency",  S_IRUGO, proc_lstats_operations),
2554 #endif
2555 #ifdef CONFIG_PROC_PID_CPUSET
2556 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2557 #endif
2558 #ifdef CONFIG_CGROUPS
2559 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2560 #endif
2561 	INF("oom_score",  S_IRUGO, proc_oom_score),
2562 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2563 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2564 #ifdef CONFIG_AUDITSYSCALL
2565 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2566 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2567 #endif
2568 #ifdef CONFIG_FAULT_INJECTION
2569 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2570 #endif
2571 #ifdef CONFIG_ELF_CORE
2572 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2573 #endif
2574 #ifdef CONFIG_TASK_IO_ACCOUNTING
2575 	INF("io",	S_IRUSR, proc_tgid_io_accounting),
2576 #endif
2577 #ifdef CONFIG_HARDWALL
2578 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
2579 #endif
2580 #ifdef CONFIG_USER_NS
2581 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2582 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2583 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2584 #endif
2585 };
2586 
2587 static int proc_tgid_base_readdir(struct file * filp,
2588 			     void * dirent, filldir_t filldir)
2589 {
2590 	return proc_pident_readdir(filp,dirent,filldir,
2591 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2592 }
2593 
2594 static const struct file_operations proc_tgid_base_operations = {
2595 	.read		= generic_read_dir,
2596 	.readdir	= proc_tgid_base_readdir,
2597 	.llseek		= default_llseek,
2598 };
2599 
2600 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2601 {
2602 	return proc_pident_lookup(dir, dentry,
2603 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2604 }
2605 
2606 static const struct inode_operations proc_tgid_base_inode_operations = {
2607 	.lookup		= proc_tgid_base_lookup,
2608 	.getattr	= pid_getattr,
2609 	.setattr	= proc_setattr,
2610 	.permission	= proc_pid_permission,
2611 };
2612 
2613 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2614 {
2615 	struct dentry *dentry, *leader, *dir;
2616 	char buf[PROC_NUMBUF];
2617 	struct qstr name;
2618 
2619 	name.name = buf;
2620 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2621 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2622 	if (dentry) {
2623 		shrink_dcache_parent(dentry);
2624 		d_drop(dentry);
2625 		dput(dentry);
2626 	}
2627 
2628 	name.name = buf;
2629 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2630 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2631 	if (!leader)
2632 		goto out;
2633 
2634 	name.name = "task";
2635 	name.len = strlen(name.name);
2636 	dir = d_hash_and_lookup(leader, &name);
2637 	if (!dir)
2638 		goto out_put_leader;
2639 
2640 	name.name = buf;
2641 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2642 	dentry = d_hash_and_lookup(dir, &name);
2643 	if (dentry) {
2644 		shrink_dcache_parent(dentry);
2645 		d_drop(dentry);
2646 		dput(dentry);
2647 	}
2648 
2649 	dput(dir);
2650 out_put_leader:
2651 	dput(leader);
2652 out:
2653 	return;
2654 }
2655 
2656 /**
2657  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2658  * @task: task that should be flushed.
2659  *
2660  * When flushing dentries from proc, one needs to flush them from global
2661  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2662  * in. This call is supposed to do all of this job.
2663  *
2664  * Looks in the dcache for
2665  * /proc/@pid
2666  * /proc/@tgid/task/@pid
2667  * if either directory is present flushes it and all of it'ts children
2668  * from the dcache.
2669  *
2670  * It is safe and reasonable to cache /proc entries for a task until
2671  * that task exits.  After that they just clog up the dcache with
2672  * useless entries, possibly causing useful dcache entries to be
2673  * flushed instead.  This routine is proved to flush those useless
2674  * dcache entries at process exit time.
2675  *
2676  * NOTE: This routine is just an optimization so it does not guarantee
2677  *       that no dcache entries will exist at process exit time it
2678  *       just makes it very unlikely that any will persist.
2679  */
2680 
2681 void proc_flush_task(struct task_struct *task)
2682 {
2683 	int i;
2684 	struct pid *pid, *tgid;
2685 	struct upid *upid;
2686 
2687 	pid = task_pid(task);
2688 	tgid = task_tgid(task);
2689 
2690 	for (i = 0; i <= pid->level; i++) {
2691 		upid = &pid->numbers[i];
2692 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2693 					tgid->numbers[i].nr);
2694 	}
2695 }
2696 
2697 static struct dentry *proc_pid_instantiate(struct inode *dir,
2698 					   struct dentry * dentry,
2699 					   struct task_struct *task, const void *ptr)
2700 {
2701 	struct dentry *error = ERR_PTR(-ENOENT);
2702 	struct inode *inode;
2703 
2704 	inode = proc_pid_make_inode(dir->i_sb, task);
2705 	if (!inode)
2706 		goto out;
2707 
2708 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2709 	inode->i_op = &proc_tgid_base_inode_operations;
2710 	inode->i_fop = &proc_tgid_base_operations;
2711 	inode->i_flags|=S_IMMUTABLE;
2712 
2713 	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2714 						  ARRAY_SIZE(tgid_base_stuff)));
2715 
2716 	d_set_d_op(dentry, &pid_dentry_operations);
2717 
2718 	d_add(dentry, inode);
2719 	/* Close the race of the process dying before we return the dentry */
2720 	if (pid_revalidate(dentry, 0))
2721 		error = NULL;
2722 out:
2723 	return error;
2724 }
2725 
2726 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2727 {
2728 	struct dentry *result = NULL;
2729 	struct task_struct *task;
2730 	unsigned tgid;
2731 	struct pid_namespace *ns;
2732 
2733 	tgid = name_to_int(dentry);
2734 	if (tgid == ~0U)
2735 		goto out;
2736 
2737 	ns = dentry->d_sb->s_fs_info;
2738 	rcu_read_lock();
2739 	task = find_task_by_pid_ns(tgid, ns);
2740 	if (task)
2741 		get_task_struct(task);
2742 	rcu_read_unlock();
2743 	if (!task)
2744 		goto out;
2745 
2746 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2747 	put_task_struct(task);
2748 out:
2749 	return result;
2750 }
2751 
2752 /*
2753  * Find the first task with tgid >= tgid
2754  *
2755  */
2756 struct tgid_iter {
2757 	unsigned int tgid;
2758 	struct task_struct *task;
2759 };
2760 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2761 {
2762 	struct pid *pid;
2763 
2764 	if (iter.task)
2765 		put_task_struct(iter.task);
2766 	rcu_read_lock();
2767 retry:
2768 	iter.task = NULL;
2769 	pid = find_ge_pid(iter.tgid, ns);
2770 	if (pid) {
2771 		iter.tgid = pid_nr_ns(pid, ns);
2772 		iter.task = pid_task(pid, PIDTYPE_PID);
2773 		/* What we to know is if the pid we have find is the
2774 		 * pid of a thread_group_leader.  Testing for task
2775 		 * being a thread_group_leader is the obvious thing
2776 		 * todo but there is a window when it fails, due to
2777 		 * the pid transfer logic in de_thread.
2778 		 *
2779 		 * So we perform the straight forward test of seeing
2780 		 * if the pid we have found is the pid of a thread
2781 		 * group leader, and don't worry if the task we have
2782 		 * found doesn't happen to be a thread group leader.
2783 		 * As we don't care in the case of readdir.
2784 		 */
2785 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2786 			iter.tgid += 1;
2787 			goto retry;
2788 		}
2789 		get_task_struct(iter.task);
2790 	}
2791 	rcu_read_unlock();
2792 	return iter;
2793 }
2794 
2795 #define TGID_OFFSET (FIRST_PROCESS_ENTRY)
2796 
2797 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2798 	struct tgid_iter iter)
2799 {
2800 	char name[PROC_NUMBUF];
2801 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2802 	return proc_fill_cache(filp, dirent, filldir, name, len,
2803 				proc_pid_instantiate, iter.task, NULL);
2804 }
2805 
2806 static int fake_filldir(void *buf, const char *name, int namelen,
2807 			loff_t offset, u64 ino, unsigned d_type)
2808 {
2809 	return 0;
2810 }
2811 
2812 /* for the /proc/ directory itself, after non-process stuff has been done */
2813 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2814 {
2815 	struct tgid_iter iter;
2816 	struct pid_namespace *ns;
2817 	filldir_t __filldir;
2818 
2819 	if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
2820 		goto out;
2821 
2822 	ns = filp->f_dentry->d_sb->s_fs_info;
2823 	iter.task = NULL;
2824 	iter.tgid = filp->f_pos - TGID_OFFSET;
2825 	for (iter = next_tgid(ns, iter);
2826 	     iter.task;
2827 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2828 		if (has_pid_permissions(ns, iter.task, 2))
2829 			__filldir = filldir;
2830 		else
2831 			__filldir = fake_filldir;
2832 
2833 		filp->f_pos = iter.tgid + TGID_OFFSET;
2834 		if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) {
2835 			put_task_struct(iter.task);
2836 			goto out;
2837 		}
2838 	}
2839 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2840 out:
2841 	return 0;
2842 }
2843 
2844 /*
2845  * Tasks
2846  */
2847 static const struct pid_entry tid_base_stuff[] = {
2848 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2849 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2850 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2851 	REG("environ",   S_IRUSR, proc_environ_operations),
2852 	INF("auxv",      S_IRUSR, proc_pid_auxv),
2853 	ONE("status",    S_IRUGO, proc_pid_status),
2854 	ONE("personality", S_IRUGO, proc_pid_personality),
2855 	INF("limits",	 S_IRUGO, proc_pid_limits),
2856 #ifdef CONFIG_SCHED_DEBUG
2857 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2858 #endif
2859 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2860 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2861 	INF("syscall",   S_IRUGO, proc_pid_syscall),
2862 #endif
2863 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
2864 	ONE("stat",      S_IRUGO, proc_tid_stat),
2865 	ONE("statm",     S_IRUGO, proc_pid_statm),
2866 	REG("maps",      S_IRUGO, proc_tid_maps_operations),
2867 #ifdef CONFIG_CHECKPOINT_RESTORE
2868 	REG("children",  S_IRUGO, proc_tid_children_operations),
2869 #endif
2870 #ifdef CONFIG_NUMA
2871 	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
2872 #endif
2873 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
2874 	LNK("cwd",       proc_cwd_link),
2875 	LNK("root",      proc_root_link),
2876 	LNK("exe",       proc_exe_link),
2877 	REG("mounts",    S_IRUGO, proc_mounts_operations),
2878 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2879 #ifdef CONFIG_PROC_PAGE_MONITOR
2880 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2881 	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
2882 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
2883 #endif
2884 #ifdef CONFIG_SECURITY
2885 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2886 #endif
2887 #ifdef CONFIG_KALLSYMS
2888 	INF("wchan",     S_IRUGO, proc_pid_wchan),
2889 #endif
2890 #ifdef CONFIG_STACKTRACE
2891 	ONE("stack",      S_IRUGO, proc_pid_stack),
2892 #endif
2893 #ifdef CONFIG_SCHEDSTATS
2894 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
2895 #endif
2896 #ifdef CONFIG_LATENCYTOP
2897 	REG("latency",  S_IRUGO, proc_lstats_operations),
2898 #endif
2899 #ifdef CONFIG_PROC_PID_CPUSET
2900 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
2901 #endif
2902 #ifdef CONFIG_CGROUPS
2903 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2904 #endif
2905 	INF("oom_score", S_IRUGO, proc_oom_score),
2906 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2907 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2908 #ifdef CONFIG_AUDITSYSCALL
2909 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
2910 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2911 #endif
2912 #ifdef CONFIG_FAULT_INJECTION
2913 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2914 #endif
2915 #ifdef CONFIG_TASK_IO_ACCOUNTING
2916 	INF("io",	S_IRUSR, proc_tid_io_accounting),
2917 #endif
2918 #ifdef CONFIG_HARDWALL
2919 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
2920 #endif
2921 #ifdef CONFIG_USER_NS
2922 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2923 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2924 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2925 #endif
2926 };
2927 
2928 static int proc_tid_base_readdir(struct file * filp,
2929 			     void * dirent, filldir_t filldir)
2930 {
2931 	return proc_pident_readdir(filp,dirent,filldir,
2932 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2933 }
2934 
2935 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2936 {
2937 	return proc_pident_lookup(dir, dentry,
2938 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2939 }
2940 
2941 static const struct file_operations proc_tid_base_operations = {
2942 	.read		= generic_read_dir,
2943 	.readdir	= proc_tid_base_readdir,
2944 	.llseek		= default_llseek,
2945 };
2946 
2947 static const struct inode_operations proc_tid_base_inode_operations = {
2948 	.lookup		= proc_tid_base_lookup,
2949 	.getattr	= pid_getattr,
2950 	.setattr	= proc_setattr,
2951 };
2952 
2953 static struct dentry *proc_task_instantiate(struct inode *dir,
2954 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2955 {
2956 	struct dentry *error = ERR_PTR(-ENOENT);
2957 	struct inode *inode;
2958 	inode = proc_pid_make_inode(dir->i_sb, task);
2959 
2960 	if (!inode)
2961 		goto out;
2962 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2963 	inode->i_op = &proc_tid_base_inode_operations;
2964 	inode->i_fop = &proc_tid_base_operations;
2965 	inode->i_flags|=S_IMMUTABLE;
2966 
2967 	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
2968 						  ARRAY_SIZE(tid_base_stuff)));
2969 
2970 	d_set_d_op(dentry, &pid_dentry_operations);
2971 
2972 	d_add(dentry, inode);
2973 	/* Close the race of the process dying before we return the dentry */
2974 	if (pid_revalidate(dentry, 0))
2975 		error = NULL;
2976 out:
2977 	return error;
2978 }
2979 
2980 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2981 {
2982 	struct dentry *result = ERR_PTR(-ENOENT);
2983 	struct task_struct *task;
2984 	struct task_struct *leader = get_proc_task(dir);
2985 	unsigned tid;
2986 	struct pid_namespace *ns;
2987 
2988 	if (!leader)
2989 		goto out_no_task;
2990 
2991 	tid = name_to_int(dentry);
2992 	if (tid == ~0U)
2993 		goto out;
2994 
2995 	ns = dentry->d_sb->s_fs_info;
2996 	rcu_read_lock();
2997 	task = find_task_by_pid_ns(tid, ns);
2998 	if (task)
2999 		get_task_struct(task);
3000 	rcu_read_unlock();
3001 	if (!task)
3002 		goto out;
3003 	if (!same_thread_group(leader, task))
3004 		goto out_drop_task;
3005 
3006 	result = proc_task_instantiate(dir, dentry, task, NULL);
3007 out_drop_task:
3008 	put_task_struct(task);
3009 out:
3010 	put_task_struct(leader);
3011 out_no_task:
3012 	return result;
3013 }
3014 
3015 /*
3016  * Find the first tid of a thread group to return to user space.
3017  *
3018  * Usually this is just the thread group leader, but if the users
3019  * buffer was too small or there was a seek into the middle of the
3020  * directory we have more work todo.
3021  *
3022  * In the case of a short read we start with find_task_by_pid.
3023  *
3024  * In the case of a seek we start with the leader and walk nr
3025  * threads past it.
3026  */
3027 static struct task_struct *first_tid(struct task_struct *leader,
3028 		int tid, int nr, struct pid_namespace *ns)
3029 {
3030 	struct task_struct *pos;
3031 
3032 	rcu_read_lock();
3033 	/* Attempt to start with the pid of a thread */
3034 	if (tid && (nr > 0)) {
3035 		pos = find_task_by_pid_ns(tid, ns);
3036 		if (pos && (pos->group_leader == leader))
3037 			goto found;
3038 	}
3039 
3040 	/* If nr exceeds the number of threads there is nothing todo */
3041 	pos = NULL;
3042 	if (nr && nr >= get_nr_threads(leader))
3043 		goto out;
3044 
3045 	/* If we haven't found our starting place yet start
3046 	 * with the leader and walk nr threads forward.
3047 	 */
3048 	for (pos = leader; nr > 0; --nr) {
3049 		pos = next_thread(pos);
3050 		if (pos == leader) {
3051 			pos = NULL;
3052 			goto out;
3053 		}
3054 	}
3055 found:
3056 	get_task_struct(pos);
3057 out:
3058 	rcu_read_unlock();
3059 	return pos;
3060 }
3061 
3062 /*
3063  * Find the next thread in the thread list.
3064  * Return NULL if there is an error or no next thread.
3065  *
3066  * The reference to the input task_struct is released.
3067  */
3068 static struct task_struct *next_tid(struct task_struct *start)
3069 {
3070 	struct task_struct *pos = NULL;
3071 	rcu_read_lock();
3072 	if (pid_alive(start)) {
3073 		pos = next_thread(start);
3074 		if (thread_group_leader(pos))
3075 			pos = NULL;
3076 		else
3077 			get_task_struct(pos);
3078 	}
3079 	rcu_read_unlock();
3080 	put_task_struct(start);
3081 	return pos;
3082 }
3083 
3084 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3085 	struct task_struct *task, int tid)
3086 {
3087 	char name[PROC_NUMBUF];
3088 	int len = snprintf(name, sizeof(name), "%d", tid);
3089 	return proc_fill_cache(filp, dirent, filldir, name, len,
3090 				proc_task_instantiate, task, NULL);
3091 }
3092 
3093 /* for the /proc/TGID/task/ directories */
3094 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3095 {
3096 	struct dentry *dentry = filp->f_path.dentry;
3097 	struct inode *inode = dentry->d_inode;
3098 	struct task_struct *leader = NULL;
3099 	struct task_struct *task;
3100 	int retval = -ENOENT;
3101 	ino_t ino;
3102 	int tid;
3103 	struct pid_namespace *ns;
3104 
3105 	task = get_proc_task(inode);
3106 	if (!task)
3107 		goto out_no_task;
3108 	rcu_read_lock();
3109 	if (pid_alive(task)) {
3110 		leader = task->group_leader;
3111 		get_task_struct(leader);
3112 	}
3113 	rcu_read_unlock();
3114 	put_task_struct(task);
3115 	if (!leader)
3116 		goto out_no_task;
3117 	retval = 0;
3118 
3119 	switch ((unsigned long)filp->f_pos) {
3120 	case 0:
3121 		ino = inode->i_ino;
3122 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3123 			goto out;
3124 		filp->f_pos++;
3125 		/* fall through */
3126 	case 1:
3127 		ino = parent_ino(dentry);
3128 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3129 			goto out;
3130 		filp->f_pos++;
3131 		/* fall through */
3132 	}
3133 
3134 	/* f_version caches the tgid value that the last readdir call couldn't
3135 	 * return. lseek aka telldir automagically resets f_version to 0.
3136 	 */
3137 	ns = filp->f_dentry->d_sb->s_fs_info;
3138 	tid = (int)filp->f_version;
3139 	filp->f_version = 0;
3140 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3141 	     task;
3142 	     task = next_tid(task), filp->f_pos++) {
3143 		tid = task_pid_nr_ns(task, ns);
3144 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3145 			/* returning this tgid failed, save it as the first
3146 			 * pid for the next readir call */
3147 			filp->f_version = (u64)tid;
3148 			put_task_struct(task);
3149 			break;
3150 		}
3151 	}
3152 out:
3153 	put_task_struct(leader);
3154 out_no_task:
3155 	return retval;
3156 }
3157 
3158 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3159 {
3160 	struct inode *inode = dentry->d_inode;
3161 	struct task_struct *p = get_proc_task(inode);
3162 	generic_fillattr(inode, stat);
3163 
3164 	if (p) {
3165 		stat->nlink += get_nr_threads(p);
3166 		put_task_struct(p);
3167 	}
3168 
3169 	return 0;
3170 }
3171 
3172 static const struct inode_operations proc_task_inode_operations = {
3173 	.lookup		= proc_task_lookup,
3174 	.getattr	= proc_task_getattr,
3175 	.setattr	= proc_setattr,
3176 	.permission	= proc_pid_permission,
3177 };
3178 
3179 static const struct file_operations proc_task_operations = {
3180 	.read		= generic_read_dir,
3181 	.readdir	= proc_task_readdir,
3182 	.llseek		= default_llseek,
3183 };
3184