xref: /openbmc/linux/fs/proc/base.c (revision 97da55fc)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/flex_array.h>
89 #ifdef CONFIG_HARDWALL
90 #include <asm/hardwall.h>
91 #endif
92 #include <trace/events/oom.h>
93 #include "internal.h"
94 #include "fd.h"
95 
96 /* NOTE:
97  *	Implementing inode permission operations in /proc is almost
98  *	certainly an error.  Permission checks need to happen during
99  *	each system call not at open time.  The reason is that most of
100  *	what we wish to check for permissions in /proc varies at runtime.
101  *
102  *	The classic example of a problem is opening file descriptors
103  *	in /proc for a task before it execs a suid executable.
104  */
105 
106 struct pid_entry {
107 	char *name;
108 	int len;
109 	umode_t mode;
110 	const struct inode_operations *iop;
111 	const struct file_operations *fop;
112 	union proc_op op;
113 };
114 
115 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
116 	.name = (NAME),					\
117 	.len  = sizeof(NAME) - 1,			\
118 	.mode = MODE,					\
119 	.iop  = IOP,					\
120 	.fop  = FOP,					\
121 	.op   = OP,					\
122 }
123 
124 #define DIR(NAME, MODE, iops, fops)	\
125 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
126 #define LNK(NAME, get_link)					\
127 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
128 		&proc_pid_link_inode_operations, NULL,		\
129 		{ .proc_get_link = get_link } )
130 #define REG(NAME, MODE, fops)				\
131 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
132 #define INF(NAME, MODE, read)				\
133 	NOD(NAME, (S_IFREG|(MODE)), 			\
134 		NULL, &proc_info_file_operations,	\
135 		{ .proc_read = read } )
136 #define ONE(NAME, MODE, show)				\
137 	NOD(NAME, (S_IFREG|(MODE)), 			\
138 		NULL, &proc_single_file_operations,	\
139 		{ .proc_show = show } )
140 
141 /*
142  * Count the number of hardlinks for the pid_entry table, excluding the .
143  * and .. links.
144  */
145 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
146 	unsigned int n)
147 {
148 	unsigned int i;
149 	unsigned int count;
150 
151 	count = 0;
152 	for (i = 0; i < n; ++i) {
153 		if (S_ISDIR(entries[i].mode))
154 			++count;
155 	}
156 
157 	return count;
158 }
159 
160 static int get_task_root(struct task_struct *task, struct path *root)
161 {
162 	int result = -ENOENT;
163 
164 	task_lock(task);
165 	if (task->fs) {
166 		get_fs_root(task->fs, root);
167 		result = 0;
168 	}
169 	task_unlock(task);
170 	return result;
171 }
172 
173 static int proc_cwd_link(struct dentry *dentry, struct path *path)
174 {
175 	struct task_struct *task = get_proc_task(dentry->d_inode);
176 	int result = -ENOENT;
177 
178 	if (task) {
179 		task_lock(task);
180 		if (task->fs) {
181 			get_fs_pwd(task->fs, path);
182 			result = 0;
183 		}
184 		task_unlock(task);
185 		put_task_struct(task);
186 	}
187 	return result;
188 }
189 
190 static int proc_root_link(struct dentry *dentry, struct path *path)
191 {
192 	struct task_struct *task = get_proc_task(dentry->d_inode);
193 	int result = -ENOENT;
194 
195 	if (task) {
196 		result = get_task_root(task, path);
197 		put_task_struct(task);
198 	}
199 	return result;
200 }
201 
202 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
203 {
204 	int res = 0;
205 	unsigned int len;
206 	struct mm_struct *mm = get_task_mm(task);
207 	if (!mm)
208 		goto out;
209 	if (!mm->arg_end)
210 		goto out_mm;	/* Shh! No looking before we're done */
211 
212  	len = mm->arg_end - mm->arg_start;
213 
214 	if (len > PAGE_SIZE)
215 		len = PAGE_SIZE;
216 
217 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
218 
219 	// If the nul at the end of args has been overwritten, then
220 	// assume application is using setproctitle(3).
221 	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
222 		len = strnlen(buffer, res);
223 		if (len < res) {
224 		    res = len;
225 		} else {
226 			len = mm->env_end - mm->env_start;
227 			if (len > PAGE_SIZE - res)
228 				len = PAGE_SIZE - res;
229 			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
230 			res = strnlen(buffer, res);
231 		}
232 	}
233 out_mm:
234 	mmput(mm);
235 out:
236 	return res;
237 }
238 
239 static int proc_pid_auxv(struct task_struct *task, char *buffer)
240 {
241 	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
242 	int res = PTR_ERR(mm);
243 	if (mm && !IS_ERR(mm)) {
244 		unsigned int nwords = 0;
245 		do {
246 			nwords += 2;
247 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
248 		res = nwords * sizeof(mm->saved_auxv[0]);
249 		if (res > PAGE_SIZE)
250 			res = PAGE_SIZE;
251 		memcpy(buffer, mm->saved_auxv, res);
252 		mmput(mm);
253 	}
254 	return res;
255 }
256 
257 
258 #ifdef CONFIG_KALLSYMS
259 /*
260  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
261  * Returns the resolved symbol.  If that fails, simply return the address.
262  */
263 static int proc_pid_wchan(struct task_struct *task, char *buffer)
264 {
265 	unsigned long wchan;
266 	char symname[KSYM_NAME_LEN];
267 
268 	wchan = get_wchan(task);
269 
270 	if (lookup_symbol_name(wchan, symname) < 0)
271 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
272 			return 0;
273 		else
274 			return sprintf(buffer, "%lu", wchan);
275 	else
276 		return sprintf(buffer, "%s", symname);
277 }
278 #endif /* CONFIG_KALLSYMS */
279 
280 static int lock_trace(struct task_struct *task)
281 {
282 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
283 	if (err)
284 		return err;
285 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
286 		mutex_unlock(&task->signal->cred_guard_mutex);
287 		return -EPERM;
288 	}
289 	return 0;
290 }
291 
292 static void unlock_trace(struct task_struct *task)
293 {
294 	mutex_unlock(&task->signal->cred_guard_mutex);
295 }
296 
297 #ifdef CONFIG_STACKTRACE
298 
299 #define MAX_STACK_TRACE_DEPTH	64
300 
301 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
302 			  struct pid *pid, struct task_struct *task)
303 {
304 	struct stack_trace trace;
305 	unsigned long *entries;
306 	int err;
307 	int i;
308 
309 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
310 	if (!entries)
311 		return -ENOMEM;
312 
313 	trace.nr_entries	= 0;
314 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
315 	trace.entries		= entries;
316 	trace.skip		= 0;
317 
318 	err = lock_trace(task);
319 	if (!err) {
320 		save_stack_trace_tsk(task, &trace);
321 
322 		for (i = 0; i < trace.nr_entries; i++) {
323 			seq_printf(m, "[<%pK>] %pS\n",
324 				   (void *)entries[i], (void *)entries[i]);
325 		}
326 		unlock_trace(task);
327 	}
328 	kfree(entries);
329 
330 	return err;
331 }
332 #endif
333 
334 #ifdef CONFIG_SCHEDSTATS
335 /*
336  * Provides /proc/PID/schedstat
337  */
338 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
339 {
340 	return sprintf(buffer, "%llu %llu %lu\n",
341 			(unsigned long long)task->se.sum_exec_runtime,
342 			(unsigned long long)task->sched_info.run_delay,
343 			task->sched_info.pcount);
344 }
345 #endif
346 
347 #ifdef CONFIG_LATENCYTOP
348 static int lstats_show_proc(struct seq_file *m, void *v)
349 {
350 	int i;
351 	struct inode *inode = m->private;
352 	struct task_struct *task = get_proc_task(inode);
353 
354 	if (!task)
355 		return -ESRCH;
356 	seq_puts(m, "Latency Top version : v0.1\n");
357 	for (i = 0; i < 32; i++) {
358 		struct latency_record *lr = &task->latency_record[i];
359 		if (lr->backtrace[0]) {
360 			int q;
361 			seq_printf(m, "%i %li %li",
362 				   lr->count, lr->time, lr->max);
363 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
364 				unsigned long bt = lr->backtrace[q];
365 				if (!bt)
366 					break;
367 				if (bt == ULONG_MAX)
368 					break;
369 				seq_printf(m, " %ps", (void *)bt);
370 			}
371 			seq_putc(m, '\n');
372 		}
373 
374 	}
375 	put_task_struct(task);
376 	return 0;
377 }
378 
379 static int lstats_open(struct inode *inode, struct file *file)
380 {
381 	return single_open(file, lstats_show_proc, inode);
382 }
383 
384 static ssize_t lstats_write(struct file *file, const char __user *buf,
385 			    size_t count, loff_t *offs)
386 {
387 	struct task_struct *task = get_proc_task(file_inode(file));
388 
389 	if (!task)
390 		return -ESRCH;
391 	clear_all_latency_tracing(task);
392 	put_task_struct(task);
393 
394 	return count;
395 }
396 
397 static const struct file_operations proc_lstats_operations = {
398 	.open		= lstats_open,
399 	.read		= seq_read,
400 	.write		= lstats_write,
401 	.llseek		= seq_lseek,
402 	.release	= single_release,
403 };
404 
405 #endif
406 
407 static int proc_oom_score(struct task_struct *task, char *buffer)
408 {
409 	unsigned long totalpages = totalram_pages + total_swap_pages;
410 	unsigned long points = 0;
411 
412 	read_lock(&tasklist_lock);
413 	if (pid_alive(task))
414 		points = oom_badness(task, NULL, NULL, totalpages) *
415 						1000 / totalpages;
416 	read_unlock(&tasklist_lock);
417 	return sprintf(buffer, "%lu\n", points);
418 }
419 
420 struct limit_names {
421 	char *name;
422 	char *unit;
423 };
424 
425 static const struct limit_names lnames[RLIM_NLIMITS] = {
426 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
427 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
428 	[RLIMIT_DATA] = {"Max data size", "bytes"},
429 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
430 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
431 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
432 	[RLIMIT_NPROC] = {"Max processes", "processes"},
433 	[RLIMIT_NOFILE] = {"Max open files", "files"},
434 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
435 	[RLIMIT_AS] = {"Max address space", "bytes"},
436 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
437 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
438 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
439 	[RLIMIT_NICE] = {"Max nice priority", NULL},
440 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
441 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
442 };
443 
444 /* Display limits for a process */
445 static int proc_pid_limits(struct task_struct *task, char *buffer)
446 {
447 	unsigned int i;
448 	int count = 0;
449 	unsigned long flags;
450 	char *bufptr = buffer;
451 
452 	struct rlimit rlim[RLIM_NLIMITS];
453 
454 	if (!lock_task_sighand(task, &flags))
455 		return 0;
456 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
457 	unlock_task_sighand(task, &flags);
458 
459 	/*
460 	 * print the file header
461 	 */
462 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
463 			"Limit", "Soft Limit", "Hard Limit", "Units");
464 
465 	for (i = 0; i < RLIM_NLIMITS; i++) {
466 		if (rlim[i].rlim_cur == RLIM_INFINITY)
467 			count += sprintf(&bufptr[count], "%-25s %-20s ",
468 					 lnames[i].name, "unlimited");
469 		else
470 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
471 					 lnames[i].name, rlim[i].rlim_cur);
472 
473 		if (rlim[i].rlim_max == RLIM_INFINITY)
474 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
475 		else
476 			count += sprintf(&bufptr[count], "%-20lu ",
477 					 rlim[i].rlim_max);
478 
479 		if (lnames[i].unit)
480 			count += sprintf(&bufptr[count], "%-10s\n",
481 					 lnames[i].unit);
482 		else
483 			count += sprintf(&bufptr[count], "\n");
484 	}
485 
486 	return count;
487 }
488 
489 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
490 static int proc_pid_syscall(struct task_struct *task, char *buffer)
491 {
492 	long nr;
493 	unsigned long args[6], sp, pc;
494 	int res = lock_trace(task);
495 	if (res)
496 		return res;
497 
498 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
499 		res = sprintf(buffer, "running\n");
500 	else if (nr < 0)
501 		res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
502 	else
503 		res = sprintf(buffer,
504 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
505 		       nr,
506 		       args[0], args[1], args[2], args[3], args[4], args[5],
507 		       sp, pc);
508 	unlock_trace(task);
509 	return res;
510 }
511 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
512 
513 /************************************************************************/
514 /*                       Here the fs part begins                        */
515 /************************************************************************/
516 
517 /* permission checks */
518 static int proc_fd_access_allowed(struct inode *inode)
519 {
520 	struct task_struct *task;
521 	int allowed = 0;
522 	/* Allow access to a task's file descriptors if it is us or we
523 	 * may use ptrace attach to the process and find out that
524 	 * information.
525 	 */
526 	task = get_proc_task(inode);
527 	if (task) {
528 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
529 		put_task_struct(task);
530 	}
531 	return allowed;
532 }
533 
534 int proc_setattr(struct dentry *dentry, struct iattr *attr)
535 {
536 	int error;
537 	struct inode *inode = dentry->d_inode;
538 
539 	if (attr->ia_valid & ATTR_MODE)
540 		return -EPERM;
541 
542 	error = inode_change_ok(inode, attr);
543 	if (error)
544 		return error;
545 
546 	setattr_copy(inode, attr);
547 	mark_inode_dirty(inode);
548 	return 0;
549 }
550 
551 /*
552  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
553  * or euid/egid (for hide_pid_min=2)?
554  */
555 static bool has_pid_permissions(struct pid_namespace *pid,
556 				 struct task_struct *task,
557 				 int hide_pid_min)
558 {
559 	if (pid->hide_pid < hide_pid_min)
560 		return true;
561 	if (in_group_p(pid->pid_gid))
562 		return true;
563 	return ptrace_may_access(task, PTRACE_MODE_READ);
564 }
565 
566 
567 static int proc_pid_permission(struct inode *inode, int mask)
568 {
569 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
570 	struct task_struct *task;
571 	bool has_perms;
572 
573 	task = get_proc_task(inode);
574 	if (!task)
575 		return -ESRCH;
576 	has_perms = has_pid_permissions(pid, task, 1);
577 	put_task_struct(task);
578 
579 	if (!has_perms) {
580 		if (pid->hide_pid == 2) {
581 			/*
582 			 * Let's make getdents(), stat(), and open()
583 			 * consistent with each other.  If a process
584 			 * may not stat() a file, it shouldn't be seen
585 			 * in procfs at all.
586 			 */
587 			return -ENOENT;
588 		}
589 
590 		return -EPERM;
591 	}
592 	return generic_permission(inode, mask);
593 }
594 
595 
596 
597 static const struct inode_operations proc_def_inode_operations = {
598 	.setattr	= proc_setattr,
599 };
600 
601 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
602 
603 static ssize_t proc_info_read(struct file * file, char __user * buf,
604 			  size_t count, loff_t *ppos)
605 {
606 	struct inode * inode = file_inode(file);
607 	unsigned long page;
608 	ssize_t length;
609 	struct task_struct *task = get_proc_task(inode);
610 
611 	length = -ESRCH;
612 	if (!task)
613 		goto out_no_task;
614 
615 	if (count > PROC_BLOCK_SIZE)
616 		count = PROC_BLOCK_SIZE;
617 
618 	length = -ENOMEM;
619 	if (!(page = __get_free_page(GFP_TEMPORARY)))
620 		goto out;
621 
622 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
623 
624 	if (length >= 0)
625 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
626 	free_page(page);
627 out:
628 	put_task_struct(task);
629 out_no_task:
630 	return length;
631 }
632 
633 static const struct file_operations proc_info_file_operations = {
634 	.read		= proc_info_read,
635 	.llseek		= generic_file_llseek,
636 };
637 
638 static int proc_single_show(struct seq_file *m, void *v)
639 {
640 	struct inode *inode = m->private;
641 	struct pid_namespace *ns;
642 	struct pid *pid;
643 	struct task_struct *task;
644 	int ret;
645 
646 	ns = inode->i_sb->s_fs_info;
647 	pid = proc_pid(inode);
648 	task = get_pid_task(pid, PIDTYPE_PID);
649 	if (!task)
650 		return -ESRCH;
651 
652 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
653 
654 	put_task_struct(task);
655 	return ret;
656 }
657 
658 static int proc_single_open(struct inode *inode, struct file *filp)
659 {
660 	return single_open(filp, proc_single_show, inode);
661 }
662 
663 static const struct file_operations proc_single_file_operations = {
664 	.open		= proc_single_open,
665 	.read		= seq_read,
666 	.llseek		= seq_lseek,
667 	.release	= single_release,
668 };
669 
670 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
671 {
672 	struct task_struct *task = get_proc_task(file_inode(file));
673 	struct mm_struct *mm;
674 
675 	if (!task)
676 		return -ESRCH;
677 
678 	mm = mm_access(task, mode);
679 	put_task_struct(task);
680 
681 	if (IS_ERR(mm))
682 		return PTR_ERR(mm);
683 
684 	if (mm) {
685 		/* ensure this mm_struct can't be freed */
686 		atomic_inc(&mm->mm_count);
687 		/* but do not pin its memory */
688 		mmput(mm);
689 	}
690 
691 	file->private_data = mm;
692 
693 	return 0;
694 }
695 
696 static int mem_open(struct inode *inode, struct file *file)
697 {
698 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
699 
700 	/* OK to pass negative loff_t, we can catch out-of-range */
701 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
702 
703 	return ret;
704 }
705 
706 static ssize_t mem_rw(struct file *file, char __user *buf,
707 			size_t count, loff_t *ppos, int write)
708 {
709 	struct mm_struct *mm = file->private_data;
710 	unsigned long addr = *ppos;
711 	ssize_t copied;
712 	char *page;
713 
714 	if (!mm)
715 		return 0;
716 
717 	page = (char *)__get_free_page(GFP_TEMPORARY);
718 	if (!page)
719 		return -ENOMEM;
720 
721 	copied = 0;
722 	if (!atomic_inc_not_zero(&mm->mm_users))
723 		goto free;
724 
725 	while (count > 0) {
726 		int this_len = min_t(int, count, PAGE_SIZE);
727 
728 		if (write && copy_from_user(page, buf, this_len)) {
729 			copied = -EFAULT;
730 			break;
731 		}
732 
733 		this_len = access_remote_vm(mm, addr, page, this_len, write);
734 		if (!this_len) {
735 			if (!copied)
736 				copied = -EIO;
737 			break;
738 		}
739 
740 		if (!write && copy_to_user(buf, page, this_len)) {
741 			copied = -EFAULT;
742 			break;
743 		}
744 
745 		buf += this_len;
746 		addr += this_len;
747 		copied += this_len;
748 		count -= this_len;
749 	}
750 	*ppos = addr;
751 
752 	mmput(mm);
753 free:
754 	free_page((unsigned long) page);
755 	return copied;
756 }
757 
758 static ssize_t mem_read(struct file *file, char __user *buf,
759 			size_t count, loff_t *ppos)
760 {
761 	return mem_rw(file, buf, count, ppos, 0);
762 }
763 
764 static ssize_t mem_write(struct file *file, const char __user *buf,
765 			 size_t count, loff_t *ppos)
766 {
767 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
768 }
769 
770 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
771 {
772 	switch (orig) {
773 	case 0:
774 		file->f_pos = offset;
775 		break;
776 	case 1:
777 		file->f_pos += offset;
778 		break;
779 	default:
780 		return -EINVAL;
781 	}
782 	force_successful_syscall_return();
783 	return file->f_pos;
784 }
785 
786 static int mem_release(struct inode *inode, struct file *file)
787 {
788 	struct mm_struct *mm = file->private_data;
789 	if (mm)
790 		mmdrop(mm);
791 	return 0;
792 }
793 
794 static const struct file_operations proc_mem_operations = {
795 	.llseek		= mem_lseek,
796 	.read		= mem_read,
797 	.write		= mem_write,
798 	.open		= mem_open,
799 	.release	= mem_release,
800 };
801 
802 static int environ_open(struct inode *inode, struct file *file)
803 {
804 	return __mem_open(inode, file, PTRACE_MODE_READ);
805 }
806 
807 static ssize_t environ_read(struct file *file, char __user *buf,
808 			size_t count, loff_t *ppos)
809 {
810 	char *page;
811 	unsigned long src = *ppos;
812 	int ret = 0;
813 	struct mm_struct *mm = file->private_data;
814 
815 	if (!mm)
816 		return 0;
817 
818 	page = (char *)__get_free_page(GFP_TEMPORARY);
819 	if (!page)
820 		return -ENOMEM;
821 
822 	ret = 0;
823 	if (!atomic_inc_not_zero(&mm->mm_users))
824 		goto free;
825 	while (count > 0) {
826 		size_t this_len, max_len;
827 		int retval;
828 
829 		if (src >= (mm->env_end - mm->env_start))
830 			break;
831 
832 		this_len = mm->env_end - (mm->env_start + src);
833 
834 		max_len = min_t(size_t, PAGE_SIZE, count);
835 		this_len = min(max_len, this_len);
836 
837 		retval = access_remote_vm(mm, (mm->env_start + src),
838 			page, this_len, 0);
839 
840 		if (retval <= 0) {
841 			ret = retval;
842 			break;
843 		}
844 
845 		if (copy_to_user(buf, page, retval)) {
846 			ret = -EFAULT;
847 			break;
848 		}
849 
850 		ret += retval;
851 		src += retval;
852 		buf += retval;
853 		count -= retval;
854 	}
855 	*ppos = src;
856 	mmput(mm);
857 
858 free:
859 	free_page((unsigned long) page);
860 	return ret;
861 }
862 
863 static const struct file_operations proc_environ_operations = {
864 	.open		= environ_open,
865 	.read		= environ_read,
866 	.llseek		= generic_file_llseek,
867 	.release	= mem_release,
868 };
869 
870 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
871 			    loff_t *ppos)
872 {
873 	struct task_struct *task = get_proc_task(file_inode(file));
874 	char buffer[PROC_NUMBUF];
875 	int oom_adj = OOM_ADJUST_MIN;
876 	size_t len;
877 	unsigned long flags;
878 
879 	if (!task)
880 		return -ESRCH;
881 	if (lock_task_sighand(task, &flags)) {
882 		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
883 			oom_adj = OOM_ADJUST_MAX;
884 		else
885 			oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
886 				  OOM_SCORE_ADJ_MAX;
887 		unlock_task_sighand(task, &flags);
888 	}
889 	put_task_struct(task);
890 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
891 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
892 }
893 
894 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
895 			     size_t count, loff_t *ppos)
896 {
897 	struct task_struct *task;
898 	char buffer[PROC_NUMBUF];
899 	int oom_adj;
900 	unsigned long flags;
901 	int err;
902 
903 	memset(buffer, 0, sizeof(buffer));
904 	if (count > sizeof(buffer) - 1)
905 		count = sizeof(buffer) - 1;
906 	if (copy_from_user(buffer, buf, count)) {
907 		err = -EFAULT;
908 		goto out;
909 	}
910 
911 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
912 	if (err)
913 		goto out;
914 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
915 	     oom_adj != OOM_DISABLE) {
916 		err = -EINVAL;
917 		goto out;
918 	}
919 
920 	task = get_proc_task(file_inode(file));
921 	if (!task) {
922 		err = -ESRCH;
923 		goto out;
924 	}
925 
926 	task_lock(task);
927 	if (!task->mm) {
928 		err = -EINVAL;
929 		goto err_task_lock;
930 	}
931 
932 	if (!lock_task_sighand(task, &flags)) {
933 		err = -ESRCH;
934 		goto err_task_lock;
935 	}
936 
937 	/*
938 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
939 	 * value is always attainable.
940 	 */
941 	if (oom_adj == OOM_ADJUST_MAX)
942 		oom_adj = OOM_SCORE_ADJ_MAX;
943 	else
944 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
945 
946 	if (oom_adj < task->signal->oom_score_adj &&
947 	    !capable(CAP_SYS_RESOURCE)) {
948 		err = -EACCES;
949 		goto err_sighand;
950 	}
951 
952 	/*
953 	 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
954 	 * /proc/pid/oom_score_adj instead.
955 	 */
956 	pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
957 		  current->comm, task_pid_nr(current), task_pid_nr(task),
958 		  task_pid_nr(task));
959 
960 	task->signal->oom_score_adj = oom_adj;
961 	trace_oom_score_adj_update(task);
962 err_sighand:
963 	unlock_task_sighand(task, &flags);
964 err_task_lock:
965 	task_unlock(task);
966 	put_task_struct(task);
967 out:
968 	return err < 0 ? err : count;
969 }
970 
971 static const struct file_operations proc_oom_adj_operations = {
972 	.read		= oom_adj_read,
973 	.write		= oom_adj_write,
974 	.llseek		= generic_file_llseek,
975 };
976 
977 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
978 					size_t count, loff_t *ppos)
979 {
980 	struct task_struct *task = get_proc_task(file_inode(file));
981 	char buffer[PROC_NUMBUF];
982 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
983 	unsigned long flags;
984 	size_t len;
985 
986 	if (!task)
987 		return -ESRCH;
988 	if (lock_task_sighand(task, &flags)) {
989 		oom_score_adj = task->signal->oom_score_adj;
990 		unlock_task_sighand(task, &flags);
991 	}
992 	put_task_struct(task);
993 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
994 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
995 }
996 
997 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
998 					size_t count, loff_t *ppos)
999 {
1000 	struct task_struct *task;
1001 	char buffer[PROC_NUMBUF];
1002 	unsigned long flags;
1003 	int oom_score_adj;
1004 	int err;
1005 
1006 	memset(buffer, 0, sizeof(buffer));
1007 	if (count > sizeof(buffer) - 1)
1008 		count = sizeof(buffer) - 1;
1009 	if (copy_from_user(buffer, buf, count)) {
1010 		err = -EFAULT;
1011 		goto out;
1012 	}
1013 
1014 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1015 	if (err)
1016 		goto out;
1017 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1018 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1019 		err = -EINVAL;
1020 		goto out;
1021 	}
1022 
1023 	task = get_proc_task(file_inode(file));
1024 	if (!task) {
1025 		err = -ESRCH;
1026 		goto out;
1027 	}
1028 
1029 	task_lock(task);
1030 	if (!task->mm) {
1031 		err = -EINVAL;
1032 		goto err_task_lock;
1033 	}
1034 
1035 	if (!lock_task_sighand(task, &flags)) {
1036 		err = -ESRCH;
1037 		goto err_task_lock;
1038 	}
1039 
1040 	if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1041 			!capable(CAP_SYS_RESOURCE)) {
1042 		err = -EACCES;
1043 		goto err_sighand;
1044 	}
1045 
1046 	task->signal->oom_score_adj = (short)oom_score_adj;
1047 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1048 		task->signal->oom_score_adj_min = (short)oom_score_adj;
1049 	trace_oom_score_adj_update(task);
1050 
1051 err_sighand:
1052 	unlock_task_sighand(task, &flags);
1053 err_task_lock:
1054 	task_unlock(task);
1055 	put_task_struct(task);
1056 out:
1057 	return err < 0 ? err : count;
1058 }
1059 
1060 static const struct file_operations proc_oom_score_adj_operations = {
1061 	.read		= oom_score_adj_read,
1062 	.write		= oom_score_adj_write,
1063 	.llseek		= default_llseek,
1064 };
1065 
1066 #ifdef CONFIG_AUDITSYSCALL
1067 #define TMPBUFLEN 21
1068 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1069 				  size_t count, loff_t *ppos)
1070 {
1071 	struct inode * inode = file_inode(file);
1072 	struct task_struct *task = get_proc_task(inode);
1073 	ssize_t length;
1074 	char tmpbuf[TMPBUFLEN];
1075 
1076 	if (!task)
1077 		return -ESRCH;
1078 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1079 			   from_kuid(file->f_cred->user_ns,
1080 				     audit_get_loginuid(task)));
1081 	put_task_struct(task);
1082 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1083 }
1084 
1085 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1086 				   size_t count, loff_t *ppos)
1087 {
1088 	struct inode * inode = file_inode(file);
1089 	char *page, *tmp;
1090 	ssize_t length;
1091 	uid_t loginuid;
1092 	kuid_t kloginuid;
1093 
1094 	rcu_read_lock();
1095 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1096 		rcu_read_unlock();
1097 		return -EPERM;
1098 	}
1099 	rcu_read_unlock();
1100 
1101 	if (count >= PAGE_SIZE)
1102 		count = PAGE_SIZE - 1;
1103 
1104 	if (*ppos != 0) {
1105 		/* No partial writes. */
1106 		return -EINVAL;
1107 	}
1108 	page = (char*)__get_free_page(GFP_TEMPORARY);
1109 	if (!page)
1110 		return -ENOMEM;
1111 	length = -EFAULT;
1112 	if (copy_from_user(page, buf, count))
1113 		goto out_free_page;
1114 
1115 	page[count] = '\0';
1116 	loginuid = simple_strtoul(page, &tmp, 10);
1117 	if (tmp == page) {
1118 		length = -EINVAL;
1119 		goto out_free_page;
1120 
1121 	}
1122 	kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1123 	if (!uid_valid(kloginuid)) {
1124 		length = -EINVAL;
1125 		goto out_free_page;
1126 	}
1127 
1128 	length = audit_set_loginuid(kloginuid);
1129 	if (likely(length == 0))
1130 		length = count;
1131 
1132 out_free_page:
1133 	free_page((unsigned long) page);
1134 	return length;
1135 }
1136 
1137 static const struct file_operations proc_loginuid_operations = {
1138 	.read		= proc_loginuid_read,
1139 	.write		= proc_loginuid_write,
1140 	.llseek		= generic_file_llseek,
1141 };
1142 
1143 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1144 				  size_t count, loff_t *ppos)
1145 {
1146 	struct inode * inode = file_inode(file);
1147 	struct task_struct *task = get_proc_task(inode);
1148 	ssize_t length;
1149 	char tmpbuf[TMPBUFLEN];
1150 
1151 	if (!task)
1152 		return -ESRCH;
1153 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1154 				audit_get_sessionid(task));
1155 	put_task_struct(task);
1156 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1157 }
1158 
1159 static const struct file_operations proc_sessionid_operations = {
1160 	.read		= proc_sessionid_read,
1161 	.llseek		= generic_file_llseek,
1162 };
1163 #endif
1164 
1165 #ifdef CONFIG_FAULT_INJECTION
1166 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1167 				      size_t count, loff_t *ppos)
1168 {
1169 	struct task_struct *task = get_proc_task(file_inode(file));
1170 	char buffer[PROC_NUMBUF];
1171 	size_t len;
1172 	int make_it_fail;
1173 
1174 	if (!task)
1175 		return -ESRCH;
1176 	make_it_fail = task->make_it_fail;
1177 	put_task_struct(task);
1178 
1179 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1180 
1181 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1182 }
1183 
1184 static ssize_t proc_fault_inject_write(struct file * file,
1185 			const char __user * buf, size_t count, loff_t *ppos)
1186 {
1187 	struct task_struct *task;
1188 	char buffer[PROC_NUMBUF], *end;
1189 	int make_it_fail;
1190 
1191 	if (!capable(CAP_SYS_RESOURCE))
1192 		return -EPERM;
1193 	memset(buffer, 0, sizeof(buffer));
1194 	if (count > sizeof(buffer) - 1)
1195 		count = sizeof(buffer) - 1;
1196 	if (copy_from_user(buffer, buf, count))
1197 		return -EFAULT;
1198 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1199 	if (*end)
1200 		return -EINVAL;
1201 	task = get_proc_task(file_inode(file));
1202 	if (!task)
1203 		return -ESRCH;
1204 	task->make_it_fail = make_it_fail;
1205 	put_task_struct(task);
1206 
1207 	return count;
1208 }
1209 
1210 static const struct file_operations proc_fault_inject_operations = {
1211 	.read		= proc_fault_inject_read,
1212 	.write		= proc_fault_inject_write,
1213 	.llseek		= generic_file_llseek,
1214 };
1215 #endif
1216 
1217 
1218 #ifdef CONFIG_SCHED_DEBUG
1219 /*
1220  * Print out various scheduling related per-task fields:
1221  */
1222 static int sched_show(struct seq_file *m, void *v)
1223 {
1224 	struct inode *inode = m->private;
1225 	struct task_struct *p;
1226 
1227 	p = get_proc_task(inode);
1228 	if (!p)
1229 		return -ESRCH;
1230 	proc_sched_show_task(p, m);
1231 
1232 	put_task_struct(p);
1233 
1234 	return 0;
1235 }
1236 
1237 static ssize_t
1238 sched_write(struct file *file, const char __user *buf,
1239 	    size_t count, loff_t *offset)
1240 {
1241 	struct inode *inode = file_inode(file);
1242 	struct task_struct *p;
1243 
1244 	p = get_proc_task(inode);
1245 	if (!p)
1246 		return -ESRCH;
1247 	proc_sched_set_task(p);
1248 
1249 	put_task_struct(p);
1250 
1251 	return count;
1252 }
1253 
1254 static int sched_open(struct inode *inode, struct file *filp)
1255 {
1256 	return single_open(filp, sched_show, inode);
1257 }
1258 
1259 static const struct file_operations proc_pid_sched_operations = {
1260 	.open		= sched_open,
1261 	.read		= seq_read,
1262 	.write		= sched_write,
1263 	.llseek		= seq_lseek,
1264 	.release	= single_release,
1265 };
1266 
1267 #endif
1268 
1269 #ifdef CONFIG_SCHED_AUTOGROUP
1270 /*
1271  * Print out autogroup related information:
1272  */
1273 static int sched_autogroup_show(struct seq_file *m, void *v)
1274 {
1275 	struct inode *inode = m->private;
1276 	struct task_struct *p;
1277 
1278 	p = get_proc_task(inode);
1279 	if (!p)
1280 		return -ESRCH;
1281 	proc_sched_autogroup_show_task(p, m);
1282 
1283 	put_task_struct(p);
1284 
1285 	return 0;
1286 }
1287 
1288 static ssize_t
1289 sched_autogroup_write(struct file *file, const char __user *buf,
1290 	    size_t count, loff_t *offset)
1291 {
1292 	struct inode *inode = file_inode(file);
1293 	struct task_struct *p;
1294 	char buffer[PROC_NUMBUF];
1295 	int nice;
1296 	int err;
1297 
1298 	memset(buffer, 0, sizeof(buffer));
1299 	if (count > sizeof(buffer) - 1)
1300 		count = sizeof(buffer) - 1;
1301 	if (copy_from_user(buffer, buf, count))
1302 		return -EFAULT;
1303 
1304 	err = kstrtoint(strstrip(buffer), 0, &nice);
1305 	if (err < 0)
1306 		return err;
1307 
1308 	p = get_proc_task(inode);
1309 	if (!p)
1310 		return -ESRCH;
1311 
1312 	err = proc_sched_autogroup_set_nice(p, nice);
1313 	if (err)
1314 		count = err;
1315 
1316 	put_task_struct(p);
1317 
1318 	return count;
1319 }
1320 
1321 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1322 {
1323 	int ret;
1324 
1325 	ret = single_open(filp, sched_autogroup_show, NULL);
1326 	if (!ret) {
1327 		struct seq_file *m = filp->private_data;
1328 
1329 		m->private = inode;
1330 	}
1331 	return ret;
1332 }
1333 
1334 static const struct file_operations proc_pid_sched_autogroup_operations = {
1335 	.open		= sched_autogroup_open,
1336 	.read		= seq_read,
1337 	.write		= sched_autogroup_write,
1338 	.llseek		= seq_lseek,
1339 	.release	= single_release,
1340 };
1341 
1342 #endif /* CONFIG_SCHED_AUTOGROUP */
1343 
1344 static ssize_t comm_write(struct file *file, const char __user *buf,
1345 				size_t count, loff_t *offset)
1346 {
1347 	struct inode *inode = file_inode(file);
1348 	struct task_struct *p;
1349 	char buffer[TASK_COMM_LEN];
1350 
1351 	memset(buffer, 0, sizeof(buffer));
1352 	if (count > sizeof(buffer) - 1)
1353 		count = sizeof(buffer) - 1;
1354 	if (copy_from_user(buffer, buf, count))
1355 		return -EFAULT;
1356 
1357 	p = get_proc_task(inode);
1358 	if (!p)
1359 		return -ESRCH;
1360 
1361 	if (same_thread_group(current, p))
1362 		set_task_comm(p, buffer);
1363 	else
1364 		count = -EINVAL;
1365 
1366 	put_task_struct(p);
1367 
1368 	return count;
1369 }
1370 
1371 static int comm_show(struct seq_file *m, void *v)
1372 {
1373 	struct inode *inode = m->private;
1374 	struct task_struct *p;
1375 
1376 	p = get_proc_task(inode);
1377 	if (!p)
1378 		return -ESRCH;
1379 
1380 	task_lock(p);
1381 	seq_printf(m, "%s\n", p->comm);
1382 	task_unlock(p);
1383 
1384 	put_task_struct(p);
1385 
1386 	return 0;
1387 }
1388 
1389 static int comm_open(struct inode *inode, struct file *filp)
1390 {
1391 	return single_open(filp, comm_show, inode);
1392 }
1393 
1394 static const struct file_operations proc_pid_set_comm_operations = {
1395 	.open		= comm_open,
1396 	.read		= seq_read,
1397 	.write		= comm_write,
1398 	.llseek		= seq_lseek,
1399 	.release	= single_release,
1400 };
1401 
1402 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1403 {
1404 	struct task_struct *task;
1405 	struct mm_struct *mm;
1406 	struct file *exe_file;
1407 
1408 	task = get_proc_task(dentry->d_inode);
1409 	if (!task)
1410 		return -ENOENT;
1411 	mm = get_task_mm(task);
1412 	put_task_struct(task);
1413 	if (!mm)
1414 		return -ENOENT;
1415 	exe_file = get_mm_exe_file(mm);
1416 	mmput(mm);
1417 	if (exe_file) {
1418 		*exe_path = exe_file->f_path;
1419 		path_get(&exe_file->f_path);
1420 		fput(exe_file);
1421 		return 0;
1422 	} else
1423 		return -ENOENT;
1424 }
1425 
1426 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1427 {
1428 	struct inode *inode = dentry->d_inode;
1429 	struct path path;
1430 	int error = -EACCES;
1431 
1432 	/* Are we allowed to snoop on the tasks file descriptors? */
1433 	if (!proc_fd_access_allowed(inode))
1434 		goto out;
1435 
1436 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1437 	if (error)
1438 		goto out;
1439 
1440 	nd_jump_link(nd, &path);
1441 	return NULL;
1442 out:
1443 	return ERR_PTR(error);
1444 }
1445 
1446 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1447 {
1448 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1449 	char *pathname;
1450 	int len;
1451 
1452 	if (!tmp)
1453 		return -ENOMEM;
1454 
1455 	pathname = d_path(path, tmp, PAGE_SIZE);
1456 	len = PTR_ERR(pathname);
1457 	if (IS_ERR(pathname))
1458 		goto out;
1459 	len = tmp + PAGE_SIZE - 1 - pathname;
1460 
1461 	if (len > buflen)
1462 		len = buflen;
1463 	if (copy_to_user(buffer, pathname, len))
1464 		len = -EFAULT;
1465  out:
1466 	free_page((unsigned long)tmp);
1467 	return len;
1468 }
1469 
1470 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1471 {
1472 	int error = -EACCES;
1473 	struct inode *inode = dentry->d_inode;
1474 	struct path path;
1475 
1476 	/* Are we allowed to snoop on the tasks file descriptors? */
1477 	if (!proc_fd_access_allowed(inode))
1478 		goto out;
1479 
1480 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1481 	if (error)
1482 		goto out;
1483 
1484 	error = do_proc_readlink(&path, buffer, buflen);
1485 	path_put(&path);
1486 out:
1487 	return error;
1488 }
1489 
1490 const struct inode_operations proc_pid_link_inode_operations = {
1491 	.readlink	= proc_pid_readlink,
1492 	.follow_link	= proc_pid_follow_link,
1493 	.setattr	= proc_setattr,
1494 };
1495 
1496 
1497 /* building an inode */
1498 
1499 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1500 {
1501 	struct inode * inode;
1502 	struct proc_inode *ei;
1503 	const struct cred *cred;
1504 
1505 	/* We need a new inode */
1506 
1507 	inode = new_inode(sb);
1508 	if (!inode)
1509 		goto out;
1510 
1511 	/* Common stuff */
1512 	ei = PROC_I(inode);
1513 	inode->i_ino = get_next_ino();
1514 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1515 	inode->i_op = &proc_def_inode_operations;
1516 
1517 	/*
1518 	 * grab the reference to task.
1519 	 */
1520 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1521 	if (!ei->pid)
1522 		goto out_unlock;
1523 
1524 	if (task_dumpable(task)) {
1525 		rcu_read_lock();
1526 		cred = __task_cred(task);
1527 		inode->i_uid = cred->euid;
1528 		inode->i_gid = cred->egid;
1529 		rcu_read_unlock();
1530 	}
1531 	security_task_to_inode(task, inode);
1532 
1533 out:
1534 	return inode;
1535 
1536 out_unlock:
1537 	iput(inode);
1538 	return NULL;
1539 }
1540 
1541 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1542 {
1543 	struct inode *inode = dentry->d_inode;
1544 	struct task_struct *task;
1545 	const struct cred *cred;
1546 	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1547 
1548 	generic_fillattr(inode, stat);
1549 
1550 	rcu_read_lock();
1551 	stat->uid = GLOBAL_ROOT_UID;
1552 	stat->gid = GLOBAL_ROOT_GID;
1553 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1554 	if (task) {
1555 		if (!has_pid_permissions(pid, task, 2)) {
1556 			rcu_read_unlock();
1557 			/*
1558 			 * This doesn't prevent learning whether PID exists,
1559 			 * it only makes getattr() consistent with readdir().
1560 			 */
1561 			return -ENOENT;
1562 		}
1563 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1564 		    task_dumpable(task)) {
1565 			cred = __task_cred(task);
1566 			stat->uid = cred->euid;
1567 			stat->gid = cred->egid;
1568 		}
1569 	}
1570 	rcu_read_unlock();
1571 	return 0;
1572 }
1573 
1574 /* dentry stuff */
1575 
1576 /*
1577  *	Exceptional case: normally we are not allowed to unhash a busy
1578  * directory. In this case, however, we can do it - no aliasing problems
1579  * due to the way we treat inodes.
1580  *
1581  * Rewrite the inode's ownerships here because the owning task may have
1582  * performed a setuid(), etc.
1583  *
1584  * Before the /proc/pid/status file was created the only way to read
1585  * the effective uid of a /process was to stat /proc/pid.  Reading
1586  * /proc/pid/status is slow enough that procps and other packages
1587  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1588  * made this apply to all per process world readable and executable
1589  * directories.
1590  */
1591 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1592 {
1593 	struct inode *inode;
1594 	struct task_struct *task;
1595 	const struct cred *cred;
1596 
1597 	if (flags & LOOKUP_RCU)
1598 		return -ECHILD;
1599 
1600 	inode = dentry->d_inode;
1601 	task = get_proc_task(inode);
1602 
1603 	if (task) {
1604 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1605 		    task_dumpable(task)) {
1606 			rcu_read_lock();
1607 			cred = __task_cred(task);
1608 			inode->i_uid = cred->euid;
1609 			inode->i_gid = cred->egid;
1610 			rcu_read_unlock();
1611 		} else {
1612 			inode->i_uid = GLOBAL_ROOT_UID;
1613 			inode->i_gid = GLOBAL_ROOT_GID;
1614 		}
1615 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1616 		security_task_to_inode(task, inode);
1617 		put_task_struct(task);
1618 		return 1;
1619 	}
1620 	d_drop(dentry);
1621 	return 0;
1622 }
1623 
1624 const struct dentry_operations pid_dentry_operations =
1625 {
1626 	.d_revalidate	= pid_revalidate,
1627 	.d_delete	= pid_delete_dentry,
1628 };
1629 
1630 /* Lookups */
1631 
1632 /*
1633  * Fill a directory entry.
1634  *
1635  * If possible create the dcache entry and derive our inode number and
1636  * file type from dcache entry.
1637  *
1638  * Since all of the proc inode numbers are dynamically generated, the inode
1639  * numbers do not exist until the inode is cache.  This means creating the
1640  * the dcache entry in readdir is necessary to keep the inode numbers
1641  * reported by readdir in sync with the inode numbers reported
1642  * by stat.
1643  */
1644 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1645 	const char *name, int len,
1646 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1647 {
1648 	struct dentry *child, *dir = filp->f_path.dentry;
1649 	struct inode *inode;
1650 	struct qstr qname;
1651 	ino_t ino = 0;
1652 	unsigned type = DT_UNKNOWN;
1653 
1654 	qname.name = name;
1655 	qname.len  = len;
1656 	qname.hash = full_name_hash(name, len);
1657 
1658 	child = d_lookup(dir, &qname);
1659 	if (!child) {
1660 		struct dentry *new;
1661 		new = d_alloc(dir, &qname);
1662 		if (new) {
1663 			child = instantiate(dir->d_inode, new, task, ptr);
1664 			if (child)
1665 				dput(new);
1666 			else
1667 				child = new;
1668 		}
1669 	}
1670 	if (!child || IS_ERR(child) || !child->d_inode)
1671 		goto end_instantiate;
1672 	inode = child->d_inode;
1673 	if (inode) {
1674 		ino = inode->i_ino;
1675 		type = inode->i_mode >> 12;
1676 	}
1677 	dput(child);
1678 end_instantiate:
1679 	if (!ino)
1680 		ino = find_inode_number(dir, &qname);
1681 	if (!ino)
1682 		ino = 1;
1683 	return filldir(dirent, name, len, filp->f_pos, ino, type);
1684 }
1685 
1686 #ifdef CONFIG_CHECKPOINT_RESTORE
1687 
1688 /*
1689  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1690  * which represent vma start and end addresses.
1691  */
1692 static int dname_to_vma_addr(struct dentry *dentry,
1693 			     unsigned long *start, unsigned long *end)
1694 {
1695 	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1696 		return -EINVAL;
1697 
1698 	return 0;
1699 }
1700 
1701 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1702 {
1703 	unsigned long vm_start, vm_end;
1704 	bool exact_vma_exists = false;
1705 	struct mm_struct *mm = NULL;
1706 	struct task_struct *task;
1707 	const struct cred *cred;
1708 	struct inode *inode;
1709 	int status = 0;
1710 
1711 	if (flags & LOOKUP_RCU)
1712 		return -ECHILD;
1713 
1714 	if (!capable(CAP_SYS_ADMIN)) {
1715 		status = -EPERM;
1716 		goto out_notask;
1717 	}
1718 
1719 	inode = dentry->d_inode;
1720 	task = get_proc_task(inode);
1721 	if (!task)
1722 		goto out_notask;
1723 
1724 	mm = mm_access(task, PTRACE_MODE_READ);
1725 	if (IS_ERR_OR_NULL(mm))
1726 		goto out;
1727 
1728 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1729 		down_read(&mm->mmap_sem);
1730 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1731 		up_read(&mm->mmap_sem);
1732 	}
1733 
1734 	mmput(mm);
1735 
1736 	if (exact_vma_exists) {
1737 		if (task_dumpable(task)) {
1738 			rcu_read_lock();
1739 			cred = __task_cred(task);
1740 			inode->i_uid = cred->euid;
1741 			inode->i_gid = cred->egid;
1742 			rcu_read_unlock();
1743 		} else {
1744 			inode->i_uid = GLOBAL_ROOT_UID;
1745 			inode->i_gid = GLOBAL_ROOT_GID;
1746 		}
1747 		security_task_to_inode(task, inode);
1748 		status = 1;
1749 	}
1750 
1751 out:
1752 	put_task_struct(task);
1753 
1754 out_notask:
1755 	if (status <= 0)
1756 		d_drop(dentry);
1757 
1758 	return status;
1759 }
1760 
1761 static const struct dentry_operations tid_map_files_dentry_operations = {
1762 	.d_revalidate	= map_files_d_revalidate,
1763 	.d_delete	= pid_delete_dentry,
1764 };
1765 
1766 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1767 {
1768 	unsigned long vm_start, vm_end;
1769 	struct vm_area_struct *vma;
1770 	struct task_struct *task;
1771 	struct mm_struct *mm;
1772 	int rc;
1773 
1774 	rc = -ENOENT;
1775 	task = get_proc_task(dentry->d_inode);
1776 	if (!task)
1777 		goto out;
1778 
1779 	mm = get_task_mm(task);
1780 	put_task_struct(task);
1781 	if (!mm)
1782 		goto out;
1783 
1784 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1785 	if (rc)
1786 		goto out_mmput;
1787 
1788 	down_read(&mm->mmap_sem);
1789 	vma = find_exact_vma(mm, vm_start, vm_end);
1790 	if (vma && vma->vm_file) {
1791 		*path = vma->vm_file->f_path;
1792 		path_get(path);
1793 		rc = 0;
1794 	}
1795 	up_read(&mm->mmap_sem);
1796 
1797 out_mmput:
1798 	mmput(mm);
1799 out:
1800 	return rc;
1801 }
1802 
1803 struct map_files_info {
1804 	fmode_t		mode;
1805 	unsigned long	len;
1806 	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1807 };
1808 
1809 static struct dentry *
1810 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1811 			   struct task_struct *task, const void *ptr)
1812 {
1813 	fmode_t mode = (fmode_t)(unsigned long)ptr;
1814 	struct proc_inode *ei;
1815 	struct inode *inode;
1816 
1817 	inode = proc_pid_make_inode(dir->i_sb, task);
1818 	if (!inode)
1819 		return ERR_PTR(-ENOENT);
1820 
1821 	ei = PROC_I(inode);
1822 	ei->op.proc_get_link = proc_map_files_get_link;
1823 
1824 	inode->i_op = &proc_pid_link_inode_operations;
1825 	inode->i_size = 64;
1826 	inode->i_mode = S_IFLNK;
1827 
1828 	if (mode & FMODE_READ)
1829 		inode->i_mode |= S_IRUSR;
1830 	if (mode & FMODE_WRITE)
1831 		inode->i_mode |= S_IWUSR;
1832 
1833 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
1834 	d_add(dentry, inode);
1835 
1836 	return NULL;
1837 }
1838 
1839 static struct dentry *proc_map_files_lookup(struct inode *dir,
1840 		struct dentry *dentry, unsigned int flags)
1841 {
1842 	unsigned long vm_start, vm_end;
1843 	struct vm_area_struct *vma;
1844 	struct task_struct *task;
1845 	struct dentry *result;
1846 	struct mm_struct *mm;
1847 
1848 	result = ERR_PTR(-EPERM);
1849 	if (!capable(CAP_SYS_ADMIN))
1850 		goto out;
1851 
1852 	result = ERR_PTR(-ENOENT);
1853 	task = get_proc_task(dir);
1854 	if (!task)
1855 		goto out;
1856 
1857 	result = ERR_PTR(-EACCES);
1858 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
1859 		goto out_put_task;
1860 
1861 	result = ERR_PTR(-ENOENT);
1862 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
1863 		goto out_put_task;
1864 
1865 	mm = get_task_mm(task);
1866 	if (!mm)
1867 		goto out_put_task;
1868 
1869 	down_read(&mm->mmap_sem);
1870 	vma = find_exact_vma(mm, vm_start, vm_end);
1871 	if (!vma)
1872 		goto out_no_vma;
1873 
1874 	if (vma->vm_file)
1875 		result = proc_map_files_instantiate(dir, dentry, task,
1876 				(void *)(unsigned long)vma->vm_file->f_mode);
1877 
1878 out_no_vma:
1879 	up_read(&mm->mmap_sem);
1880 	mmput(mm);
1881 out_put_task:
1882 	put_task_struct(task);
1883 out:
1884 	return result;
1885 }
1886 
1887 static const struct inode_operations proc_map_files_inode_operations = {
1888 	.lookup		= proc_map_files_lookup,
1889 	.permission	= proc_fd_permission,
1890 	.setattr	= proc_setattr,
1891 };
1892 
1893 static int
1894 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir)
1895 {
1896 	struct dentry *dentry = filp->f_path.dentry;
1897 	struct inode *inode = dentry->d_inode;
1898 	struct vm_area_struct *vma;
1899 	struct task_struct *task;
1900 	struct mm_struct *mm;
1901 	ino_t ino;
1902 	int ret;
1903 
1904 	ret = -EPERM;
1905 	if (!capable(CAP_SYS_ADMIN))
1906 		goto out;
1907 
1908 	ret = -ENOENT;
1909 	task = get_proc_task(inode);
1910 	if (!task)
1911 		goto out;
1912 
1913 	ret = -EACCES;
1914 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
1915 		goto out_put_task;
1916 
1917 	ret = 0;
1918 	switch (filp->f_pos) {
1919 	case 0:
1920 		ino = inode->i_ino;
1921 		if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0)
1922 			goto out_put_task;
1923 		filp->f_pos++;
1924 	case 1:
1925 		ino = parent_ino(dentry);
1926 		if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1927 			goto out_put_task;
1928 		filp->f_pos++;
1929 	default:
1930 	{
1931 		unsigned long nr_files, pos, i;
1932 		struct flex_array *fa = NULL;
1933 		struct map_files_info info;
1934 		struct map_files_info *p;
1935 
1936 		mm = get_task_mm(task);
1937 		if (!mm)
1938 			goto out_put_task;
1939 		down_read(&mm->mmap_sem);
1940 
1941 		nr_files = 0;
1942 
1943 		/*
1944 		 * We need two passes here:
1945 		 *
1946 		 *  1) Collect vmas of mapped files with mmap_sem taken
1947 		 *  2) Release mmap_sem and instantiate entries
1948 		 *
1949 		 * otherwise we get lockdep complained, since filldir()
1950 		 * routine might require mmap_sem taken in might_fault().
1951 		 */
1952 
1953 		for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
1954 			if (vma->vm_file && ++pos > filp->f_pos)
1955 				nr_files++;
1956 		}
1957 
1958 		if (nr_files) {
1959 			fa = flex_array_alloc(sizeof(info), nr_files,
1960 						GFP_KERNEL);
1961 			if (!fa || flex_array_prealloc(fa, 0, nr_files,
1962 							GFP_KERNEL)) {
1963 				ret = -ENOMEM;
1964 				if (fa)
1965 					flex_array_free(fa);
1966 				up_read(&mm->mmap_sem);
1967 				mmput(mm);
1968 				goto out_put_task;
1969 			}
1970 			for (i = 0, vma = mm->mmap, pos = 2; vma;
1971 					vma = vma->vm_next) {
1972 				if (!vma->vm_file)
1973 					continue;
1974 				if (++pos <= filp->f_pos)
1975 					continue;
1976 
1977 				info.mode = vma->vm_file->f_mode;
1978 				info.len = snprintf(info.name,
1979 						sizeof(info.name), "%lx-%lx",
1980 						vma->vm_start, vma->vm_end);
1981 				if (flex_array_put(fa, i++, &info, GFP_KERNEL))
1982 					BUG();
1983 			}
1984 		}
1985 		up_read(&mm->mmap_sem);
1986 
1987 		for (i = 0; i < nr_files; i++) {
1988 			p = flex_array_get(fa, i);
1989 			ret = proc_fill_cache(filp, dirent, filldir,
1990 					      p->name, p->len,
1991 					      proc_map_files_instantiate,
1992 					      task,
1993 					      (void *)(unsigned long)p->mode);
1994 			if (ret)
1995 				break;
1996 			filp->f_pos++;
1997 		}
1998 		if (fa)
1999 			flex_array_free(fa);
2000 		mmput(mm);
2001 	}
2002 	}
2003 
2004 out_put_task:
2005 	put_task_struct(task);
2006 out:
2007 	return ret;
2008 }
2009 
2010 static const struct file_operations proc_map_files_operations = {
2011 	.read		= generic_read_dir,
2012 	.readdir	= proc_map_files_readdir,
2013 	.llseek		= default_llseek,
2014 };
2015 
2016 #endif /* CONFIG_CHECKPOINT_RESTORE */
2017 
2018 static struct dentry *proc_pident_instantiate(struct inode *dir,
2019 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2020 {
2021 	const struct pid_entry *p = ptr;
2022 	struct inode *inode;
2023 	struct proc_inode *ei;
2024 	struct dentry *error = ERR_PTR(-ENOENT);
2025 
2026 	inode = proc_pid_make_inode(dir->i_sb, task);
2027 	if (!inode)
2028 		goto out;
2029 
2030 	ei = PROC_I(inode);
2031 	inode->i_mode = p->mode;
2032 	if (S_ISDIR(inode->i_mode))
2033 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2034 	if (p->iop)
2035 		inode->i_op = p->iop;
2036 	if (p->fop)
2037 		inode->i_fop = p->fop;
2038 	ei->op = p->op;
2039 	d_set_d_op(dentry, &pid_dentry_operations);
2040 	d_add(dentry, inode);
2041 	/* Close the race of the process dying before we return the dentry */
2042 	if (pid_revalidate(dentry, 0))
2043 		error = NULL;
2044 out:
2045 	return error;
2046 }
2047 
2048 static struct dentry *proc_pident_lookup(struct inode *dir,
2049 					 struct dentry *dentry,
2050 					 const struct pid_entry *ents,
2051 					 unsigned int nents)
2052 {
2053 	struct dentry *error;
2054 	struct task_struct *task = get_proc_task(dir);
2055 	const struct pid_entry *p, *last;
2056 
2057 	error = ERR_PTR(-ENOENT);
2058 
2059 	if (!task)
2060 		goto out_no_task;
2061 
2062 	/*
2063 	 * Yes, it does not scale. And it should not. Don't add
2064 	 * new entries into /proc/<tgid>/ without very good reasons.
2065 	 */
2066 	last = &ents[nents - 1];
2067 	for (p = ents; p <= last; p++) {
2068 		if (p->len != dentry->d_name.len)
2069 			continue;
2070 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2071 			break;
2072 	}
2073 	if (p > last)
2074 		goto out;
2075 
2076 	error = proc_pident_instantiate(dir, dentry, task, p);
2077 out:
2078 	put_task_struct(task);
2079 out_no_task:
2080 	return error;
2081 }
2082 
2083 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2084 	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2085 {
2086 	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2087 				proc_pident_instantiate, task, p);
2088 }
2089 
2090 static int proc_pident_readdir(struct file *filp,
2091 		void *dirent, filldir_t filldir,
2092 		const struct pid_entry *ents, unsigned int nents)
2093 {
2094 	int i;
2095 	struct dentry *dentry = filp->f_path.dentry;
2096 	struct inode *inode = dentry->d_inode;
2097 	struct task_struct *task = get_proc_task(inode);
2098 	const struct pid_entry *p, *last;
2099 	ino_t ino;
2100 	int ret;
2101 
2102 	ret = -ENOENT;
2103 	if (!task)
2104 		goto out_no_task;
2105 
2106 	ret = 0;
2107 	i = filp->f_pos;
2108 	switch (i) {
2109 	case 0:
2110 		ino = inode->i_ino;
2111 		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2112 			goto out;
2113 		i++;
2114 		filp->f_pos++;
2115 		/* fall through */
2116 	case 1:
2117 		ino = parent_ino(dentry);
2118 		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2119 			goto out;
2120 		i++;
2121 		filp->f_pos++;
2122 		/* fall through */
2123 	default:
2124 		i -= 2;
2125 		if (i >= nents) {
2126 			ret = 1;
2127 			goto out;
2128 		}
2129 		p = ents + i;
2130 		last = &ents[nents - 1];
2131 		while (p <= last) {
2132 			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2133 				goto out;
2134 			filp->f_pos++;
2135 			p++;
2136 		}
2137 	}
2138 
2139 	ret = 1;
2140 out:
2141 	put_task_struct(task);
2142 out_no_task:
2143 	return ret;
2144 }
2145 
2146 #ifdef CONFIG_SECURITY
2147 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2148 				  size_t count, loff_t *ppos)
2149 {
2150 	struct inode * inode = file_inode(file);
2151 	char *p = NULL;
2152 	ssize_t length;
2153 	struct task_struct *task = get_proc_task(inode);
2154 
2155 	if (!task)
2156 		return -ESRCH;
2157 
2158 	length = security_getprocattr(task,
2159 				      (char*)file->f_path.dentry->d_name.name,
2160 				      &p);
2161 	put_task_struct(task);
2162 	if (length > 0)
2163 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2164 	kfree(p);
2165 	return length;
2166 }
2167 
2168 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2169 				   size_t count, loff_t *ppos)
2170 {
2171 	struct inode * inode = file_inode(file);
2172 	char *page;
2173 	ssize_t length;
2174 	struct task_struct *task = get_proc_task(inode);
2175 
2176 	length = -ESRCH;
2177 	if (!task)
2178 		goto out_no_task;
2179 	if (count > PAGE_SIZE)
2180 		count = PAGE_SIZE;
2181 
2182 	/* No partial writes. */
2183 	length = -EINVAL;
2184 	if (*ppos != 0)
2185 		goto out;
2186 
2187 	length = -ENOMEM;
2188 	page = (char*)__get_free_page(GFP_TEMPORARY);
2189 	if (!page)
2190 		goto out;
2191 
2192 	length = -EFAULT;
2193 	if (copy_from_user(page, buf, count))
2194 		goto out_free;
2195 
2196 	/* Guard against adverse ptrace interaction */
2197 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2198 	if (length < 0)
2199 		goto out_free;
2200 
2201 	length = security_setprocattr(task,
2202 				      (char*)file->f_path.dentry->d_name.name,
2203 				      (void*)page, count);
2204 	mutex_unlock(&task->signal->cred_guard_mutex);
2205 out_free:
2206 	free_page((unsigned long) page);
2207 out:
2208 	put_task_struct(task);
2209 out_no_task:
2210 	return length;
2211 }
2212 
2213 static const struct file_operations proc_pid_attr_operations = {
2214 	.read		= proc_pid_attr_read,
2215 	.write		= proc_pid_attr_write,
2216 	.llseek		= generic_file_llseek,
2217 };
2218 
2219 static const struct pid_entry attr_dir_stuff[] = {
2220 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2221 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2222 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2223 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2224 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2225 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2226 };
2227 
2228 static int proc_attr_dir_readdir(struct file * filp,
2229 			     void * dirent, filldir_t filldir)
2230 {
2231 	return proc_pident_readdir(filp,dirent,filldir,
2232 				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2233 }
2234 
2235 static const struct file_operations proc_attr_dir_operations = {
2236 	.read		= generic_read_dir,
2237 	.readdir	= proc_attr_dir_readdir,
2238 	.llseek		= default_llseek,
2239 };
2240 
2241 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2242 				struct dentry *dentry, unsigned int flags)
2243 {
2244 	return proc_pident_lookup(dir, dentry,
2245 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2246 }
2247 
2248 static const struct inode_operations proc_attr_dir_inode_operations = {
2249 	.lookup		= proc_attr_dir_lookup,
2250 	.getattr	= pid_getattr,
2251 	.setattr	= proc_setattr,
2252 };
2253 
2254 #endif
2255 
2256 #ifdef CONFIG_ELF_CORE
2257 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2258 					 size_t count, loff_t *ppos)
2259 {
2260 	struct task_struct *task = get_proc_task(file_inode(file));
2261 	struct mm_struct *mm;
2262 	char buffer[PROC_NUMBUF];
2263 	size_t len;
2264 	int ret;
2265 
2266 	if (!task)
2267 		return -ESRCH;
2268 
2269 	ret = 0;
2270 	mm = get_task_mm(task);
2271 	if (mm) {
2272 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2273 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2274 				MMF_DUMP_FILTER_SHIFT));
2275 		mmput(mm);
2276 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2277 	}
2278 
2279 	put_task_struct(task);
2280 
2281 	return ret;
2282 }
2283 
2284 static ssize_t proc_coredump_filter_write(struct file *file,
2285 					  const char __user *buf,
2286 					  size_t count,
2287 					  loff_t *ppos)
2288 {
2289 	struct task_struct *task;
2290 	struct mm_struct *mm;
2291 	char buffer[PROC_NUMBUF], *end;
2292 	unsigned int val;
2293 	int ret;
2294 	int i;
2295 	unsigned long mask;
2296 
2297 	ret = -EFAULT;
2298 	memset(buffer, 0, sizeof(buffer));
2299 	if (count > sizeof(buffer) - 1)
2300 		count = sizeof(buffer) - 1;
2301 	if (copy_from_user(buffer, buf, count))
2302 		goto out_no_task;
2303 
2304 	ret = -EINVAL;
2305 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2306 	if (*end == '\n')
2307 		end++;
2308 	if (end - buffer == 0)
2309 		goto out_no_task;
2310 
2311 	ret = -ESRCH;
2312 	task = get_proc_task(file_inode(file));
2313 	if (!task)
2314 		goto out_no_task;
2315 
2316 	ret = end - buffer;
2317 	mm = get_task_mm(task);
2318 	if (!mm)
2319 		goto out_no_mm;
2320 
2321 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2322 		if (val & mask)
2323 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2324 		else
2325 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2326 	}
2327 
2328 	mmput(mm);
2329  out_no_mm:
2330 	put_task_struct(task);
2331  out_no_task:
2332 	return ret;
2333 }
2334 
2335 static const struct file_operations proc_coredump_filter_operations = {
2336 	.read		= proc_coredump_filter_read,
2337 	.write		= proc_coredump_filter_write,
2338 	.llseek		= generic_file_llseek,
2339 };
2340 #endif
2341 
2342 #ifdef CONFIG_TASK_IO_ACCOUNTING
2343 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2344 {
2345 	struct task_io_accounting acct = task->ioac;
2346 	unsigned long flags;
2347 	int result;
2348 
2349 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2350 	if (result)
2351 		return result;
2352 
2353 	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2354 		result = -EACCES;
2355 		goto out_unlock;
2356 	}
2357 
2358 	if (whole && lock_task_sighand(task, &flags)) {
2359 		struct task_struct *t = task;
2360 
2361 		task_io_accounting_add(&acct, &task->signal->ioac);
2362 		while_each_thread(task, t)
2363 			task_io_accounting_add(&acct, &t->ioac);
2364 
2365 		unlock_task_sighand(task, &flags);
2366 	}
2367 	result = sprintf(buffer,
2368 			"rchar: %llu\n"
2369 			"wchar: %llu\n"
2370 			"syscr: %llu\n"
2371 			"syscw: %llu\n"
2372 			"read_bytes: %llu\n"
2373 			"write_bytes: %llu\n"
2374 			"cancelled_write_bytes: %llu\n",
2375 			(unsigned long long)acct.rchar,
2376 			(unsigned long long)acct.wchar,
2377 			(unsigned long long)acct.syscr,
2378 			(unsigned long long)acct.syscw,
2379 			(unsigned long long)acct.read_bytes,
2380 			(unsigned long long)acct.write_bytes,
2381 			(unsigned long long)acct.cancelled_write_bytes);
2382 out_unlock:
2383 	mutex_unlock(&task->signal->cred_guard_mutex);
2384 	return result;
2385 }
2386 
2387 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2388 {
2389 	return do_io_accounting(task, buffer, 0);
2390 }
2391 
2392 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2393 {
2394 	return do_io_accounting(task, buffer, 1);
2395 }
2396 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2397 
2398 #ifdef CONFIG_USER_NS
2399 static int proc_id_map_open(struct inode *inode, struct file *file,
2400 	struct seq_operations *seq_ops)
2401 {
2402 	struct user_namespace *ns = NULL;
2403 	struct task_struct *task;
2404 	struct seq_file *seq;
2405 	int ret = -EINVAL;
2406 
2407 	task = get_proc_task(inode);
2408 	if (task) {
2409 		rcu_read_lock();
2410 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2411 		rcu_read_unlock();
2412 		put_task_struct(task);
2413 	}
2414 	if (!ns)
2415 		goto err;
2416 
2417 	ret = seq_open(file, seq_ops);
2418 	if (ret)
2419 		goto err_put_ns;
2420 
2421 	seq = file->private_data;
2422 	seq->private = ns;
2423 
2424 	return 0;
2425 err_put_ns:
2426 	put_user_ns(ns);
2427 err:
2428 	return ret;
2429 }
2430 
2431 static int proc_id_map_release(struct inode *inode, struct file *file)
2432 {
2433 	struct seq_file *seq = file->private_data;
2434 	struct user_namespace *ns = seq->private;
2435 	put_user_ns(ns);
2436 	return seq_release(inode, file);
2437 }
2438 
2439 static int proc_uid_map_open(struct inode *inode, struct file *file)
2440 {
2441 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2442 }
2443 
2444 static int proc_gid_map_open(struct inode *inode, struct file *file)
2445 {
2446 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2447 }
2448 
2449 static int proc_projid_map_open(struct inode *inode, struct file *file)
2450 {
2451 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2452 }
2453 
2454 static const struct file_operations proc_uid_map_operations = {
2455 	.open		= proc_uid_map_open,
2456 	.write		= proc_uid_map_write,
2457 	.read		= seq_read,
2458 	.llseek		= seq_lseek,
2459 	.release	= proc_id_map_release,
2460 };
2461 
2462 static const struct file_operations proc_gid_map_operations = {
2463 	.open		= proc_gid_map_open,
2464 	.write		= proc_gid_map_write,
2465 	.read		= seq_read,
2466 	.llseek		= seq_lseek,
2467 	.release	= proc_id_map_release,
2468 };
2469 
2470 static const struct file_operations proc_projid_map_operations = {
2471 	.open		= proc_projid_map_open,
2472 	.write		= proc_projid_map_write,
2473 	.read		= seq_read,
2474 	.llseek		= seq_lseek,
2475 	.release	= proc_id_map_release,
2476 };
2477 #endif /* CONFIG_USER_NS */
2478 
2479 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2480 				struct pid *pid, struct task_struct *task)
2481 {
2482 	int err = lock_trace(task);
2483 	if (!err) {
2484 		seq_printf(m, "%08x\n", task->personality);
2485 		unlock_trace(task);
2486 	}
2487 	return err;
2488 }
2489 
2490 /*
2491  * Thread groups
2492  */
2493 static const struct file_operations proc_task_operations;
2494 static const struct inode_operations proc_task_inode_operations;
2495 
2496 static const struct pid_entry tgid_base_stuff[] = {
2497 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2498 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2499 #ifdef CONFIG_CHECKPOINT_RESTORE
2500 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2501 #endif
2502 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2503 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2504 #ifdef CONFIG_NET
2505 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2506 #endif
2507 	REG("environ",    S_IRUSR, proc_environ_operations),
2508 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2509 	ONE("status",     S_IRUGO, proc_pid_status),
2510 	ONE("personality", S_IRUGO, proc_pid_personality),
2511 	INF("limits",	  S_IRUGO, proc_pid_limits),
2512 #ifdef CONFIG_SCHED_DEBUG
2513 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2514 #endif
2515 #ifdef CONFIG_SCHED_AUTOGROUP
2516 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2517 #endif
2518 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2519 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2520 	INF("syscall",    S_IRUGO, proc_pid_syscall),
2521 #endif
2522 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2523 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2524 	ONE("statm",      S_IRUGO, proc_pid_statm),
2525 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2526 #ifdef CONFIG_NUMA
2527 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2528 #endif
2529 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2530 	LNK("cwd",        proc_cwd_link),
2531 	LNK("root",       proc_root_link),
2532 	LNK("exe",        proc_exe_link),
2533 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2534 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2535 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2536 #ifdef CONFIG_PROC_PAGE_MONITOR
2537 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2538 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2539 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
2540 #endif
2541 #ifdef CONFIG_SECURITY
2542 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2543 #endif
2544 #ifdef CONFIG_KALLSYMS
2545 	INF("wchan",      S_IRUGO, proc_pid_wchan),
2546 #endif
2547 #ifdef CONFIG_STACKTRACE
2548 	ONE("stack",      S_IRUGO, proc_pid_stack),
2549 #endif
2550 #ifdef CONFIG_SCHEDSTATS
2551 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2552 #endif
2553 #ifdef CONFIG_LATENCYTOP
2554 	REG("latency",  S_IRUGO, proc_lstats_operations),
2555 #endif
2556 #ifdef CONFIG_PROC_PID_CPUSET
2557 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2558 #endif
2559 #ifdef CONFIG_CGROUPS
2560 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2561 #endif
2562 	INF("oom_score",  S_IRUGO, proc_oom_score),
2563 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2564 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2565 #ifdef CONFIG_AUDITSYSCALL
2566 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2567 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2568 #endif
2569 #ifdef CONFIG_FAULT_INJECTION
2570 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2571 #endif
2572 #ifdef CONFIG_ELF_CORE
2573 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2574 #endif
2575 #ifdef CONFIG_TASK_IO_ACCOUNTING
2576 	INF("io",	S_IRUSR, proc_tgid_io_accounting),
2577 #endif
2578 #ifdef CONFIG_HARDWALL
2579 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
2580 #endif
2581 #ifdef CONFIG_USER_NS
2582 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2583 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2584 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2585 #endif
2586 };
2587 
2588 static int proc_tgid_base_readdir(struct file * filp,
2589 			     void * dirent, filldir_t filldir)
2590 {
2591 	return proc_pident_readdir(filp,dirent,filldir,
2592 				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2593 }
2594 
2595 static const struct file_operations proc_tgid_base_operations = {
2596 	.read		= generic_read_dir,
2597 	.readdir	= proc_tgid_base_readdir,
2598 	.llseek		= default_llseek,
2599 };
2600 
2601 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2602 {
2603 	return proc_pident_lookup(dir, dentry,
2604 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2605 }
2606 
2607 static const struct inode_operations proc_tgid_base_inode_operations = {
2608 	.lookup		= proc_tgid_base_lookup,
2609 	.getattr	= pid_getattr,
2610 	.setattr	= proc_setattr,
2611 	.permission	= proc_pid_permission,
2612 };
2613 
2614 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2615 {
2616 	struct dentry *dentry, *leader, *dir;
2617 	char buf[PROC_NUMBUF];
2618 	struct qstr name;
2619 
2620 	name.name = buf;
2621 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2622 	/* no ->d_hash() rejects on procfs */
2623 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2624 	if (dentry) {
2625 		shrink_dcache_parent(dentry);
2626 		d_drop(dentry);
2627 		dput(dentry);
2628 	}
2629 
2630 	name.name = buf;
2631 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2632 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2633 	if (!leader)
2634 		goto out;
2635 
2636 	name.name = "task";
2637 	name.len = strlen(name.name);
2638 	dir = d_hash_and_lookup(leader, &name);
2639 	if (!dir)
2640 		goto out_put_leader;
2641 
2642 	name.name = buf;
2643 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2644 	dentry = d_hash_and_lookup(dir, &name);
2645 	if (dentry) {
2646 		shrink_dcache_parent(dentry);
2647 		d_drop(dentry);
2648 		dput(dentry);
2649 	}
2650 
2651 	dput(dir);
2652 out_put_leader:
2653 	dput(leader);
2654 out:
2655 	return;
2656 }
2657 
2658 /**
2659  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2660  * @task: task that should be flushed.
2661  *
2662  * When flushing dentries from proc, one needs to flush them from global
2663  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2664  * in. This call is supposed to do all of this job.
2665  *
2666  * Looks in the dcache for
2667  * /proc/@pid
2668  * /proc/@tgid/task/@pid
2669  * if either directory is present flushes it and all of it'ts children
2670  * from the dcache.
2671  *
2672  * It is safe and reasonable to cache /proc entries for a task until
2673  * that task exits.  After that they just clog up the dcache with
2674  * useless entries, possibly causing useful dcache entries to be
2675  * flushed instead.  This routine is proved to flush those useless
2676  * dcache entries at process exit time.
2677  *
2678  * NOTE: This routine is just an optimization so it does not guarantee
2679  *       that no dcache entries will exist at process exit time it
2680  *       just makes it very unlikely that any will persist.
2681  */
2682 
2683 void proc_flush_task(struct task_struct *task)
2684 {
2685 	int i;
2686 	struct pid *pid, *tgid;
2687 	struct upid *upid;
2688 
2689 	pid = task_pid(task);
2690 	tgid = task_tgid(task);
2691 
2692 	for (i = 0; i <= pid->level; i++) {
2693 		upid = &pid->numbers[i];
2694 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2695 					tgid->numbers[i].nr);
2696 	}
2697 }
2698 
2699 static struct dentry *proc_pid_instantiate(struct inode *dir,
2700 					   struct dentry * dentry,
2701 					   struct task_struct *task, const void *ptr)
2702 {
2703 	struct dentry *error = ERR_PTR(-ENOENT);
2704 	struct inode *inode;
2705 
2706 	inode = proc_pid_make_inode(dir->i_sb, task);
2707 	if (!inode)
2708 		goto out;
2709 
2710 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2711 	inode->i_op = &proc_tgid_base_inode_operations;
2712 	inode->i_fop = &proc_tgid_base_operations;
2713 	inode->i_flags|=S_IMMUTABLE;
2714 
2715 	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2716 						  ARRAY_SIZE(tgid_base_stuff)));
2717 
2718 	d_set_d_op(dentry, &pid_dentry_operations);
2719 
2720 	d_add(dentry, inode);
2721 	/* Close the race of the process dying before we return the dentry */
2722 	if (pid_revalidate(dentry, 0))
2723 		error = NULL;
2724 out:
2725 	return error;
2726 }
2727 
2728 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2729 {
2730 	struct dentry *result = NULL;
2731 	struct task_struct *task;
2732 	unsigned tgid;
2733 	struct pid_namespace *ns;
2734 
2735 	tgid = name_to_int(dentry);
2736 	if (tgid == ~0U)
2737 		goto out;
2738 
2739 	ns = dentry->d_sb->s_fs_info;
2740 	rcu_read_lock();
2741 	task = find_task_by_pid_ns(tgid, ns);
2742 	if (task)
2743 		get_task_struct(task);
2744 	rcu_read_unlock();
2745 	if (!task)
2746 		goto out;
2747 
2748 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2749 	put_task_struct(task);
2750 out:
2751 	return result;
2752 }
2753 
2754 /*
2755  * Find the first task with tgid >= tgid
2756  *
2757  */
2758 struct tgid_iter {
2759 	unsigned int tgid;
2760 	struct task_struct *task;
2761 };
2762 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2763 {
2764 	struct pid *pid;
2765 
2766 	if (iter.task)
2767 		put_task_struct(iter.task);
2768 	rcu_read_lock();
2769 retry:
2770 	iter.task = NULL;
2771 	pid = find_ge_pid(iter.tgid, ns);
2772 	if (pid) {
2773 		iter.tgid = pid_nr_ns(pid, ns);
2774 		iter.task = pid_task(pid, PIDTYPE_PID);
2775 		/* What we to know is if the pid we have find is the
2776 		 * pid of a thread_group_leader.  Testing for task
2777 		 * being a thread_group_leader is the obvious thing
2778 		 * todo but there is a window when it fails, due to
2779 		 * the pid transfer logic in de_thread.
2780 		 *
2781 		 * So we perform the straight forward test of seeing
2782 		 * if the pid we have found is the pid of a thread
2783 		 * group leader, and don't worry if the task we have
2784 		 * found doesn't happen to be a thread group leader.
2785 		 * As we don't care in the case of readdir.
2786 		 */
2787 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2788 			iter.tgid += 1;
2789 			goto retry;
2790 		}
2791 		get_task_struct(iter.task);
2792 	}
2793 	rcu_read_unlock();
2794 	return iter;
2795 }
2796 
2797 #define TGID_OFFSET (FIRST_PROCESS_ENTRY)
2798 
2799 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2800 	struct tgid_iter iter)
2801 {
2802 	char name[PROC_NUMBUF];
2803 	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2804 	return proc_fill_cache(filp, dirent, filldir, name, len,
2805 				proc_pid_instantiate, iter.task, NULL);
2806 }
2807 
2808 static int fake_filldir(void *buf, const char *name, int namelen,
2809 			loff_t offset, u64 ino, unsigned d_type)
2810 {
2811 	return 0;
2812 }
2813 
2814 /* for the /proc/ directory itself, after non-process stuff has been done */
2815 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2816 {
2817 	struct tgid_iter iter;
2818 	struct pid_namespace *ns;
2819 	filldir_t __filldir;
2820 
2821 	if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
2822 		goto out;
2823 
2824 	ns = filp->f_dentry->d_sb->s_fs_info;
2825 	iter.task = NULL;
2826 	iter.tgid = filp->f_pos - TGID_OFFSET;
2827 	for (iter = next_tgid(ns, iter);
2828 	     iter.task;
2829 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2830 		if (has_pid_permissions(ns, iter.task, 2))
2831 			__filldir = filldir;
2832 		else
2833 			__filldir = fake_filldir;
2834 
2835 		filp->f_pos = iter.tgid + TGID_OFFSET;
2836 		if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) {
2837 			put_task_struct(iter.task);
2838 			goto out;
2839 		}
2840 	}
2841 	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2842 out:
2843 	return 0;
2844 }
2845 
2846 /*
2847  * Tasks
2848  */
2849 static const struct pid_entry tid_base_stuff[] = {
2850 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2851 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2852 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2853 	REG("environ",   S_IRUSR, proc_environ_operations),
2854 	INF("auxv",      S_IRUSR, proc_pid_auxv),
2855 	ONE("status",    S_IRUGO, proc_pid_status),
2856 	ONE("personality", S_IRUGO, proc_pid_personality),
2857 	INF("limits",	 S_IRUGO, proc_pid_limits),
2858 #ifdef CONFIG_SCHED_DEBUG
2859 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2860 #endif
2861 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2862 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2863 	INF("syscall",   S_IRUGO, proc_pid_syscall),
2864 #endif
2865 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
2866 	ONE("stat",      S_IRUGO, proc_tid_stat),
2867 	ONE("statm",     S_IRUGO, proc_pid_statm),
2868 	REG("maps",      S_IRUGO, proc_tid_maps_operations),
2869 #ifdef CONFIG_CHECKPOINT_RESTORE
2870 	REG("children",  S_IRUGO, proc_tid_children_operations),
2871 #endif
2872 #ifdef CONFIG_NUMA
2873 	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
2874 #endif
2875 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
2876 	LNK("cwd",       proc_cwd_link),
2877 	LNK("root",      proc_root_link),
2878 	LNK("exe",       proc_exe_link),
2879 	REG("mounts",    S_IRUGO, proc_mounts_operations),
2880 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2881 #ifdef CONFIG_PROC_PAGE_MONITOR
2882 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2883 	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
2884 	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
2885 #endif
2886 #ifdef CONFIG_SECURITY
2887 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2888 #endif
2889 #ifdef CONFIG_KALLSYMS
2890 	INF("wchan",     S_IRUGO, proc_pid_wchan),
2891 #endif
2892 #ifdef CONFIG_STACKTRACE
2893 	ONE("stack",      S_IRUGO, proc_pid_stack),
2894 #endif
2895 #ifdef CONFIG_SCHEDSTATS
2896 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
2897 #endif
2898 #ifdef CONFIG_LATENCYTOP
2899 	REG("latency",  S_IRUGO, proc_lstats_operations),
2900 #endif
2901 #ifdef CONFIG_PROC_PID_CPUSET
2902 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
2903 #endif
2904 #ifdef CONFIG_CGROUPS
2905 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2906 #endif
2907 	INF("oom_score", S_IRUGO, proc_oom_score),
2908 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2909 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2910 #ifdef CONFIG_AUDITSYSCALL
2911 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
2912 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2913 #endif
2914 #ifdef CONFIG_FAULT_INJECTION
2915 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2916 #endif
2917 #ifdef CONFIG_TASK_IO_ACCOUNTING
2918 	INF("io",	S_IRUSR, proc_tid_io_accounting),
2919 #endif
2920 #ifdef CONFIG_HARDWALL
2921 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
2922 #endif
2923 #ifdef CONFIG_USER_NS
2924 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2925 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2926 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2927 #endif
2928 };
2929 
2930 static int proc_tid_base_readdir(struct file * filp,
2931 			     void * dirent, filldir_t filldir)
2932 {
2933 	return proc_pident_readdir(filp,dirent,filldir,
2934 				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2935 }
2936 
2937 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2938 {
2939 	return proc_pident_lookup(dir, dentry,
2940 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2941 }
2942 
2943 static const struct file_operations proc_tid_base_operations = {
2944 	.read		= generic_read_dir,
2945 	.readdir	= proc_tid_base_readdir,
2946 	.llseek		= default_llseek,
2947 };
2948 
2949 static const struct inode_operations proc_tid_base_inode_operations = {
2950 	.lookup		= proc_tid_base_lookup,
2951 	.getattr	= pid_getattr,
2952 	.setattr	= proc_setattr,
2953 };
2954 
2955 static struct dentry *proc_task_instantiate(struct inode *dir,
2956 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2957 {
2958 	struct dentry *error = ERR_PTR(-ENOENT);
2959 	struct inode *inode;
2960 	inode = proc_pid_make_inode(dir->i_sb, task);
2961 
2962 	if (!inode)
2963 		goto out;
2964 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2965 	inode->i_op = &proc_tid_base_inode_operations;
2966 	inode->i_fop = &proc_tid_base_operations;
2967 	inode->i_flags|=S_IMMUTABLE;
2968 
2969 	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
2970 						  ARRAY_SIZE(tid_base_stuff)));
2971 
2972 	d_set_d_op(dentry, &pid_dentry_operations);
2973 
2974 	d_add(dentry, inode);
2975 	/* Close the race of the process dying before we return the dentry */
2976 	if (pid_revalidate(dentry, 0))
2977 		error = NULL;
2978 out:
2979 	return error;
2980 }
2981 
2982 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2983 {
2984 	struct dentry *result = ERR_PTR(-ENOENT);
2985 	struct task_struct *task;
2986 	struct task_struct *leader = get_proc_task(dir);
2987 	unsigned tid;
2988 	struct pid_namespace *ns;
2989 
2990 	if (!leader)
2991 		goto out_no_task;
2992 
2993 	tid = name_to_int(dentry);
2994 	if (tid == ~0U)
2995 		goto out;
2996 
2997 	ns = dentry->d_sb->s_fs_info;
2998 	rcu_read_lock();
2999 	task = find_task_by_pid_ns(tid, ns);
3000 	if (task)
3001 		get_task_struct(task);
3002 	rcu_read_unlock();
3003 	if (!task)
3004 		goto out;
3005 	if (!same_thread_group(leader, task))
3006 		goto out_drop_task;
3007 
3008 	result = proc_task_instantiate(dir, dentry, task, NULL);
3009 out_drop_task:
3010 	put_task_struct(task);
3011 out:
3012 	put_task_struct(leader);
3013 out_no_task:
3014 	return result;
3015 }
3016 
3017 /*
3018  * Find the first tid of a thread group to return to user space.
3019  *
3020  * Usually this is just the thread group leader, but if the users
3021  * buffer was too small or there was a seek into the middle of the
3022  * directory we have more work todo.
3023  *
3024  * In the case of a short read we start with find_task_by_pid.
3025  *
3026  * In the case of a seek we start with the leader and walk nr
3027  * threads past it.
3028  */
3029 static struct task_struct *first_tid(struct task_struct *leader,
3030 		int tid, int nr, struct pid_namespace *ns)
3031 {
3032 	struct task_struct *pos;
3033 
3034 	rcu_read_lock();
3035 	/* Attempt to start with the pid of a thread */
3036 	if (tid && (nr > 0)) {
3037 		pos = find_task_by_pid_ns(tid, ns);
3038 		if (pos && (pos->group_leader == leader))
3039 			goto found;
3040 	}
3041 
3042 	/* If nr exceeds the number of threads there is nothing todo */
3043 	pos = NULL;
3044 	if (nr && nr >= get_nr_threads(leader))
3045 		goto out;
3046 
3047 	/* If we haven't found our starting place yet start
3048 	 * with the leader and walk nr threads forward.
3049 	 */
3050 	for (pos = leader; nr > 0; --nr) {
3051 		pos = next_thread(pos);
3052 		if (pos == leader) {
3053 			pos = NULL;
3054 			goto out;
3055 		}
3056 	}
3057 found:
3058 	get_task_struct(pos);
3059 out:
3060 	rcu_read_unlock();
3061 	return pos;
3062 }
3063 
3064 /*
3065  * Find the next thread in the thread list.
3066  * Return NULL if there is an error or no next thread.
3067  *
3068  * The reference to the input task_struct is released.
3069  */
3070 static struct task_struct *next_tid(struct task_struct *start)
3071 {
3072 	struct task_struct *pos = NULL;
3073 	rcu_read_lock();
3074 	if (pid_alive(start)) {
3075 		pos = next_thread(start);
3076 		if (thread_group_leader(pos))
3077 			pos = NULL;
3078 		else
3079 			get_task_struct(pos);
3080 	}
3081 	rcu_read_unlock();
3082 	put_task_struct(start);
3083 	return pos;
3084 }
3085 
3086 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3087 	struct task_struct *task, int tid)
3088 {
3089 	char name[PROC_NUMBUF];
3090 	int len = snprintf(name, sizeof(name), "%d", tid);
3091 	return proc_fill_cache(filp, dirent, filldir, name, len,
3092 				proc_task_instantiate, task, NULL);
3093 }
3094 
3095 /* for the /proc/TGID/task/ directories */
3096 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3097 {
3098 	struct dentry *dentry = filp->f_path.dentry;
3099 	struct inode *inode = dentry->d_inode;
3100 	struct task_struct *leader = NULL;
3101 	struct task_struct *task;
3102 	int retval = -ENOENT;
3103 	ino_t ino;
3104 	int tid;
3105 	struct pid_namespace *ns;
3106 
3107 	task = get_proc_task(inode);
3108 	if (!task)
3109 		goto out_no_task;
3110 	rcu_read_lock();
3111 	if (pid_alive(task)) {
3112 		leader = task->group_leader;
3113 		get_task_struct(leader);
3114 	}
3115 	rcu_read_unlock();
3116 	put_task_struct(task);
3117 	if (!leader)
3118 		goto out_no_task;
3119 	retval = 0;
3120 
3121 	switch ((unsigned long)filp->f_pos) {
3122 	case 0:
3123 		ino = inode->i_ino;
3124 		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3125 			goto out;
3126 		filp->f_pos++;
3127 		/* fall through */
3128 	case 1:
3129 		ino = parent_ino(dentry);
3130 		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3131 			goto out;
3132 		filp->f_pos++;
3133 		/* fall through */
3134 	}
3135 
3136 	/* f_version caches the tgid value that the last readdir call couldn't
3137 	 * return. lseek aka telldir automagically resets f_version to 0.
3138 	 */
3139 	ns = filp->f_dentry->d_sb->s_fs_info;
3140 	tid = (int)filp->f_version;
3141 	filp->f_version = 0;
3142 	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3143 	     task;
3144 	     task = next_tid(task), filp->f_pos++) {
3145 		tid = task_pid_nr_ns(task, ns);
3146 		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3147 			/* returning this tgid failed, save it as the first
3148 			 * pid for the next readir call */
3149 			filp->f_version = (u64)tid;
3150 			put_task_struct(task);
3151 			break;
3152 		}
3153 	}
3154 out:
3155 	put_task_struct(leader);
3156 out_no_task:
3157 	return retval;
3158 }
3159 
3160 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3161 {
3162 	struct inode *inode = dentry->d_inode;
3163 	struct task_struct *p = get_proc_task(inode);
3164 	generic_fillattr(inode, stat);
3165 
3166 	if (p) {
3167 		stat->nlink += get_nr_threads(p);
3168 		put_task_struct(p);
3169 	}
3170 
3171 	return 0;
3172 }
3173 
3174 static const struct inode_operations proc_task_inode_operations = {
3175 	.lookup		= proc_task_lookup,
3176 	.getattr	= proc_task_getattr,
3177 	.setattr	= proc_setattr,
3178 	.permission	= proc_pid_permission,
3179 };
3180 
3181 static const struct file_operations proc_task_operations = {
3182 	.read		= generic_read_dir,
3183 	.readdir	= proc_task_readdir,
3184 	.llseek		= default_llseek,
3185 };
3186