1 /* 2 * linux/fs/proc/base.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * proc base directory handling functions 7 * 8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 9 * Instead of using magical inumbers to determine the kind of object 10 * we allocate and fill in-core inodes upon lookup. They don't even 11 * go into icache. We cache the reference to task_struct upon lookup too. 12 * Eventually it should become a filesystem in its own. We don't use the 13 * rest of procfs anymore. 14 * 15 * 16 * Changelog: 17 * 17-Jan-2005 18 * Allan Bezerra 19 * Bruna Moreira <bruna.moreira@indt.org.br> 20 * Edjard Mota <edjard.mota@indt.org.br> 21 * Ilias Biris <ilias.biris@indt.org.br> 22 * Mauricio Lin <mauricio.lin@indt.org.br> 23 * 24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 25 * 26 * A new process specific entry (smaps) included in /proc. It shows the 27 * size of rss for each memory area. The maps entry lacks information 28 * about physical memory size (rss) for each mapped file, i.e., 29 * rss information for executables and library files. 30 * This additional information is useful for any tools that need to know 31 * about physical memory consumption for a process specific library. 32 * 33 * Changelog: 34 * 21-Feb-2005 35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 36 * Pud inclusion in the page table walking. 37 * 38 * ChangeLog: 39 * 10-Mar-2005 40 * 10LE Instituto Nokia de Tecnologia - INdT: 41 * A better way to walks through the page table as suggested by Hugh Dickins. 42 * 43 * Simo Piiroinen <simo.piiroinen@nokia.com>: 44 * Smaps information related to shared, private, clean and dirty pages. 45 * 46 * Paul Mundt <paul.mundt@nokia.com>: 47 * Overall revision about smaps. 48 */ 49 50 #include <asm/uaccess.h> 51 52 #include <linux/errno.h> 53 #include <linux/time.h> 54 #include <linux/proc_fs.h> 55 #include <linux/stat.h> 56 #include <linux/task_io_accounting_ops.h> 57 #include <linux/init.h> 58 #include <linux/capability.h> 59 #include <linux/file.h> 60 #include <linux/fdtable.h> 61 #include <linux/string.h> 62 #include <linux/seq_file.h> 63 #include <linux/namei.h> 64 #include <linux/mnt_namespace.h> 65 #include <linux/mm.h> 66 #include <linux/swap.h> 67 #include <linux/rcupdate.h> 68 #include <linux/kallsyms.h> 69 #include <linux/stacktrace.h> 70 #include <linux/resource.h> 71 #include <linux/module.h> 72 #include <linux/mount.h> 73 #include <linux/security.h> 74 #include <linux/ptrace.h> 75 #include <linux/tracehook.h> 76 #include <linux/printk.h> 77 #include <linux/cgroup.h> 78 #include <linux/cpuset.h> 79 #include <linux/audit.h> 80 #include <linux/poll.h> 81 #include <linux/nsproxy.h> 82 #include <linux/oom.h> 83 #include <linux/elf.h> 84 #include <linux/pid_namespace.h> 85 #include <linux/user_namespace.h> 86 #include <linux/fs_struct.h> 87 #include <linux/slab.h> 88 #include <linux/flex_array.h> 89 #ifdef CONFIG_HARDWALL 90 #include <asm/hardwall.h> 91 #endif 92 #include <trace/events/oom.h> 93 #include "internal.h" 94 #include "fd.h" 95 96 /* NOTE: 97 * Implementing inode permission operations in /proc is almost 98 * certainly an error. Permission checks need to happen during 99 * each system call not at open time. The reason is that most of 100 * what we wish to check for permissions in /proc varies at runtime. 101 * 102 * The classic example of a problem is opening file descriptors 103 * in /proc for a task before it execs a suid executable. 104 */ 105 106 struct pid_entry { 107 char *name; 108 int len; 109 umode_t mode; 110 const struct inode_operations *iop; 111 const struct file_operations *fop; 112 union proc_op op; 113 }; 114 115 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 116 .name = (NAME), \ 117 .len = sizeof(NAME) - 1, \ 118 .mode = MODE, \ 119 .iop = IOP, \ 120 .fop = FOP, \ 121 .op = OP, \ 122 } 123 124 #define DIR(NAME, MODE, iops, fops) \ 125 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 126 #define LNK(NAME, get_link) \ 127 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 128 &proc_pid_link_inode_operations, NULL, \ 129 { .proc_get_link = get_link } ) 130 #define REG(NAME, MODE, fops) \ 131 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 132 #define INF(NAME, MODE, read) \ 133 NOD(NAME, (S_IFREG|(MODE)), \ 134 NULL, &proc_info_file_operations, \ 135 { .proc_read = read } ) 136 #define ONE(NAME, MODE, show) \ 137 NOD(NAME, (S_IFREG|(MODE)), \ 138 NULL, &proc_single_file_operations, \ 139 { .proc_show = show } ) 140 141 /* 142 * Count the number of hardlinks for the pid_entry table, excluding the . 143 * and .. links. 144 */ 145 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries, 146 unsigned int n) 147 { 148 unsigned int i; 149 unsigned int count; 150 151 count = 0; 152 for (i = 0; i < n; ++i) { 153 if (S_ISDIR(entries[i].mode)) 154 ++count; 155 } 156 157 return count; 158 } 159 160 static int get_task_root(struct task_struct *task, struct path *root) 161 { 162 int result = -ENOENT; 163 164 task_lock(task); 165 if (task->fs) { 166 get_fs_root(task->fs, root); 167 result = 0; 168 } 169 task_unlock(task); 170 return result; 171 } 172 173 static int proc_cwd_link(struct dentry *dentry, struct path *path) 174 { 175 struct task_struct *task = get_proc_task(dentry->d_inode); 176 int result = -ENOENT; 177 178 if (task) { 179 task_lock(task); 180 if (task->fs) { 181 get_fs_pwd(task->fs, path); 182 result = 0; 183 } 184 task_unlock(task); 185 put_task_struct(task); 186 } 187 return result; 188 } 189 190 static int proc_root_link(struct dentry *dentry, struct path *path) 191 { 192 struct task_struct *task = get_proc_task(dentry->d_inode); 193 int result = -ENOENT; 194 195 if (task) { 196 result = get_task_root(task, path); 197 put_task_struct(task); 198 } 199 return result; 200 } 201 202 static int proc_pid_cmdline(struct task_struct *task, char * buffer) 203 { 204 int res = 0; 205 unsigned int len; 206 struct mm_struct *mm = get_task_mm(task); 207 if (!mm) 208 goto out; 209 if (!mm->arg_end) 210 goto out_mm; /* Shh! No looking before we're done */ 211 212 len = mm->arg_end - mm->arg_start; 213 214 if (len > PAGE_SIZE) 215 len = PAGE_SIZE; 216 217 res = access_process_vm(task, mm->arg_start, buffer, len, 0); 218 219 // If the nul at the end of args has been overwritten, then 220 // assume application is using setproctitle(3). 221 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) { 222 len = strnlen(buffer, res); 223 if (len < res) { 224 res = len; 225 } else { 226 len = mm->env_end - mm->env_start; 227 if (len > PAGE_SIZE - res) 228 len = PAGE_SIZE - res; 229 res += access_process_vm(task, mm->env_start, buffer+res, len, 0); 230 res = strnlen(buffer, res); 231 } 232 } 233 out_mm: 234 mmput(mm); 235 out: 236 return res; 237 } 238 239 static int proc_pid_auxv(struct task_struct *task, char *buffer) 240 { 241 struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ); 242 int res = PTR_ERR(mm); 243 if (mm && !IS_ERR(mm)) { 244 unsigned int nwords = 0; 245 do { 246 nwords += 2; 247 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 248 res = nwords * sizeof(mm->saved_auxv[0]); 249 if (res > PAGE_SIZE) 250 res = PAGE_SIZE; 251 memcpy(buffer, mm->saved_auxv, res); 252 mmput(mm); 253 } 254 return res; 255 } 256 257 258 #ifdef CONFIG_KALLSYMS 259 /* 260 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 261 * Returns the resolved symbol. If that fails, simply return the address. 262 */ 263 static int proc_pid_wchan(struct task_struct *task, char *buffer) 264 { 265 unsigned long wchan; 266 char symname[KSYM_NAME_LEN]; 267 268 wchan = get_wchan(task); 269 270 if (lookup_symbol_name(wchan, symname) < 0) 271 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 272 return 0; 273 else 274 return sprintf(buffer, "%lu", wchan); 275 else 276 return sprintf(buffer, "%s", symname); 277 } 278 #endif /* CONFIG_KALLSYMS */ 279 280 static int lock_trace(struct task_struct *task) 281 { 282 int err = mutex_lock_killable(&task->signal->cred_guard_mutex); 283 if (err) 284 return err; 285 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) { 286 mutex_unlock(&task->signal->cred_guard_mutex); 287 return -EPERM; 288 } 289 return 0; 290 } 291 292 static void unlock_trace(struct task_struct *task) 293 { 294 mutex_unlock(&task->signal->cred_guard_mutex); 295 } 296 297 #ifdef CONFIG_STACKTRACE 298 299 #define MAX_STACK_TRACE_DEPTH 64 300 301 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 302 struct pid *pid, struct task_struct *task) 303 { 304 struct stack_trace trace; 305 unsigned long *entries; 306 int err; 307 int i; 308 309 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL); 310 if (!entries) 311 return -ENOMEM; 312 313 trace.nr_entries = 0; 314 trace.max_entries = MAX_STACK_TRACE_DEPTH; 315 trace.entries = entries; 316 trace.skip = 0; 317 318 err = lock_trace(task); 319 if (!err) { 320 save_stack_trace_tsk(task, &trace); 321 322 for (i = 0; i < trace.nr_entries; i++) { 323 seq_printf(m, "[<%pK>] %pS\n", 324 (void *)entries[i], (void *)entries[i]); 325 } 326 unlock_trace(task); 327 } 328 kfree(entries); 329 330 return err; 331 } 332 #endif 333 334 #ifdef CONFIG_SCHEDSTATS 335 /* 336 * Provides /proc/PID/schedstat 337 */ 338 static int proc_pid_schedstat(struct task_struct *task, char *buffer) 339 { 340 return sprintf(buffer, "%llu %llu %lu\n", 341 (unsigned long long)task->se.sum_exec_runtime, 342 (unsigned long long)task->sched_info.run_delay, 343 task->sched_info.pcount); 344 } 345 #endif 346 347 #ifdef CONFIG_LATENCYTOP 348 static int lstats_show_proc(struct seq_file *m, void *v) 349 { 350 int i; 351 struct inode *inode = m->private; 352 struct task_struct *task = get_proc_task(inode); 353 354 if (!task) 355 return -ESRCH; 356 seq_puts(m, "Latency Top version : v0.1\n"); 357 for (i = 0; i < 32; i++) { 358 struct latency_record *lr = &task->latency_record[i]; 359 if (lr->backtrace[0]) { 360 int q; 361 seq_printf(m, "%i %li %li", 362 lr->count, lr->time, lr->max); 363 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 364 unsigned long bt = lr->backtrace[q]; 365 if (!bt) 366 break; 367 if (bt == ULONG_MAX) 368 break; 369 seq_printf(m, " %ps", (void *)bt); 370 } 371 seq_putc(m, '\n'); 372 } 373 374 } 375 put_task_struct(task); 376 return 0; 377 } 378 379 static int lstats_open(struct inode *inode, struct file *file) 380 { 381 return single_open(file, lstats_show_proc, inode); 382 } 383 384 static ssize_t lstats_write(struct file *file, const char __user *buf, 385 size_t count, loff_t *offs) 386 { 387 struct task_struct *task = get_proc_task(file_inode(file)); 388 389 if (!task) 390 return -ESRCH; 391 clear_all_latency_tracing(task); 392 put_task_struct(task); 393 394 return count; 395 } 396 397 static const struct file_operations proc_lstats_operations = { 398 .open = lstats_open, 399 .read = seq_read, 400 .write = lstats_write, 401 .llseek = seq_lseek, 402 .release = single_release, 403 }; 404 405 #endif 406 407 static int proc_oom_score(struct task_struct *task, char *buffer) 408 { 409 unsigned long totalpages = totalram_pages + total_swap_pages; 410 unsigned long points = 0; 411 412 read_lock(&tasklist_lock); 413 if (pid_alive(task)) 414 points = oom_badness(task, NULL, NULL, totalpages) * 415 1000 / totalpages; 416 read_unlock(&tasklist_lock); 417 return sprintf(buffer, "%lu\n", points); 418 } 419 420 struct limit_names { 421 char *name; 422 char *unit; 423 }; 424 425 static const struct limit_names lnames[RLIM_NLIMITS] = { 426 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 427 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 428 [RLIMIT_DATA] = {"Max data size", "bytes"}, 429 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 430 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 431 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 432 [RLIMIT_NPROC] = {"Max processes", "processes"}, 433 [RLIMIT_NOFILE] = {"Max open files", "files"}, 434 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 435 [RLIMIT_AS] = {"Max address space", "bytes"}, 436 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 437 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 438 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 439 [RLIMIT_NICE] = {"Max nice priority", NULL}, 440 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 441 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 442 }; 443 444 /* Display limits for a process */ 445 static int proc_pid_limits(struct task_struct *task, char *buffer) 446 { 447 unsigned int i; 448 int count = 0; 449 unsigned long flags; 450 char *bufptr = buffer; 451 452 struct rlimit rlim[RLIM_NLIMITS]; 453 454 if (!lock_task_sighand(task, &flags)) 455 return 0; 456 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 457 unlock_task_sighand(task, &flags); 458 459 /* 460 * print the file header 461 */ 462 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n", 463 "Limit", "Soft Limit", "Hard Limit", "Units"); 464 465 for (i = 0; i < RLIM_NLIMITS; i++) { 466 if (rlim[i].rlim_cur == RLIM_INFINITY) 467 count += sprintf(&bufptr[count], "%-25s %-20s ", 468 lnames[i].name, "unlimited"); 469 else 470 count += sprintf(&bufptr[count], "%-25s %-20lu ", 471 lnames[i].name, rlim[i].rlim_cur); 472 473 if (rlim[i].rlim_max == RLIM_INFINITY) 474 count += sprintf(&bufptr[count], "%-20s ", "unlimited"); 475 else 476 count += sprintf(&bufptr[count], "%-20lu ", 477 rlim[i].rlim_max); 478 479 if (lnames[i].unit) 480 count += sprintf(&bufptr[count], "%-10s\n", 481 lnames[i].unit); 482 else 483 count += sprintf(&bufptr[count], "\n"); 484 } 485 486 return count; 487 } 488 489 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 490 static int proc_pid_syscall(struct task_struct *task, char *buffer) 491 { 492 long nr; 493 unsigned long args[6], sp, pc; 494 int res = lock_trace(task); 495 if (res) 496 return res; 497 498 if (task_current_syscall(task, &nr, args, 6, &sp, &pc)) 499 res = sprintf(buffer, "running\n"); 500 else if (nr < 0) 501 res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc); 502 else 503 res = sprintf(buffer, 504 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n", 505 nr, 506 args[0], args[1], args[2], args[3], args[4], args[5], 507 sp, pc); 508 unlock_trace(task); 509 return res; 510 } 511 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 512 513 /************************************************************************/ 514 /* Here the fs part begins */ 515 /************************************************************************/ 516 517 /* permission checks */ 518 static int proc_fd_access_allowed(struct inode *inode) 519 { 520 struct task_struct *task; 521 int allowed = 0; 522 /* Allow access to a task's file descriptors if it is us or we 523 * may use ptrace attach to the process and find out that 524 * information. 525 */ 526 task = get_proc_task(inode); 527 if (task) { 528 allowed = ptrace_may_access(task, PTRACE_MODE_READ); 529 put_task_struct(task); 530 } 531 return allowed; 532 } 533 534 int proc_setattr(struct dentry *dentry, struct iattr *attr) 535 { 536 int error; 537 struct inode *inode = dentry->d_inode; 538 539 if (attr->ia_valid & ATTR_MODE) 540 return -EPERM; 541 542 error = inode_change_ok(inode, attr); 543 if (error) 544 return error; 545 546 setattr_copy(inode, attr); 547 mark_inode_dirty(inode); 548 return 0; 549 } 550 551 /* 552 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 553 * or euid/egid (for hide_pid_min=2)? 554 */ 555 static bool has_pid_permissions(struct pid_namespace *pid, 556 struct task_struct *task, 557 int hide_pid_min) 558 { 559 if (pid->hide_pid < hide_pid_min) 560 return true; 561 if (in_group_p(pid->pid_gid)) 562 return true; 563 return ptrace_may_access(task, PTRACE_MODE_READ); 564 } 565 566 567 static int proc_pid_permission(struct inode *inode, int mask) 568 { 569 struct pid_namespace *pid = inode->i_sb->s_fs_info; 570 struct task_struct *task; 571 bool has_perms; 572 573 task = get_proc_task(inode); 574 if (!task) 575 return -ESRCH; 576 has_perms = has_pid_permissions(pid, task, 1); 577 put_task_struct(task); 578 579 if (!has_perms) { 580 if (pid->hide_pid == 2) { 581 /* 582 * Let's make getdents(), stat(), and open() 583 * consistent with each other. If a process 584 * may not stat() a file, it shouldn't be seen 585 * in procfs at all. 586 */ 587 return -ENOENT; 588 } 589 590 return -EPERM; 591 } 592 return generic_permission(inode, mask); 593 } 594 595 596 597 static const struct inode_operations proc_def_inode_operations = { 598 .setattr = proc_setattr, 599 }; 600 601 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */ 602 603 static ssize_t proc_info_read(struct file * file, char __user * buf, 604 size_t count, loff_t *ppos) 605 { 606 struct inode * inode = file_inode(file); 607 unsigned long page; 608 ssize_t length; 609 struct task_struct *task = get_proc_task(inode); 610 611 length = -ESRCH; 612 if (!task) 613 goto out_no_task; 614 615 if (count > PROC_BLOCK_SIZE) 616 count = PROC_BLOCK_SIZE; 617 618 length = -ENOMEM; 619 if (!(page = __get_free_page(GFP_TEMPORARY))) 620 goto out; 621 622 length = PROC_I(inode)->op.proc_read(task, (char*)page); 623 624 if (length >= 0) 625 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length); 626 free_page(page); 627 out: 628 put_task_struct(task); 629 out_no_task: 630 return length; 631 } 632 633 static const struct file_operations proc_info_file_operations = { 634 .read = proc_info_read, 635 .llseek = generic_file_llseek, 636 }; 637 638 static int proc_single_show(struct seq_file *m, void *v) 639 { 640 struct inode *inode = m->private; 641 struct pid_namespace *ns; 642 struct pid *pid; 643 struct task_struct *task; 644 int ret; 645 646 ns = inode->i_sb->s_fs_info; 647 pid = proc_pid(inode); 648 task = get_pid_task(pid, PIDTYPE_PID); 649 if (!task) 650 return -ESRCH; 651 652 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 653 654 put_task_struct(task); 655 return ret; 656 } 657 658 static int proc_single_open(struct inode *inode, struct file *filp) 659 { 660 return single_open(filp, proc_single_show, inode); 661 } 662 663 static const struct file_operations proc_single_file_operations = { 664 .open = proc_single_open, 665 .read = seq_read, 666 .llseek = seq_lseek, 667 .release = single_release, 668 }; 669 670 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) 671 { 672 struct task_struct *task = get_proc_task(file_inode(file)); 673 struct mm_struct *mm; 674 675 if (!task) 676 return -ESRCH; 677 678 mm = mm_access(task, mode); 679 put_task_struct(task); 680 681 if (IS_ERR(mm)) 682 return PTR_ERR(mm); 683 684 if (mm) { 685 /* ensure this mm_struct can't be freed */ 686 atomic_inc(&mm->mm_count); 687 /* but do not pin its memory */ 688 mmput(mm); 689 } 690 691 file->private_data = mm; 692 693 return 0; 694 } 695 696 static int mem_open(struct inode *inode, struct file *file) 697 { 698 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH); 699 700 /* OK to pass negative loff_t, we can catch out-of-range */ 701 file->f_mode |= FMODE_UNSIGNED_OFFSET; 702 703 return ret; 704 } 705 706 static ssize_t mem_rw(struct file *file, char __user *buf, 707 size_t count, loff_t *ppos, int write) 708 { 709 struct mm_struct *mm = file->private_data; 710 unsigned long addr = *ppos; 711 ssize_t copied; 712 char *page; 713 714 if (!mm) 715 return 0; 716 717 page = (char *)__get_free_page(GFP_TEMPORARY); 718 if (!page) 719 return -ENOMEM; 720 721 copied = 0; 722 if (!atomic_inc_not_zero(&mm->mm_users)) 723 goto free; 724 725 while (count > 0) { 726 int this_len = min_t(int, count, PAGE_SIZE); 727 728 if (write && copy_from_user(page, buf, this_len)) { 729 copied = -EFAULT; 730 break; 731 } 732 733 this_len = access_remote_vm(mm, addr, page, this_len, write); 734 if (!this_len) { 735 if (!copied) 736 copied = -EIO; 737 break; 738 } 739 740 if (!write && copy_to_user(buf, page, this_len)) { 741 copied = -EFAULT; 742 break; 743 } 744 745 buf += this_len; 746 addr += this_len; 747 copied += this_len; 748 count -= this_len; 749 } 750 *ppos = addr; 751 752 mmput(mm); 753 free: 754 free_page((unsigned long) page); 755 return copied; 756 } 757 758 static ssize_t mem_read(struct file *file, char __user *buf, 759 size_t count, loff_t *ppos) 760 { 761 return mem_rw(file, buf, count, ppos, 0); 762 } 763 764 static ssize_t mem_write(struct file *file, const char __user *buf, 765 size_t count, loff_t *ppos) 766 { 767 return mem_rw(file, (char __user*)buf, count, ppos, 1); 768 } 769 770 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 771 { 772 switch (orig) { 773 case 0: 774 file->f_pos = offset; 775 break; 776 case 1: 777 file->f_pos += offset; 778 break; 779 default: 780 return -EINVAL; 781 } 782 force_successful_syscall_return(); 783 return file->f_pos; 784 } 785 786 static int mem_release(struct inode *inode, struct file *file) 787 { 788 struct mm_struct *mm = file->private_data; 789 if (mm) 790 mmdrop(mm); 791 return 0; 792 } 793 794 static const struct file_operations proc_mem_operations = { 795 .llseek = mem_lseek, 796 .read = mem_read, 797 .write = mem_write, 798 .open = mem_open, 799 .release = mem_release, 800 }; 801 802 static int environ_open(struct inode *inode, struct file *file) 803 { 804 return __mem_open(inode, file, PTRACE_MODE_READ); 805 } 806 807 static ssize_t environ_read(struct file *file, char __user *buf, 808 size_t count, loff_t *ppos) 809 { 810 char *page; 811 unsigned long src = *ppos; 812 int ret = 0; 813 struct mm_struct *mm = file->private_data; 814 815 if (!mm) 816 return 0; 817 818 page = (char *)__get_free_page(GFP_TEMPORARY); 819 if (!page) 820 return -ENOMEM; 821 822 ret = 0; 823 if (!atomic_inc_not_zero(&mm->mm_users)) 824 goto free; 825 while (count > 0) { 826 size_t this_len, max_len; 827 int retval; 828 829 if (src >= (mm->env_end - mm->env_start)) 830 break; 831 832 this_len = mm->env_end - (mm->env_start + src); 833 834 max_len = min_t(size_t, PAGE_SIZE, count); 835 this_len = min(max_len, this_len); 836 837 retval = access_remote_vm(mm, (mm->env_start + src), 838 page, this_len, 0); 839 840 if (retval <= 0) { 841 ret = retval; 842 break; 843 } 844 845 if (copy_to_user(buf, page, retval)) { 846 ret = -EFAULT; 847 break; 848 } 849 850 ret += retval; 851 src += retval; 852 buf += retval; 853 count -= retval; 854 } 855 *ppos = src; 856 mmput(mm); 857 858 free: 859 free_page((unsigned long) page); 860 return ret; 861 } 862 863 static const struct file_operations proc_environ_operations = { 864 .open = environ_open, 865 .read = environ_read, 866 .llseek = generic_file_llseek, 867 .release = mem_release, 868 }; 869 870 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count, 871 loff_t *ppos) 872 { 873 struct task_struct *task = get_proc_task(file_inode(file)); 874 char buffer[PROC_NUMBUF]; 875 int oom_adj = OOM_ADJUST_MIN; 876 size_t len; 877 unsigned long flags; 878 879 if (!task) 880 return -ESRCH; 881 if (lock_task_sighand(task, &flags)) { 882 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX) 883 oom_adj = OOM_ADJUST_MAX; 884 else 885 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) / 886 OOM_SCORE_ADJ_MAX; 887 unlock_task_sighand(task, &flags); 888 } 889 put_task_struct(task); 890 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj); 891 return simple_read_from_buffer(buf, count, ppos, buffer, len); 892 } 893 894 static ssize_t oom_adj_write(struct file *file, const char __user *buf, 895 size_t count, loff_t *ppos) 896 { 897 struct task_struct *task; 898 char buffer[PROC_NUMBUF]; 899 int oom_adj; 900 unsigned long flags; 901 int err; 902 903 memset(buffer, 0, sizeof(buffer)); 904 if (count > sizeof(buffer) - 1) 905 count = sizeof(buffer) - 1; 906 if (copy_from_user(buffer, buf, count)) { 907 err = -EFAULT; 908 goto out; 909 } 910 911 err = kstrtoint(strstrip(buffer), 0, &oom_adj); 912 if (err) 913 goto out; 914 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) && 915 oom_adj != OOM_DISABLE) { 916 err = -EINVAL; 917 goto out; 918 } 919 920 task = get_proc_task(file_inode(file)); 921 if (!task) { 922 err = -ESRCH; 923 goto out; 924 } 925 926 task_lock(task); 927 if (!task->mm) { 928 err = -EINVAL; 929 goto err_task_lock; 930 } 931 932 if (!lock_task_sighand(task, &flags)) { 933 err = -ESRCH; 934 goto err_task_lock; 935 } 936 937 /* 938 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 939 * value is always attainable. 940 */ 941 if (oom_adj == OOM_ADJUST_MAX) 942 oom_adj = OOM_SCORE_ADJ_MAX; 943 else 944 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE; 945 946 if (oom_adj < task->signal->oom_score_adj && 947 !capable(CAP_SYS_RESOURCE)) { 948 err = -EACCES; 949 goto err_sighand; 950 } 951 952 /* 953 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use 954 * /proc/pid/oom_score_adj instead. 955 */ 956 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 957 current->comm, task_pid_nr(current), task_pid_nr(task), 958 task_pid_nr(task)); 959 960 task->signal->oom_score_adj = oom_adj; 961 trace_oom_score_adj_update(task); 962 err_sighand: 963 unlock_task_sighand(task, &flags); 964 err_task_lock: 965 task_unlock(task); 966 put_task_struct(task); 967 out: 968 return err < 0 ? err : count; 969 } 970 971 static const struct file_operations proc_oom_adj_operations = { 972 .read = oom_adj_read, 973 .write = oom_adj_write, 974 .llseek = generic_file_llseek, 975 }; 976 977 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 978 size_t count, loff_t *ppos) 979 { 980 struct task_struct *task = get_proc_task(file_inode(file)); 981 char buffer[PROC_NUMBUF]; 982 short oom_score_adj = OOM_SCORE_ADJ_MIN; 983 unsigned long flags; 984 size_t len; 985 986 if (!task) 987 return -ESRCH; 988 if (lock_task_sighand(task, &flags)) { 989 oom_score_adj = task->signal->oom_score_adj; 990 unlock_task_sighand(task, &flags); 991 } 992 put_task_struct(task); 993 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj); 994 return simple_read_from_buffer(buf, count, ppos, buffer, len); 995 } 996 997 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 998 size_t count, loff_t *ppos) 999 { 1000 struct task_struct *task; 1001 char buffer[PROC_NUMBUF]; 1002 unsigned long flags; 1003 int oom_score_adj; 1004 int err; 1005 1006 memset(buffer, 0, sizeof(buffer)); 1007 if (count > sizeof(buffer) - 1) 1008 count = sizeof(buffer) - 1; 1009 if (copy_from_user(buffer, buf, count)) { 1010 err = -EFAULT; 1011 goto out; 1012 } 1013 1014 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1015 if (err) 1016 goto out; 1017 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1018 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1019 err = -EINVAL; 1020 goto out; 1021 } 1022 1023 task = get_proc_task(file_inode(file)); 1024 if (!task) { 1025 err = -ESRCH; 1026 goto out; 1027 } 1028 1029 task_lock(task); 1030 if (!task->mm) { 1031 err = -EINVAL; 1032 goto err_task_lock; 1033 } 1034 1035 if (!lock_task_sighand(task, &flags)) { 1036 err = -ESRCH; 1037 goto err_task_lock; 1038 } 1039 1040 if ((short)oom_score_adj < task->signal->oom_score_adj_min && 1041 !capable(CAP_SYS_RESOURCE)) { 1042 err = -EACCES; 1043 goto err_sighand; 1044 } 1045 1046 task->signal->oom_score_adj = (short)oom_score_adj; 1047 if (has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1048 task->signal->oom_score_adj_min = (short)oom_score_adj; 1049 trace_oom_score_adj_update(task); 1050 1051 err_sighand: 1052 unlock_task_sighand(task, &flags); 1053 err_task_lock: 1054 task_unlock(task); 1055 put_task_struct(task); 1056 out: 1057 return err < 0 ? err : count; 1058 } 1059 1060 static const struct file_operations proc_oom_score_adj_operations = { 1061 .read = oom_score_adj_read, 1062 .write = oom_score_adj_write, 1063 .llseek = default_llseek, 1064 }; 1065 1066 #ifdef CONFIG_AUDITSYSCALL 1067 #define TMPBUFLEN 21 1068 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1069 size_t count, loff_t *ppos) 1070 { 1071 struct inode * inode = file_inode(file); 1072 struct task_struct *task = get_proc_task(inode); 1073 ssize_t length; 1074 char tmpbuf[TMPBUFLEN]; 1075 1076 if (!task) 1077 return -ESRCH; 1078 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1079 from_kuid(file->f_cred->user_ns, 1080 audit_get_loginuid(task))); 1081 put_task_struct(task); 1082 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1083 } 1084 1085 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1086 size_t count, loff_t *ppos) 1087 { 1088 struct inode * inode = file_inode(file); 1089 char *page, *tmp; 1090 ssize_t length; 1091 uid_t loginuid; 1092 kuid_t kloginuid; 1093 1094 rcu_read_lock(); 1095 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1096 rcu_read_unlock(); 1097 return -EPERM; 1098 } 1099 rcu_read_unlock(); 1100 1101 if (count >= PAGE_SIZE) 1102 count = PAGE_SIZE - 1; 1103 1104 if (*ppos != 0) { 1105 /* No partial writes. */ 1106 return -EINVAL; 1107 } 1108 page = (char*)__get_free_page(GFP_TEMPORARY); 1109 if (!page) 1110 return -ENOMEM; 1111 length = -EFAULT; 1112 if (copy_from_user(page, buf, count)) 1113 goto out_free_page; 1114 1115 page[count] = '\0'; 1116 loginuid = simple_strtoul(page, &tmp, 10); 1117 if (tmp == page) { 1118 length = -EINVAL; 1119 goto out_free_page; 1120 1121 } 1122 kloginuid = make_kuid(file->f_cred->user_ns, loginuid); 1123 if (!uid_valid(kloginuid)) { 1124 length = -EINVAL; 1125 goto out_free_page; 1126 } 1127 1128 length = audit_set_loginuid(kloginuid); 1129 if (likely(length == 0)) 1130 length = count; 1131 1132 out_free_page: 1133 free_page((unsigned long) page); 1134 return length; 1135 } 1136 1137 static const struct file_operations proc_loginuid_operations = { 1138 .read = proc_loginuid_read, 1139 .write = proc_loginuid_write, 1140 .llseek = generic_file_llseek, 1141 }; 1142 1143 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1144 size_t count, loff_t *ppos) 1145 { 1146 struct inode * inode = file_inode(file); 1147 struct task_struct *task = get_proc_task(inode); 1148 ssize_t length; 1149 char tmpbuf[TMPBUFLEN]; 1150 1151 if (!task) 1152 return -ESRCH; 1153 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1154 audit_get_sessionid(task)); 1155 put_task_struct(task); 1156 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1157 } 1158 1159 static const struct file_operations proc_sessionid_operations = { 1160 .read = proc_sessionid_read, 1161 .llseek = generic_file_llseek, 1162 }; 1163 #endif 1164 1165 #ifdef CONFIG_FAULT_INJECTION 1166 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1167 size_t count, loff_t *ppos) 1168 { 1169 struct task_struct *task = get_proc_task(file_inode(file)); 1170 char buffer[PROC_NUMBUF]; 1171 size_t len; 1172 int make_it_fail; 1173 1174 if (!task) 1175 return -ESRCH; 1176 make_it_fail = task->make_it_fail; 1177 put_task_struct(task); 1178 1179 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1180 1181 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1182 } 1183 1184 static ssize_t proc_fault_inject_write(struct file * file, 1185 const char __user * buf, size_t count, loff_t *ppos) 1186 { 1187 struct task_struct *task; 1188 char buffer[PROC_NUMBUF], *end; 1189 int make_it_fail; 1190 1191 if (!capable(CAP_SYS_RESOURCE)) 1192 return -EPERM; 1193 memset(buffer, 0, sizeof(buffer)); 1194 if (count > sizeof(buffer) - 1) 1195 count = sizeof(buffer) - 1; 1196 if (copy_from_user(buffer, buf, count)) 1197 return -EFAULT; 1198 make_it_fail = simple_strtol(strstrip(buffer), &end, 0); 1199 if (*end) 1200 return -EINVAL; 1201 task = get_proc_task(file_inode(file)); 1202 if (!task) 1203 return -ESRCH; 1204 task->make_it_fail = make_it_fail; 1205 put_task_struct(task); 1206 1207 return count; 1208 } 1209 1210 static const struct file_operations proc_fault_inject_operations = { 1211 .read = proc_fault_inject_read, 1212 .write = proc_fault_inject_write, 1213 .llseek = generic_file_llseek, 1214 }; 1215 #endif 1216 1217 1218 #ifdef CONFIG_SCHED_DEBUG 1219 /* 1220 * Print out various scheduling related per-task fields: 1221 */ 1222 static int sched_show(struct seq_file *m, void *v) 1223 { 1224 struct inode *inode = m->private; 1225 struct task_struct *p; 1226 1227 p = get_proc_task(inode); 1228 if (!p) 1229 return -ESRCH; 1230 proc_sched_show_task(p, m); 1231 1232 put_task_struct(p); 1233 1234 return 0; 1235 } 1236 1237 static ssize_t 1238 sched_write(struct file *file, const char __user *buf, 1239 size_t count, loff_t *offset) 1240 { 1241 struct inode *inode = file_inode(file); 1242 struct task_struct *p; 1243 1244 p = get_proc_task(inode); 1245 if (!p) 1246 return -ESRCH; 1247 proc_sched_set_task(p); 1248 1249 put_task_struct(p); 1250 1251 return count; 1252 } 1253 1254 static int sched_open(struct inode *inode, struct file *filp) 1255 { 1256 return single_open(filp, sched_show, inode); 1257 } 1258 1259 static const struct file_operations proc_pid_sched_operations = { 1260 .open = sched_open, 1261 .read = seq_read, 1262 .write = sched_write, 1263 .llseek = seq_lseek, 1264 .release = single_release, 1265 }; 1266 1267 #endif 1268 1269 #ifdef CONFIG_SCHED_AUTOGROUP 1270 /* 1271 * Print out autogroup related information: 1272 */ 1273 static int sched_autogroup_show(struct seq_file *m, void *v) 1274 { 1275 struct inode *inode = m->private; 1276 struct task_struct *p; 1277 1278 p = get_proc_task(inode); 1279 if (!p) 1280 return -ESRCH; 1281 proc_sched_autogroup_show_task(p, m); 1282 1283 put_task_struct(p); 1284 1285 return 0; 1286 } 1287 1288 static ssize_t 1289 sched_autogroup_write(struct file *file, const char __user *buf, 1290 size_t count, loff_t *offset) 1291 { 1292 struct inode *inode = file_inode(file); 1293 struct task_struct *p; 1294 char buffer[PROC_NUMBUF]; 1295 int nice; 1296 int err; 1297 1298 memset(buffer, 0, sizeof(buffer)); 1299 if (count > sizeof(buffer) - 1) 1300 count = sizeof(buffer) - 1; 1301 if (copy_from_user(buffer, buf, count)) 1302 return -EFAULT; 1303 1304 err = kstrtoint(strstrip(buffer), 0, &nice); 1305 if (err < 0) 1306 return err; 1307 1308 p = get_proc_task(inode); 1309 if (!p) 1310 return -ESRCH; 1311 1312 err = proc_sched_autogroup_set_nice(p, nice); 1313 if (err) 1314 count = err; 1315 1316 put_task_struct(p); 1317 1318 return count; 1319 } 1320 1321 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1322 { 1323 int ret; 1324 1325 ret = single_open(filp, sched_autogroup_show, NULL); 1326 if (!ret) { 1327 struct seq_file *m = filp->private_data; 1328 1329 m->private = inode; 1330 } 1331 return ret; 1332 } 1333 1334 static const struct file_operations proc_pid_sched_autogroup_operations = { 1335 .open = sched_autogroup_open, 1336 .read = seq_read, 1337 .write = sched_autogroup_write, 1338 .llseek = seq_lseek, 1339 .release = single_release, 1340 }; 1341 1342 #endif /* CONFIG_SCHED_AUTOGROUP */ 1343 1344 static ssize_t comm_write(struct file *file, const char __user *buf, 1345 size_t count, loff_t *offset) 1346 { 1347 struct inode *inode = file_inode(file); 1348 struct task_struct *p; 1349 char buffer[TASK_COMM_LEN]; 1350 1351 memset(buffer, 0, sizeof(buffer)); 1352 if (count > sizeof(buffer) - 1) 1353 count = sizeof(buffer) - 1; 1354 if (copy_from_user(buffer, buf, count)) 1355 return -EFAULT; 1356 1357 p = get_proc_task(inode); 1358 if (!p) 1359 return -ESRCH; 1360 1361 if (same_thread_group(current, p)) 1362 set_task_comm(p, buffer); 1363 else 1364 count = -EINVAL; 1365 1366 put_task_struct(p); 1367 1368 return count; 1369 } 1370 1371 static int comm_show(struct seq_file *m, void *v) 1372 { 1373 struct inode *inode = m->private; 1374 struct task_struct *p; 1375 1376 p = get_proc_task(inode); 1377 if (!p) 1378 return -ESRCH; 1379 1380 task_lock(p); 1381 seq_printf(m, "%s\n", p->comm); 1382 task_unlock(p); 1383 1384 put_task_struct(p); 1385 1386 return 0; 1387 } 1388 1389 static int comm_open(struct inode *inode, struct file *filp) 1390 { 1391 return single_open(filp, comm_show, inode); 1392 } 1393 1394 static const struct file_operations proc_pid_set_comm_operations = { 1395 .open = comm_open, 1396 .read = seq_read, 1397 .write = comm_write, 1398 .llseek = seq_lseek, 1399 .release = single_release, 1400 }; 1401 1402 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1403 { 1404 struct task_struct *task; 1405 struct mm_struct *mm; 1406 struct file *exe_file; 1407 1408 task = get_proc_task(dentry->d_inode); 1409 if (!task) 1410 return -ENOENT; 1411 mm = get_task_mm(task); 1412 put_task_struct(task); 1413 if (!mm) 1414 return -ENOENT; 1415 exe_file = get_mm_exe_file(mm); 1416 mmput(mm); 1417 if (exe_file) { 1418 *exe_path = exe_file->f_path; 1419 path_get(&exe_file->f_path); 1420 fput(exe_file); 1421 return 0; 1422 } else 1423 return -ENOENT; 1424 } 1425 1426 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd) 1427 { 1428 struct inode *inode = dentry->d_inode; 1429 struct path path; 1430 int error = -EACCES; 1431 1432 /* Are we allowed to snoop on the tasks file descriptors? */ 1433 if (!proc_fd_access_allowed(inode)) 1434 goto out; 1435 1436 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1437 if (error) 1438 goto out; 1439 1440 nd_jump_link(nd, &path); 1441 return NULL; 1442 out: 1443 return ERR_PTR(error); 1444 } 1445 1446 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1447 { 1448 char *tmp = (char*)__get_free_page(GFP_TEMPORARY); 1449 char *pathname; 1450 int len; 1451 1452 if (!tmp) 1453 return -ENOMEM; 1454 1455 pathname = d_path(path, tmp, PAGE_SIZE); 1456 len = PTR_ERR(pathname); 1457 if (IS_ERR(pathname)) 1458 goto out; 1459 len = tmp + PAGE_SIZE - 1 - pathname; 1460 1461 if (len > buflen) 1462 len = buflen; 1463 if (copy_to_user(buffer, pathname, len)) 1464 len = -EFAULT; 1465 out: 1466 free_page((unsigned long)tmp); 1467 return len; 1468 } 1469 1470 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1471 { 1472 int error = -EACCES; 1473 struct inode *inode = dentry->d_inode; 1474 struct path path; 1475 1476 /* Are we allowed to snoop on the tasks file descriptors? */ 1477 if (!proc_fd_access_allowed(inode)) 1478 goto out; 1479 1480 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1481 if (error) 1482 goto out; 1483 1484 error = do_proc_readlink(&path, buffer, buflen); 1485 path_put(&path); 1486 out: 1487 return error; 1488 } 1489 1490 const struct inode_operations proc_pid_link_inode_operations = { 1491 .readlink = proc_pid_readlink, 1492 .follow_link = proc_pid_follow_link, 1493 .setattr = proc_setattr, 1494 }; 1495 1496 1497 /* building an inode */ 1498 1499 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task) 1500 { 1501 struct inode * inode; 1502 struct proc_inode *ei; 1503 const struct cred *cred; 1504 1505 /* We need a new inode */ 1506 1507 inode = new_inode(sb); 1508 if (!inode) 1509 goto out; 1510 1511 /* Common stuff */ 1512 ei = PROC_I(inode); 1513 inode->i_ino = get_next_ino(); 1514 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 1515 inode->i_op = &proc_def_inode_operations; 1516 1517 /* 1518 * grab the reference to task. 1519 */ 1520 ei->pid = get_task_pid(task, PIDTYPE_PID); 1521 if (!ei->pid) 1522 goto out_unlock; 1523 1524 if (task_dumpable(task)) { 1525 rcu_read_lock(); 1526 cred = __task_cred(task); 1527 inode->i_uid = cred->euid; 1528 inode->i_gid = cred->egid; 1529 rcu_read_unlock(); 1530 } 1531 security_task_to_inode(task, inode); 1532 1533 out: 1534 return inode; 1535 1536 out_unlock: 1537 iput(inode); 1538 return NULL; 1539 } 1540 1541 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 1542 { 1543 struct inode *inode = dentry->d_inode; 1544 struct task_struct *task; 1545 const struct cred *cred; 1546 struct pid_namespace *pid = dentry->d_sb->s_fs_info; 1547 1548 generic_fillattr(inode, stat); 1549 1550 rcu_read_lock(); 1551 stat->uid = GLOBAL_ROOT_UID; 1552 stat->gid = GLOBAL_ROOT_GID; 1553 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1554 if (task) { 1555 if (!has_pid_permissions(pid, task, 2)) { 1556 rcu_read_unlock(); 1557 /* 1558 * This doesn't prevent learning whether PID exists, 1559 * it only makes getattr() consistent with readdir(). 1560 */ 1561 return -ENOENT; 1562 } 1563 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1564 task_dumpable(task)) { 1565 cred = __task_cred(task); 1566 stat->uid = cred->euid; 1567 stat->gid = cred->egid; 1568 } 1569 } 1570 rcu_read_unlock(); 1571 return 0; 1572 } 1573 1574 /* dentry stuff */ 1575 1576 /* 1577 * Exceptional case: normally we are not allowed to unhash a busy 1578 * directory. In this case, however, we can do it - no aliasing problems 1579 * due to the way we treat inodes. 1580 * 1581 * Rewrite the inode's ownerships here because the owning task may have 1582 * performed a setuid(), etc. 1583 * 1584 * Before the /proc/pid/status file was created the only way to read 1585 * the effective uid of a /process was to stat /proc/pid. Reading 1586 * /proc/pid/status is slow enough that procps and other packages 1587 * kept stating /proc/pid. To keep the rules in /proc simple I have 1588 * made this apply to all per process world readable and executable 1589 * directories. 1590 */ 1591 int pid_revalidate(struct dentry *dentry, unsigned int flags) 1592 { 1593 struct inode *inode; 1594 struct task_struct *task; 1595 const struct cred *cred; 1596 1597 if (flags & LOOKUP_RCU) 1598 return -ECHILD; 1599 1600 inode = dentry->d_inode; 1601 task = get_proc_task(inode); 1602 1603 if (task) { 1604 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) || 1605 task_dumpable(task)) { 1606 rcu_read_lock(); 1607 cred = __task_cred(task); 1608 inode->i_uid = cred->euid; 1609 inode->i_gid = cred->egid; 1610 rcu_read_unlock(); 1611 } else { 1612 inode->i_uid = GLOBAL_ROOT_UID; 1613 inode->i_gid = GLOBAL_ROOT_GID; 1614 } 1615 inode->i_mode &= ~(S_ISUID | S_ISGID); 1616 security_task_to_inode(task, inode); 1617 put_task_struct(task); 1618 return 1; 1619 } 1620 d_drop(dentry); 1621 return 0; 1622 } 1623 1624 const struct dentry_operations pid_dentry_operations = 1625 { 1626 .d_revalidate = pid_revalidate, 1627 .d_delete = pid_delete_dentry, 1628 }; 1629 1630 /* Lookups */ 1631 1632 /* 1633 * Fill a directory entry. 1634 * 1635 * If possible create the dcache entry and derive our inode number and 1636 * file type from dcache entry. 1637 * 1638 * Since all of the proc inode numbers are dynamically generated, the inode 1639 * numbers do not exist until the inode is cache. This means creating the 1640 * the dcache entry in readdir is necessary to keep the inode numbers 1641 * reported by readdir in sync with the inode numbers reported 1642 * by stat. 1643 */ 1644 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 1645 const char *name, int len, 1646 instantiate_t instantiate, struct task_struct *task, const void *ptr) 1647 { 1648 struct dentry *child, *dir = filp->f_path.dentry; 1649 struct inode *inode; 1650 struct qstr qname; 1651 ino_t ino = 0; 1652 unsigned type = DT_UNKNOWN; 1653 1654 qname.name = name; 1655 qname.len = len; 1656 qname.hash = full_name_hash(name, len); 1657 1658 child = d_lookup(dir, &qname); 1659 if (!child) { 1660 struct dentry *new; 1661 new = d_alloc(dir, &qname); 1662 if (new) { 1663 child = instantiate(dir->d_inode, new, task, ptr); 1664 if (child) 1665 dput(new); 1666 else 1667 child = new; 1668 } 1669 } 1670 if (!child || IS_ERR(child) || !child->d_inode) 1671 goto end_instantiate; 1672 inode = child->d_inode; 1673 if (inode) { 1674 ino = inode->i_ino; 1675 type = inode->i_mode >> 12; 1676 } 1677 dput(child); 1678 end_instantiate: 1679 if (!ino) 1680 ino = find_inode_number(dir, &qname); 1681 if (!ino) 1682 ino = 1; 1683 return filldir(dirent, name, len, filp->f_pos, ino, type); 1684 } 1685 1686 #ifdef CONFIG_CHECKPOINT_RESTORE 1687 1688 /* 1689 * dname_to_vma_addr - maps a dentry name into two unsigned longs 1690 * which represent vma start and end addresses. 1691 */ 1692 static int dname_to_vma_addr(struct dentry *dentry, 1693 unsigned long *start, unsigned long *end) 1694 { 1695 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2) 1696 return -EINVAL; 1697 1698 return 0; 1699 } 1700 1701 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags) 1702 { 1703 unsigned long vm_start, vm_end; 1704 bool exact_vma_exists = false; 1705 struct mm_struct *mm = NULL; 1706 struct task_struct *task; 1707 const struct cred *cred; 1708 struct inode *inode; 1709 int status = 0; 1710 1711 if (flags & LOOKUP_RCU) 1712 return -ECHILD; 1713 1714 if (!capable(CAP_SYS_ADMIN)) { 1715 status = -EPERM; 1716 goto out_notask; 1717 } 1718 1719 inode = dentry->d_inode; 1720 task = get_proc_task(inode); 1721 if (!task) 1722 goto out_notask; 1723 1724 mm = mm_access(task, PTRACE_MODE_READ); 1725 if (IS_ERR_OR_NULL(mm)) 1726 goto out; 1727 1728 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 1729 down_read(&mm->mmap_sem); 1730 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end); 1731 up_read(&mm->mmap_sem); 1732 } 1733 1734 mmput(mm); 1735 1736 if (exact_vma_exists) { 1737 if (task_dumpable(task)) { 1738 rcu_read_lock(); 1739 cred = __task_cred(task); 1740 inode->i_uid = cred->euid; 1741 inode->i_gid = cred->egid; 1742 rcu_read_unlock(); 1743 } else { 1744 inode->i_uid = GLOBAL_ROOT_UID; 1745 inode->i_gid = GLOBAL_ROOT_GID; 1746 } 1747 security_task_to_inode(task, inode); 1748 status = 1; 1749 } 1750 1751 out: 1752 put_task_struct(task); 1753 1754 out_notask: 1755 if (status <= 0) 1756 d_drop(dentry); 1757 1758 return status; 1759 } 1760 1761 static const struct dentry_operations tid_map_files_dentry_operations = { 1762 .d_revalidate = map_files_d_revalidate, 1763 .d_delete = pid_delete_dentry, 1764 }; 1765 1766 static int proc_map_files_get_link(struct dentry *dentry, struct path *path) 1767 { 1768 unsigned long vm_start, vm_end; 1769 struct vm_area_struct *vma; 1770 struct task_struct *task; 1771 struct mm_struct *mm; 1772 int rc; 1773 1774 rc = -ENOENT; 1775 task = get_proc_task(dentry->d_inode); 1776 if (!task) 1777 goto out; 1778 1779 mm = get_task_mm(task); 1780 put_task_struct(task); 1781 if (!mm) 1782 goto out; 1783 1784 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 1785 if (rc) 1786 goto out_mmput; 1787 1788 down_read(&mm->mmap_sem); 1789 vma = find_exact_vma(mm, vm_start, vm_end); 1790 if (vma && vma->vm_file) { 1791 *path = vma->vm_file->f_path; 1792 path_get(path); 1793 rc = 0; 1794 } 1795 up_read(&mm->mmap_sem); 1796 1797 out_mmput: 1798 mmput(mm); 1799 out: 1800 return rc; 1801 } 1802 1803 struct map_files_info { 1804 fmode_t mode; 1805 unsigned long len; 1806 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */ 1807 }; 1808 1809 static struct dentry * 1810 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry, 1811 struct task_struct *task, const void *ptr) 1812 { 1813 fmode_t mode = (fmode_t)(unsigned long)ptr; 1814 struct proc_inode *ei; 1815 struct inode *inode; 1816 1817 inode = proc_pid_make_inode(dir->i_sb, task); 1818 if (!inode) 1819 return ERR_PTR(-ENOENT); 1820 1821 ei = PROC_I(inode); 1822 ei->op.proc_get_link = proc_map_files_get_link; 1823 1824 inode->i_op = &proc_pid_link_inode_operations; 1825 inode->i_size = 64; 1826 inode->i_mode = S_IFLNK; 1827 1828 if (mode & FMODE_READ) 1829 inode->i_mode |= S_IRUSR; 1830 if (mode & FMODE_WRITE) 1831 inode->i_mode |= S_IWUSR; 1832 1833 d_set_d_op(dentry, &tid_map_files_dentry_operations); 1834 d_add(dentry, inode); 1835 1836 return NULL; 1837 } 1838 1839 static struct dentry *proc_map_files_lookup(struct inode *dir, 1840 struct dentry *dentry, unsigned int flags) 1841 { 1842 unsigned long vm_start, vm_end; 1843 struct vm_area_struct *vma; 1844 struct task_struct *task; 1845 struct dentry *result; 1846 struct mm_struct *mm; 1847 1848 result = ERR_PTR(-EPERM); 1849 if (!capable(CAP_SYS_ADMIN)) 1850 goto out; 1851 1852 result = ERR_PTR(-ENOENT); 1853 task = get_proc_task(dir); 1854 if (!task) 1855 goto out; 1856 1857 result = ERR_PTR(-EACCES); 1858 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 1859 goto out_put_task; 1860 1861 result = ERR_PTR(-ENOENT); 1862 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 1863 goto out_put_task; 1864 1865 mm = get_task_mm(task); 1866 if (!mm) 1867 goto out_put_task; 1868 1869 down_read(&mm->mmap_sem); 1870 vma = find_exact_vma(mm, vm_start, vm_end); 1871 if (!vma) 1872 goto out_no_vma; 1873 1874 if (vma->vm_file) 1875 result = proc_map_files_instantiate(dir, dentry, task, 1876 (void *)(unsigned long)vma->vm_file->f_mode); 1877 1878 out_no_vma: 1879 up_read(&mm->mmap_sem); 1880 mmput(mm); 1881 out_put_task: 1882 put_task_struct(task); 1883 out: 1884 return result; 1885 } 1886 1887 static const struct inode_operations proc_map_files_inode_operations = { 1888 .lookup = proc_map_files_lookup, 1889 .permission = proc_fd_permission, 1890 .setattr = proc_setattr, 1891 }; 1892 1893 static int 1894 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir) 1895 { 1896 struct dentry *dentry = filp->f_path.dentry; 1897 struct inode *inode = dentry->d_inode; 1898 struct vm_area_struct *vma; 1899 struct task_struct *task; 1900 struct mm_struct *mm; 1901 ino_t ino; 1902 int ret; 1903 1904 ret = -EPERM; 1905 if (!capable(CAP_SYS_ADMIN)) 1906 goto out; 1907 1908 ret = -ENOENT; 1909 task = get_proc_task(inode); 1910 if (!task) 1911 goto out; 1912 1913 ret = -EACCES; 1914 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 1915 goto out_put_task; 1916 1917 ret = 0; 1918 switch (filp->f_pos) { 1919 case 0: 1920 ino = inode->i_ino; 1921 if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0) 1922 goto out_put_task; 1923 filp->f_pos++; 1924 case 1: 1925 ino = parent_ino(dentry); 1926 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0) 1927 goto out_put_task; 1928 filp->f_pos++; 1929 default: 1930 { 1931 unsigned long nr_files, pos, i; 1932 struct flex_array *fa = NULL; 1933 struct map_files_info info; 1934 struct map_files_info *p; 1935 1936 mm = get_task_mm(task); 1937 if (!mm) 1938 goto out_put_task; 1939 down_read(&mm->mmap_sem); 1940 1941 nr_files = 0; 1942 1943 /* 1944 * We need two passes here: 1945 * 1946 * 1) Collect vmas of mapped files with mmap_sem taken 1947 * 2) Release mmap_sem and instantiate entries 1948 * 1949 * otherwise we get lockdep complained, since filldir() 1950 * routine might require mmap_sem taken in might_fault(). 1951 */ 1952 1953 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) { 1954 if (vma->vm_file && ++pos > filp->f_pos) 1955 nr_files++; 1956 } 1957 1958 if (nr_files) { 1959 fa = flex_array_alloc(sizeof(info), nr_files, 1960 GFP_KERNEL); 1961 if (!fa || flex_array_prealloc(fa, 0, nr_files, 1962 GFP_KERNEL)) { 1963 ret = -ENOMEM; 1964 if (fa) 1965 flex_array_free(fa); 1966 up_read(&mm->mmap_sem); 1967 mmput(mm); 1968 goto out_put_task; 1969 } 1970 for (i = 0, vma = mm->mmap, pos = 2; vma; 1971 vma = vma->vm_next) { 1972 if (!vma->vm_file) 1973 continue; 1974 if (++pos <= filp->f_pos) 1975 continue; 1976 1977 info.mode = vma->vm_file->f_mode; 1978 info.len = snprintf(info.name, 1979 sizeof(info.name), "%lx-%lx", 1980 vma->vm_start, vma->vm_end); 1981 if (flex_array_put(fa, i++, &info, GFP_KERNEL)) 1982 BUG(); 1983 } 1984 } 1985 up_read(&mm->mmap_sem); 1986 1987 for (i = 0; i < nr_files; i++) { 1988 p = flex_array_get(fa, i); 1989 ret = proc_fill_cache(filp, dirent, filldir, 1990 p->name, p->len, 1991 proc_map_files_instantiate, 1992 task, 1993 (void *)(unsigned long)p->mode); 1994 if (ret) 1995 break; 1996 filp->f_pos++; 1997 } 1998 if (fa) 1999 flex_array_free(fa); 2000 mmput(mm); 2001 } 2002 } 2003 2004 out_put_task: 2005 put_task_struct(task); 2006 out: 2007 return ret; 2008 } 2009 2010 static const struct file_operations proc_map_files_operations = { 2011 .read = generic_read_dir, 2012 .readdir = proc_map_files_readdir, 2013 .llseek = default_llseek, 2014 }; 2015 2016 #endif /* CONFIG_CHECKPOINT_RESTORE */ 2017 2018 static struct dentry *proc_pident_instantiate(struct inode *dir, 2019 struct dentry *dentry, struct task_struct *task, const void *ptr) 2020 { 2021 const struct pid_entry *p = ptr; 2022 struct inode *inode; 2023 struct proc_inode *ei; 2024 struct dentry *error = ERR_PTR(-ENOENT); 2025 2026 inode = proc_pid_make_inode(dir->i_sb, task); 2027 if (!inode) 2028 goto out; 2029 2030 ei = PROC_I(inode); 2031 inode->i_mode = p->mode; 2032 if (S_ISDIR(inode->i_mode)) 2033 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2034 if (p->iop) 2035 inode->i_op = p->iop; 2036 if (p->fop) 2037 inode->i_fop = p->fop; 2038 ei->op = p->op; 2039 d_set_d_op(dentry, &pid_dentry_operations); 2040 d_add(dentry, inode); 2041 /* Close the race of the process dying before we return the dentry */ 2042 if (pid_revalidate(dentry, 0)) 2043 error = NULL; 2044 out: 2045 return error; 2046 } 2047 2048 static struct dentry *proc_pident_lookup(struct inode *dir, 2049 struct dentry *dentry, 2050 const struct pid_entry *ents, 2051 unsigned int nents) 2052 { 2053 struct dentry *error; 2054 struct task_struct *task = get_proc_task(dir); 2055 const struct pid_entry *p, *last; 2056 2057 error = ERR_PTR(-ENOENT); 2058 2059 if (!task) 2060 goto out_no_task; 2061 2062 /* 2063 * Yes, it does not scale. And it should not. Don't add 2064 * new entries into /proc/<tgid>/ without very good reasons. 2065 */ 2066 last = &ents[nents - 1]; 2067 for (p = ents; p <= last; p++) { 2068 if (p->len != dentry->d_name.len) 2069 continue; 2070 if (!memcmp(dentry->d_name.name, p->name, p->len)) 2071 break; 2072 } 2073 if (p > last) 2074 goto out; 2075 2076 error = proc_pident_instantiate(dir, dentry, task, p); 2077 out: 2078 put_task_struct(task); 2079 out_no_task: 2080 return error; 2081 } 2082 2083 static int proc_pident_fill_cache(struct file *filp, void *dirent, 2084 filldir_t filldir, struct task_struct *task, const struct pid_entry *p) 2085 { 2086 return proc_fill_cache(filp, dirent, filldir, p->name, p->len, 2087 proc_pident_instantiate, task, p); 2088 } 2089 2090 static int proc_pident_readdir(struct file *filp, 2091 void *dirent, filldir_t filldir, 2092 const struct pid_entry *ents, unsigned int nents) 2093 { 2094 int i; 2095 struct dentry *dentry = filp->f_path.dentry; 2096 struct inode *inode = dentry->d_inode; 2097 struct task_struct *task = get_proc_task(inode); 2098 const struct pid_entry *p, *last; 2099 ino_t ino; 2100 int ret; 2101 2102 ret = -ENOENT; 2103 if (!task) 2104 goto out_no_task; 2105 2106 ret = 0; 2107 i = filp->f_pos; 2108 switch (i) { 2109 case 0: 2110 ino = inode->i_ino; 2111 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0) 2112 goto out; 2113 i++; 2114 filp->f_pos++; 2115 /* fall through */ 2116 case 1: 2117 ino = parent_ino(dentry); 2118 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0) 2119 goto out; 2120 i++; 2121 filp->f_pos++; 2122 /* fall through */ 2123 default: 2124 i -= 2; 2125 if (i >= nents) { 2126 ret = 1; 2127 goto out; 2128 } 2129 p = ents + i; 2130 last = &ents[nents - 1]; 2131 while (p <= last) { 2132 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0) 2133 goto out; 2134 filp->f_pos++; 2135 p++; 2136 } 2137 } 2138 2139 ret = 1; 2140 out: 2141 put_task_struct(task); 2142 out_no_task: 2143 return ret; 2144 } 2145 2146 #ifdef CONFIG_SECURITY 2147 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2148 size_t count, loff_t *ppos) 2149 { 2150 struct inode * inode = file_inode(file); 2151 char *p = NULL; 2152 ssize_t length; 2153 struct task_struct *task = get_proc_task(inode); 2154 2155 if (!task) 2156 return -ESRCH; 2157 2158 length = security_getprocattr(task, 2159 (char*)file->f_path.dentry->d_name.name, 2160 &p); 2161 put_task_struct(task); 2162 if (length > 0) 2163 length = simple_read_from_buffer(buf, count, ppos, p, length); 2164 kfree(p); 2165 return length; 2166 } 2167 2168 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2169 size_t count, loff_t *ppos) 2170 { 2171 struct inode * inode = file_inode(file); 2172 char *page; 2173 ssize_t length; 2174 struct task_struct *task = get_proc_task(inode); 2175 2176 length = -ESRCH; 2177 if (!task) 2178 goto out_no_task; 2179 if (count > PAGE_SIZE) 2180 count = PAGE_SIZE; 2181 2182 /* No partial writes. */ 2183 length = -EINVAL; 2184 if (*ppos != 0) 2185 goto out; 2186 2187 length = -ENOMEM; 2188 page = (char*)__get_free_page(GFP_TEMPORARY); 2189 if (!page) 2190 goto out; 2191 2192 length = -EFAULT; 2193 if (copy_from_user(page, buf, count)) 2194 goto out_free; 2195 2196 /* Guard against adverse ptrace interaction */ 2197 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 2198 if (length < 0) 2199 goto out_free; 2200 2201 length = security_setprocattr(task, 2202 (char*)file->f_path.dentry->d_name.name, 2203 (void*)page, count); 2204 mutex_unlock(&task->signal->cred_guard_mutex); 2205 out_free: 2206 free_page((unsigned long) page); 2207 out: 2208 put_task_struct(task); 2209 out_no_task: 2210 return length; 2211 } 2212 2213 static const struct file_operations proc_pid_attr_operations = { 2214 .read = proc_pid_attr_read, 2215 .write = proc_pid_attr_write, 2216 .llseek = generic_file_llseek, 2217 }; 2218 2219 static const struct pid_entry attr_dir_stuff[] = { 2220 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2221 REG("prev", S_IRUGO, proc_pid_attr_operations), 2222 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2223 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2224 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2225 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations), 2226 }; 2227 2228 static int proc_attr_dir_readdir(struct file * filp, 2229 void * dirent, filldir_t filldir) 2230 { 2231 return proc_pident_readdir(filp,dirent,filldir, 2232 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff)); 2233 } 2234 2235 static const struct file_operations proc_attr_dir_operations = { 2236 .read = generic_read_dir, 2237 .readdir = proc_attr_dir_readdir, 2238 .llseek = default_llseek, 2239 }; 2240 2241 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2242 struct dentry *dentry, unsigned int flags) 2243 { 2244 return proc_pident_lookup(dir, dentry, 2245 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2246 } 2247 2248 static const struct inode_operations proc_attr_dir_inode_operations = { 2249 .lookup = proc_attr_dir_lookup, 2250 .getattr = pid_getattr, 2251 .setattr = proc_setattr, 2252 }; 2253 2254 #endif 2255 2256 #ifdef CONFIG_ELF_CORE 2257 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2258 size_t count, loff_t *ppos) 2259 { 2260 struct task_struct *task = get_proc_task(file_inode(file)); 2261 struct mm_struct *mm; 2262 char buffer[PROC_NUMBUF]; 2263 size_t len; 2264 int ret; 2265 2266 if (!task) 2267 return -ESRCH; 2268 2269 ret = 0; 2270 mm = get_task_mm(task); 2271 if (mm) { 2272 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2273 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2274 MMF_DUMP_FILTER_SHIFT)); 2275 mmput(mm); 2276 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2277 } 2278 2279 put_task_struct(task); 2280 2281 return ret; 2282 } 2283 2284 static ssize_t proc_coredump_filter_write(struct file *file, 2285 const char __user *buf, 2286 size_t count, 2287 loff_t *ppos) 2288 { 2289 struct task_struct *task; 2290 struct mm_struct *mm; 2291 char buffer[PROC_NUMBUF], *end; 2292 unsigned int val; 2293 int ret; 2294 int i; 2295 unsigned long mask; 2296 2297 ret = -EFAULT; 2298 memset(buffer, 0, sizeof(buffer)); 2299 if (count > sizeof(buffer) - 1) 2300 count = sizeof(buffer) - 1; 2301 if (copy_from_user(buffer, buf, count)) 2302 goto out_no_task; 2303 2304 ret = -EINVAL; 2305 val = (unsigned int)simple_strtoul(buffer, &end, 0); 2306 if (*end == '\n') 2307 end++; 2308 if (end - buffer == 0) 2309 goto out_no_task; 2310 2311 ret = -ESRCH; 2312 task = get_proc_task(file_inode(file)); 2313 if (!task) 2314 goto out_no_task; 2315 2316 ret = end - buffer; 2317 mm = get_task_mm(task); 2318 if (!mm) 2319 goto out_no_mm; 2320 2321 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2322 if (val & mask) 2323 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2324 else 2325 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2326 } 2327 2328 mmput(mm); 2329 out_no_mm: 2330 put_task_struct(task); 2331 out_no_task: 2332 return ret; 2333 } 2334 2335 static const struct file_operations proc_coredump_filter_operations = { 2336 .read = proc_coredump_filter_read, 2337 .write = proc_coredump_filter_write, 2338 .llseek = generic_file_llseek, 2339 }; 2340 #endif 2341 2342 #ifdef CONFIG_TASK_IO_ACCOUNTING 2343 static int do_io_accounting(struct task_struct *task, char *buffer, int whole) 2344 { 2345 struct task_io_accounting acct = task->ioac; 2346 unsigned long flags; 2347 int result; 2348 2349 result = mutex_lock_killable(&task->signal->cred_guard_mutex); 2350 if (result) 2351 return result; 2352 2353 if (!ptrace_may_access(task, PTRACE_MODE_READ)) { 2354 result = -EACCES; 2355 goto out_unlock; 2356 } 2357 2358 if (whole && lock_task_sighand(task, &flags)) { 2359 struct task_struct *t = task; 2360 2361 task_io_accounting_add(&acct, &task->signal->ioac); 2362 while_each_thread(task, t) 2363 task_io_accounting_add(&acct, &t->ioac); 2364 2365 unlock_task_sighand(task, &flags); 2366 } 2367 result = sprintf(buffer, 2368 "rchar: %llu\n" 2369 "wchar: %llu\n" 2370 "syscr: %llu\n" 2371 "syscw: %llu\n" 2372 "read_bytes: %llu\n" 2373 "write_bytes: %llu\n" 2374 "cancelled_write_bytes: %llu\n", 2375 (unsigned long long)acct.rchar, 2376 (unsigned long long)acct.wchar, 2377 (unsigned long long)acct.syscr, 2378 (unsigned long long)acct.syscw, 2379 (unsigned long long)acct.read_bytes, 2380 (unsigned long long)acct.write_bytes, 2381 (unsigned long long)acct.cancelled_write_bytes); 2382 out_unlock: 2383 mutex_unlock(&task->signal->cred_guard_mutex); 2384 return result; 2385 } 2386 2387 static int proc_tid_io_accounting(struct task_struct *task, char *buffer) 2388 { 2389 return do_io_accounting(task, buffer, 0); 2390 } 2391 2392 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer) 2393 { 2394 return do_io_accounting(task, buffer, 1); 2395 } 2396 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 2397 2398 #ifdef CONFIG_USER_NS 2399 static int proc_id_map_open(struct inode *inode, struct file *file, 2400 struct seq_operations *seq_ops) 2401 { 2402 struct user_namespace *ns = NULL; 2403 struct task_struct *task; 2404 struct seq_file *seq; 2405 int ret = -EINVAL; 2406 2407 task = get_proc_task(inode); 2408 if (task) { 2409 rcu_read_lock(); 2410 ns = get_user_ns(task_cred_xxx(task, user_ns)); 2411 rcu_read_unlock(); 2412 put_task_struct(task); 2413 } 2414 if (!ns) 2415 goto err; 2416 2417 ret = seq_open(file, seq_ops); 2418 if (ret) 2419 goto err_put_ns; 2420 2421 seq = file->private_data; 2422 seq->private = ns; 2423 2424 return 0; 2425 err_put_ns: 2426 put_user_ns(ns); 2427 err: 2428 return ret; 2429 } 2430 2431 static int proc_id_map_release(struct inode *inode, struct file *file) 2432 { 2433 struct seq_file *seq = file->private_data; 2434 struct user_namespace *ns = seq->private; 2435 put_user_ns(ns); 2436 return seq_release(inode, file); 2437 } 2438 2439 static int proc_uid_map_open(struct inode *inode, struct file *file) 2440 { 2441 return proc_id_map_open(inode, file, &proc_uid_seq_operations); 2442 } 2443 2444 static int proc_gid_map_open(struct inode *inode, struct file *file) 2445 { 2446 return proc_id_map_open(inode, file, &proc_gid_seq_operations); 2447 } 2448 2449 static int proc_projid_map_open(struct inode *inode, struct file *file) 2450 { 2451 return proc_id_map_open(inode, file, &proc_projid_seq_operations); 2452 } 2453 2454 static const struct file_operations proc_uid_map_operations = { 2455 .open = proc_uid_map_open, 2456 .write = proc_uid_map_write, 2457 .read = seq_read, 2458 .llseek = seq_lseek, 2459 .release = proc_id_map_release, 2460 }; 2461 2462 static const struct file_operations proc_gid_map_operations = { 2463 .open = proc_gid_map_open, 2464 .write = proc_gid_map_write, 2465 .read = seq_read, 2466 .llseek = seq_lseek, 2467 .release = proc_id_map_release, 2468 }; 2469 2470 static const struct file_operations proc_projid_map_operations = { 2471 .open = proc_projid_map_open, 2472 .write = proc_projid_map_write, 2473 .read = seq_read, 2474 .llseek = seq_lseek, 2475 .release = proc_id_map_release, 2476 }; 2477 #endif /* CONFIG_USER_NS */ 2478 2479 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 2480 struct pid *pid, struct task_struct *task) 2481 { 2482 int err = lock_trace(task); 2483 if (!err) { 2484 seq_printf(m, "%08x\n", task->personality); 2485 unlock_trace(task); 2486 } 2487 return err; 2488 } 2489 2490 /* 2491 * Thread groups 2492 */ 2493 static const struct file_operations proc_task_operations; 2494 static const struct inode_operations proc_task_inode_operations; 2495 2496 static const struct pid_entry tgid_base_stuff[] = { 2497 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 2498 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 2499 #ifdef CONFIG_CHECKPOINT_RESTORE 2500 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 2501 #endif 2502 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 2503 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 2504 #ifdef CONFIG_NET 2505 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 2506 #endif 2507 REG("environ", S_IRUSR, proc_environ_operations), 2508 INF("auxv", S_IRUSR, proc_pid_auxv), 2509 ONE("status", S_IRUGO, proc_pid_status), 2510 ONE("personality", S_IRUGO, proc_pid_personality), 2511 INF("limits", S_IRUGO, proc_pid_limits), 2512 #ifdef CONFIG_SCHED_DEBUG 2513 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 2514 #endif 2515 #ifdef CONFIG_SCHED_AUTOGROUP 2516 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 2517 #endif 2518 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 2519 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 2520 INF("syscall", S_IRUGO, proc_pid_syscall), 2521 #endif 2522 INF("cmdline", S_IRUGO, proc_pid_cmdline), 2523 ONE("stat", S_IRUGO, proc_tgid_stat), 2524 ONE("statm", S_IRUGO, proc_pid_statm), 2525 REG("maps", S_IRUGO, proc_pid_maps_operations), 2526 #ifdef CONFIG_NUMA 2527 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 2528 #endif 2529 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 2530 LNK("cwd", proc_cwd_link), 2531 LNK("root", proc_root_link), 2532 LNK("exe", proc_exe_link), 2533 REG("mounts", S_IRUGO, proc_mounts_operations), 2534 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 2535 REG("mountstats", S_IRUSR, proc_mountstats_operations), 2536 #ifdef CONFIG_PROC_PAGE_MONITOR 2537 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 2538 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 2539 REG("pagemap", S_IRUGO, proc_pagemap_operations), 2540 #endif 2541 #ifdef CONFIG_SECURITY 2542 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 2543 #endif 2544 #ifdef CONFIG_KALLSYMS 2545 INF("wchan", S_IRUGO, proc_pid_wchan), 2546 #endif 2547 #ifdef CONFIG_STACKTRACE 2548 ONE("stack", S_IRUGO, proc_pid_stack), 2549 #endif 2550 #ifdef CONFIG_SCHEDSTATS 2551 INF("schedstat", S_IRUGO, proc_pid_schedstat), 2552 #endif 2553 #ifdef CONFIG_LATENCYTOP 2554 REG("latency", S_IRUGO, proc_lstats_operations), 2555 #endif 2556 #ifdef CONFIG_PROC_PID_CPUSET 2557 REG("cpuset", S_IRUGO, proc_cpuset_operations), 2558 #endif 2559 #ifdef CONFIG_CGROUPS 2560 REG("cgroup", S_IRUGO, proc_cgroup_operations), 2561 #endif 2562 INF("oom_score", S_IRUGO, proc_oom_score), 2563 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 2564 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 2565 #ifdef CONFIG_AUDITSYSCALL 2566 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 2567 REG("sessionid", S_IRUGO, proc_sessionid_operations), 2568 #endif 2569 #ifdef CONFIG_FAULT_INJECTION 2570 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 2571 #endif 2572 #ifdef CONFIG_ELF_CORE 2573 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 2574 #endif 2575 #ifdef CONFIG_TASK_IO_ACCOUNTING 2576 INF("io", S_IRUSR, proc_tgid_io_accounting), 2577 #endif 2578 #ifdef CONFIG_HARDWALL 2579 INF("hardwall", S_IRUGO, proc_pid_hardwall), 2580 #endif 2581 #ifdef CONFIG_USER_NS 2582 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 2583 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 2584 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 2585 #endif 2586 }; 2587 2588 static int proc_tgid_base_readdir(struct file * filp, 2589 void * dirent, filldir_t filldir) 2590 { 2591 return proc_pident_readdir(filp,dirent,filldir, 2592 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff)); 2593 } 2594 2595 static const struct file_operations proc_tgid_base_operations = { 2596 .read = generic_read_dir, 2597 .readdir = proc_tgid_base_readdir, 2598 .llseek = default_llseek, 2599 }; 2600 2601 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 2602 { 2603 return proc_pident_lookup(dir, dentry, 2604 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 2605 } 2606 2607 static const struct inode_operations proc_tgid_base_inode_operations = { 2608 .lookup = proc_tgid_base_lookup, 2609 .getattr = pid_getattr, 2610 .setattr = proc_setattr, 2611 .permission = proc_pid_permission, 2612 }; 2613 2614 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid) 2615 { 2616 struct dentry *dentry, *leader, *dir; 2617 char buf[PROC_NUMBUF]; 2618 struct qstr name; 2619 2620 name.name = buf; 2621 name.len = snprintf(buf, sizeof(buf), "%d", pid); 2622 /* no ->d_hash() rejects on procfs */ 2623 dentry = d_hash_and_lookup(mnt->mnt_root, &name); 2624 if (dentry) { 2625 shrink_dcache_parent(dentry); 2626 d_drop(dentry); 2627 dput(dentry); 2628 } 2629 2630 name.name = buf; 2631 name.len = snprintf(buf, sizeof(buf), "%d", tgid); 2632 leader = d_hash_and_lookup(mnt->mnt_root, &name); 2633 if (!leader) 2634 goto out; 2635 2636 name.name = "task"; 2637 name.len = strlen(name.name); 2638 dir = d_hash_and_lookup(leader, &name); 2639 if (!dir) 2640 goto out_put_leader; 2641 2642 name.name = buf; 2643 name.len = snprintf(buf, sizeof(buf), "%d", pid); 2644 dentry = d_hash_and_lookup(dir, &name); 2645 if (dentry) { 2646 shrink_dcache_parent(dentry); 2647 d_drop(dentry); 2648 dput(dentry); 2649 } 2650 2651 dput(dir); 2652 out_put_leader: 2653 dput(leader); 2654 out: 2655 return; 2656 } 2657 2658 /** 2659 * proc_flush_task - Remove dcache entries for @task from the /proc dcache. 2660 * @task: task that should be flushed. 2661 * 2662 * When flushing dentries from proc, one needs to flush them from global 2663 * proc (proc_mnt) and from all the namespaces' procs this task was seen 2664 * in. This call is supposed to do all of this job. 2665 * 2666 * Looks in the dcache for 2667 * /proc/@pid 2668 * /proc/@tgid/task/@pid 2669 * if either directory is present flushes it and all of it'ts children 2670 * from the dcache. 2671 * 2672 * It is safe and reasonable to cache /proc entries for a task until 2673 * that task exits. After that they just clog up the dcache with 2674 * useless entries, possibly causing useful dcache entries to be 2675 * flushed instead. This routine is proved to flush those useless 2676 * dcache entries at process exit time. 2677 * 2678 * NOTE: This routine is just an optimization so it does not guarantee 2679 * that no dcache entries will exist at process exit time it 2680 * just makes it very unlikely that any will persist. 2681 */ 2682 2683 void proc_flush_task(struct task_struct *task) 2684 { 2685 int i; 2686 struct pid *pid, *tgid; 2687 struct upid *upid; 2688 2689 pid = task_pid(task); 2690 tgid = task_tgid(task); 2691 2692 for (i = 0; i <= pid->level; i++) { 2693 upid = &pid->numbers[i]; 2694 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr, 2695 tgid->numbers[i].nr); 2696 } 2697 } 2698 2699 static struct dentry *proc_pid_instantiate(struct inode *dir, 2700 struct dentry * dentry, 2701 struct task_struct *task, const void *ptr) 2702 { 2703 struct dentry *error = ERR_PTR(-ENOENT); 2704 struct inode *inode; 2705 2706 inode = proc_pid_make_inode(dir->i_sb, task); 2707 if (!inode) 2708 goto out; 2709 2710 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 2711 inode->i_op = &proc_tgid_base_inode_operations; 2712 inode->i_fop = &proc_tgid_base_operations; 2713 inode->i_flags|=S_IMMUTABLE; 2714 2715 set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff, 2716 ARRAY_SIZE(tgid_base_stuff))); 2717 2718 d_set_d_op(dentry, &pid_dentry_operations); 2719 2720 d_add(dentry, inode); 2721 /* Close the race of the process dying before we return the dentry */ 2722 if (pid_revalidate(dentry, 0)) 2723 error = NULL; 2724 out: 2725 return error; 2726 } 2727 2728 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 2729 { 2730 struct dentry *result = NULL; 2731 struct task_struct *task; 2732 unsigned tgid; 2733 struct pid_namespace *ns; 2734 2735 tgid = name_to_int(dentry); 2736 if (tgid == ~0U) 2737 goto out; 2738 2739 ns = dentry->d_sb->s_fs_info; 2740 rcu_read_lock(); 2741 task = find_task_by_pid_ns(tgid, ns); 2742 if (task) 2743 get_task_struct(task); 2744 rcu_read_unlock(); 2745 if (!task) 2746 goto out; 2747 2748 result = proc_pid_instantiate(dir, dentry, task, NULL); 2749 put_task_struct(task); 2750 out: 2751 return result; 2752 } 2753 2754 /* 2755 * Find the first task with tgid >= tgid 2756 * 2757 */ 2758 struct tgid_iter { 2759 unsigned int tgid; 2760 struct task_struct *task; 2761 }; 2762 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 2763 { 2764 struct pid *pid; 2765 2766 if (iter.task) 2767 put_task_struct(iter.task); 2768 rcu_read_lock(); 2769 retry: 2770 iter.task = NULL; 2771 pid = find_ge_pid(iter.tgid, ns); 2772 if (pid) { 2773 iter.tgid = pid_nr_ns(pid, ns); 2774 iter.task = pid_task(pid, PIDTYPE_PID); 2775 /* What we to know is if the pid we have find is the 2776 * pid of a thread_group_leader. Testing for task 2777 * being a thread_group_leader is the obvious thing 2778 * todo but there is a window when it fails, due to 2779 * the pid transfer logic in de_thread. 2780 * 2781 * So we perform the straight forward test of seeing 2782 * if the pid we have found is the pid of a thread 2783 * group leader, and don't worry if the task we have 2784 * found doesn't happen to be a thread group leader. 2785 * As we don't care in the case of readdir. 2786 */ 2787 if (!iter.task || !has_group_leader_pid(iter.task)) { 2788 iter.tgid += 1; 2789 goto retry; 2790 } 2791 get_task_struct(iter.task); 2792 } 2793 rcu_read_unlock(); 2794 return iter; 2795 } 2796 2797 #define TGID_OFFSET (FIRST_PROCESS_ENTRY) 2798 2799 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 2800 struct tgid_iter iter) 2801 { 2802 char name[PROC_NUMBUF]; 2803 int len = snprintf(name, sizeof(name), "%d", iter.tgid); 2804 return proc_fill_cache(filp, dirent, filldir, name, len, 2805 proc_pid_instantiate, iter.task, NULL); 2806 } 2807 2808 static int fake_filldir(void *buf, const char *name, int namelen, 2809 loff_t offset, u64 ino, unsigned d_type) 2810 { 2811 return 0; 2812 } 2813 2814 /* for the /proc/ directory itself, after non-process stuff has been done */ 2815 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir) 2816 { 2817 struct tgid_iter iter; 2818 struct pid_namespace *ns; 2819 filldir_t __filldir; 2820 2821 if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET) 2822 goto out; 2823 2824 ns = filp->f_dentry->d_sb->s_fs_info; 2825 iter.task = NULL; 2826 iter.tgid = filp->f_pos - TGID_OFFSET; 2827 for (iter = next_tgid(ns, iter); 2828 iter.task; 2829 iter.tgid += 1, iter = next_tgid(ns, iter)) { 2830 if (has_pid_permissions(ns, iter.task, 2)) 2831 __filldir = filldir; 2832 else 2833 __filldir = fake_filldir; 2834 2835 filp->f_pos = iter.tgid + TGID_OFFSET; 2836 if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) { 2837 put_task_struct(iter.task); 2838 goto out; 2839 } 2840 } 2841 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET; 2842 out: 2843 return 0; 2844 } 2845 2846 /* 2847 * Tasks 2848 */ 2849 static const struct pid_entry tid_base_stuff[] = { 2850 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 2851 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 2852 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 2853 REG("environ", S_IRUSR, proc_environ_operations), 2854 INF("auxv", S_IRUSR, proc_pid_auxv), 2855 ONE("status", S_IRUGO, proc_pid_status), 2856 ONE("personality", S_IRUGO, proc_pid_personality), 2857 INF("limits", S_IRUGO, proc_pid_limits), 2858 #ifdef CONFIG_SCHED_DEBUG 2859 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 2860 #endif 2861 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 2862 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 2863 INF("syscall", S_IRUGO, proc_pid_syscall), 2864 #endif 2865 INF("cmdline", S_IRUGO, proc_pid_cmdline), 2866 ONE("stat", S_IRUGO, proc_tid_stat), 2867 ONE("statm", S_IRUGO, proc_pid_statm), 2868 REG("maps", S_IRUGO, proc_tid_maps_operations), 2869 #ifdef CONFIG_CHECKPOINT_RESTORE 2870 REG("children", S_IRUGO, proc_tid_children_operations), 2871 #endif 2872 #ifdef CONFIG_NUMA 2873 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations), 2874 #endif 2875 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 2876 LNK("cwd", proc_cwd_link), 2877 LNK("root", proc_root_link), 2878 LNK("exe", proc_exe_link), 2879 REG("mounts", S_IRUGO, proc_mounts_operations), 2880 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 2881 #ifdef CONFIG_PROC_PAGE_MONITOR 2882 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 2883 REG("smaps", S_IRUGO, proc_tid_smaps_operations), 2884 REG("pagemap", S_IRUGO, proc_pagemap_operations), 2885 #endif 2886 #ifdef CONFIG_SECURITY 2887 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 2888 #endif 2889 #ifdef CONFIG_KALLSYMS 2890 INF("wchan", S_IRUGO, proc_pid_wchan), 2891 #endif 2892 #ifdef CONFIG_STACKTRACE 2893 ONE("stack", S_IRUGO, proc_pid_stack), 2894 #endif 2895 #ifdef CONFIG_SCHEDSTATS 2896 INF("schedstat", S_IRUGO, proc_pid_schedstat), 2897 #endif 2898 #ifdef CONFIG_LATENCYTOP 2899 REG("latency", S_IRUGO, proc_lstats_operations), 2900 #endif 2901 #ifdef CONFIG_PROC_PID_CPUSET 2902 REG("cpuset", S_IRUGO, proc_cpuset_operations), 2903 #endif 2904 #ifdef CONFIG_CGROUPS 2905 REG("cgroup", S_IRUGO, proc_cgroup_operations), 2906 #endif 2907 INF("oom_score", S_IRUGO, proc_oom_score), 2908 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 2909 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 2910 #ifdef CONFIG_AUDITSYSCALL 2911 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 2912 REG("sessionid", S_IRUGO, proc_sessionid_operations), 2913 #endif 2914 #ifdef CONFIG_FAULT_INJECTION 2915 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 2916 #endif 2917 #ifdef CONFIG_TASK_IO_ACCOUNTING 2918 INF("io", S_IRUSR, proc_tid_io_accounting), 2919 #endif 2920 #ifdef CONFIG_HARDWALL 2921 INF("hardwall", S_IRUGO, proc_pid_hardwall), 2922 #endif 2923 #ifdef CONFIG_USER_NS 2924 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 2925 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 2926 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 2927 #endif 2928 }; 2929 2930 static int proc_tid_base_readdir(struct file * filp, 2931 void * dirent, filldir_t filldir) 2932 { 2933 return proc_pident_readdir(filp,dirent,filldir, 2934 tid_base_stuff,ARRAY_SIZE(tid_base_stuff)); 2935 } 2936 2937 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 2938 { 2939 return proc_pident_lookup(dir, dentry, 2940 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 2941 } 2942 2943 static const struct file_operations proc_tid_base_operations = { 2944 .read = generic_read_dir, 2945 .readdir = proc_tid_base_readdir, 2946 .llseek = default_llseek, 2947 }; 2948 2949 static const struct inode_operations proc_tid_base_inode_operations = { 2950 .lookup = proc_tid_base_lookup, 2951 .getattr = pid_getattr, 2952 .setattr = proc_setattr, 2953 }; 2954 2955 static struct dentry *proc_task_instantiate(struct inode *dir, 2956 struct dentry *dentry, struct task_struct *task, const void *ptr) 2957 { 2958 struct dentry *error = ERR_PTR(-ENOENT); 2959 struct inode *inode; 2960 inode = proc_pid_make_inode(dir->i_sb, task); 2961 2962 if (!inode) 2963 goto out; 2964 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO; 2965 inode->i_op = &proc_tid_base_inode_operations; 2966 inode->i_fop = &proc_tid_base_operations; 2967 inode->i_flags|=S_IMMUTABLE; 2968 2969 set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff, 2970 ARRAY_SIZE(tid_base_stuff))); 2971 2972 d_set_d_op(dentry, &pid_dentry_operations); 2973 2974 d_add(dentry, inode); 2975 /* Close the race of the process dying before we return the dentry */ 2976 if (pid_revalidate(dentry, 0)) 2977 error = NULL; 2978 out: 2979 return error; 2980 } 2981 2982 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 2983 { 2984 struct dentry *result = ERR_PTR(-ENOENT); 2985 struct task_struct *task; 2986 struct task_struct *leader = get_proc_task(dir); 2987 unsigned tid; 2988 struct pid_namespace *ns; 2989 2990 if (!leader) 2991 goto out_no_task; 2992 2993 tid = name_to_int(dentry); 2994 if (tid == ~0U) 2995 goto out; 2996 2997 ns = dentry->d_sb->s_fs_info; 2998 rcu_read_lock(); 2999 task = find_task_by_pid_ns(tid, ns); 3000 if (task) 3001 get_task_struct(task); 3002 rcu_read_unlock(); 3003 if (!task) 3004 goto out; 3005 if (!same_thread_group(leader, task)) 3006 goto out_drop_task; 3007 3008 result = proc_task_instantiate(dir, dentry, task, NULL); 3009 out_drop_task: 3010 put_task_struct(task); 3011 out: 3012 put_task_struct(leader); 3013 out_no_task: 3014 return result; 3015 } 3016 3017 /* 3018 * Find the first tid of a thread group to return to user space. 3019 * 3020 * Usually this is just the thread group leader, but if the users 3021 * buffer was too small or there was a seek into the middle of the 3022 * directory we have more work todo. 3023 * 3024 * In the case of a short read we start with find_task_by_pid. 3025 * 3026 * In the case of a seek we start with the leader and walk nr 3027 * threads past it. 3028 */ 3029 static struct task_struct *first_tid(struct task_struct *leader, 3030 int tid, int nr, struct pid_namespace *ns) 3031 { 3032 struct task_struct *pos; 3033 3034 rcu_read_lock(); 3035 /* Attempt to start with the pid of a thread */ 3036 if (tid && (nr > 0)) { 3037 pos = find_task_by_pid_ns(tid, ns); 3038 if (pos && (pos->group_leader == leader)) 3039 goto found; 3040 } 3041 3042 /* If nr exceeds the number of threads there is nothing todo */ 3043 pos = NULL; 3044 if (nr && nr >= get_nr_threads(leader)) 3045 goto out; 3046 3047 /* If we haven't found our starting place yet start 3048 * with the leader and walk nr threads forward. 3049 */ 3050 for (pos = leader; nr > 0; --nr) { 3051 pos = next_thread(pos); 3052 if (pos == leader) { 3053 pos = NULL; 3054 goto out; 3055 } 3056 } 3057 found: 3058 get_task_struct(pos); 3059 out: 3060 rcu_read_unlock(); 3061 return pos; 3062 } 3063 3064 /* 3065 * Find the next thread in the thread list. 3066 * Return NULL if there is an error or no next thread. 3067 * 3068 * The reference to the input task_struct is released. 3069 */ 3070 static struct task_struct *next_tid(struct task_struct *start) 3071 { 3072 struct task_struct *pos = NULL; 3073 rcu_read_lock(); 3074 if (pid_alive(start)) { 3075 pos = next_thread(start); 3076 if (thread_group_leader(pos)) 3077 pos = NULL; 3078 else 3079 get_task_struct(pos); 3080 } 3081 rcu_read_unlock(); 3082 put_task_struct(start); 3083 return pos; 3084 } 3085 3086 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir, 3087 struct task_struct *task, int tid) 3088 { 3089 char name[PROC_NUMBUF]; 3090 int len = snprintf(name, sizeof(name), "%d", tid); 3091 return proc_fill_cache(filp, dirent, filldir, name, len, 3092 proc_task_instantiate, task, NULL); 3093 } 3094 3095 /* for the /proc/TGID/task/ directories */ 3096 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir) 3097 { 3098 struct dentry *dentry = filp->f_path.dentry; 3099 struct inode *inode = dentry->d_inode; 3100 struct task_struct *leader = NULL; 3101 struct task_struct *task; 3102 int retval = -ENOENT; 3103 ino_t ino; 3104 int tid; 3105 struct pid_namespace *ns; 3106 3107 task = get_proc_task(inode); 3108 if (!task) 3109 goto out_no_task; 3110 rcu_read_lock(); 3111 if (pid_alive(task)) { 3112 leader = task->group_leader; 3113 get_task_struct(leader); 3114 } 3115 rcu_read_unlock(); 3116 put_task_struct(task); 3117 if (!leader) 3118 goto out_no_task; 3119 retval = 0; 3120 3121 switch ((unsigned long)filp->f_pos) { 3122 case 0: 3123 ino = inode->i_ino; 3124 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0) 3125 goto out; 3126 filp->f_pos++; 3127 /* fall through */ 3128 case 1: 3129 ino = parent_ino(dentry); 3130 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0) 3131 goto out; 3132 filp->f_pos++; 3133 /* fall through */ 3134 } 3135 3136 /* f_version caches the tgid value that the last readdir call couldn't 3137 * return. lseek aka telldir automagically resets f_version to 0. 3138 */ 3139 ns = filp->f_dentry->d_sb->s_fs_info; 3140 tid = (int)filp->f_version; 3141 filp->f_version = 0; 3142 for (task = first_tid(leader, tid, filp->f_pos - 2, ns); 3143 task; 3144 task = next_tid(task), filp->f_pos++) { 3145 tid = task_pid_nr_ns(task, ns); 3146 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) { 3147 /* returning this tgid failed, save it as the first 3148 * pid for the next readir call */ 3149 filp->f_version = (u64)tid; 3150 put_task_struct(task); 3151 break; 3152 } 3153 } 3154 out: 3155 put_task_struct(leader); 3156 out_no_task: 3157 return retval; 3158 } 3159 3160 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) 3161 { 3162 struct inode *inode = dentry->d_inode; 3163 struct task_struct *p = get_proc_task(inode); 3164 generic_fillattr(inode, stat); 3165 3166 if (p) { 3167 stat->nlink += get_nr_threads(p); 3168 put_task_struct(p); 3169 } 3170 3171 return 0; 3172 } 3173 3174 static const struct inode_operations proc_task_inode_operations = { 3175 .lookup = proc_task_lookup, 3176 .getattr = proc_task_getattr, 3177 .setattr = proc_setattr, 3178 .permission = proc_pid_permission, 3179 }; 3180 3181 static const struct file_operations proc_task_operations = { 3182 .read = generic_read_dir, 3183 .readdir = proc_task_readdir, 3184 .llseek = default_llseek, 3185 }; 3186