1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/proc/base.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * proc base directory handling functions 8 * 9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 10 * Instead of using magical inumbers to determine the kind of object 11 * we allocate and fill in-core inodes upon lookup. They don't even 12 * go into icache. We cache the reference to task_struct upon lookup too. 13 * Eventually it should become a filesystem in its own. We don't use the 14 * rest of procfs anymore. 15 * 16 * 17 * Changelog: 18 * 17-Jan-2005 19 * Allan Bezerra 20 * Bruna Moreira <bruna.moreira@indt.org.br> 21 * Edjard Mota <edjard.mota@indt.org.br> 22 * Ilias Biris <ilias.biris@indt.org.br> 23 * Mauricio Lin <mauricio.lin@indt.org.br> 24 * 25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 26 * 27 * A new process specific entry (smaps) included in /proc. It shows the 28 * size of rss for each memory area. The maps entry lacks information 29 * about physical memory size (rss) for each mapped file, i.e., 30 * rss information for executables and library files. 31 * This additional information is useful for any tools that need to know 32 * about physical memory consumption for a process specific library. 33 * 34 * Changelog: 35 * 21-Feb-2005 36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 37 * Pud inclusion in the page table walking. 38 * 39 * ChangeLog: 40 * 10-Mar-2005 41 * 10LE Instituto Nokia de Tecnologia - INdT: 42 * A better way to walks through the page table as suggested by Hugh Dickins. 43 * 44 * Simo Piiroinen <simo.piiroinen@nokia.com>: 45 * Smaps information related to shared, private, clean and dirty pages. 46 * 47 * Paul Mundt <paul.mundt@nokia.com>: 48 * Overall revision about smaps. 49 */ 50 51 #include <linux/uaccess.h> 52 53 #include <linux/errno.h> 54 #include <linux/time.h> 55 #include <linux/proc_fs.h> 56 #include <linux/stat.h> 57 #include <linux/task_io_accounting_ops.h> 58 #include <linux/init.h> 59 #include <linux/capability.h> 60 #include <linux/file.h> 61 #include <linux/fdtable.h> 62 #include <linux/generic-radix-tree.h> 63 #include <linux/string.h> 64 #include <linux/seq_file.h> 65 #include <linux/namei.h> 66 #include <linux/mnt_namespace.h> 67 #include <linux/mm.h> 68 #include <linux/swap.h> 69 #include <linux/rcupdate.h> 70 #include <linux/stacktrace.h> 71 #include <linux/resource.h> 72 #include <linux/module.h> 73 #include <linux/mount.h> 74 #include <linux/security.h> 75 #include <linux/ptrace.h> 76 #include <linux/tracehook.h> 77 #include <linux/printk.h> 78 #include <linux/cache.h> 79 #include <linux/cgroup.h> 80 #include <linux/cpuset.h> 81 #include <linux/audit.h> 82 #include <linux/poll.h> 83 #include <linux/nsproxy.h> 84 #include <linux/oom.h> 85 #include <linux/elf.h> 86 #include <linux/pid_namespace.h> 87 #include <linux/user_namespace.h> 88 #include <linux/fs_struct.h> 89 #include <linux/slab.h> 90 #include <linux/sched/autogroup.h> 91 #include <linux/sched/mm.h> 92 #include <linux/sched/coredump.h> 93 #include <linux/sched/debug.h> 94 #include <linux/sched/stat.h> 95 #include <linux/posix-timers.h> 96 #include <linux/time_namespace.h> 97 #include <linux/resctrl.h> 98 #include <trace/events/oom.h> 99 #include "internal.h" 100 #include "fd.h" 101 102 #include "../../lib/kstrtox.h" 103 104 /* NOTE: 105 * Implementing inode permission operations in /proc is almost 106 * certainly an error. Permission checks need to happen during 107 * each system call not at open time. The reason is that most of 108 * what we wish to check for permissions in /proc varies at runtime. 109 * 110 * The classic example of a problem is opening file descriptors 111 * in /proc for a task before it execs a suid executable. 112 */ 113 114 static u8 nlink_tid __ro_after_init; 115 static u8 nlink_tgid __ro_after_init; 116 117 struct pid_entry { 118 const char *name; 119 unsigned int len; 120 umode_t mode; 121 const struct inode_operations *iop; 122 const struct file_operations *fop; 123 union proc_op op; 124 }; 125 126 #define NOD(NAME, MODE, IOP, FOP, OP) { \ 127 .name = (NAME), \ 128 .len = sizeof(NAME) - 1, \ 129 .mode = MODE, \ 130 .iop = IOP, \ 131 .fop = FOP, \ 132 .op = OP, \ 133 } 134 135 #define DIR(NAME, MODE, iops, fops) \ 136 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 137 #define LNK(NAME, get_link) \ 138 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 139 &proc_pid_link_inode_operations, NULL, \ 140 { .proc_get_link = get_link } ) 141 #define REG(NAME, MODE, fops) \ 142 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 143 #define ONE(NAME, MODE, show) \ 144 NOD(NAME, (S_IFREG|(MODE)), \ 145 NULL, &proc_single_file_operations, \ 146 { .proc_show = show } ) 147 #define ATTR(LSM, NAME, MODE) \ 148 NOD(NAME, (S_IFREG|(MODE)), \ 149 NULL, &proc_pid_attr_operations, \ 150 { .lsm = LSM }) 151 152 /* 153 * Count the number of hardlinks for the pid_entry table, excluding the . 154 * and .. links. 155 */ 156 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries, 157 unsigned int n) 158 { 159 unsigned int i; 160 unsigned int count; 161 162 count = 2; 163 for (i = 0; i < n; ++i) { 164 if (S_ISDIR(entries[i].mode)) 165 ++count; 166 } 167 168 return count; 169 } 170 171 static int get_task_root(struct task_struct *task, struct path *root) 172 { 173 int result = -ENOENT; 174 175 task_lock(task); 176 if (task->fs) { 177 get_fs_root(task->fs, root); 178 result = 0; 179 } 180 task_unlock(task); 181 return result; 182 } 183 184 static int proc_cwd_link(struct dentry *dentry, struct path *path) 185 { 186 struct task_struct *task = get_proc_task(d_inode(dentry)); 187 int result = -ENOENT; 188 189 if (task) { 190 task_lock(task); 191 if (task->fs) { 192 get_fs_pwd(task->fs, path); 193 result = 0; 194 } 195 task_unlock(task); 196 put_task_struct(task); 197 } 198 return result; 199 } 200 201 static int proc_root_link(struct dentry *dentry, struct path *path) 202 { 203 struct task_struct *task = get_proc_task(d_inode(dentry)); 204 int result = -ENOENT; 205 206 if (task) { 207 result = get_task_root(task, path); 208 put_task_struct(task); 209 } 210 return result; 211 } 212 213 /* 214 * If the user used setproctitle(), we just get the string from 215 * user space at arg_start, and limit it to a maximum of one page. 216 */ 217 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf, 218 size_t count, unsigned long pos, 219 unsigned long arg_start) 220 { 221 char *page; 222 int ret, got; 223 224 if (pos >= PAGE_SIZE) 225 return 0; 226 227 page = (char *)__get_free_page(GFP_KERNEL); 228 if (!page) 229 return -ENOMEM; 230 231 ret = 0; 232 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON); 233 if (got > 0) { 234 int len = strnlen(page, got); 235 236 /* Include the NUL character if it was found */ 237 if (len < got) 238 len++; 239 240 if (len > pos) { 241 len -= pos; 242 if (len > count) 243 len = count; 244 len -= copy_to_user(buf, page+pos, len); 245 if (!len) 246 len = -EFAULT; 247 ret = len; 248 } 249 } 250 free_page((unsigned long)page); 251 return ret; 252 } 253 254 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf, 255 size_t count, loff_t *ppos) 256 { 257 unsigned long arg_start, arg_end, env_start, env_end; 258 unsigned long pos, len; 259 char *page, c; 260 261 /* Check if process spawned far enough to have cmdline. */ 262 if (!mm->env_end) 263 return 0; 264 265 spin_lock(&mm->arg_lock); 266 arg_start = mm->arg_start; 267 arg_end = mm->arg_end; 268 env_start = mm->env_start; 269 env_end = mm->env_end; 270 spin_unlock(&mm->arg_lock); 271 272 if (arg_start >= arg_end) 273 return 0; 274 275 /* 276 * We allow setproctitle() to overwrite the argument 277 * strings, and overflow past the original end. But 278 * only when it overflows into the environment area. 279 */ 280 if (env_start != arg_end || env_end < env_start) 281 env_start = env_end = arg_end; 282 len = env_end - arg_start; 283 284 /* We're not going to care if "*ppos" has high bits set */ 285 pos = *ppos; 286 if (pos >= len) 287 return 0; 288 if (count > len - pos) 289 count = len - pos; 290 if (!count) 291 return 0; 292 293 /* 294 * Magical special case: if the argv[] end byte is not 295 * zero, the user has overwritten it with setproctitle(3). 296 * 297 * Possible future enhancement: do this only once when 298 * pos is 0, and set a flag in the 'struct file'. 299 */ 300 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c) 301 return get_mm_proctitle(mm, buf, count, pos, arg_start); 302 303 /* 304 * For the non-setproctitle() case we limit things strictly 305 * to the [arg_start, arg_end[ range. 306 */ 307 pos += arg_start; 308 if (pos < arg_start || pos >= arg_end) 309 return 0; 310 if (count > arg_end - pos) 311 count = arg_end - pos; 312 313 page = (char *)__get_free_page(GFP_KERNEL); 314 if (!page) 315 return -ENOMEM; 316 317 len = 0; 318 while (count) { 319 int got; 320 size_t size = min_t(size_t, PAGE_SIZE, count); 321 322 got = access_remote_vm(mm, pos, page, size, FOLL_ANON); 323 if (got <= 0) 324 break; 325 got -= copy_to_user(buf, page, got); 326 if (unlikely(!got)) { 327 if (!len) 328 len = -EFAULT; 329 break; 330 } 331 pos += got; 332 buf += got; 333 len += got; 334 count -= got; 335 } 336 337 free_page((unsigned long)page); 338 return len; 339 } 340 341 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf, 342 size_t count, loff_t *pos) 343 { 344 struct mm_struct *mm; 345 ssize_t ret; 346 347 mm = get_task_mm(tsk); 348 if (!mm) 349 return 0; 350 351 ret = get_mm_cmdline(mm, buf, count, pos); 352 mmput(mm); 353 return ret; 354 } 355 356 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf, 357 size_t count, loff_t *pos) 358 { 359 struct task_struct *tsk; 360 ssize_t ret; 361 362 BUG_ON(*pos < 0); 363 364 tsk = get_proc_task(file_inode(file)); 365 if (!tsk) 366 return -ESRCH; 367 ret = get_task_cmdline(tsk, buf, count, pos); 368 put_task_struct(tsk); 369 if (ret > 0) 370 *pos += ret; 371 return ret; 372 } 373 374 static const struct file_operations proc_pid_cmdline_ops = { 375 .read = proc_pid_cmdline_read, 376 .llseek = generic_file_llseek, 377 }; 378 379 #ifdef CONFIG_KALLSYMS 380 /* 381 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 382 * Returns the resolved symbol. If that fails, simply return the address. 383 */ 384 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns, 385 struct pid *pid, struct task_struct *task) 386 { 387 unsigned long wchan; 388 389 if (ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 390 wchan = get_wchan(task); 391 else 392 wchan = 0; 393 394 if (wchan) 395 seq_printf(m, "%ps", (void *) wchan); 396 else 397 seq_putc(m, '0'); 398 399 return 0; 400 } 401 #endif /* CONFIG_KALLSYMS */ 402 403 static int lock_trace(struct task_struct *task) 404 { 405 int err = down_read_killable(&task->signal->exec_update_lock); 406 if (err) 407 return err; 408 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) { 409 up_read(&task->signal->exec_update_lock); 410 return -EPERM; 411 } 412 return 0; 413 } 414 415 static void unlock_trace(struct task_struct *task) 416 { 417 up_read(&task->signal->exec_update_lock); 418 } 419 420 #ifdef CONFIG_STACKTRACE 421 422 #define MAX_STACK_TRACE_DEPTH 64 423 424 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 425 struct pid *pid, struct task_struct *task) 426 { 427 unsigned long *entries; 428 int err; 429 430 /* 431 * The ability to racily run the kernel stack unwinder on a running task 432 * and then observe the unwinder output is scary; while it is useful for 433 * debugging kernel issues, it can also allow an attacker to leak kernel 434 * stack contents. 435 * Doing this in a manner that is at least safe from races would require 436 * some work to ensure that the remote task can not be scheduled; and 437 * even then, this would still expose the unwinder as local attack 438 * surface. 439 * Therefore, this interface is restricted to root. 440 */ 441 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 442 return -EACCES; 443 444 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries), 445 GFP_KERNEL); 446 if (!entries) 447 return -ENOMEM; 448 449 err = lock_trace(task); 450 if (!err) { 451 unsigned int i, nr_entries; 452 453 nr_entries = stack_trace_save_tsk(task, entries, 454 MAX_STACK_TRACE_DEPTH, 0); 455 456 for (i = 0; i < nr_entries; i++) { 457 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]); 458 } 459 460 unlock_trace(task); 461 } 462 kfree(entries); 463 464 return err; 465 } 466 #endif 467 468 #ifdef CONFIG_SCHED_INFO 469 /* 470 * Provides /proc/PID/schedstat 471 */ 472 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns, 473 struct pid *pid, struct task_struct *task) 474 { 475 if (unlikely(!sched_info_on())) 476 seq_puts(m, "0 0 0\n"); 477 else 478 seq_printf(m, "%llu %llu %lu\n", 479 (unsigned long long)task->se.sum_exec_runtime, 480 (unsigned long long)task->sched_info.run_delay, 481 task->sched_info.pcount); 482 483 return 0; 484 } 485 #endif 486 487 #ifdef CONFIG_LATENCYTOP 488 static int lstats_show_proc(struct seq_file *m, void *v) 489 { 490 int i; 491 struct inode *inode = m->private; 492 struct task_struct *task = get_proc_task(inode); 493 494 if (!task) 495 return -ESRCH; 496 seq_puts(m, "Latency Top version : v0.1\n"); 497 for (i = 0; i < LT_SAVECOUNT; i++) { 498 struct latency_record *lr = &task->latency_record[i]; 499 if (lr->backtrace[0]) { 500 int q; 501 seq_printf(m, "%i %li %li", 502 lr->count, lr->time, lr->max); 503 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 504 unsigned long bt = lr->backtrace[q]; 505 506 if (!bt) 507 break; 508 seq_printf(m, " %ps", (void *)bt); 509 } 510 seq_putc(m, '\n'); 511 } 512 513 } 514 put_task_struct(task); 515 return 0; 516 } 517 518 static int lstats_open(struct inode *inode, struct file *file) 519 { 520 return single_open(file, lstats_show_proc, inode); 521 } 522 523 static ssize_t lstats_write(struct file *file, const char __user *buf, 524 size_t count, loff_t *offs) 525 { 526 struct task_struct *task = get_proc_task(file_inode(file)); 527 528 if (!task) 529 return -ESRCH; 530 clear_tsk_latency_tracing(task); 531 put_task_struct(task); 532 533 return count; 534 } 535 536 static const struct file_operations proc_lstats_operations = { 537 .open = lstats_open, 538 .read = seq_read, 539 .write = lstats_write, 540 .llseek = seq_lseek, 541 .release = single_release, 542 }; 543 544 #endif 545 546 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns, 547 struct pid *pid, struct task_struct *task) 548 { 549 unsigned long totalpages = totalram_pages() + total_swap_pages; 550 unsigned long points = 0; 551 long badness; 552 553 badness = oom_badness(task, totalpages); 554 /* 555 * Special case OOM_SCORE_ADJ_MIN for all others scale the 556 * badness value into [0, 2000] range which we have been 557 * exporting for a long time so userspace might depend on it. 558 */ 559 if (badness != LONG_MIN) 560 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3; 561 562 seq_printf(m, "%lu\n", points); 563 564 return 0; 565 } 566 567 struct limit_names { 568 const char *name; 569 const char *unit; 570 }; 571 572 static const struct limit_names lnames[RLIM_NLIMITS] = { 573 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 574 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 575 [RLIMIT_DATA] = {"Max data size", "bytes"}, 576 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 577 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 578 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 579 [RLIMIT_NPROC] = {"Max processes", "processes"}, 580 [RLIMIT_NOFILE] = {"Max open files", "files"}, 581 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 582 [RLIMIT_AS] = {"Max address space", "bytes"}, 583 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 584 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 585 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 586 [RLIMIT_NICE] = {"Max nice priority", NULL}, 587 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 588 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 589 }; 590 591 /* Display limits for a process */ 592 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns, 593 struct pid *pid, struct task_struct *task) 594 { 595 unsigned int i; 596 unsigned long flags; 597 598 struct rlimit rlim[RLIM_NLIMITS]; 599 600 if (!lock_task_sighand(task, &flags)) 601 return 0; 602 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 603 unlock_task_sighand(task, &flags); 604 605 /* 606 * print the file header 607 */ 608 seq_puts(m, "Limit " 609 "Soft Limit " 610 "Hard Limit " 611 "Units \n"); 612 613 for (i = 0; i < RLIM_NLIMITS; i++) { 614 if (rlim[i].rlim_cur == RLIM_INFINITY) 615 seq_printf(m, "%-25s %-20s ", 616 lnames[i].name, "unlimited"); 617 else 618 seq_printf(m, "%-25s %-20lu ", 619 lnames[i].name, rlim[i].rlim_cur); 620 621 if (rlim[i].rlim_max == RLIM_INFINITY) 622 seq_printf(m, "%-20s ", "unlimited"); 623 else 624 seq_printf(m, "%-20lu ", rlim[i].rlim_max); 625 626 if (lnames[i].unit) 627 seq_printf(m, "%-10s\n", lnames[i].unit); 628 else 629 seq_putc(m, '\n'); 630 } 631 632 return 0; 633 } 634 635 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 636 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns, 637 struct pid *pid, struct task_struct *task) 638 { 639 struct syscall_info info; 640 u64 *args = &info.data.args[0]; 641 int res; 642 643 res = lock_trace(task); 644 if (res) 645 return res; 646 647 if (task_current_syscall(task, &info)) 648 seq_puts(m, "running\n"); 649 else if (info.data.nr < 0) 650 seq_printf(m, "%d 0x%llx 0x%llx\n", 651 info.data.nr, info.sp, info.data.instruction_pointer); 652 else 653 seq_printf(m, 654 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n", 655 info.data.nr, 656 args[0], args[1], args[2], args[3], args[4], args[5], 657 info.sp, info.data.instruction_pointer); 658 unlock_trace(task); 659 660 return 0; 661 } 662 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 663 664 /************************************************************************/ 665 /* Here the fs part begins */ 666 /************************************************************************/ 667 668 /* permission checks */ 669 static int proc_fd_access_allowed(struct inode *inode) 670 { 671 struct task_struct *task; 672 int allowed = 0; 673 /* Allow access to a task's file descriptors if it is us or we 674 * may use ptrace attach to the process and find out that 675 * information. 676 */ 677 task = get_proc_task(inode); 678 if (task) { 679 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 680 put_task_struct(task); 681 } 682 return allowed; 683 } 684 685 int proc_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 686 struct iattr *attr) 687 { 688 int error; 689 struct inode *inode = d_inode(dentry); 690 691 if (attr->ia_valid & ATTR_MODE) 692 return -EPERM; 693 694 error = setattr_prepare(&init_user_ns, dentry, attr); 695 if (error) 696 return error; 697 698 setattr_copy(&init_user_ns, inode, attr); 699 mark_inode_dirty(inode); 700 return 0; 701 } 702 703 /* 704 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 705 * or euid/egid (for hide_pid_min=2)? 706 */ 707 static bool has_pid_permissions(struct proc_fs_info *fs_info, 708 struct task_struct *task, 709 enum proc_hidepid hide_pid_min) 710 { 711 /* 712 * If 'hidpid' mount option is set force a ptrace check, 713 * we indicate that we are using a filesystem syscall 714 * by passing PTRACE_MODE_READ_FSCREDS 715 */ 716 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) 717 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 718 719 if (fs_info->hide_pid < hide_pid_min) 720 return true; 721 if (in_group_p(fs_info->pid_gid)) 722 return true; 723 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 724 } 725 726 727 static int proc_pid_permission(struct user_namespace *mnt_userns, 728 struct inode *inode, int mask) 729 { 730 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 731 struct task_struct *task; 732 bool has_perms; 733 734 task = get_proc_task(inode); 735 if (!task) 736 return -ESRCH; 737 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS); 738 put_task_struct(task); 739 740 if (!has_perms) { 741 if (fs_info->hide_pid == HIDEPID_INVISIBLE) { 742 /* 743 * Let's make getdents(), stat(), and open() 744 * consistent with each other. If a process 745 * may not stat() a file, it shouldn't be seen 746 * in procfs at all. 747 */ 748 return -ENOENT; 749 } 750 751 return -EPERM; 752 } 753 return generic_permission(&init_user_ns, inode, mask); 754 } 755 756 757 758 static const struct inode_operations proc_def_inode_operations = { 759 .setattr = proc_setattr, 760 }; 761 762 static int proc_single_show(struct seq_file *m, void *v) 763 { 764 struct inode *inode = m->private; 765 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 766 struct pid *pid = proc_pid(inode); 767 struct task_struct *task; 768 int ret; 769 770 task = get_pid_task(pid, PIDTYPE_PID); 771 if (!task) 772 return -ESRCH; 773 774 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 775 776 put_task_struct(task); 777 return ret; 778 } 779 780 static int proc_single_open(struct inode *inode, struct file *filp) 781 { 782 return single_open(filp, proc_single_show, inode); 783 } 784 785 static const struct file_operations proc_single_file_operations = { 786 .open = proc_single_open, 787 .read = seq_read, 788 .llseek = seq_lseek, 789 .release = single_release, 790 }; 791 792 793 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode) 794 { 795 struct task_struct *task = get_proc_task(inode); 796 struct mm_struct *mm = ERR_PTR(-ESRCH); 797 798 if (task) { 799 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS); 800 put_task_struct(task); 801 802 if (!IS_ERR_OR_NULL(mm)) { 803 /* ensure this mm_struct can't be freed */ 804 mmgrab(mm); 805 /* but do not pin its memory */ 806 mmput(mm); 807 } 808 } 809 810 return mm; 811 } 812 813 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) 814 { 815 struct mm_struct *mm = proc_mem_open(inode, mode); 816 817 if (IS_ERR(mm)) 818 return PTR_ERR(mm); 819 820 file->private_data = mm; 821 return 0; 822 } 823 824 static int mem_open(struct inode *inode, struct file *file) 825 { 826 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH); 827 828 /* OK to pass negative loff_t, we can catch out-of-range */ 829 file->f_mode |= FMODE_UNSIGNED_OFFSET; 830 831 return ret; 832 } 833 834 static ssize_t mem_rw(struct file *file, char __user *buf, 835 size_t count, loff_t *ppos, int write) 836 { 837 struct mm_struct *mm = file->private_data; 838 unsigned long addr = *ppos; 839 ssize_t copied; 840 char *page; 841 unsigned int flags; 842 843 if (!mm) 844 return 0; 845 846 page = (char *)__get_free_page(GFP_KERNEL); 847 if (!page) 848 return -ENOMEM; 849 850 copied = 0; 851 if (!mmget_not_zero(mm)) 852 goto free; 853 854 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0); 855 856 while (count > 0) { 857 int this_len = min_t(int, count, PAGE_SIZE); 858 859 if (write && copy_from_user(page, buf, this_len)) { 860 copied = -EFAULT; 861 break; 862 } 863 864 this_len = access_remote_vm(mm, addr, page, this_len, flags); 865 if (!this_len) { 866 if (!copied) 867 copied = -EIO; 868 break; 869 } 870 871 if (!write && copy_to_user(buf, page, this_len)) { 872 copied = -EFAULT; 873 break; 874 } 875 876 buf += this_len; 877 addr += this_len; 878 copied += this_len; 879 count -= this_len; 880 } 881 *ppos = addr; 882 883 mmput(mm); 884 free: 885 free_page((unsigned long) page); 886 return copied; 887 } 888 889 static ssize_t mem_read(struct file *file, char __user *buf, 890 size_t count, loff_t *ppos) 891 { 892 return mem_rw(file, buf, count, ppos, 0); 893 } 894 895 static ssize_t mem_write(struct file *file, const char __user *buf, 896 size_t count, loff_t *ppos) 897 { 898 return mem_rw(file, (char __user*)buf, count, ppos, 1); 899 } 900 901 loff_t mem_lseek(struct file *file, loff_t offset, int orig) 902 { 903 switch (orig) { 904 case 0: 905 file->f_pos = offset; 906 break; 907 case 1: 908 file->f_pos += offset; 909 break; 910 default: 911 return -EINVAL; 912 } 913 force_successful_syscall_return(); 914 return file->f_pos; 915 } 916 917 static int mem_release(struct inode *inode, struct file *file) 918 { 919 struct mm_struct *mm = file->private_data; 920 if (mm) 921 mmdrop(mm); 922 return 0; 923 } 924 925 static const struct file_operations proc_mem_operations = { 926 .llseek = mem_lseek, 927 .read = mem_read, 928 .write = mem_write, 929 .open = mem_open, 930 .release = mem_release, 931 }; 932 933 static int environ_open(struct inode *inode, struct file *file) 934 { 935 return __mem_open(inode, file, PTRACE_MODE_READ); 936 } 937 938 static ssize_t environ_read(struct file *file, char __user *buf, 939 size_t count, loff_t *ppos) 940 { 941 char *page; 942 unsigned long src = *ppos; 943 int ret = 0; 944 struct mm_struct *mm = file->private_data; 945 unsigned long env_start, env_end; 946 947 /* Ensure the process spawned far enough to have an environment. */ 948 if (!mm || !mm->env_end) 949 return 0; 950 951 page = (char *)__get_free_page(GFP_KERNEL); 952 if (!page) 953 return -ENOMEM; 954 955 ret = 0; 956 if (!mmget_not_zero(mm)) 957 goto free; 958 959 spin_lock(&mm->arg_lock); 960 env_start = mm->env_start; 961 env_end = mm->env_end; 962 spin_unlock(&mm->arg_lock); 963 964 while (count > 0) { 965 size_t this_len, max_len; 966 int retval; 967 968 if (src >= (env_end - env_start)) 969 break; 970 971 this_len = env_end - (env_start + src); 972 973 max_len = min_t(size_t, PAGE_SIZE, count); 974 this_len = min(max_len, this_len); 975 976 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON); 977 978 if (retval <= 0) { 979 ret = retval; 980 break; 981 } 982 983 if (copy_to_user(buf, page, retval)) { 984 ret = -EFAULT; 985 break; 986 } 987 988 ret += retval; 989 src += retval; 990 buf += retval; 991 count -= retval; 992 } 993 *ppos = src; 994 mmput(mm); 995 996 free: 997 free_page((unsigned long) page); 998 return ret; 999 } 1000 1001 static const struct file_operations proc_environ_operations = { 1002 .open = environ_open, 1003 .read = environ_read, 1004 .llseek = generic_file_llseek, 1005 .release = mem_release, 1006 }; 1007 1008 static int auxv_open(struct inode *inode, struct file *file) 1009 { 1010 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 1011 } 1012 1013 static ssize_t auxv_read(struct file *file, char __user *buf, 1014 size_t count, loff_t *ppos) 1015 { 1016 struct mm_struct *mm = file->private_data; 1017 unsigned int nwords = 0; 1018 1019 if (!mm) 1020 return 0; 1021 do { 1022 nwords += 2; 1023 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 1024 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv, 1025 nwords * sizeof(mm->saved_auxv[0])); 1026 } 1027 1028 static const struct file_operations proc_auxv_operations = { 1029 .open = auxv_open, 1030 .read = auxv_read, 1031 .llseek = generic_file_llseek, 1032 .release = mem_release, 1033 }; 1034 1035 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count, 1036 loff_t *ppos) 1037 { 1038 struct task_struct *task = get_proc_task(file_inode(file)); 1039 char buffer[PROC_NUMBUF]; 1040 int oom_adj = OOM_ADJUST_MIN; 1041 size_t len; 1042 1043 if (!task) 1044 return -ESRCH; 1045 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX) 1046 oom_adj = OOM_ADJUST_MAX; 1047 else 1048 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) / 1049 OOM_SCORE_ADJ_MAX; 1050 put_task_struct(task); 1051 if (oom_adj > OOM_ADJUST_MAX) 1052 oom_adj = OOM_ADJUST_MAX; 1053 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj); 1054 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1055 } 1056 1057 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy) 1058 { 1059 struct mm_struct *mm = NULL; 1060 struct task_struct *task; 1061 int err = 0; 1062 1063 task = get_proc_task(file_inode(file)); 1064 if (!task) 1065 return -ESRCH; 1066 1067 mutex_lock(&oom_adj_mutex); 1068 if (legacy) { 1069 if (oom_adj < task->signal->oom_score_adj && 1070 !capable(CAP_SYS_RESOURCE)) { 1071 err = -EACCES; 1072 goto err_unlock; 1073 } 1074 /* 1075 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use 1076 * /proc/pid/oom_score_adj instead. 1077 */ 1078 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 1079 current->comm, task_pid_nr(current), task_pid_nr(task), 1080 task_pid_nr(task)); 1081 } else { 1082 if ((short)oom_adj < task->signal->oom_score_adj_min && 1083 !capable(CAP_SYS_RESOURCE)) { 1084 err = -EACCES; 1085 goto err_unlock; 1086 } 1087 } 1088 1089 /* 1090 * Make sure we will check other processes sharing the mm if this is 1091 * not vfrok which wants its own oom_score_adj. 1092 * pin the mm so it doesn't go away and get reused after task_unlock 1093 */ 1094 if (!task->vfork_done) { 1095 struct task_struct *p = find_lock_task_mm(task); 1096 1097 if (p) { 1098 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) { 1099 mm = p->mm; 1100 mmgrab(mm); 1101 } 1102 task_unlock(p); 1103 } 1104 } 1105 1106 task->signal->oom_score_adj = oom_adj; 1107 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1108 task->signal->oom_score_adj_min = (short)oom_adj; 1109 trace_oom_score_adj_update(task); 1110 1111 if (mm) { 1112 struct task_struct *p; 1113 1114 rcu_read_lock(); 1115 for_each_process(p) { 1116 if (same_thread_group(task, p)) 1117 continue; 1118 1119 /* do not touch kernel threads or the global init */ 1120 if (p->flags & PF_KTHREAD || is_global_init(p)) 1121 continue; 1122 1123 task_lock(p); 1124 if (!p->vfork_done && process_shares_mm(p, mm)) { 1125 p->signal->oom_score_adj = oom_adj; 1126 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1127 p->signal->oom_score_adj_min = (short)oom_adj; 1128 } 1129 task_unlock(p); 1130 } 1131 rcu_read_unlock(); 1132 mmdrop(mm); 1133 } 1134 err_unlock: 1135 mutex_unlock(&oom_adj_mutex); 1136 put_task_struct(task); 1137 return err; 1138 } 1139 1140 /* 1141 * /proc/pid/oom_adj exists solely for backwards compatibility with previous 1142 * kernels. The effective policy is defined by oom_score_adj, which has a 1143 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly. 1144 * Values written to oom_adj are simply mapped linearly to oom_score_adj. 1145 * Processes that become oom disabled via oom_adj will still be oom disabled 1146 * with this implementation. 1147 * 1148 * oom_adj cannot be removed since existing userspace binaries use it. 1149 */ 1150 static ssize_t oom_adj_write(struct file *file, const char __user *buf, 1151 size_t count, loff_t *ppos) 1152 { 1153 char buffer[PROC_NUMBUF]; 1154 int oom_adj; 1155 int err; 1156 1157 memset(buffer, 0, sizeof(buffer)); 1158 if (count > sizeof(buffer) - 1) 1159 count = sizeof(buffer) - 1; 1160 if (copy_from_user(buffer, buf, count)) { 1161 err = -EFAULT; 1162 goto out; 1163 } 1164 1165 err = kstrtoint(strstrip(buffer), 0, &oom_adj); 1166 if (err) 1167 goto out; 1168 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) && 1169 oom_adj != OOM_DISABLE) { 1170 err = -EINVAL; 1171 goto out; 1172 } 1173 1174 /* 1175 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 1176 * value is always attainable. 1177 */ 1178 if (oom_adj == OOM_ADJUST_MAX) 1179 oom_adj = OOM_SCORE_ADJ_MAX; 1180 else 1181 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE; 1182 1183 err = __set_oom_adj(file, oom_adj, true); 1184 out: 1185 return err < 0 ? err : count; 1186 } 1187 1188 static const struct file_operations proc_oom_adj_operations = { 1189 .read = oom_adj_read, 1190 .write = oom_adj_write, 1191 .llseek = generic_file_llseek, 1192 }; 1193 1194 static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 1195 size_t count, loff_t *ppos) 1196 { 1197 struct task_struct *task = get_proc_task(file_inode(file)); 1198 char buffer[PROC_NUMBUF]; 1199 short oom_score_adj = OOM_SCORE_ADJ_MIN; 1200 size_t len; 1201 1202 if (!task) 1203 return -ESRCH; 1204 oom_score_adj = task->signal->oom_score_adj; 1205 put_task_struct(task); 1206 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj); 1207 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1208 } 1209 1210 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 1211 size_t count, loff_t *ppos) 1212 { 1213 char buffer[PROC_NUMBUF]; 1214 int oom_score_adj; 1215 int err; 1216 1217 memset(buffer, 0, sizeof(buffer)); 1218 if (count > sizeof(buffer) - 1) 1219 count = sizeof(buffer) - 1; 1220 if (copy_from_user(buffer, buf, count)) { 1221 err = -EFAULT; 1222 goto out; 1223 } 1224 1225 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1226 if (err) 1227 goto out; 1228 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1229 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1230 err = -EINVAL; 1231 goto out; 1232 } 1233 1234 err = __set_oom_adj(file, oom_score_adj, false); 1235 out: 1236 return err < 0 ? err : count; 1237 } 1238 1239 static const struct file_operations proc_oom_score_adj_operations = { 1240 .read = oom_score_adj_read, 1241 .write = oom_score_adj_write, 1242 .llseek = default_llseek, 1243 }; 1244 1245 #ifdef CONFIG_AUDIT 1246 #define TMPBUFLEN 11 1247 static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1248 size_t count, loff_t *ppos) 1249 { 1250 struct inode * inode = file_inode(file); 1251 struct task_struct *task = get_proc_task(inode); 1252 ssize_t length; 1253 char tmpbuf[TMPBUFLEN]; 1254 1255 if (!task) 1256 return -ESRCH; 1257 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1258 from_kuid(file->f_cred->user_ns, 1259 audit_get_loginuid(task))); 1260 put_task_struct(task); 1261 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1262 } 1263 1264 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1265 size_t count, loff_t *ppos) 1266 { 1267 struct inode * inode = file_inode(file); 1268 uid_t loginuid; 1269 kuid_t kloginuid; 1270 int rv; 1271 1272 /* Don't let kthreads write their own loginuid */ 1273 if (current->flags & PF_KTHREAD) 1274 return -EPERM; 1275 1276 rcu_read_lock(); 1277 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1278 rcu_read_unlock(); 1279 return -EPERM; 1280 } 1281 rcu_read_unlock(); 1282 1283 if (*ppos != 0) { 1284 /* No partial writes. */ 1285 return -EINVAL; 1286 } 1287 1288 rv = kstrtou32_from_user(buf, count, 10, &loginuid); 1289 if (rv < 0) 1290 return rv; 1291 1292 /* is userspace tring to explicitly UNSET the loginuid? */ 1293 if (loginuid == AUDIT_UID_UNSET) { 1294 kloginuid = INVALID_UID; 1295 } else { 1296 kloginuid = make_kuid(file->f_cred->user_ns, loginuid); 1297 if (!uid_valid(kloginuid)) 1298 return -EINVAL; 1299 } 1300 1301 rv = audit_set_loginuid(kloginuid); 1302 if (rv < 0) 1303 return rv; 1304 return count; 1305 } 1306 1307 static const struct file_operations proc_loginuid_operations = { 1308 .read = proc_loginuid_read, 1309 .write = proc_loginuid_write, 1310 .llseek = generic_file_llseek, 1311 }; 1312 1313 static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1314 size_t count, loff_t *ppos) 1315 { 1316 struct inode * inode = file_inode(file); 1317 struct task_struct *task = get_proc_task(inode); 1318 ssize_t length; 1319 char tmpbuf[TMPBUFLEN]; 1320 1321 if (!task) 1322 return -ESRCH; 1323 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1324 audit_get_sessionid(task)); 1325 put_task_struct(task); 1326 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1327 } 1328 1329 static const struct file_operations proc_sessionid_operations = { 1330 .read = proc_sessionid_read, 1331 .llseek = generic_file_llseek, 1332 }; 1333 #endif 1334 1335 #ifdef CONFIG_FAULT_INJECTION 1336 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1337 size_t count, loff_t *ppos) 1338 { 1339 struct task_struct *task = get_proc_task(file_inode(file)); 1340 char buffer[PROC_NUMBUF]; 1341 size_t len; 1342 int make_it_fail; 1343 1344 if (!task) 1345 return -ESRCH; 1346 make_it_fail = task->make_it_fail; 1347 put_task_struct(task); 1348 1349 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1350 1351 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1352 } 1353 1354 static ssize_t proc_fault_inject_write(struct file * file, 1355 const char __user * buf, size_t count, loff_t *ppos) 1356 { 1357 struct task_struct *task; 1358 char buffer[PROC_NUMBUF]; 1359 int make_it_fail; 1360 int rv; 1361 1362 if (!capable(CAP_SYS_RESOURCE)) 1363 return -EPERM; 1364 memset(buffer, 0, sizeof(buffer)); 1365 if (count > sizeof(buffer) - 1) 1366 count = sizeof(buffer) - 1; 1367 if (copy_from_user(buffer, buf, count)) 1368 return -EFAULT; 1369 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail); 1370 if (rv < 0) 1371 return rv; 1372 if (make_it_fail < 0 || make_it_fail > 1) 1373 return -EINVAL; 1374 1375 task = get_proc_task(file_inode(file)); 1376 if (!task) 1377 return -ESRCH; 1378 task->make_it_fail = make_it_fail; 1379 put_task_struct(task); 1380 1381 return count; 1382 } 1383 1384 static const struct file_operations proc_fault_inject_operations = { 1385 .read = proc_fault_inject_read, 1386 .write = proc_fault_inject_write, 1387 .llseek = generic_file_llseek, 1388 }; 1389 1390 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf, 1391 size_t count, loff_t *ppos) 1392 { 1393 struct task_struct *task; 1394 int err; 1395 unsigned int n; 1396 1397 err = kstrtouint_from_user(buf, count, 0, &n); 1398 if (err) 1399 return err; 1400 1401 task = get_proc_task(file_inode(file)); 1402 if (!task) 1403 return -ESRCH; 1404 task->fail_nth = n; 1405 put_task_struct(task); 1406 1407 return count; 1408 } 1409 1410 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf, 1411 size_t count, loff_t *ppos) 1412 { 1413 struct task_struct *task; 1414 char numbuf[PROC_NUMBUF]; 1415 ssize_t len; 1416 1417 task = get_proc_task(file_inode(file)); 1418 if (!task) 1419 return -ESRCH; 1420 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth); 1421 put_task_struct(task); 1422 return simple_read_from_buffer(buf, count, ppos, numbuf, len); 1423 } 1424 1425 static const struct file_operations proc_fail_nth_operations = { 1426 .read = proc_fail_nth_read, 1427 .write = proc_fail_nth_write, 1428 }; 1429 #endif 1430 1431 1432 #ifdef CONFIG_SCHED_DEBUG 1433 /* 1434 * Print out various scheduling related per-task fields: 1435 */ 1436 static int sched_show(struct seq_file *m, void *v) 1437 { 1438 struct inode *inode = m->private; 1439 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 1440 struct task_struct *p; 1441 1442 p = get_proc_task(inode); 1443 if (!p) 1444 return -ESRCH; 1445 proc_sched_show_task(p, ns, m); 1446 1447 put_task_struct(p); 1448 1449 return 0; 1450 } 1451 1452 static ssize_t 1453 sched_write(struct file *file, const char __user *buf, 1454 size_t count, loff_t *offset) 1455 { 1456 struct inode *inode = file_inode(file); 1457 struct task_struct *p; 1458 1459 p = get_proc_task(inode); 1460 if (!p) 1461 return -ESRCH; 1462 proc_sched_set_task(p); 1463 1464 put_task_struct(p); 1465 1466 return count; 1467 } 1468 1469 static int sched_open(struct inode *inode, struct file *filp) 1470 { 1471 return single_open(filp, sched_show, inode); 1472 } 1473 1474 static const struct file_operations proc_pid_sched_operations = { 1475 .open = sched_open, 1476 .read = seq_read, 1477 .write = sched_write, 1478 .llseek = seq_lseek, 1479 .release = single_release, 1480 }; 1481 1482 #endif 1483 1484 #ifdef CONFIG_SCHED_AUTOGROUP 1485 /* 1486 * Print out autogroup related information: 1487 */ 1488 static int sched_autogroup_show(struct seq_file *m, void *v) 1489 { 1490 struct inode *inode = m->private; 1491 struct task_struct *p; 1492 1493 p = get_proc_task(inode); 1494 if (!p) 1495 return -ESRCH; 1496 proc_sched_autogroup_show_task(p, m); 1497 1498 put_task_struct(p); 1499 1500 return 0; 1501 } 1502 1503 static ssize_t 1504 sched_autogroup_write(struct file *file, const char __user *buf, 1505 size_t count, loff_t *offset) 1506 { 1507 struct inode *inode = file_inode(file); 1508 struct task_struct *p; 1509 char buffer[PROC_NUMBUF]; 1510 int nice; 1511 int err; 1512 1513 memset(buffer, 0, sizeof(buffer)); 1514 if (count > sizeof(buffer) - 1) 1515 count = sizeof(buffer) - 1; 1516 if (copy_from_user(buffer, buf, count)) 1517 return -EFAULT; 1518 1519 err = kstrtoint(strstrip(buffer), 0, &nice); 1520 if (err < 0) 1521 return err; 1522 1523 p = get_proc_task(inode); 1524 if (!p) 1525 return -ESRCH; 1526 1527 err = proc_sched_autogroup_set_nice(p, nice); 1528 if (err) 1529 count = err; 1530 1531 put_task_struct(p); 1532 1533 return count; 1534 } 1535 1536 static int sched_autogroup_open(struct inode *inode, struct file *filp) 1537 { 1538 int ret; 1539 1540 ret = single_open(filp, sched_autogroup_show, NULL); 1541 if (!ret) { 1542 struct seq_file *m = filp->private_data; 1543 1544 m->private = inode; 1545 } 1546 return ret; 1547 } 1548 1549 static const struct file_operations proc_pid_sched_autogroup_operations = { 1550 .open = sched_autogroup_open, 1551 .read = seq_read, 1552 .write = sched_autogroup_write, 1553 .llseek = seq_lseek, 1554 .release = single_release, 1555 }; 1556 1557 #endif /* CONFIG_SCHED_AUTOGROUP */ 1558 1559 #ifdef CONFIG_TIME_NS 1560 static int timens_offsets_show(struct seq_file *m, void *v) 1561 { 1562 struct task_struct *p; 1563 1564 p = get_proc_task(file_inode(m->file)); 1565 if (!p) 1566 return -ESRCH; 1567 proc_timens_show_offsets(p, m); 1568 1569 put_task_struct(p); 1570 1571 return 0; 1572 } 1573 1574 static ssize_t timens_offsets_write(struct file *file, const char __user *buf, 1575 size_t count, loff_t *ppos) 1576 { 1577 struct inode *inode = file_inode(file); 1578 struct proc_timens_offset offsets[2]; 1579 char *kbuf = NULL, *pos, *next_line; 1580 struct task_struct *p; 1581 int ret, noffsets; 1582 1583 /* Only allow < page size writes at the beginning of the file */ 1584 if ((*ppos != 0) || (count >= PAGE_SIZE)) 1585 return -EINVAL; 1586 1587 /* Slurp in the user data */ 1588 kbuf = memdup_user_nul(buf, count); 1589 if (IS_ERR(kbuf)) 1590 return PTR_ERR(kbuf); 1591 1592 /* Parse the user data */ 1593 ret = -EINVAL; 1594 noffsets = 0; 1595 for (pos = kbuf; pos; pos = next_line) { 1596 struct proc_timens_offset *off = &offsets[noffsets]; 1597 char clock[10]; 1598 int err; 1599 1600 /* Find the end of line and ensure we don't look past it */ 1601 next_line = strchr(pos, '\n'); 1602 if (next_line) { 1603 *next_line = '\0'; 1604 next_line++; 1605 if (*next_line == '\0') 1606 next_line = NULL; 1607 } 1608 1609 err = sscanf(pos, "%9s %lld %lu", clock, 1610 &off->val.tv_sec, &off->val.tv_nsec); 1611 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC) 1612 goto out; 1613 1614 clock[sizeof(clock) - 1] = 0; 1615 if (strcmp(clock, "monotonic") == 0 || 1616 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0) 1617 off->clockid = CLOCK_MONOTONIC; 1618 else if (strcmp(clock, "boottime") == 0 || 1619 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0) 1620 off->clockid = CLOCK_BOOTTIME; 1621 else 1622 goto out; 1623 1624 noffsets++; 1625 if (noffsets == ARRAY_SIZE(offsets)) { 1626 if (next_line) 1627 count = next_line - kbuf; 1628 break; 1629 } 1630 } 1631 1632 ret = -ESRCH; 1633 p = get_proc_task(inode); 1634 if (!p) 1635 goto out; 1636 ret = proc_timens_set_offset(file, p, offsets, noffsets); 1637 put_task_struct(p); 1638 if (ret) 1639 goto out; 1640 1641 ret = count; 1642 out: 1643 kfree(kbuf); 1644 return ret; 1645 } 1646 1647 static int timens_offsets_open(struct inode *inode, struct file *filp) 1648 { 1649 return single_open(filp, timens_offsets_show, inode); 1650 } 1651 1652 static const struct file_operations proc_timens_offsets_operations = { 1653 .open = timens_offsets_open, 1654 .read = seq_read, 1655 .write = timens_offsets_write, 1656 .llseek = seq_lseek, 1657 .release = single_release, 1658 }; 1659 #endif /* CONFIG_TIME_NS */ 1660 1661 static ssize_t comm_write(struct file *file, const char __user *buf, 1662 size_t count, loff_t *offset) 1663 { 1664 struct inode *inode = file_inode(file); 1665 struct task_struct *p; 1666 char buffer[TASK_COMM_LEN]; 1667 const size_t maxlen = sizeof(buffer) - 1; 1668 1669 memset(buffer, 0, sizeof(buffer)); 1670 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count)) 1671 return -EFAULT; 1672 1673 p = get_proc_task(inode); 1674 if (!p) 1675 return -ESRCH; 1676 1677 if (same_thread_group(current, p)) 1678 set_task_comm(p, buffer); 1679 else 1680 count = -EINVAL; 1681 1682 put_task_struct(p); 1683 1684 return count; 1685 } 1686 1687 static int comm_show(struct seq_file *m, void *v) 1688 { 1689 struct inode *inode = m->private; 1690 struct task_struct *p; 1691 1692 p = get_proc_task(inode); 1693 if (!p) 1694 return -ESRCH; 1695 1696 proc_task_name(m, p, false); 1697 seq_putc(m, '\n'); 1698 1699 put_task_struct(p); 1700 1701 return 0; 1702 } 1703 1704 static int comm_open(struct inode *inode, struct file *filp) 1705 { 1706 return single_open(filp, comm_show, inode); 1707 } 1708 1709 static const struct file_operations proc_pid_set_comm_operations = { 1710 .open = comm_open, 1711 .read = seq_read, 1712 .write = comm_write, 1713 .llseek = seq_lseek, 1714 .release = single_release, 1715 }; 1716 1717 static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1718 { 1719 struct task_struct *task; 1720 struct file *exe_file; 1721 1722 task = get_proc_task(d_inode(dentry)); 1723 if (!task) 1724 return -ENOENT; 1725 exe_file = get_task_exe_file(task); 1726 put_task_struct(task); 1727 if (exe_file) { 1728 *exe_path = exe_file->f_path; 1729 path_get(&exe_file->f_path); 1730 fput(exe_file); 1731 return 0; 1732 } else 1733 return -ENOENT; 1734 } 1735 1736 static const char *proc_pid_get_link(struct dentry *dentry, 1737 struct inode *inode, 1738 struct delayed_call *done) 1739 { 1740 struct path path; 1741 int error = -EACCES; 1742 1743 if (!dentry) 1744 return ERR_PTR(-ECHILD); 1745 1746 /* Are we allowed to snoop on the tasks file descriptors? */ 1747 if (!proc_fd_access_allowed(inode)) 1748 goto out; 1749 1750 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1751 if (error) 1752 goto out; 1753 1754 error = nd_jump_link(&path); 1755 out: 1756 return ERR_PTR(error); 1757 } 1758 1759 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1760 { 1761 char *tmp = (char *)__get_free_page(GFP_KERNEL); 1762 char *pathname; 1763 int len; 1764 1765 if (!tmp) 1766 return -ENOMEM; 1767 1768 pathname = d_path(path, tmp, PAGE_SIZE); 1769 len = PTR_ERR(pathname); 1770 if (IS_ERR(pathname)) 1771 goto out; 1772 len = tmp + PAGE_SIZE - 1 - pathname; 1773 1774 if (len > buflen) 1775 len = buflen; 1776 if (copy_to_user(buffer, pathname, len)) 1777 len = -EFAULT; 1778 out: 1779 free_page((unsigned long)tmp); 1780 return len; 1781 } 1782 1783 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1784 { 1785 int error = -EACCES; 1786 struct inode *inode = d_inode(dentry); 1787 struct path path; 1788 1789 /* Are we allowed to snoop on the tasks file descriptors? */ 1790 if (!proc_fd_access_allowed(inode)) 1791 goto out; 1792 1793 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1794 if (error) 1795 goto out; 1796 1797 error = do_proc_readlink(&path, buffer, buflen); 1798 path_put(&path); 1799 out: 1800 return error; 1801 } 1802 1803 const struct inode_operations proc_pid_link_inode_operations = { 1804 .readlink = proc_pid_readlink, 1805 .get_link = proc_pid_get_link, 1806 .setattr = proc_setattr, 1807 }; 1808 1809 1810 /* building an inode */ 1811 1812 void task_dump_owner(struct task_struct *task, umode_t mode, 1813 kuid_t *ruid, kgid_t *rgid) 1814 { 1815 /* Depending on the state of dumpable compute who should own a 1816 * proc file for a task. 1817 */ 1818 const struct cred *cred; 1819 kuid_t uid; 1820 kgid_t gid; 1821 1822 if (unlikely(task->flags & PF_KTHREAD)) { 1823 *ruid = GLOBAL_ROOT_UID; 1824 *rgid = GLOBAL_ROOT_GID; 1825 return; 1826 } 1827 1828 /* Default to the tasks effective ownership */ 1829 rcu_read_lock(); 1830 cred = __task_cred(task); 1831 uid = cred->euid; 1832 gid = cred->egid; 1833 rcu_read_unlock(); 1834 1835 /* 1836 * Before the /proc/pid/status file was created the only way to read 1837 * the effective uid of a /process was to stat /proc/pid. Reading 1838 * /proc/pid/status is slow enough that procps and other packages 1839 * kept stating /proc/pid. To keep the rules in /proc simple I have 1840 * made this apply to all per process world readable and executable 1841 * directories. 1842 */ 1843 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) { 1844 struct mm_struct *mm; 1845 task_lock(task); 1846 mm = task->mm; 1847 /* Make non-dumpable tasks owned by some root */ 1848 if (mm) { 1849 if (get_dumpable(mm) != SUID_DUMP_USER) { 1850 struct user_namespace *user_ns = mm->user_ns; 1851 1852 uid = make_kuid(user_ns, 0); 1853 if (!uid_valid(uid)) 1854 uid = GLOBAL_ROOT_UID; 1855 1856 gid = make_kgid(user_ns, 0); 1857 if (!gid_valid(gid)) 1858 gid = GLOBAL_ROOT_GID; 1859 } 1860 } else { 1861 uid = GLOBAL_ROOT_UID; 1862 gid = GLOBAL_ROOT_GID; 1863 } 1864 task_unlock(task); 1865 } 1866 *ruid = uid; 1867 *rgid = gid; 1868 } 1869 1870 void proc_pid_evict_inode(struct proc_inode *ei) 1871 { 1872 struct pid *pid = ei->pid; 1873 1874 if (S_ISDIR(ei->vfs_inode.i_mode)) { 1875 spin_lock(&pid->lock); 1876 hlist_del_init_rcu(&ei->sibling_inodes); 1877 spin_unlock(&pid->lock); 1878 } 1879 1880 put_pid(pid); 1881 } 1882 1883 struct inode *proc_pid_make_inode(struct super_block * sb, 1884 struct task_struct *task, umode_t mode) 1885 { 1886 struct inode * inode; 1887 struct proc_inode *ei; 1888 struct pid *pid; 1889 1890 /* We need a new inode */ 1891 1892 inode = new_inode(sb); 1893 if (!inode) 1894 goto out; 1895 1896 /* Common stuff */ 1897 ei = PROC_I(inode); 1898 inode->i_mode = mode; 1899 inode->i_ino = get_next_ino(); 1900 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1901 inode->i_op = &proc_def_inode_operations; 1902 1903 /* 1904 * grab the reference to task. 1905 */ 1906 pid = get_task_pid(task, PIDTYPE_PID); 1907 if (!pid) 1908 goto out_unlock; 1909 1910 /* Let the pid remember us for quick removal */ 1911 ei->pid = pid; 1912 if (S_ISDIR(mode)) { 1913 spin_lock(&pid->lock); 1914 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes); 1915 spin_unlock(&pid->lock); 1916 } 1917 1918 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 1919 security_task_to_inode(task, inode); 1920 1921 out: 1922 return inode; 1923 1924 out_unlock: 1925 iput(inode); 1926 return NULL; 1927 } 1928 1929 int pid_getattr(struct user_namespace *mnt_userns, const struct path *path, 1930 struct kstat *stat, u32 request_mask, unsigned int query_flags) 1931 { 1932 struct inode *inode = d_inode(path->dentry); 1933 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 1934 struct task_struct *task; 1935 1936 generic_fillattr(&init_user_ns, inode, stat); 1937 1938 stat->uid = GLOBAL_ROOT_UID; 1939 stat->gid = GLOBAL_ROOT_GID; 1940 rcu_read_lock(); 1941 task = pid_task(proc_pid(inode), PIDTYPE_PID); 1942 if (task) { 1943 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) { 1944 rcu_read_unlock(); 1945 /* 1946 * This doesn't prevent learning whether PID exists, 1947 * it only makes getattr() consistent with readdir(). 1948 */ 1949 return -ENOENT; 1950 } 1951 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid); 1952 } 1953 rcu_read_unlock(); 1954 return 0; 1955 } 1956 1957 /* dentry stuff */ 1958 1959 /* 1960 * Set <pid>/... inode ownership (can change due to setuid(), etc.) 1961 */ 1962 void pid_update_inode(struct task_struct *task, struct inode *inode) 1963 { 1964 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid); 1965 1966 inode->i_mode &= ~(S_ISUID | S_ISGID); 1967 security_task_to_inode(task, inode); 1968 } 1969 1970 /* 1971 * Rewrite the inode's ownerships here because the owning task may have 1972 * performed a setuid(), etc. 1973 * 1974 */ 1975 static int pid_revalidate(struct dentry *dentry, unsigned int flags) 1976 { 1977 struct inode *inode; 1978 struct task_struct *task; 1979 1980 if (flags & LOOKUP_RCU) 1981 return -ECHILD; 1982 1983 inode = d_inode(dentry); 1984 task = get_proc_task(inode); 1985 1986 if (task) { 1987 pid_update_inode(task, inode); 1988 put_task_struct(task); 1989 return 1; 1990 } 1991 return 0; 1992 } 1993 1994 static inline bool proc_inode_is_dead(struct inode *inode) 1995 { 1996 return !proc_pid(inode)->tasks[PIDTYPE_PID].first; 1997 } 1998 1999 int pid_delete_dentry(const struct dentry *dentry) 2000 { 2001 /* Is the task we represent dead? 2002 * If so, then don't put the dentry on the lru list, 2003 * kill it immediately. 2004 */ 2005 return proc_inode_is_dead(d_inode(dentry)); 2006 } 2007 2008 const struct dentry_operations pid_dentry_operations = 2009 { 2010 .d_revalidate = pid_revalidate, 2011 .d_delete = pid_delete_dentry, 2012 }; 2013 2014 /* Lookups */ 2015 2016 /* 2017 * Fill a directory entry. 2018 * 2019 * If possible create the dcache entry and derive our inode number and 2020 * file type from dcache entry. 2021 * 2022 * Since all of the proc inode numbers are dynamically generated, the inode 2023 * numbers do not exist until the inode is cache. This means creating 2024 * the dcache entry in readdir is necessary to keep the inode numbers 2025 * reported by readdir in sync with the inode numbers reported 2026 * by stat. 2027 */ 2028 bool proc_fill_cache(struct file *file, struct dir_context *ctx, 2029 const char *name, unsigned int len, 2030 instantiate_t instantiate, struct task_struct *task, const void *ptr) 2031 { 2032 struct dentry *child, *dir = file->f_path.dentry; 2033 struct qstr qname = QSTR_INIT(name, len); 2034 struct inode *inode; 2035 unsigned type = DT_UNKNOWN; 2036 ino_t ino = 1; 2037 2038 child = d_hash_and_lookup(dir, &qname); 2039 if (!child) { 2040 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2041 child = d_alloc_parallel(dir, &qname, &wq); 2042 if (IS_ERR(child)) 2043 goto end_instantiate; 2044 if (d_in_lookup(child)) { 2045 struct dentry *res; 2046 res = instantiate(child, task, ptr); 2047 d_lookup_done(child); 2048 if (unlikely(res)) { 2049 dput(child); 2050 child = res; 2051 if (IS_ERR(child)) 2052 goto end_instantiate; 2053 } 2054 } 2055 } 2056 inode = d_inode(child); 2057 ino = inode->i_ino; 2058 type = inode->i_mode >> 12; 2059 dput(child); 2060 end_instantiate: 2061 return dir_emit(ctx, name, len, ino, type); 2062 } 2063 2064 /* 2065 * dname_to_vma_addr - maps a dentry name into two unsigned longs 2066 * which represent vma start and end addresses. 2067 */ 2068 static int dname_to_vma_addr(struct dentry *dentry, 2069 unsigned long *start, unsigned long *end) 2070 { 2071 const char *str = dentry->d_name.name; 2072 unsigned long long sval, eval; 2073 unsigned int len; 2074 2075 if (str[0] == '0' && str[1] != '-') 2076 return -EINVAL; 2077 len = _parse_integer(str, 16, &sval); 2078 if (len & KSTRTOX_OVERFLOW) 2079 return -EINVAL; 2080 if (sval != (unsigned long)sval) 2081 return -EINVAL; 2082 str += len; 2083 2084 if (*str != '-') 2085 return -EINVAL; 2086 str++; 2087 2088 if (str[0] == '0' && str[1]) 2089 return -EINVAL; 2090 len = _parse_integer(str, 16, &eval); 2091 if (len & KSTRTOX_OVERFLOW) 2092 return -EINVAL; 2093 if (eval != (unsigned long)eval) 2094 return -EINVAL; 2095 str += len; 2096 2097 if (*str != '\0') 2098 return -EINVAL; 2099 2100 *start = sval; 2101 *end = eval; 2102 2103 return 0; 2104 } 2105 2106 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags) 2107 { 2108 unsigned long vm_start, vm_end; 2109 bool exact_vma_exists = false; 2110 struct mm_struct *mm = NULL; 2111 struct task_struct *task; 2112 struct inode *inode; 2113 int status = 0; 2114 2115 if (flags & LOOKUP_RCU) 2116 return -ECHILD; 2117 2118 inode = d_inode(dentry); 2119 task = get_proc_task(inode); 2120 if (!task) 2121 goto out_notask; 2122 2123 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 2124 if (IS_ERR_OR_NULL(mm)) 2125 goto out; 2126 2127 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 2128 status = mmap_read_lock_killable(mm); 2129 if (!status) { 2130 exact_vma_exists = !!find_exact_vma(mm, vm_start, 2131 vm_end); 2132 mmap_read_unlock(mm); 2133 } 2134 } 2135 2136 mmput(mm); 2137 2138 if (exact_vma_exists) { 2139 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 2140 2141 security_task_to_inode(task, inode); 2142 status = 1; 2143 } 2144 2145 out: 2146 put_task_struct(task); 2147 2148 out_notask: 2149 return status; 2150 } 2151 2152 static const struct dentry_operations tid_map_files_dentry_operations = { 2153 .d_revalidate = map_files_d_revalidate, 2154 .d_delete = pid_delete_dentry, 2155 }; 2156 2157 static int map_files_get_link(struct dentry *dentry, struct path *path) 2158 { 2159 unsigned long vm_start, vm_end; 2160 struct vm_area_struct *vma; 2161 struct task_struct *task; 2162 struct mm_struct *mm; 2163 int rc; 2164 2165 rc = -ENOENT; 2166 task = get_proc_task(d_inode(dentry)); 2167 if (!task) 2168 goto out; 2169 2170 mm = get_task_mm(task); 2171 put_task_struct(task); 2172 if (!mm) 2173 goto out; 2174 2175 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 2176 if (rc) 2177 goto out_mmput; 2178 2179 rc = mmap_read_lock_killable(mm); 2180 if (rc) 2181 goto out_mmput; 2182 2183 rc = -ENOENT; 2184 vma = find_exact_vma(mm, vm_start, vm_end); 2185 if (vma && vma->vm_file) { 2186 *path = vma->vm_file->f_path; 2187 path_get(path); 2188 rc = 0; 2189 } 2190 mmap_read_unlock(mm); 2191 2192 out_mmput: 2193 mmput(mm); 2194 out: 2195 return rc; 2196 } 2197 2198 struct map_files_info { 2199 unsigned long start; 2200 unsigned long end; 2201 fmode_t mode; 2202 }; 2203 2204 /* 2205 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due 2206 * to concerns about how the symlinks may be used to bypass permissions on 2207 * ancestor directories in the path to the file in question. 2208 */ 2209 static const char * 2210 proc_map_files_get_link(struct dentry *dentry, 2211 struct inode *inode, 2212 struct delayed_call *done) 2213 { 2214 if (!checkpoint_restore_ns_capable(&init_user_ns)) 2215 return ERR_PTR(-EPERM); 2216 2217 return proc_pid_get_link(dentry, inode, done); 2218 } 2219 2220 /* 2221 * Identical to proc_pid_link_inode_operations except for get_link() 2222 */ 2223 static const struct inode_operations proc_map_files_link_inode_operations = { 2224 .readlink = proc_pid_readlink, 2225 .get_link = proc_map_files_get_link, 2226 .setattr = proc_setattr, 2227 }; 2228 2229 static struct dentry * 2230 proc_map_files_instantiate(struct dentry *dentry, 2231 struct task_struct *task, const void *ptr) 2232 { 2233 fmode_t mode = (fmode_t)(unsigned long)ptr; 2234 struct proc_inode *ei; 2235 struct inode *inode; 2236 2237 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK | 2238 ((mode & FMODE_READ ) ? S_IRUSR : 0) | 2239 ((mode & FMODE_WRITE) ? S_IWUSR : 0)); 2240 if (!inode) 2241 return ERR_PTR(-ENOENT); 2242 2243 ei = PROC_I(inode); 2244 ei->op.proc_get_link = map_files_get_link; 2245 2246 inode->i_op = &proc_map_files_link_inode_operations; 2247 inode->i_size = 64; 2248 2249 d_set_d_op(dentry, &tid_map_files_dentry_operations); 2250 return d_splice_alias(inode, dentry); 2251 } 2252 2253 static struct dentry *proc_map_files_lookup(struct inode *dir, 2254 struct dentry *dentry, unsigned int flags) 2255 { 2256 unsigned long vm_start, vm_end; 2257 struct vm_area_struct *vma; 2258 struct task_struct *task; 2259 struct dentry *result; 2260 struct mm_struct *mm; 2261 2262 result = ERR_PTR(-ENOENT); 2263 task = get_proc_task(dir); 2264 if (!task) 2265 goto out; 2266 2267 result = ERR_PTR(-EACCES); 2268 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2269 goto out_put_task; 2270 2271 result = ERR_PTR(-ENOENT); 2272 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2273 goto out_put_task; 2274 2275 mm = get_task_mm(task); 2276 if (!mm) 2277 goto out_put_task; 2278 2279 result = ERR_PTR(-EINTR); 2280 if (mmap_read_lock_killable(mm)) 2281 goto out_put_mm; 2282 2283 result = ERR_PTR(-ENOENT); 2284 vma = find_exact_vma(mm, vm_start, vm_end); 2285 if (!vma) 2286 goto out_no_vma; 2287 2288 if (vma->vm_file) 2289 result = proc_map_files_instantiate(dentry, task, 2290 (void *)(unsigned long)vma->vm_file->f_mode); 2291 2292 out_no_vma: 2293 mmap_read_unlock(mm); 2294 out_put_mm: 2295 mmput(mm); 2296 out_put_task: 2297 put_task_struct(task); 2298 out: 2299 return result; 2300 } 2301 2302 static const struct inode_operations proc_map_files_inode_operations = { 2303 .lookup = proc_map_files_lookup, 2304 .permission = proc_fd_permission, 2305 .setattr = proc_setattr, 2306 }; 2307 2308 static int 2309 proc_map_files_readdir(struct file *file, struct dir_context *ctx) 2310 { 2311 struct vm_area_struct *vma; 2312 struct task_struct *task; 2313 struct mm_struct *mm; 2314 unsigned long nr_files, pos, i; 2315 GENRADIX(struct map_files_info) fa; 2316 struct map_files_info *p; 2317 int ret; 2318 2319 genradix_init(&fa); 2320 2321 ret = -ENOENT; 2322 task = get_proc_task(file_inode(file)); 2323 if (!task) 2324 goto out; 2325 2326 ret = -EACCES; 2327 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2328 goto out_put_task; 2329 2330 ret = 0; 2331 if (!dir_emit_dots(file, ctx)) 2332 goto out_put_task; 2333 2334 mm = get_task_mm(task); 2335 if (!mm) 2336 goto out_put_task; 2337 2338 ret = mmap_read_lock_killable(mm); 2339 if (ret) { 2340 mmput(mm); 2341 goto out_put_task; 2342 } 2343 2344 nr_files = 0; 2345 2346 /* 2347 * We need two passes here: 2348 * 2349 * 1) Collect vmas of mapped files with mmap_lock taken 2350 * 2) Release mmap_lock and instantiate entries 2351 * 2352 * otherwise we get lockdep complained, since filldir() 2353 * routine might require mmap_lock taken in might_fault(). 2354 */ 2355 2356 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) { 2357 if (!vma->vm_file) 2358 continue; 2359 if (++pos <= ctx->pos) 2360 continue; 2361 2362 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL); 2363 if (!p) { 2364 ret = -ENOMEM; 2365 mmap_read_unlock(mm); 2366 mmput(mm); 2367 goto out_put_task; 2368 } 2369 2370 p->start = vma->vm_start; 2371 p->end = vma->vm_end; 2372 p->mode = vma->vm_file->f_mode; 2373 } 2374 mmap_read_unlock(mm); 2375 mmput(mm); 2376 2377 for (i = 0; i < nr_files; i++) { 2378 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */ 2379 unsigned int len; 2380 2381 p = genradix_ptr(&fa, i); 2382 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end); 2383 if (!proc_fill_cache(file, ctx, 2384 buf, len, 2385 proc_map_files_instantiate, 2386 task, 2387 (void *)(unsigned long)p->mode)) 2388 break; 2389 ctx->pos++; 2390 } 2391 2392 out_put_task: 2393 put_task_struct(task); 2394 out: 2395 genradix_free(&fa); 2396 return ret; 2397 } 2398 2399 static const struct file_operations proc_map_files_operations = { 2400 .read = generic_read_dir, 2401 .iterate_shared = proc_map_files_readdir, 2402 .llseek = generic_file_llseek, 2403 }; 2404 2405 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 2406 struct timers_private { 2407 struct pid *pid; 2408 struct task_struct *task; 2409 struct sighand_struct *sighand; 2410 struct pid_namespace *ns; 2411 unsigned long flags; 2412 }; 2413 2414 static void *timers_start(struct seq_file *m, loff_t *pos) 2415 { 2416 struct timers_private *tp = m->private; 2417 2418 tp->task = get_pid_task(tp->pid, PIDTYPE_PID); 2419 if (!tp->task) 2420 return ERR_PTR(-ESRCH); 2421 2422 tp->sighand = lock_task_sighand(tp->task, &tp->flags); 2423 if (!tp->sighand) 2424 return ERR_PTR(-ESRCH); 2425 2426 return seq_list_start(&tp->task->signal->posix_timers, *pos); 2427 } 2428 2429 static void *timers_next(struct seq_file *m, void *v, loff_t *pos) 2430 { 2431 struct timers_private *tp = m->private; 2432 return seq_list_next(v, &tp->task->signal->posix_timers, pos); 2433 } 2434 2435 static void timers_stop(struct seq_file *m, void *v) 2436 { 2437 struct timers_private *tp = m->private; 2438 2439 if (tp->sighand) { 2440 unlock_task_sighand(tp->task, &tp->flags); 2441 tp->sighand = NULL; 2442 } 2443 2444 if (tp->task) { 2445 put_task_struct(tp->task); 2446 tp->task = NULL; 2447 } 2448 } 2449 2450 static int show_timer(struct seq_file *m, void *v) 2451 { 2452 struct k_itimer *timer; 2453 struct timers_private *tp = m->private; 2454 int notify; 2455 static const char * const nstr[] = { 2456 [SIGEV_SIGNAL] = "signal", 2457 [SIGEV_NONE] = "none", 2458 [SIGEV_THREAD] = "thread", 2459 }; 2460 2461 timer = list_entry((struct list_head *)v, struct k_itimer, list); 2462 notify = timer->it_sigev_notify; 2463 2464 seq_printf(m, "ID: %d\n", timer->it_id); 2465 seq_printf(m, "signal: %d/%px\n", 2466 timer->sigq->info.si_signo, 2467 timer->sigq->info.si_value.sival_ptr); 2468 seq_printf(m, "notify: %s/%s.%d\n", 2469 nstr[notify & ~SIGEV_THREAD_ID], 2470 (notify & SIGEV_THREAD_ID) ? "tid" : "pid", 2471 pid_nr_ns(timer->it_pid, tp->ns)); 2472 seq_printf(m, "ClockID: %d\n", timer->it_clock); 2473 2474 return 0; 2475 } 2476 2477 static const struct seq_operations proc_timers_seq_ops = { 2478 .start = timers_start, 2479 .next = timers_next, 2480 .stop = timers_stop, 2481 .show = show_timer, 2482 }; 2483 2484 static int proc_timers_open(struct inode *inode, struct file *file) 2485 { 2486 struct timers_private *tp; 2487 2488 tp = __seq_open_private(file, &proc_timers_seq_ops, 2489 sizeof(struct timers_private)); 2490 if (!tp) 2491 return -ENOMEM; 2492 2493 tp->pid = proc_pid(inode); 2494 tp->ns = proc_pid_ns(inode->i_sb); 2495 return 0; 2496 } 2497 2498 static const struct file_operations proc_timers_operations = { 2499 .open = proc_timers_open, 2500 .read = seq_read, 2501 .llseek = seq_lseek, 2502 .release = seq_release_private, 2503 }; 2504 #endif 2505 2506 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf, 2507 size_t count, loff_t *offset) 2508 { 2509 struct inode *inode = file_inode(file); 2510 struct task_struct *p; 2511 u64 slack_ns; 2512 int err; 2513 2514 err = kstrtoull_from_user(buf, count, 10, &slack_ns); 2515 if (err < 0) 2516 return err; 2517 2518 p = get_proc_task(inode); 2519 if (!p) 2520 return -ESRCH; 2521 2522 if (p != current) { 2523 rcu_read_lock(); 2524 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2525 rcu_read_unlock(); 2526 count = -EPERM; 2527 goto out; 2528 } 2529 rcu_read_unlock(); 2530 2531 err = security_task_setscheduler(p); 2532 if (err) { 2533 count = err; 2534 goto out; 2535 } 2536 } 2537 2538 task_lock(p); 2539 if (slack_ns == 0) 2540 p->timer_slack_ns = p->default_timer_slack_ns; 2541 else 2542 p->timer_slack_ns = slack_ns; 2543 task_unlock(p); 2544 2545 out: 2546 put_task_struct(p); 2547 2548 return count; 2549 } 2550 2551 static int timerslack_ns_show(struct seq_file *m, void *v) 2552 { 2553 struct inode *inode = m->private; 2554 struct task_struct *p; 2555 int err = 0; 2556 2557 p = get_proc_task(inode); 2558 if (!p) 2559 return -ESRCH; 2560 2561 if (p != current) { 2562 rcu_read_lock(); 2563 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2564 rcu_read_unlock(); 2565 err = -EPERM; 2566 goto out; 2567 } 2568 rcu_read_unlock(); 2569 2570 err = security_task_getscheduler(p); 2571 if (err) 2572 goto out; 2573 } 2574 2575 task_lock(p); 2576 seq_printf(m, "%llu\n", p->timer_slack_ns); 2577 task_unlock(p); 2578 2579 out: 2580 put_task_struct(p); 2581 2582 return err; 2583 } 2584 2585 static int timerslack_ns_open(struct inode *inode, struct file *filp) 2586 { 2587 return single_open(filp, timerslack_ns_show, inode); 2588 } 2589 2590 static const struct file_operations proc_pid_set_timerslack_ns_operations = { 2591 .open = timerslack_ns_open, 2592 .read = seq_read, 2593 .write = timerslack_ns_write, 2594 .llseek = seq_lseek, 2595 .release = single_release, 2596 }; 2597 2598 static struct dentry *proc_pident_instantiate(struct dentry *dentry, 2599 struct task_struct *task, const void *ptr) 2600 { 2601 const struct pid_entry *p = ptr; 2602 struct inode *inode; 2603 struct proc_inode *ei; 2604 2605 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode); 2606 if (!inode) 2607 return ERR_PTR(-ENOENT); 2608 2609 ei = PROC_I(inode); 2610 if (S_ISDIR(inode->i_mode)) 2611 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2612 if (p->iop) 2613 inode->i_op = p->iop; 2614 if (p->fop) 2615 inode->i_fop = p->fop; 2616 ei->op = p->op; 2617 pid_update_inode(task, inode); 2618 d_set_d_op(dentry, &pid_dentry_operations); 2619 return d_splice_alias(inode, dentry); 2620 } 2621 2622 static struct dentry *proc_pident_lookup(struct inode *dir, 2623 struct dentry *dentry, 2624 const struct pid_entry *p, 2625 const struct pid_entry *end) 2626 { 2627 struct task_struct *task = get_proc_task(dir); 2628 struct dentry *res = ERR_PTR(-ENOENT); 2629 2630 if (!task) 2631 goto out_no_task; 2632 2633 /* 2634 * Yes, it does not scale. And it should not. Don't add 2635 * new entries into /proc/<tgid>/ without very good reasons. 2636 */ 2637 for (; p < end; p++) { 2638 if (p->len != dentry->d_name.len) 2639 continue; 2640 if (!memcmp(dentry->d_name.name, p->name, p->len)) { 2641 res = proc_pident_instantiate(dentry, task, p); 2642 break; 2643 } 2644 } 2645 put_task_struct(task); 2646 out_no_task: 2647 return res; 2648 } 2649 2650 static int proc_pident_readdir(struct file *file, struct dir_context *ctx, 2651 const struct pid_entry *ents, unsigned int nents) 2652 { 2653 struct task_struct *task = get_proc_task(file_inode(file)); 2654 const struct pid_entry *p; 2655 2656 if (!task) 2657 return -ENOENT; 2658 2659 if (!dir_emit_dots(file, ctx)) 2660 goto out; 2661 2662 if (ctx->pos >= nents + 2) 2663 goto out; 2664 2665 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) { 2666 if (!proc_fill_cache(file, ctx, p->name, p->len, 2667 proc_pident_instantiate, task, p)) 2668 break; 2669 ctx->pos++; 2670 } 2671 out: 2672 put_task_struct(task); 2673 return 0; 2674 } 2675 2676 #ifdef CONFIG_SECURITY 2677 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2678 size_t count, loff_t *ppos) 2679 { 2680 struct inode * inode = file_inode(file); 2681 char *p = NULL; 2682 ssize_t length; 2683 struct task_struct *task = get_proc_task(inode); 2684 2685 if (!task) 2686 return -ESRCH; 2687 2688 length = security_getprocattr(task, PROC_I(inode)->op.lsm, 2689 (char*)file->f_path.dentry->d_name.name, 2690 &p); 2691 put_task_struct(task); 2692 if (length > 0) 2693 length = simple_read_from_buffer(buf, count, ppos, p, length); 2694 kfree(p); 2695 return length; 2696 } 2697 2698 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2699 size_t count, loff_t *ppos) 2700 { 2701 struct inode * inode = file_inode(file); 2702 struct task_struct *task; 2703 void *page; 2704 int rv; 2705 2706 /* A task may only write when it was the opener. */ 2707 if (file->f_cred != current_real_cred()) 2708 return -EPERM; 2709 2710 rcu_read_lock(); 2711 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2712 if (!task) { 2713 rcu_read_unlock(); 2714 return -ESRCH; 2715 } 2716 /* A task may only write its own attributes. */ 2717 if (current != task) { 2718 rcu_read_unlock(); 2719 return -EACCES; 2720 } 2721 /* Prevent changes to overridden credentials. */ 2722 if (current_cred() != current_real_cred()) { 2723 rcu_read_unlock(); 2724 return -EBUSY; 2725 } 2726 rcu_read_unlock(); 2727 2728 if (count > PAGE_SIZE) 2729 count = PAGE_SIZE; 2730 2731 /* No partial writes. */ 2732 if (*ppos != 0) 2733 return -EINVAL; 2734 2735 page = memdup_user(buf, count); 2736 if (IS_ERR(page)) { 2737 rv = PTR_ERR(page); 2738 goto out; 2739 } 2740 2741 /* Guard against adverse ptrace interaction */ 2742 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex); 2743 if (rv < 0) 2744 goto out_free; 2745 2746 rv = security_setprocattr(PROC_I(inode)->op.lsm, 2747 file->f_path.dentry->d_name.name, page, 2748 count); 2749 mutex_unlock(¤t->signal->cred_guard_mutex); 2750 out_free: 2751 kfree(page); 2752 out: 2753 return rv; 2754 } 2755 2756 static const struct file_operations proc_pid_attr_operations = { 2757 .read = proc_pid_attr_read, 2758 .write = proc_pid_attr_write, 2759 .llseek = generic_file_llseek, 2760 }; 2761 2762 #define LSM_DIR_OPS(LSM) \ 2763 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \ 2764 struct dir_context *ctx) \ 2765 { \ 2766 return proc_pident_readdir(filp, ctx, \ 2767 LSM##_attr_dir_stuff, \ 2768 ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2769 } \ 2770 \ 2771 static const struct file_operations proc_##LSM##_attr_dir_ops = { \ 2772 .read = generic_read_dir, \ 2773 .iterate = proc_##LSM##_attr_dir_iterate, \ 2774 .llseek = default_llseek, \ 2775 }; \ 2776 \ 2777 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \ 2778 struct dentry *dentry, unsigned int flags) \ 2779 { \ 2780 return proc_pident_lookup(dir, dentry, \ 2781 LSM##_attr_dir_stuff, \ 2782 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2783 } \ 2784 \ 2785 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \ 2786 .lookup = proc_##LSM##_attr_dir_lookup, \ 2787 .getattr = pid_getattr, \ 2788 .setattr = proc_setattr, \ 2789 } 2790 2791 #ifdef CONFIG_SECURITY_SMACK 2792 static const struct pid_entry smack_attr_dir_stuff[] = { 2793 ATTR("smack", "current", 0666), 2794 }; 2795 LSM_DIR_OPS(smack); 2796 #endif 2797 2798 #ifdef CONFIG_SECURITY_APPARMOR 2799 static const struct pid_entry apparmor_attr_dir_stuff[] = { 2800 ATTR("apparmor", "current", 0666), 2801 ATTR("apparmor", "prev", 0444), 2802 ATTR("apparmor", "exec", 0666), 2803 }; 2804 LSM_DIR_OPS(apparmor); 2805 #endif 2806 2807 static const struct pid_entry attr_dir_stuff[] = { 2808 ATTR(NULL, "current", 0666), 2809 ATTR(NULL, "prev", 0444), 2810 ATTR(NULL, "exec", 0666), 2811 ATTR(NULL, "fscreate", 0666), 2812 ATTR(NULL, "keycreate", 0666), 2813 ATTR(NULL, "sockcreate", 0666), 2814 #ifdef CONFIG_SECURITY_SMACK 2815 DIR("smack", 0555, 2816 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops), 2817 #endif 2818 #ifdef CONFIG_SECURITY_APPARMOR 2819 DIR("apparmor", 0555, 2820 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops), 2821 #endif 2822 }; 2823 2824 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx) 2825 { 2826 return proc_pident_readdir(file, ctx, 2827 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 2828 } 2829 2830 static const struct file_operations proc_attr_dir_operations = { 2831 .read = generic_read_dir, 2832 .iterate_shared = proc_attr_dir_readdir, 2833 .llseek = generic_file_llseek, 2834 }; 2835 2836 static struct dentry *proc_attr_dir_lookup(struct inode *dir, 2837 struct dentry *dentry, unsigned int flags) 2838 { 2839 return proc_pident_lookup(dir, dentry, 2840 attr_dir_stuff, 2841 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff)); 2842 } 2843 2844 static const struct inode_operations proc_attr_dir_inode_operations = { 2845 .lookup = proc_attr_dir_lookup, 2846 .getattr = pid_getattr, 2847 .setattr = proc_setattr, 2848 }; 2849 2850 #endif 2851 2852 #ifdef CONFIG_ELF_CORE 2853 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 2854 size_t count, loff_t *ppos) 2855 { 2856 struct task_struct *task = get_proc_task(file_inode(file)); 2857 struct mm_struct *mm; 2858 char buffer[PROC_NUMBUF]; 2859 size_t len; 2860 int ret; 2861 2862 if (!task) 2863 return -ESRCH; 2864 2865 ret = 0; 2866 mm = get_task_mm(task); 2867 if (mm) { 2868 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 2869 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 2870 MMF_DUMP_FILTER_SHIFT)); 2871 mmput(mm); 2872 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 2873 } 2874 2875 put_task_struct(task); 2876 2877 return ret; 2878 } 2879 2880 static ssize_t proc_coredump_filter_write(struct file *file, 2881 const char __user *buf, 2882 size_t count, 2883 loff_t *ppos) 2884 { 2885 struct task_struct *task; 2886 struct mm_struct *mm; 2887 unsigned int val; 2888 int ret; 2889 int i; 2890 unsigned long mask; 2891 2892 ret = kstrtouint_from_user(buf, count, 0, &val); 2893 if (ret < 0) 2894 return ret; 2895 2896 ret = -ESRCH; 2897 task = get_proc_task(file_inode(file)); 2898 if (!task) 2899 goto out_no_task; 2900 2901 mm = get_task_mm(task); 2902 if (!mm) 2903 goto out_no_mm; 2904 ret = 0; 2905 2906 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 2907 if (val & mask) 2908 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2909 else 2910 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 2911 } 2912 2913 mmput(mm); 2914 out_no_mm: 2915 put_task_struct(task); 2916 out_no_task: 2917 if (ret < 0) 2918 return ret; 2919 return count; 2920 } 2921 2922 static const struct file_operations proc_coredump_filter_operations = { 2923 .read = proc_coredump_filter_read, 2924 .write = proc_coredump_filter_write, 2925 .llseek = generic_file_llseek, 2926 }; 2927 #endif 2928 2929 #ifdef CONFIG_TASK_IO_ACCOUNTING 2930 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole) 2931 { 2932 struct task_io_accounting acct = task->ioac; 2933 unsigned long flags; 2934 int result; 2935 2936 result = down_read_killable(&task->signal->exec_update_lock); 2937 if (result) 2938 return result; 2939 2940 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) { 2941 result = -EACCES; 2942 goto out_unlock; 2943 } 2944 2945 if (whole && lock_task_sighand(task, &flags)) { 2946 struct task_struct *t = task; 2947 2948 task_io_accounting_add(&acct, &task->signal->ioac); 2949 while_each_thread(task, t) 2950 task_io_accounting_add(&acct, &t->ioac); 2951 2952 unlock_task_sighand(task, &flags); 2953 } 2954 seq_printf(m, 2955 "rchar: %llu\n" 2956 "wchar: %llu\n" 2957 "syscr: %llu\n" 2958 "syscw: %llu\n" 2959 "read_bytes: %llu\n" 2960 "write_bytes: %llu\n" 2961 "cancelled_write_bytes: %llu\n", 2962 (unsigned long long)acct.rchar, 2963 (unsigned long long)acct.wchar, 2964 (unsigned long long)acct.syscr, 2965 (unsigned long long)acct.syscw, 2966 (unsigned long long)acct.read_bytes, 2967 (unsigned long long)acct.write_bytes, 2968 (unsigned long long)acct.cancelled_write_bytes); 2969 result = 0; 2970 2971 out_unlock: 2972 up_read(&task->signal->exec_update_lock); 2973 return result; 2974 } 2975 2976 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2977 struct pid *pid, struct task_struct *task) 2978 { 2979 return do_io_accounting(task, m, 0); 2980 } 2981 2982 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 2983 struct pid *pid, struct task_struct *task) 2984 { 2985 return do_io_accounting(task, m, 1); 2986 } 2987 #endif /* CONFIG_TASK_IO_ACCOUNTING */ 2988 2989 #ifdef CONFIG_USER_NS 2990 static int proc_id_map_open(struct inode *inode, struct file *file, 2991 const struct seq_operations *seq_ops) 2992 { 2993 struct user_namespace *ns = NULL; 2994 struct task_struct *task; 2995 struct seq_file *seq; 2996 int ret = -EINVAL; 2997 2998 task = get_proc_task(inode); 2999 if (task) { 3000 rcu_read_lock(); 3001 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3002 rcu_read_unlock(); 3003 put_task_struct(task); 3004 } 3005 if (!ns) 3006 goto err; 3007 3008 ret = seq_open(file, seq_ops); 3009 if (ret) 3010 goto err_put_ns; 3011 3012 seq = file->private_data; 3013 seq->private = ns; 3014 3015 return 0; 3016 err_put_ns: 3017 put_user_ns(ns); 3018 err: 3019 return ret; 3020 } 3021 3022 static int proc_id_map_release(struct inode *inode, struct file *file) 3023 { 3024 struct seq_file *seq = file->private_data; 3025 struct user_namespace *ns = seq->private; 3026 put_user_ns(ns); 3027 return seq_release(inode, file); 3028 } 3029 3030 static int proc_uid_map_open(struct inode *inode, struct file *file) 3031 { 3032 return proc_id_map_open(inode, file, &proc_uid_seq_operations); 3033 } 3034 3035 static int proc_gid_map_open(struct inode *inode, struct file *file) 3036 { 3037 return proc_id_map_open(inode, file, &proc_gid_seq_operations); 3038 } 3039 3040 static int proc_projid_map_open(struct inode *inode, struct file *file) 3041 { 3042 return proc_id_map_open(inode, file, &proc_projid_seq_operations); 3043 } 3044 3045 static const struct file_operations proc_uid_map_operations = { 3046 .open = proc_uid_map_open, 3047 .write = proc_uid_map_write, 3048 .read = seq_read, 3049 .llseek = seq_lseek, 3050 .release = proc_id_map_release, 3051 }; 3052 3053 static const struct file_operations proc_gid_map_operations = { 3054 .open = proc_gid_map_open, 3055 .write = proc_gid_map_write, 3056 .read = seq_read, 3057 .llseek = seq_lseek, 3058 .release = proc_id_map_release, 3059 }; 3060 3061 static const struct file_operations proc_projid_map_operations = { 3062 .open = proc_projid_map_open, 3063 .write = proc_projid_map_write, 3064 .read = seq_read, 3065 .llseek = seq_lseek, 3066 .release = proc_id_map_release, 3067 }; 3068 3069 static int proc_setgroups_open(struct inode *inode, struct file *file) 3070 { 3071 struct user_namespace *ns = NULL; 3072 struct task_struct *task; 3073 int ret; 3074 3075 ret = -ESRCH; 3076 task = get_proc_task(inode); 3077 if (task) { 3078 rcu_read_lock(); 3079 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3080 rcu_read_unlock(); 3081 put_task_struct(task); 3082 } 3083 if (!ns) 3084 goto err; 3085 3086 if (file->f_mode & FMODE_WRITE) { 3087 ret = -EACCES; 3088 if (!ns_capable(ns, CAP_SYS_ADMIN)) 3089 goto err_put_ns; 3090 } 3091 3092 ret = single_open(file, &proc_setgroups_show, ns); 3093 if (ret) 3094 goto err_put_ns; 3095 3096 return 0; 3097 err_put_ns: 3098 put_user_ns(ns); 3099 err: 3100 return ret; 3101 } 3102 3103 static int proc_setgroups_release(struct inode *inode, struct file *file) 3104 { 3105 struct seq_file *seq = file->private_data; 3106 struct user_namespace *ns = seq->private; 3107 int ret = single_release(inode, file); 3108 put_user_ns(ns); 3109 return ret; 3110 } 3111 3112 static const struct file_operations proc_setgroups_operations = { 3113 .open = proc_setgroups_open, 3114 .write = proc_setgroups_write, 3115 .read = seq_read, 3116 .llseek = seq_lseek, 3117 .release = proc_setgroups_release, 3118 }; 3119 #endif /* CONFIG_USER_NS */ 3120 3121 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 3122 struct pid *pid, struct task_struct *task) 3123 { 3124 int err = lock_trace(task); 3125 if (!err) { 3126 seq_printf(m, "%08x\n", task->personality); 3127 unlock_trace(task); 3128 } 3129 return err; 3130 } 3131 3132 #ifdef CONFIG_LIVEPATCH 3133 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns, 3134 struct pid *pid, struct task_struct *task) 3135 { 3136 seq_printf(m, "%d\n", task->patch_state); 3137 return 0; 3138 } 3139 #endif /* CONFIG_LIVEPATCH */ 3140 3141 #ifdef CONFIG_STACKLEAK_METRICS 3142 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns, 3143 struct pid *pid, struct task_struct *task) 3144 { 3145 unsigned long prev_depth = THREAD_SIZE - 3146 (task->prev_lowest_stack & (THREAD_SIZE - 1)); 3147 unsigned long depth = THREAD_SIZE - 3148 (task->lowest_stack & (THREAD_SIZE - 1)); 3149 3150 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n", 3151 prev_depth, depth); 3152 return 0; 3153 } 3154 #endif /* CONFIG_STACKLEAK_METRICS */ 3155 3156 /* 3157 * Thread groups 3158 */ 3159 static const struct file_operations proc_task_operations; 3160 static const struct inode_operations proc_task_inode_operations; 3161 3162 static const struct pid_entry tgid_base_stuff[] = { 3163 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 3164 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3165 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 3166 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3167 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3168 #ifdef CONFIG_NET 3169 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3170 #endif 3171 REG("environ", S_IRUSR, proc_environ_operations), 3172 REG("auxv", S_IRUSR, proc_auxv_operations), 3173 ONE("status", S_IRUGO, proc_pid_status), 3174 ONE("personality", S_IRUSR, proc_pid_personality), 3175 ONE("limits", S_IRUGO, proc_pid_limits), 3176 #ifdef CONFIG_SCHED_DEBUG 3177 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3178 #endif 3179 #ifdef CONFIG_SCHED_AUTOGROUP 3180 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 3181 #endif 3182 #ifdef CONFIG_TIME_NS 3183 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations), 3184 #endif 3185 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 3186 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3187 ONE("syscall", S_IRUSR, proc_pid_syscall), 3188 #endif 3189 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3190 ONE("stat", S_IRUGO, proc_tgid_stat), 3191 ONE("statm", S_IRUGO, proc_pid_statm), 3192 REG("maps", S_IRUGO, proc_pid_maps_operations), 3193 #ifdef CONFIG_NUMA 3194 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3195 #endif 3196 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3197 LNK("cwd", proc_cwd_link), 3198 LNK("root", proc_root_link), 3199 LNK("exe", proc_exe_link), 3200 REG("mounts", S_IRUGO, proc_mounts_operations), 3201 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3202 REG("mountstats", S_IRUSR, proc_mountstats_operations), 3203 #ifdef CONFIG_PROC_PAGE_MONITOR 3204 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3205 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3206 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3207 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3208 #endif 3209 #ifdef CONFIG_SECURITY 3210 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3211 #endif 3212 #ifdef CONFIG_KALLSYMS 3213 ONE("wchan", S_IRUGO, proc_pid_wchan), 3214 #endif 3215 #ifdef CONFIG_STACKTRACE 3216 ONE("stack", S_IRUSR, proc_pid_stack), 3217 #endif 3218 #ifdef CONFIG_SCHED_INFO 3219 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3220 #endif 3221 #ifdef CONFIG_LATENCYTOP 3222 REG("latency", S_IRUGO, proc_lstats_operations), 3223 #endif 3224 #ifdef CONFIG_PROC_PID_CPUSET 3225 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3226 #endif 3227 #ifdef CONFIG_CGROUPS 3228 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3229 #endif 3230 #ifdef CONFIG_PROC_CPU_RESCTRL 3231 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3232 #endif 3233 ONE("oom_score", S_IRUGO, proc_oom_score), 3234 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3235 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3236 #ifdef CONFIG_AUDIT 3237 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3238 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3239 #endif 3240 #ifdef CONFIG_FAULT_INJECTION 3241 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3242 REG("fail-nth", 0644, proc_fail_nth_operations), 3243 #endif 3244 #ifdef CONFIG_ELF_CORE 3245 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 3246 #endif 3247 #ifdef CONFIG_TASK_IO_ACCOUNTING 3248 ONE("io", S_IRUSR, proc_tgid_io_accounting), 3249 #endif 3250 #ifdef CONFIG_USER_NS 3251 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3252 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3253 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3254 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3255 #endif 3256 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 3257 REG("timers", S_IRUGO, proc_timers_operations), 3258 #endif 3259 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations), 3260 #ifdef CONFIG_LIVEPATCH 3261 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3262 #endif 3263 #ifdef CONFIG_STACKLEAK_METRICS 3264 ONE("stack_depth", S_IRUGO, proc_stack_depth), 3265 #endif 3266 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3267 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3268 #endif 3269 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 3270 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache), 3271 #endif 3272 }; 3273 3274 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx) 3275 { 3276 return proc_pident_readdir(file, ctx, 3277 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3278 } 3279 3280 static const struct file_operations proc_tgid_base_operations = { 3281 .read = generic_read_dir, 3282 .iterate_shared = proc_tgid_base_readdir, 3283 .llseek = generic_file_llseek, 3284 }; 3285 3286 struct pid *tgid_pidfd_to_pid(const struct file *file) 3287 { 3288 if (file->f_op != &proc_tgid_base_operations) 3289 return ERR_PTR(-EBADF); 3290 3291 return proc_pid(file_inode(file)); 3292 } 3293 3294 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3295 { 3296 return proc_pident_lookup(dir, dentry, 3297 tgid_base_stuff, 3298 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff)); 3299 } 3300 3301 static const struct inode_operations proc_tgid_base_inode_operations = { 3302 .lookup = proc_tgid_base_lookup, 3303 .getattr = pid_getattr, 3304 .setattr = proc_setattr, 3305 .permission = proc_pid_permission, 3306 }; 3307 3308 /** 3309 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache. 3310 * @pid: pid that should be flushed. 3311 * 3312 * This function walks a list of inodes (that belong to any proc 3313 * filesystem) that are attached to the pid and flushes them from 3314 * the dentry cache. 3315 * 3316 * It is safe and reasonable to cache /proc entries for a task until 3317 * that task exits. After that they just clog up the dcache with 3318 * useless entries, possibly causing useful dcache entries to be 3319 * flushed instead. This routine is provided to flush those useless 3320 * dcache entries when a process is reaped. 3321 * 3322 * NOTE: This routine is just an optimization so it does not guarantee 3323 * that no dcache entries will exist after a process is reaped 3324 * it just makes it very unlikely that any will persist. 3325 */ 3326 3327 void proc_flush_pid(struct pid *pid) 3328 { 3329 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock); 3330 } 3331 3332 static struct dentry *proc_pid_instantiate(struct dentry * dentry, 3333 struct task_struct *task, const void *ptr) 3334 { 3335 struct inode *inode; 3336 3337 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3338 if (!inode) 3339 return ERR_PTR(-ENOENT); 3340 3341 inode->i_op = &proc_tgid_base_inode_operations; 3342 inode->i_fop = &proc_tgid_base_operations; 3343 inode->i_flags|=S_IMMUTABLE; 3344 3345 set_nlink(inode, nlink_tgid); 3346 pid_update_inode(task, inode); 3347 3348 d_set_d_op(dentry, &pid_dentry_operations); 3349 return d_splice_alias(inode, dentry); 3350 } 3351 3352 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags) 3353 { 3354 struct task_struct *task; 3355 unsigned tgid; 3356 struct proc_fs_info *fs_info; 3357 struct pid_namespace *ns; 3358 struct dentry *result = ERR_PTR(-ENOENT); 3359 3360 tgid = name_to_int(&dentry->d_name); 3361 if (tgid == ~0U) 3362 goto out; 3363 3364 fs_info = proc_sb_info(dentry->d_sb); 3365 ns = fs_info->pid_ns; 3366 rcu_read_lock(); 3367 task = find_task_by_pid_ns(tgid, ns); 3368 if (task) 3369 get_task_struct(task); 3370 rcu_read_unlock(); 3371 if (!task) 3372 goto out; 3373 3374 /* Limit procfs to only ptraceable tasks */ 3375 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) { 3376 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS)) 3377 goto out_put_task; 3378 } 3379 3380 result = proc_pid_instantiate(dentry, task, NULL); 3381 out_put_task: 3382 put_task_struct(task); 3383 out: 3384 return result; 3385 } 3386 3387 /* 3388 * Find the first task with tgid >= tgid 3389 * 3390 */ 3391 struct tgid_iter { 3392 unsigned int tgid; 3393 struct task_struct *task; 3394 }; 3395 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3396 { 3397 struct pid *pid; 3398 3399 if (iter.task) 3400 put_task_struct(iter.task); 3401 rcu_read_lock(); 3402 retry: 3403 iter.task = NULL; 3404 pid = find_ge_pid(iter.tgid, ns); 3405 if (pid) { 3406 iter.tgid = pid_nr_ns(pid, ns); 3407 iter.task = pid_task(pid, PIDTYPE_TGID); 3408 if (!iter.task) { 3409 iter.tgid += 1; 3410 goto retry; 3411 } 3412 get_task_struct(iter.task); 3413 } 3414 rcu_read_unlock(); 3415 return iter; 3416 } 3417 3418 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2) 3419 3420 /* for the /proc/ directory itself, after non-process stuff has been done */ 3421 int proc_pid_readdir(struct file *file, struct dir_context *ctx) 3422 { 3423 struct tgid_iter iter; 3424 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb); 3425 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb); 3426 loff_t pos = ctx->pos; 3427 3428 if (pos >= PID_MAX_LIMIT + TGID_OFFSET) 3429 return 0; 3430 3431 if (pos == TGID_OFFSET - 2) { 3432 struct inode *inode = d_inode(fs_info->proc_self); 3433 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK)) 3434 return 0; 3435 ctx->pos = pos = pos + 1; 3436 } 3437 if (pos == TGID_OFFSET - 1) { 3438 struct inode *inode = d_inode(fs_info->proc_thread_self); 3439 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK)) 3440 return 0; 3441 ctx->pos = pos = pos + 1; 3442 } 3443 iter.tgid = pos - TGID_OFFSET; 3444 iter.task = NULL; 3445 for (iter = next_tgid(ns, iter); 3446 iter.task; 3447 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3448 char name[10 + 1]; 3449 unsigned int len; 3450 3451 cond_resched(); 3452 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE)) 3453 continue; 3454 3455 len = snprintf(name, sizeof(name), "%u", iter.tgid); 3456 ctx->pos = iter.tgid + TGID_OFFSET; 3457 if (!proc_fill_cache(file, ctx, name, len, 3458 proc_pid_instantiate, iter.task, NULL)) { 3459 put_task_struct(iter.task); 3460 return 0; 3461 } 3462 } 3463 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET; 3464 return 0; 3465 } 3466 3467 /* 3468 * proc_tid_comm_permission is a special permission function exclusively 3469 * used for the node /proc/<pid>/task/<tid>/comm. 3470 * It bypasses generic permission checks in the case where a task of the same 3471 * task group attempts to access the node. 3472 * The rationale behind this is that glibc and bionic access this node for 3473 * cross thread naming (pthread_set/getname_np(!self)). However, if 3474 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0, 3475 * which locks out the cross thread naming implementation. 3476 * This function makes sure that the node is always accessible for members of 3477 * same thread group. 3478 */ 3479 static int proc_tid_comm_permission(struct user_namespace *mnt_userns, 3480 struct inode *inode, int mask) 3481 { 3482 bool is_same_tgroup; 3483 struct task_struct *task; 3484 3485 task = get_proc_task(inode); 3486 if (!task) 3487 return -ESRCH; 3488 is_same_tgroup = same_thread_group(current, task); 3489 put_task_struct(task); 3490 3491 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) { 3492 /* This file (/proc/<pid>/task/<tid>/comm) can always be 3493 * read or written by the members of the corresponding 3494 * thread group. 3495 */ 3496 return 0; 3497 } 3498 3499 return generic_permission(&init_user_ns, inode, mask); 3500 } 3501 3502 static const struct inode_operations proc_tid_comm_inode_operations = { 3503 .permission = proc_tid_comm_permission, 3504 }; 3505 3506 /* 3507 * Tasks 3508 */ 3509 static const struct pid_entry tid_base_stuff[] = { 3510 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3511 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3512 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3513 #ifdef CONFIG_NET 3514 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3515 #endif 3516 REG("environ", S_IRUSR, proc_environ_operations), 3517 REG("auxv", S_IRUSR, proc_auxv_operations), 3518 ONE("status", S_IRUGO, proc_pid_status), 3519 ONE("personality", S_IRUSR, proc_pid_personality), 3520 ONE("limits", S_IRUGO, proc_pid_limits), 3521 #ifdef CONFIG_SCHED_DEBUG 3522 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3523 #endif 3524 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR, 3525 &proc_tid_comm_inode_operations, 3526 &proc_pid_set_comm_operations, {}), 3527 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3528 ONE("syscall", S_IRUSR, proc_pid_syscall), 3529 #endif 3530 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3531 ONE("stat", S_IRUGO, proc_tid_stat), 3532 ONE("statm", S_IRUGO, proc_pid_statm), 3533 REG("maps", S_IRUGO, proc_pid_maps_operations), 3534 #ifdef CONFIG_PROC_CHILDREN 3535 REG("children", S_IRUGO, proc_tid_children_operations), 3536 #endif 3537 #ifdef CONFIG_NUMA 3538 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3539 #endif 3540 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3541 LNK("cwd", proc_cwd_link), 3542 LNK("root", proc_root_link), 3543 LNK("exe", proc_exe_link), 3544 REG("mounts", S_IRUGO, proc_mounts_operations), 3545 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3546 #ifdef CONFIG_PROC_PAGE_MONITOR 3547 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3548 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3549 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3550 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3551 #endif 3552 #ifdef CONFIG_SECURITY 3553 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3554 #endif 3555 #ifdef CONFIG_KALLSYMS 3556 ONE("wchan", S_IRUGO, proc_pid_wchan), 3557 #endif 3558 #ifdef CONFIG_STACKTRACE 3559 ONE("stack", S_IRUSR, proc_pid_stack), 3560 #endif 3561 #ifdef CONFIG_SCHED_INFO 3562 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3563 #endif 3564 #ifdef CONFIG_LATENCYTOP 3565 REG("latency", S_IRUGO, proc_lstats_operations), 3566 #endif 3567 #ifdef CONFIG_PROC_PID_CPUSET 3568 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3569 #endif 3570 #ifdef CONFIG_CGROUPS 3571 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3572 #endif 3573 #ifdef CONFIG_PROC_CPU_RESCTRL 3574 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3575 #endif 3576 ONE("oom_score", S_IRUGO, proc_oom_score), 3577 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3578 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3579 #ifdef CONFIG_AUDIT 3580 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3581 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3582 #endif 3583 #ifdef CONFIG_FAULT_INJECTION 3584 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3585 REG("fail-nth", 0644, proc_fail_nth_operations), 3586 #endif 3587 #ifdef CONFIG_TASK_IO_ACCOUNTING 3588 ONE("io", S_IRUSR, proc_tid_io_accounting), 3589 #endif 3590 #ifdef CONFIG_USER_NS 3591 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3592 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3593 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3594 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3595 #endif 3596 #ifdef CONFIG_LIVEPATCH 3597 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3598 #endif 3599 #ifdef CONFIG_PROC_PID_ARCH_STATUS 3600 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3601 #endif 3602 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 3603 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache), 3604 #endif 3605 }; 3606 3607 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx) 3608 { 3609 return proc_pident_readdir(file, ctx, 3610 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3611 } 3612 3613 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3614 { 3615 return proc_pident_lookup(dir, dentry, 3616 tid_base_stuff, 3617 tid_base_stuff + ARRAY_SIZE(tid_base_stuff)); 3618 } 3619 3620 static const struct file_operations proc_tid_base_operations = { 3621 .read = generic_read_dir, 3622 .iterate_shared = proc_tid_base_readdir, 3623 .llseek = generic_file_llseek, 3624 }; 3625 3626 static const struct inode_operations proc_tid_base_inode_operations = { 3627 .lookup = proc_tid_base_lookup, 3628 .getattr = pid_getattr, 3629 .setattr = proc_setattr, 3630 }; 3631 3632 static struct dentry *proc_task_instantiate(struct dentry *dentry, 3633 struct task_struct *task, const void *ptr) 3634 { 3635 struct inode *inode; 3636 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO); 3637 if (!inode) 3638 return ERR_PTR(-ENOENT); 3639 3640 inode->i_op = &proc_tid_base_inode_operations; 3641 inode->i_fop = &proc_tid_base_operations; 3642 inode->i_flags |= S_IMMUTABLE; 3643 3644 set_nlink(inode, nlink_tid); 3645 pid_update_inode(task, inode); 3646 3647 d_set_d_op(dentry, &pid_dentry_operations); 3648 return d_splice_alias(inode, dentry); 3649 } 3650 3651 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3652 { 3653 struct task_struct *task; 3654 struct task_struct *leader = get_proc_task(dir); 3655 unsigned tid; 3656 struct proc_fs_info *fs_info; 3657 struct pid_namespace *ns; 3658 struct dentry *result = ERR_PTR(-ENOENT); 3659 3660 if (!leader) 3661 goto out_no_task; 3662 3663 tid = name_to_int(&dentry->d_name); 3664 if (tid == ~0U) 3665 goto out; 3666 3667 fs_info = proc_sb_info(dentry->d_sb); 3668 ns = fs_info->pid_ns; 3669 rcu_read_lock(); 3670 task = find_task_by_pid_ns(tid, ns); 3671 if (task) 3672 get_task_struct(task); 3673 rcu_read_unlock(); 3674 if (!task) 3675 goto out; 3676 if (!same_thread_group(leader, task)) 3677 goto out_drop_task; 3678 3679 result = proc_task_instantiate(dentry, task, NULL); 3680 out_drop_task: 3681 put_task_struct(task); 3682 out: 3683 put_task_struct(leader); 3684 out_no_task: 3685 return result; 3686 } 3687 3688 /* 3689 * Find the first tid of a thread group to return to user space. 3690 * 3691 * Usually this is just the thread group leader, but if the users 3692 * buffer was too small or there was a seek into the middle of the 3693 * directory we have more work todo. 3694 * 3695 * In the case of a short read we start with find_task_by_pid. 3696 * 3697 * In the case of a seek we start with the leader and walk nr 3698 * threads past it. 3699 */ 3700 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos, 3701 struct pid_namespace *ns) 3702 { 3703 struct task_struct *pos, *task; 3704 unsigned long nr = f_pos; 3705 3706 if (nr != f_pos) /* 32bit overflow? */ 3707 return NULL; 3708 3709 rcu_read_lock(); 3710 task = pid_task(pid, PIDTYPE_PID); 3711 if (!task) 3712 goto fail; 3713 3714 /* Attempt to start with the tid of a thread */ 3715 if (tid && nr) { 3716 pos = find_task_by_pid_ns(tid, ns); 3717 if (pos && same_thread_group(pos, task)) 3718 goto found; 3719 } 3720 3721 /* If nr exceeds the number of threads there is nothing todo */ 3722 if (nr >= get_nr_threads(task)) 3723 goto fail; 3724 3725 /* If we haven't found our starting place yet start 3726 * with the leader and walk nr threads forward. 3727 */ 3728 pos = task = task->group_leader; 3729 do { 3730 if (!nr--) 3731 goto found; 3732 } while_each_thread(task, pos); 3733 fail: 3734 pos = NULL; 3735 goto out; 3736 found: 3737 get_task_struct(pos); 3738 out: 3739 rcu_read_unlock(); 3740 return pos; 3741 } 3742 3743 /* 3744 * Find the next thread in the thread list. 3745 * Return NULL if there is an error or no next thread. 3746 * 3747 * The reference to the input task_struct is released. 3748 */ 3749 static struct task_struct *next_tid(struct task_struct *start) 3750 { 3751 struct task_struct *pos = NULL; 3752 rcu_read_lock(); 3753 if (pid_alive(start)) { 3754 pos = next_thread(start); 3755 if (thread_group_leader(pos)) 3756 pos = NULL; 3757 else 3758 get_task_struct(pos); 3759 } 3760 rcu_read_unlock(); 3761 put_task_struct(start); 3762 return pos; 3763 } 3764 3765 /* for the /proc/TGID/task/ directories */ 3766 static int proc_task_readdir(struct file *file, struct dir_context *ctx) 3767 { 3768 struct inode *inode = file_inode(file); 3769 struct task_struct *task; 3770 struct pid_namespace *ns; 3771 int tid; 3772 3773 if (proc_inode_is_dead(inode)) 3774 return -ENOENT; 3775 3776 if (!dir_emit_dots(file, ctx)) 3777 return 0; 3778 3779 /* f_version caches the tgid value that the last readdir call couldn't 3780 * return. lseek aka telldir automagically resets f_version to 0. 3781 */ 3782 ns = proc_pid_ns(inode->i_sb); 3783 tid = (int)file->f_version; 3784 file->f_version = 0; 3785 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns); 3786 task; 3787 task = next_tid(task), ctx->pos++) { 3788 char name[10 + 1]; 3789 unsigned int len; 3790 tid = task_pid_nr_ns(task, ns); 3791 len = snprintf(name, sizeof(name), "%u", tid); 3792 if (!proc_fill_cache(file, ctx, name, len, 3793 proc_task_instantiate, task, NULL)) { 3794 /* returning this tgid failed, save it as the first 3795 * pid for the next readir call */ 3796 file->f_version = (u64)tid; 3797 put_task_struct(task); 3798 break; 3799 } 3800 } 3801 3802 return 0; 3803 } 3804 3805 static int proc_task_getattr(struct user_namespace *mnt_userns, 3806 const struct path *path, struct kstat *stat, 3807 u32 request_mask, unsigned int query_flags) 3808 { 3809 struct inode *inode = d_inode(path->dentry); 3810 struct task_struct *p = get_proc_task(inode); 3811 generic_fillattr(&init_user_ns, inode, stat); 3812 3813 if (p) { 3814 stat->nlink += get_nr_threads(p); 3815 put_task_struct(p); 3816 } 3817 3818 return 0; 3819 } 3820 3821 static const struct inode_operations proc_task_inode_operations = { 3822 .lookup = proc_task_lookup, 3823 .getattr = proc_task_getattr, 3824 .setattr = proc_setattr, 3825 .permission = proc_pid_permission, 3826 }; 3827 3828 static const struct file_operations proc_task_operations = { 3829 .read = generic_read_dir, 3830 .iterate_shared = proc_task_readdir, 3831 .llseek = generic_file_llseek, 3832 }; 3833 3834 void __init set_proc_pid_nlink(void) 3835 { 3836 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3837 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3838 } 3839