xref: /openbmc/linux/fs/proc/base.c (revision 94c7b6fc)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/flex_array.h>
89 #include <linux/posix-timers.h>
90 #ifdef CONFIG_HARDWALL
91 #include <asm/hardwall.h>
92 #endif
93 #include <trace/events/oom.h>
94 #include "internal.h"
95 #include "fd.h"
96 
97 /* NOTE:
98  *	Implementing inode permission operations in /proc is almost
99  *	certainly an error.  Permission checks need to happen during
100  *	each system call not at open time.  The reason is that most of
101  *	what we wish to check for permissions in /proc varies at runtime.
102  *
103  *	The classic example of a problem is opening file descriptors
104  *	in /proc for a task before it execs a suid executable.
105  */
106 
107 struct pid_entry {
108 	char *name;
109 	int len;
110 	umode_t mode;
111 	const struct inode_operations *iop;
112 	const struct file_operations *fop;
113 	union proc_op op;
114 };
115 
116 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
117 	.name = (NAME),					\
118 	.len  = sizeof(NAME) - 1,			\
119 	.mode = MODE,					\
120 	.iop  = IOP,					\
121 	.fop  = FOP,					\
122 	.op   = OP,					\
123 }
124 
125 #define DIR(NAME, MODE, iops, fops)	\
126 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
127 #define LNK(NAME, get_link)					\
128 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
129 		&proc_pid_link_inode_operations, NULL,		\
130 		{ .proc_get_link = get_link } )
131 #define REG(NAME, MODE, fops)				\
132 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
133 #define INF(NAME, MODE, read)				\
134 	NOD(NAME, (S_IFREG|(MODE)), 			\
135 		NULL, &proc_info_file_operations,	\
136 		{ .proc_read = read } )
137 #define ONE(NAME, MODE, show)				\
138 	NOD(NAME, (S_IFREG|(MODE)), 			\
139 		NULL, &proc_single_file_operations,	\
140 		{ .proc_show = show } )
141 
142 /*
143  * Count the number of hardlinks for the pid_entry table, excluding the .
144  * and .. links.
145  */
146 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
147 	unsigned int n)
148 {
149 	unsigned int i;
150 	unsigned int count;
151 
152 	count = 0;
153 	for (i = 0; i < n; ++i) {
154 		if (S_ISDIR(entries[i].mode))
155 			++count;
156 	}
157 
158 	return count;
159 }
160 
161 static int get_task_root(struct task_struct *task, struct path *root)
162 {
163 	int result = -ENOENT;
164 
165 	task_lock(task);
166 	if (task->fs) {
167 		get_fs_root(task->fs, root);
168 		result = 0;
169 	}
170 	task_unlock(task);
171 	return result;
172 }
173 
174 static int proc_cwd_link(struct dentry *dentry, struct path *path)
175 {
176 	struct task_struct *task = get_proc_task(dentry->d_inode);
177 	int result = -ENOENT;
178 
179 	if (task) {
180 		task_lock(task);
181 		if (task->fs) {
182 			get_fs_pwd(task->fs, path);
183 			result = 0;
184 		}
185 		task_unlock(task);
186 		put_task_struct(task);
187 	}
188 	return result;
189 }
190 
191 static int proc_root_link(struct dentry *dentry, struct path *path)
192 {
193 	struct task_struct *task = get_proc_task(dentry->d_inode);
194 	int result = -ENOENT;
195 
196 	if (task) {
197 		result = get_task_root(task, path);
198 		put_task_struct(task);
199 	}
200 	return result;
201 }
202 
203 static int proc_pid_cmdline(struct task_struct *task, char *buffer)
204 {
205 	return get_cmdline(task, buffer, PAGE_SIZE);
206 }
207 
208 static int proc_pid_auxv(struct task_struct *task, char *buffer)
209 {
210 	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
211 	int res = PTR_ERR(mm);
212 	if (mm && !IS_ERR(mm)) {
213 		unsigned int nwords = 0;
214 		do {
215 			nwords += 2;
216 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
217 		res = nwords * sizeof(mm->saved_auxv[0]);
218 		if (res > PAGE_SIZE)
219 			res = PAGE_SIZE;
220 		memcpy(buffer, mm->saved_auxv, res);
221 		mmput(mm);
222 	}
223 	return res;
224 }
225 
226 
227 #ifdef CONFIG_KALLSYMS
228 /*
229  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
230  * Returns the resolved symbol.  If that fails, simply return the address.
231  */
232 static int proc_pid_wchan(struct task_struct *task, char *buffer)
233 {
234 	unsigned long wchan;
235 	char symname[KSYM_NAME_LEN];
236 
237 	wchan = get_wchan(task);
238 
239 	if (lookup_symbol_name(wchan, symname) < 0)
240 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
241 			return 0;
242 		else
243 			return sprintf(buffer, "%lu", wchan);
244 	else
245 		return sprintf(buffer, "%s", symname);
246 }
247 #endif /* CONFIG_KALLSYMS */
248 
249 static int lock_trace(struct task_struct *task)
250 {
251 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
252 	if (err)
253 		return err;
254 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
255 		mutex_unlock(&task->signal->cred_guard_mutex);
256 		return -EPERM;
257 	}
258 	return 0;
259 }
260 
261 static void unlock_trace(struct task_struct *task)
262 {
263 	mutex_unlock(&task->signal->cred_guard_mutex);
264 }
265 
266 #ifdef CONFIG_STACKTRACE
267 
268 #define MAX_STACK_TRACE_DEPTH	64
269 
270 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
271 			  struct pid *pid, struct task_struct *task)
272 {
273 	struct stack_trace trace;
274 	unsigned long *entries;
275 	int err;
276 	int i;
277 
278 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
279 	if (!entries)
280 		return -ENOMEM;
281 
282 	trace.nr_entries	= 0;
283 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
284 	trace.entries		= entries;
285 	trace.skip		= 0;
286 
287 	err = lock_trace(task);
288 	if (!err) {
289 		save_stack_trace_tsk(task, &trace);
290 
291 		for (i = 0; i < trace.nr_entries; i++) {
292 			seq_printf(m, "[<%pK>] %pS\n",
293 				   (void *)entries[i], (void *)entries[i]);
294 		}
295 		unlock_trace(task);
296 	}
297 	kfree(entries);
298 
299 	return err;
300 }
301 #endif
302 
303 #ifdef CONFIG_SCHEDSTATS
304 /*
305  * Provides /proc/PID/schedstat
306  */
307 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
308 {
309 	return sprintf(buffer, "%llu %llu %lu\n",
310 			(unsigned long long)task->se.sum_exec_runtime,
311 			(unsigned long long)task->sched_info.run_delay,
312 			task->sched_info.pcount);
313 }
314 #endif
315 
316 #ifdef CONFIG_LATENCYTOP
317 static int lstats_show_proc(struct seq_file *m, void *v)
318 {
319 	int i;
320 	struct inode *inode = m->private;
321 	struct task_struct *task = get_proc_task(inode);
322 
323 	if (!task)
324 		return -ESRCH;
325 	seq_puts(m, "Latency Top version : v0.1\n");
326 	for (i = 0; i < 32; i++) {
327 		struct latency_record *lr = &task->latency_record[i];
328 		if (lr->backtrace[0]) {
329 			int q;
330 			seq_printf(m, "%i %li %li",
331 				   lr->count, lr->time, lr->max);
332 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
333 				unsigned long bt = lr->backtrace[q];
334 				if (!bt)
335 					break;
336 				if (bt == ULONG_MAX)
337 					break;
338 				seq_printf(m, " %ps", (void *)bt);
339 			}
340 			seq_putc(m, '\n');
341 		}
342 
343 	}
344 	put_task_struct(task);
345 	return 0;
346 }
347 
348 static int lstats_open(struct inode *inode, struct file *file)
349 {
350 	return single_open(file, lstats_show_proc, inode);
351 }
352 
353 static ssize_t lstats_write(struct file *file, const char __user *buf,
354 			    size_t count, loff_t *offs)
355 {
356 	struct task_struct *task = get_proc_task(file_inode(file));
357 
358 	if (!task)
359 		return -ESRCH;
360 	clear_all_latency_tracing(task);
361 	put_task_struct(task);
362 
363 	return count;
364 }
365 
366 static const struct file_operations proc_lstats_operations = {
367 	.open		= lstats_open,
368 	.read		= seq_read,
369 	.write		= lstats_write,
370 	.llseek		= seq_lseek,
371 	.release	= single_release,
372 };
373 
374 #endif
375 
376 #ifdef CONFIG_CGROUPS
377 static int cgroup_open(struct inode *inode, struct file *file)
378 {
379 	struct pid *pid = PROC_I(inode)->pid;
380 	return single_open(file, proc_cgroup_show, pid);
381 }
382 
383 static const struct file_operations proc_cgroup_operations = {
384 	.open		= cgroup_open,
385 	.read		= seq_read,
386 	.llseek		= seq_lseek,
387 	.release	= single_release,
388 };
389 #endif
390 
391 #ifdef CONFIG_PROC_PID_CPUSET
392 
393 static int cpuset_open(struct inode *inode, struct file *file)
394 {
395 	struct pid *pid = PROC_I(inode)->pid;
396 	return single_open(file, proc_cpuset_show, pid);
397 }
398 
399 static const struct file_operations proc_cpuset_operations = {
400 	.open		= cpuset_open,
401 	.read		= seq_read,
402 	.llseek		= seq_lseek,
403 	.release	= single_release,
404 };
405 #endif
406 
407 static int proc_oom_score(struct task_struct *task, char *buffer)
408 {
409 	unsigned long totalpages = totalram_pages + total_swap_pages;
410 	unsigned long points = 0;
411 
412 	read_lock(&tasklist_lock);
413 	if (pid_alive(task))
414 		points = oom_badness(task, NULL, NULL, totalpages) *
415 						1000 / totalpages;
416 	read_unlock(&tasklist_lock);
417 	return sprintf(buffer, "%lu\n", points);
418 }
419 
420 struct limit_names {
421 	char *name;
422 	char *unit;
423 };
424 
425 static const struct limit_names lnames[RLIM_NLIMITS] = {
426 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
427 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
428 	[RLIMIT_DATA] = {"Max data size", "bytes"},
429 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
430 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
431 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
432 	[RLIMIT_NPROC] = {"Max processes", "processes"},
433 	[RLIMIT_NOFILE] = {"Max open files", "files"},
434 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
435 	[RLIMIT_AS] = {"Max address space", "bytes"},
436 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
437 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
438 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
439 	[RLIMIT_NICE] = {"Max nice priority", NULL},
440 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
441 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
442 };
443 
444 /* Display limits for a process */
445 static int proc_pid_limits(struct task_struct *task, char *buffer)
446 {
447 	unsigned int i;
448 	int count = 0;
449 	unsigned long flags;
450 	char *bufptr = buffer;
451 
452 	struct rlimit rlim[RLIM_NLIMITS];
453 
454 	if (!lock_task_sighand(task, &flags))
455 		return 0;
456 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
457 	unlock_task_sighand(task, &flags);
458 
459 	/*
460 	 * print the file header
461 	 */
462 	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
463 			"Limit", "Soft Limit", "Hard Limit", "Units");
464 
465 	for (i = 0; i < RLIM_NLIMITS; i++) {
466 		if (rlim[i].rlim_cur == RLIM_INFINITY)
467 			count += sprintf(&bufptr[count], "%-25s %-20s ",
468 					 lnames[i].name, "unlimited");
469 		else
470 			count += sprintf(&bufptr[count], "%-25s %-20lu ",
471 					 lnames[i].name, rlim[i].rlim_cur);
472 
473 		if (rlim[i].rlim_max == RLIM_INFINITY)
474 			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
475 		else
476 			count += sprintf(&bufptr[count], "%-20lu ",
477 					 rlim[i].rlim_max);
478 
479 		if (lnames[i].unit)
480 			count += sprintf(&bufptr[count], "%-10s\n",
481 					 lnames[i].unit);
482 		else
483 			count += sprintf(&bufptr[count], "\n");
484 	}
485 
486 	return count;
487 }
488 
489 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
490 static int proc_pid_syscall(struct task_struct *task, char *buffer)
491 {
492 	long nr;
493 	unsigned long args[6], sp, pc;
494 	int res = lock_trace(task);
495 	if (res)
496 		return res;
497 
498 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
499 		res = sprintf(buffer, "running\n");
500 	else if (nr < 0)
501 		res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
502 	else
503 		res = sprintf(buffer,
504 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
505 		       nr,
506 		       args[0], args[1], args[2], args[3], args[4], args[5],
507 		       sp, pc);
508 	unlock_trace(task);
509 	return res;
510 }
511 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
512 
513 /************************************************************************/
514 /*                       Here the fs part begins                        */
515 /************************************************************************/
516 
517 /* permission checks */
518 static int proc_fd_access_allowed(struct inode *inode)
519 {
520 	struct task_struct *task;
521 	int allowed = 0;
522 	/* Allow access to a task's file descriptors if it is us or we
523 	 * may use ptrace attach to the process and find out that
524 	 * information.
525 	 */
526 	task = get_proc_task(inode);
527 	if (task) {
528 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
529 		put_task_struct(task);
530 	}
531 	return allowed;
532 }
533 
534 int proc_setattr(struct dentry *dentry, struct iattr *attr)
535 {
536 	int error;
537 	struct inode *inode = dentry->d_inode;
538 
539 	if (attr->ia_valid & ATTR_MODE)
540 		return -EPERM;
541 
542 	error = inode_change_ok(inode, attr);
543 	if (error)
544 		return error;
545 
546 	setattr_copy(inode, attr);
547 	mark_inode_dirty(inode);
548 	return 0;
549 }
550 
551 /*
552  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
553  * or euid/egid (for hide_pid_min=2)?
554  */
555 static bool has_pid_permissions(struct pid_namespace *pid,
556 				 struct task_struct *task,
557 				 int hide_pid_min)
558 {
559 	if (pid->hide_pid < hide_pid_min)
560 		return true;
561 	if (in_group_p(pid->pid_gid))
562 		return true;
563 	return ptrace_may_access(task, PTRACE_MODE_READ);
564 }
565 
566 
567 static int proc_pid_permission(struct inode *inode, int mask)
568 {
569 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
570 	struct task_struct *task;
571 	bool has_perms;
572 
573 	task = get_proc_task(inode);
574 	if (!task)
575 		return -ESRCH;
576 	has_perms = has_pid_permissions(pid, task, 1);
577 	put_task_struct(task);
578 
579 	if (!has_perms) {
580 		if (pid->hide_pid == 2) {
581 			/*
582 			 * Let's make getdents(), stat(), and open()
583 			 * consistent with each other.  If a process
584 			 * may not stat() a file, it shouldn't be seen
585 			 * in procfs at all.
586 			 */
587 			return -ENOENT;
588 		}
589 
590 		return -EPERM;
591 	}
592 	return generic_permission(inode, mask);
593 }
594 
595 
596 
597 static const struct inode_operations proc_def_inode_operations = {
598 	.setattr	= proc_setattr,
599 };
600 
601 #define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
602 
603 static ssize_t proc_info_read(struct file * file, char __user * buf,
604 			  size_t count, loff_t *ppos)
605 {
606 	struct inode * inode = file_inode(file);
607 	unsigned long page;
608 	ssize_t length;
609 	struct task_struct *task = get_proc_task(inode);
610 
611 	length = -ESRCH;
612 	if (!task)
613 		goto out_no_task;
614 
615 	if (count > PROC_BLOCK_SIZE)
616 		count = PROC_BLOCK_SIZE;
617 
618 	length = -ENOMEM;
619 	if (!(page = __get_free_page(GFP_TEMPORARY)))
620 		goto out;
621 
622 	length = PROC_I(inode)->op.proc_read(task, (char*)page);
623 
624 	if (length >= 0)
625 		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
626 	free_page(page);
627 out:
628 	put_task_struct(task);
629 out_no_task:
630 	return length;
631 }
632 
633 static const struct file_operations proc_info_file_operations = {
634 	.read		= proc_info_read,
635 	.llseek		= generic_file_llseek,
636 };
637 
638 static int proc_single_show(struct seq_file *m, void *v)
639 {
640 	struct inode *inode = m->private;
641 	struct pid_namespace *ns;
642 	struct pid *pid;
643 	struct task_struct *task;
644 	int ret;
645 
646 	ns = inode->i_sb->s_fs_info;
647 	pid = proc_pid(inode);
648 	task = get_pid_task(pid, PIDTYPE_PID);
649 	if (!task)
650 		return -ESRCH;
651 
652 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
653 
654 	put_task_struct(task);
655 	return ret;
656 }
657 
658 static int proc_single_open(struct inode *inode, struct file *filp)
659 {
660 	return single_open(filp, proc_single_show, inode);
661 }
662 
663 static const struct file_operations proc_single_file_operations = {
664 	.open		= proc_single_open,
665 	.read		= seq_read,
666 	.llseek		= seq_lseek,
667 	.release	= single_release,
668 };
669 
670 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
671 {
672 	struct task_struct *task = get_proc_task(file_inode(file));
673 	struct mm_struct *mm;
674 
675 	if (!task)
676 		return -ESRCH;
677 
678 	mm = mm_access(task, mode);
679 	put_task_struct(task);
680 
681 	if (IS_ERR(mm))
682 		return PTR_ERR(mm);
683 
684 	if (mm) {
685 		/* ensure this mm_struct can't be freed */
686 		atomic_inc(&mm->mm_count);
687 		/* but do not pin its memory */
688 		mmput(mm);
689 	}
690 
691 	file->private_data = mm;
692 
693 	return 0;
694 }
695 
696 static int mem_open(struct inode *inode, struct file *file)
697 {
698 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
699 
700 	/* OK to pass negative loff_t, we can catch out-of-range */
701 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
702 
703 	return ret;
704 }
705 
706 static ssize_t mem_rw(struct file *file, char __user *buf,
707 			size_t count, loff_t *ppos, int write)
708 {
709 	struct mm_struct *mm = file->private_data;
710 	unsigned long addr = *ppos;
711 	ssize_t copied;
712 	char *page;
713 
714 	if (!mm)
715 		return 0;
716 
717 	page = (char *)__get_free_page(GFP_TEMPORARY);
718 	if (!page)
719 		return -ENOMEM;
720 
721 	copied = 0;
722 	if (!atomic_inc_not_zero(&mm->mm_users))
723 		goto free;
724 
725 	while (count > 0) {
726 		int this_len = min_t(int, count, PAGE_SIZE);
727 
728 		if (write && copy_from_user(page, buf, this_len)) {
729 			copied = -EFAULT;
730 			break;
731 		}
732 
733 		this_len = access_remote_vm(mm, addr, page, this_len, write);
734 		if (!this_len) {
735 			if (!copied)
736 				copied = -EIO;
737 			break;
738 		}
739 
740 		if (!write && copy_to_user(buf, page, this_len)) {
741 			copied = -EFAULT;
742 			break;
743 		}
744 
745 		buf += this_len;
746 		addr += this_len;
747 		copied += this_len;
748 		count -= this_len;
749 	}
750 	*ppos = addr;
751 
752 	mmput(mm);
753 free:
754 	free_page((unsigned long) page);
755 	return copied;
756 }
757 
758 static ssize_t mem_read(struct file *file, char __user *buf,
759 			size_t count, loff_t *ppos)
760 {
761 	return mem_rw(file, buf, count, ppos, 0);
762 }
763 
764 static ssize_t mem_write(struct file *file, const char __user *buf,
765 			 size_t count, loff_t *ppos)
766 {
767 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
768 }
769 
770 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
771 {
772 	switch (orig) {
773 	case 0:
774 		file->f_pos = offset;
775 		break;
776 	case 1:
777 		file->f_pos += offset;
778 		break;
779 	default:
780 		return -EINVAL;
781 	}
782 	force_successful_syscall_return();
783 	return file->f_pos;
784 }
785 
786 static int mem_release(struct inode *inode, struct file *file)
787 {
788 	struct mm_struct *mm = file->private_data;
789 	if (mm)
790 		mmdrop(mm);
791 	return 0;
792 }
793 
794 static const struct file_operations proc_mem_operations = {
795 	.llseek		= mem_lseek,
796 	.read		= mem_read,
797 	.write		= mem_write,
798 	.open		= mem_open,
799 	.release	= mem_release,
800 };
801 
802 static int environ_open(struct inode *inode, struct file *file)
803 {
804 	return __mem_open(inode, file, PTRACE_MODE_READ);
805 }
806 
807 static ssize_t environ_read(struct file *file, char __user *buf,
808 			size_t count, loff_t *ppos)
809 {
810 	char *page;
811 	unsigned long src = *ppos;
812 	int ret = 0;
813 	struct mm_struct *mm = file->private_data;
814 
815 	if (!mm)
816 		return 0;
817 
818 	page = (char *)__get_free_page(GFP_TEMPORARY);
819 	if (!page)
820 		return -ENOMEM;
821 
822 	ret = 0;
823 	if (!atomic_inc_not_zero(&mm->mm_users))
824 		goto free;
825 	while (count > 0) {
826 		size_t this_len, max_len;
827 		int retval;
828 
829 		if (src >= (mm->env_end - mm->env_start))
830 			break;
831 
832 		this_len = mm->env_end - (mm->env_start + src);
833 
834 		max_len = min_t(size_t, PAGE_SIZE, count);
835 		this_len = min(max_len, this_len);
836 
837 		retval = access_remote_vm(mm, (mm->env_start + src),
838 			page, this_len, 0);
839 
840 		if (retval <= 0) {
841 			ret = retval;
842 			break;
843 		}
844 
845 		if (copy_to_user(buf, page, retval)) {
846 			ret = -EFAULT;
847 			break;
848 		}
849 
850 		ret += retval;
851 		src += retval;
852 		buf += retval;
853 		count -= retval;
854 	}
855 	*ppos = src;
856 	mmput(mm);
857 
858 free:
859 	free_page((unsigned long) page);
860 	return ret;
861 }
862 
863 static const struct file_operations proc_environ_operations = {
864 	.open		= environ_open,
865 	.read		= environ_read,
866 	.llseek		= generic_file_llseek,
867 	.release	= mem_release,
868 };
869 
870 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
871 			    loff_t *ppos)
872 {
873 	struct task_struct *task = get_proc_task(file_inode(file));
874 	char buffer[PROC_NUMBUF];
875 	int oom_adj = OOM_ADJUST_MIN;
876 	size_t len;
877 	unsigned long flags;
878 
879 	if (!task)
880 		return -ESRCH;
881 	if (lock_task_sighand(task, &flags)) {
882 		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
883 			oom_adj = OOM_ADJUST_MAX;
884 		else
885 			oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
886 				  OOM_SCORE_ADJ_MAX;
887 		unlock_task_sighand(task, &flags);
888 	}
889 	put_task_struct(task);
890 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
891 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
892 }
893 
894 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
895 			     size_t count, loff_t *ppos)
896 {
897 	struct task_struct *task;
898 	char buffer[PROC_NUMBUF];
899 	int oom_adj;
900 	unsigned long flags;
901 	int err;
902 
903 	memset(buffer, 0, sizeof(buffer));
904 	if (count > sizeof(buffer) - 1)
905 		count = sizeof(buffer) - 1;
906 	if (copy_from_user(buffer, buf, count)) {
907 		err = -EFAULT;
908 		goto out;
909 	}
910 
911 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
912 	if (err)
913 		goto out;
914 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
915 	     oom_adj != OOM_DISABLE) {
916 		err = -EINVAL;
917 		goto out;
918 	}
919 
920 	task = get_proc_task(file_inode(file));
921 	if (!task) {
922 		err = -ESRCH;
923 		goto out;
924 	}
925 
926 	task_lock(task);
927 	if (!task->mm) {
928 		err = -EINVAL;
929 		goto err_task_lock;
930 	}
931 
932 	if (!lock_task_sighand(task, &flags)) {
933 		err = -ESRCH;
934 		goto err_task_lock;
935 	}
936 
937 	/*
938 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
939 	 * value is always attainable.
940 	 */
941 	if (oom_adj == OOM_ADJUST_MAX)
942 		oom_adj = OOM_SCORE_ADJ_MAX;
943 	else
944 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
945 
946 	if (oom_adj < task->signal->oom_score_adj &&
947 	    !capable(CAP_SYS_RESOURCE)) {
948 		err = -EACCES;
949 		goto err_sighand;
950 	}
951 
952 	/*
953 	 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
954 	 * /proc/pid/oom_score_adj instead.
955 	 */
956 	pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
957 		  current->comm, task_pid_nr(current), task_pid_nr(task),
958 		  task_pid_nr(task));
959 
960 	task->signal->oom_score_adj = oom_adj;
961 	trace_oom_score_adj_update(task);
962 err_sighand:
963 	unlock_task_sighand(task, &flags);
964 err_task_lock:
965 	task_unlock(task);
966 	put_task_struct(task);
967 out:
968 	return err < 0 ? err : count;
969 }
970 
971 static const struct file_operations proc_oom_adj_operations = {
972 	.read		= oom_adj_read,
973 	.write		= oom_adj_write,
974 	.llseek		= generic_file_llseek,
975 };
976 
977 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
978 					size_t count, loff_t *ppos)
979 {
980 	struct task_struct *task = get_proc_task(file_inode(file));
981 	char buffer[PROC_NUMBUF];
982 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
983 	unsigned long flags;
984 	size_t len;
985 
986 	if (!task)
987 		return -ESRCH;
988 	if (lock_task_sighand(task, &flags)) {
989 		oom_score_adj = task->signal->oom_score_adj;
990 		unlock_task_sighand(task, &flags);
991 	}
992 	put_task_struct(task);
993 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
994 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
995 }
996 
997 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
998 					size_t count, loff_t *ppos)
999 {
1000 	struct task_struct *task;
1001 	char buffer[PROC_NUMBUF];
1002 	unsigned long flags;
1003 	int oom_score_adj;
1004 	int err;
1005 
1006 	memset(buffer, 0, sizeof(buffer));
1007 	if (count > sizeof(buffer) - 1)
1008 		count = sizeof(buffer) - 1;
1009 	if (copy_from_user(buffer, buf, count)) {
1010 		err = -EFAULT;
1011 		goto out;
1012 	}
1013 
1014 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1015 	if (err)
1016 		goto out;
1017 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1018 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1019 		err = -EINVAL;
1020 		goto out;
1021 	}
1022 
1023 	task = get_proc_task(file_inode(file));
1024 	if (!task) {
1025 		err = -ESRCH;
1026 		goto out;
1027 	}
1028 
1029 	task_lock(task);
1030 	if (!task->mm) {
1031 		err = -EINVAL;
1032 		goto err_task_lock;
1033 	}
1034 
1035 	if (!lock_task_sighand(task, &flags)) {
1036 		err = -ESRCH;
1037 		goto err_task_lock;
1038 	}
1039 
1040 	if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1041 			!capable(CAP_SYS_RESOURCE)) {
1042 		err = -EACCES;
1043 		goto err_sighand;
1044 	}
1045 
1046 	task->signal->oom_score_adj = (short)oom_score_adj;
1047 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1048 		task->signal->oom_score_adj_min = (short)oom_score_adj;
1049 	trace_oom_score_adj_update(task);
1050 
1051 err_sighand:
1052 	unlock_task_sighand(task, &flags);
1053 err_task_lock:
1054 	task_unlock(task);
1055 	put_task_struct(task);
1056 out:
1057 	return err < 0 ? err : count;
1058 }
1059 
1060 static const struct file_operations proc_oom_score_adj_operations = {
1061 	.read		= oom_score_adj_read,
1062 	.write		= oom_score_adj_write,
1063 	.llseek		= default_llseek,
1064 };
1065 
1066 #ifdef CONFIG_AUDITSYSCALL
1067 #define TMPBUFLEN 21
1068 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1069 				  size_t count, loff_t *ppos)
1070 {
1071 	struct inode * inode = file_inode(file);
1072 	struct task_struct *task = get_proc_task(inode);
1073 	ssize_t length;
1074 	char tmpbuf[TMPBUFLEN];
1075 
1076 	if (!task)
1077 		return -ESRCH;
1078 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1079 			   from_kuid(file->f_cred->user_ns,
1080 				     audit_get_loginuid(task)));
1081 	put_task_struct(task);
1082 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1083 }
1084 
1085 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1086 				   size_t count, loff_t *ppos)
1087 {
1088 	struct inode * inode = file_inode(file);
1089 	char *page, *tmp;
1090 	ssize_t length;
1091 	uid_t loginuid;
1092 	kuid_t kloginuid;
1093 
1094 	rcu_read_lock();
1095 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1096 		rcu_read_unlock();
1097 		return -EPERM;
1098 	}
1099 	rcu_read_unlock();
1100 
1101 	if (count >= PAGE_SIZE)
1102 		count = PAGE_SIZE - 1;
1103 
1104 	if (*ppos != 0) {
1105 		/* No partial writes. */
1106 		return -EINVAL;
1107 	}
1108 	page = (char*)__get_free_page(GFP_TEMPORARY);
1109 	if (!page)
1110 		return -ENOMEM;
1111 	length = -EFAULT;
1112 	if (copy_from_user(page, buf, count))
1113 		goto out_free_page;
1114 
1115 	page[count] = '\0';
1116 	loginuid = simple_strtoul(page, &tmp, 10);
1117 	if (tmp == page) {
1118 		length = -EINVAL;
1119 		goto out_free_page;
1120 
1121 	}
1122 
1123 	/* is userspace tring to explicitly UNSET the loginuid? */
1124 	if (loginuid == AUDIT_UID_UNSET) {
1125 		kloginuid = INVALID_UID;
1126 	} else {
1127 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1128 		if (!uid_valid(kloginuid)) {
1129 			length = -EINVAL;
1130 			goto out_free_page;
1131 		}
1132 	}
1133 
1134 	length = audit_set_loginuid(kloginuid);
1135 	if (likely(length == 0))
1136 		length = count;
1137 
1138 out_free_page:
1139 	free_page((unsigned long) page);
1140 	return length;
1141 }
1142 
1143 static const struct file_operations proc_loginuid_operations = {
1144 	.read		= proc_loginuid_read,
1145 	.write		= proc_loginuid_write,
1146 	.llseek		= generic_file_llseek,
1147 };
1148 
1149 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1150 				  size_t count, loff_t *ppos)
1151 {
1152 	struct inode * inode = file_inode(file);
1153 	struct task_struct *task = get_proc_task(inode);
1154 	ssize_t length;
1155 	char tmpbuf[TMPBUFLEN];
1156 
1157 	if (!task)
1158 		return -ESRCH;
1159 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1160 				audit_get_sessionid(task));
1161 	put_task_struct(task);
1162 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1163 }
1164 
1165 static const struct file_operations proc_sessionid_operations = {
1166 	.read		= proc_sessionid_read,
1167 	.llseek		= generic_file_llseek,
1168 };
1169 #endif
1170 
1171 #ifdef CONFIG_FAULT_INJECTION
1172 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1173 				      size_t count, loff_t *ppos)
1174 {
1175 	struct task_struct *task = get_proc_task(file_inode(file));
1176 	char buffer[PROC_NUMBUF];
1177 	size_t len;
1178 	int make_it_fail;
1179 
1180 	if (!task)
1181 		return -ESRCH;
1182 	make_it_fail = task->make_it_fail;
1183 	put_task_struct(task);
1184 
1185 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1186 
1187 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1188 }
1189 
1190 static ssize_t proc_fault_inject_write(struct file * file,
1191 			const char __user * buf, size_t count, loff_t *ppos)
1192 {
1193 	struct task_struct *task;
1194 	char buffer[PROC_NUMBUF], *end;
1195 	int make_it_fail;
1196 
1197 	if (!capable(CAP_SYS_RESOURCE))
1198 		return -EPERM;
1199 	memset(buffer, 0, sizeof(buffer));
1200 	if (count > sizeof(buffer) - 1)
1201 		count = sizeof(buffer) - 1;
1202 	if (copy_from_user(buffer, buf, count))
1203 		return -EFAULT;
1204 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1205 	if (*end)
1206 		return -EINVAL;
1207 	if (make_it_fail < 0 || make_it_fail > 1)
1208 		return -EINVAL;
1209 
1210 	task = get_proc_task(file_inode(file));
1211 	if (!task)
1212 		return -ESRCH;
1213 	task->make_it_fail = make_it_fail;
1214 	put_task_struct(task);
1215 
1216 	return count;
1217 }
1218 
1219 static const struct file_operations proc_fault_inject_operations = {
1220 	.read		= proc_fault_inject_read,
1221 	.write		= proc_fault_inject_write,
1222 	.llseek		= generic_file_llseek,
1223 };
1224 #endif
1225 
1226 
1227 #ifdef CONFIG_SCHED_DEBUG
1228 /*
1229  * Print out various scheduling related per-task fields:
1230  */
1231 static int sched_show(struct seq_file *m, void *v)
1232 {
1233 	struct inode *inode = m->private;
1234 	struct task_struct *p;
1235 
1236 	p = get_proc_task(inode);
1237 	if (!p)
1238 		return -ESRCH;
1239 	proc_sched_show_task(p, m);
1240 
1241 	put_task_struct(p);
1242 
1243 	return 0;
1244 }
1245 
1246 static ssize_t
1247 sched_write(struct file *file, const char __user *buf,
1248 	    size_t count, loff_t *offset)
1249 {
1250 	struct inode *inode = file_inode(file);
1251 	struct task_struct *p;
1252 
1253 	p = get_proc_task(inode);
1254 	if (!p)
1255 		return -ESRCH;
1256 	proc_sched_set_task(p);
1257 
1258 	put_task_struct(p);
1259 
1260 	return count;
1261 }
1262 
1263 static int sched_open(struct inode *inode, struct file *filp)
1264 {
1265 	return single_open(filp, sched_show, inode);
1266 }
1267 
1268 static const struct file_operations proc_pid_sched_operations = {
1269 	.open		= sched_open,
1270 	.read		= seq_read,
1271 	.write		= sched_write,
1272 	.llseek		= seq_lseek,
1273 	.release	= single_release,
1274 };
1275 
1276 #endif
1277 
1278 #ifdef CONFIG_SCHED_AUTOGROUP
1279 /*
1280  * Print out autogroup related information:
1281  */
1282 static int sched_autogroup_show(struct seq_file *m, void *v)
1283 {
1284 	struct inode *inode = m->private;
1285 	struct task_struct *p;
1286 
1287 	p = get_proc_task(inode);
1288 	if (!p)
1289 		return -ESRCH;
1290 	proc_sched_autogroup_show_task(p, m);
1291 
1292 	put_task_struct(p);
1293 
1294 	return 0;
1295 }
1296 
1297 static ssize_t
1298 sched_autogroup_write(struct file *file, const char __user *buf,
1299 	    size_t count, loff_t *offset)
1300 {
1301 	struct inode *inode = file_inode(file);
1302 	struct task_struct *p;
1303 	char buffer[PROC_NUMBUF];
1304 	int nice;
1305 	int err;
1306 
1307 	memset(buffer, 0, sizeof(buffer));
1308 	if (count > sizeof(buffer) - 1)
1309 		count = sizeof(buffer) - 1;
1310 	if (copy_from_user(buffer, buf, count))
1311 		return -EFAULT;
1312 
1313 	err = kstrtoint(strstrip(buffer), 0, &nice);
1314 	if (err < 0)
1315 		return err;
1316 
1317 	p = get_proc_task(inode);
1318 	if (!p)
1319 		return -ESRCH;
1320 
1321 	err = proc_sched_autogroup_set_nice(p, nice);
1322 	if (err)
1323 		count = err;
1324 
1325 	put_task_struct(p);
1326 
1327 	return count;
1328 }
1329 
1330 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1331 {
1332 	int ret;
1333 
1334 	ret = single_open(filp, sched_autogroup_show, NULL);
1335 	if (!ret) {
1336 		struct seq_file *m = filp->private_data;
1337 
1338 		m->private = inode;
1339 	}
1340 	return ret;
1341 }
1342 
1343 static const struct file_operations proc_pid_sched_autogroup_operations = {
1344 	.open		= sched_autogroup_open,
1345 	.read		= seq_read,
1346 	.write		= sched_autogroup_write,
1347 	.llseek		= seq_lseek,
1348 	.release	= single_release,
1349 };
1350 
1351 #endif /* CONFIG_SCHED_AUTOGROUP */
1352 
1353 static ssize_t comm_write(struct file *file, const char __user *buf,
1354 				size_t count, loff_t *offset)
1355 {
1356 	struct inode *inode = file_inode(file);
1357 	struct task_struct *p;
1358 	char buffer[TASK_COMM_LEN];
1359 	const size_t maxlen = sizeof(buffer) - 1;
1360 
1361 	memset(buffer, 0, sizeof(buffer));
1362 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1363 		return -EFAULT;
1364 
1365 	p = get_proc_task(inode);
1366 	if (!p)
1367 		return -ESRCH;
1368 
1369 	if (same_thread_group(current, p))
1370 		set_task_comm(p, buffer);
1371 	else
1372 		count = -EINVAL;
1373 
1374 	put_task_struct(p);
1375 
1376 	return count;
1377 }
1378 
1379 static int comm_show(struct seq_file *m, void *v)
1380 {
1381 	struct inode *inode = m->private;
1382 	struct task_struct *p;
1383 
1384 	p = get_proc_task(inode);
1385 	if (!p)
1386 		return -ESRCH;
1387 
1388 	task_lock(p);
1389 	seq_printf(m, "%s\n", p->comm);
1390 	task_unlock(p);
1391 
1392 	put_task_struct(p);
1393 
1394 	return 0;
1395 }
1396 
1397 static int comm_open(struct inode *inode, struct file *filp)
1398 {
1399 	return single_open(filp, comm_show, inode);
1400 }
1401 
1402 static const struct file_operations proc_pid_set_comm_operations = {
1403 	.open		= comm_open,
1404 	.read		= seq_read,
1405 	.write		= comm_write,
1406 	.llseek		= seq_lseek,
1407 	.release	= single_release,
1408 };
1409 
1410 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1411 {
1412 	struct task_struct *task;
1413 	struct mm_struct *mm;
1414 	struct file *exe_file;
1415 
1416 	task = get_proc_task(dentry->d_inode);
1417 	if (!task)
1418 		return -ENOENT;
1419 	mm = get_task_mm(task);
1420 	put_task_struct(task);
1421 	if (!mm)
1422 		return -ENOENT;
1423 	exe_file = get_mm_exe_file(mm);
1424 	mmput(mm);
1425 	if (exe_file) {
1426 		*exe_path = exe_file->f_path;
1427 		path_get(&exe_file->f_path);
1428 		fput(exe_file);
1429 		return 0;
1430 	} else
1431 		return -ENOENT;
1432 }
1433 
1434 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1435 {
1436 	struct inode *inode = dentry->d_inode;
1437 	struct path path;
1438 	int error = -EACCES;
1439 
1440 	/* Are we allowed to snoop on the tasks file descriptors? */
1441 	if (!proc_fd_access_allowed(inode))
1442 		goto out;
1443 
1444 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1445 	if (error)
1446 		goto out;
1447 
1448 	nd_jump_link(nd, &path);
1449 	return NULL;
1450 out:
1451 	return ERR_PTR(error);
1452 }
1453 
1454 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1455 {
1456 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1457 	char *pathname;
1458 	int len;
1459 
1460 	if (!tmp)
1461 		return -ENOMEM;
1462 
1463 	pathname = d_path(path, tmp, PAGE_SIZE);
1464 	len = PTR_ERR(pathname);
1465 	if (IS_ERR(pathname))
1466 		goto out;
1467 	len = tmp + PAGE_SIZE - 1 - pathname;
1468 
1469 	if (len > buflen)
1470 		len = buflen;
1471 	if (copy_to_user(buffer, pathname, len))
1472 		len = -EFAULT;
1473  out:
1474 	free_page((unsigned long)tmp);
1475 	return len;
1476 }
1477 
1478 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1479 {
1480 	int error = -EACCES;
1481 	struct inode *inode = dentry->d_inode;
1482 	struct path path;
1483 
1484 	/* Are we allowed to snoop on the tasks file descriptors? */
1485 	if (!proc_fd_access_allowed(inode))
1486 		goto out;
1487 
1488 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1489 	if (error)
1490 		goto out;
1491 
1492 	error = do_proc_readlink(&path, buffer, buflen);
1493 	path_put(&path);
1494 out:
1495 	return error;
1496 }
1497 
1498 const struct inode_operations proc_pid_link_inode_operations = {
1499 	.readlink	= proc_pid_readlink,
1500 	.follow_link	= proc_pid_follow_link,
1501 	.setattr	= proc_setattr,
1502 };
1503 
1504 
1505 /* building an inode */
1506 
1507 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1508 {
1509 	struct inode * inode;
1510 	struct proc_inode *ei;
1511 	const struct cred *cred;
1512 
1513 	/* We need a new inode */
1514 
1515 	inode = new_inode(sb);
1516 	if (!inode)
1517 		goto out;
1518 
1519 	/* Common stuff */
1520 	ei = PROC_I(inode);
1521 	inode->i_ino = get_next_ino();
1522 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1523 	inode->i_op = &proc_def_inode_operations;
1524 
1525 	/*
1526 	 * grab the reference to task.
1527 	 */
1528 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1529 	if (!ei->pid)
1530 		goto out_unlock;
1531 
1532 	if (task_dumpable(task)) {
1533 		rcu_read_lock();
1534 		cred = __task_cred(task);
1535 		inode->i_uid = cred->euid;
1536 		inode->i_gid = cred->egid;
1537 		rcu_read_unlock();
1538 	}
1539 	security_task_to_inode(task, inode);
1540 
1541 out:
1542 	return inode;
1543 
1544 out_unlock:
1545 	iput(inode);
1546 	return NULL;
1547 }
1548 
1549 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1550 {
1551 	struct inode *inode = dentry->d_inode;
1552 	struct task_struct *task;
1553 	const struct cred *cred;
1554 	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1555 
1556 	generic_fillattr(inode, stat);
1557 
1558 	rcu_read_lock();
1559 	stat->uid = GLOBAL_ROOT_UID;
1560 	stat->gid = GLOBAL_ROOT_GID;
1561 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1562 	if (task) {
1563 		if (!has_pid_permissions(pid, task, 2)) {
1564 			rcu_read_unlock();
1565 			/*
1566 			 * This doesn't prevent learning whether PID exists,
1567 			 * it only makes getattr() consistent with readdir().
1568 			 */
1569 			return -ENOENT;
1570 		}
1571 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1572 		    task_dumpable(task)) {
1573 			cred = __task_cred(task);
1574 			stat->uid = cred->euid;
1575 			stat->gid = cred->egid;
1576 		}
1577 	}
1578 	rcu_read_unlock();
1579 	return 0;
1580 }
1581 
1582 /* dentry stuff */
1583 
1584 /*
1585  *	Exceptional case: normally we are not allowed to unhash a busy
1586  * directory. In this case, however, we can do it - no aliasing problems
1587  * due to the way we treat inodes.
1588  *
1589  * Rewrite the inode's ownerships here because the owning task may have
1590  * performed a setuid(), etc.
1591  *
1592  * Before the /proc/pid/status file was created the only way to read
1593  * the effective uid of a /process was to stat /proc/pid.  Reading
1594  * /proc/pid/status is slow enough that procps and other packages
1595  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1596  * made this apply to all per process world readable and executable
1597  * directories.
1598  */
1599 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1600 {
1601 	struct inode *inode;
1602 	struct task_struct *task;
1603 	const struct cred *cred;
1604 
1605 	if (flags & LOOKUP_RCU)
1606 		return -ECHILD;
1607 
1608 	inode = dentry->d_inode;
1609 	task = get_proc_task(inode);
1610 
1611 	if (task) {
1612 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1613 		    task_dumpable(task)) {
1614 			rcu_read_lock();
1615 			cred = __task_cred(task);
1616 			inode->i_uid = cred->euid;
1617 			inode->i_gid = cred->egid;
1618 			rcu_read_unlock();
1619 		} else {
1620 			inode->i_uid = GLOBAL_ROOT_UID;
1621 			inode->i_gid = GLOBAL_ROOT_GID;
1622 		}
1623 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1624 		security_task_to_inode(task, inode);
1625 		put_task_struct(task);
1626 		return 1;
1627 	}
1628 	d_drop(dentry);
1629 	return 0;
1630 }
1631 
1632 static inline bool proc_inode_is_dead(struct inode *inode)
1633 {
1634 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1635 }
1636 
1637 int pid_delete_dentry(const struct dentry *dentry)
1638 {
1639 	/* Is the task we represent dead?
1640 	 * If so, then don't put the dentry on the lru list,
1641 	 * kill it immediately.
1642 	 */
1643 	return proc_inode_is_dead(dentry->d_inode);
1644 }
1645 
1646 const struct dentry_operations pid_dentry_operations =
1647 {
1648 	.d_revalidate	= pid_revalidate,
1649 	.d_delete	= pid_delete_dentry,
1650 };
1651 
1652 /* Lookups */
1653 
1654 /*
1655  * Fill a directory entry.
1656  *
1657  * If possible create the dcache entry and derive our inode number and
1658  * file type from dcache entry.
1659  *
1660  * Since all of the proc inode numbers are dynamically generated, the inode
1661  * numbers do not exist until the inode is cache.  This means creating the
1662  * the dcache entry in readdir is necessary to keep the inode numbers
1663  * reported by readdir in sync with the inode numbers reported
1664  * by stat.
1665  */
1666 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1667 	const char *name, int len,
1668 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1669 {
1670 	struct dentry *child, *dir = file->f_path.dentry;
1671 	struct qstr qname = QSTR_INIT(name, len);
1672 	struct inode *inode;
1673 	unsigned type;
1674 	ino_t ino;
1675 
1676 	child = d_hash_and_lookup(dir, &qname);
1677 	if (!child) {
1678 		child = d_alloc(dir, &qname);
1679 		if (!child)
1680 			goto end_instantiate;
1681 		if (instantiate(dir->d_inode, child, task, ptr) < 0) {
1682 			dput(child);
1683 			goto end_instantiate;
1684 		}
1685 	}
1686 	inode = child->d_inode;
1687 	ino = inode->i_ino;
1688 	type = inode->i_mode >> 12;
1689 	dput(child);
1690 	return dir_emit(ctx, name, len, ino, type);
1691 
1692 end_instantiate:
1693 	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1694 }
1695 
1696 #ifdef CONFIG_CHECKPOINT_RESTORE
1697 
1698 /*
1699  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1700  * which represent vma start and end addresses.
1701  */
1702 static int dname_to_vma_addr(struct dentry *dentry,
1703 			     unsigned long *start, unsigned long *end)
1704 {
1705 	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1706 		return -EINVAL;
1707 
1708 	return 0;
1709 }
1710 
1711 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1712 {
1713 	unsigned long vm_start, vm_end;
1714 	bool exact_vma_exists = false;
1715 	struct mm_struct *mm = NULL;
1716 	struct task_struct *task;
1717 	const struct cred *cred;
1718 	struct inode *inode;
1719 	int status = 0;
1720 
1721 	if (flags & LOOKUP_RCU)
1722 		return -ECHILD;
1723 
1724 	if (!capable(CAP_SYS_ADMIN)) {
1725 		status = -EPERM;
1726 		goto out_notask;
1727 	}
1728 
1729 	inode = dentry->d_inode;
1730 	task = get_proc_task(inode);
1731 	if (!task)
1732 		goto out_notask;
1733 
1734 	mm = mm_access(task, PTRACE_MODE_READ);
1735 	if (IS_ERR_OR_NULL(mm))
1736 		goto out;
1737 
1738 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1739 		down_read(&mm->mmap_sem);
1740 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1741 		up_read(&mm->mmap_sem);
1742 	}
1743 
1744 	mmput(mm);
1745 
1746 	if (exact_vma_exists) {
1747 		if (task_dumpable(task)) {
1748 			rcu_read_lock();
1749 			cred = __task_cred(task);
1750 			inode->i_uid = cred->euid;
1751 			inode->i_gid = cred->egid;
1752 			rcu_read_unlock();
1753 		} else {
1754 			inode->i_uid = GLOBAL_ROOT_UID;
1755 			inode->i_gid = GLOBAL_ROOT_GID;
1756 		}
1757 		security_task_to_inode(task, inode);
1758 		status = 1;
1759 	}
1760 
1761 out:
1762 	put_task_struct(task);
1763 
1764 out_notask:
1765 	if (status <= 0)
1766 		d_drop(dentry);
1767 
1768 	return status;
1769 }
1770 
1771 static const struct dentry_operations tid_map_files_dentry_operations = {
1772 	.d_revalidate	= map_files_d_revalidate,
1773 	.d_delete	= pid_delete_dentry,
1774 };
1775 
1776 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1777 {
1778 	unsigned long vm_start, vm_end;
1779 	struct vm_area_struct *vma;
1780 	struct task_struct *task;
1781 	struct mm_struct *mm;
1782 	int rc;
1783 
1784 	rc = -ENOENT;
1785 	task = get_proc_task(dentry->d_inode);
1786 	if (!task)
1787 		goto out;
1788 
1789 	mm = get_task_mm(task);
1790 	put_task_struct(task);
1791 	if (!mm)
1792 		goto out;
1793 
1794 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1795 	if (rc)
1796 		goto out_mmput;
1797 
1798 	rc = -ENOENT;
1799 	down_read(&mm->mmap_sem);
1800 	vma = find_exact_vma(mm, vm_start, vm_end);
1801 	if (vma && vma->vm_file) {
1802 		*path = vma->vm_file->f_path;
1803 		path_get(path);
1804 		rc = 0;
1805 	}
1806 	up_read(&mm->mmap_sem);
1807 
1808 out_mmput:
1809 	mmput(mm);
1810 out:
1811 	return rc;
1812 }
1813 
1814 struct map_files_info {
1815 	fmode_t		mode;
1816 	unsigned long	len;
1817 	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1818 };
1819 
1820 static int
1821 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1822 			   struct task_struct *task, const void *ptr)
1823 {
1824 	fmode_t mode = (fmode_t)(unsigned long)ptr;
1825 	struct proc_inode *ei;
1826 	struct inode *inode;
1827 
1828 	inode = proc_pid_make_inode(dir->i_sb, task);
1829 	if (!inode)
1830 		return -ENOENT;
1831 
1832 	ei = PROC_I(inode);
1833 	ei->op.proc_get_link = proc_map_files_get_link;
1834 
1835 	inode->i_op = &proc_pid_link_inode_operations;
1836 	inode->i_size = 64;
1837 	inode->i_mode = S_IFLNK;
1838 
1839 	if (mode & FMODE_READ)
1840 		inode->i_mode |= S_IRUSR;
1841 	if (mode & FMODE_WRITE)
1842 		inode->i_mode |= S_IWUSR;
1843 
1844 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
1845 	d_add(dentry, inode);
1846 
1847 	return 0;
1848 }
1849 
1850 static struct dentry *proc_map_files_lookup(struct inode *dir,
1851 		struct dentry *dentry, unsigned int flags)
1852 {
1853 	unsigned long vm_start, vm_end;
1854 	struct vm_area_struct *vma;
1855 	struct task_struct *task;
1856 	int result;
1857 	struct mm_struct *mm;
1858 
1859 	result = -EPERM;
1860 	if (!capable(CAP_SYS_ADMIN))
1861 		goto out;
1862 
1863 	result = -ENOENT;
1864 	task = get_proc_task(dir);
1865 	if (!task)
1866 		goto out;
1867 
1868 	result = -EACCES;
1869 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
1870 		goto out_put_task;
1871 
1872 	result = -ENOENT;
1873 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
1874 		goto out_put_task;
1875 
1876 	mm = get_task_mm(task);
1877 	if (!mm)
1878 		goto out_put_task;
1879 
1880 	down_read(&mm->mmap_sem);
1881 	vma = find_exact_vma(mm, vm_start, vm_end);
1882 	if (!vma)
1883 		goto out_no_vma;
1884 
1885 	if (vma->vm_file)
1886 		result = proc_map_files_instantiate(dir, dentry, task,
1887 				(void *)(unsigned long)vma->vm_file->f_mode);
1888 
1889 out_no_vma:
1890 	up_read(&mm->mmap_sem);
1891 	mmput(mm);
1892 out_put_task:
1893 	put_task_struct(task);
1894 out:
1895 	return ERR_PTR(result);
1896 }
1897 
1898 static const struct inode_operations proc_map_files_inode_operations = {
1899 	.lookup		= proc_map_files_lookup,
1900 	.permission	= proc_fd_permission,
1901 	.setattr	= proc_setattr,
1902 };
1903 
1904 static int
1905 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
1906 {
1907 	struct vm_area_struct *vma;
1908 	struct task_struct *task;
1909 	struct mm_struct *mm;
1910 	unsigned long nr_files, pos, i;
1911 	struct flex_array *fa = NULL;
1912 	struct map_files_info info;
1913 	struct map_files_info *p;
1914 	int ret;
1915 
1916 	ret = -EPERM;
1917 	if (!capable(CAP_SYS_ADMIN))
1918 		goto out;
1919 
1920 	ret = -ENOENT;
1921 	task = get_proc_task(file_inode(file));
1922 	if (!task)
1923 		goto out;
1924 
1925 	ret = -EACCES;
1926 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
1927 		goto out_put_task;
1928 
1929 	ret = 0;
1930 	if (!dir_emit_dots(file, ctx))
1931 		goto out_put_task;
1932 
1933 	mm = get_task_mm(task);
1934 	if (!mm)
1935 		goto out_put_task;
1936 	down_read(&mm->mmap_sem);
1937 
1938 	nr_files = 0;
1939 
1940 	/*
1941 	 * We need two passes here:
1942 	 *
1943 	 *  1) Collect vmas of mapped files with mmap_sem taken
1944 	 *  2) Release mmap_sem and instantiate entries
1945 	 *
1946 	 * otherwise we get lockdep complained, since filldir()
1947 	 * routine might require mmap_sem taken in might_fault().
1948 	 */
1949 
1950 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
1951 		if (vma->vm_file && ++pos > ctx->pos)
1952 			nr_files++;
1953 	}
1954 
1955 	if (nr_files) {
1956 		fa = flex_array_alloc(sizeof(info), nr_files,
1957 					GFP_KERNEL);
1958 		if (!fa || flex_array_prealloc(fa, 0, nr_files,
1959 						GFP_KERNEL)) {
1960 			ret = -ENOMEM;
1961 			if (fa)
1962 				flex_array_free(fa);
1963 			up_read(&mm->mmap_sem);
1964 			mmput(mm);
1965 			goto out_put_task;
1966 		}
1967 		for (i = 0, vma = mm->mmap, pos = 2; vma;
1968 				vma = vma->vm_next) {
1969 			if (!vma->vm_file)
1970 				continue;
1971 			if (++pos <= ctx->pos)
1972 				continue;
1973 
1974 			info.mode = vma->vm_file->f_mode;
1975 			info.len = snprintf(info.name,
1976 					sizeof(info.name), "%lx-%lx",
1977 					vma->vm_start, vma->vm_end);
1978 			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
1979 				BUG();
1980 		}
1981 	}
1982 	up_read(&mm->mmap_sem);
1983 
1984 	for (i = 0; i < nr_files; i++) {
1985 		p = flex_array_get(fa, i);
1986 		if (!proc_fill_cache(file, ctx,
1987 				      p->name, p->len,
1988 				      proc_map_files_instantiate,
1989 				      task,
1990 				      (void *)(unsigned long)p->mode))
1991 			break;
1992 		ctx->pos++;
1993 	}
1994 	if (fa)
1995 		flex_array_free(fa);
1996 	mmput(mm);
1997 
1998 out_put_task:
1999 	put_task_struct(task);
2000 out:
2001 	return ret;
2002 }
2003 
2004 static const struct file_operations proc_map_files_operations = {
2005 	.read		= generic_read_dir,
2006 	.iterate	= proc_map_files_readdir,
2007 	.llseek		= default_llseek,
2008 };
2009 
2010 struct timers_private {
2011 	struct pid *pid;
2012 	struct task_struct *task;
2013 	struct sighand_struct *sighand;
2014 	struct pid_namespace *ns;
2015 	unsigned long flags;
2016 };
2017 
2018 static void *timers_start(struct seq_file *m, loff_t *pos)
2019 {
2020 	struct timers_private *tp = m->private;
2021 
2022 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2023 	if (!tp->task)
2024 		return ERR_PTR(-ESRCH);
2025 
2026 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2027 	if (!tp->sighand)
2028 		return ERR_PTR(-ESRCH);
2029 
2030 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2031 }
2032 
2033 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2034 {
2035 	struct timers_private *tp = m->private;
2036 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2037 }
2038 
2039 static void timers_stop(struct seq_file *m, void *v)
2040 {
2041 	struct timers_private *tp = m->private;
2042 
2043 	if (tp->sighand) {
2044 		unlock_task_sighand(tp->task, &tp->flags);
2045 		tp->sighand = NULL;
2046 	}
2047 
2048 	if (tp->task) {
2049 		put_task_struct(tp->task);
2050 		tp->task = NULL;
2051 	}
2052 }
2053 
2054 static int show_timer(struct seq_file *m, void *v)
2055 {
2056 	struct k_itimer *timer;
2057 	struct timers_private *tp = m->private;
2058 	int notify;
2059 	static char *nstr[] = {
2060 		[SIGEV_SIGNAL] = "signal",
2061 		[SIGEV_NONE] = "none",
2062 		[SIGEV_THREAD] = "thread",
2063 	};
2064 
2065 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2066 	notify = timer->it_sigev_notify;
2067 
2068 	seq_printf(m, "ID: %d\n", timer->it_id);
2069 	seq_printf(m, "signal: %d/%p\n", timer->sigq->info.si_signo,
2070 			timer->sigq->info.si_value.sival_ptr);
2071 	seq_printf(m, "notify: %s/%s.%d\n",
2072 		nstr[notify & ~SIGEV_THREAD_ID],
2073 		(notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2074 		pid_nr_ns(timer->it_pid, tp->ns));
2075 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2076 
2077 	return 0;
2078 }
2079 
2080 static const struct seq_operations proc_timers_seq_ops = {
2081 	.start	= timers_start,
2082 	.next	= timers_next,
2083 	.stop	= timers_stop,
2084 	.show	= show_timer,
2085 };
2086 
2087 static int proc_timers_open(struct inode *inode, struct file *file)
2088 {
2089 	struct timers_private *tp;
2090 
2091 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2092 			sizeof(struct timers_private));
2093 	if (!tp)
2094 		return -ENOMEM;
2095 
2096 	tp->pid = proc_pid(inode);
2097 	tp->ns = inode->i_sb->s_fs_info;
2098 	return 0;
2099 }
2100 
2101 static const struct file_operations proc_timers_operations = {
2102 	.open		= proc_timers_open,
2103 	.read		= seq_read,
2104 	.llseek		= seq_lseek,
2105 	.release	= seq_release_private,
2106 };
2107 #endif /* CONFIG_CHECKPOINT_RESTORE */
2108 
2109 static int proc_pident_instantiate(struct inode *dir,
2110 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2111 {
2112 	const struct pid_entry *p = ptr;
2113 	struct inode *inode;
2114 	struct proc_inode *ei;
2115 
2116 	inode = proc_pid_make_inode(dir->i_sb, task);
2117 	if (!inode)
2118 		goto out;
2119 
2120 	ei = PROC_I(inode);
2121 	inode->i_mode = p->mode;
2122 	if (S_ISDIR(inode->i_mode))
2123 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2124 	if (p->iop)
2125 		inode->i_op = p->iop;
2126 	if (p->fop)
2127 		inode->i_fop = p->fop;
2128 	ei->op = p->op;
2129 	d_set_d_op(dentry, &pid_dentry_operations);
2130 	d_add(dentry, inode);
2131 	/* Close the race of the process dying before we return the dentry */
2132 	if (pid_revalidate(dentry, 0))
2133 		return 0;
2134 out:
2135 	return -ENOENT;
2136 }
2137 
2138 static struct dentry *proc_pident_lookup(struct inode *dir,
2139 					 struct dentry *dentry,
2140 					 const struct pid_entry *ents,
2141 					 unsigned int nents)
2142 {
2143 	int error;
2144 	struct task_struct *task = get_proc_task(dir);
2145 	const struct pid_entry *p, *last;
2146 
2147 	error = -ENOENT;
2148 
2149 	if (!task)
2150 		goto out_no_task;
2151 
2152 	/*
2153 	 * Yes, it does not scale. And it should not. Don't add
2154 	 * new entries into /proc/<tgid>/ without very good reasons.
2155 	 */
2156 	last = &ents[nents - 1];
2157 	for (p = ents; p <= last; p++) {
2158 		if (p->len != dentry->d_name.len)
2159 			continue;
2160 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2161 			break;
2162 	}
2163 	if (p > last)
2164 		goto out;
2165 
2166 	error = proc_pident_instantiate(dir, dentry, task, p);
2167 out:
2168 	put_task_struct(task);
2169 out_no_task:
2170 	return ERR_PTR(error);
2171 }
2172 
2173 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2174 		const struct pid_entry *ents, unsigned int nents)
2175 {
2176 	struct task_struct *task = get_proc_task(file_inode(file));
2177 	const struct pid_entry *p;
2178 
2179 	if (!task)
2180 		return -ENOENT;
2181 
2182 	if (!dir_emit_dots(file, ctx))
2183 		goto out;
2184 
2185 	if (ctx->pos >= nents + 2)
2186 		goto out;
2187 
2188 	for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2189 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2190 				proc_pident_instantiate, task, p))
2191 			break;
2192 		ctx->pos++;
2193 	}
2194 out:
2195 	put_task_struct(task);
2196 	return 0;
2197 }
2198 
2199 #ifdef CONFIG_SECURITY
2200 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2201 				  size_t count, loff_t *ppos)
2202 {
2203 	struct inode * inode = file_inode(file);
2204 	char *p = NULL;
2205 	ssize_t length;
2206 	struct task_struct *task = get_proc_task(inode);
2207 
2208 	if (!task)
2209 		return -ESRCH;
2210 
2211 	length = security_getprocattr(task,
2212 				      (char*)file->f_path.dentry->d_name.name,
2213 				      &p);
2214 	put_task_struct(task);
2215 	if (length > 0)
2216 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2217 	kfree(p);
2218 	return length;
2219 }
2220 
2221 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2222 				   size_t count, loff_t *ppos)
2223 {
2224 	struct inode * inode = file_inode(file);
2225 	char *page;
2226 	ssize_t length;
2227 	struct task_struct *task = get_proc_task(inode);
2228 
2229 	length = -ESRCH;
2230 	if (!task)
2231 		goto out_no_task;
2232 	if (count > PAGE_SIZE)
2233 		count = PAGE_SIZE;
2234 
2235 	/* No partial writes. */
2236 	length = -EINVAL;
2237 	if (*ppos != 0)
2238 		goto out;
2239 
2240 	length = -ENOMEM;
2241 	page = (char*)__get_free_page(GFP_TEMPORARY);
2242 	if (!page)
2243 		goto out;
2244 
2245 	length = -EFAULT;
2246 	if (copy_from_user(page, buf, count))
2247 		goto out_free;
2248 
2249 	/* Guard against adverse ptrace interaction */
2250 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2251 	if (length < 0)
2252 		goto out_free;
2253 
2254 	length = security_setprocattr(task,
2255 				      (char*)file->f_path.dentry->d_name.name,
2256 				      (void*)page, count);
2257 	mutex_unlock(&task->signal->cred_guard_mutex);
2258 out_free:
2259 	free_page((unsigned long) page);
2260 out:
2261 	put_task_struct(task);
2262 out_no_task:
2263 	return length;
2264 }
2265 
2266 static const struct file_operations proc_pid_attr_operations = {
2267 	.read		= proc_pid_attr_read,
2268 	.write		= proc_pid_attr_write,
2269 	.llseek		= generic_file_llseek,
2270 };
2271 
2272 static const struct pid_entry attr_dir_stuff[] = {
2273 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2274 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2275 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2276 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2277 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2278 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2279 };
2280 
2281 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2282 {
2283 	return proc_pident_readdir(file, ctx,
2284 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2285 }
2286 
2287 static const struct file_operations proc_attr_dir_operations = {
2288 	.read		= generic_read_dir,
2289 	.iterate	= proc_attr_dir_readdir,
2290 	.llseek		= default_llseek,
2291 };
2292 
2293 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2294 				struct dentry *dentry, unsigned int flags)
2295 {
2296 	return proc_pident_lookup(dir, dentry,
2297 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2298 }
2299 
2300 static const struct inode_operations proc_attr_dir_inode_operations = {
2301 	.lookup		= proc_attr_dir_lookup,
2302 	.getattr	= pid_getattr,
2303 	.setattr	= proc_setattr,
2304 };
2305 
2306 #endif
2307 
2308 #ifdef CONFIG_ELF_CORE
2309 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2310 					 size_t count, loff_t *ppos)
2311 {
2312 	struct task_struct *task = get_proc_task(file_inode(file));
2313 	struct mm_struct *mm;
2314 	char buffer[PROC_NUMBUF];
2315 	size_t len;
2316 	int ret;
2317 
2318 	if (!task)
2319 		return -ESRCH;
2320 
2321 	ret = 0;
2322 	mm = get_task_mm(task);
2323 	if (mm) {
2324 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2325 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2326 				MMF_DUMP_FILTER_SHIFT));
2327 		mmput(mm);
2328 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2329 	}
2330 
2331 	put_task_struct(task);
2332 
2333 	return ret;
2334 }
2335 
2336 static ssize_t proc_coredump_filter_write(struct file *file,
2337 					  const char __user *buf,
2338 					  size_t count,
2339 					  loff_t *ppos)
2340 {
2341 	struct task_struct *task;
2342 	struct mm_struct *mm;
2343 	char buffer[PROC_NUMBUF], *end;
2344 	unsigned int val;
2345 	int ret;
2346 	int i;
2347 	unsigned long mask;
2348 
2349 	ret = -EFAULT;
2350 	memset(buffer, 0, sizeof(buffer));
2351 	if (count > sizeof(buffer) - 1)
2352 		count = sizeof(buffer) - 1;
2353 	if (copy_from_user(buffer, buf, count))
2354 		goto out_no_task;
2355 
2356 	ret = -EINVAL;
2357 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2358 	if (*end == '\n')
2359 		end++;
2360 	if (end - buffer == 0)
2361 		goto out_no_task;
2362 
2363 	ret = -ESRCH;
2364 	task = get_proc_task(file_inode(file));
2365 	if (!task)
2366 		goto out_no_task;
2367 
2368 	ret = end - buffer;
2369 	mm = get_task_mm(task);
2370 	if (!mm)
2371 		goto out_no_mm;
2372 
2373 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2374 		if (val & mask)
2375 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2376 		else
2377 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2378 	}
2379 
2380 	mmput(mm);
2381  out_no_mm:
2382 	put_task_struct(task);
2383  out_no_task:
2384 	return ret;
2385 }
2386 
2387 static const struct file_operations proc_coredump_filter_operations = {
2388 	.read		= proc_coredump_filter_read,
2389 	.write		= proc_coredump_filter_write,
2390 	.llseek		= generic_file_llseek,
2391 };
2392 #endif
2393 
2394 #ifdef CONFIG_TASK_IO_ACCOUNTING
2395 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2396 {
2397 	struct task_io_accounting acct = task->ioac;
2398 	unsigned long flags;
2399 	int result;
2400 
2401 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2402 	if (result)
2403 		return result;
2404 
2405 	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2406 		result = -EACCES;
2407 		goto out_unlock;
2408 	}
2409 
2410 	if (whole && lock_task_sighand(task, &flags)) {
2411 		struct task_struct *t = task;
2412 
2413 		task_io_accounting_add(&acct, &task->signal->ioac);
2414 		while_each_thread(task, t)
2415 			task_io_accounting_add(&acct, &t->ioac);
2416 
2417 		unlock_task_sighand(task, &flags);
2418 	}
2419 	result = sprintf(buffer,
2420 			"rchar: %llu\n"
2421 			"wchar: %llu\n"
2422 			"syscr: %llu\n"
2423 			"syscw: %llu\n"
2424 			"read_bytes: %llu\n"
2425 			"write_bytes: %llu\n"
2426 			"cancelled_write_bytes: %llu\n",
2427 			(unsigned long long)acct.rchar,
2428 			(unsigned long long)acct.wchar,
2429 			(unsigned long long)acct.syscr,
2430 			(unsigned long long)acct.syscw,
2431 			(unsigned long long)acct.read_bytes,
2432 			(unsigned long long)acct.write_bytes,
2433 			(unsigned long long)acct.cancelled_write_bytes);
2434 out_unlock:
2435 	mutex_unlock(&task->signal->cred_guard_mutex);
2436 	return result;
2437 }
2438 
2439 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2440 {
2441 	return do_io_accounting(task, buffer, 0);
2442 }
2443 
2444 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2445 {
2446 	return do_io_accounting(task, buffer, 1);
2447 }
2448 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2449 
2450 #ifdef CONFIG_USER_NS
2451 static int proc_id_map_open(struct inode *inode, struct file *file,
2452 	struct seq_operations *seq_ops)
2453 {
2454 	struct user_namespace *ns = NULL;
2455 	struct task_struct *task;
2456 	struct seq_file *seq;
2457 	int ret = -EINVAL;
2458 
2459 	task = get_proc_task(inode);
2460 	if (task) {
2461 		rcu_read_lock();
2462 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2463 		rcu_read_unlock();
2464 		put_task_struct(task);
2465 	}
2466 	if (!ns)
2467 		goto err;
2468 
2469 	ret = seq_open(file, seq_ops);
2470 	if (ret)
2471 		goto err_put_ns;
2472 
2473 	seq = file->private_data;
2474 	seq->private = ns;
2475 
2476 	return 0;
2477 err_put_ns:
2478 	put_user_ns(ns);
2479 err:
2480 	return ret;
2481 }
2482 
2483 static int proc_id_map_release(struct inode *inode, struct file *file)
2484 {
2485 	struct seq_file *seq = file->private_data;
2486 	struct user_namespace *ns = seq->private;
2487 	put_user_ns(ns);
2488 	return seq_release(inode, file);
2489 }
2490 
2491 static int proc_uid_map_open(struct inode *inode, struct file *file)
2492 {
2493 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2494 }
2495 
2496 static int proc_gid_map_open(struct inode *inode, struct file *file)
2497 {
2498 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2499 }
2500 
2501 static int proc_projid_map_open(struct inode *inode, struct file *file)
2502 {
2503 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2504 }
2505 
2506 static const struct file_operations proc_uid_map_operations = {
2507 	.open		= proc_uid_map_open,
2508 	.write		= proc_uid_map_write,
2509 	.read		= seq_read,
2510 	.llseek		= seq_lseek,
2511 	.release	= proc_id_map_release,
2512 };
2513 
2514 static const struct file_operations proc_gid_map_operations = {
2515 	.open		= proc_gid_map_open,
2516 	.write		= proc_gid_map_write,
2517 	.read		= seq_read,
2518 	.llseek		= seq_lseek,
2519 	.release	= proc_id_map_release,
2520 };
2521 
2522 static const struct file_operations proc_projid_map_operations = {
2523 	.open		= proc_projid_map_open,
2524 	.write		= proc_projid_map_write,
2525 	.read		= seq_read,
2526 	.llseek		= seq_lseek,
2527 	.release	= proc_id_map_release,
2528 };
2529 #endif /* CONFIG_USER_NS */
2530 
2531 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2532 				struct pid *pid, struct task_struct *task)
2533 {
2534 	int err = lock_trace(task);
2535 	if (!err) {
2536 		seq_printf(m, "%08x\n", task->personality);
2537 		unlock_trace(task);
2538 	}
2539 	return err;
2540 }
2541 
2542 /*
2543  * Thread groups
2544  */
2545 static const struct file_operations proc_task_operations;
2546 static const struct inode_operations proc_task_inode_operations;
2547 
2548 static const struct pid_entry tgid_base_stuff[] = {
2549 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2550 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2551 #ifdef CONFIG_CHECKPOINT_RESTORE
2552 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2553 #endif
2554 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2555 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2556 #ifdef CONFIG_NET
2557 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2558 #endif
2559 	REG("environ",    S_IRUSR, proc_environ_operations),
2560 	INF("auxv",       S_IRUSR, proc_pid_auxv),
2561 	ONE("status",     S_IRUGO, proc_pid_status),
2562 	ONE("personality", S_IRUSR, proc_pid_personality),
2563 	INF("limits",	  S_IRUGO, proc_pid_limits),
2564 #ifdef CONFIG_SCHED_DEBUG
2565 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2566 #endif
2567 #ifdef CONFIG_SCHED_AUTOGROUP
2568 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2569 #endif
2570 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2571 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2572 	INF("syscall",    S_IRUSR, proc_pid_syscall),
2573 #endif
2574 	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2575 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2576 	ONE("statm",      S_IRUGO, proc_pid_statm),
2577 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2578 #ifdef CONFIG_NUMA
2579 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2580 #endif
2581 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2582 	LNK("cwd",        proc_cwd_link),
2583 	LNK("root",       proc_root_link),
2584 	LNK("exe",        proc_exe_link),
2585 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2586 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2587 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2588 #ifdef CONFIG_PROC_PAGE_MONITOR
2589 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2590 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2591 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2592 #endif
2593 #ifdef CONFIG_SECURITY
2594 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2595 #endif
2596 #ifdef CONFIG_KALLSYMS
2597 	INF("wchan",      S_IRUGO, proc_pid_wchan),
2598 #endif
2599 #ifdef CONFIG_STACKTRACE
2600 	ONE("stack",      S_IRUSR, proc_pid_stack),
2601 #endif
2602 #ifdef CONFIG_SCHEDSTATS
2603 	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2604 #endif
2605 #ifdef CONFIG_LATENCYTOP
2606 	REG("latency",  S_IRUGO, proc_lstats_operations),
2607 #endif
2608 #ifdef CONFIG_PROC_PID_CPUSET
2609 	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2610 #endif
2611 #ifdef CONFIG_CGROUPS
2612 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2613 #endif
2614 	INF("oom_score",  S_IRUGO, proc_oom_score),
2615 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2616 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2617 #ifdef CONFIG_AUDITSYSCALL
2618 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2619 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2620 #endif
2621 #ifdef CONFIG_FAULT_INJECTION
2622 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2623 #endif
2624 #ifdef CONFIG_ELF_CORE
2625 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2626 #endif
2627 #ifdef CONFIG_TASK_IO_ACCOUNTING
2628 	INF("io",	S_IRUSR, proc_tgid_io_accounting),
2629 #endif
2630 #ifdef CONFIG_HARDWALL
2631 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
2632 #endif
2633 #ifdef CONFIG_USER_NS
2634 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2635 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2636 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2637 #endif
2638 #ifdef CONFIG_CHECKPOINT_RESTORE
2639 	REG("timers",	  S_IRUGO, proc_timers_operations),
2640 #endif
2641 };
2642 
2643 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2644 {
2645 	return proc_pident_readdir(file, ctx,
2646 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2647 }
2648 
2649 static const struct file_operations proc_tgid_base_operations = {
2650 	.read		= generic_read_dir,
2651 	.iterate	= proc_tgid_base_readdir,
2652 	.llseek		= default_llseek,
2653 };
2654 
2655 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2656 {
2657 	return proc_pident_lookup(dir, dentry,
2658 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2659 }
2660 
2661 static const struct inode_operations proc_tgid_base_inode_operations = {
2662 	.lookup		= proc_tgid_base_lookup,
2663 	.getattr	= pid_getattr,
2664 	.setattr	= proc_setattr,
2665 	.permission	= proc_pid_permission,
2666 };
2667 
2668 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2669 {
2670 	struct dentry *dentry, *leader, *dir;
2671 	char buf[PROC_NUMBUF];
2672 	struct qstr name;
2673 
2674 	name.name = buf;
2675 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2676 	/* no ->d_hash() rejects on procfs */
2677 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2678 	if (dentry) {
2679 		shrink_dcache_parent(dentry);
2680 		d_drop(dentry);
2681 		dput(dentry);
2682 	}
2683 
2684 	name.name = buf;
2685 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2686 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2687 	if (!leader)
2688 		goto out;
2689 
2690 	name.name = "task";
2691 	name.len = strlen(name.name);
2692 	dir = d_hash_and_lookup(leader, &name);
2693 	if (!dir)
2694 		goto out_put_leader;
2695 
2696 	name.name = buf;
2697 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2698 	dentry = d_hash_and_lookup(dir, &name);
2699 	if (dentry) {
2700 		shrink_dcache_parent(dentry);
2701 		d_drop(dentry);
2702 		dput(dentry);
2703 	}
2704 
2705 	dput(dir);
2706 out_put_leader:
2707 	dput(leader);
2708 out:
2709 	return;
2710 }
2711 
2712 /**
2713  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2714  * @task: task that should be flushed.
2715  *
2716  * When flushing dentries from proc, one needs to flush them from global
2717  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2718  * in. This call is supposed to do all of this job.
2719  *
2720  * Looks in the dcache for
2721  * /proc/@pid
2722  * /proc/@tgid/task/@pid
2723  * if either directory is present flushes it and all of it'ts children
2724  * from the dcache.
2725  *
2726  * It is safe and reasonable to cache /proc entries for a task until
2727  * that task exits.  After that they just clog up the dcache with
2728  * useless entries, possibly causing useful dcache entries to be
2729  * flushed instead.  This routine is proved to flush those useless
2730  * dcache entries at process exit time.
2731  *
2732  * NOTE: This routine is just an optimization so it does not guarantee
2733  *       that no dcache entries will exist at process exit time it
2734  *       just makes it very unlikely that any will persist.
2735  */
2736 
2737 void proc_flush_task(struct task_struct *task)
2738 {
2739 	int i;
2740 	struct pid *pid, *tgid;
2741 	struct upid *upid;
2742 
2743 	pid = task_pid(task);
2744 	tgid = task_tgid(task);
2745 
2746 	for (i = 0; i <= pid->level; i++) {
2747 		upid = &pid->numbers[i];
2748 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2749 					tgid->numbers[i].nr);
2750 	}
2751 }
2752 
2753 static int proc_pid_instantiate(struct inode *dir,
2754 				   struct dentry * dentry,
2755 				   struct task_struct *task, const void *ptr)
2756 {
2757 	struct inode *inode;
2758 
2759 	inode = proc_pid_make_inode(dir->i_sb, task);
2760 	if (!inode)
2761 		goto out;
2762 
2763 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2764 	inode->i_op = &proc_tgid_base_inode_operations;
2765 	inode->i_fop = &proc_tgid_base_operations;
2766 	inode->i_flags|=S_IMMUTABLE;
2767 
2768 	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2769 						  ARRAY_SIZE(tgid_base_stuff)));
2770 
2771 	d_set_d_op(dentry, &pid_dentry_operations);
2772 
2773 	d_add(dentry, inode);
2774 	/* Close the race of the process dying before we return the dentry */
2775 	if (pid_revalidate(dentry, 0))
2776 		return 0;
2777 out:
2778 	return -ENOENT;
2779 }
2780 
2781 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2782 {
2783 	int result = 0;
2784 	struct task_struct *task;
2785 	unsigned tgid;
2786 	struct pid_namespace *ns;
2787 
2788 	tgid = name_to_int(dentry);
2789 	if (tgid == ~0U)
2790 		goto out;
2791 
2792 	ns = dentry->d_sb->s_fs_info;
2793 	rcu_read_lock();
2794 	task = find_task_by_pid_ns(tgid, ns);
2795 	if (task)
2796 		get_task_struct(task);
2797 	rcu_read_unlock();
2798 	if (!task)
2799 		goto out;
2800 
2801 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2802 	put_task_struct(task);
2803 out:
2804 	return ERR_PTR(result);
2805 }
2806 
2807 /*
2808  * Find the first task with tgid >= tgid
2809  *
2810  */
2811 struct tgid_iter {
2812 	unsigned int tgid;
2813 	struct task_struct *task;
2814 };
2815 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2816 {
2817 	struct pid *pid;
2818 
2819 	if (iter.task)
2820 		put_task_struct(iter.task);
2821 	rcu_read_lock();
2822 retry:
2823 	iter.task = NULL;
2824 	pid = find_ge_pid(iter.tgid, ns);
2825 	if (pid) {
2826 		iter.tgid = pid_nr_ns(pid, ns);
2827 		iter.task = pid_task(pid, PIDTYPE_PID);
2828 		/* What we to know is if the pid we have find is the
2829 		 * pid of a thread_group_leader.  Testing for task
2830 		 * being a thread_group_leader is the obvious thing
2831 		 * todo but there is a window when it fails, due to
2832 		 * the pid transfer logic in de_thread.
2833 		 *
2834 		 * So we perform the straight forward test of seeing
2835 		 * if the pid we have found is the pid of a thread
2836 		 * group leader, and don't worry if the task we have
2837 		 * found doesn't happen to be a thread group leader.
2838 		 * As we don't care in the case of readdir.
2839 		 */
2840 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2841 			iter.tgid += 1;
2842 			goto retry;
2843 		}
2844 		get_task_struct(iter.task);
2845 	}
2846 	rcu_read_unlock();
2847 	return iter;
2848 }
2849 
2850 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 1)
2851 
2852 /* for the /proc/ directory itself, after non-process stuff has been done */
2853 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
2854 {
2855 	struct tgid_iter iter;
2856 	struct pid_namespace *ns = file->f_dentry->d_sb->s_fs_info;
2857 	loff_t pos = ctx->pos;
2858 
2859 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
2860 		return 0;
2861 
2862 	if (pos == TGID_OFFSET - 1) {
2863 		struct inode *inode = ns->proc_self->d_inode;
2864 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
2865 			return 0;
2866 		iter.tgid = 0;
2867 	} else {
2868 		iter.tgid = pos - TGID_OFFSET;
2869 	}
2870 	iter.task = NULL;
2871 	for (iter = next_tgid(ns, iter);
2872 	     iter.task;
2873 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2874 		char name[PROC_NUMBUF];
2875 		int len;
2876 		if (!has_pid_permissions(ns, iter.task, 2))
2877 			continue;
2878 
2879 		len = snprintf(name, sizeof(name), "%d", iter.tgid);
2880 		ctx->pos = iter.tgid + TGID_OFFSET;
2881 		if (!proc_fill_cache(file, ctx, name, len,
2882 				     proc_pid_instantiate, iter.task, NULL)) {
2883 			put_task_struct(iter.task);
2884 			return 0;
2885 		}
2886 	}
2887 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
2888 	return 0;
2889 }
2890 
2891 /*
2892  * Tasks
2893  */
2894 static const struct pid_entry tid_base_stuff[] = {
2895 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2896 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2897 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2898 	REG("environ",   S_IRUSR, proc_environ_operations),
2899 	INF("auxv",      S_IRUSR, proc_pid_auxv),
2900 	ONE("status",    S_IRUGO, proc_pid_status),
2901 	ONE("personality", S_IRUSR, proc_pid_personality),
2902 	INF("limits",	 S_IRUGO, proc_pid_limits),
2903 #ifdef CONFIG_SCHED_DEBUG
2904 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2905 #endif
2906 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2907 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2908 	INF("syscall",   S_IRUSR, proc_pid_syscall),
2909 #endif
2910 	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
2911 	ONE("stat",      S_IRUGO, proc_tid_stat),
2912 	ONE("statm",     S_IRUGO, proc_pid_statm),
2913 	REG("maps",      S_IRUGO, proc_tid_maps_operations),
2914 #ifdef CONFIG_CHECKPOINT_RESTORE
2915 	REG("children",  S_IRUGO, proc_tid_children_operations),
2916 #endif
2917 #ifdef CONFIG_NUMA
2918 	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
2919 #endif
2920 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
2921 	LNK("cwd",       proc_cwd_link),
2922 	LNK("root",      proc_root_link),
2923 	LNK("exe",       proc_exe_link),
2924 	REG("mounts",    S_IRUGO, proc_mounts_operations),
2925 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2926 #ifdef CONFIG_PROC_PAGE_MONITOR
2927 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2928 	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
2929 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2930 #endif
2931 #ifdef CONFIG_SECURITY
2932 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2933 #endif
2934 #ifdef CONFIG_KALLSYMS
2935 	INF("wchan",     S_IRUGO, proc_pid_wchan),
2936 #endif
2937 #ifdef CONFIG_STACKTRACE
2938 	ONE("stack",      S_IRUSR, proc_pid_stack),
2939 #endif
2940 #ifdef CONFIG_SCHEDSTATS
2941 	INF("schedstat", S_IRUGO, proc_pid_schedstat),
2942 #endif
2943 #ifdef CONFIG_LATENCYTOP
2944 	REG("latency",  S_IRUGO, proc_lstats_operations),
2945 #endif
2946 #ifdef CONFIG_PROC_PID_CPUSET
2947 	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
2948 #endif
2949 #ifdef CONFIG_CGROUPS
2950 	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2951 #endif
2952 	INF("oom_score", S_IRUGO, proc_oom_score),
2953 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2954 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2955 #ifdef CONFIG_AUDITSYSCALL
2956 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
2957 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2958 #endif
2959 #ifdef CONFIG_FAULT_INJECTION
2960 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2961 #endif
2962 #ifdef CONFIG_TASK_IO_ACCOUNTING
2963 	INF("io",	S_IRUSR, proc_tid_io_accounting),
2964 #endif
2965 #ifdef CONFIG_HARDWALL
2966 	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
2967 #endif
2968 #ifdef CONFIG_USER_NS
2969 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2970 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2971 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2972 #endif
2973 };
2974 
2975 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
2976 {
2977 	return proc_pident_readdir(file, ctx,
2978 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2979 }
2980 
2981 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2982 {
2983 	return proc_pident_lookup(dir, dentry,
2984 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2985 }
2986 
2987 static const struct file_operations proc_tid_base_operations = {
2988 	.read		= generic_read_dir,
2989 	.iterate	= proc_tid_base_readdir,
2990 	.llseek		= default_llseek,
2991 };
2992 
2993 static const struct inode_operations proc_tid_base_inode_operations = {
2994 	.lookup		= proc_tid_base_lookup,
2995 	.getattr	= pid_getattr,
2996 	.setattr	= proc_setattr,
2997 };
2998 
2999 static int proc_task_instantiate(struct inode *dir,
3000 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3001 {
3002 	struct inode *inode;
3003 	inode = proc_pid_make_inode(dir->i_sb, task);
3004 
3005 	if (!inode)
3006 		goto out;
3007 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3008 	inode->i_op = &proc_tid_base_inode_operations;
3009 	inode->i_fop = &proc_tid_base_operations;
3010 	inode->i_flags|=S_IMMUTABLE;
3011 
3012 	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3013 						  ARRAY_SIZE(tid_base_stuff)));
3014 
3015 	d_set_d_op(dentry, &pid_dentry_operations);
3016 
3017 	d_add(dentry, inode);
3018 	/* Close the race of the process dying before we return the dentry */
3019 	if (pid_revalidate(dentry, 0))
3020 		return 0;
3021 out:
3022 	return -ENOENT;
3023 }
3024 
3025 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3026 {
3027 	int result = -ENOENT;
3028 	struct task_struct *task;
3029 	struct task_struct *leader = get_proc_task(dir);
3030 	unsigned tid;
3031 	struct pid_namespace *ns;
3032 
3033 	if (!leader)
3034 		goto out_no_task;
3035 
3036 	tid = name_to_int(dentry);
3037 	if (tid == ~0U)
3038 		goto out;
3039 
3040 	ns = dentry->d_sb->s_fs_info;
3041 	rcu_read_lock();
3042 	task = find_task_by_pid_ns(tid, ns);
3043 	if (task)
3044 		get_task_struct(task);
3045 	rcu_read_unlock();
3046 	if (!task)
3047 		goto out;
3048 	if (!same_thread_group(leader, task))
3049 		goto out_drop_task;
3050 
3051 	result = proc_task_instantiate(dir, dentry, task, NULL);
3052 out_drop_task:
3053 	put_task_struct(task);
3054 out:
3055 	put_task_struct(leader);
3056 out_no_task:
3057 	return ERR_PTR(result);
3058 }
3059 
3060 /*
3061  * Find the first tid of a thread group to return to user space.
3062  *
3063  * Usually this is just the thread group leader, but if the users
3064  * buffer was too small or there was a seek into the middle of the
3065  * directory we have more work todo.
3066  *
3067  * In the case of a short read we start with find_task_by_pid.
3068  *
3069  * In the case of a seek we start with the leader and walk nr
3070  * threads past it.
3071  */
3072 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3073 					struct pid_namespace *ns)
3074 {
3075 	struct task_struct *pos, *task;
3076 	unsigned long nr = f_pos;
3077 
3078 	if (nr != f_pos)	/* 32bit overflow? */
3079 		return NULL;
3080 
3081 	rcu_read_lock();
3082 	task = pid_task(pid, PIDTYPE_PID);
3083 	if (!task)
3084 		goto fail;
3085 
3086 	/* Attempt to start with the tid of a thread */
3087 	if (tid && nr) {
3088 		pos = find_task_by_pid_ns(tid, ns);
3089 		if (pos && same_thread_group(pos, task))
3090 			goto found;
3091 	}
3092 
3093 	/* If nr exceeds the number of threads there is nothing todo */
3094 	if (nr >= get_nr_threads(task))
3095 		goto fail;
3096 
3097 	/* If we haven't found our starting place yet start
3098 	 * with the leader and walk nr threads forward.
3099 	 */
3100 	pos = task = task->group_leader;
3101 	do {
3102 		if (!nr--)
3103 			goto found;
3104 	} while_each_thread(task, pos);
3105 fail:
3106 	pos = NULL;
3107 	goto out;
3108 found:
3109 	get_task_struct(pos);
3110 out:
3111 	rcu_read_unlock();
3112 	return pos;
3113 }
3114 
3115 /*
3116  * Find the next thread in the thread list.
3117  * Return NULL if there is an error or no next thread.
3118  *
3119  * The reference to the input task_struct is released.
3120  */
3121 static struct task_struct *next_tid(struct task_struct *start)
3122 {
3123 	struct task_struct *pos = NULL;
3124 	rcu_read_lock();
3125 	if (pid_alive(start)) {
3126 		pos = next_thread(start);
3127 		if (thread_group_leader(pos))
3128 			pos = NULL;
3129 		else
3130 			get_task_struct(pos);
3131 	}
3132 	rcu_read_unlock();
3133 	put_task_struct(start);
3134 	return pos;
3135 }
3136 
3137 /* for the /proc/TGID/task/ directories */
3138 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3139 {
3140 	struct inode *inode = file_inode(file);
3141 	struct task_struct *task;
3142 	struct pid_namespace *ns;
3143 	int tid;
3144 
3145 	if (proc_inode_is_dead(inode))
3146 		return -ENOENT;
3147 
3148 	if (!dir_emit_dots(file, ctx))
3149 		return 0;
3150 
3151 	/* f_version caches the tgid value that the last readdir call couldn't
3152 	 * return. lseek aka telldir automagically resets f_version to 0.
3153 	 */
3154 	ns = file->f_dentry->d_sb->s_fs_info;
3155 	tid = (int)file->f_version;
3156 	file->f_version = 0;
3157 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3158 	     task;
3159 	     task = next_tid(task), ctx->pos++) {
3160 		char name[PROC_NUMBUF];
3161 		int len;
3162 		tid = task_pid_nr_ns(task, ns);
3163 		len = snprintf(name, sizeof(name), "%d", tid);
3164 		if (!proc_fill_cache(file, ctx, name, len,
3165 				proc_task_instantiate, task, NULL)) {
3166 			/* returning this tgid failed, save it as the first
3167 			 * pid for the next readir call */
3168 			file->f_version = (u64)tid;
3169 			put_task_struct(task);
3170 			break;
3171 		}
3172 	}
3173 
3174 	return 0;
3175 }
3176 
3177 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3178 {
3179 	struct inode *inode = dentry->d_inode;
3180 	struct task_struct *p = get_proc_task(inode);
3181 	generic_fillattr(inode, stat);
3182 
3183 	if (p) {
3184 		stat->nlink += get_nr_threads(p);
3185 		put_task_struct(p);
3186 	}
3187 
3188 	return 0;
3189 }
3190 
3191 static const struct inode_operations proc_task_inode_operations = {
3192 	.lookup		= proc_task_lookup,
3193 	.getattr	= proc_task_getattr,
3194 	.setattr	= proc_setattr,
3195 	.permission	= proc_pid_permission,
3196 };
3197 
3198 static const struct file_operations proc_task_operations = {
3199 	.read		= generic_read_dir,
3200 	.iterate	= proc_task_readdir,
3201 	.llseek		= default_llseek,
3202 };
3203