1 /* 2 * linux/fs/proc/base.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * proc base directory handling functions 7 * 8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 9 * Instead of using magical inumbers to determine the kind of object 10 * we allocate and fill in-core inodes upon lookup. They don't even 11 * go into icache. We cache the reference to task_struct upon lookup too. 12 * Eventually it should become a filesystem in its own. We don't use the 13 * rest of procfs anymore. 14 * 15 * 16 * Changelog: 17 * 17-Jan-2005 18 * Allan Bezerra 19 * Bruna Moreira <bruna.moreira@indt.org.br> 20 * Edjard Mota <edjard.mota@indt.org.br> 21 * Ilias Biris <ilias.biris@indt.org.br> 22 * Mauricio Lin <mauricio.lin@indt.org.br> 23 * 24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 25 * 26 * A new process specific entry (smaps) included in /proc. It shows the 27 * size of rss for each memory area. The maps entry lacks information 28 * about physical memory size (rss) for each mapped file, i.e., 29 * rss information for executables and library files. 30 * This additional information is useful for any tools that need to know 31 * about physical memory consumption for a process specific library. 32 * 33 * Changelog: 34 * 21-Feb-2005 35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 36 * Pud inclusion in the page table walking. 37 * 38 * ChangeLog: 39 * 10-Mar-2005 40 * 10LE Instituto Nokia de Tecnologia - INdT: 41 * A better way to walks through the page table as suggested by Hugh Dickins. 42 * 43 * Simo Piiroinen <simo.piiroinen@nokia.com>: 44 * Smaps information related to shared, private, clean and dirty pages. 45 * 46 * Paul Mundt <paul.mundt@nokia.com>: 47 * Overall revision about smaps. 48 */ 49 50 #include <asm/uaccess.h> 51 52 #include <linux/errno.h> 53 #include <linux/time.h> 54 #include <linux/proc_fs.h> 55 #include <linux/stat.h> 56 #include <linux/task_io_accounting_ops.h> 57 #include <linux/init.h> 58 #include <linux/capability.h> 59 #include <linux/file.h> 60 #include <linux/fdtable.h> 61 #include <linux/string.h> 62 #include <linux/seq_file.h> 63 #include <linux/namei.h> 64 #include <linux/mnt_namespace.h> 65 #include <linux/mm.h> 66 #include <linux/swap.h> 67 #include <linux/rcupdate.h> 68 #include <linux/kallsyms.h> 69 #include <linux/stacktrace.h> 70 #include <linux/resource.h> 71 #include <linux/module.h> 72 #include <linux/mount.h> 73 #include <linux/security.h> 74 #include <linux/ptrace.h> 75 #include <linux/tracehook.h> 76 #include <linux/cgroup.h> 77 #include <linux/cpuset.h> 78 #include <linux/audit.h> 79 #include <linux/poll.h> 80 #include <linux/nsproxy.h> 81 #include <linux/oom.h> 82 #include <linux/elf.h> 83 #include <linux/pid_namespace.h> 84 #include <linux/user_namespace.h> 85 #include <linux/fs_struct.h> 86 #include <linux/slab.h> 87 #include <linux/flex_array.h> 88 #ifdef CONFIG_HARDWALL 89 #include <asm/hardwall.h> 90 #endif 91 #include <trace/events/oom.h> 92 #include "internal.h" 93 #include "fd.h" 94 95 /* NOTE: 96 * Implementing inode permission operations in /proc is almost 97 * certainly an error. Permission checks need to happen during 98 * each system call not at open time. The reason is that most of 99 * what we wish to check for permissions in /proc varies at runtime. 100 * 101 * The classic example of a problem is opening file descriptors 102 * in /proc for a task before it execs a suid executable. 103 */ 104 105 struct pid_entry { 106 char *name; 107 int len; 108 umode_t mode; 109 const struct inode_operations *iop; 110 const struct file_operations *fop; 111 union proc_op op; 112 }; 113 114 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 115 .name = (NAME), \ 116 .len = sizeof(NAME) - 1, \ 117 .mode = MODE, \ 118 .iop = IOP, \ 119 .fop = FOP, \ 120 .op = OP, \ 121 } 122 123 #define DIR(NAME, MODE, iops, fops) \ 124 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 125 #define LNK(NAME, get_link) \ 126 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 127 &proc_pid_link_inode_operations, NULL, \ 128 { .proc_get_link = get_link } ) 129 #define REG(NAME, MODE, fops) \ 130 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 131 #define INF(NAME, MODE, read) \ 132 NOD(NAME, (S_IFREG|(MODE)), \ 133 NULL, &proc_info_file_operations, \ 134 { .proc_read = read } ) 135 #define ONE(NAME, MODE, show) \ 136 NOD(NAME, (S_IFREG|(MODE)), \ 137 NULL, &proc_single_file_operations, \ 138 { .proc_show = show } ) 139 140 /* 141 * Count the number of hardlinks for the pid_entry table, excluding the . 142 * and .. links. 143 */ 144 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries, 145 unsigned int n) 146 { 147 unsigned int i; 148 unsigned int count; 149 150 count = 0; 151 for (i = 0; i < n; ++i) { 152 if (S_ISDIR(entries[i].mode)) 153 ++count; 154 } 155 156 return count; 157 } 158 159 static int get_task_root(struct task_struct *task, struct path *root) 160 { 161 int result = -ENOENT; 162 163 task_lock(task); 164 if (task->fs) { 165 get_fs_root(task->fs, root); 166 result = 0; 167 } 168 task_unlock(task); 169 return result; 170 } 171 172 static int proc_cwd_link(struct dentry *dentry, struct path *path) 173 { 174 struct task_struct *task = get_proc_task(dentry->d_inode); 175 int result = -ENOENT; 176 177 if (task) { 178 task_lock(task); 179 if (task->fs) { 180 get_fs_pwd(task->fs, path); 181 result = 0; 182 } 183 task_unlock(task); 184 put_task_struct(task); 185 } 186 return result; 187 } 188 189 static int proc_root_link(struct dentry *dentry, struct path *path) 190 { 191 struct task_struct *task = get_proc_task(dentry->d_inode); 192 int result = -ENOENT; 193 194 if (task) { 195 result = get_task_root(task, path); 196 put_task_struct(task); 197 } 198 return result; 199 } 200 201 static int proc_pid_cmdline(struct task_struct *task, char * buffer) 202 { 203 int res = 0; 204 unsigned int len; 205 struct mm_struct *mm = get_task_mm(task); 206 if (!mm) 207 goto out; 208 if (!mm->arg_end) 209 goto out_mm; /* Shh! No looking before we're done */ 210 211 len = mm->arg_end - mm->arg_start; 212 213 if (len > PAGE_SIZE) 214 len = PAGE_SIZE; 215 216 res = access_process_vm(task, mm->arg_start, buffer, len, 0); 217 218 // If the nul at the end of args has been overwritten, then 219 // assume application is using setproctitle(3). 220 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) { 221 len = strnlen(buffer, res); 222 if (len < res) { 223 res = len; 224 } else { 225 len = mm->env_end - mm->env_start; 226 if (len > PAGE_SIZE - res) 227 len = PAGE_SIZE - res; 228 res += access_process_vm(task, mm->env_start, buffer+res, len, 0); 229 res = strnlen(buffer, res); 230 } 231 } 232 out_mm: 233 mmput(mm); 234 out: 235 return res; 236 } 237 238 static int proc_pid_auxv(struct task_struct *task, char *buffer) 239 { 240 struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ); 241 int res = PTR_ERR(mm); 242 if (mm && !IS_ERR(mm)) { 243 unsigned int nwords = 0; 244 do { 245 nwords += 2; 246 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 247 res = nwords * sizeof(mm->saved_auxv[0]); 248 if (res > PAGE_SIZE) 249 res = PAGE_SIZE; 250 memcpy(buffer, mm->saved_auxv, res); 251 mmput(mm); 252 } 253 return res; 254 } 255 256 257 #ifdef CONFIG_KALLSYMS 258 /* 259 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 260 * Returns the resolved symbol. If that fails, simply return the address. 261 */ 262 static int proc_pid_wchan(struct task_struct *task, char *buffer) 263 { 264 unsigned long wchan; 265 char symname[KSYM_NAME_LEN]; 266 267 wchan = get_wchan(task); 268 269 if (lookup_symbol_name(wchan, symname) < 0) 270 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 271 return 0; 272 else 273 return sprintf(buffer, "%lu", wchan); 274 else 275 return sprintf(buffer, "%s", symname); 276 } 277 #endif /* CONFIG_KALLSYMS */ 278 279 static int lock_trace(struct task_struct *task) 280 { 281 int err = mutex_lock_killable(&task->signal->cred_guard_mutex); 282 if (err) 283 return err; 284 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) { 285 mutex_unlock(&task->signal->cred_guard_mutex); 286 return -EPERM; 287 } 288 return 0; 289 } 290 291 static void unlock_trace(struct task_struct *task) 292 { 293 mutex_unlock(&task->signal->cred_guard_mutex); 294 } 295 296 #ifdef CONFIG_STACKTRACE 297 298 #define MAX_STACK_TRACE_DEPTH 64 299 300 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 301 struct pid *pid, struct task_struct *task) 302 { 303 struct stack_trace trace; 304 unsigned long *entries; 305 int err; 306 int i; 307 308 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL); 309 if (!entries) 310 return -ENOMEM; 311 312 trace.nr_entries = 0; 313 trace.max_entries = MAX_STACK_TRACE_DEPTH; 314 trace.entries = entries; 315 trace.skip = 0; 316 317 err = lock_trace(task); 318 if (!err) { 319 save_stack_trace_tsk(task, &trace); 320 321 for (i = 0; i < trace.nr_entries; i++) { 322 seq_printf(m, "[<%pK>] %pS\n", 323 (void *)entries[i], (void *)entries[i]); 324 } 325 unlock_trace(task); 326 } 327 kfree(entries); 328 329 return err; 330 } 331 #endif 332 333 #ifdef CONFIG_SCHEDSTATS 334 /* 335 * Provides /proc/PID/schedstat 336 */ 337 static int proc_pid_schedstat(struct task_struct *task, char *buffer) 338 { 339 return sprintf(buffer, "%llu %llu %lu\n", 340 (unsigned long long)task->se.sum_exec_runtime, 341 (unsigned long long)task->sched_info.run_delay, 342 task->sched_info.pcount); 343 } 344 #endif 345 346 #ifdef CONFIG_LATENCYTOP 347 static int lstats_show_proc(struct seq_file *m, void *v) 348 { 349 int i; 350 struct inode *inode = m->private; 351 struct task_struct *task = get_proc_task(inode); 352 353 if (!task) 354 return -ESRCH; 355 seq_puts(m, "Latency Top version : v0.1\n"); 356 for (i = 0; i < 32; i++) { 357 struct latency_record *lr = &task->latency_record[i]; 358 if (lr->backtrace[0]) { 359 int q; 360 seq_printf(m, "%i %li %li", 361 lr->count, lr->time, lr->max); 362 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 363 unsigned long bt = lr->backtrace[q]; 364 if (!bt) 365 break; 366 if (bt == ULONG_MAX) 367 break; 368 seq_printf(m, " %ps", (void *)bt); 369 } 370 seq_putc(m, '\n'); 371 } 372 373 } 374 put_task_struct(task); 375 return 0; 376 } 377 378 static int lstats_open(struct inode *inode, struct file *file) 379 { 380 return single_open(file, lstats_show_proc, inode); 381 } 382 383 static ssize_t lstats_write(struct file *file, const char __user *buf, 384 size_t count, loff_t *offs) 385 { 386 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 387 388 if (!task) 389 return -ESRCH; 390 clear_all_latency_tracing(task); 391 put_task_struct(task); 392 393 return count; 394 } 395 396 static const struct file_operations proc_lstats_operations = { 397 .open = lstats_open, 398 .read = seq_read, 399 .write = lstats_write, 400 .llseek = seq_lseek, 401 .release = single_release, 402 }; 403 404 #endif 405 406 static int proc_oom_score(struct task_struct *task, char *buffer) 407 { 408 unsigned long totalpages = totalram_pages + total_swap_pages; 409 unsigned long points = 0; 410 411 read_lock(&tasklist_lock); 412 if (pid_alive(task)) 413 points = oom_badness(task, NULL, NULL, totalpages) * 414 1000 / totalpages; 415 read_unlock(&tasklist_lock); 416 return sprintf(buffer, "%lu\n", points); 417 } 418 419 struct limit_names { 420 char *name; 421 char *unit; 422 }; 423 424 static const struct limit_names lnames[RLIM_NLIMITS] = { 425 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 426 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 427 [RLIMIT_DATA] = {"Max data size", "bytes"}, 428 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 429 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 430 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 431 [RLIMIT_NPROC] = {"Max processes", "processes"}, 432 [RLIMIT_NOFILE] = {"Max open files", "files"}, 433 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 434 [RLIMIT_AS] = {"Max address space", "bytes"}, 435 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 436 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 437 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 438 [RLIMIT_NICE] = {"Max nice priority", NULL}, 439 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 440 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 441 }; 442 443 /* Display limits for a process */ 444 static int proc_pid_limits(struct task_struct *task, char *buffer) 445 { 446 unsigned int i; 447 int count = 0; 448 unsigned long flags; 449 char *bufptr = buffer; 450 451 struct rlimit rlim[RLIM_NLIMITS]; 452 453 if (!lock_task_sighand(task, &flags)) 454 return 0; 455 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 456 unlock_task_sighand(task, &flags); 457 458 /* 459 * print the file header 460 */ 461 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n", 462 "Limit", "Soft Limit", "Hard Limit", "Units"); 463 464 for (i = 0; i < RLIM_NLIMITS; i++) { 465 if (rlim[i].rlim_cur == RLIM_INFINITY) 466 count += sprintf(&bufptr[count], "%-25s %-20s ", 467 lnames[i].name, "unlimited"); 468 else 469 count += sprintf(&bufptr[count], "%-25s %-20lu ", 470 lnames[i].name, rlim[i].rlim_cur); 471 472 if (rlim[i].rlim_max == RLIM_INFINITY) 473 count += sprintf(&bufptr[count], "%-20s ", "unlimited"); 474 else 475 count += sprintf(&bufptr[count], "%-20lu ", 476 rlim[i].rlim_max); 477 478 if (lnames[i].unit) 479 count += sprintf(&bufptr[count], "%-10s\n", 480 lnames[i].unit); 481 else 482 count += sprintf(&bufptr[count], "\n"); 483 } 484 485 return count; 486 } 487 488 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 489 static int proc_pid_syscall(struct task_struct *task, char *buffer) 490 { 491 long nr; 492 unsigned long args[6], sp, pc; 493 int res = lock_trace(task); 494 if (res) 495 return res; 496 497 if (task_current_syscall(task, &nr, args, 6, &sp, &pc)) 498 res = sprintf(buffer, "running\n"); 499 else if (nr < 0) 500 res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc); 501 else 502 res = sprintf(buffer, 503 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n", 504 nr, 505 args[0], args[1], args[2], args[3], args[4], args[5], 506 sp, pc); 507 unlock_trace(task); 508 return res; 509 } 510 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 511 512 /************************************************************************/ 513 /* Here the fs part begins */ 514 /************************************************************************/ 515 516 /* permission checks */ 517 static int proc_fd_access_allowed(struct inode *inode) 518 { 519 struct task_struct *task; 520 int allowed = 0; 521 /* Allow access to a task's file descriptors if it is us or we 522 * may use ptrace attach to the process and find out that 523 * information. 524 */ 525 task = get_proc_task(inode); 526 if (task) { 527 allowed = ptrace_may_access(task, PTRACE_MODE_READ); 528 put_task_struct(task); 529 } 530 return allowed; 531 } 532 533 int proc_setattr(struct dentry *dentry, struct iattr *attr) 534 { 535 int error; 536 struct inode *inode = dentry->d_inode; 537 538 if (attr->ia_valid & ATTR_MODE) 539 return -EPERM; 540 541 error = inode_change_ok(inode, attr); 542 if (error) 543 return error; 544 545 setattr_copy(inode, attr); 546 mark_inode_dirty(inode); 547 return 0; 548 } 549 550 /* 551 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 552 * or euid/egid (for hide_pid_min=2)? 553 */ 554 static bool has_pid_permissions(struct pid_namespace *pid, 555 struct task_struct *task, 556 int hide_pid_min) 557 { 558 if (pid->hide_pid < hide_pid_min) 559 return true; 560 if (in_group_p(pid->pid_gid)) 561 return true; 562 return ptrace_may_access(task, PTRACE_MODE_READ); 563 } 564 565 566 static int proc_pid_permission(struct inode *inode, int mask) 567 { 568 struct pid_namespace *pid = inode->i_sb->s_fs_info; 569 struct task_struct *task; 570 bool has_perms; 571 572 task = get_proc_task(inode); 573 if (!task) 574 return -ESRCH; 575 has_perms = has_pid_permissions(pid, task, 1); 576 put_task_struct(task); 577 578 if (!has_perms) { 579 if (pid->hide_pid == 2) { 580 /* 581 * Let's make getdents(), stat(), and open() 582 * consistent with each other. If a process 583 * may not stat() a file, it shouldn't be seen 584 * in procfs at all. 585 */ 586 return -ENOENT; 587 } 588 589 return -EPERM; 590 } 591 return generic_permission(inode, mask); 592 } 593 594 595 596 static const struct inode_operations proc_def_inode_operations = { 597 .setattr = proc_setattr, 598 }; 599 600 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */ 601 602 static ssize_t proc_info_read(struct file * file, char __user * buf, 603 size_t count, loff_t *ppos) 604 { 605 struct inode * inode = file->f_path.dentry->d_inode; 606 unsigned long page; 607 ssize_t length; 608 struct task_struct *task = get_proc_task(inode); 609 610 length = -ESRCH; 611 if (!task) 612 goto out_no_task; 613 614 if (count > PROC_BLOCK_SIZE) 615 count = PROC_BLOCK_SIZE; 616 617 length = -ENOMEM; 618 if (!(page = __get_free_page(GFP_TEMPORARY))) 619 goto out; 620 621 length = PROC_I(inode)->op.proc_read(task, (char*)page); 622 623 if (length >= 0) 624 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length); 625 free_page(page); 626 out: 627 put_task_struct(task); 628 out_no_task: 629 return length; 630 } 631 632 static const struct file_operations proc_info_file_operations = { 633 .read = proc_info_read, 634 .llseek = generic_file_llseek, 635 }; 636 637 static int proc_single_show(struct seq_file *m, void *v) 638 { 639 struct inode *inode = m->private; 640 struct pid_namespace *ns; 641 struct pid *pid; 642 struct task_struct *task; 643 int ret; 644 645 ns = inode->i_sb->s_fs_info; 646 pid = proc_pid(inode); 647 task = get_pid_task(pid, PIDTYPE_PID); 648 if (!task) 649 return -ESRCH; 650 651 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 652 653 put_task_struct(task); 654 return ret; 655 } 656 657 static int proc_single_open(struct inode *inode, struct file *filp) 658 { 659 return single_open(filp, proc_single_show, inode); 660 } 661 662 static const struct file_operations proc_single_file_operations = { 663 .open = proc_single_open, 664 .read = seq_read, 665 .llseek = seq_lseek, 666 .release = single_release, 667 }; 668 669 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) 670 { 671 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 672 struct mm_struct *mm; 673 674 if (!task) 675 return -ESRCH; 676 677 mm = mm_access(task, mode); 678 put_task_struct(task); 679 680 if (IS_ERR(mm)) 681 return PTR_ERR(mm); 682 683 if (mm) { 684 /* ensure this mm_struct can't be freed */ 685 atomic_inc(&mm->mm_count); 686 /* but do not pin its memory */ 687 mmput(mm); 688 } 689 690 file->private_data = mm; 691 692 return 0; 693 } 694 695 static int mem_open(struct inode *inode, struct file *file) 696 { 697 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH); 698 699 /* OK to pass negative loff_t, we can catch out-of-range */ 700 file->f_mode |= FMODE_UNSIGNED_OFFSET; 701 702 return ret; 703 } 704 705 static ssize_t mem_rw(struct file *file, char __user *buf, 706 size_t count, loff_t *ppos, int write) 707 { 708 struct mm_struct *mm = file->private_data; 709 unsigned long addr = *ppos; 710 ssize_t copied; 711 char *page; 712 713 if (!mm) 714 return 0; 715 716 page = (char *)__get_free_page(GFP_TEMPORARY); 717 if (!page) 718 return -ENOMEM; 719 720 copied = 0; 721 if (!atomic_inc_not_zero(&mm->mm_users)) 722 goto free; 723 724 while (count > 0) { 725 int this_len = min_t(int, count, PAGE_SIZE); 726 727 if (write && copy_from_user(page, buf, this_len)) { 728 copied = -EFAULT; 729 break; 730 } 731 732 this_len = access_remote_vm(mm, addr, page, this_len, write); 733 if (!this_len) { 734 if (!copied) 735 copied = -EIO; 736 break; 737 } 738 739 if (!write && copy_to_user(buf, page, this_len)) { 740 copied = -EFAULT; 741 break; 742 } 743 744 buf += this_len; 745 addr += this_len; 746 copied += this_len; 747 count -= this_len; 748 } 749 *ppos = addr; 750 751 mmput(mm); 752 free: 753 free_page((unsigned long) page); 754 return copied; 755 } 756 757 static ssize_t mem_read(struct file *file, char __user *buf, 758 size_t count, loff_t *ppos) 759 { 760 return mem_rw(file, buf, count, ppos, 0); 761 } 762 763 static ssize_t mem_write(struct file *file, const char __user *buf, 764 size_t count, loff_t *ppos) 765 { 766 return mem_rw(file, (char __user*)buf, count, ppos, 1); 767 } 768 769 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 770 { 771 switch (orig) { 772 case 0: 773 file->f_pos = offset; 774 break; 775 case 1: 776 file->f_pos += offset; 777 break; 778 default: 779 return -EINVAL; 780 } 781 force_successful_syscall_return(); 782 return file->f_pos; 783 } 784 785 static int mem_release(struct inode *inode, struct file *file) 786 { 787 struct mm_struct *mm = file->private_data; 788 if (mm) 789 mmdrop(mm); 790 return 0; 791 } 792 793 static const struct file_operations proc_mem_operations = { 794 .llseek = mem_lseek, 795 .read = mem_read, 796 .write = mem_write, 797 .open = mem_open, 798 .release = mem_release, 799 }; 800 801 static int environ_open(struct inode *inode, struct file *file) 802 { 803 return __mem_open(inode, file, PTRACE_MODE_READ); 804 } 805 806 static ssize_t environ_read(struct file *file, char __user *buf, 807 size_t count, loff_t *ppos) 808 { 809 char *page; 810 unsigned long src = *ppos; 811 int ret = 0; 812 struct mm_struct *mm = file->private_data; 813 814 if (!mm) 815 return 0; 816 817 page = (char *)__get_free_page(GFP_TEMPORARY); 818 if (!page) 819 return -ENOMEM; 820 821 ret = 0; 822 if (!atomic_inc_not_zero(&mm->mm_users)) 823 goto free; 824 while (count > 0) { 825 size_t this_len, max_len; 826 int retval; 827 828 if (src >= (mm->env_end - mm->env_start)) 829 break; 830 831 this_len = mm->env_end - (mm->env_start + src); 832 833 max_len = min_t(size_t, PAGE_SIZE, count); 834 this_len = min(max_len, this_len); 835 836 retval = access_remote_vm(mm, (mm->env_start + src), 837 page, this_len, 0); 838 839 if (retval <= 0) { 840 ret = retval; 841 break; 842 } 843 844 if (copy_to_user(buf, page, retval)) { 845 ret = -EFAULT; 846 break; 847 } 848 849 ret += retval; 850 src += retval; 851 buf += retval; 852 count -= retval; 853 } 854 *ppos = src; 855 mmput(mm); 856 857 free: 858 free_page((unsigned long) page); 859 return ret; 860 } 861 862 static const struct file_operations proc_environ_operations = { 863 .open = environ_open, 864 .read = environ_read, 865 .llseek = generic_file_llseek, 866 .release = mem_release, 867 }; 868 869 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count, 870 loff_t *ppos) 871 { 872 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 873 char buffer[PROC_NUMBUF]; 874 int oom_adj = OOM_ADJUST_MIN; 875 size_t len; 876 unsigned long flags; 877 878 if (!task) 879 return -ESRCH; 880 if (lock_task_sighand(task, &flags)) { 881 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX) 882 oom_adj = OOM_ADJUST_MAX; 883 else 884 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) / 885 OOM_SCORE_ADJ_MAX; 886 unlock_task_sighand(task, &flags); 887 } 888 put_task_struct(task); 889 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj); 890 return simple_read_from_buffer(buf, count, ppos, buffer, len); 891 } 892 893 static ssize_t oom_adj_write(struct file *file, const char __user *buf, 894 size_t count, loff_t *ppos) 895 { 896 struct task_struct *task; 897 char buffer[PROC_NUMBUF]; 898 int oom_adj; 899 unsigned long flags; 900 int err; 901 902 memset(buffer, 0, sizeof(buffer)); 903 if (count > sizeof(buffer) - 1) 904 count = sizeof(buffer) - 1; 905 if (copy_from_user(buffer, buf, count)) { 906 err = -EFAULT; 907 goto out; 908 } 909 910 err = kstrtoint(strstrip(buffer), 0, &oom_adj); 911 if (err) 912 goto out; 913 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) && 914 oom_adj != OOM_DISABLE) { 915 err = -EINVAL; 916 goto out; 917 } 918 919 task = get_proc_task(file->f_path.dentry->d_inode); 920 if (!task) { 921 err = -ESRCH; 922 goto out; 923 } 924 925 task_lock(task); 926 if (!task->mm) { 927 err = -EINVAL; 928 goto err_task_lock; 929 } 930 931 if (!lock_task_sighand(task, &flags)) { 932 err = -ESRCH; 933 goto err_task_lock; 934 } 935 936 /* 937 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 938 * value is always attainable. 939 */ 940 if (oom_adj == OOM_ADJUST_MAX) 941 oom_adj = OOM_SCORE_ADJ_MAX; 942 else 943 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE; 944 945 if (oom_adj < task->signal->oom_score_adj && 946 !capable(CAP_SYS_RESOURCE)) { 947 err = -EACCES; 948 goto err_sighand; 949 } 950 951 /* 952 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use 953 * /proc/pid/oom_score_adj instead. 954 */ 955 printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 956 current->comm, task_pid_nr(current), task_pid_nr(task), 957 task_pid_nr(task)); 958 959 task->signal->oom_score_adj = oom_adj; 960 trace_oom_score_adj_update(task); 961 err_sighand: 962 unlock_task_sighand(task, &flags); 963 err_task_lock: 964 task_unlock(task); 965 put_task_struct(task); 966 out: 967 return err < 0 ? err : count; 968 } 969 970 static const struct file_operations proc_oom_adj_operations = { 971 .read = oom_adj_read, 972 .write = oom_adj_write, 973 .llseek = generic_file_llseek, 974 }; 975 976 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 977 size_t count, loff_t *ppos) 978 { 979 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode); 980 char buffer[PROC_NUMBUF]; 981 short oom_score_adj = OOM_SCORE_ADJ_MIN; 982 unsigned long flags; 983 size_t len; 984 985 if (!task) 986 return -ESRCH; 987 if (lock_task_sighand(task, &flags)) { 988 oom_score_adj = task->signal->oom_score_adj; 989 unlock_task_sighand(task, &flags); 990 } 991 put_task_struct(task); 992 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj); 993 return simple_read_from_buffer(buf, count, ppos, buffer, len); 994 } 995 996 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 997 size_t count, loff_t *ppos) 998 { 999 struct task_struct *task; 1000 char buffer[PROC_NUMBUF]; 1001 unsigned long flags; 1002 int oom_score_adj; 1003 int err; 1004 1005 memset(buffer, 0, sizeof(buffer)); 1006 if (count > sizeof(buffer) - 1) 1007 count = sizeof(buffer) - 1; 1008 if (copy_from_user(buffer, buf, count)) { 1009 err = -EFAULT; 1010 goto out; 1011 } 1012 1013 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1014 if (err) 1015 goto out; 1016 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1017 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1018 err = -EINVAL; 1019 goto out; 1020 } 1021 1022 task = get_proc_task(file->f_path.dentry->d_inode); 1023 if (!task) { 1024 err = -ESRCH; 1025 goto out; 1026 } 1027 1028 task_lock(task); 1029 if (!task->mm) { 1030 err = -EINVAL; 1031 goto err_task_lock; 1032 } 1033 1034 if (!lock_task_sighand(task, &flags)) { 1035 err = -ESRCH; 1036 goto err_task_lock; 1037 } 1038 1039 if ((short)oom_score_adj < task->signal->oom_score_adj_min && 1040 !capable(CAP_SYS_RESOURCE)) { 1041 err = -EACCES; 1042 goto err_sighand; 1043 } 1044 1045 task->signal->oom_score_adj = (short)oom_score_adj; 1046 if (has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1047 task->signal->oom_score_adj_min = (short)oom_score_adj; 1048 trace_oom_score_adj_update(task); 1049 1050 err_sighand: 1051 unlock_task_sighand(task, &flags); 1052 err_task_lock: 1053 task_unlock(task); 1054 put_task_struct(task); 1055 out: 1056 return err < 0 ? err : count; 1057 } 1058 1059 static const struct file_operations proc_oom_score_adj_operations = { 1060 .read = oom_score_adj_read, 1061 .write = oom_score_adj_write, 1062 .llseek = default_llseek, 1063 }; 1064 1065 #ifdef CONFIG_AUDITSYSCALL 1066 #define TMPBUFLEN 21 1067 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1068 size_t count, loff_t *ppos) 1069 { 1070 struct inode * inode = file->f_path.dentry->d_inode; 1071 struct task_struct *task = get_proc_task(inode); 1072 ssize_t length; 1073 char tmpbuf[TMPBUFLEN]; 1074 1075 if (!task) 1076 return -ESRCH; 1077 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1078 from_kuid(file->f_cred->user_ns, 1079 audit_get_loginuid(task))); 1080 put_task_struct(task); 1081 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1082 } 1083 1084 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1085 size_t count, loff_t *ppos) 1086 { 1087 struct inode * inode = file->f_path.dentry->d_inode; 1088 char *page, *tmp; 1089 ssize_t length; 1090 uid_t loginuid; 1091 kuid_t kloginuid; 1092 1093 rcu_read_lock(); 1094 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1095 rcu_read_unlock(); 1096 return -EPERM; 1097 } 1098 rcu_read_unlock(); 1099 1100 if (count >= PAGE_SIZE) 1101 count = PAGE_SIZE - 1; 1102 1103 if (*ppos != 0) { 1104 /* No partial writes. */ 1105 return -EINVAL; 1106 } 1107 page = (char*)__get_free_page(GFP_TEMPORARY); 1108 if (!page) 1109 return -ENOMEM; 1110 length = -EFAULT; 1111 if (copy_from_user(page, buf, count)) 1112 goto out_free_page; 1113 1114 page[count] = '\0'; 1115 loginuid = simple_strtoul(page, &tmp, 10); 1116 if (tmp == page) { 1117 length = -EINVAL; 1118 goto out_free_page; 1119 1120 } 1121 kloginuid = make_kuid(file->f_cred->user_ns, loginuid); 1122 if (!uid_valid(kloginuid)) { 1123 length = -EINVAL; 1124 goto out_free_page; 1125 } 1126 1127 length = audit_set_loginuid(kloginuid); 1128 if (likely(length == 0)) 1129 length = count; 1130 1131 out_free_page: 1132 free_page((unsigned long) page); 1133 return length; 1134 } 1135 1136 static const struct file_operations proc_loginuid_operations = { 1137 .read = proc_loginuid_read, 1138 .write = proc_loginuid_write, 1139 .llseek = generic_file_llseek, 1140 }; 1141 1142 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1143 size_t count, loff_t *ppos) 1144 { 1145 struct inode * inode = file->f_path.dentry->d_inode; 1146 struct task_struct *task = get_proc_task(inode); 1147 ssize_t length; 1148 char tmpbuf[TMPBUFLEN]; 1149 1150 if (!task) 1151 return -ESRCH; 1152 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1153 audit_get_sessionid(task)); 1154 put_task_struct(task); 1155 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1156 } 1157 1158 static const struct file_operations proc_sessionid_operations = { 1159 .read = proc_sessionid_read, 1160 .llseek = generic_file_llseek, 1161 }; 1162 #endif 1163 1164 #ifdef CONFIG_FAULT_INJECTION 1165 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1166 size_t count, loff_t *ppos) 1167 { 1168 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 1169 char buffer[PROC_NUMBUF]; 1170 size_t len; 1171 int make_it_fail; 1172 1173 if (!task) 1174 return -ESRCH; 1175 make_it_fail = task->make_it_fail; 1176 put_task_struct(task); 1177 1178 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1179 1180 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1181 } 1182 1183 static ssize_t proc_fault_inject_write(struct file * file, 1184 const char __user * buf, size_t count, loff_t *ppos) 1185 { 1186 struct task_struct *task; 1187 char buffer[PROC_NUMBUF], *end; 1188 int make_it_fail; 1189 1190 if (!capable(CAP_SYS_RESOURCE)) 1191 return -EPERM; 1192 memset(buffer, 0, sizeof(buffer)); 1193 if (count > sizeof(buffer) - 1) 1194 count = sizeof(buffer) - 1; 1195 if (copy_from_user(buffer, buf, count)) 1196 return -EFAULT; 1197 make_it_fail = simple_strtol(strstrip(buffer), &end, 0); 1198 if (*end) 1199 return -EINVAL; 1200 task = get_proc_task(file->f_dentry->d_inode); 1201 if (!task) 1202 return -ESRCH; 1203 task->make_it_fail = make_it_fail; 1204 put_task_struct(task); 1205 1206 return count; 1207 } 1208 1209 static const struct file_operations proc_fault_inject_operations = { 1210 .read = proc_fault_inject_read, 1211 .write = proc_fault_inject_write, 1212 .llseek = generic_file_llseek, 1213 }; 1214 #endif 1215 1216 1217 #ifdef CONFIG_SCHED_DEBUG 1218 /* 1219 * Print out various scheduling related per-task fields: 1220 */ 1221 static int sched_show(struct seq_file *m, void *v) 1222 { 1223 struct inode *inode = m->private; 1224 struct task_struct *p; 1225 1226 p = get_proc_task(inode); 1227 if (!p) 1228 return -ESRCH; 1229 proc_sched_show_task(p, m); 1230 1231 put_task_struct(p); 1232 1233 return 0; 1234 } 1235 1236 static ssize_t 1237 sched_write(struct file *file, const char __user *buf, 1238 size_t count, loff_t *offset) 1239 { 1240 struct inode *inode = file->f_path.dentry->d_inode; 1241 struct task_struct *p; 1242 1243 p = get_proc_task(inode); 1244 if (!p) 1245 return -ESRCH; 1246 proc_sched_set_task(p); 1247 1248 put_task_struct(p); 1249 1250 return count; 1251 } 1252 1253 static int sched_open(struct inode *inode, struct file *filp) 1254 { 1255 return single_open(filp, sched_show, inode); 1256 } 1257 1258 static const struct file_operations proc_pid_sched_operations = { 1259 .open = sched_open, 1260 .read = seq_read, 1261 .write = sched_write, 1262 .llseek = seq_lseek, 1263 .release = single_release, 1264 }; 1265 1266 #endif 1267 1268 #ifdef CONFIG_SCHED_AUTOGROUP 1269 /* 1270 * Print out autogroup related information: 1271 */ 1272 static int sched_autogroup_show(struct seq_file *m, void *v) 1273 { 1274 struct inode *inode = m->private; 1275 struct task_struct *p; 1276 1277 p = get_proc_task(inode); 1278 if (!p) 1279 return -ESRCH; 1280 proc_sched_autogroup_show_task(p, m); 1281 1282 put_task_struct(p); 1283 1284 return 0; 1285 } 1286 1287 static ssize_t 1288 sched_autogroup_write(struct file *file, const char __user *buf, 1289 size_t count, loff_t *offset) 1290 { 1291 struct inode *inode = file->f_path.dentry->d_inode; 1292 struct task_struct *p; 1293 char buffer[PROC_NUMBUF]; 1294 int nice; 1295 int err; 1296 1297 memset(buffer, 0, sizeof(buffer)); 1298 if (count > sizeof(buffer) - 1) 1299 count = sizeof(buffer) - 1; 1300 if (copy_from_user(buffer, buf, count)) 1301 return -EFAULT; 1302 1303 err = kstrtoint(strstrip(buffer), 0, &nice); 1304 if (err < 0) 1305 return err; 1306 1307 p = get_proc_task(inode); 1308 if (!p) 1309 return -ESRCH; 1310 1311 err = proc_sched_autogroup_set_nice(p, nice); 1312 if (err) 1313 count = err; 1314 1315 put_task_struct(p); 1316 1317 return count; 1318 } 1319 1320 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1321 { 1322 int ret; 1323 1324 ret = single_open(filp, sched_autogroup_show, NULL); 1325 if (!ret) { 1326 struct seq_file *m = filp->private_data; 1327 1328 m->private = inode; 1329 } 1330 return ret; 1331 } 1332 1333 static const struct file_operations proc_pid_sched_autogroup_operations = { 1334 .open = sched_autogroup_open, 1335 .read = seq_read, 1336 .write = sched_autogroup_write, 1337 .llseek = seq_lseek, 1338 .release = single_release, 1339 }; 1340 1341 #endif /* CONFIG_SCHED_AUTOGROUP */ 1342 1343 static ssize_t comm_write(struct file *file, const char __user *buf, 1344 size_t count, loff_t *offset) 1345 { 1346 struct inode *inode = file->f_path.dentry->d_inode; 1347 struct task_struct *p; 1348 char buffer[TASK_COMM_LEN]; 1349 1350 memset(buffer, 0, sizeof(buffer)); 1351 if (count > sizeof(buffer) - 1) 1352 count = sizeof(buffer) - 1; 1353 if (copy_from_user(buffer, buf, count)) 1354 return -EFAULT; 1355 1356 p = get_proc_task(inode); 1357 if (!p) 1358 return -ESRCH; 1359 1360 if (same_thread_group(current, p)) 1361 set_task_comm(p, buffer); 1362 else 1363 count = -EINVAL; 1364 1365 put_task_struct(p); 1366 1367 return count; 1368 } 1369 1370 static int comm_show(struct seq_file *m, void *v) 1371 { 1372 struct inode *inode = m->private; 1373 struct task_struct *p; 1374 1375 p = get_proc_task(inode); 1376 if (!p) 1377 return -ESRCH; 1378 1379 task_lock(p); 1380 seq_printf(m, "%s\n", p->comm); 1381 task_unlock(p); 1382 1383 put_task_struct(p); 1384 1385 return 0; 1386 } 1387 1388 static int comm_open(struct inode *inode, struct file *filp) 1389 { 1390 return single_open(filp, comm_show, inode); 1391 } 1392 1393 static const struct file_operations proc_pid_set_comm_operations = { 1394 .open = comm_open, 1395 .read = seq_read, 1396 .write = comm_write, 1397 .llseek = seq_lseek, 1398 .release = single_release, 1399 }; 1400 1401 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1402 { 1403 struct task_struct *task; 1404 struct mm_struct *mm; 1405 struct file *exe_file; 1406 1407 task = get_proc_task(dentry->d_inode); 1408 if (!task) 1409 return -ENOENT; 1410 mm = get_task_mm(task); 1411 put_task_struct(task); 1412 if (!mm) 1413 return -ENOENT; 1414 exe_file = get_mm_exe_file(mm); 1415 mmput(mm); 1416 if (exe_file) { 1417 *exe_path = exe_file->f_path; 1418 path_get(&exe_file->f_path); 1419 fput(exe_file); 1420 return 0; 1421 } else 1422 return -ENOENT; 1423 } 1424 1425 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd) 1426 { 1427 struct inode *inode = dentry->d_inode; 1428 struct path path; 1429 int error = -EACCES; 1430 1431 /* Are we allowed to snoop on the tasks file descriptors? */ 1432 if (!proc_fd_access_allowed(inode)) 1433 goto out; 1434 1435 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1436 if (error) 1437 goto out; 1438 1439 nd_jump_link(nd, &path); 1440 return NULL; 1441 out: 1442 return ERR_PTR(error); 1443 } 1444 1445 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1446 { 1447 char *tmp = (char*)__get_free_page(GFP_TEMPORARY); 1448 char *pathname; 1449 int len; 1450 1451 if (!tmp) 1452 return -ENOMEM; 1453 1454 pathname = d_path(path, tmp, PAGE_SIZE); 1455 len = PTR_ERR(pathname); 1456 if (IS_ERR(pathname)) 1457 goto out; 1458 len = tmp + PAGE_SIZE - 1 - pathname; 1459 1460 if (len > buflen) 1461 len = buflen; 1462 if (copy_to_user(buffer, pathname, len)) 1463 len = -EFAULT; 1464 out: 1465 free_page((unsigned long)tmp); 1466 return len; 1467 } 1468 1469 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1470 { 1471 int error = -EACCES; 1472 struct inode *inode = dentry->d_inode; 1473 struct path path; 1474 1475 /* Are we allowed to snoop on the tasks file descriptors? */ 1476 if (!proc_fd_access_allowed(inode)) 1477 goto out; 1478 1479 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1480 if (error) 1481 goto out; 1482 1483 error = do_proc_readlink(&path, buffer, buflen); 1484 path_put(&path); 1485 out: 1486 return error; 1487 } 1488 1489 const struct inode_operations proc_pid_link_inode_operations = { 1490 .readlink = proc_pid_readlink, 1491 .follow_link = proc_pid_follow_link, 1492 .setattr = proc_setattr, 1493 }; 1494 1495 1496 /* building an inode */ 1497 1498 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task) 1499 { 1500 struct inode * inode; 1501 struct proc_inode *ei; 1502 const struct cred *cred; 1503 1504 /* We need a new inode */ 1505 1506 inode = new_inode(sb); 1507 if (!inode) 1508 goto out; 1509 1510 /* Common stuff */ 1511 ei = PROC_I(inode); 1512 inode->i_ino = get_next_ino(); 1513 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 1514 inode->i_op = &proc_def_inode_operations; 1515 1516 /* 1517 * grab the reference to task. 1518 */ 1519 ei->pid = get_task_pid(task, PIDTYPE_PID); 1520 if (!ei->pid) 1521 goto out_unlock; 1522 1523 if (task_dumpable(task)) { 1524 rcu_read_lock(); 1525 cred = __task_cred(task); 1526 inode->i_uid = cred->euid; 1527 inode->i_gid = cred->egid; 1528 rcu_read_unlock(); 1529 } 1530 security_task_to_inode(task, inode); 1531 1532 out: 1533 return inode; 1534 1535 out_unlock: 1536 iput(inode); 1537 return NULL; 1538 } 1539 1540 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 1541 { 1542 struct inode *inode = dentry->d_inode; 1543 struct task_struct *task; 1544 const struct cred *cred; 1545 struct pid_namespace *pid = dentry->d_sb->s_fs_info; 1546 1547 generic_fillattr(inode, stat); 1548 1549 rcu_read_lock(); 1550 stat->uid = GLOBAL_ROOT_UID; 1551 stat->gid = GLOBAL_ROOT_GID; 1552 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1553 if (task) { 1554 if (!has_pid_permissions(pid, task, 2)) { 1555 rcu_read_unlock(); 1556 /* 1557 * This doesn't prevent learning whether PID exists, 1558 * it only makes getattr() consistent with readdir(). 1559 */ 1560 return -ENOENT; 1561 } 1562 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1563 task_dumpable(task)) { 1564 cred = __task_cred(task); 1565 stat->uid = cred->euid; 1566 stat->gid = cred->egid; 1567 } 1568 } 1569 rcu_read_unlock(); 1570 return 0; 1571 } 1572 1573 /* dentry stuff */ 1574 1575 /* 1576 * Exceptional case: normally we are not allowed to unhash a busy 1577 * directory. In this case, however, we can do it - no aliasing problems 1578 * due to the way we treat inodes. 1579 * 1580 * Rewrite the inode's ownerships here because the owning task may have 1581 * performed a setuid(), etc. 1582 * 1583 * Before the /proc/pid/status file was created the only way to read 1584 * the effective uid of a /process was to stat /proc/pid. Reading 1585 * /proc/pid/status is slow enough that procps and other packages 1586 * kept stating /proc/pid. To keep the rules in /proc simple I have 1587 * made this apply to all per process world readable and executable 1588 * directories. 1589 */ 1590 int pid_revalidate(struct dentry *dentry, unsigned int flags) 1591 { 1592 struct inode *inode; 1593 struct task_struct *task; 1594 const struct cred *cred; 1595 1596 if (flags & LOOKUP_RCU) 1597 return -ECHILD; 1598 1599 inode = dentry->d_inode; 1600 task = get_proc_task(inode); 1601 1602 if (task) { 1603 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1604 task_dumpable(task)) { 1605 rcu_read_lock(); 1606 cred = __task_cred(task); 1607 inode->i_uid = cred->euid; 1608 inode->i_gid = cred->egid; 1609 rcu_read_unlock(); 1610 } else { 1611 inode->i_uid = GLOBAL_ROOT_UID; 1612 inode->i_gid = GLOBAL_ROOT_GID; 1613 } 1614 inode->i_mode &= ~(S_ISUID | S_ISGID); 1615 security_task_to_inode(task, inode); 1616 put_task_struct(task); 1617 return 1; 1618 } 1619 d_drop(dentry); 1620 return 0; 1621 } 1622 1623 const struct dentry_operations pid_dentry_operations = 1624 { 1625 .d_revalidate = pid_revalidate, 1626 .d_delete = pid_delete_dentry, 1627 }; 1628 1629 /* Lookups */ 1630 1631 /* 1632 * Fill a directory entry. 1633 * 1634 * If possible create the dcache entry and derive our inode number and 1635 * file type from dcache entry. 1636 * 1637 * Since all of the proc inode numbers are dynamically generated, the inode 1638 * numbers do not exist until the inode is cache. This means creating the 1639 * the dcache entry in readdir is necessary to keep the inode numbers 1640 * reported by readdir in sync with the inode numbers reported 1641 * by stat. 1642 */ 1643 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 1644 const char *name, int len, 1645 instantiate_t instantiate, struct task_struct *task, const void *ptr) 1646 { 1647 struct dentry *child, *dir = filp->f_path.dentry; 1648 struct inode *inode; 1649 struct qstr qname; 1650 ino_t ino = 0; 1651 unsigned type = DT_UNKNOWN; 1652 1653 qname.name = name; 1654 qname.len = len; 1655 qname.hash = full_name_hash(name, len); 1656 1657 child = d_lookup(dir, &qname); 1658 if (!child) { 1659 struct dentry *new; 1660 new = d_alloc(dir, &qname); 1661 if (new) { 1662 child = instantiate(dir->d_inode, new, task, ptr); 1663 if (child) 1664 dput(new); 1665 else 1666 child = new; 1667 } 1668 } 1669 if (!child || IS_ERR(child) || !child->d_inode) 1670 goto end_instantiate; 1671 inode = child->d_inode; 1672 if (inode) { 1673 ino = inode->i_ino; 1674 type = inode->i_mode >> 12; 1675 } 1676 dput(child); 1677 end_instantiate: 1678 if (!ino) 1679 ino = find_inode_number(dir, &qname); 1680 if (!ino) 1681 ino = 1; 1682 return filldir(dirent, name, len, filp->f_pos, ino, type); 1683 } 1684 1685 #ifdef CONFIG_CHECKPOINT_RESTORE 1686 1687 /* 1688 * dname_to_vma_addr - maps a dentry name into two unsigned longs 1689 * which represent vma start and end addresses. 1690 */ 1691 static int dname_to_vma_addr(struct dentry *dentry, 1692 unsigned long *start, unsigned long *end) 1693 { 1694 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2) 1695 return -EINVAL; 1696 1697 return 0; 1698 } 1699 1700 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags) 1701 { 1702 unsigned long vm_start, vm_end; 1703 bool exact_vma_exists = false; 1704 struct mm_struct *mm = NULL; 1705 struct task_struct *task; 1706 const struct cred *cred; 1707 struct inode *inode; 1708 int status = 0; 1709 1710 if (flags & LOOKUP_RCU) 1711 return -ECHILD; 1712 1713 if (!capable(CAP_SYS_ADMIN)) { 1714 status = -EACCES; 1715 goto out_notask; 1716 } 1717 1718 inode = dentry->d_inode; 1719 task = get_proc_task(inode); 1720 if (!task) 1721 goto out_notask; 1722 1723 mm = mm_access(task, PTRACE_MODE_READ); 1724 if (IS_ERR_OR_NULL(mm)) 1725 goto out; 1726 1727 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 1728 down_read(&mm->mmap_sem); 1729 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end); 1730 up_read(&mm->mmap_sem); 1731 } 1732 1733 mmput(mm); 1734 1735 if (exact_vma_exists) { 1736 if (task_dumpable(task)) { 1737 rcu_read_lock(); 1738 cred = __task_cred(task); 1739 inode->i_uid = cred->euid; 1740 inode->i_gid = cred->egid; 1741 rcu_read_unlock(); 1742 } else { 1743 inode->i_uid = GLOBAL_ROOT_UID; 1744 inode->i_gid = GLOBAL_ROOT_GID; 1745 } 1746 security_task_to_inode(task, inode); 1747 status = 1; 1748 } 1749 1750 out: 1751 put_task_struct(task); 1752 1753 out_notask: 1754 if (status <= 0) 1755 d_drop(dentry); 1756 1757 return status; 1758 } 1759 1760 static const struct dentry_operations tid_map_files_dentry_operations = { 1761 .d_revalidate = map_files_d_revalidate, 1762 .d_delete = pid_delete_dentry, 1763 }; 1764 1765 static int proc_map_files_get_link(struct dentry *dentry, struct path *path) 1766 { 1767 unsigned long vm_start, vm_end; 1768 struct vm_area_struct *vma; 1769 struct task_struct *task; 1770 struct mm_struct *mm; 1771 int rc; 1772 1773 rc = -ENOENT; 1774 task = get_proc_task(dentry->d_inode); 1775 if (!task) 1776 goto out; 1777 1778 mm = get_task_mm(task); 1779 put_task_struct(task); 1780 if (!mm) 1781 goto out; 1782 1783 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 1784 if (rc) 1785 goto out_mmput; 1786 1787 down_read(&mm->mmap_sem); 1788 vma = find_exact_vma(mm, vm_start, vm_end); 1789 if (vma && vma->vm_file) { 1790 *path = vma->vm_file->f_path; 1791 path_get(path); 1792 rc = 0; 1793 } 1794 up_read(&mm->mmap_sem); 1795 1796 out_mmput: 1797 mmput(mm); 1798 out: 1799 return rc; 1800 } 1801 1802 struct map_files_info { 1803 fmode_t mode; 1804 unsigned long len; 1805 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */ 1806 }; 1807 1808 static struct dentry * 1809 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry, 1810 struct task_struct *task, const void *ptr) 1811 { 1812 fmode_t mode = (fmode_t)(unsigned long)ptr; 1813 struct proc_inode *ei; 1814 struct inode *inode; 1815 1816 inode = proc_pid_make_inode(dir->i_sb, task); 1817 if (!inode) 1818 return ERR_PTR(-ENOENT); 1819 1820 ei = PROC_I(inode); 1821 ei->op.proc_get_link = proc_map_files_get_link; 1822 1823 inode->i_op = &proc_pid_link_inode_operations; 1824 inode->i_size = 64; 1825 inode->i_mode = S_IFLNK; 1826 1827 if (mode & FMODE_READ) 1828 inode->i_mode |= S_IRUSR; 1829 if (mode & FMODE_WRITE) 1830 inode->i_mode |= S_IWUSR; 1831 1832 d_set_d_op(dentry, &tid_map_files_dentry_operations); 1833 d_add(dentry, inode); 1834 1835 return NULL; 1836 } 1837 1838 static struct dentry *proc_map_files_lookup(struct inode *dir, 1839 struct dentry *dentry, unsigned int flags) 1840 { 1841 unsigned long vm_start, vm_end; 1842 struct vm_area_struct *vma; 1843 struct task_struct *task; 1844 struct dentry *result; 1845 struct mm_struct *mm; 1846 1847 result = ERR_PTR(-EACCES); 1848 if (!capable(CAP_SYS_ADMIN)) 1849 goto out; 1850 1851 result = ERR_PTR(-ENOENT); 1852 task = get_proc_task(dir); 1853 if (!task) 1854 goto out; 1855 1856 result = ERR_PTR(-EACCES); 1857 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 1858 goto out_put_task; 1859 1860 result = ERR_PTR(-ENOENT); 1861 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 1862 goto out_put_task; 1863 1864 mm = get_task_mm(task); 1865 if (!mm) 1866 goto out_put_task; 1867 1868 down_read(&mm->mmap_sem); 1869 vma = find_exact_vma(mm, vm_start, vm_end); 1870 if (!vma) 1871 goto out_no_vma; 1872 1873 if (vma->vm_file) 1874 result = proc_map_files_instantiate(dir, dentry, task, 1875 (void *)(unsigned long)vma->vm_file->f_mode); 1876 1877 out_no_vma: 1878 up_read(&mm->mmap_sem); 1879 mmput(mm); 1880 out_put_task: 1881 put_task_struct(task); 1882 out: 1883 return result; 1884 } 1885 1886 static const struct inode_operations proc_map_files_inode_operations = { 1887 .lookup = proc_map_files_lookup, 1888 .permission = proc_fd_permission, 1889 .setattr = proc_setattr, 1890 }; 1891 1892 static int 1893 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir) 1894 { 1895 struct dentry *dentry = filp->f_path.dentry; 1896 struct inode *inode = dentry->d_inode; 1897 struct vm_area_struct *vma; 1898 struct task_struct *task; 1899 struct mm_struct *mm; 1900 ino_t ino; 1901 int ret; 1902 1903 ret = -EACCES; 1904 if (!capable(CAP_SYS_ADMIN)) 1905 goto out; 1906 1907 ret = -ENOENT; 1908 task = get_proc_task(inode); 1909 if (!task) 1910 goto out; 1911 1912 ret = -EACCES; 1913 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 1914 goto out_put_task; 1915 1916 ret = 0; 1917 switch (filp->f_pos) { 1918 case 0: 1919 ino = inode->i_ino; 1920 if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0) 1921 goto out_put_task; 1922 filp->f_pos++; 1923 case 1: 1924 ino = parent_ino(dentry); 1925 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0) 1926 goto out_put_task; 1927 filp->f_pos++; 1928 default: 1929 { 1930 unsigned long nr_files, pos, i; 1931 struct flex_array *fa = NULL; 1932 struct map_files_info info; 1933 struct map_files_info *p; 1934 1935 mm = get_task_mm(task); 1936 if (!mm) 1937 goto out_put_task; 1938 down_read(&mm->mmap_sem); 1939 1940 nr_files = 0; 1941 1942 /* 1943 * We need two passes here: 1944 * 1945 * 1) Collect vmas of mapped files with mmap_sem taken 1946 * 2) Release mmap_sem and instantiate entries 1947 * 1948 * otherwise we get lockdep complained, since filldir() 1949 * routine might require mmap_sem taken in might_fault(). 1950 */ 1951 1952 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) { 1953 if (vma->vm_file && ++pos > filp->f_pos) 1954 nr_files++; 1955 } 1956 1957 if (nr_files) { 1958 fa = flex_array_alloc(sizeof(info), nr_files, 1959 GFP_KERNEL); 1960 if (!fa || flex_array_prealloc(fa, 0, nr_files, 1961 GFP_KERNEL)) { 1962 ret = -ENOMEM; 1963 if (fa) 1964 flex_array_free(fa); 1965 up_read(&mm->mmap_sem); 1966 mmput(mm); 1967 goto out_put_task; 1968 } 1969 for (i = 0, vma = mm->mmap, pos = 2; vma; 1970 vma = vma->vm_next) { 1971 if (!vma->vm_file) 1972 continue; 1973 if (++pos <= filp->f_pos) 1974 continue; 1975 1976 info.mode = vma->vm_file->f_mode; 1977 info.len = snprintf(info.name, 1978 sizeof(info.name), "%lx-%lx", 1979 vma->vm_start, vma->vm_end); 1980 if (flex_array_put(fa, i++, &info, GFP_KERNEL)) 1981 BUG(); 1982 } 1983 } 1984 up_read(&mm->mmap_sem); 1985 1986 for (i = 0; i < nr_files; i++) { 1987 p = flex_array_get(fa, i); 1988 ret = proc_fill_cache(filp, dirent, filldir, 1989 p->name, p->len, 1990 proc_map_files_instantiate, 1991 task, 1992 (void *)(unsigned long)p->mode); 1993 if (ret) 1994 break; 1995 filp->f_pos++; 1996 } 1997 if (fa) 1998 flex_array_free(fa); 1999 mmput(mm); 2000 } 2001 } 2002 2003 out_put_task: 2004 put_task_struct(task); 2005 out: 2006 return ret; 2007 } 2008 2009 static const struct file_operations proc_map_files_operations = { 2010 .read = generic_read_dir, 2011 .readdir = proc_map_files_readdir, 2012 .llseek = default_llseek, 2013 }; 2014 2015 #endif /* CONFIG_CHECKPOINT_RESTORE */ 2016 2017 static struct dentry *proc_pident_instantiate(struct inode *dir, 2018 struct dentry *dentry, struct task_struct *task, const void *ptr) 2019 { 2020 const struct pid_entry *p = ptr; 2021 struct inode *inode; 2022 struct proc_inode *ei; 2023 struct dentry *error = ERR_PTR(-ENOENT); 2024 2025 inode = proc_pid_make_inode(dir->i_sb, task); 2026 if (!inode) 2027 goto out; 2028 2029 ei = PROC_I(inode); 2030 inode->i_mode = p->mode; 2031 if (S_ISDIR(inode->i_mode)) 2032 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2033 if (p->iop) 2034 inode->i_op = p->iop; 2035 if (p->fop) 2036 inode->i_fop = p->fop; 2037 ei->op = p->op; 2038 d_set_d_op(dentry, &pid_dentry_operations); 2039 d_add(dentry, inode); 2040 /* Close the race of the process dying before we return the dentry */ 2041 if (pid_revalidate(dentry, 0)) 2042 error = NULL; 2043 out: 2044 return error; 2045 } 2046 2047 static struct dentry *proc_pident_lookup(struct inode *dir, 2048 struct dentry *dentry, 2049 const struct pid_entry *ents, 2050 unsigned int nents) 2051 { 2052 struct dentry *error; 2053 struct task_struct *task = get_proc_task(dir); 2054 const struct pid_entry *p, *last; 2055 2056 error = ERR_PTR(-ENOENT); 2057 2058 if (!task) 2059 goto out_no_task; 2060 2061 /* 2062 * Yes, it does not scale. And it should not. Don't add 2063 * new entries into /proc/<tgid>/ without very good reasons. 2064 */ 2065 last = &ents[nents - 1]; 2066 for (p = ents; p <= last; p++) { 2067 if (p->len != dentry->d_name.len) 2068 continue; 2069 if (!memcmp(dentry->d_name.name, p->name, p->len)) 2070 break; 2071 } 2072 if (p > last) 2073 goto out; 2074 2075 error = proc_pident_instantiate(dir, dentry, task, p); 2076 out: 2077 put_task_struct(task); 2078 out_no_task: 2079 return error; 2080 } 2081 2082 static int proc_pident_fill_cache(struct file *filp, void *dirent, 2083 filldir_t filldir, struct task_struct *task, const struct pid_entry *p) 2084 { 2085 return proc_fill_cache(filp, dirent, filldir, p->name, p->len, 2086 proc_pident_instantiate, task, p); 2087 } 2088 2089 static int proc_pident_readdir(struct file *filp, 2090 void *dirent, filldir_t filldir, 2091 const struct pid_entry *ents, unsigned int nents) 2092 { 2093 int i; 2094 struct dentry *dentry = filp->f_path.dentry; 2095 struct inode *inode = dentry->d_inode; 2096 struct task_struct *task = get_proc_task(inode); 2097 const struct pid_entry *p, *last; 2098 ino_t ino; 2099 int ret; 2100 2101 ret = -ENOENT; 2102 if (!task) 2103 goto out_no_task; 2104 2105 ret = 0; 2106 i = filp->f_pos; 2107 switch (i) { 2108 case 0: 2109 ino = inode->i_ino; 2110 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0) 2111 goto out; 2112 i++; 2113 filp->f_pos++; 2114 /* fall through */ 2115 case 1: 2116 ino = parent_ino(dentry); 2117 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0) 2118 goto out; 2119 i++; 2120 filp->f_pos++; 2121 /* fall through */ 2122 default: 2123 i -= 2; 2124 if (i >= nents) { 2125 ret = 1; 2126 goto out; 2127 } 2128 p = ents + i; 2129 last = &ents[nents - 1]; 2130 while (p <= last) { 2131 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0) 2132 goto out; 2133 filp->f_pos++; 2134 p++; 2135 } 2136 } 2137 2138 ret = 1; 2139 out: 2140 put_task_struct(task); 2141 out_no_task: 2142 return ret; 2143 } 2144 2145 #ifdef CONFIG_SECURITY 2146 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2147 size_t count, loff_t *ppos) 2148 { 2149 struct inode * inode = file->f_path.dentry->d_inode; 2150 char *p = NULL; 2151 ssize_t length; 2152 struct task_struct *task = get_proc_task(inode); 2153 2154 if (!task) 2155 return -ESRCH; 2156 2157 length = security_getprocattr(task, 2158 (char*)file->f_path.dentry->d_name.name, 2159 &p); 2160 put_task_struct(task); 2161 if (length > 0) 2162 length = simple_read_from_buffer(buf, count, ppos, p, length); 2163 kfree(p); 2164 return length; 2165 } 2166 2167 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2168 size_t count, loff_t *ppos) 2169 { 2170 struct inode * inode = file->f_path.dentry->d_inode; 2171 char *page; 2172 ssize_t length; 2173 struct task_struct *task = get_proc_task(inode); 2174 2175 length = -ESRCH; 2176 if (!task) 2177 goto out_no_task; 2178 if (count > PAGE_SIZE) 2179 count = PAGE_SIZE; 2180 2181 /* No partial writes. */ 2182 length = -EINVAL; 2183 if (*ppos != 0) 2184 goto out; 2185 2186 length = -ENOMEM; 2187 page = (char*)__get_free_page(GFP_TEMPORARY); 2188 if (!page) 2189 goto out; 2190 2191 length = -EFAULT; 2192 if (copy_from_user(page, buf, count)) 2193 goto out_free; 2194 2195 /* Guard against adverse ptrace interaction */ 2196 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 2197 if (length < 0) 2198 goto out_free; 2199 2200 length = security_setprocattr(task, 2201 (char*)file->f_path.dentry->d_name.name, 2202 (void*)page, count); 2203 mutex_unlock(&task->signal->cred_guard_mutex); 2204 out_free: 2205 free_page((unsigned long) page); 2206 out: 2207 put_task_struct(task); 2208 out_no_task: 2209 return length; 2210 } 2211 2212 static const struct file_operations proc_pid_attr_operations = { 2213 .read = proc_pid_attr_read, 2214 .write = proc_pid_attr_write, 2215 .llseek = generic_file_llseek, 2216 }; 2217 2218 static const struct pid_entry attr_dir_stuff[] = { 2219 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2220 REG("prev", S_IRUGO, proc_pid_attr_operations), 2221 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2222 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2223 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2224 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2225 }; 2226 2227 static int proc_attr_dir_readdir(struct file * filp, 2228 void * dirent, filldir_t filldir) 2229 { 2230 return proc_pident_readdir(filp,dirent,filldir, 2231 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff)); 2232 } 2233 2234 static const struct file_operations proc_attr_dir_operations = { 2235 .read = generic_read_dir, 2236 .readdir = proc_attr_dir_readdir, 2237 .llseek = default_llseek, 2238 }; 2239 2240 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2241 struct dentry *dentry, unsigned int flags) 2242 { 2243 return proc_pident_lookup(dir, dentry, 2244 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2245 } 2246 2247 static const struct inode_operations proc_attr_dir_inode_operations = { 2248 .lookup = proc_attr_dir_lookup, 2249 .getattr = pid_getattr, 2250 .setattr = proc_setattr, 2251 }; 2252 2253 #endif 2254 2255 #ifdef CONFIG_ELF_CORE 2256 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2257 size_t count, loff_t *ppos) 2258 { 2259 struct task_struct *task = get_proc_task(file->f_dentry->d_inode); 2260 struct mm_struct *mm; 2261 char buffer[PROC_NUMBUF]; 2262 size_t len; 2263 int ret; 2264 2265 if (!task) 2266 return -ESRCH; 2267 2268 ret = 0; 2269 mm = get_task_mm(task); 2270 if (mm) { 2271 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2272 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2273 MMF_DUMP_FILTER_SHIFT)); 2274 mmput(mm); 2275 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2276 } 2277 2278 put_task_struct(task); 2279 2280 return ret; 2281 } 2282 2283 static ssize_t proc_coredump_filter_write(struct file *file, 2284 const char __user *buf, 2285 size_t count, 2286 loff_t *ppos) 2287 { 2288 struct task_struct *task; 2289 struct mm_struct *mm; 2290 char buffer[PROC_NUMBUF], *end; 2291 unsigned int val; 2292 int ret; 2293 int i; 2294 unsigned long mask; 2295 2296 ret = -EFAULT; 2297 memset(buffer, 0, sizeof(buffer)); 2298 if (count > sizeof(buffer) - 1) 2299 count = sizeof(buffer) - 1; 2300 if (copy_from_user(buffer, buf, count)) 2301 goto out_no_task; 2302 2303 ret = -EINVAL; 2304 val = (unsigned int)simple_strtoul(buffer, &end, 0); 2305 if (*end == '\n') 2306 end++; 2307 if (end - buffer == 0) 2308 goto out_no_task; 2309 2310 ret = -ESRCH; 2311 task = get_proc_task(file->f_dentry->d_inode); 2312 if (!task) 2313 goto out_no_task; 2314 2315 ret = end - buffer; 2316 mm = get_task_mm(task); 2317 if (!mm) 2318 goto out_no_mm; 2319 2320 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2321 if (val & mask) 2322 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2323 else 2324 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2325 } 2326 2327 mmput(mm); 2328 out_no_mm: 2329 put_task_struct(task); 2330 out_no_task: 2331 return ret; 2332 } 2333 2334 static const struct file_operations proc_coredump_filter_operations = { 2335 .read = proc_coredump_filter_read, 2336 .write = proc_coredump_filter_write, 2337 .llseek = generic_file_llseek, 2338 }; 2339 #endif 2340 2341 #ifdef CONFIG_TASK_IO_ACCOUNTING 2342 static int do_io_accounting(struct task_struct *task, char *buffer, int whole) 2343 { 2344 struct task_io_accounting acct = task->ioac; 2345 unsigned long flags; 2346 int result; 2347 2348 result = mutex_lock_killable(&task->signal->cred_guard_mutex); 2349 if (result) 2350 return result; 2351 2352 if (!ptrace_may_access(task, PTRACE_MODE_READ)) { 2353 result = -EACCES; 2354 goto out_unlock; 2355 } 2356 2357 if (whole && lock_task_sighand(task, &flags)) { 2358 struct task_struct *t = task; 2359 2360 task_io_accounting_add(&acct, &task->signal->ioac); 2361 while_each_thread(task, t) 2362 task_io_accounting_add(&acct, &t->ioac); 2363 2364 unlock_task_sighand(task, &flags); 2365 } 2366 result = sprintf(buffer, 2367 "rchar: %llu\n" 2368 "wchar: %llu\n" 2369 "syscr: %llu\n" 2370 "syscw: %llu\n" 2371 "read_bytes: %llu\n" 2372 "write_bytes: %llu\n" 2373 "cancelled_write_bytes: %llu\n", 2374 (unsigned long long)acct.rchar, 2375 (unsigned long long)acct.wchar, 2376 (unsigned long long)acct.syscr, 2377 (unsigned long long)acct.syscw, 2378 (unsigned long long)acct.read_bytes, 2379 (unsigned long long)acct.write_bytes, 2380 (unsigned long long)acct.cancelled_write_bytes); 2381 out_unlock: 2382 mutex_unlock(&task->signal->cred_guard_mutex); 2383 return result; 2384 } 2385 2386 static int proc_tid_io_accounting(struct task_struct *task, char *buffer) 2387 { 2388 return do_io_accounting(task, buffer, 0); 2389 } 2390 2391 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer) 2392 { 2393 return do_io_accounting(task, buffer, 1); 2394 } 2395 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 2396 2397 #ifdef CONFIG_USER_NS 2398 static int proc_id_map_open(struct inode *inode, struct file *file, 2399 struct seq_operations *seq_ops) 2400 { 2401 struct user_namespace *ns = NULL; 2402 struct task_struct *task; 2403 struct seq_file *seq; 2404 int ret = -EINVAL; 2405 2406 task = get_proc_task(inode); 2407 if (task) { 2408 rcu_read_lock(); 2409 ns = get_user_ns(task_cred_xxx(task, user_ns)); 2410 rcu_read_unlock(); 2411 put_task_struct(task); 2412 } 2413 if (!ns) 2414 goto err; 2415 2416 ret = seq_open(file, seq_ops); 2417 if (ret) 2418 goto err_put_ns; 2419 2420 seq = file->private_data; 2421 seq->private = ns; 2422 2423 return 0; 2424 err_put_ns: 2425 put_user_ns(ns); 2426 err: 2427 return ret; 2428 } 2429 2430 static int proc_id_map_release(struct inode *inode, struct file *file) 2431 { 2432 struct seq_file *seq = file->private_data; 2433 struct user_namespace *ns = seq->private; 2434 put_user_ns(ns); 2435 return seq_release(inode, file); 2436 } 2437 2438 static int proc_uid_map_open(struct inode *inode, struct file *file) 2439 { 2440 return proc_id_map_open(inode, file, &proc_uid_seq_operations); 2441 } 2442 2443 static int proc_gid_map_open(struct inode *inode, struct file *file) 2444 { 2445 return proc_id_map_open(inode, file, &proc_gid_seq_operations); 2446 } 2447 2448 static int proc_projid_map_open(struct inode *inode, struct file *file) 2449 { 2450 return proc_id_map_open(inode, file, &proc_projid_seq_operations); 2451 } 2452 2453 static const struct file_operations proc_uid_map_operations = { 2454 .open = proc_uid_map_open, 2455 .write = proc_uid_map_write, 2456 .read = seq_read, 2457 .llseek = seq_lseek, 2458 .release = proc_id_map_release, 2459 }; 2460 2461 static const struct file_operations proc_gid_map_operations = { 2462 .open = proc_gid_map_open, 2463 .write = proc_gid_map_write, 2464 .read = seq_read, 2465 .llseek = seq_lseek, 2466 .release = proc_id_map_release, 2467 }; 2468 2469 static const struct file_operations proc_projid_map_operations = { 2470 .open = proc_projid_map_open, 2471 .write = proc_projid_map_write, 2472 .read = seq_read, 2473 .llseek = seq_lseek, 2474 .release = proc_id_map_release, 2475 }; 2476 #endif /* CONFIG_USER_NS */ 2477 2478 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 2479 struct pid *pid, struct task_struct *task) 2480 { 2481 int err = lock_trace(task); 2482 if (!err) { 2483 seq_printf(m, "%08x\n", task->personality); 2484 unlock_trace(task); 2485 } 2486 return err; 2487 } 2488 2489 /* 2490 * Thread groups 2491 */ 2492 static const struct file_operations proc_task_operations; 2493 static const struct inode_operations proc_task_inode_operations; 2494 2495 static const struct pid_entry tgid_base_stuff[] = { 2496 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 2497 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 2498 #ifdef CONFIG_CHECKPOINT_RESTORE 2499 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 2500 #endif 2501 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 2502 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 2503 #ifdef CONFIG_NET 2504 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 2505 #endif 2506 REG("environ", S_IRUSR, proc_environ_operations), 2507 INF("auxv", S_IRUSR, proc_pid_auxv), 2508 ONE("status", S_IRUGO, proc_pid_status), 2509 ONE("personality", S_IRUGO, proc_pid_personality), 2510 INF("limits", S_IRUGO, proc_pid_limits), 2511 #ifdef CONFIG_SCHED_DEBUG 2512 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 2513 #endif 2514 #ifdef CONFIG_SCHED_AUTOGROUP 2515 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 2516 #endif 2517 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 2518 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 2519 INF("syscall", S_IRUGO, proc_pid_syscall), 2520 #endif 2521 INF("cmdline", S_IRUGO, proc_pid_cmdline), 2522 ONE("stat", S_IRUGO, proc_tgid_stat), 2523 ONE("statm", S_IRUGO, proc_pid_statm), 2524 REG("maps", S_IRUGO, proc_pid_maps_operations), 2525 #ifdef CONFIG_NUMA 2526 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 2527 #endif 2528 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 2529 LNK("cwd", proc_cwd_link), 2530 LNK("root", proc_root_link), 2531 LNK("exe", proc_exe_link), 2532 REG("mounts", S_IRUGO, proc_mounts_operations), 2533 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 2534 REG("mountstats", S_IRUSR, proc_mountstats_operations), 2535 #ifdef CONFIG_PROC_PAGE_MONITOR 2536 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 2537 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 2538 REG("pagemap", S_IRUGO, proc_pagemap_operations), 2539 #endif 2540 #ifdef CONFIG_SECURITY 2541 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 2542 #endif 2543 #ifdef CONFIG_KALLSYMS 2544 INF("wchan", S_IRUGO, proc_pid_wchan), 2545 #endif 2546 #ifdef CONFIG_STACKTRACE 2547 ONE("stack", S_IRUGO, proc_pid_stack), 2548 #endif 2549 #ifdef CONFIG_SCHEDSTATS 2550 INF("schedstat", S_IRUGO, proc_pid_schedstat), 2551 #endif 2552 #ifdef CONFIG_LATENCYTOP 2553 REG("latency", S_IRUGO, proc_lstats_operations), 2554 #endif 2555 #ifdef CONFIG_PROC_PID_CPUSET 2556 REG("cpuset", S_IRUGO, proc_cpuset_operations), 2557 #endif 2558 #ifdef CONFIG_CGROUPS 2559 REG("cgroup", S_IRUGO, proc_cgroup_operations), 2560 #endif 2561 INF("oom_score", S_IRUGO, proc_oom_score), 2562 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 2563 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 2564 #ifdef CONFIG_AUDITSYSCALL 2565 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 2566 REG("sessionid", S_IRUGO, proc_sessionid_operations), 2567 #endif 2568 #ifdef CONFIG_FAULT_INJECTION 2569 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 2570 #endif 2571 #ifdef CONFIG_ELF_CORE 2572 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 2573 #endif 2574 #ifdef CONFIG_TASK_IO_ACCOUNTING 2575 INF("io", S_IRUSR, proc_tgid_io_accounting), 2576 #endif 2577 #ifdef CONFIG_HARDWALL 2578 INF("hardwall", S_IRUGO, proc_pid_hardwall), 2579 #endif 2580 #ifdef CONFIG_USER_NS 2581 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 2582 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 2583 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 2584 #endif 2585 }; 2586 2587 static int proc_tgid_base_readdir(struct file * filp, 2588 void * dirent, filldir_t filldir) 2589 { 2590 return proc_pident_readdir(filp,dirent,filldir, 2591 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff)); 2592 } 2593 2594 static const struct file_operations proc_tgid_base_operations = { 2595 .read = generic_read_dir, 2596 .readdir = proc_tgid_base_readdir, 2597 .llseek = default_llseek, 2598 }; 2599 2600 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 2601 { 2602 return proc_pident_lookup(dir, dentry, 2603 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 2604 } 2605 2606 static const struct inode_operations proc_tgid_base_inode_operations = { 2607 .lookup = proc_tgid_base_lookup, 2608 .getattr = pid_getattr, 2609 .setattr = proc_setattr, 2610 .permission = proc_pid_permission, 2611 }; 2612 2613 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid) 2614 { 2615 struct dentry *dentry, *leader, *dir; 2616 char buf[PROC_NUMBUF]; 2617 struct qstr name; 2618 2619 name.name = buf; 2620 name.len = snprintf(buf, sizeof(buf), "%d", pid); 2621 dentry = d_hash_and_lookup(mnt->mnt_root, &name); 2622 if (dentry) { 2623 shrink_dcache_parent(dentry); 2624 d_drop(dentry); 2625 dput(dentry); 2626 } 2627 2628 name.name = buf; 2629 name.len = snprintf(buf, sizeof(buf), "%d", tgid); 2630 leader = d_hash_and_lookup(mnt->mnt_root, &name); 2631 if (!leader) 2632 goto out; 2633 2634 name.name = "task"; 2635 name.len = strlen(name.name); 2636 dir = d_hash_and_lookup(leader, &name); 2637 if (!dir) 2638 goto out_put_leader; 2639 2640 name.name = buf; 2641 name.len = snprintf(buf, sizeof(buf), "%d", pid); 2642 dentry = d_hash_and_lookup(dir, &name); 2643 if (dentry) { 2644 shrink_dcache_parent(dentry); 2645 d_drop(dentry); 2646 dput(dentry); 2647 } 2648 2649 dput(dir); 2650 out_put_leader: 2651 dput(leader); 2652 out: 2653 return; 2654 } 2655 2656 /** 2657 * proc_flush_task - Remove dcache entries for @task from the /proc dcache. 2658 * @task: task that should be flushed. 2659 * 2660 * When flushing dentries from proc, one needs to flush them from global 2661 * proc (proc_mnt) and from all the namespaces' procs this task was seen 2662 * in. This call is supposed to do all of this job. 2663 * 2664 * Looks in the dcache for 2665 * /proc/@pid 2666 * /proc/@tgid/task/@pid 2667 * if either directory is present flushes it and all of it'ts children 2668 * from the dcache. 2669 * 2670 * It is safe and reasonable to cache /proc entries for a task until 2671 * that task exits. After that they just clog up the dcache with 2672 * useless entries, possibly causing useful dcache entries to be 2673 * flushed instead. This routine is proved to flush those useless 2674 * dcache entries at process exit time. 2675 * 2676 * NOTE: This routine is just an optimization so it does not guarantee 2677 * that no dcache entries will exist at process exit time it 2678 * just makes it very unlikely that any will persist. 2679 */ 2680 2681 void proc_flush_task(struct task_struct *task) 2682 { 2683 int i; 2684 struct pid *pid, *tgid; 2685 struct upid *upid; 2686 2687 pid = task_pid(task); 2688 tgid = task_tgid(task); 2689 2690 for (i = 0; i <= pid->level; i++) { 2691 upid = &pid->numbers[i]; 2692 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr, 2693 tgid->numbers[i].nr); 2694 } 2695 } 2696 2697 static struct dentry *proc_pid_instantiate(struct inode *dir, 2698 struct dentry * dentry, 2699 struct task_struct *task, const void *ptr) 2700 { 2701 struct dentry *error = ERR_PTR(-ENOENT); 2702 struct inode *inode; 2703 2704 inode = proc_pid_make_inode(dir->i_sb, task); 2705 if (!inode) 2706 goto out; 2707 2708 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 2709 inode->i_op = &proc_tgid_base_inode_operations; 2710 inode->i_fop = &proc_tgid_base_operations; 2711 inode->i_flags|=S_IMMUTABLE; 2712 2713 set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff, 2714 ARRAY_SIZE(tgid_base_stuff))); 2715 2716 d_set_d_op(dentry, &pid_dentry_operations); 2717 2718 d_add(dentry, inode); 2719 /* Close the race of the process dying before we return the dentry */ 2720 if (pid_revalidate(dentry, 0)) 2721 error = NULL; 2722 out: 2723 return error; 2724 } 2725 2726 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 2727 { 2728 struct dentry *result = NULL; 2729 struct task_struct *task; 2730 unsigned tgid; 2731 struct pid_namespace *ns; 2732 2733 tgid = name_to_int(dentry); 2734 if (tgid == ~0U) 2735 goto out; 2736 2737 ns = dentry->d_sb->s_fs_info; 2738 rcu_read_lock(); 2739 task = find_task_by_pid_ns(tgid, ns); 2740 if (task) 2741 get_task_struct(task); 2742 rcu_read_unlock(); 2743 if (!task) 2744 goto out; 2745 2746 result = proc_pid_instantiate(dir, dentry, task, NULL); 2747 put_task_struct(task); 2748 out: 2749 return result; 2750 } 2751 2752 /* 2753 * Find the first task with tgid >= tgid 2754 * 2755 */ 2756 struct tgid_iter { 2757 unsigned int tgid; 2758 struct task_struct *task; 2759 }; 2760 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 2761 { 2762 struct pid *pid; 2763 2764 if (iter.task) 2765 put_task_struct(iter.task); 2766 rcu_read_lock(); 2767 retry: 2768 iter.task = NULL; 2769 pid = find_ge_pid(iter.tgid, ns); 2770 if (pid) { 2771 iter.tgid = pid_nr_ns(pid, ns); 2772 iter.task = pid_task(pid, PIDTYPE_PID); 2773 /* What we to know is if the pid we have find is the 2774 * pid of a thread_group_leader. Testing for task 2775 * being a thread_group_leader is the obvious thing 2776 * todo but there is a window when it fails, due to 2777 * the pid transfer logic in de_thread. 2778 * 2779 * So we perform the straight forward test of seeing 2780 * if the pid we have found is the pid of a thread 2781 * group leader, and don't worry if the task we have 2782 * found doesn't happen to be a thread group leader. 2783 * As we don't care in the case of readdir. 2784 */ 2785 if (!iter.task || !has_group_leader_pid(iter.task)) { 2786 iter.tgid += 1; 2787 goto retry; 2788 } 2789 get_task_struct(iter.task); 2790 } 2791 rcu_read_unlock(); 2792 return iter; 2793 } 2794 2795 #define TGID_OFFSET (FIRST_PROCESS_ENTRY) 2796 2797 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 2798 struct tgid_iter iter) 2799 { 2800 char name[PROC_NUMBUF]; 2801 int len = snprintf(name, sizeof(name), "%d", iter.tgid); 2802 return proc_fill_cache(filp, dirent, filldir, name, len, 2803 proc_pid_instantiate, iter.task, NULL); 2804 } 2805 2806 static int fake_filldir(void *buf, const char *name, int namelen, 2807 loff_t offset, u64 ino, unsigned d_type) 2808 { 2809 return 0; 2810 } 2811 2812 /* for the /proc/ directory itself, after non-process stuff has been done */ 2813 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir) 2814 { 2815 struct tgid_iter iter; 2816 struct pid_namespace *ns; 2817 filldir_t __filldir; 2818 2819 if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET) 2820 goto out; 2821 2822 ns = filp->f_dentry->d_sb->s_fs_info; 2823 iter.task = NULL; 2824 iter.tgid = filp->f_pos - TGID_OFFSET; 2825 for (iter = next_tgid(ns, iter); 2826 iter.task; 2827 iter.tgid += 1, iter = next_tgid(ns, iter)) { 2828 if (has_pid_permissions(ns, iter.task, 2)) 2829 __filldir = filldir; 2830 else 2831 __filldir = fake_filldir; 2832 2833 filp->f_pos = iter.tgid + TGID_OFFSET; 2834 if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) { 2835 put_task_struct(iter.task); 2836 goto out; 2837 } 2838 } 2839 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET; 2840 out: 2841 return 0; 2842 } 2843 2844 /* 2845 * Tasks 2846 */ 2847 static const struct pid_entry tid_base_stuff[] = { 2848 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 2849 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 2850 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 2851 REG("environ", S_IRUSR, proc_environ_operations), 2852 INF("auxv", S_IRUSR, proc_pid_auxv), 2853 ONE("status", S_IRUGO, proc_pid_status), 2854 ONE("personality", S_IRUGO, proc_pid_personality), 2855 INF("limits", S_IRUGO, proc_pid_limits), 2856 #ifdef CONFIG_SCHED_DEBUG 2857 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 2858 #endif 2859 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 2860 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 2861 INF("syscall", S_IRUGO, proc_pid_syscall), 2862 #endif 2863 INF("cmdline", S_IRUGO, proc_pid_cmdline), 2864 ONE("stat", S_IRUGO, proc_tid_stat), 2865 ONE("statm", S_IRUGO, proc_pid_statm), 2866 REG("maps", S_IRUGO, proc_tid_maps_operations), 2867 #ifdef CONFIG_CHECKPOINT_RESTORE 2868 REG("children", S_IRUGO, proc_tid_children_operations), 2869 #endif 2870 #ifdef CONFIG_NUMA 2871 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations), 2872 #endif 2873 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 2874 LNK("cwd", proc_cwd_link), 2875 LNK("root", proc_root_link), 2876 LNK("exe", proc_exe_link), 2877 REG("mounts", S_IRUGO, proc_mounts_operations), 2878 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 2879 #ifdef CONFIG_PROC_PAGE_MONITOR 2880 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 2881 REG("smaps", S_IRUGO, proc_tid_smaps_operations), 2882 REG("pagemap", S_IRUGO, proc_pagemap_operations), 2883 #endif 2884 #ifdef CONFIG_SECURITY 2885 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 2886 #endif 2887 #ifdef CONFIG_KALLSYMS 2888 INF("wchan", S_IRUGO, proc_pid_wchan), 2889 #endif 2890 #ifdef CONFIG_STACKTRACE 2891 ONE("stack", S_IRUGO, proc_pid_stack), 2892 #endif 2893 #ifdef CONFIG_SCHEDSTATS 2894 INF("schedstat", S_IRUGO, proc_pid_schedstat), 2895 #endif 2896 #ifdef CONFIG_LATENCYTOP 2897 REG("latency", S_IRUGO, proc_lstats_operations), 2898 #endif 2899 #ifdef CONFIG_PROC_PID_CPUSET 2900 REG("cpuset", S_IRUGO, proc_cpuset_operations), 2901 #endif 2902 #ifdef CONFIG_CGROUPS 2903 REG("cgroup", S_IRUGO, proc_cgroup_operations), 2904 #endif 2905 INF("oom_score", S_IRUGO, proc_oom_score), 2906 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 2907 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 2908 #ifdef CONFIG_AUDITSYSCALL 2909 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 2910 REG("sessionid", S_IRUGO, proc_sessionid_operations), 2911 #endif 2912 #ifdef CONFIG_FAULT_INJECTION 2913 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 2914 #endif 2915 #ifdef CONFIG_TASK_IO_ACCOUNTING 2916 INF("io", S_IRUSR, proc_tid_io_accounting), 2917 #endif 2918 #ifdef CONFIG_HARDWALL 2919 INF("hardwall", S_IRUGO, proc_pid_hardwall), 2920 #endif 2921 #ifdef CONFIG_USER_NS 2922 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 2923 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 2924 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 2925 #endif 2926 }; 2927 2928 static int proc_tid_base_readdir(struct file * filp, 2929 void * dirent, filldir_t filldir) 2930 { 2931 return proc_pident_readdir(filp,dirent,filldir, 2932 tid_base_stuff,ARRAY_SIZE(tid_base_stuff)); 2933 } 2934 2935 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 2936 { 2937 return proc_pident_lookup(dir, dentry, 2938 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 2939 } 2940 2941 static const struct file_operations proc_tid_base_operations = { 2942 .read = generic_read_dir, 2943 .readdir = proc_tid_base_readdir, 2944 .llseek = default_llseek, 2945 }; 2946 2947 static const struct inode_operations proc_tid_base_inode_operations = { 2948 .lookup = proc_tid_base_lookup, 2949 .getattr = pid_getattr, 2950 .setattr = proc_setattr, 2951 }; 2952 2953 static struct dentry *proc_task_instantiate(struct inode *dir, 2954 struct dentry *dentry, struct task_struct *task, const void *ptr) 2955 { 2956 struct dentry *error = ERR_PTR(-ENOENT); 2957 struct inode *inode; 2958 inode = proc_pid_make_inode(dir->i_sb, task); 2959 2960 if (!inode) 2961 goto out; 2962 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 2963 inode->i_op = &proc_tid_base_inode_operations; 2964 inode->i_fop = &proc_tid_base_operations; 2965 inode->i_flags|=S_IMMUTABLE; 2966 2967 set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff, 2968 ARRAY_SIZE(tid_base_stuff))); 2969 2970 d_set_d_op(dentry, &pid_dentry_operations); 2971 2972 d_add(dentry, inode); 2973 /* Close the race of the process dying before we return the dentry */ 2974 if (pid_revalidate(dentry, 0)) 2975 error = NULL; 2976 out: 2977 return error; 2978 } 2979 2980 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 2981 { 2982 struct dentry *result = ERR_PTR(-ENOENT); 2983 struct task_struct *task; 2984 struct task_struct *leader = get_proc_task(dir); 2985 unsigned tid; 2986 struct pid_namespace *ns; 2987 2988 if (!leader) 2989 goto out_no_task; 2990 2991 tid = name_to_int(dentry); 2992 if (tid == ~0U) 2993 goto out; 2994 2995 ns = dentry->d_sb->s_fs_info; 2996 rcu_read_lock(); 2997 task = find_task_by_pid_ns(tid, ns); 2998 if (task) 2999 get_task_struct(task); 3000 rcu_read_unlock(); 3001 if (!task) 3002 goto out; 3003 if (!same_thread_group(leader, task)) 3004 goto out_drop_task; 3005 3006 result = proc_task_instantiate(dir, dentry, task, NULL); 3007 out_drop_task: 3008 put_task_struct(task); 3009 out: 3010 put_task_struct(leader); 3011 out_no_task: 3012 return result; 3013 } 3014 3015 /* 3016 * Find the first tid of a thread group to return to user space. 3017 * 3018 * Usually this is just the thread group leader, but if the users 3019 * buffer was too small or there was a seek into the middle of the 3020 * directory we have more work todo. 3021 * 3022 * In the case of a short read we start with find_task_by_pid. 3023 * 3024 * In the case of a seek we start with the leader and walk nr 3025 * threads past it. 3026 */ 3027 static struct task_struct *first_tid(struct task_struct *leader, 3028 int tid, int nr, struct pid_namespace *ns) 3029 { 3030 struct task_struct *pos; 3031 3032 rcu_read_lock(); 3033 /* Attempt to start with the pid of a thread */ 3034 if (tid && (nr > 0)) { 3035 pos = find_task_by_pid_ns(tid, ns); 3036 if (pos && (pos->group_leader == leader)) 3037 goto found; 3038 } 3039 3040 /* If nr exceeds the number of threads there is nothing todo */ 3041 pos = NULL; 3042 if (nr && nr >= get_nr_threads(leader)) 3043 goto out; 3044 3045 /* If we haven't found our starting place yet start 3046 * with the leader and walk nr threads forward. 3047 */ 3048 for (pos = leader; nr > 0; --nr) { 3049 pos = next_thread(pos); 3050 if (pos == leader) { 3051 pos = NULL; 3052 goto out; 3053 } 3054 } 3055 found: 3056 get_task_struct(pos); 3057 out: 3058 rcu_read_unlock(); 3059 return pos; 3060 } 3061 3062 /* 3063 * Find the next thread in the thread list. 3064 * Return NULL if there is an error or no next thread. 3065 * 3066 * The reference to the input task_struct is released. 3067 */ 3068 static struct task_struct *next_tid(struct task_struct *start) 3069 { 3070 struct task_struct *pos = NULL; 3071 rcu_read_lock(); 3072 if (pid_alive(start)) { 3073 pos = next_thread(start); 3074 if (thread_group_leader(pos)) 3075 pos = NULL; 3076 else 3077 get_task_struct(pos); 3078 } 3079 rcu_read_unlock(); 3080 put_task_struct(start); 3081 return pos; 3082 } 3083 3084 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 3085 struct task_struct *task, int tid) 3086 { 3087 char name[PROC_NUMBUF]; 3088 int len = snprintf(name, sizeof(name), "%d", tid); 3089 return proc_fill_cache(filp, dirent, filldir, name, len, 3090 proc_task_instantiate, task, NULL); 3091 } 3092 3093 /* for the /proc/TGID/task/ directories */ 3094 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir) 3095 { 3096 struct dentry *dentry = filp->f_path.dentry; 3097 struct inode *inode = dentry->d_inode; 3098 struct task_struct *leader = NULL; 3099 struct task_struct *task; 3100 int retval = -ENOENT; 3101 ino_t ino; 3102 int tid; 3103 struct pid_namespace *ns; 3104 3105 task = get_proc_task(inode); 3106 if (!task) 3107 goto out_no_task; 3108 rcu_read_lock(); 3109 if (pid_alive(task)) { 3110 leader = task->group_leader; 3111 get_task_struct(leader); 3112 } 3113 rcu_read_unlock(); 3114 put_task_struct(task); 3115 if (!leader) 3116 goto out_no_task; 3117 retval = 0; 3118 3119 switch ((unsigned long)filp->f_pos) { 3120 case 0: 3121 ino = inode->i_ino; 3122 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0) 3123 goto out; 3124 filp->f_pos++; 3125 /* fall through */ 3126 case 1: 3127 ino = parent_ino(dentry); 3128 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0) 3129 goto out; 3130 filp->f_pos++; 3131 /* fall through */ 3132 } 3133 3134 /* f_version caches the tgid value that the last readdir call couldn't 3135 * return. lseek aka telldir automagically resets f_version to 0. 3136 */ 3137 ns = filp->f_dentry->d_sb->s_fs_info; 3138 tid = (int)filp->f_version; 3139 filp->f_version = 0; 3140 for (task = first_tid(leader, tid, filp->f_pos - 2, ns); 3141 task; 3142 task = next_tid(task), filp->f_pos++) { 3143 tid = task_pid_nr_ns(task, ns); 3144 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) { 3145 /* returning this tgid failed, save it as the first 3146 * pid for the next readir call */ 3147 filp->f_version = (u64)tid; 3148 put_task_struct(task); 3149 break; 3150 } 3151 } 3152 out: 3153 put_task_struct(leader); 3154 out_no_task: 3155 return retval; 3156 } 3157 3158 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 3159 { 3160 struct inode *inode = dentry->d_inode; 3161 struct task_struct *p = get_proc_task(inode); 3162 generic_fillattr(inode, stat); 3163 3164 if (p) { 3165 stat->nlink += get_nr_threads(p); 3166 put_task_struct(p); 3167 } 3168 3169 return 0; 3170 } 3171 3172 static const struct inode_operations proc_task_inode_operations = { 3173 .lookup = proc_task_lookup, 3174 .getattr = proc_task_getattr, 3175 .setattr = proc_setattr, 3176 .permission = proc_pid_permission, 3177 }; 3178 3179 static const struct file_operations proc_task_operations = { 3180 .read = generic_read_dir, 3181 .readdir = proc_task_readdir, 3182 .llseek = default_llseek, 3183 }; 3184