xref: /openbmc/linux/fs/proc/base.c (revision 8b030a57)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/proc/base.c
4  *
5  *  Copyright (C) 1991, 1992 Linus Torvalds
6  *
7  *  proc base directory handling functions
8  *
9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10  *  Instead of using magical inumbers to determine the kind of object
11  *  we allocate and fill in-core inodes upon lookup. They don't even
12  *  go into icache. We cache the reference to task_struct upon lookup too.
13  *  Eventually it should become a filesystem in its own. We don't use the
14  *  rest of procfs anymore.
15  *
16  *
17  *  Changelog:
18  *  17-Jan-2005
19  *  Allan Bezerra
20  *  Bruna Moreira <bruna.moreira@indt.org.br>
21  *  Edjard Mota <edjard.mota@indt.org.br>
22  *  Ilias Biris <ilias.biris@indt.org.br>
23  *  Mauricio Lin <mauricio.lin@indt.org.br>
24  *
25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26  *
27  *  A new process specific entry (smaps) included in /proc. It shows the
28  *  size of rss for each memory area. The maps entry lacks information
29  *  about physical memory size (rss) for each mapped file, i.e.,
30  *  rss information for executables and library files.
31  *  This additional information is useful for any tools that need to know
32  *  about physical memory consumption for a process specific library.
33  *
34  *  Changelog:
35  *  21-Feb-2005
36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37  *  Pud inclusion in the page table walking.
38  *
39  *  ChangeLog:
40  *  10-Mar-2005
41  *  10LE Instituto Nokia de Tecnologia - INdT:
42  *  A better way to walks through the page table as suggested by Hugh Dickins.
43  *
44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45  *  Smaps information related to shared, private, clean and dirty pages.
46  *
47  *  Paul Mundt <paul.mundt@nokia.com>:
48  *  Overall revision about smaps.
49  */
50 
51 #include <linux/uaccess.h>
52 
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/string.h>
63 #include <linux/seq_file.h>
64 #include <linux/namei.h>
65 #include <linux/mnt_namespace.h>
66 #include <linux/mm.h>
67 #include <linux/swap.h>
68 #include <linux/rcupdate.h>
69 #include <linux/kallsyms.h>
70 #include <linux/stacktrace.h>
71 #include <linux/resource.h>
72 #include <linux/module.h>
73 #include <linux/mount.h>
74 #include <linux/security.h>
75 #include <linux/ptrace.h>
76 #include <linux/tracehook.h>
77 #include <linux/printk.h>
78 #include <linux/cache.h>
79 #include <linux/cgroup.h>
80 #include <linux/cpuset.h>
81 #include <linux/audit.h>
82 #include <linux/poll.h>
83 #include <linux/nsproxy.h>
84 #include <linux/oom.h>
85 #include <linux/elf.h>
86 #include <linux/pid_namespace.h>
87 #include <linux/user_namespace.h>
88 #include <linux/fs_struct.h>
89 #include <linux/slab.h>
90 #include <linux/sched/autogroup.h>
91 #include <linux/sched/mm.h>
92 #include <linux/sched/coredump.h>
93 #include <linux/sched/debug.h>
94 #include <linux/sched/stat.h>
95 #include <linux/flex_array.h>
96 #include <linux/posix-timers.h>
97 #include <trace/events/oom.h>
98 #include "internal.h"
99 #include "fd.h"
100 
101 #include "../../lib/kstrtox.h"
102 
103 /* NOTE:
104  *	Implementing inode permission operations in /proc is almost
105  *	certainly an error.  Permission checks need to happen during
106  *	each system call not at open time.  The reason is that most of
107  *	what we wish to check for permissions in /proc varies at runtime.
108  *
109  *	The classic example of a problem is opening file descriptors
110  *	in /proc for a task before it execs a suid executable.
111  */
112 
113 static u8 nlink_tid __ro_after_init;
114 static u8 nlink_tgid __ro_after_init;
115 
116 struct pid_entry {
117 	const char *name;
118 	unsigned int len;
119 	umode_t mode;
120 	const struct inode_operations *iop;
121 	const struct file_operations *fop;
122 	union proc_op op;
123 };
124 
125 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
126 	.name = (NAME),					\
127 	.len  = sizeof(NAME) - 1,			\
128 	.mode = MODE,					\
129 	.iop  = IOP,					\
130 	.fop  = FOP,					\
131 	.op   = OP,					\
132 }
133 
134 #define DIR(NAME, MODE, iops, fops)	\
135 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
136 #define LNK(NAME, get_link)					\
137 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
138 		&proc_pid_link_inode_operations, NULL,		\
139 		{ .proc_get_link = get_link } )
140 #define REG(NAME, MODE, fops)				\
141 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
142 #define ONE(NAME, MODE, show)				\
143 	NOD(NAME, (S_IFREG|(MODE)), 			\
144 		NULL, &proc_single_file_operations,	\
145 		{ .proc_show = show } )
146 
147 /*
148  * Count the number of hardlinks for the pid_entry table, excluding the .
149  * and .. links.
150  */
151 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
152 	unsigned int n)
153 {
154 	unsigned int i;
155 	unsigned int count;
156 
157 	count = 2;
158 	for (i = 0; i < n; ++i) {
159 		if (S_ISDIR(entries[i].mode))
160 			++count;
161 	}
162 
163 	return count;
164 }
165 
166 static int get_task_root(struct task_struct *task, struct path *root)
167 {
168 	int result = -ENOENT;
169 
170 	task_lock(task);
171 	if (task->fs) {
172 		get_fs_root(task->fs, root);
173 		result = 0;
174 	}
175 	task_unlock(task);
176 	return result;
177 }
178 
179 static int proc_cwd_link(struct dentry *dentry, struct path *path)
180 {
181 	struct task_struct *task = get_proc_task(d_inode(dentry));
182 	int result = -ENOENT;
183 
184 	if (task) {
185 		task_lock(task);
186 		if (task->fs) {
187 			get_fs_pwd(task->fs, path);
188 			result = 0;
189 		}
190 		task_unlock(task);
191 		put_task_struct(task);
192 	}
193 	return result;
194 }
195 
196 static int proc_root_link(struct dentry *dentry, struct path *path)
197 {
198 	struct task_struct *task = get_proc_task(d_inode(dentry));
199 	int result = -ENOENT;
200 
201 	if (task) {
202 		result = get_task_root(task, path);
203 		put_task_struct(task);
204 	}
205 	return result;
206 }
207 
208 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
209 			      size_t count, loff_t *ppos)
210 {
211 	unsigned long arg_start, arg_end, env_start, env_end;
212 	unsigned long pos, len;
213 	char *page;
214 
215 	/* Check if process spawned far enough to have cmdline. */
216 	if (!mm->env_end)
217 		return 0;
218 
219 	spin_lock(&mm->arg_lock);
220 	arg_start = mm->arg_start;
221 	arg_end = mm->arg_end;
222 	env_start = mm->env_start;
223 	env_end = mm->env_end;
224 	spin_unlock(&mm->arg_lock);
225 
226 	if (arg_start >= arg_end)
227 		return 0;
228 
229 	/*
230 	 * We have traditionally allowed the user to re-write
231 	 * the argument strings and overflow the end result
232 	 * into the environment section. But only do that if
233 	 * the environment area is contiguous to the arguments.
234 	 */
235 	if (env_start != arg_end || env_start >= env_end)
236 		env_start = env_end = arg_end;
237 
238 	/* .. and limit it to a maximum of one page of slop */
239 	if (env_end >= arg_end + PAGE_SIZE)
240 		env_end = arg_end + PAGE_SIZE - 1;
241 
242 	/* We're not going to care if "*ppos" has high bits set */
243 	pos = arg_start + *ppos;
244 
245 	/* .. but we do check the result is in the proper range */
246 	if (pos < arg_start || pos >= env_end)
247 		return 0;
248 
249 	/* .. and we never go past env_end */
250 	if (env_end - pos < count)
251 		count = env_end - pos;
252 
253 	page = (char *)__get_free_page(GFP_KERNEL);
254 	if (!page)
255 		return -ENOMEM;
256 
257 	len = 0;
258 	while (count) {
259 		int got;
260 		size_t size = min_t(size_t, PAGE_SIZE, count);
261 		long offset;
262 
263 		/*
264 		 * Are we already starting past the official end?
265 		 * We always include the last byte that is *supposed*
266 		 * to be NUL
267 		 */
268 		offset = (pos >= arg_end) ? pos - arg_end + 1 : 0;
269 
270 		got = access_remote_vm(mm, pos - offset, page, size + offset, FOLL_ANON);
271 		if (got <= offset)
272 			break;
273 		got -= offset;
274 
275 		/* Don't walk past a NUL character once you hit arg_end */
276 		if (pos + got >= arg_end) {
277 			int n = 0;
278 
279 			/*
280 			 * If we started before 'arg_end' but ended up
281 			 * at or after it, we start the NUL character
282 			 * check at arg_end-1 (where we expect the normal
283 			 * EOF to be).
284 			 *
285 			 * NOTE! This is smaller than 'got', because
286 			 * pos + got >= arg_end
287 			 */
288 			if (pos < arg_end)
289 				n = arg_end - pos - 1;
290 
291 			/* Cut off at first NUL after 'n' */
292 			got = n + strnlen(page+n, offset+got-n);
293 			if (got < offset)
294 				break;
295 			got -= offset;
296 
297 			/* Include the NUL if it existed */
298 			if (got < size)
299 				got++;
300 		}
301 
302 		got -= copy_to_user(buf, page+offset, got);
303 		if (unlikely(!got)) {
304 			if (!len)
305 				len = -EFAULT;
306 			break;
307 		}
308 		pos += got;
309 		buf += got;
310 		len += got;
311 		count -= got;
312 	}
313 
314 	free_page((unsigned long)page);
315 	return len;
316 }
317 
318 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
319 				size_t count, loff_t *pos)
320 {
321 	struct mm_struct *mm;
322 	ssize_t ret;
323 
324 	mm = get_task_mm(tsk);
325 	if (!mm)
326 		return 0;
327 
328 	ret = get_mm_cmdline(mm, buf, count, pos);
329 	mmput(mm);
330 	return ret;
331 }
332 
333 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
334 				     size_t count, loff_t *pos)
335 {
336 	struct task_struct *tsk;
337 	ssize_t ret;
338 
339 	BUG_ON(*pos < 0);
340 
341 	tsk = get_proc_task(file_inode(file));
342 	if (!tsk)
343 		return -ESRCH;
344 	ret = get_task_cmdline(tsk, buf, count, pos);
345 	put_task_struct(tsk);
346 	if (ret > 0)
347 		*pos += ret;
348 	return ret;
349 }
350 
351 static const struct file_operations proc_pid_cmdline_ops = {
352 	.read	= proc_pid_cmdline_read,
353 	.llseek	= generic_file_llseek,
354 };
355 
356 #ifdef CONFIG_KALLSYMS
357 /*
358  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
359  * Returns the resolved symbol.  If that fails, simply return the address.
360  */
361 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
362 			  struct pid *pid, struct task_struct *task)
363 {
364 	unsigned long wchan;
365 	char symname[KSYM_NAME_LEN];
366 
367 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
368 		goto print0;
369 
370 	wchan = get_wchan(task);
371 	if (wchan && !lookup_symbol_name(wchan, symname)) {
372 		seq_puts(m, symname);
373 		return 0;
374 	}
375 
376 print0:
377 	seq_putc(m, '0');
378 	return 0;
379 }
380 #endif /* CONFIG_KALLSYMS */
381 
382 static int lock_trace(struct task_struct *task)
383 {
384 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
385 	if (err)
386 		return err;
387 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
388 		mutex_unlock(&task->signal->cred_guard_mutex);
389 		return -EPERM;
390 	}
391 	return 0;
392 }
393 
394 static void unlock_trace(struct task_struct *task)
395 {
396 	mutex_unlock(&task->signal->cred_guard_mutex);
397 }
398 
399 #ifdef CONFIG_STACKTRACE
400 
401 #define MAX_STACK_TRACE_DEPTH	64
402 
403 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
404 			  struct pid *pid, struct task_struct *task)
405 {
406 	struct stack_trace trace;
407 	unsigned long *entries;
408 	int err;
409 
410 	/*
411 	 * The ability to racily run the kernel stack unwinder on a running task
412 	 * and then observe the unwinder output is scary; while it is useful for
413 	 * debugging kernel issues, it can also allow an attacker to leak kernel
414 	 * stack contents.
415 	 * Doing this in a manner that is at least safe from races would require
416 	 * some work to ensure that the remote task can not be scheduled; and
417 	 * even then, this would still expose the unwinder as local attack
418 	 * surface.
419 	 * Therefore, this interface is restricted to root.
420 	 */
421 	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
422 		return -EACCES;
423 
424 	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
425 				GFP_KERNEL);
426 	if (!entries)
427 		return -ENOMEM;
428 
429 	trace.nr_entries	= 0;
430 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
431 	trace.entries		= entries;
432 	trace.skip		= 0;
433 
434 	err = lock_trace(task);
435 	if (!err) {
436 		unsigned int i;
437 
438 		save_stack_trace_tsk(task, &trace);
439 
440 		for (i = 0; i < trace.nr_entries; i++) {
441 			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
442 		}
443 		unlock_trace(task);
444 	}
445 	kfree(entries);
446 
447 	return err;
448 }
449 #endif
450 
451 #ifdef CONFIG_SCHED_INFO
452 /*
453  * Provides /proc/PID/schedstat
454  */
455 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
456 			      struct pid *pid, struct task_struct *task)
457 {
458 	if (unlikely(!sched_info_on()))
459 		seq_printf(m, "0 0 0\n");
460 	else
461 		seq_printf(m, "%llu %llu %lu\n",
462 		   (unsigned long long)task->se.sum_exec_runtime,
463 		   (unsigned long long)task->sched_info.run_delay,
464 		   task->sched_info.pcount);
465 
466 	return 0;
467 }
468 #endif
469 
470 #ifdef CONFIG_LATENCYTOP
471 static int lstats_show_proc(struct seq_file *m, void *v)
472 {
473 	int i;
474 	struct inode *inode = m->private;
475 	struct task_struct *task = get_proc_task(inode);
476 
477 	if (!task)
478 		return -ESRCH;
479 	seq_puts(m, "Latency Top version : v0.1\n");
480 	for (i = 0; i < LT_SAVECOUNT; i++) {
481 		struct latency_record *lr = &task->latency_record[i];
482 		if (lr->backtrace[0]) {
483 			int q;
484 			seq_printf(m, "%i %li %li",
485 				   lr->count, lr->time, lr->max);
486 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
487 				unsigned long bt = lr->backtrace[q];
488 				if (!bt)
489 					break;
490 				if (bt == ULONG_MAX)
491 					break;
492 				seq_printf(m, " %ps", (void *)bt);
493 			}
494 			seq_putc(m, '\n');
495 		}
496 
497 	}
498 	put_task_struct(task);
499 	return 0;
500 }
501 
502 static int lstats_open(struct inode *inode, struct file *file)
503 {
504 	return single_open(file, lstats_show_proc, inode);
505 }
506 
507 static ssize_t lstats_write(struct file *file, const char __user *buf,
508 			    size_t count, loff_t *offs)
509 {
510 	struct task_struct *task = get_proc_task(file_inode(file));
511 
512 	if (!task)
513 		return -ESRCH;
514 	clear_all_latency_tracing(task);
515 	put_task_struct(task);
516 
517 	return count;
518 }
519 
520 static const struct file_operations proc_lstats_operations = {
521 	.open		= lstats_open,
522 	.read		= seq_read,
523 	.write		= lstats_write,
524 	.llseek		= seq_lseek,
525 	.release	= single_release,
526 };
527 
528 #endif
529 
530 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
531 			  struct pid *pid, struct task_struct *task)
532 {
533 	unsigned long totalpages = totalram_pages() + total_swap_pages;
534 	unsigned long points = 0;
535 
536 	points = oom_badness(task, NULL, NULL, totalpages) *
537 					1000 / totalpages;
538 	seq_printf(m, "%lu\n", points);
539 
540 	return 0;
541 }
542 
543 struct limit_names {
544 	const char *name;
545 	const char *unit;
546 };
547 
548 static const struct limit_names lnames[RLIM_NLIMITS] = {
549 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
550 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
551 	[RLIMIT_DATA] = {"Max data size", "bytes"},
552 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
553 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
554 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
555 	[RLIMIT_NPROC] = {"Max processes", "processes"},
556 	[RLIMIT_NOFILE] = {"Max open files", "files"},
557 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
558 	[RLIMIT_AS] = {"Max address space", "bytes"},
559 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
560 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
561 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
562 	[RLIMIT_NICE] = {"Max nice priority", NULL},
563 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
564 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
565 };
566 
567 /* Display limits for a process */
568 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
569 			   struct pid *pid, struct task_struct *task)
570 {
571 	unsigned int i;
572 	unsigned long flags;
573 
574 	struct rlimit rlim[RLIM_NLIMITS];
575 
576 	if (!lock_task_sighand(task, &flags))
577 		return 0;
578 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
579 	unlock_task_sighand(task, &flags);
580 
581 	/*
582 	 * print the file header
583 	 */
584 	seq_puts(m, "Limit                     "
585 		"Soft Limit           "
586 		"Hard Limit           "
587 		"Units     \n");
588 
589 	for (i = 0; i < RLIM_NLIMITS; i++) {
590 		if (rlim[i].rlim_cur == RLIM_INFINITY)
591 			seq_printf(m, "%-25s %-20s ",
592 				   lnames[i].name, "unlimited");
593 		else
594 			seq_printf(m, "%-25s %-20lu ",
595 				   lnames[i].name, rlim[i].rlim_cur);
596 
597 		if (rlim[i].rlim_max == RLIM_INFINITY)
598 			seq_printf(m, "%-20s ", "unlimited");
599 		else
600 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
601 
602 		if (lnames[i].unit)
603 			seq_printf(m, "%-10s\n", lnames[i].unit);
604 		else
605 			seq_putc(m, '\n');
606 	}
607 
608 	return 0;
609 }
610 
611 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
612 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
613 			    struct pid *pid, struct task_struct *task)
614 {
615 	long nr;
616 	unsigned long args[6], sp, pc;
617 	int res;
618 
619 	res = lock_trace(task);
620 	if (res)
621 		return res;
622 
623 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
624 		seq_puts(m, "running\n");
625 	else if (nr < 0)
626 		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
627 	else
628 		seq_printf(m,
629 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
630 		       nr,
631 		       args[0], args[1], args[2], args[3], args[4], args[5],
632 		       sp, pc);
633 	unlock_trace(task);
634 
635 	return 0;
636 }
637 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
638 
639 /************************************************************************/
640 /*                       Here the fs part begins                        */
641 /************************************************************************/
642 
643 /* permission checks */
644 static int proc_fd_access_allowed(struct inode *inode)
645 {
646 	struct task_struct *task;
647 	int allowed = 0;
648 	/* Allow access to a task's file descriptors if it is us or we
649 	 * may use ptrace attach to the process and find out that
650 	 * information.
651 	 */
652 	task = get_proc_task(inode);
653 	if (task) {
654 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
655 		put_task_struct(task);
656 	}
657 	return allowed;
658 }
659 
660 int proc_setattr(struct dentry *dentry, struct iattr *attr)
661 {
662 	int error;
663 	struct inode *inode = d_inode(dentry);
664 
665 	if (attr->ia_valid & ATTR_MODE)
666 		return -EPERM;
667 
668 	error = setattr_prepare(dentry, attr);
669 	if (error)
670 		return error;
671 
672 	setattr_copy(inode, attr);
673 	mark_inode_dirty(inode);
674 	return 0;
675 }
676 
677 /*
678  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
679  * or euid/egid (for hide_pid_min=2)?
680  */
681 static bool has_pid_permissions(struct pid_namespace *pid,
682 				 struct task_struct *task,
683 				 int hide_pid_min)
684 {
685 	if (pid->hide_pid < hide_pid_min)
686 		return true;
687 	if (in_group_p(pid->pid_gid))
688 		return true;
689 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
690 }
691 
692 
693 static int proc_pid_permission(struct inode *inode, int mask)
694 {
695 	struct pid_namespace *pid = proc_pid_ns(inode);
696 	struct task_struct *task;
697 	bool has_perms;
698 
699 	task = get_proc_task(inode);
700 	if (!task)
701 		return -ESRCH;
702 	has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
703 	put_task_struct(task);
704 
705 	if (!has_perms) {
706 		if (pid->hide_pid == HIDEPID_INVISIBLE) {
707 			/*
708 			 * Let's make getdents(), stat(), and open()
709 			 * consistent with each other.  If a process
710 			 * may not stat() a file, it shouldn't be seen
711 			 * in procfs at all.
712 			 */
713 			return -ENOENT;
714 		}
715 
716 		return -EPERM;
717 	}
718 	return generic_permission(inode, mask);
719 }
720 
721 
722 
723 static const struct inode_operations proc_def_inode_operations = {
724 	.setattr	= proc_setattr,
725 };
726 
727 static int proc_single_show(struct seq_file *m, void *v)
728 {
729 	struct inode *inode = m->private;
730 	struct pid_namespace *ns = proc_pid_ns(inode);
731 	struct pid *pid = proc_pid(inode);
732 	struct task_struct *task;
733 	int ret;
734 
735 	task = get_pid_task(pid, PIDTYPE_PID);
736 	if (!task)
737 		return -ESRCH;
738 
739 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
740 
741 	put_task_struct(task);
742 	return ret;
743 }
744 
745 static int proc_single_open(struct inode *inode, struct file *filp)
746 {
747 	return single_open(filp, proc_single_show, inode);
748 }
749 
750 static const struct file_operations proc_single_file_operations = {
751 	.open		= proc_single_open,
752 	.read		= seq_read,
753 	.llseek		= seq_lseek,
754 	.release	= single_release,
755 };
756 
757 
758 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
759 {
760 	struct task_struct *task = get_proc_task(inode);
761 	struct mm_struct *mm = ERR_PTR(-ESRCH);
762 
763 	if (task) {
764 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
765 		put_task_struct(task);
766 
767 		if (!IS_ERR_OR_NULL(mm)) {
768 			/* ensure this mm_struct can't be freed */
769 			mmgrab(mm);
770 			/* but do not pin its memory */
771 			mmput(mm);
772 		}
773 	}
774 
775 	return mm;
776 }
777 
778 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
779 {
780 	struct mm_struct *mm = proc_mem_open(inode, mode);
781 
782 	if (IS_ERR(mm))
783 		return PTR_ERR(mm);
784 
785 	file->private_data = mm;
786 	return 0;
787 }
788 
789 static int mem_open(struct inode *inode, struct file *file)
790 {
791 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
792 
793 	/* OK to pass negative loff_t, we can catch out-of-range */
794 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
795 
796 	return ret;
797 }
798 
799 static ssize_t mem_rw(struct file *file, char __user *buf,
800 			size_t count, loff_t *ppos, int write)
801 {
802 	struct mm_struct *mm = file->private_data;
803 	unsigned long addr = *ppos;
804 	ssize_t copied;
805 	char *page;
806 	unsigned int flags;
807 
808 	if (!mm)
809 		return 0;
810 
811 	page = (char *)__get_free_page(GFP_KERNEL);
812 	if (!page)
813 		return -ENOMEM;
814 
815 	copied = 0;
816 	if (!mmget_not_zero(mm))
817 		goto free;
818 
819 	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
820 
821 	while (count > 0) {
822 		int this_len = min_t(int, count, PAGE_SIZE);
823 
824 		if (write && copy_from_user(page, buf, this_len)) {
825 			copied = -EFAULT;
826 			break;
827 		}
828 
829 		this_len = access_remote_vm(mm, addr, page, this_len, flags);
830 		if (!this_len) {
831 			if (!copied)
832 				copied = -EIO;
833 			break;
834 		}
835 
836 		if (!write && copy_to_user(buf, page, this_len)) {
837 			copied = -EFAULT;
838 			break;
839 		}
840 
841 		buf += this_len;
842 		addr += this_len;
843 		copied += this_len;
844 		count -= this_len;
845 	}
846 	*ppos = addr;
847 
848 	mmput(mm);
849 free:
850 	free_page((unsigned long) page);
851 	return copied;
852 }
853 
854 static ssize_t mem_read(struct file *file, char __user *buf,
855 			size_t count, loff_t *ppos)
856 {
857 	return mem_rw(file, buf, count, ppos, 0);
858 }
859 
860 static ssize_t mem_write(struct file *file, const char __user *buf,
861 			 size_t count, loff_t *ppos)
862 {
863 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
864 }
865 
866 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
867 {
868 	switch (orig) {
869 	case 0:
870 		file->f_pos = offset;
871 		break;
872 	case 1:
873 		file->f_pos += offset;
874 		break;
875 	default:
876 		return -EINVAL;
877 	}
878 	force_successful_syscall_return();
879 	return file->f_pos;
880 }
881 
882 static int mem_release(struct inode *inode, struct file *file)
883 {
884 	struct mm_struct *mm = file->private_data;
885 	if (mm)
886 		mmdrop(mm);
887 	return 0;
888 }
889 
890 static const struct file_operations proc_mem_operations = {
891 	.llseek		= mem_lseek,
892 	.read		= mem_read,
893 	.write		= mem_write,
894 	.open		= mem_open,
895 	.release	= mem_release,
896 };
897 
898 static int environ_open(struct inode *inode, struct file *file)
899 {
900 	return __mem_open(inode, file, PTRACE_MODE_READ);
901 }
902 
903 static ssize_t environ_read(struct file *file, char __user *buf,
904 			size_t count, loff_t *ppos)
905 {
906 	char *page;
907 	unsigned long src = *ppos;
908 	int ret = 0;
909 	struct mm_struct *mm = file->private_data;
910 	unsigned long env_start, env_end;
911 
912 	/* Ensure the process spawned far enough to have an environment. */
913 	if (!mm || !mm->env_end)
914 		return 0;
915 
916 	page = (char *)__get_free_page(GFP_KERNEL);
917 	if (!page)
918 		return -ENOMEM;
919 
920 	ret = 0;
921 	if (!mmget_not_zero(mm))
922 		goto free;
923 
924 	spin_lock(&mm->arg_lock);
925 	env_start = mm->env_start;
926 	env_end = mm->env_end;
927 	spin_unlock(&mm->arg_lock);
928 
929 	while (count > 0) {
930 		size_t this_len, max_len;
931 		int retval;
932 
933 		if (src >= (env_end - env_start))
934 			break;
935 
936 		this_len = env_end - (env_start + src);
937 
938 		max_len = min_t(size_t, PAGE_SIZE, count);
939 		this_len = min(max_len, this_len);
940 
941 		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
942 
943 		if (retval <= 0) {
944 			ret = retval;
945 			break;
946 		}
947 
948 		if (copy_to_user(buf, page, retval)) {
949 			ret = -EFAULT;
950 			break;
951 		}
952 
953 		ret += retval;
954 		src += retval;
955 		buf += retval;
956 		count -= retval;
957 	}
958 	*ppos = src;
959 	mmput(mm);
960 
961 free:
962 	free_page((unsigned long) page);
963 	return ret;
964 }
965 
966 static const struct file_operations proc_environ_operations = {
967 	.open		= environ_open,
968 	.read		= environ_read,
969 	.llseek		= generic_file_llseek,
970 	.release	= mem_release,
971 };
972 
973 static int auxv_open(struct inode *inode, struct file *file)
974 {
975 	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
976 }
977 
978 static ssize_t auxv_read(struct file *file, char __user *buf,
979 			size_t count, loff_t *ppos)
980 {
981 	struct mm_struct *mm = file->private_data;
982 	unsigned int nwords = 0;
983 
984 	if (!mm)
985 		return 0;
986 	do {
987 		nwords += 2;
988 	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
989 	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
990 				       nwords * sizeof(mm->saved_auxv[0]));
991 }
992 
993 static const struct file_operations proc_auxv_operations = {
994 	.open		= auxv_open,
995 	.read		= auxv_read,
996 	.llseek		= generic_file_llseek,
997 	.release	= mem_release,
998 };
999 
1000 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1001 			    loff_t *ppos)
1002 {
1003 	struct task_struct *task = get_proc_task(file_inode(file));
1004 	char buffer[PROC_NUMBUF];
1005 	int oom_adj = OOM_ADJUST_MIN;
1006 	size_t len;
1007 
1008 	if (!task)
1009 		return -ESRCH;
1010 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1011 		oom_adj = OOM_ADJUST_MAX;
1012 	else
1013 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1014 			  OOM_SCORE_ADJ_MAX;
1015 	put_task_struct(task);
1016 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1017 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1018 }
1019 
1020 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1021 {
1022 	static DEFINE_MUTEX(oom_adj_mutex);
1023 	struct mm_struct *mm = NULL;
1024 	struct task_struct *task;
1025 	int err = 0;
1026 
1027 	task = get_proc_task(file_inode(file));
1028 	if (!task)
1029 		return -ESRCH;
1030 
1031 	mutex_lock(&oom_adj_mutex);
1032 	if (legacy) {
1033 		if (oom_adj < task->signal->oom_score_adj &&
1034 				!capable(CAP_SYS_RESOURCE)) {
1035 			err = -EACCES;
1036 			goto err_unlock;
1037 		}
1038 		/*
1039 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1040 		 * /proc/pid/oom_score_adj instead.
1041 		 */
1042 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1043 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1044 			  task_pid_nr(task));
1045 	} else {
1046 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1047 				!capable(CAP_SYS_RESOURCE)) {
1048 			err = -EACCES;
1049 			goto err_unlock;
1050 		}
1051 	}
1052 
1053 	/*
1054 	 * Make sure we will check other processes sharing the mm if this is
1055 	 * not vfrok which wants its own oom_score_adj.
1056 	 * pin the mm so it doesn't go away and get reused after task_unlock
1057 	 */
1058 	if (!task->vfork_done) {
1059 		struct task_struct *p = find_lock_task_mm(task);
1060 
1061 		if (p) {
1062 			if (atomic_read(&p->mm->mm_users) > 1) {
1063 				mm = p->mm;
1064 				mmgrab(mm);
1065 			}
1066 			task_unlock(p);
1067 		}
1068 	}
1069 
1070 	task->signal->oom_score_adj = oom_adj;
1071 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1072 		task->signal->oom_score_adj_min = (short)oom_adj;
1073 	trace_oom_score_adj_update(task);
1074 
1075 	if (mm) {
1076 		struct task_struct *p;
1077 
1078 		rcu_read_lock();
1079 		for_each_process(p) {
1080 			if (same_thread_group(task, p))
1081 				continue;
1082 
1083 			/* do not touch kernel threads or the global init */
1084 			if (p->flags & PF_KTHREAD || is_global_init(p))
1085 				continue;
1086 
1087 			task_lock(p);
1088 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1089 				p->signal->oom_score_adj = oom_adj;
1090 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1091 					p->signal->oom_score_adj_min = (short)oom_adj;
1092 			}
1093 			task_unlock(p);
1094 		}
1095 		rcu_read_unlock();
1096 		mmdrop(mm);
1097 	}
1098 err_unlock:
1099 	mutex_unlock(&oom_adj_mutex);
1100 	put_task_struct(task);
1101 	return err;
1102 }
1103 
1104 /*
1105  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1106  * kernels.  The effective policy is defined by oom_score_adj, which has a
1107  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1108  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1109  * Processes that become oom disabled via oom_adj will still be oom disabled
1110  * with this implementation.
1111  *
1112  * oom_adj cannot be removed since existing userspace binaries use it.
1113  */
1114 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1115 			     size_t count, loff_t *ppos)
1116 {
1117 	char buffer[PROC_NUMBUF];
1118 	int oom_adj;
1119 	int err;
1120 
1121 	memset(buffer, 0, sizeof(buffer));
1122 	if (count > sizeof(buffer) - 1)
1123 		count = sizeof(buffer) - 1;
1124 	if (copy_from_user(buffer, buf, count)) {
1125 		err = -EFAULT;
1126 		goto out;
1127 	}
1128 
1129 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1130 	if (err)
1131 		goto out;
1132 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1133 	     oom_adj != OOM_DISABLE) {
1134 		err = -EINVAL;
1135 		goto out;
1136 	}
1137 
1138 	/*
1139 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1140 	 * value is always attainable.
1141 	 */
1142 	if (oom_adj == OOM_ADJUST_MAX)
1143 		oom_adj = OOM_SCORE_ADJ_MAX;
1144 	else
1145 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1146 
1147 	err = __set_oom_adj(file, oom_adj, true);
1148 out:
1149 	return err < 0 ? err : count;
1150 }
1151 
1152 static const struct file_operations proc_oom_adj_operations = {
1153 	.read		= oom_adj_read,
1154 	.write		= oom_adj_write,
1155 	.llseek		= generic_file_llseek,
1156 };
1157 
1158 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1159 					size_t count, loff_t *ppos)
1160 {
1161 	struct task_struct *task = get_proc_task(file_inode(file));
1162 	char buffer[PROC_NUMBUF];
1163 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1164 	size_t len;
1165 
1166 	if (!task)
1167 		return -ESRCH;
1168 	oom_score_adj = task->signal->oom_score_adj;
1169 	put_task_struct(task);
1170 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1171 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1172 }
1173 
1174 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1175 					size_t count, loff_t *ppos)
1176 {
1177 	char buffer[PROC_NUMBUF];
1178 	int oom_score_adj;
1179 	int err;
1180 
1181 	memset(buffer, 0, sizeof(buffer));
1182 	if (count > sizeof(buffer) - 1)
1183 		count = sizeof(buffer) - 1;
1184 	if (copy_from_user(buffer, buf, count)) {
1185 		err = -EFAULT;
1186 		goto out;
1187 	}
1188 
1189 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1190 	if (err)
1191 		goto out;
1192 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1193 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1194 		err = -EINVAL;
1195 		goto out;
1196 	}
1197 
1198 	err = __set_oom_adj(file, oom_score_adj, false);
1199 out:
1200 	return err < 0 ? err : count;
1201 }
1202 
1203 static const struct file_operations proc_oom_score_adj_operations = {
1204 	.read		= oom_score_adj_read,
1205 	.write		= oom_score_adj_write,
1206 	.llseek		= default_llseek,
1207 };
1208 
1209 #ifdef CONFIG_AUDITSYSCALL
1210 #define TMPBUFLEN 11
1211 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1212 				  size_t count, loff_t *ppos)
1213 {
1214 	struct inode * inode = file_inode(file);
1215 	struct task_struct *task = get_proc_task(inode);
1216 	ssize_t length;
1217 	char tmpbuf[TMPBUFLEN];
1218 
1219 	if (!task)
1220 		return -ESRCH;
1221 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1222 			   from_kuid(file->f_cred->user_ns,
1223 				     audit_get_loginuid(task)));
1224 	put_task_struct(task);
1225 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1226 }
1227 
1228 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1229 				   size_t count, loff_t *ppos)
1230 {
1231 	struct inode * inode = file_inode(file);
1232 	uid_t loginuid;
1233 	kuid_t kloginuid;
1234 	int rv;
1235 
1236 	rcu_read_lock();
1237 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1238 		rcu_read_unlock();
1239 		return -EPERM;
1240 	}
1241 	rcu_read_unlock();
1242 
1243 	if (*ppos != 0) {
1244 		/* No partial writes. */
1245 		return -EINVAL;
1246 	}
1247 
1248 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1249 	if (rv < 0)
1250 		return rv;
1251 
1252 	/* is userspace tring to explicitly UNSET the loginuid? */
1253 	if (loginuid == AUDIT_UID_UNSET) {
1254 		kloginuid = INVALID_UID;
1255 	} else {
1256 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1257 		if (!uid_valid(kloginuid))
1258 			return -EINVAL;
1259 	}
1260 
1261 	rv = audit_set_loginuid(kloginuid);
1262 	if (rv < 0)
1263 		return rv;
1264 	return count;
1265 }
1266 
1267 static const struct file_operations proc_loginuid_operations = {
1268 	.read		= proc_loginuid_read,
1269 	.write		= proc_loginuid_write,
1270 	.llseek		= generic_file_llseek,
1271 };
1272 
1273 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1274 				  size_t count, loff_t *ppos)
1275 {
1276 	struct inode * inode = file_inode(file);
1277 	struct task_struct *task = get_proc_task(inode);
1278 	ssize_t length;
1279 	char tmpbuf[TMPBUFLEN];
1280 
1281 	if (!task)
1282 		return -ESRCH;
1283 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1284 				audit_get_sessionid(task));
1285 	put_task_struct(task);
1286 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1287 }
1288 
1289 static const struct file_operations proc_sessionid_operations = {
1290 	.read		= proc_sessionid_read,
1291 	.llseek		= generic_file_llseek,
1292 };
1293 #endif
1294 
1295 #ifdef CONFIG_FAULT_INJECTION
1296 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1297 				      size_t count, loff_t *ppos)
1298 {
1299 	struct task_struct *task = get_proc_task(file_inode(file));
1300 	char buffer[PROC_NUMBUF];
1301 	size_t len;
1302 	int make_it_fail;
1303 
1304 	if (!task)
1305 		return -ESRCH;
1306 	make_it_fail = task->make_it_fail;
1307 	put_task_struct(task);
1308 
1309 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1310 
1311 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1312 }
1313 
1314 static ssize_t proc_fault_inject_write(struct file * file,
1315 			const char __user * buf, size_t count, loff_t *ppos)
1316 {
1317 	struct task_struct *task;
1318 	char buffer[PROC_NUMBUF];
1319 	int make_it_fail;
1320 	int rv;
1321 
1322 	if (!capable(CAP_SYS_RESOURCE))
1323 		return -EPERM;
1324 	memset(buffer, 0, sizeof(buffer));
1325 	if (count > sizeof(buffer) - 1)
1326 		count = sizeof(buffer) - 1;
1327 	if (copy_from_user(buffer, buf, count))
1328 		return -EFAULT;
1329 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1330 	if (rv < 0)
1331 		return rv;
1332 	if (make_it_fail < 0 || make_it_fail > 1)
1333 		return -EINVAL;
1334 
1335 	task = get_proc_task(file_inode(file));
1336 	if (!task)
1337 		return -ESRCH;
1338 	task->make_it_fail = make_it_fail;
1339 	put_task_struct(task);
1340 
1341 	return count;
1342 }
1343 
1344 static const struct file_operations proc_fault_inject_operations = {
1345 	.read		= proc_fault_inject_read,
1346 	.write		= proc_fault_inject_write,
1347 	.llseek		= generic_file_llseek,
1348 };
1349 
1350 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1351 				   size_t count, loff_t *ppos)
1352 {
1353 	struct task_struct *task;
1354 	int err;
1355 	unsigned int n;
1356 
1357 	err = kstrtouint_from_user(buf, count, 0, &n);
1358 	if (err)
1359 		return err;
1360 
1361 	task = get_proc_task(file_inode(file));
1362 	if (!task)
1363 		return -ESRCH;
1364 	task->fail_nth = n;
1365 	put_task_struct(task);
1366 
1367 	return count;
1368 }
1369 
1370 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1371 				  size_t count, loff_t *ppos)
1372 {
1373 	struct task_struct *task;
1374 	char numbuf[PROC_NUMBUF];
1375 	ssize_t len;
1376 
1377 	task = get_proc_task(file_inode(file));
1378 	if (!task)
1379 		return -ESRCH;
1380 	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1381 	put_task_struct(task);
1382 	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1383 }
1384 
1385 static const struct file_operations proc_fail_nth_operations = {
1386 	.read		= proc_fail_nth_read,
1387 	.write		= proc_fail_nth_write,
1388 };
1389 #endif
1390 
1391 
1392 #ifdef CONFIG_SCHED_DEBUG
1393 /*
1394  * Print out various scheduling related per-task fields:
1395  */
1396 static int sched_show(struct seq_file *m, void *v)
1397 {
1398 	struct inode *inode = m->private;
1399 	struct pid_namespace *ns = proc_pid_ns(inode);
1400 	struct task_struct *p;
1401 
1402 	p = get_proc_task(inode);
1403 	if (!p)
1404 		return -ESRCH;
1405 	proc_sched_show_task(p, ns, m);
1406 
1407 	put_task_struct(p);
1408 
1409 	return 0;
1410 }
1411 
1412 static ssize_t
1413 sched_write(struct file *file, const char __user *buf,
1414 	    size_t count, loff_t *offset)
1415 {
1416 	struct inode *inode = file_inode(file);
1417 	struct task_struct *p;
1418 
1419 	p = get_proc_task(inode);
1420 	if (!p)
1421 		return -ESRCH;
1422 	proc_sched_set_task(p);
1423 
1424 	put_task_struct(p);
1425 
1426 	return count;
1427 }
1428 
1429 static int sched_open(struct inode *inode, struct file *filp)
1430 {
1431 	return single_open(filp, sched_show, inode);
1432 }
1433 
1434 static const struct file_operations proc_pid_sched_operations = {
1435 	.open		= sched_open,
1436 	.read		= seq_read,
1437 	.write		= sched_write,
1438 	.llseek		= seq_lseek,
1439 	.release	= single_release,
1440 };
1441 
1442 #endif
1443 
1444 #ifdef CONFIG_SCHED_AUTOGROUP
1445 /*
1446  * Print out autogroup related information:
1447  */
1448 static int sched_autogroup_show(struct seq_file *m, void *v)
1449 {
1450 	struct inode *inode = m->private;
1451 	struct task_struct *p;
1452 
1453 	p = get_proc_task(inode);
1454 	if (!p)
1455 		return -ESRCH;
1456 	proc_sched_autogroup_show_task(p, m);
1457 
1458 	put_task_struct(p);
1459 
1460 	return 0;
1461 }
1462 
1463 static ssize_t
1464 sched_autogroup_write(struct file *file, const char __user *buf,
1465 	    size_t count, loff_t *offset)
1466 {
1467 	struct inode *inode = file_inode(file);
1468 	struct task_struct *p;
1469 	char buffer[PROC_NUMBUF];
1470 	int nice;
1471 	int err;
1472 
1473 	memset(buffer, 0, sizeof(buffer));
1474 	if (count > sizeof(buffer) - 1)
1475 		count = sizeof(buffer) - 1;
1476 	if (copy_from_user(buffer, buf, count))
1477 		return -EFAULT;
1478 
1479 	err = kstrtoint(strstrip(buffer), 0, &nice);
1480 	if (err < 0)
1481 		return err;
1482 
1483 	p = get_proc_task(inode);
1484 	if (!p)
1485 		return -ESRCH;
1486 
1487 	err = proc_sched_autogroup_set_nice(p, nice);
1488 	if (err)
1489 		count = err;
1490 
1491 	put_task_struct(p);
1492 
1493 	return count;
1494 }
1495 
1496 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1497 {
1498 	int ret;
1499 
1500 	ret = single_open(filp, sched_autogroup_show, NULL);
1501 	if (!ret) {
1502 		struct seq_file *m = filp->private_data;
1503 
1504 		m->private = inode;
1505 	}
1506 	return ret;
1507 }
1508 
1509 static const struct file_operations proc_pid_sched_autogroup_operations = {
1510 	.open		= sched_autogroup_open,
1511 	.read		= seq_read,
1512 	.write		= sched_autogroup_write,
1513 	.llseek		= seq_lseek,
1514 	.release	= single_release,
1515 };
1516 
1517 #endif /* CONFIG_SCHED_AUTOGROUP */
1518 
1519 static ssize_t comm_write(struct file *file, const char __user *buf,
1520 				size_t count, loff_t *offset)
1521 {
1522 	struct inode *inode = file_inode(file);
1523 	struct task_struct *p;
1524 	char buffer[TASK_COMM_LEN];
1525 	const size_t maxlen = sizeof(buffer) - 1;
1526 
1527 	memset(buffer, 0, sizeof(buffer));
1528 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1529 		return -EFAULT;
1530 
1531 	p = get_proc_task(inode);
1532 	if (!p)
1533 		return -ESRCH;
1534 
1535 	if (same_thread_group(current, p))
1536 		set_task_comm(p, buffer);
1537 	else
1538 		count = -EINVAL;
1539 
1540 	put_task_struct(p);
1541 
1542 	return count;
1543 }
1544 
1545 static int comm_show(struct seq_file *m, void *v)
1546 {
1547 	struct inode *inode = m->private;
1548 	struct task_struct *p;
1549 
1550 	p = get_proc_task(inode);
1551 	if (!p)
1552 		return -ESRCH;
1553 
1554 	proc_task_name(m, p, false);
1555 	seq_putc(m, '\n');
1556 
1557 	put_task_struct(p);
1558 
1559 	return 0;
1560 }
1561 
1562 static int comm_open(struct inode *inode, struct file *filp)
1563 {
1564 	return single_open(filp, comm_show, inode);
1565 }
1566 
1567 static const struct file_operations proc_pid_set_comm_operations = {
1568 	.open		= comm_open,
1569 	.read		= seq_read,
1570 	.write		= comm_write,
1571 	.llseek		= seq_lseek,
1572 	.release	= single_release,
1573 };
1574 
1575 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1576 {
1577 	struct task_struct *task;
1578 	struct file *exe_file;
1579 
1580 	task = get_proc_task(d_inode(dentry));
1581 	if (!task)
1582 		return -ENOENT;
1583 	exe_file = get_task_exe_file(task);
1584 	put_task_struct(task);
1585 	if (exe_file) {
1586 		*exe_path = exe_file->f_path;
1587 		path_get(&exe_file->f_path);
1588 		fput(exe_file);
1589 		return 0;
1590 	} else
1591 		return -ENOENT;
1592 }
1593 
1594 static const char *proc_pid_get_link(struct dentry *dentry,
1595 				     struct inode *inode,
1596 				     struct delayed_call *done)
1597 {
1598 	struct path path;
1599 	int error = -EACCES;
1600 
1601 	if (!dentry)
1602 		return ERR_PTR(-ECHILD);
1603 
1604 	/* Are we allowed to snoop on the tasks file descriptors? */
1605 	if (!proc_fd_access_allowed(inode))
1606 		goto out;
1607 
1608 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1609 	if (error)
1610 		goto out;
1611 
1612 	nd_jump_link(&path);
1613 	return NULL;
1614 out:
1615 	return ERR_PTR(error);
1616 }
1617 
1618 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1619 {
1620 	char *tmp = (char *)__get_free_page(GFP_KERNEL);
1621 	char *pathname;
1622 	int len;
1623 
1624 	if (!tmp)
1625 		return -ENOMEM;
1626 
1627 	pathname = d_path(path, tmp, PAGE_SIZE);
1628 	len = PTR_ERR(pathname);
1629 	if (IS_ERR(pathname))
1630 		goto out;
1631 	len = tmp + PAGE_SIZE - 1 - pathname;
1632 
1633 	if (len > buflen)
1634 		len = buflen;
1635 	if (copy_to_user(buffer, pathname, len))
1636 		len = -EFAULT;
1637  out:
1638 	free_page((unsigned long)tmp);
1639 	return len;
1640 }
1641 
1642 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1643 {
1644 	int error = -EACCES;
1645 	struct inode *inode = d_inode(dentry);
1646 	struct path path;
1647 
1648 	/* Are we allowed to snoop on the tasks file descriptors? */
1649 	if (!proc_fd_access_allowed(inode))
1650 		goto out;
1651 
1652 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1653 	if (error)
1654 		goto out;
1655 
1656 	error = do_proc_readlink(&path, buffer, buflen);
1657 	path_put(&path);
1658 out:
1659 	return error;
1660 }
1661 
1662 const struct inode_operations proc_pid_link_inode_operations = {
1663 	.readlink	= proc_pid_readlink,
1664 	.get_link	= proc_pid_get_link,
1665 	.setattr	= proc_setattr,
1666 };
1667 
1668 
1669 /* building an inode */
1670 
1671 void task_dump_owner(struct task_struct *task, umode_t mode,
1672 		     kuid_t *ruid, kgid_t *rgid)
1673 {
1674 	/* Depending on the state of dumpable compute who should own a
1675 	 * proc file for a task.
1676 	 */
1677 	const struct cred *cred;
1678 	kuid_t uid;
1679 	kgid_t gid;
1680 
1681 	if (unlikely(task->flags & PF_KTHREAD)) {
1682 		*ruid = GLOBAL_ROOT_UID;
1683 		*rgid = GLOBAL_ROOT_GID;
1684 		return;
1685 	}
1686 
1687 	/* Default to the tasks effective ownership */
1688 	rcu_read_lock();
1689 	cred = __task_cred(task);
1690 	uid = cred->euid;
1691 	gid = cred->egid;
1692 	rcu_read_unlock();
1693 
1694 	/*
1695 	 * Before the /proc/pid/status file was created the only way to read
1696 	 * the effective uid of a /process was to stat /proc/pid.  Reading
1697 	 * /proc/pid/status is slow enough that procps and other packages
1698 	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1699 	 * made this apply to all per process world readable and executable
1700 	 * directories.
1701 	 */
1702 	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1703 		struct mm_struct *mm;
1704 		task_lock(task);
1705 		mm = task->mm;
1706 		/* Make non-dumpable tasks owned by some root */
1707 		if (mm) {
1708 			if (get_dumpable(mm) != SUID_DUMP_USER) {
1709 				struct user_namespace *user_ns = mm->user_ns;
1710 
1711 				uid = make_kuid(user_ns, 0);
1712 				if (!uid_valid(uid))
1713 					uid = GLOBAL_ROOT_UID;
1714 
1715 				gid = make_kgid(user_ns, 0);
1716 				if (!gid_valid(gid))
1717 					gid = GLOBAL_ROOT_GID;
1718 			}
1719 		} else {
1720 			uid = GLOBAL_ROOT_UID;
1721 			gid = GLOBAL_ROOT_GID;
1722 		}
1723 		task_unlock(task);
1724 	}
1725 	*ruid = uid;
1726 	*rgid = gid;
1727 }
1728 
1729 struct inode *proc_pid_make_inode(struct super_block * sb,
1730 				  struct task_struct *task, umode_t mode)
1731 {
1732 	struct inode * inode;
1733 	struct proc_inode *ei;
1734 
1735 	/* We need a new inode */
1736 
1737 	inode = new_inode(sb);
1738 	if (!inode)
1739 		goto out;
1740 
1741 	/* Common stuff */
1742 	ei = PROC_I(inode);
1743 	inode->i_mode = mode;
1744 	inode->i_ino = get_next_ino();
1745 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1746 	inode->i_op = &proc_def_inode_operations;
1747 
1748 	/*
1749 	 * grab the reference to task.
1750 	 */
1751 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1752 	if (!ei->pid)
1753 		goto out_unlock;
1754 
1755 	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1756 	security_task_to_inode(task, inode);
1757 
1758 out:
1759 	return inode;
1760 
1761 out_unlock:
1762 	iput(inode);
1763 	return NULL;
1764 }
1765 
1766 int pid_getattr(const struct path *path, struct kstat *stat,
1767 		u32 request_mask, unsigned int query_flags)
1768 {
1769 	struct inode *inode = d_inode(path->dentry);
1770 	struct pid_namespace *pid = proc_pid_ns(inode);
1771 	struct task_struct *task;
1772 
1773 	generic_fillattr(inode, stat);
1774 
1775 	stat->uid = GLOBAL_ROOT_UID;
1776 	stat->gid = GLOBAL_ROOT_GID;
1777 	rcu_read_lock();
1778 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1779 	if (task) {
1780 		if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1781 			rcu_read_unlock();
1782 			/*
1783 			 * This doesn't prevent learning whether PID exists,
1784 			 * it only makes getattr() consistent with readdir().
1785 			 */
1786 			return -ENOENT;
1787 		}
1788 		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1789 	}
1790 	rcu_read_unlock();
1791 	return 0;
1792 }
1793 
1794 /* dentry stuff */
1795 
1796 /*
1797  * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1798  */
1799 void pid_update_inode(struct task_struct *task, struct inode *inode)
1800 {
1801 	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1802 
1803 	inode->i_mode &= ~(S_ISUID | S_ISGID);
1804 	security_task_to_inode(task, inode);
1805 }
1806 
1807 /*
1808  * Rewrite the inode's ownerships here because the owning task may have
1809  * performed a setuid(), etc.
1810  *
1811  */
1812 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1813 {
1814 	struct inode *inode;
1815 	struct task_struct *task;
1816 
1817 	if (flags & LOOKUP_RCU)
1818 		return -ECHILD;
1819 
1820 	inode = d_inode(dentry);
1821 	task = get_proc_task(inode);
1822 
1823 	if (task) {
1824 		pid_update_inode(task, inode);
1825 		put_task_struct(task);
1826 		return 1;
1827 	}
1828 	return 0;
1829 }
1830 
1831 static inline bool proc_inode_is_dead(struct inode *inode)
1832 {
1833 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1834 }
1835 
1836 int pid_delete_dentry(const struct dentry *dentry)
1837 {
1838 	/* Is the task we represent dead?
1839 	 * If so, then don't put the dentry on the lru list,
1840 	 * kill it immediately.
1841 	 */
1842 	return proc_inode_is_dead(d_inode(dentry));
1843 }
1844 
1845 const struct dentry_operations pid_dentry_operations =
1846 {
1847 	.d_revalidate	= pid_revalidate,
1848 	.d_delete	= pid_delete_dentry,
1849 };
1850 
1851 /* Lookups */
1852 
1853 /*
1854  * Fill a directory entry.
1855  *
1856  * If possible create the dcache entry and derive our inode number and
1857  * file type from dcache entry.
1858  *
1859  * Since all of the proc inode numbers are dynamically generated, the inode
1860  * numbers do not exist until the inode is cache.  This means creating the
1861  * the dcache entry in readdir is necessary to keep the inode numbers
1862  * reported by readdir in sync with the inode numbers reported
1863  * by stat.
1864  */
1865 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1866 	const char *name, unsigned int len,
1867 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1868 {
1869 	struct dentry *child, *dir = file->f_path.dentry;
1870 	struct qstr qname = QSTR_INIT(name, len);
1871 	struct inode *inode;
1872 	unsigned type = DT_UNKNOWN;
1873 	ino_t ino = 1;
1874 
1875 	child = d_hash_and_lookup(dir, &qname);
1876 	if (!child) {
1877 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1878 		child = d_alloc_parallel(dir, &qname, &wq);
1879 		if (IS_ERR(child))
1880 			goto end_instantiate;
1881 		if (d_in_lookup(child)) {
1882 			struct dentry *res;
1883 			res = instantiate(child, task, ptr);
1884 			d_lookup_done(child);
1885 			if (unlikely(res)) {
1886 				dput(child);
1887 				child = res;
1888 				if (IS_ERR(child))
1889 					goto end_instantiate;
1890 			}
1891 		}
1892 	}
1893 	inode = d_inode(child);
1894 	ino = inode->i_ino;
1895 	type = inode->i_mode >> 12;
1896 	dput(child);
1897 end_instantiate:
1898 	return dir_emit(ctx, name, len, ino, type);
1899 }
1900 
1901 /*
1902  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1903  * which represent vma start and end addresses.
1904  */
1905 static int dname_to_vma_addr(struct dentry *dentry,
1906 			     unsigned long *start, unsigned long *end)
1907 {
1908 	const char *str = dentry->d_name.name;
1909 	unsigned long long sval, eval;
1910 	unsigned int len;
1911 
1912 	if (str[0] == '0' && str[1] != '-')
1913 		return -EINVAL;
1914 	len = _parse_integer(str, 16, &sval);
1915 	if (len & KSTRTOX_OVERFLOW)
1916 		return -EINVAL;
1917 	if (sval != (unsigned long)sval)
1918 		return -EINVAL;
1919 	str += len;
1920 
1921 	if (*str != '-')
1922 		return -EINVAL;
1923 	str++;
1924 
1925 	if (str[0] == '0' && str[1])
1926 		return -EINVAL;
1927 	len = _parse_integer(str, 16, &eval);
1928 	if (len & KSTRTOX_OVERFLOW)
1929 		return -EINVAL;
1930 	if (eval != (unsigned long)eval)
1931 		return -EINVAL;
1932 	str += len;
1933 
1934 	if (*str != '\0')
1935 		return -EINVAL;
1936 
1937 	*start = sval;
1938 	*end = eval;
1939 
1940 	return 0;
1941 }
1942 
1943 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1944 {
1945 	unsigned long vm_start, vm_end;
1946 	bool exact_vma_exists = false;
1947 	struct mm_struct *mm = NULL;
1948 	struct task_struct *task;
1949 	struct inode *inode;
1950 	int status = 0;
1951 
1952 	if (flags & LOOKUP_RCU)
1953 		return -ECHILD;
1954 
1955 	inode = d_inode(dentry);
1956 	task = get_proc_task(inode);
1957 	if (!task)
1958 		goto out_notask;
1959 
1960 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1961 	if (IS_ERR_OR_NULL(mm))
1962 		goto out;
1963 
1964 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1965 		down_read(&mm->mmap_sem);
1966 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1967 		up_read(&mm->mmap_sem);
1968 	}
1969 
1970 	mmput(mm);
1971 
1972 	if (exact_vma_exists) {
1973 		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1974 
1975 		security_task_to_inode(task, inode);
1976 		status = 1;
1977 	}
1978 
1979 out:
1980 	put_task_struct(task);
1981 
1982 out_notask:
1983 	return status;
1984 }
1985 
1986 static const struct dentry_operations tid_map_files_dentry_operations = {
1987 	.d_revalidate	= map_files_d_revalidate,
1988 	.d_delete	= pid_delete_dentry,
1989 };
1990 
1991 static int map_files_get_link(struct dentry *dentry, struct path *path)
1992 {
1993 	unsigned long vm_start, vm_end;
1994 	struct vm_area_struct *vma;
1995 	struct task_struct *task;
1996 	struct mm_struct *mm;
1997 	int rc;
1998 
1999 	rc = -ENOENT;
2000 	task = get_proc_task(d_inode(dentry));
2001 	if (!task)
2002 		goto out;
2003 
2004 	mm = get_task_mm(task);
2005 	put_task_struct(task);
2006 	if (!mm)
2007 		goto out;
2008 
2009 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2010 	if (rc)
2011 		goto out_mmput;
2012 
2013 	rc = -ENOENT;
2014 	down_read(&mm->mmap_sem);
2015 	vma = find_exact_vma(mm, vm_start, vm_end);
2016 	if (vma && vma->vm_file) {
2017 		*path = vma->vm_file->f_path;
2018 		path_get(path);
2019 		rc = 0;
2020 	}
2021 	up_read(&mm->mmap_sem);
2022 
2023 out_mmput:
2024 	mmput(mm);
2025 out:
2026 	return rc;
2027 }
2028 
2029 struct map_files_info {
2030 	unsigned long	start;
2031 	unsigned long	end;
2032 	fmode_t		mode;
2033 };
2034 
2035 /*
2036  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2037  * symlinks may be used to bypass permissions on ancestor directories in the
2038  * path to the file in question.
2039  */
2040 static const char *
2041 proc_map_files_get_link(struct dentry *dentry,
2042 			struct inode *inode,
2043 		        struct delayed_call *done)
2044 {
2045 	if (!capable(CAP_SYS_ADMIN))
2046 		return ERR_PTR(-EPERM);
2047 
2048 	return proc_pid_get_link(dentry, inode, done);
2049 }
2050 
2051 /*
2052  * Identical to proc_pid_link_inode_operations except for get_link()
2053  */
2054 static const struct inode_operations proc_map_files_link_inode_operations = {
2055 	.readlink	= proc_pid_readlink,
2056 	.get_link	= proc_map_files_get_link,
2057 	.setattr	= proc_setattr,
2058 };
2059 
2060 static struct dentry *
2061 proc_map_files_instantiate(struct dentry *dentry,
2062 			   struct task_struct *task, const void *ptr)
2063 {
2064 	fmode_t mode = (fmode_t)(unsigned long)ptr;
2065 	struct proc_inode *ei;
2066 	struct inode *inode;
2067 
2068 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2069 				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2070 				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2071 	if (!inode)
2072 		return ERR_PTR(-ENOENT);
2073 
2074 	ei = PROC_I(inode);
2075 	ei->op.proc_get_link = map_files_get_link;
2076 
2077 	inode->i_op = &proc_map_files_link_inode_operations;
2078 	inode->i_size = 64;
2079 
2080 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2081 	return d_splice_alias(inode, dentry);
2082 }
2083 
2084 static struct dentry *proc_map_files_lookup(struct inode *dir,
2085 		struct dentry *dentry, unsigned int flags)
2086 {
2087 	unsigned long vm_start, vm_end;
2088 	struct vm_area_struct *vma;
2089 	struct task_struct *task;
2090 	struct dentry *result;
2091 	struct mm_struct *mm;
2092 
2093 	result = ERR_PTR(-ENOENT);
2094 	task = get_proc_task(dir);
2095 	if (!task)
2096 		goto out;
2097 
2098 	result = ERR_PTR(-EACCES);
2099 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2100 		goto out_put_task;
2101 
2102 	result = ERR_PTR(-ENOENT);
2103 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2104 		goto out_put_task;
2105 
2106 	mm = get_task_mm(task);
2107 	if (!mm)
2108 		goto out_put_task;
2109 
2110 	down_read(&mm->mmap_sem);
2111 	vma = find_exact_vma(mm, vm_start, vm_end);
2112 	if (!vma)
2113 		goto out_no_vma;
2114 
2115 	if (vma->vm_file)
2116 		result = proc_map_files_instantiate(dentry, task,
2117 				(void *)(unsigned long)vma->vm_file->f_mode);
2118 
2119 out_no_vma:
2120 	up_read(&mm->mmap_sem);
2121 	mmput(mm);
2122 out_put_task:
2123 	put_task_struct(task);
2124 out:
2125 	return result;
2126 }
2127 
2128 static const struct inode_operations proc_map_files_inode_operations = {
2129 	.lookup		= proc_map_files_lookup,
2130 	.permission	= proc_fd_permission,
2131 	.setattr	= proc_setattr,
2132 };
2133 
2134 static int
2135 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2136 {
2137 	struct vm_area_struct *vma;
2138 	struct task_struct *task;
2139 	struct mm_struct *mm;
2140 	unsigned long nr_files, pos, i;
2141 	struct flex_array *fa = NULL;
2142 	struct map_files_info info;
2143 	struct map_files_info *p;
2144 	int ret;
2145 
2146 	ret = -ENOENT;
2147 	task = get_proc_task(file_inode(file));
2148 	if (!task)
2149 		goto out;
2150 
2151 	ret = -EACCES;
2152 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2153 		goto out_put_task;
2154 
2155 	ret = 0;
2156 	if (!dir_emit_dots(file, ctx))
2157 		goto out_put_task;
2158 
2159 	mm = get_task_mm(task);
2160 	if (!mm)
2161 		goto out_put_task;
2162 	down_read(&mm->mmap_sem);
2163 
2164 	nr_files = 0;
2165 
2166 	/*
2167 	 * We need two passes here:
2168 	 *
2169 	 *  1) Collect vmas of mapped files with mmap_sem taken
2170 	 *  2) Release mmap_sem and instantiate entries
2171 	 *
2172 	 * otherwise we get lockdep complained, since filldir()
2173 	 * routine might require mmap_sem taken in might_fault().
2174 	 */
2175 
2176 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2177 		if (vma->vm_file && ++pos > ctx->pos)
2178 			nr_files++;
2179 	}
2180 
2181 	if (nr_files) {
2182 		fa = flex_array_alloc(sizeof(info), nr_files,
2183 					GFP_KERNEL);
2184 		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2185 						GFP_KERNEL)) {
2186 			ret = -ENOMEM;
2187 			if (fa)
2188 				flex_array_free(fa);
2189 			up_read(&mm->mmap_sem);
2190 			mmput(mm);
2191 			goto out_put_task;
2192 		}
2193 		for (i = 0, vma = mm->mmap, pos = 2; vma;
2194 				vma = vma->vm_next) {
2195 			if (!vma->vm_file)
2196 				continue;
2197 			if (++pos <= ctx->pos)
2198 				continue;
2199 
2200 			info.start = vma->vm_start;
2201 			info.end = vma->vm_end;
2202 			info.mode = vma->vm_file->f_mode;
2203 			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2204 				BUG();
2205 		}
2206 	}
2207 	up_read(&mm->mmap_sem);
2208 	mmput(mm);
2209 
2210 	for (i = 0; i < nr_files; i++) {
2211 		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2212 		unsigned int len;
2213 
2214 		p = flex_array_get(fa, i);
2215 		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2216 		if (!proc_fill_cache(file, ctx,
2217 				      buf, len,
2218 				      proc_map_files_instantiate,
2219 				      task,
2220 				      (void *)(unsigned long)p->mode))
2221 			break;
2222 		ctx->pos++;
2223 	}
2224 	if (fa)
2225 		flex_array_free(fa);
2226 
2227 out_put_task:
2228 	put_task_struct(task);
2229 out:
2230 	return ret;
2231 }
2232 
2233 static const struct file_operations proc_map_files_operations = {
2234 	.read		= generic_read_dir,
2235 	.iterate_shared	= proc_map_files_readdir,
2236 	.llseek		= generic_file_llseek,
2237 };
2238 
2239 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2240 struct timers_private {
2241 	struct pid *pid;
2242 	struct task_struct *task;
2243 	struct sighand_struct *sighand;
2244 	struct pid_namespace *ns;
2245 	unsigned long flags;
2246 };
2247 
2248 static void *timers_start(struct seq_file *m, loff_t *pos)
2249 {
2250 	struct timers_private *tp = m->private;
2251 
2252 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2253 	if (!tp->task)
2254 		return ERR_PTR(-ESRCH);
2255 
2256 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2257 	if (!tp->sighand)
2258 		return ERR_PTR(-ESRCH);
2259 
2260 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2261 }
2262 
2263 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2264 {
2265 	struct timers_private *tp = m->private;
2266 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2267 }
2268 
2269 static void timers_stop(struct seq_file *m, void *v)
2270 {
2271 	struct timers_private *tp = m->private;
2272 
2273 	if (tp->sighand) {
2274 		unlock_task_sighand(tp->task, &tp->flags);
2275 		tp->sighand = NULL;
2276 	}
2277 
2278 	if (tp->task) {
2279 		put_task_struct(tp->task);
2280 		tp->task = NULL;
2281 	}
2282 }
2283 
2284 static int show_timer(struct seq_file *m, void *v)
2285 {
2286 	struct k_itimer *timer;
2287 	struct timers_private *tp = m->private;
2288 	int notify;
2289 	static const char * const nstr[] = {
2290 		[SIGEV_SIGNAL] = "signal",
2291 		[SIGEV_NONE] = "none",
2292 		[SIGEV_THREAD] = "thread",
2293 	};
2294 
2295 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2296 	notify = timer->it_sigev_notify;
2297 
2298 	seq_printf(m, "ID: %d\n", timer->it_id);
2299 	seq_printf(m, "signal: %d/%px\n",
2300 		   timer->sigq->info.si_signo,
2301 		   timer->sigq->info.si_value.sival_ptr);
2302 	seq_printf(m, "notify: %s/%s.%d\n",
2303 		   nstr[notify & ~SIGEV_THREAD_ID],
2304 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2305 		   pid_nr_ns(timer->it_pid, tp->ns));
2306 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2307 
2308 	return 0;
2309 }
2310 
2311 static const struct seq_operations proc_timers_seq_ops = {
2312 	.start	= timers_start,
2313 	.next	= timers_next,
2314 	.stop	= timers_stop,
2315 	.show	= show_timer,
2316 };
2317 
2318 static int proc_timers_open(struct inode *inode, struct file *file)
2319 {
2320 	struct timers_private *tp;
2321 
2322 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2323 			sizeof(struct timers_private));
2324 	if (!tp)
2325 		return -ENOMEM;
2326 
2327 	tp->pid = proc_pid(inode);
2328 	tp->ns = proc_pid_ns(inode);
2329 	return 0;
2330 }
2331 
2332 static const struct file_operations proc_timers_operations = {
2333 	.open		= proc_timers_open,
2334 	.read		= seq_read,
2335 	.llseek		= seq_lseek,
2336 	.release	= seq_release_private,
2337 };
2338 #endif
2339 
2340 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2341 					size_t count, loff_t *offset)
2342 {
2343 	struct inode *inode = file_inode(file);
2344 	struct task_struct *p;
2345 	u64 slack_ns;
2346 	int err;
2347 
2348 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2349 	if (err < 0)
2350 		return err;
2351 
2352 	p = get_proc_task(inode);
2353 	if (!p)
2354 		return -ESRCH;
2355 
2356 	if (p != current) {
2357 		rcu_read_lock();
2358 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2359 			rcu_read_unlock();
2360 			count = -EPERM;
2361 			goto out;
2362 		}
2363 		rcu_read_unlock();
2364 
2365 		err = security_task_setscheduler(p);
2366 		if (err) {
2367 			count = err;
2368 			goto out;
2369 		}
2370 	}
2371 
2372 	task_lock(p);
2373 	if (slack_ns == 0)
2374 		p->timer_slack_ns = p->default_timer_slack_ns;
2375 	else
2376 		p->timer_slack_ns = slack_ns;
2377 	task_unlock(p);
2378 
2379 out:
2380 	put_task_struct(p);
2381 
2382 	return count;
2383 }
2384 
2385 static int timerslack_ns_show(struct seq_file *m, void *v)
2386 {
2387 	struct inode *inode = m->private;
2388 	struct task_struct *p;
2389 	int err = 0;
2390 
2391 	p = get_proc_task(inode);
2392 	if (!p)
2393 		return -ESRCH;
2394 
2395 	if (p != current) {
2396 		rcu_read_lock();
2397 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2398 			rcu_read_unlock();
2399 			err = -EPERM;
2400 			goto out;
2401 		}
2402 		rcu_read_unlock();
2403 
2404 		err = security_task_getscheduler(p);
2405 		if (err)
2406 			goto out;
2407 	}
2408 
2409 	task_lock(p);
2410 	seq_printf(m, "%llu\n", p->timer_slack_ns);
2411 	task_unlock(p);
2412 
2413 out:
2414 	put_task_struct(p);
2415 
2416 	return err;
2417 }
2418 
2419 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2420 {
2421 	return single_open(filp, timerslack_ns_show, inode);
2422 }
2423 
2424 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2425 	.open		= timerslack_ns_open,
2426 	.read		= seq_read,
2427 	.write		= timerslack_ns_write,
2428 	.llseek		= seq_lseek,
2429 	.release	= single_release,
2430 };
2431 
2432 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2433 	struct task_struct *task, const void *ptr)
2434 {
2435 	const struct pid_entry *p = ptr;
2436 	struct inode *inode;
2437 	struct proc_inode *ei;
2438 
2439 	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2440 	if (!inode)
2441 		return ERR_PTR(-ENOENT);
2442 
2443 	ei = PROC_I(inode);
2444 	if (S_ISDIR(inode->i_mode))
2445 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2446 	if (p->iop)
2447 		inode->i_op = p->iop;
2448 	if (p->fop)
2449 		inode->i_fop = p->fop;
2450 	ei->op = p->op;
2451 	pid_update_inode(task, inode);
2452 	d_set_d_op(dentry, &pid_dentry_operations);
2453 	return d_splice_alias(inode, dentry);
2454 }
2455 
2456 static struct dentry *proc_pident_lookup(struct inode *dir,
2457 					 struct dentry *dentry,
2458 					 const struct pid_entry *ents,
2459 					 unsigned int nents)
2460 {
2461 	struct task_struct *task = get_proc_task(dir);
2462 	const struct pid_entry *p, *last;
2463 	struct dentry *res = ERR_PTR(-ENOENT);
2464 
2465 	if (!task)
2466 		goto out_no_task;
2467 
2468 	/*
2469 	 * Yes, it does not scale. And it should not. Don't add
2470 	 * new entries into /proc/<tgid>/ without very good reasons.
2471 	 */
2472 	last = &ents[nents];
2473 	for (p = ents; p < last; p++) {
2474 		if (p->len != dentry->d_name.len)
2475 			continue;
2476 		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2477 			res = proc_pident_instantiate(dentry, task, p);
2478 			break;
2479 		}
2480 	}
2481 	put_task_struct(task);
2482 out_no_task:
2483 	return res;
2484 }
2485 
2486 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2487 		const struct pid_entry *ents, unsigned int nents)
2488 {
2489 	struct task_struct *task = get_proc_task(file_inode(file));
2490 	const struct pid_entry *p;
2491 
2492 	if (!task)
2493 		return -ENOENT;
2494 
2495 	if (!dir_emit_dots(file, ctx))
2496 		goto out;
2497 
2498 	if (ctx->pos >= nents + 2)
2499 		goto out;
2500 
2501 	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2502 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2503 				proc_pident_instantiate, task, p))
2504 			break;
2505 		ctx->pos++;
2506 	}
2507 out:
2508 	put_task_struct(task);
2509 	return 0;
2510 }
2511 
2512 #ifdef CONFIG_SECURITY
2513 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2514 				  size_t count, loff_t *ppos)
2515 {
2516 	struct inode * inode = file_inode(file);
2517 	char *p = NULL;
2518 	ssize_t length;
2519 	struct task_struct *task = get_proc_task(inode);
2520 
2521 	if (!task)
2522 		return -ESRCH;
2523 
2524 	length = security_getprocattr(task,
2525 				      (char*)file->f_path.dentry->d_name.name,
2526 				      &p);
2527 	put_task_struct(task);
2528 	if (length > 0)
2529 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2530 	kfree(p);
2531 	return length;
2532 }
2533 
2534 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2535 				   size_t count, loff_t *ppos)
2536 {
2537 	struct inode * inode = file_inode(file);
2538 	struct task_struct *task;
2539 	void *page;
2540 	int rv;
2541 
2542 	rcu_read_lock();
2543 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2544 	if (!task) {
2545 		rcu_read_unlock();
2546 		return -ESRCH;
2547 	}
2548 	/* A task may only write its own attributes. */
2549 	if (current != task) {
2550 		rcu_read_unlock();
2551 		return -EACCES;
2552 	}
2553 	rcu_read_unlock();
2554 
2555 	if (count > PAGE_SIZE)
2556 		count = PAGE_SIZE;
2557 
2558 	/* No partial writes. */
2559 	if (*ppos != 0)
2560 		return -EINVAL;
2561 
2562 	page = memdup_user(buf, count);
2563 	if (IS_ERR(page)) {
2564 		rv = PTR_ERR(page);
2565 		goto out;
2566 	}
2567 
2568 	/* Guard against adverse ptrace interaction */
2569 	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2570 	if (rv < 0)
2571 		goto out_free;
2572 
2573 	rv = security_setprocattr(file->f_path.dentry->d_name.name, page, count);
2574 	mutex_unlock(&current->signal->cred_guard_mutex);
2575 out_free:
2576 	kfree(page);
2577 out:
2578 	return rv;
2579 }
2580 
2581 static const struct file_operations proc_pid_attr_operations = {
2582 	.read		= proc_pid_attr_read,
2583 	.write		= proc_pid_attr_write,
2584 	.llseek		= generic_file_llseek,
2585 };
2586 
2587 static const struct pid_entry attr_dir_stuff[] = {
2588 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2589 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2590 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2591 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2592 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2593 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2594 };
2595 
2596 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2597 {
2598 	return proc_pident_readdir(file, ctx,
2599 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2600 }
2601 
2602 static const struct file_operations proc_attr_dir_operations = {
2603 	.read		= generic_read_dir,
2604 	.iterate_shared	= proc_attr_dir_readdir,
2605 	.llseek		= generic_file_llseek,
2606 };
2607 
2608 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2609 				struct dentry *dentry, unsigned int flags)
2610 {
2611 	return proc_pident_lookup(dir, dentry,
2612 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2613 }
2614 
2615 static const struct inode_operations proc_attr_dir_inode_operations = {
2616 	.lookup		= proc_attr_dir_lookup,
2617 	.getattr	= pid_getattr,
2618 	.setattr	= proc_setattr,
2619 };
2620 
2621 #endif
2622 
2623 #ifdef CONFIG_ELF_CORE
2624 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2625 					 size_t count, loff_t *ppos)
2626 {
2627 	struct task_struct *task = get_proc_task(file_inode(file));
2628 	struct mm_struct *mm;
2629 	char buffer[PROC_NUMBUF];
2630 	size_t len;
2631 	int ret;
2632 
2633 	if (!task)
2634 		return -ESRCH;
2635 
2636 	ret = 0;
2637 	mm = get_task_mm(task);
2638 	if (mm) {
2639 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2640 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2641 				MMF_DUMP_FILTER_SHIFT));
2642 		mmput(mm);
2643 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2644 	}
2645 
2646 	put_task_struct(task);
2647 
2648 	return ret;
2649 }
2650 
2651 static ssize_t proc_coredump_filter_write(struct file *file,
2652 					  const char __user *buf,
2653 					  size_t count,
2654 					  loff_t *ppos)
2655 {
2656 	struct task_struct *task;
2657 	struct mm_struct *mm;
2658 	unsigned int val;
2659 	int ret;
2660 	int i;
2661 	unsigned long mask;
2662 
2663 	ret = kstrtouint_from_user(buf, count, 0, &val);
2664 	if (ret < 0)
2665 		return ret;
2666 
2667 	ret = -ESRCH;
2668 	task = get_proc_task(file_inode(file));
2669 	if (!task)
2670 		goto out_no_task;
2671 
2672 	mm = get_task_mm(task);
2673 	if (!mm)
2674 		goto out_no_mm;
2675 	ret = 0;
2676 
2677 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2678 		if (val & mask)
2679 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2680 		else
2681 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2682 	}
2683 
2684 	mmput(mm);
2685  out_no_mm:
2686 	put_task_struct(task);
2687  out_no_task:
2688 	if (ret < 0)
2689 		return ret;
2690 	return count;
2691 }
2692 
2693 static const struct file_operations proc_coredump_filter_operations = {
2694 	.read		= proc_coredump_filter_read,
2695 	.write		= proc_coredump_filter_write,
2696 	.llseek		= generic_file_llseek,
2697 };
2698 #endif
2699 
2700 #ifdef CONFIG_TASK_IO_ACCOUNTING
2701 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2702 {
2703 	struct task_io_accounting acct = task->ioac;
2704 	unsigned long flags;
2705 	int result;
2706 
2707 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2708 	if (result)
2709 		return result;
2710 
2711 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2712 		result = -EACCES;
2713 		goto out_unlock;
2714 	}
2715 
2716 	if (whole && lock_task_sighand(task, &flags)) {
2717 		struct task_struct *t = task;
2718 
2719 		task_io_accounting_add(&acct, &task->signal->ioac);
2720 		while_each_thread(task, t)
2721 			task_io_accounting_add(&acct, &t->ioac);
2722 
2723 		unlock_task_sighand(task, &flags);
2724 	}
2725 	seq_printf(m,
2726 		   "rchar: %llu\n"
2727 		   "wchar: %llu\n"
2728 		   "syscr: %llu\n"
2729 		   "syscw: %llu\n"
2730 		   "read_bytes: %llu\n"
2731 		   "write_bytes: %llu\n"
2732 		   "cancelled_write_bytes: %llu\n",
2733 		   (unsigned long long)acct.rchar,
2734 		   (unsigned long long)acct.wchar,
2735 		   (unsigned long long)acct.syscr,
2736 		   (unsigned long long)acct.syscw,
2737 		   (unsigned long long)acct.read_bytes,
2738 		   (unsigned long long)acct.write_bytes,
2739 		   (unsigned long long)acct.cancelled_write_bytes);
2740 	result = 0;
2741 
2742 out_unlock:
2743 	mutex_unlock(&task->signal->cred_guard_mutex);
2744 	return result;
2745 }
2746 
2747 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2748 				  struct pid *pid, struct task_struct *task)
2749 {
2750 	return do_io_accounting(task, m, 0);
2751 }
2752 
2753 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2754 				   struct pid *pid, struct task_struct *task)
2755 {
2756 	return do_io_accounting(task, m, 1);
2757 }
2758 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2759 
2760 #ifdef CONFIG_USER_NS
2761 static int proc_id_map_open(struct inode *inode, struct file *file,
2762 	const struct seq_operations *seq_ops)
2763 {
2764 	struct user_namespace *ns = NULL;
2765 	struct task_struct *task;
2766 	struct seq_file *seq;
2767 	int ret = -EINVAL;
2768 
2769 	task = get_proc_task(inode);
2770 	if (task) {
2771 		rcu_read_lock();
2772 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2773 		rcu_read_unlock();
2774 		put_task_struct(task);
2775 	}
2776 	if (!ns)
2777 		goto err;
2778 
2779 	ret = seq_open(file, seq_ops);
2780 	if (ret)
2781 		goto err_put_ns;
2782 
2783 	seq = file->private_data;
2784 	seq->private = ns;
2785 
2786 	return 0;
2787 err_put_ns:
2788 	put_user_ns(ns);
2789 err:
2790 	return ret;
2791 }
2792 
2793 static int proc_id_map_release(struct inode *inode, struct file *file)
2794 {
2795 	struct seq_file *seq = file->private_data;
2796 	struct user_namespace *ns = seq->private;
2797 	put_user_ns(ns);
2798 	return seq_release(inode, file);
2799 }
2800 
2801 static int proc_uid_map_open(struct inode *inode, struct file *file)
2802 {
2803 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2804 }
2805 
2806 static int proc_gid_map_open(struct inode *inode, struct file *file)
2807 {
2808 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2809 }
2810 
2811 static int proc_projid_map_open(struct inode *inode, struct file *file)
2812 {
2813 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2814 }
2815 
2816 static const struct file_operations proc_uid_map_operations = {
2817 	.open		= proc_uid_map_open,
2818 	.write		= proc_uid_map_write,
2819 	.read		= seq_read,
2820 	.llseek		= seq_lseek,
2821 	.release	= proc_id_map_release,
2822 };
2823 
2824 static const struct file_operations proc_gid_map_operations = {
2825 	.open		= proc_gid_map_open,
2826 	.write		= proc_gid_map_write,
2827 	.read		= seq_read,
2828 	.llseek		= seq_lseek,
2829 	.release	= proc_id_map_release,
2830 };
2831 
2832 static const struct file_operations proc_projid_map_operations = {
2833 	.open		= proc_projid_map_open,
2834 	.write		= proc_projid_map_write,
2835 	.read		= seq_read,
2836 	.llseek		= seq_lseek,
2837 	.release	= proc_id_map_release,
2838 };
2839 
2840 static int proc_setgroups_open(struct inode *inode, struct file *file)
2841 {
2842 	struct user_namespace *ns = NULL;
2843 	struct task_struct *task;
2844 	int ret;
2845 
2846 	ret = -ESRCH;
2847 	task = get_proc_task(inode);
2848 	if (task) {
2849 		rcu_read_lock();
2850 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2851 		rcu_read_unlock();
2852 		put_task_struct(task);
2853 	}
2854 	if (!ns)
2855 		goto err;
2856 
2857 	if (file->f_mode & FMODE_WRITE) {
2858 		ret = -EACCES;
2859 		if (!ns_capable(ns, CAP_SYS_ADMIN))
2860 			goto err_put_ns;
2861 	}
2862 
2863 	ret = single_open(file, &proc_setgroups_show, ns);
2864 	if (ret)
2865 		goto err_put_ns;
2866 
2867 	return 0;
2868 err_put_ns:
2869 	put_user_ns(ns);
2870 err:
2871 	return ret;
2872 }
2873 
2874 static int proc_setgroups_release(struct inode *inode, struct file *file)
2875 {
2876 	struct seq_file *seq = file->private_data;
2877 	struct user_namespace *ns = seq->private;
2878 	int ret = single_release(inode, file);
2879 	put_user_ns(ns);
2880 	return ret;
2881 }
2882 
2883 static const struct file_operations proc_setgroups_operations = {
2884 	.open		= proc_setgroups_open,
2885 	.write		= proc_setgroups_write,
2886 	.read		= seq_read,
2887 	.llseek		= seq_lseek,
2888 	.release	= proc_setgroups_release,
2889 };
2890 #endif /* CONFIG_USER_NS */
2891 
2892 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2893 				struct pid *pid, struct task_struct *task)
2894 {
2895 	int err = lock_trace(task);
2896 	if (!err) {
2897 		seq_printf(m, "%08x\n", task->personality);
2898 		unlock_trace(task);
2899 	}
2900 	return err;
2901 }
2902 
2903 #ifdef CONFIG_LIVEPATCH
2904 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2905 				struct pid *pid, struct task_struct *task)
2906 {
2907 	seq_printf(m, "%d\n", task->patch_state);
2908 	return 0;
2909 }
2910 #endif /* CONFIG_LIVEPATCH */
2911 
2912 #ifdef CONFIG_STACKLEAK_METRICS
2913 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
2914 				struct pid *pid, struct task_struct *task)
2915 {
2916 	unsigned long prev_depth = THREAD_SIZE -
2917 				(task->prev_lowest_stack & (THREAD_SIZE - 1));
2918 	unsigned long depth = THREAD_SIZE -
2919 				(task->lowest_stack & (THREAD_SIZE - 1));
2920 
2921 	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
2922 							prev_depth, depth);
2923 	return 0;
2924 }
2925 #endif /* CONFIG_STACKLEAK_METRICS */
2926 
2927 /*
2928  * Thread groups
2929  */
2930 static const struct file_operations proc_task_operations;
2931 static const struct inode_operations proc_task_inode_operations;
2932 
2933 static const struct pid_entry tgid_base_stuff[] = {
2934 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2935 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2936 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2937 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2938 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2939 #ifdef CONFIG_NET
2940 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2941 #endif
2942 	REG("environ",    S_IRUSR, proc_environ_operations),
2943 	REG("auxv",       S_IRUSR, proc_auxv_operations),
2944 	ONE("status",     S_IRUGO, proc_pid_status),
2945 	ONE("personality", S_IRUSR, proc_pid_personality),
2946 	ONE("limits",	  S_IRUGO, proc_pid_limits),
2947 #ifdef CONFIG_SCHED_DEBUG
2948 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2949 #endif
2950 #ifdef CONFIG_SCHED_AUTOGROUP
2951 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2952 #endif
2953 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2954 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2955 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2956 #endif
2957 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2958 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2959 	ONE("statm",      S_IRUGO, proc_pid_statm),
2960 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2961 #ifdef CONFIG_NUMA
2962 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2963 #endif
2964 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2965 	LNK("cwd",        proc_cwd_link),
2966 	LNK("root",       proc_root_link),
2967 	LNK("exe",        proc_exe_link),
2968 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2969 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2970 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2971 #ifdef CONFIG_PROC_PAGE_MONITOR
2972 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2973 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2974 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
2975 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2976 #endif
2977 #ifdef CONFIG_SECURITY
2978 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2979 #endif
2980 #ifdef CONFIG_KALLSYMS
2981 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2982 #endif
2983 #ifdef CONFIG_STACKTRACE
2984 	ONE("stack",      S_IRUSR, proc_pid_stack),
2985 #endif
2986 #ifdef CONFIG_SCHED_INFO
2987 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2988 #endif
2989 #ifdef CONFIG_LATENCYTOP
2990 	REG("latency",  S_IRUGO, proc_lstats_operations),
2991 #endif
2992 #ifdef CONFIG_PROC_PID_CPUSET
2993 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2994 #endif
2995 #ifdef CONFIG_CGROUPS
2996 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2997 #endif
2998 	ONE("oom_score",  S_IRUGO, proc_oom_score),
2999 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3000 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3001 #ifdef CONFIG_AUDITSYSCALL
3002 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3003 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3004 #endif
3005 #ifdef CONFIG_FAULT_INJECTION
3006 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3007 	REG("fail-nth", 0644, proc_fail_nth_operations),
3008 #endif
3009 #ifdef CONFIG_ELF_CORE
3010 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3011 #endif
3012 #ifdef CONFIG_TASK_IO_ACCOUNTING
3013 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3014 #endif
3015 #ifdef CONFIG_USER_NS
3016 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3017 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3018 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3019 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3020 #endif
3021 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3022 	REG("timers",	  S_IRUGO, proc_timers_operations),
3023 #endif
3024 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3025 #ifdef CONFIG_LIVEPATCH
3026 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3027 #endif
3028 #ifdef CONFIG_STACKLEAK_METRICS
3029 	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3030 #endif
3031 };
3032 
3033 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3034 {
3035 	return proc_pident_readdir(file, ctx,
3036 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3037 }
3038 
3039 static const struct file_operations proc_tgid_base_operations = {
3040 	.read		= generic_read_dir,
3041 	.iterate_shared	= proc_tgid_base_readdir,
3042 	.llseek		= generic_file_llseek,
3043 };
3044 
3045 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3046 {
3047 	return proc_pident_lookup(dir, dentry,
3048 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3049 }
3050 
3051 static const struct inode_operations proc_tgid_base_inode_operations = {
3052 	.lookup		= proc_tgid_base_lookup,
3053 	.getattr	= pid_getattr,
3054 	.setattr	= proc_setattr,
3055 	.permission	= proc_pid_permission,
3056 };
3057 
3058 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3059 {
3060 	struct dentry *dentry, *leader, *dir;
3061 	char buf[10 + 1];
3062 	struct qstr name;
3063 
3064 	name.name = buf;
3065 	name.len = snprintf(buf, sizeof(buf), "%u", pid);
3066 	/* no ->d_hash() rejects on procfs */
3067 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3068 	if (dentry) {
3069 		d_invalidate(dentry);
3070 		dput(dentry);
3071 	}
3072 
3073 	if (pid == tgid)
3074 		return;
3075 
3076 	name.name = buf;
3077 	name.len = snprintf(buf, sizeof(buf), "%u", tgid);
3078 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
3079 	if (!leader)
3080 		goto out;
3081 
3082 	name.name = "task";
3083 	name.len = strlen(name.name);
3084 	dir = d_hash_and_lookup(leader, &name);
3085 	if (!dir)
3086 		goto out_put_leader;
3087 
3088 	name.name = buf;
3089 	name.len = snprintf(buf, sizeof(buf), "%u", pid);
3090 	dentry = d_hash_and_lookup(dir, &name);
3091 	if (dentry) {
3092 		d_invalidate(dentry);
3093 		dput(dentry);
3094 	}
3095 
3096 	dput(dir);
3097 out_put_leader:
3098 	dput(leader);
3099 out:
3100 	return;
3101 }
3102 
3103 /**
3104  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3105  * @task: task that should be flushed.
3106  *
3107  * When flushing dentries from proc, one needs to flush them from global
3108  * proc (proc_mnt) and from all the namespaces' procs this task was seen
3109  * in. This call is supposed to do all of this job.
3110  *
3111  * Looks in the dcache for
3112  * /proc/@pid
3113  * /proc/@tgid/task/@pid
3114  * if either directory is present flushes it and all of it'ts children
3115  * from the dcache.
3116  *
3117  * It is safe and reasonable to cache /proc entries for a task until
3118  * that task exits.  After that they just clog up the dcache with
3119  * useless entries, possibly causing useful dcache entries to be
3120  * flushed instead.  This routine is proved to flush those useless
3121  * dcache entries at process exit time.
3122  *
3123  * NOTE: This routine is just an optimization so it does not guarantee
3124  *       that no dcache entries will exist at process exit time it
3125  *       just makes it very unlikely that any will persist.
3126  */
3127 
3128 void proc_flush_task(struct task_struct *task)
3129 {
3130 	int i;
3131 	struct pid *pid, *tgid;
3132 	struct upid *upid;
3133 
3134 	pid = task_pid(task);
3135 	tgid = task_tgid(task);
3136 
3137 	for (i = 0; i <= pid->level; i++) {
3138 		upid = &pid->numbers[i];
3139 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3140 					tgid->numbers[i].nr);
3141 	}
3142 }
3143 
3144 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3145 				   struct task_struct *task, const void *ptr)
3146 {
3147 	struct inode *inode;
3148 
3149 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3150 	if (!inode)
3151 		return ERR_PTR(-ENOENT);
3152 
3153 	inode->i_op = &proc_tgid_base_inode_operations;
3154 	inode->i_fop = &proc_tgid_base_operations;
3155 	inode->i_flags|=S_IMMUTABLE;
3156 
3157 	set_nlink(inode, nlink_tgid);
3158 	pid_update_inode(task, inode);
3159 
3160 	d_set_d_op(dentry, &pid_dentry_operations);
3161 	return d_splice_alias(inode, dentry);
3162 }
3163 
3164 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3165 {
3166 	struct task_struct *task;
3167 	unsigned tgid;
3168 	struct pid_namespace *ns;
3169 	struct dentry *result = ERR_PTR(-ENOENT);
3170 
3171 	tgid = name_to_int(&dentry->d_name);
3172 	if (tgid == ~0U)
3173 		goto out;
3174 
3175 	ns = dentry->d_sb->s_fs_info;
3176 	rcu_read_lock();
3177 	task = find_task_by_pid_ns(tgid, ns);
3178 	if (task)
3179 		get_task_struct(task);
3180 	rcu_read_unlock();
3181 	if (!task)
3182 		goto out;
3183 
3184 	result = proc_pid_instantiate(dentry, task, NULL);
3185 	put_task_struct(task);
3186 out:
3187 	return result;
3188 }
3189 
3190 /*
3191  * Find the first task with tgid >= tgid
3192  *
3193  */
3194 struct tgid_iter {
3195 	unsigned int tgid;
3196 	struct task_struct *task;
3197 };
3198 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3199 {
3200 	struct pid *pid;
3201 
3202 	if (iter.task)
3203 		put_task_struct(iter.task);
3204 	rcu_read_lock();
3205 retry:
3206 	iter.task = NULL;
3207 	pid = find_ge_pid(iter.tgid, ns);
3208 	if (pid) {
3209 		iter.tgid = pid_nr_ns(pid, ns);
3210 		iter.task = pid_task(pid, PIDTYPE_PID);
3211 		/* What we to know is if the pid we have find is the
3212 		 * pid of a thread_group_leader.  Testing for task
3213 		 * being a thread_group_leader is the obvious thing
3214 		 * todo but there is a window when it fails, due to
3215 		 * the pid transfer logic in de_thread.
3216 		 *
3217 		 * So we perform the straight forward test of seeing
3218 		 * if the pid we have found is the pid of a thread
3219 		 * group leader, and don't worry if the task we have
3220 		 * found doesn't happen to be a thread group leader.
3221 		 * As we don't care in the case of readdir.
3222 		 */
3223 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3224 			iter.tgid += 1;
3225 			goto retry;
3226 		}
3227 		get_task_struct(iter.task);
3228 	}
3229 	rcu_read_unlock();
3230 	return iter;
3231 }
3232 
3233 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3234 
3235 /* for the /proc/ directory itself, after non-process stuff has been done */
3236 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3237 {
3238 	struct tgid_iter iter;
3239 	struct pid_namespace *ns = proc_pid_ns(file_inode(file));
3240 	loff_t pos = ctx->pos;
3241 
3242 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3243 		return 0;
3244 
3245 	if (pos == TGID_OFFSET - 2) {
3246 		struct inode *inode = d_inode(ns->proc_self);
3247 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3248 			return 0;
3249 		ctx->pos = pos = pos + 1;
3250 	}
3251 	if (pos == TGID_OFFSET - 1) {
3252 		struct inode *inode = d_inode(ns->proc_thread_self);
3253 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3254 			return 0;
3255 		ctx->pos = pos = pos + 1;
3256 	}
3257 	iter.tgid = pos - TGID_OFFSET;
3258 	iter.task = NULL;
3259 	for (iter = next_tgid(ns, iter);
3260 	     iter.task;
3261 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3262 		char name[10 + 1];
3263 		unsigned int len;
3264 
3265 		cond_resched();
3266 		if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3267 			continue;
3268 
3269 		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3270 		ctx->pos = iter.tgid + TGID_OFFSET;
3271 		if (!proc_fill_cache(file, ctx, name, len,
3272 				     proc_pid_instantiate, iter.task, NULL)) {
3273 			put_task_struct(iter.task);
3274 			return 0;
3275 		}
3276 	}
3277 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3278 	return 0;
3279 }
3280 
3281 /*
3282  * proc_tid_comm_permission is a special permission function exclusively
3283  * used for the node /proc/<pid>/task/<tid>/comm.
3284  * It bypasses generic permission checks in the case where a task of the same
3285  * task group attempts to access the node.
3286  * The rationale behind this is that glibc and bionic access this node for
3287  * cross thread naming (pthread_set/getname_np(!self)). However, if
3288  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3289  * which locks out the cross thread naming implementation.
3290  * This function makes sure that the node is always accessible for members of
3291  * same thread group.
3292  */
3293 static int proc_tid_comm_permission(struct inode *inode, int mask)
3294 {
3295 	bool is_same_tgroup;
3296 	struct task_struct *task;
3297 
3298 	task = get_proc_task(inode);
3299 	if (!task)
3300 		return -ESRCH;
3301 	is_same_tgroup = same_thread_group(current, task);
3302 	put_task_struct(task);
3303 
3304 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3305 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3306 		 * read or written by the members of the corresponding
3307 		 * thread group.
3308 		 */
3309 		return 0;
3310 	}
3311 
3312 	return generic_permission(inode, mask);
3313 }
3314 
3315 static const struct inode_operations proc_tid_comm_inode_operations = {
3316 		.permission = proc_tid_comm_permission,
3317 };
3318 
3319 /*
3320  * Tasks
3321  */
3322 static const struct pid_entry tid_base_stuff[] = {
3323 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3324 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3325 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3326 #ifdef CONFIG_NET
3327 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3328 #endif
3329 	REG("environ",   S_IRUSR, proc_environ_operations),
3330 	REG("auxv",      S_IRUSR, proc_auxv_operations),
3331 	ONE("status",    S_IRUGO, proc_pid_status),
3332 	ONE("personality", S_IRUSR, proc_pid_personality),
3333 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3334 #ifdef CONFIG_SCHED_DEBUG
3335 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3336 #endif
3337 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3338 			 &proc_tid_comm_inode_operations,
3339 			 &proc_pid_set_comm_operations, {}),
3340 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3341 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3342 #endif
3343 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3344 	ONE("stat",      S_IRUGO, proc_tid_stat),
3345 	ONE("statm",     S_IRUGO, proc_pid_statm),
3346 	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3347 #ifdef CONFIG_PROC_CHILDREN
3348 	REG("children",  S_IRUGO, proc_tid_children_operations),
3349 #endif
3350 #ifdef CONFIG_NUMA
3351 	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3352 #endif
3353 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3354 	LNK("cwd",       proc_cwd_link),
3355 	LNK("root",      proc_root_link),
3356 	LNK("exe",       proc_exe_link),
3357 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3358 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3359 #ifdef CONFIG_PROC_PAGE_MONITOR
3360 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3361 	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3362 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3363 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3364 #endif
3365 #ifdef CONFIG_SECURITY
3366 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3367 #endif
3368 #ifdef CONFIG_KALLSYMS
3369 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3370 #endif
3371 #ifdef CONFIG_STACKTRACE
3372 	ONE("stack",      S_IRUSR, proc_pid_stack),
3373 #endif
3374 #ifdef CONFIG_SCHED_INFO
3375 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3376 #endif
3377 #ifdef CONFIG_LATENCYTOP
3378 	REG("latency",  S_IRUGO, proc_lstats_operations),
3379 #endif
3380 #ifdef CONFIG_PROC_PID_CPUSET
3381 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3382 #endif
3383 #ifdef CONFIG_CGROUPS
3384 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3385 #endif
3386 	ONE("oom_score", S_IRUGO, proc_oom_score),
3387 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3388 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3389 #ifdef CONFIG_AUDITSYSCALL
3390 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3391 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3392 #endif
3393 #ifdef CONFIG_FAULT_INJECTION
3394 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3395 	REG("fail-nth", 0644, proc_fail_nth_operations),
3396 #endif
3397 #ifdef CONFIG_TASK_IO_ACCOUNTING
3398 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3399 #endif
3400 #ifdef CONFIG_USER_NS
3401 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3402 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3403 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3404 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3405 #endif
3406 #ifdef CONFIG_LIVEPATCH
3407 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3408 #endif
3409 };
3410 
3411 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3412 {
3413 	return proc_pident_readdir(file, ctx,
3414 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3415 }
3416 
3417 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3418 {
3419 	return proc_pident_lookup(dir, dentry,
3420 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3421 }
3422 
3423 static const struct file_operations proc_tid_base_operations = {
3424 	.read		= generic_read_dir,
3425 	.iterate_shared	= proc_tid_base_readdir,
3426 	.llseek		= generic_file_llseek,
3427 };
3428 
3429 static const struct inode_operations proc_tid_base_inode_operations = {
3430 	.lookup		= proc_tid_base_lookup,
3431 	.getattr	= pid_getattr,
3432 	.setattr	= proc_setattr,
3433 };
3434 
3435 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3436 	struct task_struct *task, const void *ptr)
3437 {
3438 	struct inode *inode;
3439 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3440 	if (!inode)
3441 		return ERR_PTR(-ENOENT);
3442 
3443 	inode->i_op = &proc_tid_base_inode_operations;
3444 	inode->i_fop = &proc_tid_base_operations;
3445 	inode->i_flags |= S_IMMUTABLE;
3446 
3447 	set_nlink(inode, nlink_tid);
3448 	pid_update_inode(task, inode);
3449 
3450 	d_set_d_op(dentry, &pid_dentry_operations);
3451 	return d_splice_alias(inode, dentry);
3452 }
3453 
3454 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3455 {
3456 	struct task_struct *task;
3457 	struct task_struct *leader = get_proc_task(dir);
3458 	unsigned tid;
3459 	struct pid_namespace *ns;
3460 	struct dentry *result = ERR_PTR(-ENOENT);
3461 
3462 	if (!leader)
3463 		goto out_no_task;
3464 
3465 	tid = name_to_int(&dentry->d_name);
3466 	if (tid == ~0U)
3467 		goto out;
3468 
3469 	ns = dentry->d_sb->s_fs_info;
3470 	rcu_read_lock();
3471 	task = find_task_by_pid_ns(tid, ns);
3472 	if (task)
3473 		get_task_struct(task);
3474 	rcu_read_unlock();
3475 	if (!task)
3476 		goto out;
3477 	if (!same_thread_group(leader, task))
3478 		goto out_drop_task;
3479 
3480 	result = proc_task_instantiate(dentry, task, NULL);
3481 out_drop_task:
3482 	put_task_struct(task);
3483 out:
3484 	put_task_struct(leader);
3485 out_no_task:
3486 	return result;
3487 }
3488 
3489 /*
3490  * Find the first tid of a thread group to return to user space.
3491  *
3492  * Usually this is just the thread group leader, but if the users
3493  * buffer was too small or there was a seek into the middle of the
3494  * directory we have more work todo.
3495  *
3496  * In the case of a short read we start with find_task_by_pid.
3497  *
3498  * In the case of a seek we start with the leader and walk nr
3499  * threads past it.
3500  */
3501 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3502 					struct pid_namespace *ns)
3503 {
3504 	struct task_struct *pos, *task;
3505 	unsigned long nr = f_pos;
3506 
3507 	if (nr != f_pos)	/* 32bit overflow? */
3508 		return NULL;
3509 
3510 	rcu_read_lock();
3511 	task = pid_task(pid, PIDTYPE_PID);
3512 	if (!task)
3513 		goto fail;
3514 
3515 	/* Attempt to start with the tid of a thread */
3516 	if (tid && nr) {
3517 		pos = find_task_by_pid_ns(tid, ns);
3518 		if (pos && same_thread_group(pos, task))
3519 			goto found;
3520 	}
3521 
3522 	/* If nr exceeds the number of threads there is nothing todo */
3523 	if (nr >= get_nr_threads(task))
3524 		goto fail;
3525 
3526 	/* If we haven't found our starting place yet start
3527 	 * with the leader and walk nr threads forward.
3528 	 */
3529 	pos = task = task->group_leader;
3530 	do {
3531 		if (!nr--)
3532 			goto found;
3533 	} while_each_thread(task, pos);
3534 fail:
3535 	pos = NULL;
3536 	goto out;
3537 found:
3538 	get_task_struct(pos);
3539 out:
3540 	rcu_read_unlock();
3541 	return pos;
3542 }
3543 
3544 /*
3545  * Find the next thread in the thread list.
3546  * Return NULL if there is an error or no next thread.
3547  *
3548  * The reference to the input task_struct is released.
3549  */
3550 static struct task_struct *next_tid(struct task_struct *start)
3551 {
3552 	struct task_struct *pos = NULL;
3553 	rcu_read_lock();
3554 	if (pid_alive(start)) {
3555 		pos = next_thread(start);
3556 		if (thread_group_leader(pos))
3557 			pos = NULL;
3558 		else
3559 			get_task_struct(pos);
3560 	}
3561 	rcu_read_unlock();
3562 	put_task_struct(start);
3563 	return pos;
3564 }
3565 
3566 /* for the /proc/TGID/task/ directories */
3567 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3568 {
3569 	struct inode *inode = file_inode(file);
3570 	struct task_struct *task;
3571 	struct pid_namespace *ns;
3572 	int tid;
3573 
3574 	if (proc_inode_is_dead(inode))
3575 		return -ENOENT;
3576 
3577 	if (!dir_emit_dots(file, ctx))
3578 		return 0;
3579 
3580 	/* f_version caches the tgid value that the last readdir call couldn't
3581 	 * return. lseek aka telldir automagically resets f_version to 0.
3582 	 */
3583 	ns = proc_pid_ns(inode);
3584 	tid = (int)file->f_version;
3585 	file->f_version = 0;
3586 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3587 	     task;
3588 	     task = next_tid(task), ctx->pos++) {
3589 		char name[10 + 1];
3590 		unsigned int len;
3591 		tid = task_pid_nr_ns(task, ns);
3592 		len = snprintf(name, sizeof(name), "%u", tid);
3593 		if (!proc_fill_cache(file, ctx, name, len,
3594 				proc_task_instantiate, task, NULL)) {
3595 			/* returning this tgid failed, save it as the first
3596 			 * pid for the next readir call */
3597 			file->f_version = (u64)tid;
3598 			put_task_struct(task);
3599 			break;
3600 		}
3601 	}
3602 
3603 	return 0;
3604 }
3605 
3606 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3607 			     u32 request_mask, unsigned int query_flags)
3608 {
3609 	struct inode *inode = d_inode(path->dentry);
3610 	struct task_struct *p = get_proc_task(inode);
3611 	generic_fillattr(inode, stat);
3612 
3613 	if (p) {
3614 		stat->nlink += get_nr_threads(p);
3615 		put_task_struct(p);
3616 	}
3617 
3618 	return 0;
3619 }
3620 
3621 static const struct inode_operations proc_task_inode_operations = {
3622 	.lookup		= proc_task_lookup,
3623 	.getattr	= proc_task_getattr,
3624 	.setattr	= proc_setattr,
3625 	.permission	= proc_pid_permission,
3626 };
3627 
3628 static const struct file_operations proc_task_operations = {
3629 	.read		= generic_read_dir,
3630 	.iterate_shared	= proc_task_readdir,
3631 	.llseek		= generic_file_llseek,
3632 };
3633 
3634 void __init set_proc_pid_nlink(void)
3635 {
3636 	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3637 	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3638 }
3639