xref: /openbmc/linux/fs/proc/base.c (revision 8228a048)
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/flex_array.h>
89 #include <linux/posix-timers.h>
90 #ifdef CONFIG_HARDWALL
91 #include <asm/hardwall.h>
92 #endif
93 #include <trace/events/oom.h>
94 #include "internal.h"
95 #include "fd.h"
96 
97 /* NOTE:
98  *	Implementing inode permission operations in /proc is almost
99  *	certainly an error.  Permission checks need to happen during
100  *	each system call not at open time.  The reason is that most of
101  *	what we wish to check for permissions in /proc varies at runtime.
102  *
103  *	The classic example of a problem is opening file descriptors
104  *	in /proc for a task before it execs a suid executable.
105  */
106 
107 struct pid_entry {
108 	const char *name;
109 	int len;
110 	umode_t mode;
111 	const struct inode_operations *iop;
112 	const struct file_operations *fop;
113 	union proc_op op;
114 };
115 
116 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
117 	.name = (NAME),					\
118 	.len  = sizeof(NAME) - 1,			\
119 	.mode = MODE,					\
120 	.iop  = IOP,					\
121 	.fop  = FOP,					\
122 	.op   = OP,					\
123 }
124 
125 #define DIR(NAME, MODE, iops, fops)	\
126 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
127 #define LNK(NAME, get_link)					\
128 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
129 		&proc_pid_link_inode_operations, NULL,		\
130 		{ .proc_get_link = get_link } )
131 #define REG(NAME, MODE, fops)				\
132 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
133 #define ONE(NAME, MODE, show)				\
134 	NOD(NAME, (S_IFREG|(MODE)), 			\
135 		NULL, &proc_single_file_operations,	\
136 		{ .proc_show = show } )
137 
138 /*
139  * Count the number of hardlinks for the pid_entry table, excluding the .
140  * and .. links.
141  */
142 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
143 	unsigned int n)
144 {
145 	unsigned int i;
146 	unsigned int count;
147 
148 	count = 0;
149 	for (i = 0; i < n; ++i) {
150 		if (S_ISDIR(entries[i].mode))
151 			++count;
152 	}
153 
154 	return count;
155 }
156 
157 static int get_task_root(struct task_struct *task, struct path *root)
158 {
159 	int result = -ENOENT;
160 
161 	task_lock(task);
162 	if (task->fs) {
163 		get_fs_root(task->fs, root);
164 		result = 0;
165 	}
166 	task_unlock(task);
167 	return result;
168 }
169 
170 static int proc_cwd_link(struct dentry *dentry, struct path *path)
171 {
172 	struct task_struct *task = get_proc_task(d_inode(dentry));
173 	int result = -ENOENT;
174 
175 	if (task) {
176 		task_lock(task);
177 		if (task->fs) {
178 			get_fs_pwd(task->fs, path);
179 			result = 0;
180 		}
181 		task_unlock(task);
182 		put_task_struct(task);
183 	}
184 	return result;
185 }
186 
187 static int proc_root_link(struct dentry *dentry, struct path *path)
188 {
189 	struct task_struct *task = get_proc_task(d_inode(dentry));
190 	int result = -ENOENT;
191 
192 	if (task) {
193 		result = get_task_root(task, path);
194 		put_task_struct(task);
195 	}
196 	return result;
197 }
198 
199 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
200 				     size_t _count, loff_t *pos)
201 {
202 	struct task_struct *tsk;
203 	struct mm_struct *mm;
204 	char *page;
205 	unsigned long count = _count;
206 	unsigned long arg_start, arg_end, env_start, env_end;
207 	unsigned long len1, len2, len;
208 	unsigned long p;
209 	char c;
210 	ssize_t rv;
211 
212 	BUG_ON(*pos < 0);
213 
214 	tsk = get_proc_task(file_inode(file));
215 	if (!tsk)
216 		return -ESRCH;
217 	mm = get_task_mm(tsk);
218 	put_task_struct(tsk);
219 	if (!mm)
220 		return 0;
221 	/* Check if process spawned far enough to have cmdline. */
222 	if (!mm->env_end) {
223 		rv = 0;
224 		goto out_mmput;
225 	}
226 
227 	page = (char *)__get_free_page(GFP_TEMPORARY);
228 	if (!page) {
229 		rv = -ENOMEM;
230 		goto out_mmput;
231 	}
232 
233 	down_read(&mm->mmap_sem);
234 	arg_start = mm->arg_start;
235 	arg_end = mm->arg_end;
236 	env_start = mm->env_start;
237 	env_end = mm->env_end;
238 	up_read(&mm->mmap_sem);
239 
240 	BUG_ON(arg_start > arg_end);
241 	BUG_ON(env_start > env_end);
242 
243 	len1 = arg_end - arg_start;
244 	len2 = env_end - env_start;
245 
246 	/*
247 	 * Inherently racy -- command line shares address space
248 	 * with code and data.
249 	 */
250 	rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
251 	if (rv <= 0)
252 		goto out_free_page;
253 
254 	rv = 0;
255 
256 	if (c == '\0') {
257 		/* Command line (set of strings) occupies whole ARGV. */
258 		if (len1 <= *pos)
259 			goto out_free_page;
260 
261 		p = arg_start + *pos;
262 		len = len1 - *pos;
263 		while (count > 0 && len > 0) {
264 			unsigned int _count;
265 			int nr_read;
266 
267 			_count = min3(count, len, PAGE_SIZE);
268 			nr_read = access_remote_vm(mm, p, page, _count, 0);
269 			if (nr_read < 0)
270 				rv = nr_read;
271 			if (nr_read <= 0)
272 				goto out_free_page;
273 
274 			if (copy_to_user(buf, page, nr_read)) {
275 				rv = -EFAULT;
276 				goto out_free_page;
277 			}
278 
279 			p	+= nr_read;
280 			len	-= nr_read;
281 			buf	+= nr_read;
282 			count	-= nr_read;
283 			rv	+= nr_read;
284 		}
285 	} else {
286 		/*
287 		 * Command line (1 string) occupies ARGV and maybe
288 		 * extends into ENVP.
289 		 */
290 		if (len1 + len2 <= *pos)
291 			goto skip_argv_envp;
292 		if (len1 <= *pos)
293 			goto skip_argv;
294 
295 		p = arg_start + *pos;
296 		len = len1 - *pos;
297 		while (count > 0 && len > 0) {
298 			unsigned int _count, l;
299 			int nr_read;
300 			bool final;
301 
302 			_count = min3(count, len, PAGE_SIZE);
303 			nr_read = access_remote_vm(mm, p, page, _count, 0);
304 			if (nr_read < 0)
305 				rv = nr_read;
306 			if (nr_read <= 0)
307 				goto out_free_page;
308 
309 			/*
310 			 * Command line can be shorter than whole ARGV
311 			 * even if last "marker" byte says it is not.
312 			 */
313 			final = false;
314 			l = strnlen(page, nr_read);
315 			if (l < nr_read) {
316 				nr_read = l;
317 				final = true;
318 			}
319 
320 			if (copy_to_user(buf, page, nr_read)) {
321 				rv = -EFAULT;
322 				goto out_free_page;
323 			}
324 
325 			p	+= nr_read;
326 			len	-= nr_read;
327 			buf	+= nr_read;
328 			count	-= nr_read;
329 			rv	+= nr_read;
330 
331 			if (final)
332 				goto out_free_page;
333 		}
334 skip_argv:
335 		/*
336 		 * Command line (1 string) occupies ARGV and
337 		 * extends into ENVP.
338 		 */
339 		if (len1 <= *pos) {
340 			p = env_start + *pos - len1;
341 			len = len1 + len2 - *pos;
342 		} else {
343 			p = env_start;
344 			len = len2;
345 		}
346 		while (count > 0 && len > 0) {
347 			unsigned int _count, l;
348 			int nr_read;
349 			bool final;
350 
351 			_count = min3(count, len, PAGE_SIZE);
352 			nr_read = access_remote_vm(mm, p, page, _count, 0);
353 			if (nr_read < 0)
354 				rv = nr_read;
355 			if (nr_read <= 0)
356 				goto out_free_page;
357 
358 			/* Find EOS. */
359 			final = false;
360 			l = strnlen(page, nr_read);
361 			if (l < nr_read) {
362 				nr_read = l;
363 				final = true;
364 			}
365 
366 			if (copy_to_user(buf, page, nr_read)) {
367 				rv = -EFAULT;
368 				goto out_free_page;
369 			}
370 
371 			p	+= nr_read;
372 			len	-= nr_read;
373 			buf	+= nr_read;
374 			count	-= nr_read;
375 			rv	+= nr_read;
376 
377 			if (final)
378 				goto out_free_page;
379 		}
380 skip_argv_envp:
381 		;
382 	}
383 
384 out_free_page:
385 	free_page((unsigned long)page);
386 out_mmput:
387 	mmput(mm);
388 	if (rv > 0)
389 		*pos += rv;
390 	return rv;
391 }
392 
393 static const struct file_operations proc_pid_cmdline_ops = {
394 	.read	= proc_pid_cmdline_read,
395 	.llseek	= generic_file_llseek,
396 };
397 
398 static int proc_pid_auxv(struct seq_file *m, struct pid_namespace *ns,
399 			 struct pid *pid, struct task_struct *task)
400 {
401 	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
402 	if (mm && !IS_ERR(mm)) {
403 		unsigned int nwords = 0;
404 		do {
405 			nwords += 2;
406 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
407 		seq_write(m, mm->saved_auxv, nwords * sizeof(mm->saved_auxv[0]));
408 		mmput(mm);
409 		return 0;
410 	} else
411 		return PTR_ERR(mm);
412 }
413 
414 
415 #ifdef CONFIG_KALLSYMS
416 /*
417  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
418  * Returns the resolved symbol.  If that fails, simply return the address.
419  */
420 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
421 			  struct pid *pid, struct task_struct *task)
422 {
423 	unsigned long wchan;
424 	char symname[KSYM_NAME_LEN];
425 
426 	wchan = get_wchan(task);
427 
428 	if (lookup_symbol_name(wchan, symname) < 0) {
429 		if (!ptrace_may_access(task, PTRACE_MODE_READ))
430 			return 0;
431 		seq_printf(m, "%lu", wchan);
432 	} else {
433 		seq_printf(m, "%s", symname);
434 	}
435 
436 	return 0;
437 }
438 #endif /* CONFIG_KALLSYMS */
439 
440 static int lock_trace(struct task_struct *task)
441 {
442 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
443 	if (err)
444 		return err;
445 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
446 		mutex_unlock(&task->signal->cred_guard_mutex);
447 		return -EPERM;
448 	}
449 	return 0;
450 }
451 
452 static void unlock_trace(struct task_struct *task)
453 {
454 	mutex_unlock(&task->signal->cred_guard_mutex);
455 }
456 
457 #ifdef CONFIG_STACKTRACE
458 
459 #define MAX_STACK_TRACE_DEPTH	64
460 
461 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
462 			  struct pid *pid, struct task_struct *task)
463 {
464 	struct stack_trace trace;
465 	unsigned long *entries;
466 	int err;
467 	int i;
468 
469 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
470 	if (!entries)
471 		return -ENOMEM;
472 
473 	trace.nr_entries	= 0;
474 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
475 	trace.entries		= entries;
476 	trace.skip		= 0;
477 
478 	err = lock_trace(task);
479 	if (!err) {
480 		save_stack_trace_tsk(task, &trace);
481 
482 		for (i = 0; i < trace.nr_entries; i++) {
483 			seq_printf(m, "[<%pK>] %pS\n",
484 				   (void *)entries[i], (void *)entries[i]);
485 		}
486 		unlock_trace(task);
487 	}
488 	kfree(entries);
489 
490 	return err;
491 }
492 #endif
493 
494 #ifdef CONFIG_SCHED_INFO
495 /*
496  * Provides /proc/PID/schedstat
497  */
498 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
499 			      struct pid *pid, struct task_struct *task)
500 {
501 	if (unlikely(!sched_info_on()))
502 		seq_printf(m, "0 0 0\n");
503 	else
504 		seq_printf(m, "%llu %llu %lu\n",
505 		   (unsigned long long)task->se.sum_exec_runtime,
506 		   (unsigned long long)task->sched_info.run_delay,
507 		   task->sched_info.pcount);
508 
509 	return 0;
510 }
511 #endif
512 
513 #ifdef CONFIG_LATENCYTOP
514 static int lstats_show_proc(struct seq_file *m, void *v)
515 {
516 	int i;
517 	struct inode *inode = m->private;
518 	struct task_struct *task = get_proc_task(inode);
519 
520 	if (!task)
521 		return -ESRCH;
522 	seq_puts(m, "Latency Top version : v0.1\n");
523 	for (i = 0; i < 32; i++) {
524 		struct latency_record *lr = &task->latency_record[i];
525 		if (lr->backtrace[0]) {
526 			int q;
527 			seq_printf(m, "%i %li %li",
528 				   lr->count, lr->time, lr->max);
529 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
530 				unsigned long bt = lr->backtrace[q];
531 				if (!bt)
532 					break;
533 				if (bt == ULONG_MAX)
534 					break;
535 				seq_printf(m, " %ps", (void *)bt);
536 			}
537 			seq_putc(m, '\n');
538 		}
539 
540 	}
541 	put_task_struct(task);
542 	return 0;
543 }
544 
545 static int lstats_open(struct inode *inode, struct file *file)
546 {
547 	return single_open(file, lstats_show_proc, inode);
548 }
549 
550 static ssize_t lstats_write(struct file *file, const char __user *buf,
551 			    size_t count, loff_t *offs)
552 {
553 	struct task_struct *task = get_proc_task(file_inode(file));
554 
555 	if (!task)
556 		return -ESRCH;
557 	clear_all_latency_tracing(task);
558 	put_task_struct(task);
559 
560 	return count;
561 }
562 
563 static const struct file_operations proc_lstats_operations = {
564 	.open		= lstats_open,
565 	.read		= seq_read,
566 	.write		= lstats_write,
567 	.llseek		= seq_lseek,
568 	.release	= single_release,
569 };
570 
571 #endif
572 
573 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
574 			  struct pid *pid, struct task_struct *task)
575 {
576 	unsigned long totalpages = totalram_pages + total_swap_pages;
577 	unsigned long points = 0;
578 
579 	read_lock(&tasklist_lock);
580 	if (pid_alive(task))
581 		points = oom_badness(task, NULL, NULL, totalpages) *
582 						1000 / totalpages;
583 	read_unlock(&tasklist_lock);
584 	seq_printf(m, "%lu\n", points);
585 
586 	return 0;
587 }
588 
589 struct limit_names {
590 	const char *name;
591 	const char *unit;
592 };
593 
594 static const struct limit_names lnames[RLIM_NLIMITS] = {
595 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
596 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
597 	[RLIMIT_DATA] = {"Max data size", "bytes"},
598 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
599 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
600 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
601 	[RLIMIT_NPROC] = {"Max processes", "processes"},
602 	[RLIMIT_NOFILE] = {"Max open files", "files"},
603 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
604 	[RLIMIT_AS] = {"Max address space", "bytes"},
605 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
606 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
607 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
608 	[RLIMIT_NICE] = {"Max nice priority", NULL},
609 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
610 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
611 };
612 
613 /* Display limits for a process */
614 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
615 			   struct pid *pid, struct task_struct *task)
616 {
617 	unsigned int i;
618 	unsigned long flags;
619 
620 	struct rlimit rlim[RLIM_NLIMITS];
621 
622 	if (!lock_task_sighand(task, &flags))
623 		return 0;
624 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
625 	unlock_task_sighand(task, &flags);
626 
627 	/*
628 	 * print the file header
629 	 */
630        seq_printf(m, "%-25s %-20s %-20s %-10s\n",
631 		  "Limit", "Soft Limit", "Hard Limit", "Units");
632 
633 	for (i = 0; i < RLIM_NLIMITS; i++) {
634 		if (rlim[i].rlim_cur == RLIM_INFINITY)
635 			seq_printf(m, "%-25s %-20s ",
636 				   lnames[i].name, "unlimited");
637 		else
638 			seq_printf(m, "%-25s %-20lu ",
639 				   lnames[i].name, rlim[i].rlim_cur);
640 
641 		if (rlim[i].rlim_max == RLIM_INFINITY)
642 			seq_printf(m, "%-20s ", "unlimited");
643 		else
644 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
645 
646 		if (lnames[i].unit)
647 			seq_printf(m, "%-10s\n", lnames[i].unit);
648 		else
649 			seq_putc(m, '\n');
650 	}
651 
652 	return 0;
653 }
654 
655 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
656 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
657 			    struct pid *pid, struct task_struct *task)
658 {
659 	long nr;
660 	unsigned long args[6], sp, pc;
661 	int res;
662 
663 	res = lock_trace(task);
664 	if (res)
665 		return res;
666 
667 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
668 		seq_puts(m, "running\n");
669 	else if (nr < 0)
670 		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
671 	else
672 		seq_printf(m,
673 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
674 		       nr,
675 		       args[0], args[1], args[2], args[3], args[4], args[5],
676 		       sp, pc);
677 	unlock_trace(task);
678 
679 	return 0;
680 }
681 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
682 
683 /************************************************************************/
684 /*                       Here the fs part begins                        */
685 /************************************************************************/
686 
687 /* permission checks */
688 static int proc_fd_access_allowed(struct inode *inode)
689 {
690 	struct task_struct *task;
691 	int allowed = 0;
692 	/* Allow access to a task's file descriptors if it is us or we
693 	 * may use ptrace attach to the process and find out that
694 	 * information.
695 	 */
696 	task = get_proc_task(inode);
697 	if (task) {
698 		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
699 		put_task_struct(task);
700 	}
701 	return allowed;
702 }
703 
704 int proc_setattr(struct dentry *dentry, struct iattr *attr)
705 {
706 	int error;
707 	struct inode *inode = d_inode(dentry);
708 
709 	if (attr->ia_valid & ATTR_MODE)
710 		return -EPERM;
711 
712 	error = inode_change_ok(inode, attr);
713 	if (error)
714 		return error;
715 
716 	setattr_copy(inode, attr);
717 	mark_inode_dirty(inode);
718 	return 0;
719 }
720 
721 /*
722  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
723  * or euid/egid (for hide_pid_min=2)?
724  */
725 static bool has_pid_permissions(struct pid_namespace *pid,
726 				 struct task_struct *task,
727 				 int hide_pid_min)
728 {
729 	if (pid->hide_pid < hide_pid_min)
730 		return true;
731 	if (in_group_p(pid->pid_gid))
732 		return true;
733 	return ptrace_may_access(task, PTRACE_MODE_READ);
734 }
735 
736 
737 static int proc_pid_permission(struct inode *inode, int mask)
738 {
739 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
740 	struct task_struct *task;
741 	bool has_perms;
742 
743 	task = get_proc_task(inode);
744 	if (!task)
745 		return -ESRCH;
746 	has_perms = has_pid_permissions(pid, task, 1);
747 	put_task_struct(task);
748 
749 	if (!has_perms) {
750 		if (pid->hide_pid == 2) {
751 			/*
752 			 * Let's make getdents(), stat(), and open()
753 			 * consistent with each other.  If a process
754 			 * may not stat() a file, it shouldn't be seen
755 			 * in procfs at all.
756 			 */
757 			return -ENOENT;
758 		}
759 
760 		return -EPERM;
761 	}
762 	return generic_permission(inode, mask);
763 }
764 
765 
766 
767 static const struct inode_operations proc_def_inode_operations = {
768 	.setattr	= proc_setattr,
769 };
770 
771 static int proc_single_show(struct seq_file *m, void *v)
772 {
773 	struct inode *inode = m->private;
774 	struct pid_namespace *ns;
775 	struct pid *pid;
776 	struct task_struct *task;
777 	int ret;
778 
779 	ns = inode->i_sb->s_fs_info;
780 	pid = proc_pid(inode);
781 	task = get_pid_task(pid, PIDTYPE_PID);
782 	if (!task)
783 		return -ESRCH;
784 
785 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
786 
787 	put_task_struct(task);
788 	return ret;
789 }
790 
791 static int proc_single_open(struct inode *inode, struct file *filp)
792 {
793 	return single_open(filp, proc_single_show, inode);
794 }
795 
796 static const struct file_operations proc_single_file_operations = {
797 	.open		= proc_single_open,
798 	.read		= seq_read,
799 	.llseek		= seq_lseek,
800 	.release	= single_release,
801 };
802 
803 
804 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
805 {
806 	struct task_struct *task = get_proc_task(inode);
807 	struct mm_struct *mm = ERR_PTR(-ESRCH);
808 
809 	if (task) {
810 		mm = mm_access(task, mode);
811 		put_task_struct(task);
812 
813 		if (!IS_ERR_OR_NULL(mm)) {
814 			/* ensure this mm_struct can't be freed */
815 			atomic_inc(&mm->mm_count);
816 			/* but do not pin its memory */
817 			mmput(mm);
818 		}
819 	}
820 
821 	return mm;
822 }
823 
824 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
825 {
826 	struct mm_struct *mm = proc_mem_open(inode, mode);
827 
828 	if (IS_ERR(mm))
829 		return PTR_ERR(mm);
830 
831 	file->private_data = mm;
832 	return 0;
833 }
834 
835 static int mem_open(struct inode *inode, struct file *file)
836 {
837 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
838 
839 	/* OK to pass negative loff_t, we can catch out-of-range */
840 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
841 
842 	return ret;
843 }
844 
845 static ssize_t mem_rw(struct file *file, char __user *buf,
846 			size_t count, loff_t *ppos, int write)
847 {
848 	struct mm_struct *mm = file->private_data;
849 	unsigned long addr = *ppos;
850 	ssize_t copied;
851 	char *page;
852 
853 	if (!mm)
854 		return 0;
855 
856 	page = (char *)__get_free_page(GFP_TEMPORARY);
857 	if (!page)
858 		return -ENOMEM;
859 
860 	copied = 0;
861 	if (!atomic_inc_not_zero(&mm->mm_users))
862 		goto free;
863 
864 	while (count > 0) {
865 		int this_len = min_t(int, count, PAGE_SIZE);
866 
867 		if (write && copy_from_user(page, buf, this_len)) {
868 			copied = -EFAULT;
869 			break;
870 		}
871 
872 		this_len = access_remote_vm(mm, addr, page, this_len, write);
873 		if (!this_len) {
874 			if (!copied)
875 				copied = -EIO;
876 			break;
877 		}
878 
879 		if (!write && copy_to_user(buf, page, this_len)) {
880 			copied = -EFAULT;
881 			break;
882 		}
883 
884 		buf += this_len;
885 		addr += this_len;
886 		copied += this_len;
887 		count -= this_len;
888 	}
889 	*ppos = addr;
890 
891 	mmput(mm);
892 free:
893 	free_page((unsigned long) page);
894 	return copied;
895 }
896 
897 static ssize_t mem_read(struct file *file, char __user *buf,
898 			size_t count, loff_t *ppos)
899 {
900 	return mem_rw(file, buf, count, ppos, 0);
901 }
902 
903 static ssize_t mem_write(struct file *file, const char __user *buf,
904 			 size_t count, loff_t *ppos)
905 {
906 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
907 }
908 
909 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
910 {
911 	switch (orig) {
912 	case 0:
913 		file->f_pos = offset;
914 		break;
915 	case 1:
916 		file->f_pos += offset;
917 		break;
918 	default:
919 		return -EINVAL;
920 	}
921 	force_successful_syscall_return();
922 	return file->f_pos;
923 }
924 
925 static int mem_release(struct inode *inode, struct file *file)
926 {
927 	struct mm_struct *mm = file->private_data;
928 	if (mm)
929 		mmdrop(mm);
930 	return 0;
931 }
932 
933 static const struct file_operations proc_mem_operations = {
934 	.llseek		= mem_lseek,
935 	.read		= mem_read,
936 	.write		= mem_write,
937 	.open		= mem_open,
938 	.release	= mem_release,
939 };
940 
941 static int environ_open(struct inode *inode, struct file *file)
942 {
943 	return __mem_open(inode, file, PTRACE_MODE_READ);
944 }
945 
946 static ssize_t environ_read(struct file *file, char __user *buf,
947 			size_t count, loff_t *ppos)
948 {
949 	char *page;
950 	unsigned long src = *ppos;
951 	int ret = 0;
952 	struct mm_struct *mm = file->private_data;
953 
954 	if (!mm)
955 		return 0;
956 
957 	page = (char *)__get_free_page(GFP_TEMPORARY);
958 	if (!page)
959 		return -ENOMEM;
960 
961 	ret = 0;
962 	if (!atomic_inc_not_zero(&mm->mm_users))
963 		goto free;
964 	while (count > 0) {
965 		size_t this_len, max_len;
966 		int retval;
967 
968 		if (src >= (mm->env_end - mm->env_start))
969 			break;
970 
971 		this_len = mm->env_end - (mm->env_start + src);
972 
973 		max_len = min_t(size_t, PAGE_SIZE, count);
974 		this_len = min(max_len, this_len);
975 
976 		retval = access_remote_vm(mm, (mm->env_start + src),
977 			page, this_len, 0);
978 
979 		if (retval <= 0) {
980 			ret = retval;
981 			break;
982 		}
983 
984 		if (copy_to_user(buf, page, retval)) {
985 			ret = -EFAULT;
986 			break;
987 		}
988 
989 		ret += retval;
990 		src += retval;
991 		buf += retval;
992 		count -= retval;
993 	}
994 	*ppos = src;
995 	mmput(mm);
996 
997 free:
998 	free_page((unsigned long) page);
999 	return ret;
1000 }
1001 
1002 static const struct file_operations proc_environ_operations = {
1003 	.open		= environ_open,
1004 	.read		= environ_read,
1005 	.llseek		= generic_file_llseek,
1006 	.release	= mem_release,
1007 };
1008 
1009 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1010 			    loff_t *ppos)
1011 {
1012 	struct task_struct *task = get_proc_task(file_inode(file));
1013 	char buffer[PROC_NUMBUF];
1014 	int oom_adj = OOM_ADJUST_MIN;
1015 	size_t len;
1016 	unsigned long flags;
1017 
1018 	if (!task)
1019 		return -ESRCH;
1020 	if (lock_task_sighand(task, &flags)) {
1021 		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1022 			oom_adj = OOM_ADJUST_MAX;
1023 		else
1024 			oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1025 				  OOM_SCORE_ADJ_MAX;
1026 		unlock_task_sighand(task, &flags);
1027 	}
1028 	put_task_struct(task);
1029 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1030 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1031 }
1032 
1033 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1034 			     size_t count, loff_t *ppos)
1035 {
1036 	struct task_struct *task;
1037 	char buffer[PROC_NUMBUF];
1038 	int oom_adj;
1039 	unsigned long flags;
1040 	int err;
1041 
1042 	memset(buffer, 0, sizeof(buffer));
1043 	if (count > sizeof(buffer) - 1)
1044 		count = sizeof(buffer) - 1;
1045 	if (copy_from_user(buffer, buf, count)) {
1046 		err = -EFAULT;
1047 		goto out;
1048 	}
1049 
1050 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1051 	if (err)
1052 		goto out;
1053 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1054 	     oom_adj != OOM_DISABLE) {
1055 		err = -EINVAL;
1056 		goto out;
1057 	}
1058 
1059 	task = get_proc_task(file_inode(file));
1060 	if (!task) {
1061 		err = -ESRCH;
1062 		goto out;
1063 	}
1064 
1065 	task_lock(task);
1066 	if (!task->mm) {
1067 		err = -EINVAL;
1068 		goto err_task_lock;
1069 	}
1070 
1071 	if (!lock_task_sighand(task, &flags)) {
1072 		err = -ESRCH;
1073 		goto err_task_lock;
1074 	}
1075 
1076 	/*
1077 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1078 	 * value is always attainable.
1079 	 */
1080 	if (oom_adj == OOM_ADJUST_MAX)
1081 		oom_adj = OOM_SCORE_ADJ_MAX;
1082 	else
1083 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1084 
1085 	if (oom_adj < task->signal->oom_score_adj &&
1086 	    !capable(CAP_SYS_RESOURCE)) {
1087 		err = -EACCES;
1088 		goto err_sighand;
1089 	}
1090 
1091 	/*
1092 	 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1093 	 * /proc/pid/oom_score_adj instead.
1094 	 */
1095 	pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1096 		  current->comm, task_pid_nr(current), task_pid_nr(task),
1097 		  task_pid_nr(task));
1098 
1099 	task->signal->oom_score_adj = oom_adj;
1100 	trace_oom_score_adj_update(task);
1101 err_sighand:
1102 	unlock_task_sighand(task, &flags);
1103 err_task_lock:
1104 	task_unlock(task);
1105 	put_task_struct(task);
1106 out:
1107 	return err < 0 ? err : count;
1108 }
1109 
1110 static const struct file_operations proc_oom_adj_operations = {
1111 	.read		= oom_adj_read,
1112 	.write		= oom_adj_write,
1113 	.llseek		= generic_file_llseek,
1114 };
1115 
1116 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1117 					size_t count, loff_t *ppos)
1118 {
1119 	struct task_struct *task = get_proc_task(file_inode(file));
1120 	char buffer[PROC_NUMBUF];
1121 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1122 	unsigned long flags;
1123 	size_t len;
1124 
1125 	if (!task)
1126 		return -ESRCH;
1127 	if (lock_task_sighand(task, &flags)) {
1128 		oom_score_adj = task->signal->oom_score_adj;
1129 		unlock_task_sighand(task, &flags);
1130 	}
1131 	put_task_struct(task);
1132 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1133 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1134 }
1135 
1136 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1137 					size_t count, loff_t *ppos)
1138 {
1139 	struct task_struct *task;
1140 	char buffer[PROC_NUMBUF];
1141 	unsigned long flags;
1142 	int oom_score_adj;
1143 	int err;
1144 
1145 	memset(buffer, 0, sizeof(buffer));
1146 	if (count > sizeof(buffer) - 1)
1147 		count = sizeof(buffer) - 1;
1148 	if (copy_from_user(buffer, buf, count)) {
1149 		err = -EFAULT;
1150 		goto out;
1151 	}
1152 
1153 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1154 	if (err)
1155 		goto out;
1156 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1157 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1158 		err = -EINVAL;
1159 		goto out;
1160 	}
1161 
1162 	task = get_proc_task(file_inode(file));
1163 	if (!task) {
1164 		err = -ESRCH;
1165 		goto out;
1166 	}
1167 
1168 	task_lock(task);
1169 	if (!task->mm) {
1170 		err = -EINVAL;
1171 		goto err_task_lock;
1172 	}
1173 
1174 	if (!lock_task_sighand(task, &flags)) {
1175 		err = -ESRCH;
1176 		goto err_task_lock;
1177 	}
1178 
1179 	if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1180 			!capable(CAP_SYS_RESOURCE)) {
1181 		err = -EACCES;
1182 		goto err_sighand;
1183 	}
1184 
1185 	task->signal->oom_score_adj = (short)oom_score_adj;
1186 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1187 		task->signal->oom_score_adj_min = (short)oom_score_adj;
1188 	trace_oom_score_adj_update(task);
1189 
1190 err_sighand:
1191 	unlock_task_sighand(task, &flags);
1192 err_task_lock:
1193 	task_unlock(task);
1194 	put_task_struct(task);
1195 out:
1196 	return err < 0 ? err : count;
1197 }
1198 
1199 static const struct file_operations proc_oom_score_adj_operations = {
1200 	.read		= oom_score_adj_read,
1201 	.write		= oom_score_adj_write,
1202 	.llseek		= default_llseek,
1203 };
1204 
1205 #ifdef CONFIG_AUDITSYSCALL
1206 #define TMPBUFLEN 21
1207 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1208 				  size_t count, loff_t *ppos)
1209 {
1210 	struct inode * inode = file_inode(file);
1211 	struct task_struct *task = get_proc_task(inode);
1212 	ssize_t length;
1213 	char tmpbuf[TMPBUFLEN];
1214 
1215 	if (!task)
1216 		return -ESRCH;
1217 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1218 			   from_kuid(file->f_cred->user_ns,
1219 				     audit_get_loginuid(task)));
1220 	put_task_struct(task);
1221 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1222 }
1223 
1224 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1225 				   size_t count, loff_t *ppos)
1226 {
1227 	struct inode * inode = file_inode(file);
1228 	char *page, *tmp;
1229 	ssize_t length;
1230 	uid_t loginuid;
1231 	kuid_t kloginuid;
1232 
1233 	rcu_read_lock();
1234 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1235 		rcu_read_unlock();
1236 		return -EPERM;
1237 	}
1238 	rcu_read_unlock();
1239 
1240 	if (count >= PAGE_SIZE)
1241 		count = PAGE_SIZE - 1;
1242 
1243 	if (*ppos != 0) {
1244 		/* No partial writes. */
1245 		return -EINVAL;
1246 	}
1247 	page = (char*)__get_free_page(GFP_TEMPORARY);
1248 	if (!page)
1249 		return -ENOMEM;
1250 	length = -EFAULT;
1251 	if (copy_from_user(page, buf, count))
1252 		goto out_free_page;
1253 
1254 	page[count] = '\0';
1255 	loginuid = simple_strtoul(page, &tmp, 10);
1256 	if (tmp == page) {
1257 		length = -EINVAL;
1258 		goto out_free_page;
1259 
1260 	}
1261 
1262 	/* is userspace tring to explicitly UNSET the loginuid? */
1263 	if (loginuid == AUDIT_UID_UNSET) {
1264 		kloginuid = INVALID_UID;
1265 	} else {
1266 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1267 		if (!uid_valid(kloginuid)) {
1268 			length = -EINVAL;
1269 			goto out_free_page;
1270 		}
1271 	}
1272 
1273 	length = audit_set_loginuid(kloginuid);
1274 	if (likely(length == 0))
1275 		length = count;
1276 
1277 out_free_page:
1278 	free_page((unsigned long) page);
1279 	return length;
1280 }
1281 
1282 static const struct file_operations proc_loginuid_operations = {
1283 	.read		= proc_loginuid_read,
1284 	.write		= proc_loginuid_write,
1285 	.llseek		= generic_file_llseek,
1286 };
1287 
1288 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1289 				  size_t count, loff_t *ppos)
1290 {
1291 	struct inode * inode = file_inode(file);
1292 	struct task_struct *task = get_proc_task(inode);
1293 	ssize_t length;
1294 	char tmpbuf[TMPBUFLEN];
1295 
1296 	if (!task)
1297 		return -ESRCH;
1298 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1299 				audit_get_sessionid(task));
1300 	put_task_struct(task);
1301 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1302 }
1303 
1304 static const struct file_operations proc_sessionid_operations = {
1305 	.read		= proc_sessionid_read,
1306 	.llseek		= generic_file_llseek,
1307 };
1308 #endif
1309 
1310 #ifdef CONFIG_FAULT_INJECTION
1311 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1312 				      size_t count, loff_t *ppos)
1313 {
1314 	struct task_struct *task = get_proc_task(file_inode(file));
1315 	char buffer[PROC_NUMBUF];
1316 	size_t len;
1317 	int make_it_fail;
1318 
1319 	if (!task)
1320 		return -ESRCH;
1321 	make_it_fail = task->make_it_fail;
1322 	put_task_struct(task);
1323 
1324 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1325 
1326 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1327 }
1328 
1329 static ssize_t proc_fault_inject_write(struct file * file,
1330 			const char __user * buf, size_t count, loff_t *ppos)
1331 {
1332 	struct task_struct *task;
1333 	char buffer[PROC_NUMBUF], *end;
1334 	int make_it_fail;
1335 
1336 	if (!capable(CAP_SYS_RESOURCE))
1337 		return -EPERM;
1338 	memset(buffer, 0, sizeof(buffer));
1339 	if (count > sizeof(buffer) - 1)
1340 		count = sizeof(buffer) - 1;
1341 	if (copy_from_user(buffer, buf, count))
1342 		return -EFAULT;
1343 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1344 	if (*end)
1345 		return -EINVAL;
1346 	if (make_it_fail < 0 || make_it_fail > 1)
1347 		return -EINVAL;
1348 
1349 	task = get_proc_task(file_inode(file));
1350 	if (!task)
1351 		return -ESRCH;
1352 	task->make_it_fail = make_it_fail;
1353 	put_task_struct(task);
1354 
1355 	return count;
1356 }
1357 
1358 static const struct file_operations proc_fault_inject_operations = {
1359 	.read		= proc_fault_inject_read,
1360 	.write		= proc_fault_inject_write,
1361 	.llseek		= generic_file_llseek,
1362 };
1363 #endif
1364 
1365 
1366 #ifdef CONFIG_SCHED_DEBUG
1367 /*
1368  * Print out various scheduling related per-task fields:
1369  */
1370 static int sched_show(struct seq_file *m, void *v)
1371 {
1372 	struct inode *inode = m->private;
1373 	struct task_struct *p;
1374 
1375 	p = get_proc_task(inode);
1376 	if (!p)
1377 		return -ESRCH;
1378 	proc_sched_show_task(p, m);
1379 
1380 	put_task_struct(p);
1381 
1382 	return 0;
1383 }
1384 
1385 static ssize_t
1386 sched_write(struct file *file, const char __user *buf,
1387 	    size_t count, loff_t *offset)
1388 {
1389 	struct inode *inode = file_inode(file);
1390 	struct task_struct *p;
1391 
1392 	p = get_proc_task(inode);
1393 	if (!p)
1394 		return -ESRCH;
1395 	proc_sched_set_task(p);
1396 
1397 	put_task_struct(p);
1398 
1399 	return count;
1400 }
1401 
1402 static int sched_open(struct inode *inode, struct file *filp)
1403 {
1404 	return single_open(filp, sched_show, inode);
1405 }
1406 
1407 static const struct file_operations proc_pid_sched_operations = {
1408 	.open		= sched_open,
1409 	.read		= seq_read,
1410 	.write		= sched_write,
1411 	.llseek		= seq_lseek,
1412 	.release	= single_release,
1413 };
1414 
1415 #endif
1416 
1417 #ifdef CONFIG_SCHED_AUTOGROUP
1418 /*
1419  * Print out autogroup related information:
1420  */
1421 static int sched_autogroup_show(struct seq_file *m, void *v)
1422 {
1423 	struct inode *inode = m->private;
1424 	struct task_struct *p;
1425 
1426 	p = get_proc_task(inode);
1427 	if (!p)
1428 		return -ESRCH;
1429 	proc_sched_autogroup_show_task(p, m);
1430 
1431 	put_task_struct(p);
1432 
1433 	return 0;
1434 }
1435 
1436 static ssize_t
1437 sched_autogroup_write(struct file *file, const char __user *buf,
1438 	    size_t count, loff_t *offset)
1439 {
1440 	struct inode *inode = file_inode(file);
1441 	struct task_struct *p;
1442 	char buffer[PROC_NUMBUF];
1443 	int nice;
1444 	int err;
1445 
1446 	memset(buffer, 0, sizeof(buffer));
1447 	if (count > sizeof(buffer) - 1)
1448 		count = sizeof(buffer) - 1;
1449 	if (copy_from_user(buffer, buf, count))
1450 		return -EFAULT;
1451 
1452 	err = kstrtoint(strstrip(buffer), 0, &nice);
1453 	if (err < 0)
1454 		return err;
1455 
1456 	p = get_proc_task(inode);
1457 	if (!p)
1458 		return -ESRCH;
1459 
1460 	err = proc_sched_autogroup_set_nice(p, nice);
1461 	if (err)
1462 		count = err;
1463 
1464 	put_task_struct(p);
1465 
1466 	return count;
1467 }
1468 
1469 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1470 {
1471 	int ret;
1472 
1473 	ret = single_open(filp, sched_autogroup_show, NULL);
1474 	if (!ret) {
1475 		struct seq_file *m = filp->private_data;
1476 
1477 		m->private = inode;
1478 	}
1479 	return ret;
1480 }
1481 
1482 static const struct file_operations proc_pid_sched_autogroup_operations = {
1483 	.open		= sched_autogroup_open,
1484 	.read		= seq_read,
1485 	.write		= sched_autogroup_write,
1486 	.llseek		= seq_lseek,
1487 	.release	= single_release,
1488 };
1489 
1490 #endif /* CONFIG_SCHED_AUTOGROUP */
1491 
1492 static ssize_t comm_write(struct file *file, const char __user *buf,
1493 				size_t count, loff_t *offset)
1494 {
1495 	struct inode *inode = file_inode(file);
1496 	struct task_struct *p;
1497 	char buffer[TASK_COMM_LEN];
1498 	const size_t maxlen = sizeof(buffer) - 1;
1499 
1500 	memset(buffer, 0, sizeof(buffer));
1501 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1502 		return -EFAULT;
1503 
1504 	p = get_proc_task(inode);
1505 	if (!p)
1506 		return -ESRCH;
1507 
1508 	if (same_thread_group(current, p))
1509 		set_task_comm(p, buffer);
1510 	else
1511 		count = -EINVAL;
1512 
1513 	put_task_struct(p);
1514 
1515 	return count;
1516 }
1517 
1518 static int comm_show(struct seq_file *m, void *v)
1519 {
1520 	struct inode *inode = m->private;
1521 	struct task_struct *p;
1522 
1523 	p = get_proc_task(inode);
1524 	if (!p)
1525 		return -ESRCH;
1526 
1527 	task_lock(p);
1528 	seq_printf(m, "%s\n", p->comm);
1529 	task_unlock(p);
1530 
1531 	put_task_struct(p);
1532 
1533 	return 0;
1534 }
1535 
1536 static int comm_open(struct inode *inode, struct file *filp)
1537 {
1538 	return single_open(filp, comm_show, inode);
1539 }
1540 
1541 static const struct file_operations proc_pid_set_comm_operations = {
1542 	.open		= comm_open,
1543 	.read		= seq_read,
1544 	.write		= comm_write,
1545 	.llseek		= seq_lseek,
1546 	.release	= single_release,
1547 };
1548 
1549 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1550 {
1551 	struct task_struct *task;
1552 	struct mm_struct *mm;
1553 	struct file *exe_file;
1554 
1555 	task = get_proc_task(d_inode(dentry));
1556 	if (!task)
1557 		return -ENOENT;
1558 	mm = get_task_mm(task);
1559 	put_task_struct(task);
1560 	if (!mm)
1561 		return -ENOENT;
1562 	exe_file = get_mm_exe_file(mm);
1563 	mmput(mm);
1564 	if (exe_file) {
1565 		*exe_path = exe_file->f_path;
1566 		path_get(&exe_file->f_path);
1567 		fput(exe_file);
1568 		return 0;
1569 	} else
1570 		return -ENOENT;
1571 }
1572 
1573 static const char *proc_pid_follow_link(struct dentry *dentry, void **cookie)
1574 {
1575 	struct inode *inode = d_inode(dentry);
1576 	struct path path;
1577 	int error = -EACCES;
1578 
1579 	/* Are we allowed to snoop on the tasks file descriptors? */
1580 	if (!proc_fd_access_allowed(inode))
1581 		goto out;
1582 
1583 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1584 	if (error)
1585 		goto out;
1586 
1587 	nd_jump_link(&path);
1588 	return NULL;
1589 out:
1590 	return ERR_PTR(error);
1591 }
1592 
1593 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1594 {
1595 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1596 	char *pathname;
1597 	int len;
1598 
1599 	if (!tmp)
1600 		return -ENOMEM;
1601 
1602 	pathname = d_path(path, tmp, PAGE_SIZE);
1603 	len = PTR_ERR(pathname);
1604 	if (IS_ERR(pathname))
1605 		goto out;
1606 	len = tmp + PAGE_SIZE - 1 - pathname;
1607 
1608 	if (len > buflen)
1609 		len = buflen;
1610 	if (copy_to_user(buffer, pathname, len))
1611 		len = -EFAULT;
1612  out:
1613 	free_page((unsigned long)tmp);
1614 	return len;
1615 }
1616 
1617 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1618 {
1619 	int error = -EACCES;
1620 	struct inode *inode = d_inode(dentry);
1621 	struct path path;
1622 
1623 	/* Are we allowed to snoop on the tasks file descriptors? */
1624 	if (!proc_fd_access_allowed(inode))
1625 		goto out;
1626 
1627 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1628 	if (error)
1629 		goto out;
1630 
1631 	error = do_proc_readlink(&path, buffer, buflen);
1632 	path_put(&path);
1633 out:
1634 	return error;
1635 }
1636 
1637 const struct inode_operations proc_pid_link_inode_operations = {
1638 	.readlink	= proc_pid_readlink,
1639 	.follow_link	= proc_pid_follow_link,
1640 	.setattr	= proc_setattr,
1641 };
1642 
1643 
1644 /* building an inode */
1645 
1646 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1647 {
1648 	struct inode * inode;
1649 	struct proc_inode *ei;
1650 	const struct cred *cred;
1651 
1652 	/* We need a new inode */
1653 
1654 	inode = new_inode(sb);
1655 	if (!inode)
1656 		goto out;
1657 
1658 	/* Common stuff */
1659 	ei = PROC_I(inode);
1660 	inode->i_ino = get_next_ino();
1661 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1662 	inode->i_op = &proc_def_inode_operations;
1663 
1664 	/*
1665 	 * grab the reference to task.
1666 	 */
1667 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1668 	if (!ei->pid)
1669 		goto out_unlock;
1670 
1671 	if (task_dumpable(task)) {
1672 		rcu_read_lock();
1673 		cred = __task_cred(task);
1674 		inode->i_uid = cred->euid;
1675 		inode->i_gid = cred->egid;
1676 		rcu_read_unlock();
1677 	}
1678 	security_task_to_inode(task, inode);
1679 
1680 out:
1681 	return inode;
1682 
1683 out_unlock:
1684 	iput(inode);
1685 	return NULL;
1686 }
1687 
1688 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1689 {
1690 	struct inode *inode = d_inode(dentry);
1691 	struct task_struct *task;
1692 	const struct cred *cred;
1693 	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1694 
1695 	generic_fillattr(inode, stat);
1696 
1697 	rcu_read_lock();
1698 	stat->uid = GLOBAL_ROOT_UID;
1699 	stat->gid = GLOBAL_ROOT_GID;
1700 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1701 	if (task) {
1702 		if (!has_pid_permissions(pid, task, 2)) {
1703 			rcu_read_unlock();
1704 			/*
1705 			 * This doesn't prevent learning whether PID exists,
1706 			 * it only makes getattr() consistent with readdir().
1707 			 */
1708 			return -ENOENT;
1709 		}
1710 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1711 		    task_dumpable(task)) {
1712 			cred = __task_cred(task);
1713 			stat->uid = cred->euid;
1714 			stat->gid = cred->egid;
1715 		}
1716 	}
1717 	rcu_read_unlock();
1718 	return 0;
1719 }
1720 
1721 /* dentry stuff */
1722 
1723 /*
1724  *	Exceptional case: normally we are not allowed to unhash a busy
1725  * directory. In this case, however, we can do it - no aliasing problems
1726  * due to the way we treat inodes.
1727  *
1728  * Rewrite the inode's ownerships here because the owning task may have
1729  * performed a setuid(), etc.
1730  *
1731  * Before the /proc/pid/status file was created the only way to read
1732  * the effective uid of a /process was to stat /proc/pid.  Reading
1733  * /proc/pid/status is slow enough that procps and other packages
1734  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1735  * made this apply to all per process world readable and executable
1736  * directories.
1737  */
1738 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1739 {
1740 	struct inode *inode;
1741 	struct task_struct *task;
1742 	const struct cred *cred;
1743 
1744 	if (flags & LOOKUP_RCU)
1745 		return -ECHILD;
1746 
1747 	inode = d_inode(dentry);
1748 	task = get_proc_task(inode);
1749 
1750 	if (task) {
1751 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1752 		    task_dumpable(task)) {
1753 			rcu_read_lock();
1754 			cred = __task_cred(task);
1755 			inode->i_uid = cred->euid;
1756 			inode->i_gid = cred->egid;
1757 			rcu_read_unlock();
1758 		} else {
1759 			inode->i_uid = GLOBAL_ROOT_UID;
1760 			inode->i_gid = GLOBAL_ROOT_GID;
1761 		}
1762 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1763 		security_task_to_inode(task, inode);
1764 		put_task_struct(task);
1765 		return 1;
1766 	}
1767 	return 0;
1768 }
1769 
1770 static inline bool proc_inode_is_dead(struct inode *inode)
1771 {
1772 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1773 }
1774 
1775 int pid_delete_dentry(const struct dentry *dentry)
1776 {
1777 	/* Is the task we represent dead?
1778 	 * If so, then don't put the dentry on the lru list,
1779 	 * kill it immediately.
1780 	 */
1781 	return proc_inode_is_dead(d_inode(dentry));
1782 }
1783 
1784 const struct dentry_operations pid_dentry_operations =
1785 {
1786 	.d_revalidate	= pid_revalidate,
1787 	.d_delete	= pid_delete_dentry,
1788 };
1789 
1790 /* Lookups */
1791 
1792 /*
1793  * Fill a directory entry.
1794  *
1795  * If possible create the dcache entry and derive our inode number and
1796  * file type from dcache entry.
1797  *
1798  * Since all of the proc inode numbers are dynamically generated, the inode
1799  * numbers do not exist until the inode is cache.  This means creating the
1800  * the dcache entry in readdir is necessary to keep the inode numbers
1801  * reported by readdir in sync with the inode numbers reported
1802  * by stat.
1803  */
1804 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1805 	const char *name, int len,
1806 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1807 {
1808 	struct dentry *child, *dir = file->f_path.dentry;
1809 	struct qstr qname = QSTR_INIT(name, len);
1810 	struct inode *inode;
1811 	unsigned type;
1812 	ino_t ino;
1813 
1814 	child = d_hash_and_lookup(dir, &qname);
1815 	if (!child) {
1816 		child = d_alloc(dir, &qname);
1817 		if (!child)
1818 			goto end_instantiate;
1819 		if (instantiate(d_inode(dir), child, task, ptr) < 0) {
1820 			dput(child);
1821 			goto end_instantiate;
1822 		}
1823 	}
1824 	inode = d_inode(child);
1825 	ino = inode->i_ino;
1826 	type = inode->i_mode >> 12;
1827 	dput(child);
1828 	return dir_emit(ctx, name, len, ino, type);
1829 
1830 end_instantiate:
1831 	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1832 }
1833 
1834 #ifdef CONFIG_CHECKPOINT_RESTORE
1835 
1836 /*
1837  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1838  * which represent vma start and end addresses.
1839  */
1840 static int dname_to_vma_addr(struct dentry *dentry,
1841 			     unsigned long *start, unsigned long *end)
1842 {
1843 	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1844 		return -EINVAL;
1845 
1846 	return 0;
1847 }
1848 
1849 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1850 {
1851 	unsigned long vm_start, vm_end;
1852 	bool exact_vma_exists = false;
1853 	struct mm_struct *mm = NULL;
1854 	struct task_struct *task;
1855 	const struct cred *cred;
1856 	struct inode *inode;
1857 	int status = 0;
1858 
1859 	if (flags & LOOKUP_RCU)
1860 		return -ECHILD;
1861 
1862 	if (!capable(CAP_SYS_ADMIN)) {
1863 		status = -EPERM;
1864 		goto out_notask;
1865 	}
1866 
1867 	inode = d_inode(dentry);
1868 	task = get_proc_task(inode);
1869 	if (!task)
1870 		goto out_notask;
1871 
1872 	mm = mm_access(task, PTRACE_MODE_READ);
1873 	if (IS_ERR_OR_NULL(mm))
1874 		goto out;
1875 
1876 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1877 		down_read(&mm->mmap_sem);
1878 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1879 		up_read(&mm->mmap_sem);
1880 	}
1881 
1882 	mmput(mm);
1883 
1884 	if (exact_vma_exists) {
1885 		if (task_dumpable(task)) {
1886 			rcu_read_lock();
1887 			cred = __task_cred(task);
1888 			inode->i_uid = cred->euid;
1889 			inode->i_gid = cred->egid;
1890 			rcu_read_unlock();
1891 		} else {
1892 			inode->i_uid = GLOBAL_ROOT_UID;
1893 			inode->i_gid = GLOBAL_ROOT_GID;
1894 		}
1895 		security_task_to_inode(task, inode);
1896 		status = 1;
1897 	}
1898 
1899 out:
1900 	put_task_struct(task);
1901 
1902 out_notask:
1903 	return status;
1904 }
1905 
1906 static const struct dentry_operations tid_map_files_dentry_operations = {
1907 	.d_revalidate	= map_files_d_revalidate,
1908 	.d_delete	= pid_delete_dentry,
1909 };
1910 
1911 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1912 {
1913 	unsigned long vm_start, vm_end;
1914 	struct vm_area_struct *vma;
1915 	struct task_struct *task;
1916 	struct mm_struct *mm;
1917 	int rc;
1918 
1919 	rc = -ENOENT;
1920 	task = get_proc_task(d_inode(dentry));
1921 	if (!task)
1922 		goto out;
1923 
1924 	mm = get_task_mm(task);
1925 	put_task_struct(task);
1926 	if (!mm)
1927 		goto out;
1928 
1929 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1930 	if (rc)
1931 		goto out_mmput;
1932 
1933 	rc = -ENOENT;
1934 	down_read(&mm->mmap_sem);
1935 	vma = find_exact_vma(mm, vm_start, vm_end);
1936 	if (vma && vma->vm_file) {
1937 		*path = vma->vm_file->f_path;
1938 		path_get(path);
1939 		rc = 0;
1940 	}
1941 	up_read(&mm->mmap_sem);
1942 
1943 out_mmput:
1944 	mmput(mm);
1945 out:
1946 	return rc;
1947 }
1948 
1949 struct map_files_info {
1950 	fmode_t		mode;
1951 	unsigned long	len;
1952 	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1953 };
1954 
1955 static int
1956 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1957 			   struct task_struct *task, const void *ptr)
1958 {
1959 	fmode_t mode = (fmode_t)(unsigned long)ptr;
1960 	struct proc_inode *ei;
1961 	struct inode *inode;
1962 
1963 	inode = proc_pid_make_inode(dir->i_sb, task);
1964 	if (!inode)
1965 		return -ENOENT;
1966 
1967 	ei = PROC_I(inode);
1968 	ei->op.proc_get_link = proc_map_files_get_link;
1969 
1970 	inode->i_op = &proc_pid_link_inode_operations;
1971 	inode->i_size = 64;
1972 	inode->i_mode = S_IFLNK;
1973 
1974 	if (mode & FMODE_READ)
1975 		inode->i_mode |= S_IRUSR;
1976 	if (mode & FMODE_WRITE)
1977 		inode->i_mode |= S_IWUSR;
1978 
1979 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
1980 	d_add(dentry, inode);
1981 
1982 	return 0;
1983 }
1984 
1985 static struct dentry *proc_map_files_lookup(struct inode *dir,
1986 		struct dentry *dentry, unsigned int flags)
1987 {
1988 	unsigned long vm_start, vm_end;
1989 	struct vm_area_struct *vma;
1990 	struct task_struct *task;
1991 	int result;
1992 	struct mm_struct *mm;
1993 
1994 	result = -EPERM;
1995 	if (!capable(CAP_SYS_ADMIN))
1996 		goto out;
1997 
1998 	result = -ENOENT;
1999 	task = get_proc_task(dir);
2000 	if (!task)
2001 		goto out;
2002 
2003 	result = -EACCES;
2004 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2005 		goto out_put_task;
2006 
2007 	result = -ENOENT;
2008 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2009 		goto out_put_task;
2010 
2011 	mm = get_task_mm(task);
2012 	if (!mm)
2013 		goto out_put_task;
2014 
2015 	down_read(&mm->mmap_sem);
2016 	vma = find_exact_vma(mm, vm_start, vm_end);
2017 	if (!vma)
2018 		goto out_no_vma;
2019 
2020 	if (vma->vm_file)
2021 		result = proc_map_files_instantiate(dir, dentry, task,
2022 				(void *)(unsigned long)vma->vm_file->f_mode);
2023 
2024 out_no_vma:
2025 	up_read(&mm->mmap_sem);
2026 	mmput(mm);
2027 out_put_task:
2028 	put_task_struct(task);
2029 out:
2030 	return ERR_PTR(result);
2031 }
2032 
2033 static const struct inode_operations proc_map_files_inode_operations = {
2034 	.lookup		= proc_map_files_lookup,
2035 	.permission	= proc_fd_permission,
2036 	.setattr	= proc_setattr,
2037 };
2038 
2039 static int
2040 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2041 {
2042 	struct vm_area_struct *vma;
2043 	struct task_struct *task;
2044 	struct mm_struct *mm;
2045 	unsigned long nr_files, pos, i;
2046 	struct flex_array *fa = NULL;
2047 	struct map_files_info info;
2048 	struct map_files_info *p;
2049 	int ret;
2050 
2051 	ret = -EPERM;
2052 	if (!capable(CAP_SYS_ADMIN))
2053 		goto out;
2054 
2055 	ret = -ENOENT;
2056 	task = get_proc_task(file_inode(file));
2057 	if (!task)
2058 		goto out;
2059 
2060 	ret = -EACCES;
2061 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2062 		goto out_put_task;
2063 
2064 	ret = 0;
2065 	if (!dir_emit_dots(file, ctx))
2066 		goto out_put_task;
2067 
2068 	mm = get_task_mm(task);
2069 	if (!mm)
2070 		goto out_put_task;
2071 	down_read(&mm->mmap_sem);
2072 
2073 	nr_files = 0;
2074 
2075 	/*
2076 	 * We need two passes here:
2077 	 *
2078 	 *  1) Collect vmas of mapped files with mmap_sem taken
2079 	 *  2) Release mmap_sem and instantiate entries
2080 	 *
2081 	 * otherwise we get lockdep complained, since filldir()
2082 	 * routine might require mmap_sem taken in might_fault().
2083 	 */
2084 
2085 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2086 		if (vma->vm_file && ++pos > ctx->pos)
2087 			nr_files++;
2088 	}
2089 
2090 	if (nr_files) {
2091 		fa = flex_array_alloc(sizeof(info), nr_files,
2092 					GFP_KERNEL);
2093 		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2094 						GFP_KERNEL)) {
2095 			ret = -ENOMEM;
2096 			if (fa)
2097 				flex_array_free(fa);
2098 			up_read(&mm->mmap_sem);
2099 			mmput(mm);
2100 			goto out_put_task;
2101 		}
2102 		for (i = 0, vma = mm->mmap, pos = 2; vma;
2103 				vma = vma->vm_next) {
2104 			if (!vma->vm_file)
2105 				continue;
2106 			if (++pos <= ctx->pos)
2107 				continue;
2108 
2109 			info.mode = vma->vm_file->f_mode;
2110 			info.len = snprintf(info.name,
2111 					sizeof(info.name), "%lx-%lx",
2112 					vma->vm_start, vma->vm_end);
2113 			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2114 				BUG();
2115 		}
2116 	}
2117 	up_read(&mm->mmap_sem);
2118 
2119 	for (i = 0; i < nr_files; i++) {
2120 		p = flex_array_get(fa, i);
2121 		if (!proc_fill_cache(file, ctx,
2122 				      p->name, p->len,
2123 				      proc_map_files_instantiate,
2124 				      task,
2125 				      (void *)(unsigned long)p->mode))
2126 			break;
2127 		ctx->pos++;
2128 	}
2129 	if (fa)
2130 		flex_array_free(fa);
2131 	mmput(mm);
2132 
2133 out_put_task:
2134 	put_task_struct(task);
2135 out:
2136 	return ret;
2137 }
2138 
2139 static const struct file_operations proc_map_files_operations = {
2140 	.read		= generic_read_dir,
2141 	.iterate	= proc_map_files_readdir,
2142 	.llseek		= default_llseek,
2143 };
2144 
2145 struct timers_private {
2146 	struct pid *pid;
2147 	struct task_struct *task;
2148 	struct sighand_struct *sighand;
2149 	struct pid_namespace *ns;
2150 	unsigned long flags;
2151 };
2152 
2153 static void *timers_start(struct seq_file *m, loff_t *pos)
2154 {
2155 	struct timers_private *tp = m->private;
2156 
2157 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2158 	if (!tp->task)
2159 		return ERR_PTR(-ESRCH);
2160 
2161 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2162 	if (!tp->sighand)
2163 		return ERR_PTR(-ESRCH);
2164 
2165 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2166 }
2167 
2168 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2169 {
2170 	struct timers_private *tp = m->private;
2171 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2172 }
2173 
2174 static void timers_stop(struct seq_file *m, void *v)
2175 {
2176 	struct timers_private *tp = m->private;
2177 
2178 	if (tp->sighand) {
2179 		unlock_task_sighand(tp->task, &tp->flags);
2180 		tp->sighand = NULL;
2181 	}
2182 
2183 	if (tp->task) {
2184 		put_task_struct(tp->task);
2185 		tp->task = NULL;
2186 	}
2187 }
2188 
2189 static int show_timer(struct seq_file *m, void *v)
2190 {
2191 	struct k_itimer *timer;
2192 	struct timers_private *tp = m->private;
2193 	int notify;
2194 	static const char * const nstr[] = {
2195 		[SIGEV_SIGNAL] = "signal",
2196 		[SIGEV_NONE] = "none",
2197 		[SIGEV_THREAD] = "thread",
2198 	};
2199 
2200 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2201 	notify = timer->it_sigev_notify;
2202 
2203 	seq_printf(m, "ID: %d\n", timer->it_id);
2204 	seq_printf(m, "signal: %d/%p\n",
2205 		   timer->sigq->info.si_signo,
2206 		   timer->sigq->info.si_value.sival_ptr);
2207 	seq_printf(m, "notify: %s/%s.%d\n",
2208 		   nstr[notify & ~SIGEV_THREAD_ID],
2209 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2210 		   pid_nr_ns(timer->it_pid, tp->ns));
2211 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2212 
2213 	return 0;
2214 }
2215 
2216 static const struct seq_operations proc_timers_seq_ops = {
2217 	.start	= timers_start,
2218 	.next	= timers_next,
2219 	.stop	= timers_stop,
2220 	.show	= show_timer,
2221 };
2222 
2223 static int proc_timers_open(struct inode *inode, struct file *file)
2224 {
2225 	struct timers_private *tp;
2226 
2227 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2228 			sizeof(struct timers_private));
2229 	if (!tp)
2230 		return -ENOMEM;
2231 
2232 	tp->pid = proc_pid(inode);
2233 	tp->ns = inode->i_sb->s_fs_info;
2234 	return 0;
2235 }
2236 
2237 static const struct file_operations proc_timers_operations = {
2238 	.open		= proc_timers_open,
2239 	.read		= seq_read,
2240 	.llseek		= seq_lseek,
2241 	.release	= seq_release_private,
2242 };
2243 #endif /* CONFIG_CHECKPOINT_RESTORE */
2244 
2245 static int proc_pident_instantiate(struct inode *dir,
2246 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2247 {
2248 	const struct pid_entry *p = ptr;
2249 	struct inode *inode;
2250 	struct proc_inode *ei;
2251 
2252 	inode = proc_pid_make_inode(dir->i_sb, task);
2253 	if (!inode)
2254 		goto out;
2255 
2256 	ei = PROC_I(inode);
2257 	inode->i_mode = p->mode;
2258 	if (S_ISDIR(inode->i_mode))
2259 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2260 	if (p->iop)
2261 		inode->i_op = p->iop;
2262 	if (p->fop)
2263 		inode->i_fop = p->fop;
2264 	ei->op = p->op;
2265 	d_set_d_op(dentry, &pid_dentry_operations);
2266 	d_add(dentry, inode);
2267 	/* Close the race of the process dying before we return the dentry */
2268 	if (pid_revalidate(dentry, 0))
2269 		return 0;
2270 out:
2271 	return -ENOENT;
2272 }
2273 
2274 static struct dentry *proc_pident_lookup(struct inode *dir,
2275 					 struct dentry *dentry,
2276 					 const struct pid_entry *ents,
2277 					 unsigned int nents)
2278 {
2279 	int error;
2280 	struct task_struct *task = get_proc_task(dir);
2281 	const struct pid_entry *p, *last;
2282 
2283 	error = -ENOENT;
2284 
2285 	if (!task)
2286 		goto out_no_task;
2287 
2288 	/*
2289 	 * Yes, it does not scale. And it should not. Don't add
2290 	 * new entries into /proc/<tgid>/ without very good reasons.
2291 	 */
2292 	last = &ents[nents - 1];
2293 	for (p = ents; p <= last; p++) {
2294 		if (p->len != dentry->d_name.len)
2295 			continue;
2296 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2297 			break;
2298 	}
2299 	if (p > last)
2300 		goto out;
2301 
2302 	error = proc_pident_instantiate(dir, dentry, task, p);
2303 out:
2304 	put_task_struct(task);
2305 out_no_task:
2306 	return ERR_PTR(error);
2307 }
2308 
2309 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2310 		const struct pid_entry *ents, unsigned int nents)
2311 {
2312 	struct task_struct *task = get_proc_task(file_inode(file));
2313 	const struct pid_entry *p;
2314 
2315 	if (!task)
2316 		return -ENOENT;
2317 
2318 	if (!dir_emit_dots(file, ctx))
2319 		goto out;
2320 
2321 	if (ctx->pos >= nents + 2)
2322 		goto out;
2323 
2324 	for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2325 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2326 				proc_pident_instantiate, task, p))
2327 			break;
2328 		ctx->pos++;
2329 	}
2330 out:
2331 	put_task_struct(task);
2332 	return 0;
2333 }
2334 
2335 #ifdef CONFIG_SECURITY
2336 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2337 				  size_t count, loff_t *ppos)
2338 {
2339 	struct inode * inode = file_inode(file);
2340 	char *p = NULL;
2341 	ssize_t length;
2342 	struct task_struct *task = get_proc_task(inode);
2343 
2344 	if (!task)
2345 		return -ESRCH;
2346 
2347 	length = security_getprocattr(task,
2348 				      (char*)file->f_path.dentry->d_name.name,
2349 				      &p);
2350 	put_task_struct(task);
2351 	if (length > 0)
2352 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2353 	kfree(p);
2354 	return length;
2355 }
2356 
2357 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2358 				   size_t count, loff_t *ppos)
2359 {
2360 	struct inode * inode = file_inode(file);
2361 	char *page;
2362 	ssize_t length;
2363 	struct task_struct *task = get_proc_task(inode);
2364 
2365 	length = -ESRCH;
2366 	if (!task)
2367 		goto out_no_task;
2368 	if (count > PAGE_SIZE)
2369 		count = PAGE_SIZE;
2370 
2371 	/* No partial writes. */
2372 	length = -EINVAL;
2373 	if (*ppos != 0)
2374 		goto out;
2375 
2376 	length = -ENOMEM;
2377 	page = (char*)__get_free_page(GFP_TEMPORARY);
2378 	if (!page)
2379 		goto out;
2380 
2381 	length = -EFAULT;
2382 	if (copy_from_user(page, buf, count))
2383 		goto out_free;
2384 
2385 	/* Guard against adverse ptrace interaction */
2386 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2387 	if (length < 0)
2388 		goto out_free;
2389 
2390 	length = security_setprocattr(task,
2391 				      (char*)file->f_path.dentry->d_name.name,
2392 				      (void*)page, count);
2393 	mutex_unlock(&task->signal->cred_guard_mutex);
2394 out_free:
2395 	free_page((unsigned long) page);
2396 out:
2397 	put_task_struct(task);
2398 out_no_task:
2399 	return length;
2400 }
2401 
2402 static const struct file_operations proc_pid_attr_operations = {
2403 	.read		= proc_pid_attr_read,
2404 	.write		= proc_pid_attr_write,
2405 	.llseek		= generic_file_llseek,
2406 };
2407 
2408 static const struct pid_entry attr_dir_stuff[] = {
2409 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2410 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2411 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2412 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2413 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2414 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2415 };
2416 
2417 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2418 {
2419 	return proc_pident_readdir(file, ctx,
2420 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2421 }
2422 
2423 static const struct file_operations proc_attr_dir_operations = {
2424 	.read		= generic_read_dir,
2425 	.iterate	= proc_attr_dir_readdir,
2426 	.llseek		= default_llseek,
2427 };
2428 
2429 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2430 				struct dentry *dentry, unsigned int flags)
2431 {
2432 	return proc_pident_lookup(dir, dentry,
2433 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2434 }
2435 
2436 static const struct inode_operations proc_attr_dir_inode_operations = {
2437 	.lookup		= proc_attr_dir_lookup,
2438 	.getattr	= pid_getattr,
2439 	.setattr	= proc_setattr,
2440 };
2441 
2442 #endif
2443 
2444 #ifdef CONFIG_ELF_CORE
2445 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2446 					 size_t count, loff_t *ppos)
2447 {
2448 	struct task_struct *task = get_proc_task(file_inode(file));
2449 	struct mm_struct *mm;
2450 	char buffer[PROC_NUMBUF];
2451 	size_t len;
2452 	int ret;
2453 
2454 	if (!task)
2455 		return -ESRCH;
2456 
2457 	ret = 0;
2458 	mm = get_task_mm(task);
2459 	if (mm) {
2460 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2461 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2462 				MMF_DUMP_FILTER_SHIFT));
2463 		mmput(mm);
2464 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2465 	}
2466 
2467 	put_task_struct(task);
2468 
2469 	return ret;
2470 }
2471 
2472 static ssize_t proc_coredump_filter_write(struct file *file,
2473 					  const char __user *buf,
2474 					  size_t count,
2475 					  loff_t *ppos)
2476 {
2477 	struct task_struct *task;
2478 	struct mm_struct *mm;
2479 	char buffer[PROC_NUMBUF], *end;
2480 	unsigned int val;
2481 	int ret;
2482 	int i;
2483 	unsigned long mask;
2484 
2485 	ret = -EFAULT;
2486 	memset(buffer, 0, sizeof(buffer));
2487 	if (count > sizeof(buffer) - 1)
2488 		count = sizeof(buffer) - 1;
2489 	if (copy_from_user(buffer, buf, count))
2490 		goto out_no_task;
2491 
2492 	ret = -EINVAL;
2493 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2494 	if (*end == '\n')
2495 		end++;
2496 	if (end - buffer == 0)
2497 		goto out_no_task;
2498 
2499 	ret = -ESRCH;
2500 	task = get_proc_task(file_inode(file));
2501 	if (!task)
2502 		goto out_no_task;
2503 
2504 	ret = end - buffer;
2505 	mm = get_task_mm(task);
2506 	if (!mm)
2507 		goto out_no_mm;
2508 
2509 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2510 		if (val & mask)
2511 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2512 		else
2513 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2514 	}
2515 
2516 	mmput(mm);
2517  out_no_mm:
2518 	put_task_struct(task);
2519  out_no_task:
2520 	return ret;
2521 }
2522 
2523 static const struct file_operations proc_coredump_filter_operations = {
2524 	.read		= proc_coredump_filter_read,
2525 	.write		= proc_coredump_filter_write,
2526 	.llseek		= generic_file_llseek,
2527 };
2528 #endif
2529 
2530 #ifdef CONFIG_TASK_IO_ACCOUNTING
2531 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2532 {
2533 	struct task_io_accounting acct = task->ioac;
2534 	unsigned long flags;
2535 	int result;
2536 
2537 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2538 	if (result)
2539 		return result;
2540 
2541 	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2542 		result = -EACCES;
2543 		goto out_unlock;
2544 	}
2545 
2546 	if (whole && lock_task_sighand(task, &flags)) {
2547 		struct task_struct *t = task;
2548 
2549 		task_io_accounting_add(&acct, &task->signal->ioac);
2550 		while_each_thread(task, t)
2551 			task_io_accounting_add(&acct, &t->ioac);
2552 
2553 		unlock_task_sighand(task, &flags);
2554 	}
2555 	seq_printf(m,
2556 		   "rchar: %llu\n"
2557 		   "wchar: %llu\n"
2558 		   "syscr: %llu\n"
2559 		   "syscw: %llu\n"
2560 		   "read_bytes: %llu\n"
2561 		   "write_bytes: %llu\n"
2562 		   "cancelled_write_bytes: %llu\n",
2563 		   (unsigned long long)acct.rchar,
2564 		   (unsigned long long)acct.wchar,
2565 		   (unsigned long long)acct.syscr,
2566 		   (unsigned long long)acct.syscw,
2567 		   (unsigned long long)acct.read_bytes,
2568 		   (unsigned long long)acct.write_bytes,
2569 		   (unsigned long long)acct.cancelled_write_bytes);
2570 	result = 0;
2571 
2572 out_unlock:
2573 	mutex_unlock(&task->signal->cred_guard_mutex);
2574 	return result;
2575 }
2576 
2577 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2578 				  struct pid *pid, struct task_struct *task)
2579 {
2580 	return do_io_accounting(task, m, 0);
2581 }
2582 
2583 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2584 				   struct pid *pid, struct task_struct *task)
2585 {
2586 	return do_io_accounting(task, m, 1);
2587 }
2588 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2589 
2590 #ifdef CONFIG_USER_NS
2591 static int proc_id_map_open(struct inode *inode, struct file *file,
2592 	const struct seq_operations *seq_ops)
2593 {
2594 	struct user_namespace *ns = NULL;
2595 	struct task_struct *task;
2596 	struct seq_file *seq;
2597 	int ret = -EINVAL;
2598 
2599 	task = get_proc_task(inode);
2600 	if (task) {
2601 		rcu_read_lock();
2602 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2603 		rcu_read_unlock();
2604 		put_task_struct(task);
2605 	}
2606 	if (!ns)
2607 		goto err;
2608 
2609 	ret = seq_open(file, seq_ops);
2610 	if (ret)
2611 		goto err_put_ns;
2612 
2613 	seq = file->private_data;
2614 	seq->private = ns;
2615 
2616 	return 0;
2617 err_put_ns:
2618 	put_user_ns(ns);
2619 err:
2620 	return ret;
2621 }
2622 
2623 static int proc_id_map_release(struct inode *inode, struct file *file)
2624 {
2625 	struct seq_file *seq = file->private_data;
2626 	struct user_namespace *ns = seq->private;
2627 	put_user_ns(ns);
2628 	return seq_release(inode, file);
2629 }
2630 
2631 static int proc_uid_map_open(struct inode *inode, struct file *file)
2632 {
2633 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2634 }
2635 
2636 static int proc_gid_map_open(struct inode *inode, struct file *file)
2637 {
2638 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2639 }
2640 
2641 static int proc_projid_map_open(struct inode *inode, struct file *file)
2642 {
2643 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2644 }
2645 
2646 static const struct file_operations proc_uid_map_operations = {
2647 	.open		= proc_uid_map_open,
2648 	.write		= proc_uid_map_write,
2649 	.read		= seq_read,
2650 	.llseek		= seq_lseek,
2651 	.release	= proc_id_map_release,
2652 };
2653 
2654 static const struct file_operations proc_gid_map_operations = {
2655 	.open		= proc_gid_map_open,
2656 	.write		= proc_gid_map_write,
2657 	.read		= seq_read,
2658 	.llseek		= seq_lseek,
2659 	.release	= proc_id_map_release,
2660 };
2661 
2662 static const struct file_operations proc_projid_map_operations = {
2663 	.open		= proc_projid_map_open,
2664 	.write		= proc_projid_map_write,
2665 	.read		= seq_read,
2666 	.llseek		= seq_lseek,
2667 	.release	= proc_id_map_release,
2668 };
2669 
2670 static int proc_setgroups_open(struct inode *inode, struct file *file)
2671 {
2672 	struct user_namespace *ns = NULL;
2673 	struct task_struct *task;
2674 	int ret;
2675 
2676 	ret = -ESRCH;
2677 	task = get_proc_task(inode);
2678 	if (task) {
2679 		rcu_read_lock();
2680 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2681 		rcu_read_unlock();
2682 		put_task_struct(task);
2683 	}
2684 	if (!ns)
2685 		goto err;
2686 
2687 	if (file->f_mode & FMODE_WRITE) {
2688 		ret = -EACCES;
2689 		if (!ns_capable(ns, CAP_SYS_ADMIN))
2690 			goto err_put_ns;
2691 	}
2692 
2693 	ret = single_open(file, &proc_setgroups_show, ns);
2694 	if (ret)
2695 		goto err_put_ns;
2696 
2697 	return 0;
2698 err_put_ns:
2699 	put_user_ns(ns);
2700 err:
2701 	return ret;
2702 }
2703 
2704 static int proc_setgroups_release(struct inode *inode, struct file *file)
2705 {
2706 	struct seq_file *seq = file->private_data;
2707 	struct user_namespace *ns = seq->private;
2708 	int ret = single_release(inode, file);
2709 	put_user_ns(ns);
2710 	return ret;
2711 }
2712 
2713 static const struct file_operations proc_setgroups_operations = {
2714 	.open		= proc_setgroups_open,
2715 	.write		= proc_setgroups_write,
2716 	.read		= seq_read,
2717 	.llseek		= seq_lseek,
2718 	.release	= proc_setgroups_release,
2719 };
2720 #endif /* CONFIG_USER_NS */
2721 
2722 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2723 				struct pid *pid, struct task_struct *task)
2724 {
2725 	int err = lock_trace(task);
2726 	if (!err) {
2727 		seq_printf(m, "%08x\n", task->personality);
2728 		unlock_trace(task);
2729 	}
2730 	return err;
2731 }
2732 
2733 /*
2734  * Thread groups
2735  */
2736 static const struct file_operations proc_task_operations;
2737 static const struct inode_operations proc_task_inode_operations;
2738 
2739 static const struct pid_entry tgid_base_stuff[] = {
2740 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2741 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2742 #ifdef CONFIG_CHECKPOINT_RESTORE
2743 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2744 #endif
2745 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2746 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2747 #ifdef CONFIG_NET
2748 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2749 #endif
2750 	REG("environ",    S_IRUSR, proc_environ_operations),
2751 	ONE("auxv",       S_IRUSR, proc_pid_auxv),
2752 	ONE("status",     S_IRUGO, proc_pid_status),
2753 	ONE("personality", S_IRUSR, proc_pid_personality),
2754 	ONE("limits",	  S_IRUGO, proc_pid_limits),
2755 #ifdef CONFIG_SCHED_DEBUG
2756 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2757 #endif
2758 #ifdef CONFIG_SCHED_AUTOGROUP
2759 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2760 #endif
2761 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2762 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2763 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2764 #endif
2765 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2766 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2767 	ONE("statm",      S_IRUGO, proc_pid_statm),
2768 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2769 #ifdef CONFIG_NUMA
2770 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2771 #endif
2772 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2773 	LNK("cwd",        proc_cwd_link),
2774 	LNK("root",       proc_root_link),
2775 	LNK("exe",        proc_exe_link),
2776 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2777 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2778 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2779 #ifdef CONFIG_PROC_PAGE_MONITOR
2780 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2781 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2782 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2783 #endif
2784 #ifdef CONFIG_SECURITY
2785 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2786 #endif
2787 #ifdef CONFIG_KALLSYMS
2788 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2789 #endif
2790 #ifdef CONFIG_STACKTRACE
2791 	ONE("stack",      S_IRUSR, proc_pid_stack),
2792 #endif
2793 #ifdef CONFIG_SCHED_INFO
2794 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2795 #endif
2796 #ifdef CONFIG_LATENCYTOP
2797 	REG("latency",  S_IRUGO, proc_lstats_operations),
2798 #endif
2799 #ifdef CONFIG_PROC_PID_CPUSET
2800 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2801 #endif
2802 #ifdef CONFIG_CGROUPS
2803 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2804 #endif
2805 	ONE("oom_score",  S_IRUGO, proc_oom_score),
2806 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2807 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2808 #ifdef CONFIG_AUDITSYSCALL
2809 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2810 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2811 #endif
2812 #ifdef CONFIG_FAULT_INJECTION
2813 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2814 #endif
2815 #ifdef CONFIG_ELF_CORE
2816 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2817 #endif
2818 #ifdef CONFIG_TASK_IO_ACCOUNTING
2819 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2820 #endif
2821 #ifdef CONFIG_HARDWALL
2822 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2823 #endif
2824 #ifdef CONFIG_USER_NS
2825 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2826 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2827 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2828 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2829 #endif
2830 #ifdef CONFIG_CHECKPOINT_RESTORE
2831 	REG("timers",	  S_IRUGO, proc_timers_operations),
2832 #endif
2833 };
2834 
2835 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2836 {
2837 	return proc_pident_readdir(file, ctx,
2838 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2839 }
2840 
2841 static const struct file_operations proc_tgid_base_operations = {
2842 	.read		= generic_read_dir,
2843 	.iterate	= proc_tgid_base_readdir,
2844 	.llseek		= default_llseek,
2845 };
2846 
2847 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2848 {
2849 	return proc_pident_lookup(dir, dentry,
2850 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2851 }
2852 
2853 static const struct inode_operations proc_tgid_base_inode_operations = {
2854 	.lookup		= proc_tgid_base_lookup,
2855 	.getattr	= pid_getattr,
2856 	.setattr	= proc_setattr,
2857 	.permission	= proc_pid_permission,
2858 };
2859 
2860 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2861 {
2862 	struct dentry *dentry, *leader, *dir;
2863 	char buf[PROC_NUMBUF];
2864 	struct qstr name;
2865 
2866 	name.name = buf;
2867 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2868 	/* no ->d_hash() rejects on procfs */
2869 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2870 	if (dentry) {
2871 		d_invalidate(dentry);
2872 		dput(dentry);
2873 	}
2874 
2875 	if (pid == tgid)
2876 		return;
2877 
2878 	name.name = buf;
2879 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2880 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2881 	if (!leader)
2882 		goto out;
2883 
2884 	name.name = "task";
2885 	name.len = strlen(name.name);
2886 	dir = d_hash_and_lookup(leader, &name);
2887 	if (!dir)
2888 		goto out_put_leader;
2889 
2890 	name.name = buf;
2891 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2892 	dentry = d_hash_and_lookup(dir, &name);
2893 	if (dentry) {
2894 		d_invalidate(dentry);
2895 		dput(dentry);
2896 	}
2897 
2898 	dput(dir);
2899 out_put_leader:
2900 	dput(leader);
2901 out:
2902 	return;
2903 }
2904 
2905 /**
2906  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2907  * @task: task that should be flushed.
2908  *
2909  * When flushing dentries from proc, one needs to flush them from global
2910  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2911  * in. This call is supposed to do all of this job.
2912  *
2913  * Looks in the dcache for
2914  * /proc/@pid
2915  * /proc/@tgid/task/@pid
2916  * if either directory is present flushes it and all of it'ts children
2917  * from the dcache.
2918  *
2919  * It is safe and reasonable to cache /proc entries for a task until
2920  * that task exits.  After that they just clog up the dcache with
2921  * useless entries, possibly causing useful dcache entries to be
2922  * flushed instead.  This routine is proved to flush those useless
2923  * dcache entries at process exit time.
2924  *
2925  * NOTE: This routine is just an optimization so it does not guarantee
2926  *       that no dcache entries will exist at process exit time it
2927  *       just makes it very unlikely that any will persist.
2928  */
2929 
2930 void proc_flush_task(struct task_struct *task)
2931 {
2932 	int i;
2933 	struct pid *pid, *tgid;
2934 	struct upid *upid;
2935 
2936 	pid = task_pid(task);
2937 	tgid = task_tgid(task);
2938 
2939 	for (i = 0; i <= pid->level; i++) {
2940 		upid = &pid->numbers[i];
2941 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2942 					tgid->numbers[i].nr);
2943 	}
2944 }
2945 
2946 static int proc_pid_instantiate(struct inode *dir,
2947 				   struct dentry * dentry,
2948 				   struct task_struct *task, const void *ptr)
2949 {
2950 	struct inode *inode;
2951 
2952 	inode = proc_pid_make_inode(dir->i_sb, task);
2953 	if (!inode)
2954 		goto out;
2955 
2956 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2957 	inode->i_op = &proc_tgid_base_inode_operations;
2958 	inode->i_fop = &proc_tgid_base_operations;
2959 	inode->i_flags|=S_IMMUTABLE;
2960 
2961 	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2962 						  ARRAY_SIZE(tgid_base_stuff)));
2963 
2964 	d_set_d_op(dentry, &pid_dentry_operations);
2965 
2966 	d_add(dentry, inode);
2967 	/* Close the race of the process dying before we return the dentry */
2968 	if (pid_revalidate(dentry, 0))
2969 		return 0;
2970 out:
2971 	return -ENOENT;
2972 }
2973 
2974 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2975 {
2976 	int result = -ENOENT;
2977 	struct task_struct *task;
2978 	unsigned tgid;
2979 	struct pid_namespace *ns;
2980 
2981 	tgid = name_to_int(&dentry->d_name);
2982 	if (tgid == ~0U)
2983 		goto out;
2984 
2985 	ns = dentry->d_sb->s_fs_info;
2986 	rcu_read_lock();
2987 	task = find_task_by_pid_ns(tgid, ns);
2988 	if (task)
2989 		get_task_struct(task);
2990 	rcu_read_unlock();
2991 	if (!task)
2992 		goto out;
2993 
2994 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2995 	put_task_struct(task);
2996 out:
2997 	return ERR_PTR(result);
2998 }
2999 
3000 /*
3001  * Find the first task with tgid >= tgid
3002  *
3003  */
3004 struct tgid_iter {
3005 	unsigned int tgid;
3006 	struct task_struct *task;
3007 };
3008 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3009 {
3010 	struct pid *pid;
3011 
3012 	if (iter.task)
3013 		put_task_struct(iter.task);
3014 	rcu_read_lock();
3015 retry:
3016 	iter.task = NULL;
3017 	pid = find_ge_pid(iter.tgid, ns);
3018 	if (pid) {
3019 		iter.tgid = pid_nr_ns(pid, ns);
3020 		iter.task = pid_task(pid, PIDTYPE_PID);
3021 		/* What we to know is if the pid we have find is the
3022 		 * pid of a thread_group_leader.  Testing for task
3023 		 * being a thread_group_leader is the obvious thing
3024 		 * todo but there is a window when it fails, due to
3025 		 * the pid transfer logic in de_thread.
3026 		 *
3027 		 * So we perform the straight forward test of seeing
3028 		 * if the pid we have found is the pid of a thread
3029 		 * group leader, and don't worry if the task we have
3030 		 * found doesn't happen to be a thread group leader.
3031 		 * As we don't care in the case of readdir.
3032 		 */
3033 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3034 			iter.tgid += 1;
3035 			goto retry;
3036 		}
3037 		get_task_struct(iter.task);
3038 	}
3039 	rcu_read_unlock();
3040 	return iter;
3041 }
3042 
3043 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3044 
3045 /* for the /proc/ directory itself, after non-process stuff has been done */
3046 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3047 {
3048 	struct tgid_iter iter;
3049 	struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3050 	loff_t pos = ctx->pos;
3051 
3052 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3053 		return 0;
3054 
3055 	if (pos == TGID_OFFSET - 2) {
3056 		struct inode *inode = d_inode(ns->proc_self);
3057 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3058 			return 0;
3059 		ctx->pos = pos = pos + 1;
3060 	}
3061 	if (pos == TGID_OFFSET - 1) {
3062 		struct inode *inode = d_inode(ns->proc_thread_self);
3063 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3064 			return 0;
3065 		ctx->pos = pos = pos + 1;
3066 	}
3067 	iter.tgid = pos - TGID_OFFSET;
3068 	iter.task = NULL;
3069 	for (iter = next_tgid(ns, iter);
3070 	     iter.task;
3071 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3072 		char name[PROC_NUMBUF];
3073 		int len;
3074 		if (!has_pid_permissions(ns, iter.task, 2))
3075 			continue;
3076 
3077 		len = snprintf(name, sizeof(name), "%d", iter.tgid);
3078 		ctx->pos = iter.tgid + TGID_OFFSET;
3079 		if (!proc_fill_cache(file, ctx, name, len,
3080 				     proc_pid_instantiate, iter.task, NULL)) {
3081 			put_task_struct(iter.task);
3082 			return 0;
3083 		}
3084 	}
3085 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3086 	return 0;
3087 }
3088 
3089 /*
3090  * Tasks
3091  */
3092 static const struct pid_entry tid_base_stuff[] = {
3093 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3094 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3095 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3096 #ifdef CONFIG_NET
3097 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3098 #endif
3099 	REG("environ",   S_IRUSR, proc_environ_operations),
3100 	ONE("auxv",      S_IRUSR, proc_pid_auxv),
3101 	ONE("status",    S_IRUGO, proc_pid_status),
3102 	ONE("personality", S_IRUSR, proc_pid_personality),
3103 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3104 #ifdef CONFIG_SCHED_DEBUG
3105 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3106 #endif
3107 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3108 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3109 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3110 #endif
3111 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3112 	ONE("stat",      S_IRUGO, proc_tid_stat),
3113 	ONE("statm",     S_IRUGO, proc_pid_statm),
3114 	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3115 #ifdef CONFIG_PROC_CHILDREN
3116 	REG("children",  S_IRUGO, proc_tid_children_operations),
3117 #endif
3118 #ifdef CONFIG_NUMA
3119 	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3120 #endif
3121 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3122 	LNK("cwd",       proc_cwd_link),
3123 	LNK("root",      proc_root_link),
3124 	LNK("exe",       proc_exe_link),
3125 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3126 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3127 #ifdef CONFIG_PROC_PAGE_MONITOR
3128 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3129 	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3130 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3131 #endif
3132 #ifdef CONFIG_SECURITY
3133 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3134 #endif
3135 #ifdef CONFIG_KALLSYMS
3136 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3137 #endif
3138 #ifdef CONFIG_STACKTRACE
3139 	ONE("stack",      S_IRUSR, proc_pid_stack),
3140 #endif
3141 #ifdef CONFIG_SCHED_INFO
3142 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3143 #endif
3144 #ifdef CONFIG_LATENCYTOP
3145 	REG("latency",  S_IRUGO, proc_lstats_operations),
3146 #endif
3147 #ifdef CONFIG_PROC_PID_CPUSET
3148 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3149 #endif
3150 #ifdef CONFIG_CGROUPS
3151 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3152 #endif
3153 	ONE("oom_score", S_IRUGO, proc_oom_score),
3154 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3155 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3156 #ifdef CONFIG_AUDITSYSCALL
3157 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3158 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3159 #endif
3160 #ifdef CONFIG_FAULT_INJECTION
3161 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3162 #endif
3163 #ifdef CONFIG_TASK_IO_ACCOUNTING
3164 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3165 #endif
3166 #ifdef CONFIG_HARDWALL
3167 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3168 #endif
3169 #ifdef CONFIG_USER_NS
3170 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3171 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3172 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3173 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3174 #endif
3175 };
3176 
3177 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3178 {
3179 	return proc_pident_readdir(file, ctx,
3180 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3181 }
3182 
3183 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3184 {
3185 	return proc_pident_lookup(dir, dentry,
3186 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3187 }
3188 
3189 static const struct file_operations proc_tid_base_operations = {
3190 	.read		= generic_read_dir,
3191 	.iterate	= proc_tid_base_readdir,
3192 	.llseek		= default_llseek,
3193 };
3194 
3195 static const struct inode_operations proc_tid_base_inode_operations = {
3196 	.lookup		= proc_tid_base_lookup,
3197 	.getattr	= pid_getattr,
3198 	.setattr	= proc_setattr,
3199 };
3200 
3201 static int proc_task_instantiate(struct inode *dir,
3202 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3203 {
3204 	struct inode *inode;
3205 	inode = proc_pid_make_inode(dir->i_sb, task);
3206 
3207 	if (!inode)
3208 		goto out;
3209 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3210 	inode->i_op = &proc_tid_base_inode_operations;
3211 	inode->i_fop = &proc_tid_base_operations;
3212 	inode->i_flags|=S_IMMUTABLE;
3213 
3214 	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3215 						  ARRAY_SIZE(tid_base_stuff)));
3216 
3217 	d_set_d_op(dentry, &pid_dentry_operations);
3218 
3219 	d_add(dentry, inode);
3220 	/* Close the race of the process dying before we return the dentry */
3221 	if (pid_revalidate(dentry, 0))
3222 		return 0;
3223 out:
3224 	return -ENOENT;
3225 }
3226 
3227 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3228 {
3229 	int result = -ENOENT;
3230 	struct task_struct *task;
3231 	struct task_struct *leader = get_proc_task(dir);
3232 	unsigned tid;
3233 	struct pid_namespace *ns;
3234 
3235 	if (!leader)
3236 		goto out_no_task;
3237 
3238 	tid = name_to_int(&dentry->d_name);
3239 	if (tid == ~0U)
3240 		goto out;
3241 
3242 	ns = dentry->d_sb->s_fs_info;
3243 	rcu_read_lock();
3244 	task = find_task_by_pid_ns(tid, ns);
3245 	if (task)
3246 		get_task_struct(task);
3247 	rcu_read_unlock();
3248 	if (!task)
3249 		goto out;
3250 	if (!same_thread_group(leader, task))
3251 		goto out_drop_task;
3252 
3253 	result = proc_task_instantiate(dir, dentry, task, NULL);
3254 out_drop_task:
3255 	put_task_struct(task);
3256 out:
3257 	put_task_struct(leader);
3258 out_no_task:
3259 	return ERR_PTR(result);
3260 }
3261 
3262 /*
3263  * Find the first tid of a thread group to return to user space.
3264  *
3265  * Usually this is just the thread group leader, but if the users
3266  * buffer was too small or there was a seek into the middle of the
3267  * directory we have more work todo.
3268  *
3269  * In the case of a short read we start with find_task_by_pid.
3270  *
3271  * In the case of a seek we start with the leader and walk nr
3272  * threads past it.
3273  */
3274 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3275 					struct pid_namespace *ns)
3276 {
3277 	struct task_struct *pos, *task;
3278 	unsigned long nr = f_pos;
3279 
3280 	if (nr != f_pos)	/* 32bit overflow? */
3281 		return NULL;
3282 
3283 	rcu_read_lock();
3284 	task = pid_task(pid, PIDTYPE_PID);
3285 	if (!task)
3286 		goto fail;
3287 
3288 	/* Attempt to start with the tid of a thread */
3289 	if (tid && nr) {
3290 		pos = find_task_by_pid_ns(tid, ns);
3291 		if (pos && same_thread_group(pos, task))
3292 			goto found;
3293 	}
3294 
3295 	/* If nr exceeds the number of threads there is nothing todo */
3296 	if (nr >= get_nr_threads(task))
3297 		goto fail;
3298 
3299 	/* If we haven't found our starting place yet start
3300 	 * with the leader and walk nr threads forward.
3301 	 */
3302 	pos = task = task->group_leader;
3303 	do {
3304 		if (!nr--)
3305 			goto found;
3306 	} while_each_thread(task, pos);
3307 fail:
3308 	pos = NULL;
3309 	goto out;
3310 found:
3311 	get_task_struct(pos);
3312 out:
3313 	rcu_read_unlock();
3314 	return pos;
3315 }
3316 
3317 /*
3318  * Find the next thread in the thread list.
3319  * Return NULL if there is an error or no next thread.
3320  *
3321  * The reference to the input task_struct is released.
3322  */
3323 static struct task_struct *next_tid(struct task_struct *start)
3324 {
3325 	struct task_struct *pos = NULL;
3326 	rcu_read_lock();
3327 	if (pid_alive(start)) {
3328 		pos = next_thread(start);
3329 		if (thread_group_leader(pos))
3330 			pos = NULL;
3331 		else
3332 			get_task_struct(pos);
3333 	}
3334 	rcu_read_unlock();
3335 	put_task_struct(start);
3336 	return pos;
3337 }
3338 
3339 /* for the /proc/TGID/task/ directories */
3340 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3341 {
3342 	struct inode *inode = file_inode(file);
3343 	struct task_struct *task;
3344 	struct pid_namespace *ns;
3345 	int tid;
3346 
3347 	if (proc_inode_is_dead(inode))
3348 		return -ENOENT;
3349 
3350 	if (!dir_emit_dots(file, ctx))
3351 		return 0;
3352 
3353 	/* f_version caches the tgid value that the last readdir call couldn't
3354 	 * return. lseek aka telldir automagically resets f_version to 0.
3355 	 */
3356 	ns = inode->i_sb->s_fs_info;
3357 	tid = (int)file->f_version;
3358 	file->f_version = 0;
3359 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3360 	     task;
3361 	     task = next_tid(task), ctx->pos++) {
3362 		char name[PROC_NUMBUF];
3363 		int len;
3364 		tid = task_pid_nr_ns(task, ns);
3365 		len = snprintf(name, sizeof(name), "%d", tid);
3366 		if (!proc_fill_cache(file, ctx, name, len,
3367 				proc_task_instantiate, task, NULL)) {
3368 			/* returning this tgid failed, save it as the first
3369 			 * pid for the next readir call */
3370 			file->f_version = (u64)tid;
3371 			put_task_struct(task);
3372 			break;
3373 		}
3374 	}
3375 
3376 	return 0;
3377 }
3378 
3379 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3380 {
3381 	struct inode *inode = d_inode(dentry);
3382 	struct task_struct *p = get_proc_task(inode);
3383 	generic_fillattr(inode, stat);
3384 
3385 	if (p) {
3386 		stat->nlink += get_nr_threads(p);
3387 		put_task_struct(p);
3388 	}
3389 
3390 	return 0;
3391 }
3392 
3393 static const struct inode_operations proc_task_inode_operations = {
3394 	.lookup		= proc_task_lookup,
3395 	.getattr	= proc_task_getattr,
3396 	.setattr	= proc_setattr,
3397 	.permission	= proc_pid_permission,
3398 };
3399 
3400 static const struct file_operations proc_task_operations = {
3401 	.read		= generic_read_dir,
3402 	.iterate	= proc_task_readdir,
3403 	.llseek		= default_llseek,
3404 };
3405